Cryochemical method for forming spherical metal oxide particles from metal salt solutions
Tinkle, M.C.
1973-12-01
A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)
Application of close-packed structures in dental resin composites.
Wang, Ruili; Habib, Eric; Zhu, X X
2017-03-01
The inorganic filler particles in dental resin composites serve to improve their mechanical properties and reduce polymerization shrinkage during their use. Efforts have been made in academia and industry to increase the filler particle content, but, few studies examine the theoretical basis for the maximum particle loading. This work evaluates the packing of spherical particles in a close-packed state for highly loaded composites. Calculations show that for low dispersity particles, the maximum amount of particles is 74.05vol%, regardless of the particle size. This can be further improved by using a mix of large and small particles or by the use of non-spherical particles. For representative spherical particles with a diameter of 1000nm, two types of secondary particles with respective sizes of 414nm (d I ) and 225nm (d II ) are selected. The results show that after embedding secondary particles I & II into primary spherical particles, the packing factor is increased to 81.19% for the close-packed structures, which shows an improvement of 9.64%, compared to the 74.05% obtained only with primary spherical particles. This packing factor is also higher than either structure with the embedded secondary particles I or II. Examples of these mixtures with different spherical particle sizes are shown as a theoretical estimation, serving as a guideline for the design and formulation of new dental resin composites with better properties and improved performance. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Small and large particle limits of single scattering albedo for homogeneous, spherical particles
NASA Astrophysics Data System (ADS)
Moosmüller, H.; Sorensen, C. M.
2018-01-01
The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.
Adhesive interaction of elastically deformable spherical particles
NASA Astrophysics Data System (ADS)
D'yachenko, E. N.; Dueck, J. G.
2012-01-01
Two spherical particles that attract each other by van der Waals volume forces and can undergo deformation as a result of the attraction are considered. Small deformations of such particles can be described by the solution of the Hertz problem. The deformation of particles, in turn, alters the force of attraction between them. It has been established that the relationship between the adhesion and elasticity of the indicated particles is determined by the degree to which these particles deform and that the adhesion force acting between the particles depends on their elasticity, size, and the Hamaker constants.
Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua
2004-04-15
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.
The theory of nonstationary thermophoresis of a solid spherical particle
NASA Astrophysics Data System (ADS)
Kuzmin, M. K.; Yalamov, Yu. I.
2007-06-01
The theory of nonstationary thermophoresis of a solid spherical particle in a viscous gaseous medium is presented. The theory is constructed on the solutions of fluid-dynamics and thermal problems, each of which is split into stationary and strictly nonstationary parts. The solution of the stationary parts of the problems gives the final formula for determining the stationary component of the thermophoretic velocity of this particle. To determine the nonstationary component of the thermophoretic velocity of the particle, the corresponding formula in the space of Laplace transforms is derived. The limiting value theorems from operational calculus are used for obtaining the dependence of the nonstationary component of the thermophoretic velocity of the spherical particle on the strictly nonstationary temperature gradient for large and small values of time. The factors determining the thermophoretic velocity of the particle under investigation are determined.
Collisions of droplets on spherical particles
NASA Astrophysics Data System (ADS)
Charalampous, Georgios; Hardalupas, Yannis
2017-10-01
Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 < We < 1015, 0.0070 < Oh < 0.0089, and 0.09 < Ω < 0.55, respectively. The droplet-particle collisions are first quantified in terms of the outcome. In addition to the conventional deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.
Covalent bonding of polycations to small polymeric particles
NASA Technical Reports Server (NTRS)
Rembaum, A.
1975-01-01
Process produces small spherical polymeric particles which have polycations bound to them. In emulsion form, particles present large positively charged surface which is available to absorb polyanions. This properly can be used in removing heparin from blood or bile acids from the digestive tract. Other anions, such as DNA and RNA, can also be removed from aqueous solutions.
Simulation and scaling analysis of a spherical particle-laden blast wave
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.
2018-02-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Simulation and scaling analysis of a spherical particle-laden blast wave
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.
2018-05-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Effect of particle size distribution on 3D packings of spherical particles
NASA Astrophysics Data System (ADS)
Taiebat, Mahdi; Mutabaruka, Patrick; Pellenq, Roland; Radjai, Farhang
2017-06-01
We use molecular dynamics simulations of frictionless spherical particles to investigate a class of polydisperse granular materials in which the particle size distribution is uniform in particle volumes. The particles are assembled in a box by uniaxial compaction under the action of a constant stress. Due to the absence of friction and the nature of size distribution, the generated packings have the highest packing fraction at a given size span, defined as the ratio α of the largest size to the smallest size. We find that, up to α = 5, the packing fraction is a nearly linear function of α. While the coordination number is nearly constant due to the isostatic nature of the packings, we show that the connectivity of the particles evolves with α. In particular, the proportion of particles with 4 contacts represents the largest proportion of particles mostly of small size. We argue that this particular class of particles occurs as a result of the high stability of local configurations in which a small particle is stuck by four larger particles.
Hierarchical structures of ZnO spherical particles synthesized solvothermally
NASA Astrophysics Data System (ADS)
Saito, Noriko; Haneda, Hajime
2011-12-01
We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.
Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de; Harizanova, Ruzha; Tatchev, Dragomir
2015-02-15
Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enrichedmore » in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.« less
The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio
NASA Astrophysics Data System (ADS)
Roquier, Gerard
2017-06-01
The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.
Veghte, Daniel P; Freedman, Miriam A
2012-11-06
It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.
Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo
2017-01-01
The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859
NASA Technical Reports Server (NTRS)
Pai, S. I.
1973-01-01
The fundamental equations of a mixture of a gas and pseudofluid of small spherical solid particles are derived from the Boltzmann equation of two-fluid theory. The distribution function of the gas molecules is defined in the same manner as in the ordinary kinetic theory of gases, but the distribution function for the solid particles is different from that of the gas molecules, because it is necessary to take into account the different size and physical properties of solid particles. In the proposed simple kinetic theory, two additional parameters are introduced: one is the radius of the spheres and the other is the instantaneous temperature of the solid particles in the distribution of the solid particles. The Boltzmann equation for each species of the mixture is formally written, and the transfer equations of these Boltzmann equations are derived and compared to the well-known fundamental equations of the mixture of a gas and small solid particles from continuum theory. The equations obtained reveal some insight into various terms in the fundamental equations. For instance, the partial pressure of the pseudofluid of solid particles is not negligible if the volume fraction of solid particles is not negligible as in the case of lunar ash flow.
Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team
2015-11-01
The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Baars, Holger; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla
2017-09-01
Absolute calibrated signals at 532 and 1064 nm and the depolarization ratio from a multiwavelength lidar are used to categorize primary aerosol but also clouds in high temporal and spatial resolution. Automatically derived particle backscatter coefficient profiles in low temporal resolution (30 min) are applied to calibrate the lidar signals. From these calibrated lidar signals, new atmospheric parameters in temporally high resolution (quasi-particle-backscatter coefficients) are derived. By using thresholds obtained from multiyear, multisite EARLINET (European Aerosol Research Lidar Network) measurements, four aerosol classes (small; large, spherical; large, non-spherical; mixed, partly non-spherical) and several cloud classes (liquid, ice) are defined. Thus, particles are classified by their physical features (shape and size) instead of by source. The methodology is applied to 2 months of continuous observations (24 h a day, 7 days a week) with the multiwavelength-Raman-polarization lidar PollyXT during the High-Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in spring 2013. Cloudnet equipment was operated continuously directly next to the lidar and is used for comparison. By discussing three 24 h case studies, it is shown that the aerosol discrimination is very feasible and informative and gives a good complement to the Cloudnet target categorization. Performing the categorization for the 2-month data set of the entire HOPE campaign, almost 1 million pixel (5 min × 30 m) could be analysed with the newly developed tool. We find that the majority of the aerosol trapped in the planetary boundary layer (PBL) was composed of small particles as expected for a heavily populated and industrialized area. Large, spherical aerosol was observed mostly at the top of the PBL and close to the identified cloud bases, indicating the importance of hygroscopic growth of the particles at high relative humidity. Interestingly, it is found that on several days non-spherical particles were dispersed from the ground into the atmosphere.
Effects of Ni particle morphology on cell performance of Na/NiCl2 battery
NASA Astrophysics Data System (ADS)
Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan
2017-11-01
Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.
Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders
NASA Astrophysics Data System (ADS)
Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU
2018-01-01
Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.
NASA Astrophysics Data System (ADS)
Shimizu, Atsushi; Sugimoto, Nobuo; Matsui, Ichiro; Nishizawa, Tomoaki
2015-03-01
Two components of the lidar extinction coefficient, the dust extinction and the spherical particles extinction, were obtained from observations made by the National Institute for Environmental Studies lidar network in Japan. These two extinctions were compared with the number concentration of particles measured by an optical particle counter, and with subjective weather reports recorded at the nearest meteorological observatories. The dust extinction corresponded well with the number concentration of large particles with diameters as great as 5 μm and during dry conditions with the number concentration of particles larger than 2 μm. The relationship between the spherical particle extinction and the number of small particles was nearly constant under all conditions. Asian dust was sometimes reported by meteorological observatories in the period of lower dust extinction. This indicates contradicting relationship between human-eye based reports and optical characteristics observed by lidars in some cases. The most consistent results between lidar observation and meteorological reports were obtained in dry mist conditions, in which lidars exhibited higher spherical extinction as expected by the definition of the atmospheric phenomenon of dry mist or haze.
Adhesive loose packings of small dry particles.
Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A
2015-08-28
We explore adhesive loose packings of small dry spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for Ad > 1. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes the correlation between bulk and contact spheres. Our theoretical and numerical results predict: (i) an equation of state for adhesive loose packings that appear as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram and (ii) the existence of an asymptotic adhesive loose packing point at a coordination number Z = 2 and a packing fraction ϕ = 1/2(3). Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing (RLP), which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, Ryan C.; Herbold, Eric B.; Pagan, Darren C.
Three-dimensional X-ray diffraction (3DXRD), a method for quantifying the position, orientation and elastic strain of large ensembles of single crystals, has recently emerged as an important tool for studying the mechanical response of granular materials during compaction. Applications have demonstrated the utility of 3DXRD and X-ray computed tomography (XRCT) for assessing strains, particle stresses and orientations, inter-particle contacts and forces, particle fracture mechanics, and porosity evolution in situ . Although past studies employing 3DXRD and XRCT have elucidated the mechanics of spherical particle packings and angular particle packings with a small number of particles, there has been limited effort tomore » date in studying angular particle packings with a large number of particles and in comparing the mechanics of these packings with those composed of a large number of spherical particles. Therefore, the focus of the present paper is on the mechanics of several hundred angular particles during compaction using in situ 3DXRD to study the crystal structure, kinematics, stresses and rotations of angular quartz grains. Comparisons are also made between the compaction response of angular grains and that of spherical grains, and stress-induced twinning within individual grains is discussed.« less
Hurley, Ryan C.; Herbold, Eric B.; Pagan, Darren C.
2018-06-28
Three-dimensional X-ray diffraction (3DXRD), a method for quantifying the position, orientation and elastic strain of large ensembles of single crystals, has recently emerged as an important tool for studying the mechanical response of granular materials during compaction. Applications have demonstrated the utility of 3DXRD and X-ray computed tomography (XRCT) for assessing strains, particle stresses and orientations, inter-particle contacts and forces, particle fracture mechanics, and porosity evolution in situ . Although past studies employing 3DXRD and XRCT have elucidated the mechanics of spherical particle packings and angular particle packings with a small number of particles, there has been limited effort tomore » date in studying angular particle packings with a large number of particles and in comparing the mechanics of these packings with those composed of a large number of spherical particles. Therefore, the focus of the present paper is on the mechanics of several hundred angular particles during compaction using in situ 3DXRD to study the crystal structure, kinematics, stresses and rotations of angular quartz grains. Comparisons are also made between the compaction response of angular grains and that of spherical grains, and stress-induced twinning within individual grains is discussed.« less
The Evolution of Second-Phase Particles in 6111 Aluminum Alloy Processed by Hot and Cold Rolling
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Wang, Yihan; Ni, Song; Chen, Gang; Li, Kai; Du, Yong; Song, Min
2018-03-01
The evolution of coarse Al9.9Fe2.65Ni1.45 phase, spherical Al12(Mn,Fe)3Si phase and rod-like Q phase in a 6111 aluminum alloy during hot and cold rolling deformation processes was systematically investigated in this work. The results showed that the coarse Al9.9Fe2.65Ni1.45 particles are mainly distributed at the grain boundaries, accompanied by the co-formation of Al12(Fe,Mn)3Si phase and Mg2Si phase, while the spherical Al12(Mn,Fe)3Si particles are mainly distributed in the grain interiors. Hot rolling has little effects on the size and distribution of both phases, but cold deformation can severely decrease the size of the particles by breaking the particles into small pieces. In addition, the temperature of 450 °C is not high enough for the dissolution of Q phase in the Al matrix, but the Q particles can be broken into small pieces due to the stress concentration during both hot and cold rolling deformation. In addition, the influences of phase evolution, dislocations and recrystallization on the mechanical properties evolution were also discussed.
NASA Astrophysics Data System (ADS)
Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.
1995-02-01
The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.
Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szegedi, A., E-mail: szegedi@chemres.h; Popova, M.; Goshev, I.
2011-05-15
MCM-41 and SBA-15 silica materials with spherical morphology and different particle sizes were synthesized and modified by post-synthesis method with 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, were carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, thermal analysis, elemental analysis and FT-IR spectroscopy. Surface modification with amino groups resulted in high degree of ibuprofen loading and slow rate of release for MCM-41, whereas it was the opposite for SBA-15. The adsorbed drug content and the delivery rate can be predetermined by the choicemore » of mesoporous material with the appropriate structural characteristics and surface functionality. -- Graphical Abstract: Ibuprofen delivery from the parent and amino-modified spherical MCM-41 materials with 100 nm (small) and 500 nm (large) particle sizes. Display Omitted Highlights: {yields} Spherical type MCM-41 and SBA-15 with different particle sizes were modified by APTES. {yields} Adsorption and release rate of ibuprofen were compared. {yields} High degree of ibuprofen loading, slow release rate for MCM-41, the opposite for SBA-15. {yields} MCM-41 with 100 nm particles was more stable and showed slower release rate« less
Gu, Chuan; Botto, Lorenzo
2018-01-31
Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π s /γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.
NASA Astrophysics Data System (ADS)
Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin
2017-09-01
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.
Sedimentation of Inertialess Particles in Stokes Flows
NASA Astrophysics Data System (ADS)
Höfer, Richard M.
2018-05-01
We investigate the sedimentation of a cloud of rigid, spherical particles of identical radii under gravity in a Stokes fluid. Both inertia and rotation of particles are neglected. We consider the homogenization limit of many small particles in the case of a dilute system in which interactions between particles are still important. In the relevant time scale, we rigorously prove convergence of the dynamics to the solution of a macroscopic equation. This macroscopic equation resembles the Stokes equations for a fluid of variable density subject to gravitation.
Radiation forces on small particles in the solar system
NASA Technical Reports Server (NTRS)
Burns, J. A.; Lamy, P. L.; Soter, S.
1979-01-01
Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.
Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka
2018-06-01
An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.
Light Scattering by Marine Particles: Modeling with Non-spherical Shapes
2009-01-01
1491−1499, 1994. Gordon, H.R. and Tao Du, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi...from Emiliania huxleyi, Applied Optics, (2009). van de Hulst, H.C., 1957. Light Scattering by Small Particles, Wiley. Xu, Yu-lin, and Bo A.S...G.C. Boynton, Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). [submitted, in revision] 6 m = 1.05
NASA Astrophysics Data System (ADS)
Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.
2013-12-01
We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.
Particle momentum effects from the detonation of heterogeneous explosives
NASA Astrophysics Data System (ADS)
Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.
2007-06-01
Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.
Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun
We report the discovery of an ionic small molecule surfactant that undergoes water-drive self- assembly into quasispherical micelles, which pack into the first lyotropic liquid crystalline Frank–Kasper σ phase. Small-angle X-ray scattering studies indicate that this unexpected, low-symmetry phase is characterized by a tetragonal unit cell, in which 30 sub-2 nm micelles of five discrete types are arranged into a tetrahedral close packing with exceptional translational order. Varying the relative amounts of surfactant and water in these lyotropic phases enables formation of a Frank–Kasper A15 sphere packing and a more common body-centered cubic structure. MD simulations reveal that the symmetrymore » breaking that drives the selection of the σ and A15 phases arises from a delicate interplay between the drive to maintain local spherical particle symmetry and the maximization of electrostatic cohesion between the soft micellar particles.« less
Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity
Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun; ...
2017-04-03
We report the discovery of an ionic small molecule surfactant that undergoes water-drive self- assembly into quasispherical micelles, which pack into the first lyotropic liquid crystalline Frank–Kasper σ phase. Small-angle X-ray scattering studies indicate that this unexpected, low-symmetry phase is characterized by a tetragonal unit cell, in which 30 sub-2 nm micelles of five discrete types are arranged into a tetrahedral close packing with exceptional translational order. Varying the relative amounts of surfactant and water in these lyotropic phases enables formation of a Frank–Kasper A15 sphere packing and a more common body-centered cubic structure. MD simulations reveal that the symmetrymore » breaking that drives the selection of the σ and A15 phases arises from a delicate interplay between the drive to maintain local spherical particle symmetry and the maximization of electrostatic cohesion between the soft micellar particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senor, David J.; Painter, Chad L.; Geelhood, Ken J.
2007-12-01
Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less
Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma
2014-11-18
The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.
Spherical boron nitride particles and method for preparing them
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2003-11-25
Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
1982-10-01
calibrated by using spherical glass beads and aluminum oxide powder . Measurements were successfully made at both locations. Because DO 1473 EoITioN OF I NOVy...determined using measurements of diffrac- tively scattered laser power spectra. The apparatus was calibrated by using spherical glass beads and aluminum oxide... powder . Measurements were successfully made at both loca- tions. Because of the presence of char agglomerates in the exhaust, continued effort is
Second harmonic generation from small particle aggregates
NASA Astrophysics Data System (ADS)
Mochan, W. Luis; Ortiz, Guillermo P.; Mendoza, Bernardo S.; Brudny, Vera L.
2001-03-01
Novel nanofabrication techniques are capable of producing nanoparticles with controled structures which include small clusters, self-assembled particles, quantum dots, vesicles, etc. The non-linear optical scattering of these structures are important for applications, and can be used for their physical characterization. The second harmonic (SH) field radiated by a single small spherical particle has surface and bulk, dipolar and quadrupolar contributions of similar intensities and is strongly dependent of the local environment of the particle [1], in contrast to the linear case. In this work we calculate the nonlinear scattering by particle aggregates and we investigate the effects on the SH generation of the disorder induced field fluctuations and of the localization of light. We acknowledge the partial support from DGAPA-UNAM (grant IN110999), Conacyt (31120-E and 26651-E), CIP and UBACyT. [1] Vera L. Brudny, Bernardo S. Mendoza, and W. Luis Mochán, Phys. Rev. B 62, 11152 (2000).
Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin
2012-10-08
The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.
1989-01-01
Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.
Optical trapping performance of dielectric-metallic patchy particles
Lawson, Joseph L.; Jenness, Nathan J.; Clark, Robert L.
2015-01-01
We demonstrate a series of simulation experiments examining the optical trapping behavior of composite micro-particles consisting of a small metallic patch on a spherical dielectric bead. A full parameter space of patch shapes, based on current state of the art manufacturing techniques, and optical properties of the metallic film stack is examined. Stable trapping locations and optical trap stiffness of these particles are determined based on the particle design and potential particle design optimizations are discussed. A final test is performed examining the ability to incorporate these composite particles with standard optical trap metrology technologies. PMID:26832054
Characterization of individual complex particles in urban atmospheric environment
NASA Astrophysics Data System (ADS)
Suzuki, K.; Takii, T.; Tomiyasu, B.; Nihei, Y.
2006-07-01
The origins of carrier particles of complex particles (iron-rich particles) collected from the urban atmospheric environment near to road traffic and a railroad were investigated from the detailed surface information using FE-SEM/EDS and TOF-SIMS analyses. From the FE-SEM/EDS analyses, the iron-rich particles were classified into two typical types (spherical type and non-spherical type). From the TOF-SIMS measurements, the characteristic secondary ions of spherical type of iron-rich particles were 23Na + and 39K +. The minor components of non-spherical type were Al, Ca and Ba. On the other hand, we carried out TOF-SIMS measurement to materials of rail origin and brake origin. From the comparison of these spectra pattern, it seemed that the spherical type of iron-rich particles was emitted from the rail origin. We concluded that the origin of non-spherical type of iron-rich particles were brake pad of vehicles.
Improved Small-Particle Powders for Plasma Spraying
NASA Technical Reports Server (NTRS)
Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.
2005-01-01
Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a plasma spray jet.
NASA Astrophysics Data System (ADS)
Ahmed, A. S.; Christopher, W.
2018-03-01
Nanocrystalline semiconductors exhibit different properties due to two basic factors. They possess high surface to volume ratio and the actual size of particle can determine the electronic and physical properties of the material. The small size results in an observable quantum confinement effect, defined by the increasing bandgap accompanied by the quantization of the energy levels to discrete values. In present work we have synthesized the series of cadmium selenide/cadmium telluride (CdSe/CdTe) core/shell and CdSe/CdTe/CdS core/shell/shell to investigate the biexciton energy through transient absorption measurements. These structures are type II nanocrystals are with a hole in the shell and the electron confined to the core. We specifically investigate the effect of nanoparticle shape on the electronic structure and ultrafast electronic dynamics in the band-edge exciton states of CdSe quantum dots, nanorods, and nanoplatelets. Particle size was chosen to enable straightforward comparisons of the effects of particle shape on the spectra and dynamics without retuning the laser source. In our results the Uv-vis showed only a mild redshift in the first excitonic an elongated tail with increasing shell thickness. High resolution Transmission Electron Microscopy (HRTEM) shows the slight agglomeration of the nanocrystals but still the size distribution was calculate able. Spherical small crystals ranging from 5.9 nm to 10 nm are observed. CdTe/CdSe structures were quasi spherical with a rough diameter 6 nm with some little agglomerated structure. . The spherical nanocrystals could be peanut shaped oriented along the c axis or the spherical only, which could explain the two peak emission. p-XRD results indicate the predominant wurtzite structure throughout.
Mathaes, Roman; Winter, Gerhard; Engert, Julia; Besheer, Ahmed
2013-09-10
Non-spherical micro- and nanoparticles have recently gained considerable attention due to their surprisingly different interaction with biological systems compared to their spherical counterparts, opening new opportunities for drug delivery and vaccination. Up till now, electron microscopy is the only method to quantitatively identify the critical quality attributes (CQAs) of non-spherical particles produced by film-stretching; namely size, morphology and the quality of non-spherical particles (degree of contamination with spherical ones). However, electron microscopy requires expensive instrumentation, demanding sample preparation and non-trivial image analysis. To circumvent these drawbacks, the ability of different particle analysis methods to quantitatively identify the CQA of spherical and non-spherical poly(1-phenylethene-1,2-diyl (polystyrene) particles over a wide size range (40 nm, 2 μm and 10 μm) was investigated. To this end, light obscuration, image-based analysis methods (Microflow imaging, MFI, and Vi-Cell XR Coulter Counter) and flow cytometry were used to study particles in the micron range, while asymmetric flow field fractionation (AF4) coupled to multi-angle laser scattering (MALS) and quasi elastic light scattering (QELS) was used for particles in the nanometer range, and all measurements were benchmarked against electron microscopy. Results show that MFI can reliably identify particle size and aspect ratios of the 10 μm particles, but not the 2 μm ones. Meanwhile, flow cytometry was able to differentiate between spherical and non-spherical 10 or 2 μm particles, and determine the amount of impurities in the sample. As for the nanoparticles, AF4 coupled to MALS and QELS allowed the measurement of the geometric (rg) and hydrodynamic (rh) radii of the particles, as well as their shape factors (rg/rh), confirming their morphology. While this study shows the utility of MFI, flow cytometry and AF4 for quantitative evaluation of the CQA of non-spherical particles over a wide size range, the limitations of the methods are discussed. The use of orthogonal characterization methods can provide a complete picture about the CQA of non-spherical particles over a wide size range. Copyright © 2013 Elsevier B.V. All rights reserved.
Cell and Particle Interactions and Aggregation During Electrophoretic Motion
NASA Technical Reports Server (NTRS)
Wang, Hua; Zeng, Shulin; Loewenberg, Michael; Todd, Paul; Davis, Robert H.
1996-01-01
The stability and pairwise aggregation rates of small spherical particles under the collective effects of buoyancy-driven motion and electrophoretic migration are analyzed. The particles are assumed to be non-Brownian, with thin double-layers and different zeta potentials. The particle aggregation rates may be enhanced or reduced, respectively, by parallel and antiparallel alignments of the buoyancy-driven and electrophoretic velocities. For antiparallel alignments, with the buoyancy-driven relative velocity exceeding the electrophoretic relative velocity between two widely-separated particles, there is a 'collision-forbidden region' in parameter space due to hydrodynamic interactions; thus, the suspension becomes stable against aggregation.
NASA Astrophysics Data System (ADS)
Shefer, Olga
2017-11-01
The calculated results of the transmission of visible and infrared radiation by an atmosphere layer involving ensembles of large preferentially oriented crystals and spherical particles are presented. To calculate extinction characteristics, the physical optics method and the Mie theory are applied. Among all atmospheric particles, both the small particles that are commensurable with the wavelength of the incident radiation and the large plates and the columns are distinguished by the most pronounced dependence of the transmission on spectra of radiant energy. The work illustrates features of influence of parameters of the particle size distribution, particle aspect ratios, orientation and particle refractive index, also polarization state of the incident radiation on the transmission. The predominant effect of the plates on the wavelength dependence of the transmission is shown. A separated and cooperative contributes of the large plates and the small volume shape particles to the common transmission by medium are considered.
MISR Global Aerosol Product Assessment by Comparison with AERONET
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Gaitley, Barbara J.; Garay, Michael J.; Diner, David J.; Eck, Thomas F.; Smirnov, Alexander; Holben, Brent N.
2010-01-01
A statistical approach is used to assess the quality of the MISR Version 22 (V22) aerosol products. Aerosol Optical Depth (AOD) retrieval results are improved relative to the early post- launch values reported by Kahn et al. [2005a], varying with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the paired validation data, and about 50% to 55% are within 0.03 or 10% AOD, except at sites where dust, or mixed dust and smoke, are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three groupings in size: "small," "medium," and "large." For particle size, ground-based AERONET sun photometer Angstrom Exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident Single-Scattering Albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. non-absorbing), as well as spherical vs. non-spherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions, and is diminished for mid-visible AOD below about 0.15 or 0.2. Based on these results, specific algorithm upgrades are proposed, and are being investigated by the MISR team for possible implementation in future versions of the product.
Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao
2016-09-10
In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.
Brownian escape and force-driven transport through entropic barriers: Particle size effect.
Cheng, Kuang-Ling; Sheng, Yu-Jane; Tsao, Heng-Kwong
2008-11-14
Brownian escape from a spherical cavity through small holes and force-driven transport through periodic spherical cavities for finite-size particles have been investigated by Brownian dynamic simulations and scaling analysis. The mean first passage time and force-driven mobility are obtained as a function of particle diameter a, hole radius R(H), cavity radius R(C), and external field strength. In the absence of external field, the escape rate is proportional to the exit effect, (R(H)R(C))(1-a2R(H))(32). In weak fields, Brownian diffusion is still dominant and the migration is controlled by the exit effect. Therefore, smaller particles migrate faster than larger ones. In this limit the relation between Brownian escape and force-driven transport can be established by the generalized Einstein-Smoluchowski relation. As the field strength is strong enough, the mobility becomes field dependent and grows with increasing field strength. As a result, the size selectivity diminishes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, F.; Wachem, B. G. M. van, E-mail: berend.van.wachem@gmail.com; George, W. K.
2015-08-15
This paper investigates the effects of particle shape and Stokes number on the behaviour of non-spherical particles in turbulent channel flow. Although there are a number of studies concerning spherical particles in turbulent flows, most important applications occurring in process, energy, and pharmaceutical industries deal with non-spherical particles. The computation employs a unique and novel four-way coupling with the Lagrangian point-particle approach. The fluid phase at low Reynolds number (Re{sub τ} = 150) is modelled by direct numerical simulation, while particles are tracked individually. Inter-particle and particle-wall collisions are also taken into account. To explore the effects of particles onmore » the flow turbulence, the statistics of the fluid flow such as the fluid velocity, the terms in the turbulence kinetic energy equation, the slip velocity between the two phases and velocity correlations are analysed considering ellipsoidal particles with different inertia and aspect ratio. The results of the simulations show that the turbulence is considerably attenuated, even in the very dilute regime. The reduction of the turbulence intensity is predominant near the turbulence kinetic energy peak in the near wall region, where particles preferentially accumulate. Moreover, the elongated shape of ellipsoids strengthens the turbulence attenuation. In simulations with ellipsoidal particles, the fluid-particle interactions strongly depend on the orientation of the ellipsoids. In the near wall region, ellipsoids tend to align predominantly within the streamwise (x) and wall-normal (y) planes and perpendicular to the span-wise direction, whereas no preferential orientation in the central region of the channel is observed. Important conclusions from this work include the effective viscosity of the flow is not affected, the direct dissipation by the particles is negligible, and the primary mechanism by which the particles affect the flow is by altering the turbulence structure around the turbulence kinetic energy peak.« less
NASA Astrophysics Data System (ADS)
Uudeküll, Peep; Kozlova, Jekaterina; Mändar, Hugo; Link, Joosep; Sihtmäe, Mariliis; Käosaar, Sandra; Blinova, Irina; Kasemets, Kaja; Kahru, Anne; Stern, Raivo; Tätte, Tanel; Kukli, Kaupo; Tamm, Aile
2017-05-01
Spherical nickel particles with size in the range of 100-400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.
NASA Astrophysics Data System (ADS)
Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.
2018-04-01
Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.
Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu
2016-01-01
The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm−2 at 0.46 V is especially remarkable and better than that previously reported. PMID:26987682
Hu, Michael Z.
2006-05-23
Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.
Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization
NASA Astrophysics Data System (ADS)
Wang, Linzhi; Liu, Ying; Chang, Sen
2016-05-01
Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.
Modification of Pawlow's thermodynamical model for the melting of small single-component particles
NASA Astrophysics Data System (ADS)
Barybin, Anatoly; Shapovalov, Victor
2011-02-01
A new approach to the melting of small particles is proposed to modify the known Pawlow's model by taking into account the transfer of material from solid spherical particles to liquid ones through a gas phase. Thermodynamical analysis gives rise to a differential equation for the melting point Tm involving such size-dependent and temperature-dependent parameters of a material as the surface tensions σs(l ), molar heat of fusion ΔHm and molar volumes vs(l ). Solution of this equation has shown that all the limiting cases for size-independent situations coincide with results known in the literature and our analysis of size-dependent situations gives results close to the experimental data previously obtained by other authors for some metallic particles.
NASA Astrophysics Data System (ADS)
Marengo, Edwin A.; Khodja, Mohamed R.
2006-09-01
The nonrelativistic Larmor radiation formula, giving the power radiated by an accelerated charged point particle, is generalized for a spatially extended particle in the context of the classical charged harmonic oscillator. The particle is modeled as a spherically symmetric rigid charge distribution that possesses both translational and spinning degrees of freedom. The power spectrum obtained exhibits a structure that depends on the form factor of the particle, but reduces, in the limit of an infinitesimally small particle and for the charge distributions considered, to Larmor’s familiar result. It is found that for finite-duration small-enough accelerations as well as perpetual uniform accelerations the power spectrum of the spatially extended particle reduces to that of a point particle. It is also found that when the acceleration is violent or the size parameter of the particle is very large compared to the wavelength of the emitted radiation the power spectrum is highly suppressed. Possible applications are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambilla, Sara; Speckart, Scott; Brown, Michael J.
Particles deposited on an outdoor surface can be resuspended by wind gusts, become airborne, and be inhaled if small enough. If toxic or infectious, these particles may be dangerous for the populace health. It is therefore important to determine under which weather conditions a deposit of particle could be resuspended to implement the best response actions and plan clean-up. To this scope, one needs to consider the competing forces acting on the particle keeping it attached to the surface (gravity and adhesion) or trying to remove it (aerodynamic forces, i.e., lift and drag). Here, this article reviews the current understandingmore » of the aforementioned forces for colloidal spherical particles and extends the existing theories to rod-shaped particles, representative for instance of Bacillus spores. In particular, for the adhesion force, the Derjaguin approximation was used and the adhesion force was computed from the radii of curvature of the particle and the surface at the point of closest approach. For the aerodynamic forces, we re-derived the equations for the drag and lift forces accounting for the shape of the particle. Both smooth and rough surfaces will be discussed, the former as idealized cases, the latter as more representative of real outdoor surfaces.« less
Brambilla, Sara; Speckart, Scott; Brown, Michael J.
2017-07-26
Particles deposited on an outdoor surface can be resuspended by wind gusts, become airborne, and be inhaled if small enough. If toxic or infectious, these particles may be dangerous for the populace health. It is therefore important to determine under which weather conditions a deposit of particle could be resuspended to implement the best response actions and plan clean-up. To this scope, one needs to consider the competing forces acting on the particle keeping it attached to the surface (gravity and adhesion) or trying to remove it (aerodynamic forces, i.e., lift and drag). Here, this article reviews the current understandingmore » of the aforementioned forces for colloidal spherical particles and extends the existing theories to rod-shaped particles, representative for instance of Bacillus spores. In particular, for the adhesion force, the Derjaguin approximation was used and the adhesion force was computed from the radii of curvature of the particle and the surface at the point of closest approach. For the aerodynamic forces, we re-derived the equations for the drag and lift forces accounting for the shape of the particle. Both smooth and rough surfaces will be discussed, the former as idealized cases, the latter as more representative of real outdoor surfaces.« less
NASA Astrophysics Data System (ADS)
Wang, Hanyang; Slater, Gary; Haan, Hendrick
We examine the electrophoresis of spherical particles in microfluidic devices made of alternating wells and narrow channels a type of system previously used to separate DNA molecules. Using computer simulations, we first show why it should be possible to separate particles having the same free-solution mobility using these systems in DC fields. Interestingly, in some of the systems we studied, the mobility shows an inversion as the field intensity is increased: while small particles have higher mobilities at low fields, the situation is reversed at high fields with the larger particles then moving faster. The resulting nonlinearity allows us to use asymmetric AC electric fields to build a ratchet in which particles have a net size-dependent velocity in the presence of an unbiased (zero-mean) AC field. Exploiting the inversion mentioned above, we show how to build pulsed field sequences that make particles move against the net field (an example of negative mobility). Finally, we demonstrate that it is possible to use these pulsed fields to make particles of different sizes move in opposite directions even though their charge have the same sign. Potential uses of these idea are discussed. Gary is my supervisor in my Master program.
NASA Astrophysics Data System (ADS)
Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul
2016-09-01
This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.
JPRS Report, Science & Technology, China: Energy
1988-06-29
capacity. There are currently two types of HTGR reactor designs: the particle-bed core , which uses spherical fuel elements, and the rod type core , in...and trial operating experience with the HTGR reactor. Its main design features are as follows. 1. A particle-bed core , continuous fueling and...Favorable for Development of Small-Scale HTGR (Xu Jiming; HE DONGLI GONGCHENG, Feb 88) 47 ERRATUM: In JPRS-CEN-88-003 of 25 April 1988 in article
NASA Astrophysics Data System (ADS)
Su, Jinghong; Chen, Xiaodong; Hu, Guoqing
2018-03-01
Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.
Light scattering by tenuous particles - A generalization of the Rayleigh-Gans-Rocard approach
NASA Technical Reports Server (NTRS)
Acquista, C.
1976-01-01
We consider scattering by arbitrarily shaped particles that satisfy two conditions: (1) that the polarizability of the particle relative to the ambient medium be small compared to 1 and (2) that the phase shift introduced by the particle be less than 2. We solve the integro-differential equation proposed by Shifrin by using the method of successive iterations and then applying a Fourier transform. For the second iteration, results are presented that accurately describe scattering by a broad class of particles. The phase function and other elements of the scattering matrix are shown to be in excellent agreement with Mie theory for spherical scatterers.
Forces acting on a small particle in an acoustical field in a thermoviscous fluid.
Karlsen, Jonas T; Bruus, Henrik
2015-10-01
We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.
Forces acting on a small particle in an acoustical field in a thermoviscous fluid
NASA Astrophysics Data System (ADS)
Karlsen, Jonas T.; Bruus, Henrik
2015-10-01
We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a , but it assumes the particle to be small in comparison to the acoustic wavelength λ . This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.
Electrically-conductive proppant and methods for making and using same
Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.
2016-09-06
Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.
Degradation of experimental composite materials and in vitro wear simulation
NASA Astrophysics Data System (ADS)
Givan, Daniel Allen
2001-12-01
The material, mechanical, and clinical aspects of surface degradation of resin composite dental restorative materials by in vitro wear simulation continues to be an area of active research. To investigate wear mechanisms, a series of experimental resin composites with variable and controlled filler particle shape and loading were studied by in vitro wear simulation. The current investigation utilized a simulation that isolated the wear environment, entrapped high and low modulus debris, and evaluated the process including machine and fluid flow dynamics. The degradation was significantly affected by filler particle shape and less by particle loading. The spherical particle composites demonstrated wear loss profiles suggesting an optimized filler loading may exist. This was also demonstrated by the trends in the mechanical properties. Very little difference in magnitude was noted for the wear of irregular particle composites as a function of particulate size; and as a group they were more wear resistant than spherical particle composites. This was the result of different mechanisms of wear that were correlated with the three-dimensional particle shape. The abrasive effects of the aggregate particles and the polymeric stabilization of the irregular shape versus the destabilization and "plucking" of the spherical particles resulted in an unprotected matrix that accounted for significantly greater wear of spherical composite. A model and analysis was developed to explain the events associated with the progressive material wear loss. The initial phase was explained by fatigue-assisted microcracking and loss of material segments in a zone of high stress immediately beneath a point of high stress contact. The early phase was characterized by the development of a small facet primarily by fatigue-assisted microcracking. Although the translation effects were minimal, some three-body and initial two-body wear events were also present. In the late phases, the abrasive effects of the debris aggregate predominated the wear process. The non-linear rate of wear loss was accelerated as the facet deepened. Physical effects, such as thermal fatigue, and chemical effects were less important but contributed to the degradation process. This study provides new insight into the role(s) of high modulus third body debris in the wear of dental composites.
Binary Colloidal Alloy Test-5: Aspheres
NASA Technical Reports Server (NTRS)
Chaikin, Paul M.; Hollingsworth, Andrew D.
2008-01-01
The Binary Colloidal Alloy Test - 5: Aspheres (BCAT-5-Aspheres) experiment photographs initially randomized colloidal samples (tiny nanoscale spheres suspended in liquid) in microgravity to determine their resulting structure over time. BCAT-5-Aspheres will study the properties of concentrated systems of small particles when they are identical, but not spherical in microgravity..
Inward electrostatic precipitation of interplanetary particles
NASA Technical Reports Server (NTRS)
Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.
1993-01-01
An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.
Method for preparing spherical thermoplastic particles of uniform size
Day, J.R.
1975-11-17
Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.
NASA Astrophysics Data System (ADS)
Takami, Norio; Harada, Yasuhiro; Iwasaki, Takuya; Hoshina, Keigo; Yoshida, Yorikazu
2015-01-01
Electrochemical properties of micro-size spherical TiO2(B) secondary particles have been investigated in order to develop TiO2(B) anodes for lithium-ion batteries with high-power and long-life performance. The spherical TiO2(B) electrodes with a small amount of a carbon conductor additive had a high electrode density of 2.2 g cm-3 and a volumetric reversible capacity of 475 mAh cm-3 comparable to that of graphite electrodes. Compared with nano-size needle-like TiO2(B) electrodes, the spherical TiO2(B) electrodes exhibited higher-rate discharge capability and longer-cycle life performance. The impedance of the TiO2(B)/electrolyte interface model indicated that the charge transfer resistance Rc and the passivating film resistance Rf of the spherical TiO2(B) were much smaller than those of the needle-like one. The high-rate discharge and the long-cycle performance of the spherical TiO2(B) electrode are attributed to the superior electronic connective property and Rc and Rf values smaller than those of the needle-like one. Lithium-ion cells using the spherical TiO2(B) anodes and LiNi0.8Co0.1Mn0.1O2 cathode with a capacity of 2.8 Ah exhibited a high energy density of 100 Wh kg-1, a high output power density of 1800 W kg-1 for 10 s pulse, and a long cycle life of more than 3000 cycles.
PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES
Levey, R.P. Jr.; Smith, A.E.
1963-04-30
This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)
Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles
NASA Astrophysics Data System (ADS)
Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan
2009-12-01
The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.
2012-01-01
In the quest for producing an effective, clinically relevant therapeutic agent, scalability, repeatability, and stability are paramount. In this paper, gold nanoparticles (GNPs) with precisely controlled near-infrared (NIR) absorption are synthesized by a single-step reaction of HAuCl4 and Na2S2O3 without assistance of additional templates, capping reagents, or seeds. The anisotropy in the shape of gold nanoparticles offers high NIR absorption, making it therapeutically relevant. The synthesized products consist of GNPs with different shapes and sizes, including small spherical colloid gold particles and non-spherical gold crystals. The NIR absorption wavelengths and particle size increase with increasing molar ratio of HAuCl4/Na2S2O3. Non-spherical gold particles can be further purified and separated by centrifugation to improve the NIR-absorbing fraction of particles. In-depth studies reveal that GNPs with good structural and optical stability only form in a certain range of the HAuCl4/Na2S2O3 molar ratio, whereas higher molar ratios result in unstable GNPs, which lose their NIR absorption peak due to decomposition and reassembly via Ostwald ripening. Tuning the optical absorption of the gold nanoparticles in the NIR regime via a robust and repeatable method will improve many applications requiring large quantities of desired NIR-absorbing nanoparticles. PMID:22726762
Horák, D; Svec, F; Kálal, J; Gumargalieva, K; Adamyan, A; Skuba, N; Titova, M; Trostenyuk, N
1986-05-01
Spherical macroporous particles based on poly(2-hydroxyethyl methacrylate) with defined porosity, swelling and morphology have been developed, and are suitable for endovascular occlusion of various organs. Unlike cylindrical particles, spherical particles are specifically suited for transcatheteral introduction. The method chosen for the preparation of such particles was suspension radical polymerization, where the monomers were dissolved in a mixture of higher-boiling alcohols, and the solution dispersed in water. Physicochemical and medico-biological properties of spherical particles were examined. The residual amounts of monomers and other low-molecular compounds were checked; haematological analyses showed that the value 10(-5) g/g of the polymer was not toxic and contributed to an irreversible aggregation of thrombocytes. The occlusion effect in the vascular lumen was stable. The histomorphological results fully demonstrated the perfect biocompatibility of artificial spherical emboli. The latter met the requirements of application to clinical practice.
Relativistic dust accretion of charged particles in Kerr-Newman spacetime
NASA Astrophysics Data System (ADS)
Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus
2017-09-01
We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.
NASA Astrophysics Data System (ADS)
Miskevich, Alexander A.; Loiko, Valery A.
2015-12-01
Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.
Preparation of spherical particles by vibrating orifice technique
NASA Astrophysics Data System (ADS)
Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki
2000-05-01
Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.
Estimation of settling velocity of sediment particles in estuarine and coastal waters
NASA Astrophysics Data System (ADS)
Nasiha, Hussain J.; Shanmugam, Palanisamy
2018-04-01
A model for estimating the settling velocity of sediment particles (spherical and non-spherical) in estuarine and coastal waters is developed and validated using experimental data. The model combines the physical, optical and hydrodynamic properties of the particles and medium to estimate the sediment settling velocity. The well-known Stokes law is broadened to account for the influencing factors of settling velocity such as particle size, shape and density. To derive the model parameters, laboratory experiments were conducted using natural flaky seashells, spherical beach sands and ball-milled seashell powders. Spectral light backscattering measurements of settling particles in a water tank were made showing a distinct optical feature with a peak shifting from 470-490 nm to 500-520 nm for particle populations from spherical to flaky grains. This significant optical feature was used as a proxy to make a shape determination in the present model. Other parameters experimentally determined included specific gravity (ΔSG) , Corey shape factor (CSF) , median grain diameter (D50) , drag coefficient (Cd) and Reynolds number (Re) . The CSF values considered ranged from 0.2 for flaky to 1.0 for perfectly spherical grains and Reynolds numbers from 2.0 to 105 for the laminar to turbulent flow regimes. The specific gravity of submerged particles was optically derived and used along with these parameters to estimate the sediment settling velocity. Comparison with the experiment data showed that the present model estimated settling velocities of spherical and non-spherical particles that were closely consistent with the measured values. Findings revealed that for a given D50, the flaky particles caused a greater decrease in settling velocity than the spherical particles which suggests that the particle shape factor has a profound role in influencing the sediment settling velocity and drag coefficients, especially in transitional and turbulent flow regimes. The present model can be easily adopted for various scientific and operational applications since the required parameters are readily measurable with the commercially available instrumentations.
Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles
NASA Astrophysics Data System (ADS)
Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan
2009-06-01
The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Yang, Ping
2018-01-01
In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenzâ€"Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Yang, Ping
2018-01-01
In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenz-Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.
Tong, Yu; Dong, Xufeng; Qi, Min
2018-05-09
The field-induced storage modulus is an important parameter for the applications of magnetorheological (MR) elastomers. In this study, a model mechanism is established to analyze the potential benefits of using flower-like particles as the active phase compared with the benefits of using conventional spherical particles. To verify the model mechanism and to investigate the difference in dynamic viscoelasticity between MREs with spherical particles and flower-like particles, flower-like cobalt particles and spherical cobalt particles with similar particle sizes and magnetic properties are synthesized and used as the active phase to prepare MR elastomers. As the model predicts, MREs with flower-like cobalt particles present a higher crosslink density and enhanced interfacial bond strength, which leads to a higher storage modulus and higher loss modulus with respect to MREs with spherical cobalt particles. The tunable range of the field-induced storage modulus of MREs is also improved upon using the flower-like particles as the active phase.
Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica
NASA Astrophysics Data System (ADS)
Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.
2017-08-01
Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.
Characterization of dust from blast furnace cast house de-dusting.
Lanzerstorfer, Christof
2017-10-01
During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.
We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration...
Phase stability in nanoscale material systems: extension from bulk phase diagrams
NASA Astrophysics Data System (ADS)
Bajaj, Saurabh; Haverty, Michael G.; Arróyave, Raymundo; Goddard Frsc, William A., III; Shankar, Sadasivan
2015-05-01
Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed ``nano-CALPHAD'') is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions.Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed ``nano-CALPHAD'') is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01535a
A novel approach to a fine particle coating using porous spherical silica as core particles.
Ishida, Makoto; Uchiyama, Jumpei; Isaji, Keiko; Suzuki, Yuta; Ikematsu, Yasuyuki; Aoki, Shigeru
2014-08-01
Abstract The applicability of porous spherical silica (PSS) was evaluated as core particles for pharmaceutical products by comparing it with commercial core particles such as mannitol (NP-108), sucrose and microcrystalline cellulose spheres. We investigated the physical properties of core particles, such as particle size distribution, flow properties, crushing strength, plastic limit, drying rate, hygroscopic property and aggregation degree. It was found that PSS was a core particle of small particle size, low friability, high water adsorption capacity, rapid drying rate and lower occurrence of particle aggregation, although wettability is a factor to be carefully considered. The aggregation and taste-masking ability using PSS and NP-108 as core particles were evaluated at a fluidized-bed coating process. The functional coating under the excess spray rate shows different aggregation trends and dissolution profiles between PSS and NP-108; thereby, exhibiting the formation of uniform coating under the excess spray rate in the case of PSS. This expands the range of the acceptable spray feed rates to coat fine particles, and indicates the possibility of decreasing the coating time. The results obtained in this study suggested that the core particle, which has a property like that of PSS, was useful in overcoming such disadvantages as large particle size, which feels gritty in oral cavity; particle aggregation; and the long coating time of the particle coating process. These results will enable the practical fine particle coating method by increasing the range of optimum coating conditions and decreasing the coating time in fluidized bed technology.
NASA Astrophysics Data System (ADS)
Ao, Wen; Liu, Peijin; Yang, Wenjing
2016-12-01
In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for most element compositions for all the carbon inclusions. The rough, spherical, strip shape and flake shape carbon-inclusions are believed to be derived from the degradation products of the binder or oxidizer, while the fiber silk is possibly the combustion product of fiber inside the heat insulation layer of the propellants. Images of products at different pressures reveal high pressure reduces the degree of agglomeration. The chemical compositions, size range and content of all the observed structures are given in this paper. Results of our study are expected to provide better insight in the working process of solid rocket motor.
Fracture mechanisms of glass particles under dynamic compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.
2017-08-01
In this study, dynamic fracture mechanisms of single and contacting spherical glass particles were observed using high speed synchrotron X-ray phase contrast imaging. A modified Kolsky bar setup was used to apply controlled dynamic compressive loading on the soda-lime glass particles. Four different configurations of particle arrangements with one, two, three, and five particles were studied. In single particle experiments, cracking initiated near the contact area between the particle and the platen, subsequently fragmenting the particle in many small sub-particles. In multi-particle experiments, a crack was observed to initiate from the point just outside the contact area between two particles.more » The initiated crack propagated at an angle to the horizontal loading direction, resulting in separation of a fragment. However, this fragment separation did not affect the ability of the particle to withstand further contact loading. On further compression, large number of cracks initiated in the particle with the highest number of particle-particle contacts near one of the particle-particle contacts. The initiated cracks roughly followed the lines joining the contact points. Subsequently, the initiated cracks along with the newly developed sub-cracks bifurcated rapidly as they propagated through the particle and fractured the particle explosively into many small fragments, leaving the other particles nearly intact.« less
Calculation of far-field scattering from nonspherical particles using a geometrical optics approach
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1991-01-01
A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.
Explosive fragmentation of liquids in spherical geometry
NASA Astrophysics Data System (ADS)
Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.
2017-05-01
Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster ( F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.
Cinematographic investigations of the explosively driven dispersion and ignition of solid particles
NASA Astrophysics Data System (ADS)
Grégoire, Y.; Sturtzer, M.-O.; Khasainov, B. A.; Veyssière, B.
2014-07-01
We present results of an experimental study of blast wave propagation and particle dispersion induced by a free-field detonation of spherical charges made of a 125 g C-4 explosive surrounded by inert or reactive particles. Visualization of the flow was performed with a high-frame-rate video camera. Background oriented Schlieren (BOS) methods were adapted to process the images that allowed the detection of the shock waves. BOS analysis also revealed that particles form agglomerates, which may generate precursor perturbations on the recorded pressure signals. While inert glass particles notably delay the shock, the combustion of aluminium particles can accelerate it, especially if they are small atomized or flaked particles. When a mixture of inert glass particles with reactive particles is dispersed, the agglomerates are formed by coalescence of both materials.
Dielectric response of a nondegenerate electron gas in semiconductor nanocrystallites
NASA Astrophysics Data System (ADS)
van Faassen, E.
1998-12-01
We investigate the low-frequency dielectric response of a dilute electron gas in a small spherical semiconductor particle. The flow of the electrons is described by hydrodynamic equations which incorporate the electrostatic interactions between the electrons in a self-consistent fashion. In the low-frequency regime, the dielectric loss is small and proportional to the frequency, despite substantial field penetration into the semiconductor. The loss remains small even for high doping levels due to effective cancellation between field-induced drift and diffusion. The model is used to estimate the complex dielectric constant of a system of weakly conducting nanosized semiconductor particles. The most prominent manifestation of spatial dispersion is that photoinduced changes in the real and imaginary parts of the dielectric constant are positive and of comparable magnitude.
Glory on Venus and selection among the unknown UV absorbers
NASA Astrophysics Data System (ADS)
Petrova, Elena V.
2018-05-01
The comparison of the phase profiles of glories observed on the cloud top of Venus by the Venus Monitoring Camera (Venus Express) and the light-scattering characteristics of sulfuric acid droplets, containing admixtures with a high refractive index, makes it easier to choose between some candidates for the so-called unknown UV absorber in the Venus clouds. Since among the candidates there are materials wetted and not wetted by sulfuric acid, we analyze whether small submicron particles adhered to or embedded into the 1-μm H2SO4 droplets may actually change the glory pattern normally produced by homogeneous spherical particles and what the conditions are, under which the composite particles formed in heterogeneous nucleation may still produce a glory feature. We have found that one of the most frequently considered candidates, sulfur, can hardly be responsible for the contrasts observed at 0.365 μm on the upper clouds, since it is not wetted by sulfuric acid and submicron sulfur particles, serving as condensation nuclei for sulfuric acid, can only adhere to the H2SO4 droplets rather than be enveloped by them. Such droplets decorated by sulfur blobs substantially distort the glory feature characteristic of the scattering by spherical particles or even smooth it at all, while a glory pattern is practically always seen in the images of Venus taken at small phase angles. At the same time, the grains of the other UV absorbers that can be embedded in H2SO4 droplets, e.g., the widely discussed ferric chloride, pose no problem in terms of interpretation of the observations of glory.
Electrokinetic motion of a spherical micro particle at an oil-water interface in microchannel.
Wang, Chengfa; Li, Mengqi; Song, Yongxin; Pan, Xinxiang; Li, Dongqing
2018-03-01
The electrokinetic motion of a negatively charged spherical particle at an oil-water interface in a microchannel is numerically investigated and analyzed in this paper. A three-dimensional (3D) transient numerical model is developed to simulate the particle electrokinetic motion. The channel wall, the surface of the particle and the oil-water interface are all considered negatively charged. The effects of the direct current (DC) electric field, the zeta potentials of the particle-water interface and the oil-water interface, and the dynamic viscosity ratio of oil to water on the velocity of the particle are studied in this paper. In addition, the influences of the particle size are also discussed. The simulation results show that the micro-particle with a small value of negative zeta potential moves in the same direction of the external electric field. However, if the zeta potential value of the particle-water interface is large enough, the moving direction of the particle is opposite to that of the electric field. The velocity of the particle at the interface increases with the increase in the electric field strength and the particle size, but decreases with the increase in the dynamic viscosity ratio of oil to water, and the absolute value of the negative zeta potentials of both the particle-water interface and the oil-water interface. This work is the first numerical study of the electrokinetic motion of a charged particle at an oil-water interface in a microchannel. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Control of Large Actuator Arrays Using Pattern-Forming Systems
1998-01-01
carbon dioxide in motor vehicles [1, 3, 4, 5]. Physics examples include patterns observed in shaken collections of small spherical particles, gas...181 6.5 Narrow spike equilibrium shape as a function of β . . . . . . . . . . . . . . . . .182 7.1 One cycle of the...value after a cycle of the pattern solution has been excited as in figure 7.1
Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst.
Wang, Huan; Gu, Hongcheng; Chen, Zhuoyue; Shang, Luoran; Zhao, Ze; Gu, Zhongze; Zhao, Yuanjin
2017-04-19
Enzymatic carriers have a demonstrated value for chemical reactions and industrial applications. Here, we present a novel kind of inverse opal hydrogel particles as the enzymatic carriers. The particles were negatively replicated from spherical colloidal crystal templates by using magnetic nanoparticles tagged acrylamide hydrogel. Thus, they were endowed with the features of monodispersity, small volume, complete penetrating structure, and controllable motion, which are all beneficial for improving the efficiency of biocatalysis. In addition, due to the ordered porous nanostructure, the inverse opal hydrogel particles were imparted with unique photonic band gaps (PBGs) and vivid structural colors for encoding varieties of immobilized enzymes and for constructing a multienzymes biocatalysis system. These features of the inverse opal hydrogel particles indicate that they are ideal enzymatic carriers for biocatalysis.
Radiation torque on nonspherical particles in the transition matrix formalism
NASA Astrophysics Data System (ADS)
Borghese, Ferdinando; Denti, Paolo; Saija, Rosalba; Iatì, Maria A.
2006-10-01
The torque exerted by radiation on small particles is recognized to have a considerable relevance, e.g., on the dynamics of cosmic dust grains and for the manipulation of micro and nanoparticles under controlled conditions. In the present paper we derive, in the transition matrix formalism, the radiation torque applied by a plane polarized wave on nonspherical particles. In case of circularly polarized waves impinging on spherical particles our equations reproduce the findings of Marston and Crichton [Phys. Rev. A 30, 2508 2516 (1984)]. Our equations were applied to calculate the torque on a few model particles shaped as aggregates of identical spheres, both axially symmetric and lacking any symmetry, and the conditions for the stability of the induced rotational motion are discussed.
A review on preparation of silver nano-particles
NASA Astrophysics Data System (ADS)
Haider, Adawiya J.; Haider, Mohammad J.; Mehde, Mohammad S.
2018-05-01
The term "nano particle" (NP) refers to particle diameter in nanometers in size. Nanoparticles contain a small number of constituent atoms or molecules that differ from the properties inherent in their bulk counterparts, found in various forms such as spherical, triangular, cubic, pentagonal, rod-shaped, shells, elliptical and so on. In this chapter, it has been presented the theoretical concepts of the preparation of AgNPS as powders and collide nanoparticles, techniques of preparation with their characterization (morphology, sign charge and potential value, particle distribution ….etc.). Also, included unique properties of AgNPS that are different from those of their bulk materials like: High surface area to volume ratio effects Quantization of electronic and vibration properties.
NASA Astrophysics Data System (ADS)
Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.
2018-03-01
Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.
Transport of inertial anisotropic particles under surface gravity waves
NASA Astrophysics Data System (ADS)
Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas
2016-11-01
The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raskin, Cody; Owen, J. Michael
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less
Raskin, Cody; Owen, J. Michael
2016-03-24
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raskin, Cody; Owen, J. Michael
2016-04-01
Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantlemore » boundaries.« less
Limiting diffusion current at rotating disk electrode with dense particle layer.
Weroński, P; Nosek, M; Batys, P
2013-09-28
Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.
Elongated dust particles growth in a spherical glow discharge in ethanol
NASA Astrophysics Data System (ADS)
Fedoseev, A. V.; Sukhinin, G. I.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A.
2018-01-01
The formation of elongated dust particles in a spherical dc glow discharge in ethanol was observed for the first time. Dust particles were formed in the process of coagulation of ethanol dissociation products in the plasma of gas discharge. During the process the particles were captured into clouds in the electric potential wells of strong striations of spherical discharge. The size and the shape of dust particles are easily detected by naked eye after the illumination of the laser sheet. The description of the experimental setup and conditions, the analysis of size, shape and composition of the particles, the explanation of spatial ordering and orientation of these particles are presented.
Attractive and Repulsive Forces on Particles in Oscillatory Flow
NASA Astrophysics Data System (ADS)
Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Thameem, Raqeeb; Hilgenfeldt, Sascha
2016-11-01
A large class of oscillating flows gives rise to rectified streaming motion of the fluid. It has recently been shown that particle transport in such flows, excited by bubbles oscillating at ultrasound frequencies, leads to differential displacement and efficient sorting of microparticles by size. We derive a general expression for the instantaneous radial force experienced by a small spherical particle in the vicinity of an oscillating interface, and generalize the radial projection of the Maxey-Riley equation to include this effect. Varying relevant system parameters, we show that the net effect on the particle can be either an attraction to or a repulsion from the bubble surface, depending in particular on the particle size and the particle/fluid density contrast. We demonstrate that these predictions are in agreement with a variety of experiments.
Spherical and cylindrical particle resonator as a cloak system
NASA Astrophysics Data System (ADS)
Minin, I. V.; Minin, O. V.; Eremeev, A. I.; Tseplyaev, I. S.
2018-05-01
The concept of dielectric spherical or cylindrical particle in resonant mode as a cloak system is offered. In fundamental modes (modes with the smallest volume correspond to |m| = l, and s = 1) the field is concentrated mostly in the equatorial plane and at the surface of the sphere. Thus under resonance modes, such perturbation due to cuboid particle inserted in the spherical or cylindrical particle has almost no effect on the field forming resonance regardless of the value of internal particle material (defect) as long as this material does not cover the region where resonance takes place.
Magneto-capillary dynamics of amphiphilic Janus particles at curved liquid interfaces.
Fei, Wenjie; Driscoll, Michelle M; Chaikin, Paul M; Bishop, Kyle J M
2018-05-11
A homogeneous magnetic field can exert no net force on a colloidal particle. However, by coupling the particle's orientation to its position on a curved interface, even static homogeneous fields can be used to drive rapid particle motions. Here, we demonstrate this effect using magnetic Janus particles with amphiphilic surface chemistry adsorbed at the spherical interface of a water drop in decane. Application of a static homogeneous field drives particle motion to the drop equator where the particle's magnetic moment can align parallel to the field. As explained quantitatively by a simple model, the effective magnetic force on the particle scales linearly with the curvature of the interface. For particles adsorbed on small droplets such as those found in emulsions, these magneto-capillary forces can far exceed those due to magnetic field gradients in both magnitude and range. This mechanism may be useful in creating highly responsive emulsions and foams stabilized by magnetic particles.
Iron Oxide Nanospheres and Nanocubes for Magnetic Hyperthermia Therapy: A Comparative Study
NASA Astrophysics Data System (ADS)
Nemati, Z.; Das, R.; Alonso, J.; Clements, E.; Phan, M. H.; Srikanth, H.
2017-06-01
Improving the heating capacity of magnetic nanoparticles (MNPs) for hyperthermia therapy is an important but challenging task. Through a comparative study of the inductive heating properties of spherical and cubic Fe3O4 MNPs with two distinct average volumes (˜7000 nm3 and 80,000 nm3), we demonstrate that, for small size (˜7000 nm3), the cubic MNPs heat better compared with the spherical MNPs. However, the opposite trend is observed for larger size (˜80,000 nm3). The improvement in heating efficiency in cubic small-sized MNPs (˜7000 nm3) can be attributed to enhanced anisotropy and the formation of chain-like aggregates, whereas the decrease of the heating efficiency in cubic large-sized MNPs (˜80,000 nm3) has been attributed to stronger aggregation of particles. Physical motion is shown to contribute more to the heating efficiency in case of spherical than cubic MNPs, when dispersed in water. These findings are of crucial importance in understanding the role of shape anisotropy and optimizing the heating response of magnetic nano-structures for advanced hyperthermia.
Morphological classification of bioaerosols from composting using scanning electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamer Vestlund, A.; FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW; Al-Ashaab, R.
2014-07-15
Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samplesmore » were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.« less
NASA Astrophysics Data System (ADS)
Tawidian, H.; Mikikian, M.; Couëdel, L.; Lecas, T.
2011-11-01
Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids.
Rong, Guan; Liu, Guang; Zhou, Chuang-bing
2013-01-01
Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677
Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing
2013-01-01
Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.
Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium
NASA Astrophysics Data System (ADS)
Saad, E. I.; Faltas, M. S.
2018-04-01
An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy-Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.
Particle-based optical pressure sensors for 3D pressure mapping.
Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H
2015-10-01
This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.
Applications of the Lattice Boltzmann Method to Complex and Turbulent Flows
NASA Technical Reports Server (NTRS)
Luo, Li-Shi; Qi, Dewei; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We briefly review the method of the lattice Boltzmann equation (LBE). We show the three-dimensional LBE simulation results for a non-spherical particle in Couette flow and 16 particles in sedimentation in fluid. We compare the LBE simulation of the three-dimensional homogeneous isotropic turbulence flow in a periodic cubic box of the size 1283 with the pseudo-spectral simulation, and find that the two results agree well with each other but the LBE method is more dissipative than the pseudo-spectral method in small scales, as expected.
NASA Astrophysics Data System (ADS)
Rasamani, Kowsalya D.; Foley, Jonathan J., IV; Sun, Yugang
2018-03-01
Silver-doped silver chloride [AgCl(Ag)] nanoparticles represent a unique class of visible-light-driven photocatalysts, in which the silver dopants introduce electron-abundant mid-gap energy levels to lower the bandgap of AgCl. However, free-standing AgCl(Ag) nanoparticles, particularly those with small sizes and large surface areas, exhibit low colloidal stability and low compositional stability upon exposure to light irradiation, leading to easy aggregation and conversion to metallic silver and thus a loss of photocatalytic activity. These problems could be eliminated by attaching the small AgCl(Ag) nanoparticles to the surfaces of spherical dielectric silica particles with submicrometer sizes. The high optical transparency in the visible spectral region (400-800 nm), colloidal stability, and chemical/electronic inertness displayed by the silica spheres make them ideal for supporting photocatalysts and significantly improving their stability. The spherical morphology of the dielectric silica particles can support light scattering resonances to generate significantly enhanced electric fields near the silica particle surfaces, on which the optical absorption cross-section of the AgCl(Ag) nanoparticles is dramatically increased to promote their photocatalytic activity. The hybrid silica/AgCl(Ag) structures exhibit superior photocatalytic activity and stability, suitable for supporting photocatalysis sustainably; for instance, their efficiency in the photocatalytic decomposition of methylene blue decreases by only ˜9% even after ten cycles of operation.
Sheet-like assemblies of spherical particles with point-symmetrical patches.
Mani, Ethayaraja; Sanz, Eduardo; Roy, Soumyajit; Dijkstra, Marjolein; Groenewold, Jan; Kegel, Willem K
2012-04-14
We report a computational study on the spontaneous self-assembly of spherical particles into two-dimensional crystals. The experimental observation of such structures stabilized by spherical objects appeared paradoxical so far. We implement patchy interactions with the patches point-symmetrically (icosahedral and cubic) arranged on the surface of the particle. In these conditions, preference for self-assembly into sheet-like structures is observed. We explain our findings in terms of the inherent symmetry of the patches and the competition between binding energy and vibrational entropy. The simulation results explain why hollow spherical shells observed in some Keplerate-type polyoxometalates (POM) appear. Our results also provide an explanation for the experimentally observed layer-by-layer growth of apoferritin--a quasi-spherical protein.
Study of the Motion of a Vertically Falling Sphere in a Viscous Fluid
ERIC Educational Resources Information Center
Soares, A. A.; Caramelo, L.; Andrade, M. A. P. M.
2012-01-01
This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the…
Equilibium and Stability of Spherical Vlasov Systems
NASA Astrophysics Data System (ADS)
Barnes, D. C.; Chacon, L.; Finn, J. M.
2002-04-01
Collisionless systems with inverse square interaction potentials and possible background confining potentials are considered for the case of spherical symmetry and in the Vlasov limit. The equilibrium is the most general, with single-particle distribution function dependence on both total energy E and total angular momentum L. A new formulation of the full integral-equation stability problem is developed. For a general spherical harmonic perturbation potential, the 3D stability problem is reduced to a 2D problem in an arbitrary central plane of motion, then to a small number of coupled 1D problems involving only the radius. Normal modes depend only on the total mode number l, as is shown directly by this new formulation, with all m degenerate. This method has been used for the Coulomb (repulsive) case.[1] An equilibrium family with uniform central (electron) density is found, and the low-frequency response computed to show that these solutions may provide stable confinement of a massive second (ion) species. These methods may be applied to a particle bunch in the beam frame, and some stability results appropriate to this case are presented. Application to the gravitational (attractive) case is also described, and some initial analytic results are presented. [1] D. C. Barnes, L. Chacón, J. M. Finn, “Equilibrium and Low-frequency Stability of a Uniform Density, Collisionless, Spherical Vlasov System,” submitted to Phys. of Plasmas (2002).
Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles
NASA Astrophysics Data System (ADS)
Machida, Keisuke; Adachi, Kenji
2015-07-01
An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.
On the relative rotational motion between rigid fibers and fluid in turbulent channel flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchioli, C.; Zhao, L., E-mail: lihao.zhao@ntnu.no; Andersson, H. I.
In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin showmore » that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)« less
Evaluation of the MODIS Retrievals of Dust Aerosol over the Ocean during PRIDE
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Holben, Brent N.; Livingston, John M.; Russell, Philip B.; Maring, Hal
2002-01-01
The Puerto Rico Dust Experiment (PRIDE) took place in Roosevelt Roads, Puerto Rico from June 26 to July 24,2000 to study the radiative and physical properties of African dust aerosol transported into the region. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from the MODerate Imaging Spectro-radiometer (MODIS) with sunphotometer and in-situ aerosol measurements. Over the ocean, the MODIS algorithm retrieves aerosol optical depth (AOD) as well as information about the aerosols size distribution. During PRIDE, MODIS derived AODs in the red wavelengths (0.66 micrometers) compare closely with AODs measured from sunphotometers, but, are too large at blue and green wavelengths (0.47 and 0.55 micrometers) and too small in the infrared (0.87 micrometers). This discrepancy of spectral slope results in particle size distributions retrieved by MODIS that are small compared to in-situ measurements, and smaller still when compared to sunphotometer sky radiance inversions. The differences in size distributions are, at least in part, associated with MODIS simplification of dust as spherical particles. Analysis of this PRIDE data set is a first step towards derivation of realistic non-spherical models for future MODIS retrievals.
Hydrogels in endovascular embolization. II. Clinical use of spherical particles.
Horák, D; Svec, F; Kálal, J; Adamyan, A A; Volynskii, Y D; Voronkova, O S; Kokov, L S; Gumargalieva, K Z
1986-11-01
In this study we report the results of clinical experiments, obtained with spherical particles made from poly(2-hydroxyethyl methacrylate) used in the embolization of arteriovenous anastomoses, in the suppression of pulmonary haemorrhage and haemoptysis and in the occlusion of some other arteries. So far we have used these particles in the treatment of 187 patients. It must be stressed that the advantage of spherical particles consists in the simplicity of their introduction into the blood vessel through a catheter, while in the blood vessel itself the particle swells in blood still more, when compared with the particle size in saline. This results in an immediate and permanent haemostatic effect. No revascularization occurs.
Cohesion, granular solids, granular liquids, and their connection to small near-Earth objects
NASA Astrophysics Data System (ADS)
Sánchez, P.; Scheeres, D.
2014-07-01
During the last 15 years or so, the Planetary Sciences community has been using Discrete Element Method (DEM) simulation codes to study small near-Earth objects (NEOs). In general, these codes treat gravitational aggregates as conglomerates of spherical particles; a good approximation given that many asteroids are self-gravitating granular media. Unfortunately, the degree of sophistication of these codes, and our own understanding, has not been high enough as to appropriately represent realistic physical properties of granular matter. In particular, angles of friction (θ) and cohesive strength (σ_c) of the aggregates were rarely taken in consideration and this could have led to unrealistic dynamics, and therefore, unrealistic conclusions about the dynamical evolution of small NEOs. In our research, we explore the failure mechanics of spherical (r=71 m) and ellipsoidal (r_1=92 m) self-gravitating aggregates with different angles of friction and values for their cohesive strength, in order to better understand the geophysics of rubble-pile asteroids. In particular we focused on the deformation and different disruption modes provoked by an always increasing angular velocity (spin rate). Scaling arguments allow us to regard simulations with the same aggregate size and different σ_c as equivalent to simulations of aggregates of different size and the same σ_c. We use a computational code that implements a Soft-Sphere DEM. The aggregates are composed by 3,000 spherical solid spheres (7--10 m) with 6 degrees of freedom. The code calculates normal, as well as, frictional (tangential) contact forces by means of soft potentials and the aggregate as a whole mimics the effect of non- spherical particles through the implementation of rolling friction. Cohesive forces, and a cohesive stress, are calculated as the net effect of the sum of the van der Waals forces between the smaller regolith, sand and dust (powder) that are present in real asteroids [1]. These finer materials form a matrix of sorts that holds the bigger boulders together. The aggregates were slowly spun up to disruption controlling for angle of friction, cohesion and global shape. Systems with no frictional forces had θ≈ 12° and are in effect granular liquids in the best case scenario. Systems with only surface-surface friction had θ≈ 25°, which is typical in laboratory experiments with spherical glass beads. Systems that also implemented rolling friction had θ≈ 35°, which is typical of non-cohesive granular media on the Earth. How much each aggregate deformed before disruption was directly related to the angle of friction. The greater θ allowed for much less deformation before disruption. Cohesive forces on the other hand controlled the mode of disruption and maximum spin rate and showed that the change from shedding to fission is continuous and therefore, they should not be seen as different disruption processes. The figure shows the deformation and disruption of three initially spherical aggregates (left) and three initially ellipsoidal aggregates (right) with increasing cohesive strength from left to right (θ≈ 35°). Through scaling arguments we could also see these aggregates as having the exact same σ_c=25 Pa but different sizes. If we do that, the aggregates measure about 1.6 km, 5 km, and 22 km, and the particles, or groups of particles being detached now have similar sizes. This has now become a problem of resolution, i.e., the number and size of particles used in a simulation. These results start to raise fundamental questions regarding the difference between shedding and fission. Is it shedding when it is dust grain by dust grain ejection from the main body or when it is in groups of 10, 100, or 100,000 dust particles? Is it fission when a 1-m piece of the asteroid detaches or when it splits in the middle? Which values of θ and σ_c are realistic? These and other questions will be explored.
Inference of Ice Cloud Properties from High-spectral Resolution Infrared Observations. Appendix 4
NASA Technical Reports Server (NTRS)
Huang, Hung-Lung; Yang, Ping; Wei, Heli; Baum, Bryan A.; Hu, Yongxiang; Antonelli, Paolo; Ackerman, Steven A.
2005-01-01
The theoretical basis is explored for inferring the microphysical properties of ice crystal from high-spectral resolution infrared observations. A radiative transfer model is employed to simulate spectral radiances to address relevant issues. The extinction and absorption efficiencies of individual ice crystals, assumed as hexagonal columns for large particles and droxtals for small particles, are computed from a combination of the finite- difference time-domain (FDTD) technique and a composite method. The corresponding phase functions are computed from a combination of FDTD and an improved geometric optics method (IGOM). Bulk scattering properties are derived by averaging the single- scattering properties of individual particles for 30 particle size distributions developed from in situ measurements and for additional four analytical Gamma size distributions for small particles. The non-sphericity of ice crystals is shown to have a significant impact on the radiative signatures in the infrared (IR) spectrum; the spherical particle approximation for inferring ice cloud properties may result in an overest&ation of the optical thickness and an inaccurate retrieval of effective particle size. Furthermore, we show that the error associated with the use of the Henyey-Greenstein phase function can be as larger as 1 K in terms of brightness temperature for larger particle effective size at some strong scattering wavenumbers. For small particles, the difference between the two phase functions is much less, with brightness temperatures generally differing by less than 0.4 K. The simulations undertaken in this study show that the slope of the IR brightness temperature spectrum between 790-960/cm is sensitive to the effective particle size. Furthermore, a strong sensitivity of IR brightness temperature to cloud optical thickness is noted within the l050-1250/cm region. Based on this spectral feature, a technique is presented for the simultaneous retrieval of the visible optical thickness and effective particle size from high spectral resolution infrared data under ice cloudy con&tion. The error analysis shows that the uncertainty of the retrieved optical thickness and effective particle size has a small range of variation. The error for retrieving particle size in conjunction with an uncertainty of 5 K in cloud'temperature, or a surface temperature uncertainty of 2.5 K, is less than 15%. The corresponding e m r in the uncertainty of optical thickness is within 5-2096, depending on the value of cloud optical thickness. The applicability of the technique is demonstrated using the aircraft-based High- resolution Interferometer Sounder (HIS) data from the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) in 1996 and the First ISCCP Regional Experiment - Arctic Clouds Experiment (FIRE-ACE) in 1998.
Interdisciplinary investigations of comparative planetology
NASA Technical Reports Server (NTRS)
Sagan, C.
1978-01-01
Research supported wholly or in part by NASA's Planetary Programs Office is summarized. Topics covered include: the evaporation of ice in planetary atmospheres: ice-covered rivers on Mars; reducing greenhouses and the temperature history of Earth and Mars; particle motion on Mars inferred from the Viking Lander cameras; the nature and visibility of crater-associated streaks on Mars; the equilibrium figure of Phobos and other small bodies; striations on Phobos; radiation pressure and Poynting-Robertson drag for small spherical particles; direct imaging of extra-solar planets with stationary occultations; the relation between planetology and conventional astrophysics; remote spectral studies and in situ X-ray fluorescence analysis of the Martian surface; small channels on Mars; junction angles of Martian channels; constraints on Aeolian phenomena on Mars; the geology of Mars; and the flow of erosional debris on the Martian terrain.
A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.
Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo
2014-01-14
A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.
Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S
2002-05-15
A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.
Relaxation dynamics in a binary hard-ellipse liquid.
Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia
2015-01-21
Structural relaxation in binary hard spherical particles has been shown recently to exhibit a wealth of remarkable features when size disparity or mixture composition is varied. In this paper, we test whether or not similar dynamical phenomena occur in glassy systems composed of binary hard ellipses. We demonstrate via event-driven molecular dynamics simulation that a binary hard-ellipse mixture with an aspect ratio of two and moderate size disparity displays characteristic glassy dynamics upon increasing density in both the translational and the rotational degrees of freedom. The rotational glass transition density is found to be close to the translational one for the binary mixtures investigated. More importantly, we assess the influence of size disparity and mixture composition on the relaxation dynamics. We find that an increase of size disparity leads, both translationally and rotationally, to a speed up of the long-time dynamics in the supercooled regime so that both the translational and the rotational glass transition shift to higher densities. By increasing the number concentration of the small particles, the time evolution of both translational and rotational relaxation dynamics at high densities displays two qualitatively different scenarios, i.e., both the initial and the final part of the structural relaxation slow down for small size disparity, while the short-time dynamics still slows down but the final decay speeds up in the binary mixture with large size disparity. These findings are reminiscent of those observed in binary hard spherical particles. Therefore, our results suggest a universal mechanism for the influence of size disparity and mixture composition on the structural relaxation in both isotropic and anisotropic particle systems.
Interactions of non-spherical particles in simple flows
NASA Astrophysics Data System (ADS)
Niazi, Mehdi; Brandt, Luca; Costa, Pedro; Breugem, Wim-Paul
2015-11-01
The behavior of particles in a flow affects the global transport and rheological properties of the mixture. In recent years much effort has been therefore devoted to the development of an efficient method for the direct numerical simulation (DNS) of the motion of spherical rigid particles immersed in an incompressible fluid. However, the literature on non-spherical particle suspensions is quite scarce despite the fact that these are more frequent. We develop a numerical algorithm to simulate finite-size spheroid particles in shear flows to gain new understanding of the flow of particle suspensions. In particular, we wish to understand the role of inertia and its effect on the flow behavior. For this purpose, DNS simulations with a direct-forcing immersed boundary method are used, with collision and lubrication models for particle-particle and particle-wall interactions. We will discuss pair interactions, relative motion and rotation, of two sedimenting spheroids and show that the interaction time increases significantly for non-spherical particles. More interestingly, we show that the particles are attracted to each other from larger lateral displacements. This has important implications for collision kernels. This work was supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS, and by the Swedish Research Council (VR).
The effect of ice crystal shape on aircraft contrails
NASA Astrophysics Data System (ADS)
Meza Castillo, Omar E.
Aircraft contrails are a common phenomenon observed in the sky. They are formed mainly of water, from the ambient atmosphere and as a by-product of the combustion process, in the form of ice crystals. They have been identified as a potential contributor to global warming. Some contrails can be long-lived and create man-made cloud cover, thus possibly altering the radiative balance of the earth. There has been a great deal of research on various aspects of contrail development, but to date, little has been done on the influence of ice crystal shapes on the contrail evolution. In-situ studies have reported that young contrails are mainly quasi-spherical crystals while older contrails can have a much more diverse spectrum of possible shapes. The most common shapes found in contrails are quasi-spherical, hexagonal columns, hexagonal plates, and bullet rosettes. Numerical simulations of contrails to date typically have assumed "spherical" as the default ice shape. This work simulated contrail development with a large eddy simulation (LES) model that implemented both spherical and non-spherical shapes to examine the effects. The included shape effect parameters, such as capacitance coefficient, ventilation factor, Kelvin effect, fall velocity and ice crystal surface area, help to establish the shape difference in the results. This study also investigated initial sensitivities to an additional ice parameter, the ice deposition coefficient. The literature shows conflicting values for this coefficient over a wide range. In the course of this investigation a comparison of various ice metrics was made for simulations with different assumed crystal shapes (spheres, hexagonal columns, hexagonal plates, bullet rosettes and combination of shapes). The simulations were performed at early and late contrail time, with a range of ice crystal sizes, and with/without coupled radiation. In young and older contrails and without coupled radiation, the difference from the shape effect in ice crystal number, N(t), is not significant compared with the level of uncertainty. In young contrails, the difference between spherical and non-spherical shapes in N(t) is less than 7% for relatively large ice particles and 23% for relatively small ice particles. The ice mass, M(t), is not significantly affected by the crystal shapes, with less than 8% difference. However, the ice surface area, S(t), is the ice metric more sensitive to crystal shape, with a maximum difference of 68%. It increases at late time, though it is mainly governed by geometrical rather than dynamical effects. The small sensitivity to shape effects in the ice contrail metrics when radiation is not included suggests that the spherical shape will provide a reasonable representation for all shapes found in the in-situ studies. The radiation is included at late time, when the lasting effects of contrails are more critical. The inclusion of coupled radiation increases the level of dispersion in the results and hence increases slightly the differences due to shape effects. The small difference is also observed in the infrared heating rates of contrails.
Light scattering by nonspherical particles: Remote sensing and climatic implications
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.
Calculations of the scattering and adsorption properties of ice crystals and aerosols, which are usually nonspherical, require specific methodologies. There is no unique theoretical solution for the scattering by nonspherical particles. Practically, all the numerical solutions for the scattering of nonspherical particles, including the exact wave equation approach, integral equation method, and discrete-dipole approximation, are applicable only to size parameters less than about 20. Thus, these methods are useful for the study of radiation problems involving nonspherical aerosols and small ice crystals in the thermal infrared wavelengths. The geometric optics approximation has been used to evaluate the scattering, absorption and polarization properties of hexagonal ice crystals whose sizes are much larger than the incident wavelength. This approximation is generally valid for hexagonal ice crystals with size parameters larger than about 30. From existing laboratory data and theoretical results, we illustrate that nonspherical particles absorb less and have a smaller asymmetry factor than the equal-projected area/volume spherical counterparts. In particular, we show that hexagonal ice crystals exhibit numerous halo and arc features that cannot be obtained from spherical particles; and that ice crystals scatter more light in the 60° to 140° scattering angle regions than the spherical counterparts. Satellite remote sensing of the optical depth and height of cirrus clouds using visible and IR channels must use appropriate phase functions for ice crystals. Use of an equivalent sphere model would lead to a significant overestimation and underestimation of the cirrus optical depth and height, respectively. Interpretation of the measurements for polarization reflected from sunlight involving cirrus clouds cannot be made without an appropriate ice crystal model. Large deviations exist for the polarization patterns between spheres and hexagonal ice crystals. Interpretation of lidar backscattering and depolarization signals must also utilize the scattering characteristics of hexagonal ice crystals. Equivalent spherical models substantially underestimate the broadband solar albedos of ice crystal clouds because of stronger forward scattering and larger absorption by spherical particles than hexagonal ice crystals. We illustrate that the net cloud radiative forcing at the top of the atmosphere involving most cirrus clouds is positive, implying that the IR greenhouse effect outweighs the solar albedo effect. If the radiative properties of equivalent spheres are used, a significant increase in cloud radiative forcing occurs. Using a one-dimensional cloud and climate model, we further demonstrate that there is sufficient model sensitivity, in terms of temperature increase, to the use of ice crystal models in radiation calculations.
Calibration of optical particle-size analyzer
Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.
1979-01-01
This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.
Image method for electrostatic energy of polarizable dipolar spheres
NASA Astrophysics Data System (ADS)
Gustafson, Kyle S.; Xu, Guoxi; Freed, Karl F.; Qin, Jian
2017-08-01
The multiple-scattering theory for the electrostatics of many-body systems of monopolar spherical particles, embedded in a dielectric medium, is generalized to describe the electrostatics of these particles with embedded dipoles and multipoles. The Neumann image line construction for the electrostatic polarization produced by one particle is generalized to compute the energy, forces, and torques for the many-body system as functions of the positions of the particles. The approach is validated by comparison with direct numerical calculation, and the convergence rate is analyzed and expressed in terms of the discontinuity in dielectric contrast and particle density. As an illustration of this formalism, the stability of small particle clusters is analyzed. The theory is developed in a form that can readily be adapted to Monte Carlo and molecular dynamics simulations for polarizable particles and, more generally, to study the interactions among polarizable molecules.
Properties of Diamond and Diamond-Like Clusters in Nanometric Dimensions
NASA Technical Reports Server (NTRS)
Halicioglu, Timur; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
Variations in materials properties of small clusters of nanometric dimensions were investigated. Investigations were carried out for diamond and diamond-like particles in spherical shapes. Calculations were performed for clusters containing over 1000 carbon atoms. Results indicate that as the cluster size diminishes, (i) the average cohesive energy becomes weaker, (ii) the excess surface energy increases, and (iii) the value for stiffness decreases.
Uskoković, Vuk; Lee, Kunwoo; Lee, Phin Peng; Fischer, Kathleen E.; Desai, Tejal A.
2012-01-01
While the oral drug delivery route has traditionally been the most popular among patients, it is estimated that 90 % of therapeutic compounds possess oral bioavailability limitations. Thus, the development of novel drug carriers for more effective oral delivery of therapeutics is an important goal. Composite particles made by growing nanoscopic silicon wires from the surface of narrowly dispersed, microsized silica beads were previously shown to be able to: (a) adhere well onto the epithelium by interdigitating their nanowires with the apical microvilli; and (b) increase the permeability of Caco-2 cell monolayers with respect to small organic molecules in direct proportion to their concentration. A comparison between the effects of spherical and planar particle morphologies on the permeability of the epithelial cell layer in vitro and in vivo presented the subject of this study. Owing to their larger surface area, the planar particles exhibited a higher drug loading efficiency than their spherical counterparts, while simultaneously increasing the transepithelial permeation of a moderately sized model drug, insulin. The insulin elution profile for planar nanowire-coated particles displayed a continual increase in the cumulative amount of the released drug, approaching a constant release rate for 1 – 4 h period of the elution time. An immunohistochemical study confirmed the ability of planar silica particles coated with nanowires to loosen the tight junction of the epithelial cells to a greater extent than the spherical particles did, thus enabling a more facile transport of the drug across the epithelium. Transepithelial permeability tests conducted for model drugs ranging in size from 0.4 to 150 kDa yielded three categories of molecules depending on their permeation propensities. Insulin belonged to the category of molecules deliverable across the epithelium only with the assistance of nanowire-coated particles. Other groups of drugs, smaller and bigger, respectively, either did not need the carrier to permeate the epithelium or were not able to cross it even with the support from the nanowire-coated particles. Bioavailability of insulin orally administered to rabbits was also found to be increased when delivered in conjunction with the nanowire-coated planar particles. PMID:22900471
NASA Astrophysics Data System (ADS)
Dove, A.; Barsoum, C.; Colwell, J. E.
2016-12-01
Understanding and predicting the complex behavior of granular material on planetary surfaces requires a combination of complementary experimental and numerical simulations. Such an approach allows us to use experimental results to empirically model the behavior of complex systems, and feed these results into simulations that can be run over a broader range of conditions. Studies of the response of granular systems, particularly planetary regolith and regolith simulants, to low-energy impacts is relevant to surface layers on planetary bodies, including asteroids, small moons, planetesimals, and planetary ring particles. Knowledge of the velocities and mass distributions of dust knocked off of planetary surfaces is necessary to understand the evolution of the upper layers of the soil, and to develop mitigation strategies for transported dust. In addition, the fine particles in the regolith pose an engineering and safety hazard for equipment, experiments, and astronauts working in severe environments. We will present the results of extended testing with a number of combinations of impactor and particle composition and morphology. A spherical glass or brass impactor is used for all experiments, which impacts a particle bed at a few m/s. This study includes three main particle material types - acrylic (used for comparison with initial modeling and previous experiments), glass, and stainless steel. We directly compare the results of these experiments by using 2mm spherical particles of each material type. Additionally, we vary the glass particle sizes between 1-3mm in order to analyze the effect of size on the cratering and ejecta properties. Finally, we varied the stainless steel particle shape from spherical to elongated cylinders with 2mm diameter and 2, 4, and 6 mm lengths. Here, we will focus on the experimental portion of this work - future results will elaborate upon the simulation validation. Interpretation of these results was informed by initial comparisons between the experimental observations and the numerical simulations, which allowed us to characterize the observational biases in the ejecta velocity and angle distributions.
NASA Astrophysics Data System (ADS)
Boffi, Nicholas M.; Jain, Manish; Natan, Amir
2016-02-01
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution.more » The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
NASA Astrophysics Data System (ADS)
Cerbino, Roberto; Piotti, Davide; Buscaglia, Marco; Giavazzi, Fabio
2018-01-01
Micro- and nanoscale objects with anisotropic shape are key components of a variety of biological systems and inert complex materials, and represent fundamental building blocks of novel self-assembly strategies. The time scale of their thermal motion is set by their translational and rotational diffusion coefficients, whose measurement may become difficult for relatively large particles with small optical contrast. Here we show that dark field differential dynamic microscopy is the ideal tool for probing the roto-translational Brownian motion of anisotropic shaped particles. We demonstrate our approach by successful application to aqueous dispersions of non-motile bacteria and of colloidal aggregates of spherical particles.
Novel Discrete Element Method for 3D non-spherical granular particles.
NASA Astrophysics Data System (ADS)
Seelen, Luuk; Padding, Johan; Kuipers, Hans
2015-11-01
Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.
Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard
2013-01-01
This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).
NASA Technical Reports Server (NTRS)
Venkataraman, T. S.; Eidson, W. W.; Cohen, L. D.; Farina, J. D.; Acquista, C.
1983-01-01
The position and velocity of optically levitated glass spheres (radii 10-20 microns) movng in a gas are measured accurately, rapidly, and continuously using a high-speed rotating polygon mirror. The experimental technique developed here has repeatable position accuracies better than 20 microns. Each measurement takes less than 1 microsec and can be repeated every 100 microsec. The position of the levitated glass spheres can be manipulated accurately by modulating the laser power with an acoustic optic modulator. The technique provides a fast and accurate method to study general particle dynamics in a fluid.
Probing the magnetic behavior of single nanodots.
Neumann, Alexander; Thönnissen, Carsten; Frauen, Axel; Hesse, Simon; Meyer, Andreas; Oepen, Hans Peter
2013-05-08
In this paper, a method is presented that has the sensitivity to measure magnetization behavior of single nanostructures. It is demonstrated that the technique gives the ability to separate different signals of single nanodots from a small ensemble of structures. Our method is based on the anomalous Hall-Effect and allows for resolving signals from spherical nanoparticles with diameter down to 3.5 nm. The method gives access to magnetic properties of particles in a wide thermal and dynamical range. The potential of the technique is demonstrated utilizing particles that are created from Co films sandwiched by Pt layers.
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef;
2008-01-01
Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang
2008-01-01
Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.
Microstructural evolution in a 17-4 PH stainless steel after aging at 400 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murayama, M.; Hono, K.; Katayama, Y.
1999-02-01
The microstructure of 17-4 PH stainless steel at various stages of heat treatment, i.e., after solution heat treatment, tempering at 580 C, and long-term aging at 400 C, have been studied by atom probe field ion microscopy (APFIM) and transmission electron microscopy (TEM). The solution-treated specimen consists largely of martensite with a small fraction of {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. After tempering for 4 hours as 580 C, coherent Cumore » particles precipitate in the martensite phase. At this stage, the Cr concentration in the martensite phase is still uniform. After 5000 hours aging at 400 C, the martensite spinodaly decomposes into Fe-rich {alpha} and Cr-enriched {alpha}{prime}. In addition, fine particles of the G-phase (structure type D8{sub a}, space group Fm{bar 3}m) enriched in Si, Ni, and Mn have been found in intimate contact with the Cu precipitates. Following spinodal decomposition of the martensite phase, G-phase precipitation occurs after long-term aging.« less
NASA Astrophysics Data System (ADS)
Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang
2017-12-01
Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.
A multiple scattering theory for EM wave propagation in a dense random medium
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Wong, K. W.
1985-01-01
For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.
Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun
2018-06-11
In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.
Motion of Optically Heated Spheres at the Water-Air Interface.
Girot, A; Danné, N; Würger, A; Bickel, T; Ren, F; Loudet, J C; Pouligny, B
2016-03-22
A micrometer-sized spherical particle classically equilibrates at the water-air interface in partial wetting configuration, causing about no deformation to the interface. In condition of thermal equilibrium, the particle just undergoes faint Brownian motion, well visible under a microscope. We report experimental observations when the particle is made of a light-absorbing material and is heated up by a vertical laser beam. We show that, at small laser power, the particle is trapped in on-axis configuration, similarly to 2-dimensional trapping of a transparent sphere by optical forces. Conversely, on-axis trapping becomes unstable at higher power. The particle escapes off the laser axis and starts orbiting around the axis. We show that the laser-heated particle behaves as a microswimmer with velocities on the order of several 100 μm/s with just a few milliwatts of laser power.
Fine metal dust particles on the wall probes from JET-ILW
NASA Astrophysics Data System (ADS)
Fortuna-Zaleśna, E.; Grzonka, J.; Moon, Sunwoo; Rubel, M.; Petersson, P.; Widdowson, A.; Contributors, JET
2017-12-01
Collection and ex situ studies of dust generated in controlled fusion devices during plasma operation are regularly carried out after experimental campaigns. Herewith results of the dust survey performed in JET after the second phase of operation with the metal ITER-like wall (2013-2014) are presented. For the first-time-ever particles deposited on silicon plates acting as dust collectors installed in the inner and outer divertor have been examined. The emphasis is on analysing metal particles (Be and W) with the aim to determine their composition, size and surface topography. The most important is the identification of beryllium dust in the form of droplets (both splashes and spherical particles), flakes of co-deposits and small fragments of Be tiles. Tungsten and nickel rich (from Inconel) particles are also identified. Nitrogen from plasma edge cooling has been detected in all types of particles. They are categorized and the origin of various constituents is discussed.
A modified Fermi-Walker derivative for inextensible flows of binormal spherical image
NASA Astrophysics Data System (ADS)
Suroğlu, Gülden Altay
2018-03-01
Fermi-Walker derivative and biharmonic particle play an important role in skillful applications. We obtain a new characterization on binormal spherical indicatrix by using the Fermi-Walker derivative and parallelism in space. We suggest that an inextensible flow is the necessary and sufficient condition for this particle. Finally, we give some characterizations for a non-rotating frame of this binormal spherical indicatrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Jon M.; Rivers, Mark L.; Perlowitz, Michael A.
We show that synchrotron x-ray microtomography ({mu}CT) followed by digital data extraction can be used to examine the size distribution and particle morphologies of the polydisperse (750 to 2450 {micro}m diameter) particle size standard NIST 1019b. Our size distribution results are within errors of certified values with data collected at 19.5 {micro}m/voxel. One of the advantages of using {mu}CT to investigate the particles examined here is that the morphology of the glass beads can be directly examined. We use the shape metrics aspect ratio and sphericity to examine of individual standard beads morphologies as a function of spherical equivalent diameters.more » We find that the majority of standard beads possess near-spherical aspect ratios and sphericities, but deviations are present at the lower end of the size range. The majority (> 98%) of particles also possess an equant form when examined using a common measure of equidimensionality. Although the NIST 1019b standard consists of loose particles, we point out that an advantage of {mu}CT is that coherent materials comprised of particles can be examined without disaggregation.« less
Method to produce large, uniform hollow spherical shells
Hendricks, C.D.
1983-09-26
The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.
Metal-enhanced fluorescence of dye-doped silica nano particles.
Gunawardana, Kalani B; Green, Nathaniel S; Bumm, Lloyd A; Halterman, Ronald L
2015-03-01
Recent advancements in metal-enhanced fluorescence (MEF) suggest that it can be a promising tool for detecting molecules at very low concentrations when a fluorophore is fixed near the surface of metal nanoparticles. We report a simple method for aggregating multiple gold nanoparticles (GNPs) on Rhodamine B (RhB)-doped silica nanoparticles (SiNPs) utilizing dithiocarbamate (DTC) chemistry to produce MEF in solution. Dye was covalently incorporated into the growing silica framework via co-condensation of a 3-aminopropyltriethoxysilane (APTES) coupled RhB precursor using the Stöber method. Electron microscopy imaging revealed that these mainly non-spherical particles were relatively large (80 nm on average) and not well defined. Spherical core-shell particles were prepared by physisorbing a layer of RhB around a small spherical silica particle (13 nm) before condensing an outer layer of silica onto the surface. The core-shell method produced nanospheres (~30 nm) that were well defined and monodispersed. Both dye-doped SiNPs were functionalized with pendant amines that readily reacted with carbon disulfide (CS2) under basic conditions to produce DTC ligands that have exhibited a high affinity for gold surfaces. GNPs were produced via citrate reduction method and the resulting 13 nm gold nanospheres were then recoated with an ether-terminated alkanethiol to provide stability in ethanol. Fluorescent enhancement was observed when excess GNPs were added to DTC coated dye-doped SiNPs to form nanoparticle aggregates. Optimization of this system gave a fluorescence brightness enhancement of over 200 fold. Samples that gave fluorescence enhancement were characterized through Transmission Emission Micrograph (TEM) to reveal a pattern of multiple aggregation of GNPs on the dye-doped SiNPs.
Electromagnetic properties of Fe-Co granular composite materials containing acicular nanoparticles
NASA Astrophysics Data System (ADS)
Kasagi, Teruhiro; Massango, Herieta; Tsutaoka, Takanori; Yamamoto, Shinichiro; Hatakeyama, Kenichi
2018-03-01
Electromagnetic properties of acicular (needle-like) Fe76Co24 nanoparticle composite materials have been studied in microwave frequency range up to 20 GHz. The Fe76Co24 particles are commercially available acicular Fe76Co24 nanoparticles with an approximate length and diameter of 100 and 25 nm, respectively. The Fe76Co24 nanocomposites were prepared by embedding the Fe76Co24 nanoparticle in an appropriate resin. Since the metallic Fe76Co24 nanoparticles have an oxidized surface, even high particle content composites at 78 vol.%, which is in the percolated state, does not show metallic conduction; a low frequency plasmonic state with the negative permittivity spectrum was not observed. Meanwhile, the negative permeability spectrum caused by the magnetic resonance in Fe76Co24 alloy was obtained in the high particle content composites. From the measurement of the complex permeability spectra under the external dc magnetic field, it was clarified that the gyromagnetic spin rotation mainly contributes to the permeability spectrum of nanocomposites due to extremely small quantity of domain walls in the acicular nanoparticles. This result suggests that the negative permeability spectrum was caused by the gyromagnetic spin resonance. By the comparison of the complex permeability spectrum between the acicular Fe76Co24 nanocomposite and the spherical Fe50Co50 microcomposite, the gyromagnetic spin resonance frequency of the acicular nanocomposite tends to locate higher than that of the spherical microcomposite owing to the demagnetizing field effect. Therefore, it can be concluded that the negative permeability frequency band of the acicular nanocomposite is higher than that of the spherical microcomposite at the same particle content.
Bernard, Ianis; Doinikov, Alexander A; Marmottant, Philippe; Rabaud, David; Poulain, Cédric; Thibault, Pierre
2017-07-11
We show experimental evidence of the acoustically-assisted micromanipulation of small objects like solid particles or blood cells, combining rotation and translation, using high frequency surface acoustic waves. This was obtained from the leakage in a microfluidic channel of two standing waves arranged perpendicularly in a LiNbO 3 piezoelectric substrate working at 36.3 MHz. By controlling the phase lag between the emitters, we could, in addition to translation, generate a swirling motion of the emitting surface which, in turn, led to the rapid rotation of spherical polystyrene Janus beads suspended in the channel and of human red and white blood cells up to several rounds per second. We show that these revolution velocities are compatible with a torque caused by the acoustic streaming that develops at the particles surface, like that first described by [F. Busse et al., J. Acoust. Soc. Am., 1981, 69(6), 1634-1638]. This device, based on standard interdigitated transducers (IDTs) adjusted to emit at equal frequencies, opens a way to a large range of applications since it allows the simultaneous control of the translation and rotation of hard objects, as well as the investigation of the response of cells to shear stress.
NASA Astrophysics Data System (ADS)
Li, Y.; Seymour, M.; Chen, G.; Su, C.
2013-12-01
Mechanistic understanding of the transport and retention of nanoparticles in porous media is essential both for environmental applications of nanotechnology and assessing the potential environmental impacts of engineered nanomaterials. Engineered and naturally occurring nanoparticles can be found in various shapes including rod-shape carbon nanotubes that have high aspect ratios. Although it is expected that nonspherical shape could play an important role on their transport and retention behaviors, current theoretical models for particle transport in porous media, however, are mostly based on spherical particle shape. In this work, the effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-L-lysine coated silica sensor) surface under favorable conditions. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Under favorable conditions, the spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change than spherical particles. Increased attachment rate of rod-shaped particles was attributed to surface heterogeneity and possibly enhanced hydrophobicity during the stretching process.
Synthesis of ZnO particles using water molecules generated in esterification reaction
NASA Astrophysics Data System (ADS)
Šarić, Ankica; Gotić, Marijan; Štefanić, Goran; Dražić, Goran
2017-07-01
Zinc oxide particles were synthesized without the addition of water by autoclaving (anhydrous) zinc acetate/alcohol and zinc acetate/acetic acid/alcohol solutions at 160 °C. The solvothermal synthesis was performed in ethanol or octanol. The structural, optical and morphological characteristics of ZnO particles were investigated by X-ray diffraction (XRD), UV-Vis spectroscopy, FE-SEM and TEM/STEM microscopy. 13C NMR spectroscopy revealed the presence of ester (ethyl- or octyl-acetate) in the supernatants which directly indicate the reaction mechanism. The formation of ester in this esterification reaction generated water molecule in situ, which hydrolyzed anhydrous zinc acetate and initiated nucleation and formation of ZnO. It was found that the size and shape of ZnO particles depend on the type of alcohol used as a solvent and on the presence of acetic acid in solution. The presence of ethanol in the ;pure; system without acetic acid favoured the formation of fine and uniform spherical ZnO nanoparticles (∼20 nm). With the addition of small amount of acetic acid the size of these small nanoparticles increased significantly up to a few hundred nanometers. The addition of small amount of acetic acid in the presence of octanol caused even more radical changes in the shape of ZnO particles, favouring the growth of huge rod-like particles (∼3 μm).
NASA Astrophysics Data System (ADS)
Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang
2017-10-01
The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the "time-scale" for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.
Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches
NASA Astrophysics Data System (ADS)
Beesabathuni, Shilpa Naidu
The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various shapes such as ellipsoids, mushrooms, spherulites and discs. The final morphology of the wax particles is governed by the interfacial, inertial, viscous and thermal effects, which can be studied over a range of Weber, Capillary, Reynolds and Stefan numbers. A simplified Stefan problem for a spherical drop was solved. The time required to initiate a phase transition at the interface of the molten wax and water after impact was estimated and correlated with the drop deformation history and final wax particle shape to develop a capability to predict the shape. While the microfluidic synthesis approach offers precise control over morphology and functionality, large particle throughput is a limitation. The drop impact in a liquid medium emulsion approach is limited to crosslinking or heat sensitive materials but can be extended to large scale production for industrial applications. Both approaches are simple, robust and cost effective making them viable and attractive solutions for complex particle synthesis. The choice of the approach is dependent on considerations such as particle material, size, shape, throughput and end application.
Lu, Wen; He, Lang Chong; Wang, Chang He; Li, Yan Hua; Zhang, San Qi
2008-10-01
Taspine solid lipid nanoparticles (Ta-SLN) and taspine solid lipid nanoparticles modified by galactoside (Ta-G2SLN) were prepared by the film evaporation-extrusion method. The nanoparticles were spherical or near-spherical particles with smooth surface, small size and high encapsulation efficiency. Ta-G2SLN and Ta-SLN showed significant inhibition on 7721 cell growth. Intravenous injection of either Ta-SLN or Ta-G2SLN resulted in a higher plasma and liver concentration and a longer retention time in mice compared with the administration of Ta. These results suggested that SLN tended to be preferentially delivered to the liver and Ta-G2SLN may further enhance liver targeting.
NASA Technical Reports Server (NTRS)
Gurgiolo, Chris; Vinas, Adolfo F.
2009-01-01
This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.
Kleinstreuer, Clement; Feng, Yu
2013-02-01
All naturally occurring and most man-made solid particles are nonspherical. Examples include air-pollutants in the nano- to micro-meter range as well as blood constituents, drug particles, and industrial fluid-particle streams. Focusing on the modeling and simulation of inhaled aerosols, theories for both spherical and nonspherical particles are reviewed to analyze the contrasting transport and deposition phenomena of spheres and equivalent spheres versus ellipsoids and fibers.
A Facile Method for Preparation of Polymer Particles Having a "Cylindrical" Shape.
Li, Wei; Suzuki, Toyoko; Minami, Hideto
2018-06-16
A facile and novel approach to prepare monodisperse polystyrene (PS) particles having a "cylindrical" shape was discovered. The proposed synthetic method involved dispersion polymerization of the spherical PS particles stirred in a polyvinylpyrrolidone (PVP) aqueous solution for several hours using a magnetic stirrer at room temperature. In the presence of PVP, the spherical PS particles deformed into cylindrical shapes following stirring; however, the particles did not deform in the absence of PVP. The deformation rate of the particles was affected by the molecular weight of the dissolved PVP. This stirring method is not only highly efficient and provides high yield, but is also applicable to other materials such as polymethyl methacrylate. Moreover, the cylindrical particles were successfully applied as particulate surfactants in a Pickering emulsion system, which exhibited excellent stability as comparison with the system using spherical particles as a surfactant. In the latter case, the emulsion was left standing for more than 4 months. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wrinkling Non-Spherical Particles and Its Application in Cell Attachment Promotion
NASA Astrophysics Data System (ADS)
Li, Minggan; Joung, Dehi; Hughes, Bethany; Waldman, Stephen D.; Kozinski, Janusz A.; Hwang, Dae Kun
2016-07-01
Surface wrinkled particles are ubiquitous in nature and present in different sizes and shapes, such as plant pollens and peppercorn seeds. These natural wrinkles provide the particles with advanced functions to survive and thrive in nature. In this work, by combining flow lithography and plasma treatment, we have developed a simple method that can rapidly create wrinkled non-spherical particles, mimicking the surface textures in nature. Due to the oxygen inhibition in flow lithography, the non-spherical particles synthesized in a microfluidic channel are covered by a partially cured polymer (PCP) layer. When exposed to plasma treatment, this PCP layer rapidly buckles, forming surface-wrinkled particles. We designed and fabricated various particles with desired shapes and sizes. The surfaces of these shapes were tuned to created wrinkle morphologies by controlling UV exposure time and the washing process. We further demonstrated that wrinkles on the particles significantly promoted cell attachment without any chemical modification, potentially providing a new route for cell attachment for various biomedical applications.
Anomalous change of Airy disk with changing size of spherical particles
NASA Astrophysics Data System (ADS)
Pan, Linchao; Zhang, Fugen; Meng, Rui; Xu, Jie; Zuo, Chenze; Ge, Baozhen
2016-02-01
Use of laser diffraction is considered as a method of reliable principle and mature technique in measurements of particle size distributions. It is generally accepted that for a certain relative refractive index, the size of the scattering pattern (also called Airy disk) of spherical particles monotonically decreases with increasing particle size. This fine structure forms the foundation of the laser diffraction method. Here we show that the Airy disk size of non-absorbing spherical particles becomes larger with increasing particle size in certain size ranges. To learn more about this anomalous change of Airy disk (ACAD), we present images of Airy disk and curves of Airy disk size versus particle size for spherical particles of different relative refractive indices by using Mie theory. These figures reveal that ACAD occurs periodically for non-absorbing particles and will disappear when the absorbing efficiency is higher than certain value. Then by using geometrical optics (GO) approximation, we derive the analytical formulae for the bounds of the size ranges where ACAD occurs. From the formulae, we obtain laws of ACAD as follows: (1) for non-absorbing particles, ACAD occurs periodically, and when the particle size tends to infinity, the period tends to a certain value. As the relative refractive index increases, (2) the particle size ranges where ACAD occurs shift to smaller values, (3) the period of ACAD becomes smaller, and (4) the width of the size ranges where ACAD occurs becomes narrower. In addition, we can predict from the formulae that ACAD also exists for particles whose relative refractive index is smaller than 1.
Crawford, Theodore C.
1976-01-01
1. A low detonation velocity explosive consisting essentially of a particulate mixture of ortho-boric acid and trinitrotoluene, said mixture containing from about 25 percent to about 65 percent by weight of ortho-boric acid, said ortho-boric acid comprised of from 60 percent to 90 percent of spherical particles having a mean particle size of about 275 microns and 10 percent to 40 percent of spherical particles having a particle size less than about 44 microns.
Emergence and Utility of Nonspherical Particles in Biomedicine
Fish, Margaret B.; Thompson, Alex J.; Fromen, Catherine A.; Eniola-Adefeso, Omolola
2016-01-01
The importance of the size of targeted, spherical drug carriers has been previously explored and reviewed. Particle shape has emerged as an equally important parameter in determining the in vivo journey and efficiency of drug carrier systems. Researchers have invented techniques to better control the geometry of particles of many different materials, which have allowed for exploration of the role of particle geometry in the phases of drug delivery. The important biological processes include clearance by the immune system, trafficking to the target tissue, margination to the endothelial surface, interaction with the target cell, and controlled release of a payload. The review of current literature herein supports that particle shape can be altered to improve a system’s targeting efficiency. Non-spherical particles can harness the potential of targeted drug carriers by enhancing targeted site accumulation while simultaneously decreasing side effects and mitigating some limitations faced by spherical carriers. PMID:27182109
Gravitational Wakes Sizes from Multiple Cassini Radio Occultations of Saturn's Rings
NASA Astrophysics Data System (ADS)
Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.; McGhee, C. A.; Anabtawi, A.
2016-12-01
Voyager and Cassini radio occultation extinction and forward scattering observations of Saturn's C-Ring and Cassini Division imply power law particle size distributions extending from few millimeters to several meters with power law index in the 2.8 to 3.2 range, depending on the specific ring feature. We extend size determination to the elongated and canted particle clusters (gravitational wakes) known to permeate Saturn's A- and B-Rings. We use multiple Cassini radio occultation observations over a range of ring opening angle B and wake viewing angle α to constrain the mean wake width W and thickness/height H, and average ring area coverage fraction. The rings are modeled as randomly blocked diffraction screen in the plane normal to the incidence direction. Collective particle shadows define the blocked area. The screen's transmittance is binary: blocked or unblocked. Wakes are modeled as thin layer of elliptical cylinders populated by random but uniformly distributed spherical particles. The cylinders can be immersed in a "classical" layer of spatially uniformly distributed particles. Numerical simulations of model diffraction patterns reveal two distinct components: cylindrical and spherical. The first dominates at small scattering angles and originates from specific locations within the footprint of the spacecraft antenna on the rings. The second dominates at large scattering angles and originates from the full footprint. We interpret Cassini extinction and scattering observations in the light of the simulation results. We compute and remove contribution of the spherical component to observed scattered signal spectra assuming known particle size distribution. A large residual spectral component is interpreted as contribution of cylindrical (wake) diffraction. Its angular width determines a cylindrical shadow width that depends on the wake parameters (W,H) and the viewing geometry (α,B). Its strength constrains the mean fractional area covered (optical depth), hence constrains the mean wakes spacing. Self-consistent (W,H) are estimated using least-square fit to results from multiple occultations. Example results for observed scattering by several inner A-Ring features suggest particle clusters (wakes) that are few tens of meters wide and several meters thick.
Impact of subgrid fluid turbulence on inertial particles subject to gravity
NASA Astrophysics Data System (ADS)
Rosa, Bogdan; Pozorski, Jacek
2017-07-01
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.
Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.
2017-10-01
The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; ...
2017-04-13
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION
A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...
DLVO interaction energies between hollow spherical particles and collector surfaces
USDA-ARS?s Scientific Manuscript database
The surface element integration technique was used to systematically study Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies/forces between hollow spherical particles (HPs) and a planar surface or two intercepting half planes under different ionic strength conditions. The inner and outer ...
Chen, Sen; Luo, Sheng Nian
2018-03-01
Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sen; Luo, Sheng-Nian
Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamentalmore » harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.« less
Dynamics of a spherical particle in an acoustic field: A multiscale approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques
2014-10-15
A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, andmore » viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.« less
Fabricating the spherical and flake silver powder used for the optoelectronic devices
NASA Astrophysics Data System (ADS)
Ju, Wei; Ma, Wangjing; Zhang, Fangzhi; Chen, Yixiang; Xie, Jinpeng
2018-01-01
The spherical and flake silver powder with different particle size for the optoelectronic devices was partly prepared by using chemical reduction and ball milling method, and charactered by scanning electron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer and thermo-gravimetric(TG) analyzer. The particle size of three series of spherical silver powder fabricated by chemical reduction is about 1.5μm, 1μm and 0.6μm, respectively; after being mechanical milling, the particle size of flake silver powder with high flaky rate is about 10μm, 6μm and 2μm respectively. Thermo gravimetric (TG) and XRD analyses showed that the silver powders have high purity and crystalline, and then the laser particle size and SEM analyses showed that the silver powders has good uniformity.
Fluidization of spherocylindrical particles
NASA Astrophysics Data System (ADS)
Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.
2017-06-01
Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.
A parallel direct-forcing fictitious domain method for simulating microswimmers
NASA Astrophysics Data System (ADS)
Gao, Tong; Lin, Zhaowu
2017-11-01
We present a 3D parallel direct-forcing fictitious domain method for simulating swimming micro-organisms at small Reynolds numbers. We treat the motile micro-swimmers as spherical rigid particles using the ``Squirmer'' model. The particle dynamics are solved on the moving Larangian meshes that overlay upon a fixed Eulerian mesh for solving the fluid motion, and the momentum exchange between the two phases is resolved by distributing pseudo body-forces over the particle interior regions which constrain the background fictitious fluids to follow the particle movement. While the solid and fluid subproblems are solved separately, no inner-iterations are required to enforce numerical convergence. We demonstrate the accuracy and robustness of the method by comparing our results with the existing analytical and numerical studies for various cases of single particle dynamics and particle-particle interactions. We also perform a series of numerical explorations to obtain statistical and rheological measurements to characterize the dynamics and structures of Squirmer suspensions. NSF DMS 1619960.
Clustering of particles and pathogens within evaporating drops
NASA Astrophysics Data System (ADS)
Park, Jaebum; Kim, Ho-Young
2017-11-01
The evaporation of sessile suspension drops leads to accumulation of the particles around the pinned contact line, which is widely termed the coffee ring effect. However, the evaporation behavior of a liquid drop containing a small number of particles with the size comparable to the host drop is unclear yet. Thus, here we investigate the motion and spatial distribution of large particles within a sessile drop. The spherical particles cluster only when their initial distance is below a critical value, which is a function of the diameter and wettability of particle as well as the surface tension and size of the host drop. We rationalize such a critical distance for self-assembly based on the balance of the capillary force and the frictional resistance to sliding and rolling of the particles on a solid substrate. We further discuss the physical significance of this drop-mediated ``Cheerios effect'' in connection with the fate of pathogens residing in drops as a result of sneezing and coughing.
Self assembly of anisotropic colloidal particles
NASA Astrophysics Data System (ADS)
Florea, Daniel; Wyss, Hans
2012-02-01
Colloidal particles have been successfully used as ''model atoms'', as their behavior can be more directly studied than that of atoms or molecules by direct imaging in a confocal microscope. Most studies have focussed on spherical particles with isotropic interactions. However, a range of interesting materials such as many supramolecular polymers or biopolymers exhibit highly directional interactions. To capture their behavior in colloidal model systems, particles with anisotropic interactions are clearly required. Here we use a colloidal system of nonspherical colloids, where highly directional interactions can be induced via depletion. By biaxially stretching spherical PMMA particles we create oblate spheroidal particles. We induce attractive interactions between these particles by adding a non-adsorbing polymer to the background liquid. The resulting depletion interaction is stronger along the minor axis of the oblate spheroids. We study the phase behavior of these materials as a function of the ellipsoid aspect ratio, the strength of the depletion interactions, and the particle concentration. The resulting morphologies are qualitatively different from those observed with spherical particles. This can be exploited for creating new materials with tailored structures.
Direct Numerical Simulation of Oscillatory Flow Over a Wavy, Rough, and Permeable Bottom
NASA Astrophysics Data System (ADS)
Mazzuoli, Marco; Blondeaux, Paolo; Simeonov, Julian; Calantoni, Joseph
2018-03-01
The results of a direct numerical simulation of oscillatory flow over a wavy bottom composed of different layers of spherical particles are described. The amplitude of wavy bottom is much smaller in scale than typical bed forms such as sand ripples. The spherical particles are packed in such a way to reproduce a bottom profile observed during an experiment conducted in a laboratory flow tunnel with well-sorted coarse sand. The amplitude and period of the external forcing flow as well as the size of the particles are set equal to the experimental values and the computed velocity field is compared with the measured velocity profiles. The direct numerical simulation allows for the evaluation of quantities, which are difficult to measure in a laboratory experiment (e.g., vorticity, seepage flow velocity, and hydrodynamic force acting on sediment particles). In particular, attention is focused on the coherent vortex structures generated by the vorticity shed by both the spherical particles and the bottom waviness. Results show that the wavy bottom triggers transition to turbulence. Moreover, the forces acting on the spherical particles are computed to investigate the mechanisms through which they are possibly mobilized by the oscillatory flow. It was found that forces capable of mobilizing surface particles are strongly correlated with the particle position above the mean bed elevation and the passage of coherent vortices above them.
Lee, Sangwoo; Leighton, Chris; Bates, Frank S.
2014-11-05
Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene- b-lactide) diblock copolymer melt. Thus, analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposedmore » by the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangwoo; Leighton, Chris; Bates, Frank S.
Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene- b-lactide) diblock copolymer melt. Thus, analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposedmore » by the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.« less
Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji
2016-05-01
Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.
Energy gain calculations in Penning fusion systems using a bounce-averaged Fokker-Planck model
NASA Astrophysics Data System (ADS)
Chacón, L.; Miley, G. H.; Barnes, D. C.; Knoll, D. A.
2000-11-01
In spherical Penning fusion devices, a spherical cloud of electrons, confined in a Penning-like trap, creates the ion-confining electrostatic well. Fusion energy gains for these systems have been calculated in optimistic conditions (i.e., spherically uniform electrostatic well, no collisional ion-electron interactions, single ion species) using a bounce-averaged Fokker-Planck (BAFP) model. Results show that steady-state distributions in which the Maxwellian ion population is dominant correspond to lowest ion recirculation powers (and hence highest fusion energy gains). It is also shown that realistic parabolic-like wells result in better energy gains than square wells, particularly at large well depths (>100 kV). Operating regimes with fusion power to ion input power ratios (Q-value) >100 have been identified. The effect of electron losses on the Q-value has been addressed heuristically using a semianalytic model, indicating that large Q-values are still possible provided that electron particle losses are kept small and well depths are large.
Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B
2017-11-01
The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Inertial effects in suspension dynamics
NASA Astrophysics Data System (ADS)
Subramanian, Ganesh
2002-04-01
This work analyses the role of small but finite particle inertia on the microstructure of suspensions of heavy particles subjected to an external flow. The magnitude of particle inertia is characterized by the Stokes number (St), defined as the ratio of the inertial relaxation time of a particle to the flow time scale. Fluid inertia is neglected so that the fluid motion satisfies the quasi-steady Stokes equations. The statistics of the particles is governed by a Fokker-Planck equation in position and velocity space. For small St, a multiple scales formalism is developed to solve for the phase-space probability density of a single spherical Brownian particle in a linear flow. Though valid for an arbitrary flow field, the method fails for a spatially varying mass and drag coefficient. In all cases, however, a Chapman-Enskog-like formulation provides a valid multi-scale description of the dynamics both for a single Brownian particle and a suspension of interacting particles. For long times, the leading order solution simplifies to the product of a local Maxwellian in velocity space and a spatial density satisfying the Smoluchowski equation. The higher order corrections capture both short-time momentum relaxations and long-time deviations from the Maxwellian. The inertially corrected Smoluchowski equation includes a non-Fickian term at O( St). The pair problem is solved to O(St) for non-Brownian spherical particles in simple shear flow. In contrast to the zero inertia case, the relative trajectories of two particles are asymmetric. Open trajectories in the plane of shear suffer a downward displacement in the velocity gradient direction. The surface of the reference sphere 'repels' nearby trajectories that spiral out onto a new stable limit cycle in the shearing plane. This limit cycle acts as a local attractor and all in-plane trajectories from an initial offset of O(St½ ) or less approach the limit cycle. The topology of the off-plane trajectories is more complicated because the gradient displacement changes sign away from the plane of shear. The 'neutral' off-plane trajectory with zero net gradient displacement acts to separate trajectories spiralling onto contact from those that go off to infinity. The aforementioned asymmetry leads to a non-Newtonian rheology and self-diffusivities in the gradient and vorticity directions that scale as St2ln St and St2, respectively.
Atomizing apparatus for making polymer and metal powders and whiskers
Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert
2003-03-18
Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.
Calantoni, Joseph; Holland, K Todd; Drake, Thomas G
2004-09-15
Sediment transport in oscillatory boundary layers is a process that drives coastal geomorphological change. Most formulae for bed-load transport in nearshore regions subsume the smallest-scale physics of the phenomena by parametrizing interactions amongst particles. In contrast, we directly simulate granular physics in the wave-bottom boundary layer using a discrete-element model comprised of a three-dimensional particle phase coupled to a one-dimensional fluid phase via Newton's third law through forces of buoyancy, drag and added mass. The particulate sediment phase is modelled using discrete particles formed to approximate natural grains by overlapping two spheres. Both the size of each sphere and the degree of overlap can be varied for these composite particles to generate a range of non-spherical grains. Simulations of particles having a range of shapes showed that the critical angle--the angle at which a grain pile will fail when tilted slowly from rest--increases from approximately 26 degrees for spherical particles to nearly 39 degrees for highly non-spherical composite particles having a dumbbell shape. Simulations of oscillatory sheet flow were conducted using composite particles with an angle of repose of approximately 33 degrees and a Corey shape factor greater than about 0.8, similar to the properties of beach sand. The results from the sheet-flow simulations with composite particles agreed more closely with laboratory measurements than similar simulations conducted using spherical particles. The findings suggest that particle shape may be an important factor for determining bed-load flux, particularly for larger bed slopes.
Optimized spray drying process for preparation of one-step calcium-alginate gel microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popeski-Dimovski, Riste
Calcium-alginate micro particles have been used extensively in drug delivery systems. Therefore we establish a one-step method for preparation of internally gelated micro particles with spherical shape and narrow size distribution. We use four types of alginate with different G/M ratio and molar weight. The size of the particles is measured using light diffraction and scanning electron microscopy. Measurements showed that with this method, micro particles with size distribution around 4 micrometers can be prepared, and SEM imaging showed that those particles are spherical in shape.
NASA Astrophysics Data System (ADS)
Grachev, A. I.
2018-04-01
Rotation of a spherical particle in a static electric field and under steady irradiation that induces an electric dipole moment in the particle is studied for the first time. Along with the general treatment of the phenomenon, we analyze possible mechanisms underlying the photoinduction of dipole moment in the particle. Estimations of the angular velocity and the power expended by the rotating particle are provided. The indicated characteristics reach their maximum values if the size of particles is within the range of 10 nm to 10 μm.
Avian influenza a virus budding morphology: spherical or filamentous?
USDA-ARS?s Scientific Manuscript database
Most strains of influenza A virus (IAV) can produce long (µm length) filamentous virus particles as well as ~100 nm diameter spherical virions. The function of the filamentous particles is unclear but is hypothesized to facilitate transmission within or from the respiratory tract. In mammalian IAVs,...
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)
2001-01-01
Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.
Turssi, C P; Ferracane, J L; Vogel, K
2005-08-01
Based on the incomplete understanding on how filler features influence the wear resistance and monomer conversion of resin composites, this study sought to evaluate whether materials containing different shapes and combinations of size of filler particles would perform similarly in terms of three-body abrasion and degree of conversion. Twelve experimental monomodal, bimodal or trimodal composites containing either spherical or irregular shaped fillers ranging from 100 to 1500 nm were examined. Wear testings were conducted in the OHSU wear machine (n = 6) and quantified after 10(5) cycles using a profilometer. Degree of conversion (DC) was measured by FTIR spectrometry at the surface of the composites (n = 6). Data sets were analyzed using one-way Anova and Tukey's test at a significance level of 0.05. Filler size and geometry was found to have a significant effect on wear resistance and DC of composites. At specific sizes and combinations, the presence of small filler particles, either spherical or irregular, may aid in enhancing the wear resistance of composites, without compromising the percentage of reacted carbon double bonds.
Eye patches: Protein assembly of index-gradient squid lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, J.; Townsend, J. P.; Dodson, T. C.
A parabolic relationship between lens radius and refractive index allows spherical lenses to avoid spherical aberration. We show that in squid, patchy colloidal physics resulted from an evolutionary radiation of globular S-crystallin proteins. Small-angle x-ray scattering experiments on lens tissue show colloidal gels of S-crystallins at all radial positions. Sparse lens materials form via low-valence linkages between disordered loops protruding from the protein surface. The loops are polydisperse and bind via a set of hydrogen bonds between disordered side chains. Peripheral lens regions with low particle valence form stable, volume-spanning gels at low density, whereas central regions with higher averagemore » valence gel at higher densities. The proteins demonstrate an evolved set of linkers for self-assembly of nanoparticles into volumetric materials.« less
Method for producing metallic microparticles
Phillips, Jonathan; Perry, William L.; Kroenke, William J.
2004-06-29
Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.
Microstructures and magnetic properties of Co-Al-O granular thin films
NASA Astrophysics Data System (ADS)
Ohnuma, M.; Hono, K.; Onodera, H.; Ohnuma, S.; Fujimori, H.; Pedersen, J. S.
2000-01-01
The microstructures of Co-Al-O thin films of wide varieties of compositions are studied by transmission electron microscopy and small angle x-ray scattering (SAXS). In the superparamagnetic specimens, high resolution electron microscope images reveal that isolated spherical Co particles are surrounded by an amorphous aluminum oxide matrix. However, in the soft ferromagnetic films, the shape of the Co particles is prolate ellipsoidal. SAXS intensities from the soft magnetic specimens decrease inversely with the wave vector, q, in a low wave-vector region, while an interparticle interference peak is observed for the superparamagnetic specimens. The scattering profiles of the soft magnetic films imply that the Co particles have a cylindrical shape and are randomly oriented. The correlation between the magnetic properties and the microstructures is discussed.
Phase Composition of Samarium Niobate and Tantalate Thin Films Prepared by Sol-Gel Method
NASA Astrophysics Data System (ADS)
Bruncková, H.; Medvecký, Ľ.; Múdra, E.; Kovalčiková, A.; Ďurišin, J.; Šebek, M.; Girman, V.
2017-12-01
Samarium niobate SmNbO4 (SNO) and tantalate SmTaO4 (STO) thin films ( 100 nm) were prepared by sol-gel/spin-coating process on alumina substrates with PZT interlayer and annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The improvement of the crystallinity of monoclinic M'-SmTaO4 phase via heating was observed through the coexistence of small amounts of tetragonal T-SmTa7O19 phase in STO precursor at 1000°C. The XRD results of SNO and STO films confirmed monoclinic M-SmNbO4 and M'-SmTaO4 phases, respectively, with traces of orthorhombic O-SmNbO4 (in SNO). In STO film, the single monoclinic M'-SmTaO4 phase was revealed. The surface morphology and topography of thin films were investigated by SEM and AFM analysis. STO film was smoother with roughness 3.2 nm in comparison with SNO (6.3 nm). In the microstructure of SNO film, small spherical ( 50 nm) and larger cuboidal particles ( 100 nm) of the SmNbO4 phase were observed. In STO, compact clusters composed of fine spherical SmTaO4 particles ( 20-50 nm) were found. Effect of samarium can contribute to the formation different polymorphs of these films for the application to environmental electrolytic thin film devices.
NASA Astrophysics Data System (ADS)
Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.
2013-11-01
Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.
Velocity relaxation of a particle in a confined compressible fluid
NASA Astrophysics Data System (ADS)
Tatsumi, Rei; Yamamoto, Ryoichi
2013-05-01
The velocity relaxation of an impulsively forced spherical particle in a fluid confined by two parallel plane walls is studied using a direct numerical simulation approach. During the relaxation process, the momentum of the particle is transmitted in the ambient fluid by viscous diffusion and sound wave propagation, and the fluid flow accompanied by each mechanism has a different character and affects the particle motion differently. Because of the bounding walls, viscous diffusion is hampered, and the accompanying shear flow is gradually diminished. However, the sound wave is repeatedly reflected and spreads diffusely. As a result, the particle motion is governed by the sound wave and backtracks differently in a bulk fluid. The time when the backtracking of the particle occurs changes non-monotonically with respect to the compressibility factor ɛ = ν/ac and is minimized at the characteristic compressibility factor. This factor depends on the wall spacing, and the dependence is different at small and large wall spacing regions based on the different mechanisms causing the backtracking.
Cassetti, Maria Cristina; Merchlinsky, Michael; Wolffe, Elizabeth J.; Weisberg, Andrea S.; Moss, Bernard
1998-01-01
The vaccinia virus A32 open reading frame was predicted to encode a protein with a nucleoside triphosphate-binding motif and a mass of 34 kDa. To investigate the role of this protein, we constructed a mutant in which the original A32 gene was replaced by an inducible copy. The recombinant virus, vA32i, has a conditional lethal phenotype: infectious virus formation was dependent on isopropyl-β-d-thiogalactopyranoside (IPTG). Under nonpermissive conditions, the mutant synthesized early- and late-stage viral proteins, as well as viral DNA that was processed into unit-length genomes. Electron microscopy of cells infected in the absence of IPTG revealed normal-appearing crescents and immature virus particles but very few with nucleoids. Instead of brick-shaped mature particles with defined core structures, there were numerous electron-dense, spherical particles. Some of these spherical particles were wrapped with cisternal membranes, analogous to intracellular and extracellular enveloped virions. Mutant viral particles, purified by sucrose density gradient centrifugation, had low infectivity and transcriptional activity, and the majority were spherical and lacked DNA. Nevertheless, the particle preparation contained representative membrane proteins, cleaved and uncleaved core proteins, the viral RNA polymerase, the early transcription factor and several enzymes, suggesting that incorporation of these components is not strictly coupled to DNA packaging. PMID:9621036
Leopold, Christian; Augustin, Till; Schwebler, Thomas; Lehmann, Jonas; Liebig, Wilfried V; Fiedler, Bodo
2017-11-15
The influence of nanoparticle morphology and filler content on the mechanical and electrical properties of carbon nanoparticle modified epoxy is investigated regarding small volumes. Three types of particles, representing spherical, tubular and layered morphologies are used. A clear size effect of increasing true failure strength with decreasing volume is found for neat and carbon black modified epoxy. Carbon nanotube (CNT) modified epoxy exhibits high potential for strength increase, but dispersion and purity are critical. In few layer graphene modified epoxy, particles are larger than statistically distributed defects and initiate cracks, counteracting any size effect. Different toughness increasing mechanisms on the nano- and micro-scale depending on particle morphology are discussed based on scanning electron microscopy images. Electrical percolation thresholds in the small volume fibres are significantly higher compared to bulk volume, with CNT being found to be the most suitable morphology to form electrical conductive paths. Good correlation between electrical resistance change and stress strain behaviour under tensile loads is observed. The results show the possibility to detect internal damage in small volumes by measuring electrical resistance and therefore indicate to the high potential for using CNT modified polymers in fibre reinforced plastics as a multifunctional, self-monitoring material with improved mechanical properties. Copyright © 2017. Published by Elsevier Inc.
Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio
2015-06-28
We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.
Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganini, Iván E.; Pastorino, Claudio, E-mail: pastor@cnea.gov.ar; Urrutia, Ignacio, E-mail: iurrutia@cnea.gov.ar
2015-06-28
We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surfacemore » tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T − ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.« less
Processes for making dense, spherical active materials for lithium-ion cells
Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL
2011-11-22
Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.
NASA Astrophysics Data System (ADS)
Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.
2017-01-01
In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.
Weld, Kyle J; Dryer, Stephen; Ames, Caroline D; Cho, Kuk; Hogan, Chris; Lee, Myonghwa; Biswas, Pratim; Landman, Jaime
2007-03-01
We analyzed the smoke plume produced by various energy-based laparoscopic instruments and determined its effect on laparoscopic visibility. The Bipolar Macroforceps, Harmonic Scalpel, Floating Ball, and Monopolar Shears were applied in vitro to porcine psoas muscle. An Aerodynamic Particle Sizer and Electrostatic Classifier provided a size distribution of the plume for particles >500 nm and <500 nm, and a geometric mean particle size was calculated. A Condensation Particle Counter provided the total particle-number concentration. Electron microscopy was used to characterize particle size and shape further. Visibility was calculated using the measured-size distribution data and the Rayleigh and Mie light-scattering theories. The real-time instruments were successful in measuring aerosolized particle size distributions in two size ranges. Electron microscopy revealed smaller, homogeneous, spherical particles and larger, irregular particles consistent with cellular components. The aerosol produced by the Bipolar Macroforceps obscured visibility the least (relative visibility 0.887) among the instruments tested. Particles from the Harmonic Scalpel resulted in a relative visibility of 0.801. Monopolar-based instruments produced plumes responsible for the poorest relative visibility (Floating Ball 0.252; Monopolar Shears 0.026). Surgical smoke is composed of two distinct particle populations caused by the nucleation of vapors as they cool (the small particles) and the entrainment of tissue secondary to mechanical aspects (the large particles). High concentrations of small particles are most responsible for the deterioration in laparoscopic vision. Bipolar and ultrasonic instruments generate a surgical plume that causes the least deterioration of visibility among the instruments tested.
Dynamics and interactions of particles in a thermophoretic trap
NASA Astrophysics Data System (ADS)
Foster, Benjamin; Fung, Frankie; Fieweger, Connor; Usatyuk, Mykhaylo; Gaj, Anita; DeSalvo, B. J.; Chin, Cheng
2017-08-01
We investigate dynamics and interactions of particles levitated and trapped by the thermophoretic force in a vacuum cell. Our analysis is based on footage taken by orthogonal cameras that are able to capture the three dimensional trajectories of the particles. In contrast to spherical particles, which remain stationary at the center of the cell, here we report new qualitative features of the motion of particles with non-spherical geometry. Singly levitated particles exhibit steady spinning around their body axis and rotation around the symmetry axis of the cell. When two levitated particles approach each other, repulsive or attractive interactions between the particles are observed. Our levitation system offers a wonderful platform to study interaction between particles in a microgravity environment.
Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert
2001-01-09
Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.
Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
Lambert, B; Weynans, L; Bergmann, M
2018-03-01
The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.
Curvature-induced capillary interaction of spherical particles at a liquid interface.
Würger, Alois
2006-10-01
We consider a liquid interface with different principal curvatures +/-c and find that the mere presence of a spherical particle leads to a deformation field of quadrupolar symmetry; the corresponding "capillary quadrupole moment" is given by the ratio of the particle size and the curvature radius. The resulting pair interaction of nearby particles is anisotropic and favors the formation of aggregates of cubic symmetry. Since the single-particle trapping energy depends quadratically on curvature with a negative prefactor, a curvature gradient induces a lateral force that pushes the particles towards strongly curved regions of the interface. As an illustration we discuss the effects occurring on a catenoid.
Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj
2004-03-12
Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.
Mathaes, Roman; Winter, Gerhard; Besheer, Ahmed; Engert, Julia
2015-03-01
Micro- and nanoparticles in drug and vaccine delivery have opened up new possibilities in pharmaceutics. In the past, researchers focused mainly on particle size, surface chemistry and the use of various materials to control particle characteristics and functions. Lately, shape has been acknowledged as an important design parameter having an impact on the interaction with biological systems. In this review, we report on the latest developments in fabrication methods to tailor particle geometry, summarize analytical techniques for non-spherical particles and highlight the most important findings regarding their interaction with biological systems and their potential applications in drug delivery. The impact of shape on particle internalization into different cell types and particle biodistribution has been extensively studied in the past. Current research focuses on shape-dependent uptake mechanisms and applications for tumour therapy and vaccination. Different fabrication methods can be used to produce a variety of different particle types and shapes. Key challenges will be the transfer of new non-spherical particle fabrication methods from lab-scale to industrial large-scale production. Not all techniques may be scalable for the production of high quantities of particles. It will also be challenging to transfer the promising in vitro findings to suitable in vivo models.
Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions
NASA Astrophysics Data System (ADS)
Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio
2012-02-01
In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.
Wear particles of single-crystal silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.
NASA Astrophysics Data System (ADS)
Aponte-Rivera, Christian; Zia, Roseanna N.
2017-11-01
We study hydrodynamic entrainment in spherically confined colloidal suspensions of hydrodynamically interacting particles as a model system for intracellular and other micro-confined biophysical transport. Modeling of transport and rheology in such materials requires an accurate description of the microscopic forces driving particle motion and of particle interactions with nearby boundaries. We carry out dynamic simulations of concentrated, spherically confined colloids as a model system to study the effect of 3D confinement on entrainment and rheology. We show that entrainment between two tracer particles exhibits qualitatively different functional dependence on inter-particle separation as compared to an unbound suspension, and develop a scaling theory that collapses the concentrated mobility of spherically confined suspensions for all volume fractions and particle to cavity size ratios onto a master curve. For widely separated particles, the master curve can be predicted via a Green's function, which suggests a framework with which to conduct two-point microrheology measurements near confining boundaries. The implications of these results for experiments in micro-confined biophysical systems, such as the interior of eukaryotic cells, are discussed.
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
Ju, Daeyoung; Young, Thomas M.; Ginn, Timothy R.
2012-01-01
An innovative method is proposed for approximation of the set of radial diffusion equations governing mass exchange between aqueous bulk phase and intra-particle phase for a hetero-disperse mixture of particles such as occur in suspension in surface water, in riverine/estuarine sediment beds, in soils and in aquifer materials. For this purpose the temporal variation of concentration at several uniformly distributed points within a normalized representative particle with spherical, cylindrical or planar shape is fitted with a 2-domain linear reversible mass exchange model. The approximation method is then superposed in order to generalize the model to a hetero-disperse mixture of particles. The method can reduce the computational effort needed in solving the intra-particle mass exchange of a hetero-disperse mixture of particles significantly and also the error due to the approximation is shown to be relatively small. The method is applied to describe desorption batch experiment of 1,2-Dichlorobenzene from four different soils with known particle size distributions and it could produce good agreement with experimental data. PMID:18304692
Key-lock colloids in a nematic liquid crystal.
Silvestre, Nuno M; Tasinkevych, M
2017-01-01
The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.
NASA Astrophysics Data System (ADS)
Leger, P. E.; Sennour, M.; Delloro, F.; Borit, F.; Debray, A.; Gaslain, F.; Jeandin, M.; Ducos, M.
2017-10-01
Aluminum (Al) powders with spherical and irregular particle shapes were mixed with two alumina (Al2O3) powders with either a spherical or an angular particle shape to achieve high-performance cold-sprayed coatings onto steel. Two effects of the aluminum particle shape were observed. First, coating microstructure observation showed impinging heterogeneity depending on particle shape. Second, particle jet differences depending on particle morphology were shown by velocity maps. From the latter, SEM and XRD, three effects of the alumina particle shape were also shown, i.e., higher in-flight velocity of angular particles, fragmentation of spherical hollow particles and embedding of alumina particles with aluminum. Numerical simulation of particle impacts was developed to study the densification of Al coating due to Al2O3 addition through elucidation of Al-Al2O3 interaction behavior at the scale of the coating. Al/Al and Al/Al2O3 interfaces were investigated using TEM to understand coating strengthening effects due to alumina addition at the scale of the particle. As a whole, Al and Al2O3 particle shape effects were claimed to explain coating mechanical properties, e.g., microhardness and coating-substrate bond strength. This study resulted in specifying criteria to help cold spray users in selecting powders for their applications, to meet economic and technical requirements.
Space Radiation Detector with Spherical Geometry
NASA Technical Reports Server (NTRS)
Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)
2011-01-01
A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.
Space Radiation Detector with Spherical Geometry
NASA Technical Reports Server (NTRS)
Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)
2012-01-01
A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.
Magnetic rotational hysteresis study on spherical 85-160 nm Fe3O4 particles
NASA Astrophysics Data System (ADS)
Schmidbauer, E.
1988-05-01
Rotational hysteresis losses Wr were determined as a function of magnetic field H for dispensed spherical Fe3O4 particles of mean grain sizes 85 nm, 127 nm and 162 nm between 78 K and 294 K. The observed Wr-H curves are compared with theoretical curves for single domain particles. The analysed particles reveal centers of high magnetic anisotropy. Such centers can be of importance during the generation of a thermoremanent magnetization, as they may be the origin of enhanced magnetic stability.
NASA Astrophysics Data System (ADS)
Miffre, Alain; Francis, Mirvatte; Anselmo, Christophe; Rairoux, Patrick
2015-04-01
As underlined by the latest IPCC report [1], tropospheric aerosols are nowadays recognized as one of the main uncertainties affecting the Earth's climate and human health. This issue is not straightforward due to the complexity of these nanoparticles, which present a wide range of sizes, shapes and chemical composition, which vary as a function of altitude, especially in the troposphere, where strong temperature variations are encountered under different water vapour content (from 10 to 100 % relative humidity). During this oral presentation, I will first present the scientific context of this research. Then, the UV-VIS polarimeter instrument and the subsequent calibration procedure [2] will be presented, allowing quantitative evaluation of particles backscattering coefficients in the atmosphere. In this way, up to three-component particles external mixtures can be partitioned into their spherical and non-spherical components, by coupling UV-VIS depolarization lidar measurements with numerical simulations of backscattering properties specific to non-spherical particles, such as desert dust or sea-salt particles [3], by applying the T-matrix numerical code [4]. This combined methodology is new, as opposed to the traditional approach using the lidar and T-matrix methodologies separately. In complement, recent laboratory findings [5] and field applications [6] will be presented, enhancing the sensitivity of the UV-VIS polarimeter. References [1] IPCC report, Intergovernmental Panel on Climate Change, IPCC, (2013). [2] G. David, A. Miffre, B. Thomas, and P. Rairoux: "Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols," Appl. Phys. B 108, 197-216 (2012). [3] G. David, B. Thomas, T. Nousiainen, A. Miffre and P. Rairoux: "Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix," Atmos. Chem Phys. 13, 6757-6776 (2013). [4] M.I. Mishchenko, L.D. Travis and A.A. Lacis: "Scattering, absorption and emission of Light by small particles," 3rd edition, Cambridge University Press UK, (2002). [5] G. David, B. Thomas, E. Coillet, A. Miffre, and P. Rairoux, Polarization-resolved exact light backscattering by an ensemble of particles in air, Opt. Exp., 21, No. 16, 18624-18639, (2013). [6] G. David, B. Thomas, Y. Dupart, B. D'Anna, C. George, A. Miffre and P. Rairoux, UV polarization lidar for remote sensing new particles formation in the atmosphere, Opt. Exp., 22, A1009-A1022, (2014).
Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut
2016-04-19
The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.
Interactions in Micellar Solutions of β-Casein
NASA Astrophysics Data System (ADS)
Leclerc, E.; Calmettes, P.
1997-01-01
β-casein is a flexible amphiphilic milk protein which forms spherical micelles in very dilute solution. The magnitude of the weight-average interactions between the solute particles has been inferred from small-angle neutron scattering experiments. At relatively high protein concentrations the interactions between micelles are repulsive, whatever the temperature. At lower concentration these interactions vanish and become more and more attractive when the critical micelle concentration is approached. Although indispensable for micelle formation, this fact seems to have not been previously reported.
Rigid spherical particles in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao
2016-11-01
Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.
Ubaidillah; Imaduddin, F.; Choi, Seung-Bok; Yazid, I. I. M.
2018-01-01
In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail. PMID:29630595
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buseck, Peter
2016-03-01
During two Intensive Operational Periods (IOP), we collected samples at 3-hour intervals for transmission electron microscopy analysis. The resulting transmission electron microscopy images and compositions were analyzed for the samples of interest. Further analysis will be done especially for the plume of interest. We found solid spherical organic particles from rebounded samples collected with Professor Scot Martin’s group (Harvard University). Approximately 30% of the rebounded particles at 95% relative humidity were spherical organic particles. Their sources and formation process are not known, but such spherical particles could be solid and will have heterogeneous chemical reactions. We observed many organic particlesmore » that are internally mixed with inorganic elements such as potassium and nitrogen. They are either homogeneously mixed or have inorganic cores with organic aerosol coatings. Samples collected from the Manaus, Brazil, pollution plume included many nano-size soot particles mixed with organic material and sulfate. Aerosol particles from clean periods included organic aerosol particles, sulfate, sea salt, dust, and primary biogenic aerosol particles. There was more dust, primary biogenic aerosol, and tar balls in samples taken during IOP1 than those taken during IOP2. Many dust particles were found between March 2 and 3.« less
Mohamad, N; Ubaidillah; Mazlan, S A; Imaduddin, F; Choi, Seung-Bok; Yazid, I I M
2018-01-01
In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail.
Strongly localized image states of spherical graphitic particles.
Gumbs, Godfrey; Balassis, Antonios; Iurov, Andrii; Fekete, Paula
2014-01-01
We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.
Occurrence of spherical ceramic debris in indentation and sliding contact
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.
Gridless particle technique for the Vlasov-Poisson system in problems with high degree of symmetry
NASA Astrophysics Data System (ADS)
Boella, E.; Coppa, G.; D'Angola, A.; Peiretti Paradisi, B.
2018-03-01
In the paper, gridless particle techniques are presented in order to solve problems involving electrostatic, collisionless plasmas. The method makes use of computational particles having the shape of spherical shells or of rings, and can be used to study cases in which the plasma has spherical or axial symmetry, respectively. As a computational grid is absent, the technique is particularly suitable when the plasma occupies a rapidly changing space region.
Aerosol Classification from High Spectral Resolution Lidar Measurements
NASA Astrophysics Data System (ADS)
Burton, S. P.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Kahnert, M.; Vaughan, M. A.; Cook, A. L.; Harper, D. B.; Berkoff, T.; Seaman, S. T.; Collins, J. E., Jr.; Fenn, M. A.; Rogers, R. R.
2015-12-01
The NASA Langley airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, have acquired large datasets of vertically resolved aerosol extinction, backscatter, and depolarization during >30 airborne field missions since 2006. The lidar measurements of aerosol intensive parameters like lidar ratio and color ratio embed information about intrinsic aerosol properties, and are combined to qualitatively classify HSRL aerosol measurements into aerosol types. Knowledge of aerosol type is important for assessing aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead is a mixture, which affects the optical and radiative properties of the aerosol. We show that aerosol intensive parameters measured by lidar can be understood using mixing rules for cases of external mixing. Beyond coarse classification and mixing between classes, variations in the lidar aerosol intensive parameters provide additional insight into aerosol processes and composition. This is illustrated by depolarization measurements at three wavelengths, 355 nm, 532 nm, and 1064 nm, made by HSRL-2. Particle depolarization ratio is an indicator of non-spherical particles. Three cases each have a significantly different spectral dependence of the depolarization ratio, related to the size of the depolarizing particles. For two dust cases, large non-spherical particles account for the depolarization of the lidar light. The spectral dependence reflects the size distribution of these particles and reveals differences in the transport histories of the two plumes. For a smoke case, the depolarization is inferred to be due to the presence of small coated soot aggregates. Interestingly, the depolarization at 355 nm is similar for this smoke case compared to the dust cases, having potential implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm.
Du, Zehui; Ye, Pengcheng; Zeng, Xiao Mei; ...
2017-05-09
Nano- and microscale CeO 2–ZrO 2 (CZ) shape memory ceramics are promising materials for smart micro-electro-mechanical systems (MEMS), sensing, actuation and energy damping applications, but the processing science for scalable production of such small volume ceramics has not yet been established. Herein, we report a modified sol-gel method to synthesize highly monodisperse spherical CZ particles with diameters in the range of ~0.8-3.0 μm. Synchrotron X-ray micro-diffraction (μSXRD) confirmed that most of the particles are single crystal after annealing at 1450°C. Having a monocrystalline structure and a small specimen length scale, the particles exhibit significantly enhanced shape memory and superelasticity propertiesmore » with up to ~4.7% compression being completely recoverable. Highly reproducible superelasticity through over five hundred strain cycles, with dissipated energy up to ~40 MJ/m 3 per cycle, is achieved in the CZ particles containing 16 mol% ceria. This cycling capability is enhanced by ten times compared with our first demonstration using micropillars (only 50 cycles in Lai et al, Science, 2013, 341, 1505). Furthermore, the effects of cycling and testing temperature (in 25°C-400°C) on superelasticity have been investigated.« less
A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium
NASA Technical Reports Server (NTRS)
Witzke, Walter R; Prok, George M; Walsh, Thomas J
1954-01-01
Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.
NASA Technical Reports Server (NTRS)
Zuffada, Cinzia; Crisp, David
1997-01-01
Reliable descriptions of the optical properties of clouds and aerosols are essential for studies of radiative transfer in planetary atmospheres. The scattering algorithms provide accurate estimates of these properties for spherical particles with a wide range of sizes and refractive indices, but these methods are not valid for non-spherical particles (e.g., ice crystals, mineral dust, and smoke). Even though a host of methods exist for deriving the optical properties of nonspherical particles that are very small or very large compared with the wavelength, only a few methods are valid in the resonance regime, where the particle dimensions are comparable with the wavelength. Most such methods are not ideal for particles with sharp edges or large axial ratios. We explore the utility of an integral equation approach for deriving the single-scattering optical properties of axisymmetric particles with large axial ratios. The accuracy of this technique is shown for spheres of increasing size parameters and an ensemble of randomly oriented prolate spheroids of size parameter equal to 10.079368. In this last case our results are compared with published results obtained with the T-matrix approach. Next we derive cross sections, single-scattering albedos, and phase functions for cylinders, disks, and spheroids of ice with dimensions extending from the Rayleigh to the geometric optics regime. Compared with those for a standard surface integral equation method, the storage requirement and the computer time needed by this method are reduced, thus making it attractive for generating databases to be used in multiple-scattering calculations. Our results show that water ice disks and cylinders are more strongly absorbing than equivalent volume spheres at most infrared wavelengths. The geometry of these particles also affects the angular dependence of the scattering. Disks and columns with maximum linear dimensions larger than the wavelength scatter much more radiation in the forward and backward directions and much less radiation at intermediate phase angles than equivalent volume spheres.
Composite material reinforced with atomized quasicrystalline particles and method of making same
Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.
1998-12-22
A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).
NASA Astrophysics Data System (ADS)
Wang, H.; Yang, Z. Y.; Lu, Y. F.
2007-02-01
Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.
Moment equations for chromatography using superficially porous spherical particles.
Miyabe, Kanji
2011-01-01
New moment equations were developed for chromatography using superficially porous (shell-type) spherical particles, which have recently attracted much attention as one of separation media for fast separation with high efficiency. At first, the moment equations of the first absolute and second central moments in the real time domain were derived from the analytical solution in the Laplace domain of a set of basic equations of the general rate model of chromatography, which represent the mass balance, mass-transfer rate, and reaction kinetics in the column packed with shell-type particles. Then, the moment equations were used for analyzing the experimental data of chromatography of kallidin in a Halo column, which were published in a previous paper written by other researchers. It was tried to predict the chromatographic behavior of shell-type particles having different shell thicknesses. The new moment equations are useful for a detailed analysis of the chromatographic behavior of shell-type spherical particles. It is also concluded that they can be used for the preliminarily optimization of their structural characteristics.
Rotational Motion of Axisymmetric Marangoni Swimmers
NASA Astrophysics Data System (ADS)
Rothstein, Jonathan; Uvanovic, Nick
2017-11-01
A series of experiments will be presented investigating the motion of millimeter-sized particles on the surface of water. The particles were partially coated with ethanol and carefully placed on a water interface in a series of Petri dishes with different diameters. High speed particle motion was driven by strong surface tension gradients as the ethanol slowly diffuses from the particles into the water resulting in a Marangoni flow. The velocity and acceleration of the particles where measured. In addition to straight line motion, the presence of the bounding walls of the circular Petri dish was found to induce an asymmetric, rotational motion of the axisymmetric Marangoni swimmers. The rotation rate and radius of curvature was found to be a function of the size of the Petri dish and the curvature of the air-water interface near the edge of the dish. For large Petri dishes or small particles, rotation motion was observed far from the bounding walls. In these cases, the symmetry break appears to be the result of the onset of votex shedding. Finally, multiple spherical particles were observed to undergo assembly driven by capillary forces followed by explosive disassembly.
The influence of particle shape on dielectric enhancement in metal-insulator composites
NASA Astrophysics Data System (ADS)
Doyle, W. T.; Jacobs, I. S.
1992-04-01
Disordered suspensions of conducting particles exhibit substantial permittivity enhancements beyond the predictions of the Clausius-Mossotti equation and other purely dipolar approximations. The magnitude of the enhancement depends upon the shape of the particles. A recently developed effective cluster model for spherical particles [Phys. Rev. B 42, 9319 (1990)] that treats a disordered suspension as a mixture, or mesosuspension, of isolated spheres and close-packed spherical clusters of arbitrary size is in excellent agreement with experiments on well-stirred suspensions of spheres over the entire accessible range of volume loading. In this paper, the effective cluster model is extended to be applicable to disordered suspensions of arbitrarily shaped conducting particles. Two physical parameters are used to characterize a general suspension: the angular average polarizability of an isolated particle, and the volume loading at closest packing of the suspension. Multipole interactions within the clusters are treated exactly. External particle-shape-dependent interactions between clusters and isolated particles are treated in the dipole approximation in two ways: explicitly, using the Clausius-Mossotti equation, and implicitly, using the Wiener equation. Both versions of the model are used to find the permittivity of a monodisperse suspension of conducting spheroids, for which the model parameters can be determined independently. The two versions are in good agreement when the axial ratio of the particles is not extreme. The Clausius-Mossotti version of the model yields a mesoscopic analogue of the dielectric virial expansion. It is limited to small volume loadings when the particles have an extremely nonspherical shape. The Wiener equation version of the model holds at all volume loadings for particles of arbitrary shape. Comparison of the two versions of the model leads to a simple physical interpretation of Wiener's equation. The models are compared with experiments of Kelly, Stenoien, and Isbell [J. Appl. Phys. 24, 258 (1953)] on aluminum and zinc particles in paraffin, with Nasuhoglu's experiments on iron particles in oil [Commun. Fac. Sci. Univ. Ankara 4, 108 (1952)], and with new X-band and Kα-band permittivity measurements on Ni-Cr alloy particles in a polyurethane binder.
The design of a small flow optical sensor of particle counter
NASA Astrophysics Data System (ADS)
Zhan, Yongbo; zhang, Jianwei; Zeng, Jianxiong; Li, Bin; Chen, Lu
2018-01-01
Based on the principle of Mie scattering, we design a small flow optical sensor of particle counter. Firstly, laser illumination system was simulated and designed by ZEMAX optical design software, and the uniform light intensity of photosensitive area was obtained. The gas circuit structure was also designed according to the related theory of fluid mechanics. Then, the method of combining with MIST scattering calculation software and geometric modeling was firstly used to design spherical reflection system, on the basis of the formula of object-image distance. Finally, the test was conducted after the optical sensor placed in self-designed pre-amplification and high-speed processing circuit. The test results show that the counting efficiency of 0.3 μm gear is above 70%, 0.5 μm gear and 1.0 μm gear are both reached more than 90%, and the dispersion coefficient of each gear is very nearly the same, compared with the standard machine of Kanomax 3886 under the particle spraying flow of 2.5SCFH, 3.0SCFH, 3.5SCFH.
Study of static and dynamic magnetic properties of Fe nanoparticles composited with activated carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Satyendra Prakash, E-mail: sppal85@gmail.com; Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge city, Sector81, SAS Nagar, Manauli-140306, Punjab; Kaur, Guratinder
2016-05-23
Nanocomposite of Fe nanoparticles with activated carbon has been synthesized to alter the magnetic spin-spin interaction and hence study the dilution effect on the static and dynamic magnetic properties of the Fe nanoparticle system. Transmission electron microscopic (TEM) image shows the spherical Fe nanoparticles dispersed in carbon matrix with 13.8 nm particle size. Temperature dependent magnetization measurement does not show any blocking temperature at all, right up to the room temperature. Magnetic hysteresis curve, taken at 300 K, shows small value of the coercivity and this small hysteresis indicates the presence of an energy barrier and inherent magnetization dynamics. Langevinmore » function fitting of the hysteresis curve gives almost similar value of particle size as obtained from TEM analysis. Magnetic relaxation data, taken at a temperature of 100 K, were fitted with a combination of two exponentially decaying function. This diluted form of nanoparticle system, which has particles size in the superparamagnetic limit, behaves like a dilute ensemble of superspins with large value of the magnetic anisotropic barrier.« less
2011-01-01
Present work reports the elongation of spherical Ni nanoparticles (NPs) parallel to each other, due to bombardment with 120 MeV Au+9 ions at a fluence of 5 × 1013 ions/cm2. The Ni NPs embedded in silica matrix have been prepared by atom beam sputtering technique and subsequent annealing. The elongation of Ni NPs due to interaction with Au+9 ions as investigated by cross-sectional transmission electron microscopy (TEM) shows a strong dependence on initial Ni particle size and is explained on the basis of thermal spike model. Irradiation induces a change from single crystalline nature of spherical particles to polycrystalline nature of elongated particles. Magnetization measurements indicate that changes in coercivity (Hc) and remanence ratio (Mr/Ms) are stronger in the ion beam direction due to the preferential easy axis of elongated particles in the beam direction. PMID:21711659
Linearized T-Matrix and Mie Scattering Computations
NASA Technical Reports Server (NTRS)
Spurr, R.; Wang, J.; Zeng, J.; Mishchenko, M. I.
2011-01-01
We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ''shape'' parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available.
Scattering properties of soot-containing particles and their impact by humidity in 1.6 μm
NASA Astrophysics Data System (ADS)
Fan, M.; Chen, L.; Xiong, X.; Li, S.; Tao, J.; Su, L.; Zou, M.; Zhang, Y.
2014-02-01
Short-wave infrared (SWIR) band in wavelength near 1.6 μm is one of the key bands used for satellite observation of Carbon Dioxide (CO2). However, one major uncertainty to use this band for the CO2 retrieval is the scattering by cloud and aerosol particles. To better understand the scattering properties of soot-containing particles in this band, this paper studied the scattering properties for three typical types of soot-containing particles in China: (I) internal mixture, (II) pure soot aggregate, and (III) semi-external mixture. Assumed as single non-spherical particle for type I, its scattering property is computed using the T-matrix method combined with the Maxwell-Garnett effective medium theory and the hygroscopic growth theory. For types II and III, a particle-cluster aggregation algorithm is employed to generate fractal-like aggregates, and their scattering properties are computed using the Core-Mantle Generalized Multi-sphere Mie-solution method combined with the hygroscopic growth theory of both monomers and aggregated particles. The simulated results demonstrate that their scattering properties are quite different and strongly impacted by the levels of relative humidity (RH). For type I, the RH plays a much more important role than the morphology in impacting the scattering properties, and the scattering phase functions among different shaped particles have a larger difference for larger particles and higher RH. For type II, both the RH and morphology significantly affect its scattering properties. The single scattering albedo (ω) can be underestimated up to ~50% without considering the effects of RH and morphological changes. For type III, its scattering properties mainly depend on the RH and the size of the large water-soluble particle. Although the enlarged soot aggregate, which is attached to a water-soluble particle, almost does not change the light direction, it can result in a significant reduction in ω (~0.15) at low RH for small particles. By comparing the scattering parameters of wet particles at a certain RH level with the dry ones, the impact by the heterogeneity of aerosols generally becomes larger with the increase of RH, but becomes smaller with the increase of particle size. These results suggest that, although the water vapor absorption itself is small in 1.6 μm CO2 band, it can significantly impact the scattering properties of these particles through its effect on the hygroscopic growth of the non-spherical and heterogeneous aerosols. This impact should be taken into account in the retrieval of CO2 using 1.6 μm as well as other related remote sensing applications.
Prevalence of small round structured virus infections in acute gastroenteritis outbreaks in Tokyo.
Sekine, S; Okada, S; Hayashi, Y; Ando, T; Terayama, T; Yabuuchi, K; Miki, T; Ohashi, M
1989-01-01
During the three-year period from 1984 to 1987, 506 acute gastroenteritis outbreaks involving 14,383 patients were reported to the Bureau of Public Health, Tokyo Metropolitan Government. Eighty (4,324 patients) of 150 outbreaks (4,860 patients) from which etiologic agents were not identified were subjected to virological investigation. Spherical particles of 28-32 nm in diameter with capsomere-like structures on the surface were detected in patients' stool specimens. Buoyant density of the particles appeared to be 1.36 to 1.40 g/ml in CsCl. Seroconversion to the particles was observed in patients by immune electron microscopy. From these observations, we concluded that the detected particles were members of small round structured virus (SRSV), and that they were implicated in the etiologically ill-defined outbreaks encountered. Prevalence of SRSV infections in these outbreaks was examined by electron microscopy. SRSV was positive in 83.8% of the outbreaks, and 96.4% of the cases. SRSV-positive outbreaks usually occurred during winter in contrast to bacterial outbreaks which often occurred in the summer season. Of 80 outbreaks examined, 53 were associated with the ingestion of oysters, and the remaining 27 mostly with food other than oysters. Oyster-associated outbreaks usually occurred on a small scale, while unassociated ones on diverse scales ranged from family clusters to large outbreaks.
An Electron is the God Particle
NASA Astrophysics Data System (ADS)
Wolff, Milo
2001-04-01
Philosophers, Clifford, Mach, Einstein, Wyle, Dirac & Schroedinger, believed that only a wave structure of particles could satisfy experiment and fulfill reality. A quantum Wave Structure of Matter is described here. It predicts the natural laws more accurately and completely than classic laws. Einstein reasoned that the universe depends on particles which are "spherically, spatially extended in space." and "Hence a discrete material particle has no place as a fundamental concept in a field theory." Thus the discrete point particle was wrong. He deduced the true electron is primal because its force range is infinite. Now, it is found the electron's wave structure contains the laws of Nature that rule the universe. The electron plays the role of creator - the God particle. Electron structure is a pair of spherical outward/inward quantum waves, convergent to a center in 3D space. This wave pair creates a h/4pi quantum spin when the in-wave spherically rotates to become the out-wave. Both waves form a spinor satisfying the Dirac Equation. Thus, the universe is binary like a computer. Reference: http://members.tripod.com/mwolff
Horák, D; Svec, F; Kálal, J; Adamyan, A; Skuba, N; Titova, M; Dan, V; Varava, B; Trostenyuk, N; Voronkova, O
1988-07-01
In this study we report the results of toxicological, histological and haematological experiments on radiopaque spherical particles based on poly(2-hydroxyethyl methacrylate). These particles have been developed for endovascular occlusion of various organs. Radiopacity was attained by two independent methods: the chemical attachment of radiopaque substances to the hydrogel or the precipitation of radiopaque substances in the hydrogel network. The first method yields particles that appear to have uniformly-distributed contrast material, but in the particles prepared by the second procedure the contrast material is predominantly located on the surface. The visibility of such particles by X-rays makes possible controlled embolus introduction and inspection of the polymer for long periods after embolization. Radiopaque contrasting changes the morphology and reduces the porosity of the material but supports quick thrombus formation. Embolic material implanted in rabbits becomes surrounded by a thin fibrous capsule and undergoes partial organization. This and other results of medico-biological investigations have fully demonstrated the biocompatibility of radiopaque spherical emboli, which can now be used clinically.
Delavari, Armin; Baltus, Ruth
2017-01-01
Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng
Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermalmore » temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.« less
NASA Astrophysics Data System (ADS)
Hu, Jun; Dong, Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.
2013-04-01
The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of 100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter ( D 50 %) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m2/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.
NASA Astrophysics Data System (ADS)
Park, H. J.; Kim, S. W.; Kobayashi, H.; Nishizawa, T.
2017-12-01
The Polarization Optical Particle Counter (POPC), unlike general OPCs, has the advantage capable of classifying the aerosol types (e.g., dust, anthropogenic pollution), because it measures particle number, size and depolarization ratio (DPR; the sphericity information of single particle) for 4 size bins with diameter (0.5-1, 1-3, 3-5, 5-10 μm). In this study, we investigate the temporal variations of particle number and volume size distributions with DPR values and classify aerosol types such as dust, anthropogenic pollution, from 4-year (2013-2016) POPC data at Seoul National University campus in Seoul, Korea. Coarse mode particles from 5-10 μm with relatively high DPR values (0.25-0.3) were distinctly appeared in in both spring (March-May) and winter (December-February) due to frequent transport of Asian dust particles. In summer (June -August), however, both aerosol number concentration and DPR value were decreased in all size bins due to the influences of relatively clean maritime airmass and frequent precipitations. In autumn (September - November), the particle number concentration in all size bins was the lowest. To classify the aerosol types, we investigate particle number and volume size distributions and DPR value for clean, dust-dominant and anthropogenic pollution-dominant cases, which were selected by PM10, PM2.5 mass concentrations and its ratio, because those parameters are clearly different among aerosol types (Kobayashi et al., 2014, Pan et al., 2016). Non-spherical coarse mode particles (Dp > 2.5 μm, 0.1 < DPR < 0.6) were dominantly observed during the dust-dominant period, while both spherical fine mode and coarse mode particles (Dp < 1 μm and Dp = 2-4 μm, DPR < 0.1) were dominantly appeared during the pollution event. The aerosol type classifications with these criteria values were successfully applied to the extreme Asian dust event from February 22 to 24, 2015. The results showed that pollution-dominant airmass preceded by the appearance of a major mineral dust plume. Co-located aerosol lidar measurements also revealed that spherical pollution particles were observed near the surface prior to a major plume of non-spherical mineral dust.
The Capra Research Program for Modelling Extreme Mass Ratio Inspirals
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan
2011-02-01
Suppose a small compact object (black hole or neutron star) of mass m orbits a large black hole of mass M ≫ m. This system emits gravitational waves (GWs) that have a radiation-reaction effect on the particle's motion. EMRIs (extreme-mass-ratio inspirals) of this type will be important GW sources for LISA. To fully analyze these GWs, and to detect weaker sources also present in the LISA data stream, will require highly accurate EMRI GW templates. In this article I outline the ``Capra'' research program to try to model EMRIs and calculate their GWs ab initio, assuming only that m ≪ M and that the Einstein equations hold. Because m ≪ M the timescale for the particle's orbit to shrink is too long for a practical direct numerical integration of the Einstein equations, and because this orbit may be deep in the large black hole's strong-field region, a post-Newtonian approximation would be inaccurate. Instead, we treat the EMRI spacetime as a perturbation of the large black hole's ``background'' (Schwarzschild or Kerr) spacetime and use the methods of black-hole perturbation theory, expanding in the small parameter m/M. The particle's motion can be described either as the result of a radiation-reaction ``self-force'' acting in the background spacetime or as geodesic motion in a perturbed spacetime. Several different lines of reasoning lead to the (same) basic O(m/M) ``MiSaTaQuWa'' equations of motion for the particle. In particular, the MiSaTaQuWa equations can be derived by modelling the particle as either a point particle or a small Schwarzschild black hole. The latter is conceptually elegant, but the former is technically much simpler and (surprisingly for a nonlinear field theory such as general relativity) still yields correct results. Modelling the small body as a point particle, its own field is singular along the particle worldline, so it's difficult to formulate a meaningful ``perturbation'' theory or equations of motion there. Detweiler and Whiting found an elegant decomposition of the particle's metric perturbation into a singular part which is spherically symmetric at the particle and a regular part which is smooth (and non-symmetric) at the particle. If we assume that the singular part (being spherically symmetric at the particle) exerts no force on the particle, then the MiSaTaQuWa equations follow immediately. The MiSaTaQuWa equations involve gradients of a (curved-spacetime) Green function, integrated over the particle's entire past worldline. These expressions aren't amenable to direct use in practical computations. By carefully analysing the singularity structure of each term in a spherical-harmonic expansion of the particle's field, Barack and Ori found that the self-force can be written as an infinite sum of modes, each of which can be calculated by (numerically) solving a set of wave equations in 1{+}1 dimensions, summing the gradients of the resulting fields at the particle position, and then subtracting certain analytically-calculable ``regularization parameters''. This ``mode-sum'' regularization scheme has been the basis for much further research including explicit numerical calculations of the self-force in a variety of situations, initially for Schwarzschild spacetime and more recently extending to Kerr spacetime. Recently Barack and Golbourn developed an alternative ``m-mode'' regularization scheme. This regularizes the physical metric perturbation by subtracting from it a suitable ``puncture function'' approximation to the Detweiler-Whiting singular field. The residual is then decomposed into a Fourier sum over azimuthal (e^{imϕ}) modes, and the resulting equations solved numerically in 2{+}1 dimensions. Vega and Detweiler have developed a related scheme that uses the same puncture-function regularization but then solves the regularized perturbation equation numerically in 3{+}1 dimensions, avoiding a mode-sum decomposition entirely. A number of research projects are now using these puncture-function regularization schemes, particularly for calculations in Kerr spacetime. Most Capra research to date has used 1st order perturbation theory, with the particle moving on a fixed (usually geodesic) worldline. Much current research is devoted to generalizing this to allow the particle worldline to be perturbed by the self-force, and to obtain approximation schemes which remain valid over long (EMRI-inspiral) timescales. To obtain the very high accuracies needed to fully exploit LISA's observations of the strongest EMRIs, 2nd order perturbation theory will probably also be needed; both this and long-time approximations remain frontiers for future Capra research.
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail; Holthaus, Eric; Albers, Cerese; Kim, Min-Jeong
2007-01-01
In order to better understand the characteristics of frozen cloud particles in hurricane systems, computed brightness temperatures were compared with radiometric observations of Hurricane Erin (2001) from the NASA ER-2 aircraft. The focus was oil the frozen particle microphysics and the high frequencies (2 85 GHz) that are particularly sensitive to frozen particles. Frozen particles in hurricanes are an indicator of increasing hurricane intensity. In fact "hot towers" associated with increasing hurricane intensity are composed of frozen ice cloud particles. (They are called hot towers because their column of air is warmer than the surrounding air temperature, but above about 5-7 km to the tops of the towers at 15-19 km, the cloud particles are frozen.) This work showed that indeed, one can model information about cloud ice particle characteristics and indicated that nonspherical ice shapes, instead of spherical particles, provided the best match to the observations. Overall, this work shows that while non-spherical particles show promise, selecting and modeling a proper ice particle parameterization can be difficult and additional in situ measurements are needed to define and validate appropriate parameterizations. This work is important for developing Global Precipitation Measurement (GPM) mission satellite algorithms for the retrieval of ice characteristics both above the melting layer, as in Hurricane Erin, and for ice particles that reach the surface as falling snow.
Modification of homogeneous and isotropic turbulence by solid particles
NASA Astrophysics Data System (ADS)
Hwang, Wontae
2005-12-01
Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135 showed that the absence of particle potential energy loss and particle wakes caused greater levels of turbulence attenuation since there was no additional production due to mean particle motion. The relatively stationary dispersion of particles acted like a series of screens which produced forces opposing turbulent motions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biner, S.B.
1998-07-01
In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--50% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.
Resuspension of particles in an oscillating grid turbulent flow using PIV and 3D-PTV
NASA Astrophysics Data System (ADS)
H, Traugott; T, Hayse; A, Liberzon
2011-12-01
Description of the mechanisms responsible for the initiation of particle motion from a surface and re-entrainment of particles into suspension remains a challenge, partially due to the technical difficulties to quantify the forces applied on the particles and the collection of high resolution data of particle displacements simultaneously. In this study we explore the process of initial entrainment of spherical particles from smooth beds into zero-mean-shear turbulent flow in an oscillating grid chamber. Particle image velocimetry (PIV) and three-dimensional particle tracking velocimetry (3D-PTV) are used to correlate in a quantitative manner the turbulent flow properties responsible for pick-up, detachment and re-entrainment of particles. The results are compared to the existing models of critical shear velocity and provide further insight into the resuspension process of spherical particles in the transitional range of particle size Reynolds numbers 2 <= Rep <= 500.
Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure
NASA Astrophysics Data System (ADS)
Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team
Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1989-01-01
The linearized mean-force-field approximation, leading to a Gaussian distribution, provides an exact formal solution to the mean-spherical integral equation model for the electric microfield distribution at a charged point in the general charged-hard-particles fluid. Lado's explicit solution for plasmas immediately follows this general observation.
Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo
2018-05-01
The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.
One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel
2017-10-01
One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.
Afterburning in spherical premixed turbulent explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, D.; Lawes, M.; Scott, M.J.
1994-12-01
During the early stages of spherical turbulent flame propagation, more than half of the gas behind the visible flame front may be unburned. Previous models of the afterburning of the gas behind the apparent flame front have been extended in the present work, to include the effects of flame quenching, consequent upon localized flame stretch. The predictions of the model cover, the spatial and temporal variations of the fraction burned, the flame propagation rate, and the mass burning rate. They are all in dimensionless form and are well supported by associated experimental measurements in a fan-stirred bomb with controlled turbulence.more » The proportion of the gas that is unburned decreases with time and increases with the product of the Karlovitz stretch factor and the Lewis number. Simultaneous photographs were taken of the spherical schlieren image and of that due to Mie scattering from small seed particles in a thin laser sheet that sectioned the spherical flame. These clearly showed the amount of unburned gas within the sphere and, along with other evidence suggest laminar flamelet burning across a scale of distance which is close to the Taylor confirm the predictions of the fraction of gas unburned and of the rate at which it is burning.« less
Composite material reinforced with atomized quasicrystalline particles and method of making same
Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.
1998-12-22
A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.
Fly ash particles spheroidization using low temperature plasma energy
NASA Astrophysics Data System (ADS)
Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.
2016-11-01
The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.
Polylayer Adsorption on Rough Surfaces of Nanoaerosols Obtained via the Rapid Cooling of Droplets
NASA Astrophysics Data System (ADS)
Zaitseva, E. S.; Tovbin, Yu. K.
2018-05-01
An approach is developed for studying polymolecular adsorption on the modeled rough surface of a small aerosol obtained from a liquid droplet on its rapid cooling. A way of estimating the specific surface of adsorbent droplets with rough surfaces is proposed, and the temperature and size dependences of the specific surface are established. Isotherms of N2 and Ar polymolecular adsorption on a heterogeneous surface of small spherical particles of SiO2 are derived. The possibility of using this approach to describe an experiment is demonstrated. Comparison to the experimental isotherms reveals agreement with isotherms of argon and nitrogen on silica surfaces, with an error of up to 4.5%.
Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.
Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J
2018-05-01
There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to facilitate targeted cell binding while being resistant to non-specific cellular uptake. Such a platform could allow for investigations into how physical parameters of a particle and its surface affect the interface between biomaterials and cells, as well as provide biomimetic technology platforms for drug delivery and cellular engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sen; Luo, Sheng-Nian
Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamentalmore » harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.« less
Energetic particles in spherical tokamak plasmas
NASA Astrophysics Data System (ADS)
McClements, K. G.; Fredrickson, E. D.
2017-05-01
Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion-ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Ion acceleration has also been observed during merging-compression start-up in MAST.
Combustion of Metals in Reduced-Gravity and Extraterrestrial Environments
NASA Technical Reports Server (NTRS)
Branch, M. C.; Abbud-Madrid, A.; Daily, J. W.
2001-01-01
As a result of the ongoing exploration of Mars and the several unmanned and possibly manned missions planned for the near future, increased attention has been given to the use of the natural resources of the planet for rocket propellant production and energy generation. Since the atmosphere of Mars consists of approximately 95% carbon dioxide (CO2), this gas is the resource of choice to be employed for these purposes. Since many metals burn vigorously with CO2, these may be used as an energy source or as propellants for a research vehicle on the surface of Mars. Shafirovich and Goldshleger conducted experiments with spherical particles up to 2.5 mm in diameter and found that the burning process was controlled by diffusion and that the particles exhibited pulsating combustion due to superheating of the Mg vapor trapped inside a protective oxide shell. They also proposed a reaction mechanism based on the gas-phase reaction, Mg + CO2 yields MgO + CO and the heterogeneous reaction Mg + CO yields MgO + C occurring on the sample surface. In all the above studies with large Mg particles, the burning process is invariably influenced by strong convective currents that accelerate the combustion reaction and shorten the burning times. Although these currents are nearly absent in the burning of small particles, the high emissivity of the flames, rapid reaction, and small length scales make the gathering of any useful information on burning rates and flame structure very difficult. The goal of this investigation is to provide a detailed study of flame structure by taking advantage of large, free-floating spherical metal samples and their corresponding long burning times available in a weightless environment. The use of reduced gravity is essential to eliminate the intrusive buoyant flows that plague high temperature metal reactions, to remove the destructive effect of gravity on the shape of molten metal samples, and to study the combustion behavior of metals in the presence of solid oxides undisturbed by natural convection. This work presents the most complete modeling of metal particle burning to date for Mg with CO2 and O2.
Startup of electrophoresis in a suspension of colloidal spheres.
Chiang, Chia C; Keh, Huan J
2015-12-01
The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The drag and lift of different non-spherical particles from low to high Re
NASA Astrophysics Data System (ADS)
Sanjeevi, Sathish K. P.; Padding, Johan
2017-11-01
The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient CD , ϕ at different incident angles ϕ for a wide range of Reynolds numbers (Re). We show that the sine-squared drag law CD , ϕ =CD , ϕ =0° +(CD , ϕ =90° -CD , ϕ =0°) sin2 ϕ holds up to large Reynolds numbers Re = 2000 . The sine-squared dependence of CD occurs at Stokes flow (very low Re) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high Re , and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher Re , for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient CL can provide a decent approximation, even at high Re , for elongated particles. Such a drag and lift law valid at high Re is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles. European Research Council (ERC) consolidator Grant scheme, Contract No. 615096 (NonSphereFlow).
Diffraction of a Gaussian Beam by a Spherical Obstacle
NASA Technical Reports Server (NTRS)
Lock, James A.; Hovenac, Edward A.
1993-01-01
The Kirchhoff integral for diffraction in the near-forward direction is derived from the exact solution of the electromagnetic boundary value problem of a focused Gaussian laser beam incident on a spherical particle. The diffracted intensity in the vicinity of the particle is computed and the way in which the features of the diffraction pattern depend on the width of the Gaussian beam is commented on.
Spherical shock-wave propagation in three-dimensional granular packings.
Xue, Kun; Bai, Chun-Hua
2011-02-01
We investigate numerically the spherical shock-wave propagation in an open dense granular packing perturbed by the sudden expansion of a spherical intruder in the interior of the pack, focusing on the correlation between geometrical fabrics and propagating properties. The measurements of the temporal and spatial variations in a variety of propagating properties define a consistent serrated wave substructure with characteristic length on the orders of particle diameters. Further inspection of particle packing reveals a well-defined particle layering that persists several particle diameters away from the intruder, although its dominant effects are only within one to two diameters. This interface-induced layering not only exactly coincides with the serrated wave profile, but also highlights the competition between two energy transmission mechanisms involving distinct transport speeds. The alternating dominances between these two mechanisms contribute to the nonlinear wave propagation on the particle scale. Moreover, the proliferation of intricate three-dimensional contact force networks suggests the anisotropic stress transmission, which is found to also arise from the localized packing structure in the vicinity of the intruder.
NASA Astrophysics Data System (ADS)
Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina
2016-06-01
In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.
Analysis of pinching in deterministic particle separation
NASA Astrophysics Data System (ADS)
Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German
2011-11-01
We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.
NASA Astrophysics Data System (ADS)
Letu, Husi; Ishimoto, Hiroshi; Riedi, Jerome; Nakajima, Takashi Y.; -Labonnote, Laurent C.; Baran, Anthony J.; Nagao, Takashi M.; Sekiguchi, Miho
2016-09-01
In this study, various ice particle habits are investigated in conjunction with inferring the optical properties of ice clouds for use in the Global Change Observation Mission-Climate (GCOM-C) satellite programme. We develop a database of the single-scattering properties of five ice habit models: plates, columns, droxtals, bullet rosettes, and Voronoi. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor on board the GCOM-C satellite, which is scheduled to be launched in 2017 by the Japan Aerospace Exploration Agency. A combination of the finite-difference time-domain method, the geometric optics integral equation technique, and the geometric optics method is applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible to the infrared spectral regions. This covers the SGLI channels for the size parameter, which is defined as a single-particle radius of an equivalent volume sphere, ranging between 6 and 9000 µm. The database includes the extinction efficiency, absorption efficiency, average geometrical cross section, single-scattering albedo, asymmetry factor, size parameter of a volume-equivalent sphere, maximum distance from the centre of mass, particle volume, and six nonzero elements of the scattering phase matrix. The characteristics of calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, size-integrated bulk scattering properties for the five ice particle habit models are calculated from the single-scattering database and microphysical data. Using the five ice particle habit models, the optical thickness and spherical albedo of ice clouds are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements, recorded on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. The optimal ice particle habit for retrieving the SGLI ice cloud properties is investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD is distributed stably due to the scattering angle increases for bullet rosettes with an effective diameter (Deff) of 10 µm and Voronoi particles with Deff values of 10, 60, and 100 µm. It is confirmed that the SAD of small bullet-rosette particles and all sizes of Voronoi particles has a low angular dependence, indicating that a combination of the bullet-rosette and Voronoi models is sufficient for retrieval of the ice cloud's spherical albedo and optical thickness as effective habit models for the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particle size (Deff = 60 µm) is compared with the conventional general habit mixture model, inhomogeneous hexagonal monocrystal model, five-plate aggregate model, and ensemble ice particle model. The Voronoi habit model is found to have an effect similar to that found in some conventional models for the retrieval of ice cloud properties from space-borne radiometric observations.
Uskoković, Vuk; Batarni, Samir Shariff; Schweicher, Julien; King, Andrew; Desai, Tejal A.
2013-01-01
Powders composed of four morphologically different calcium phosphate particles were prepared by precipitation from aqueous solutions: flaky, brick-like, elongated orthogonal, and spherical. The particles were then loaded with either clindamycin phosphate as the antibiotic of choice, or fluorescein, a model molecule used to assess the drug release properties. A comparison was carried out of the comparative effect of such antibiotic-releasing materials on: sustained drug release profiles; Staphylococcus aureus growth inhibition; and osteogenic propensities in vitro. Raman spectroscopic analysis indicated the presence of various calcium phosphate phases, including monetite (flaky and elongated orthogonal particles), octacalcium phosphate (brick-shaped particles) and hydroxyapatite (spherical particles). Testing the antibiotic-loaded calcium phosphate powders for bacterial growth inhibition demonstrated satisfying antibacterial properties both in broths and on agar plates. All four calcium-phosphate-fluorescein powders exhibited sustained drug release over 21 days. The calcium phosphate sample with the highest specific surface area and the smallest, spherical particle size was the most effective in both drug loading and release, consequently having the highest antibacterial efficiency. Moreover, the highest cell viability, the largest gene expression upregulation of three different osteogenic markers – osteocalcin, osteopontin and Runx2 - as well as the least disrupted cell cytoskeleton and cell morphologies were also noticed for the calcium phosphate powder composed of smallest, spherical nanosized particles. Still, all four powders exerted a viable effect on osteoblastic MC3T3-E1 cells in vitro, as evidenced by both morphological assessments on fluorescently stained cells and measurements of their mitochondrial activity. The obtained results suggest that the nanoscale particle size and the corresponding coarseness of the surface of particle conglomerates as the cell attachment points may present a favorable starting point for the development of calcium-phosphate-based osteogenic drug delivery devices. PMID:23484624
Properties of plate-like carbonyl iron particle for magnetorheological fluid
NASA Astrophysics Data System (ADS)
Shilan, S. T.; Mazlan, S. A.; Khairi, M. H. A.; Ubaidillah
2016-11-01
This work experimentally discussed the characterization, magnetic, and rheological properties of plate-like carbonyl iron particle (CIP) in comparison with conventional spherical CIP. Plate-like CIP was produced by using ball milling method. The effect of plate-like shape on the magnetic behavior of CIP was firstly investigated by vibrating sample magnetometer (VSM). The results indicated that the plate-like CIP obtained higher saturation magnetization (about 8%) than that of the spherical particles. In addition, the field-dependent rheological properties such as yield stress were investigated and the results are compared between two particles as a function of the magnetic field intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biner, S.B.
1997-12-31
In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles where Re denotes the rare earths La, Ce, and Misch-metals during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--30% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.
NASA Technical Reports Server (NTRS)
Lock, James A.
1993-01-01
I review the theory of the scattering of a Gaussian laser beam by a dielectric spherical particle and give the details for constructing a computer program to implement the theory. Computational results indicate that if the width of the laser beam is much less than the diameter of the particle and if the axis of the beam is incident near the edge of the particle, the fifth-, sixth-, and ninth-order rainbows should be evident in the far-field scattered intensity. I performed an experiment that yielded tentative evidence for the presence of the sixth- order rainbow.
Microwave mediated synthesis of ZnS spherical nanoparticles for IR optical ceramics
NASA Astrophysics Data System (ADS)
Ravichandran, D.; Wharton, T.; Devan, B.; Korenstein, R.; Tustison, R.; Komarneni, S.
2011-06-01
The existing material choice for long-wave infrared (LWIR) and semi-active laser domes is multispectral zinc sulfide (ZnS), made by chemical vapor deposition. An alternative route to make more erosion-resistant ZnS could be through hot pressing ZnS nanoparticles into small-grain material. We have attempted to produce ZnS nanoparticles both by microwave and microwave-hydrothermal methods. Microwave route produced ultrahigh purity, homogeneous, well dispersed, and uniformly spherical ZnS nanoparticles. Microwave-hydrothermal route produced equiaxed cubic-faceted nanoparticles. The powder X-ray diffraction patterns of ZnS shows the presence of broad reflections corresponding to the (1 1 1), (2 2 0), and (3 1 1) planes of the cubic crystalline ZnS material. The domain size of the particles estimated from the Debye-Scherrer formula for the main reflection (111) gives a value of 2.9 and 2.5 for the microwave and microwave-hydrothermal methods respectively.
Shape evolution of a core-shell spherical particle under hydrostatic pressure.
Colin, Jérôme
2012-03-01
The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.
Single-camera three-dimensional tracking of natural particulate and zooplankton
NASA Astrophysics Data System (ADS)
Troutman, Valerie A.; Dabiri, John O.
2018-07-01
We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm × 10 cm × 24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.
NASA Astrophysics Data System (ADS)
Liu, Mou-bin; Huang, Can; Zhang, A.-man
2018-02-01
The 2017 SPHERIC Beijing International Workshop (or SPHERIC Beijing 2017) was held at Peking University, in China, on October 17-20, 2017. This is the first time that the SPHERIC Workshop was held out of Europe. We are delighted to present nine contributions in this Special Column of the Journal of Hydrodynamics, and take this opportunity to announce that the 13th SPHERIC Workshop (or SPHERIC 2018) will be held in Galway, Ireland in 2018 by the National University of Ireland, and the SPHERIC International Workshop in Harbin, China in 2019 by the Harbin Engineering University.
Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons
NASA Astrophysics Data System (ADS)
Hamamoto, Ikuko
2007-11-01
Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly bound neutrons. Compared with Nilsson diagrams in textbooks that are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly bound and resonant one-particle levels related to small orbital angular momenta ℓ. Then, it is seen that weakly bound neutrons in nuclei such as C15-19 and Mg33-37 may prefer being deformed as a result of the Jahn-Teller effect, due to the near degeneracy of the 1d5/2-2s1/2 levels and the 1f7/2-2p3/2 levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in textbooks is illustrated.
Phoretic forces on convex particles from kinetic theory and nonequilibrium thermodynamics
NASA Astrophysics Data System (ADS)
Hütter, Markus; Kröger, Martin
2006-01-01
In this article we derive the phoretic forces acting on a tracer particle, which is assumed to be small compared to the mean free path of the surrounding nonequilibrium gas, but large compared to the size of the surrounding gas molecules. First, we review and extend the calculations of Waldmann [Z. Naturforsch. A 14A, 589 (1959)] using half-sphere integrations and an accommodation coefficient characterizing the collision process. The presented methodology is applied to a gas subject to temperature, pressure, and velocity gradients. Corresponding thermophoretic, barophoretic, and rheophoretic forces are derived, and explicit expressions for spherical particles are compared to known results. Second, nonequilibrium thermodynamics is used to join the diffusion equation for the tracer particle with the continuum equations of nonisothermal hydrodynamics of the solvent. So doing, the distinct origin of the thermophoretic and barophoretic forces is demonstrated. While the latter enters similarly to an interaction potential, the former is given by flux-flux correlations in terms of a Green-Kubo relation, as shown in detail.
The attachment of α -synuclein to a fiber: A coarse-grain approach
NASA Astrophysics Data System (ADS)
Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.
2017-03-01
We present simulations of the amyloidogenic core of α-synuclein, the protein causing Parkinson's disease, as a short chain of coarse-grain patchy particles. Each particle represents a sequence of about a dozen amino acids. The fluctuating secondary structure of this intrinsically disordered protein is modelled by dynamic variations of the shape and interaction characteristics of the patchy particles, ranging from spherical with weak isotropic attractions for the disordered state to spherocylindrical with strong directional interactions for a β-sheet. Flexible linkers between the particles enable sampling of the tertiary structure. This novel model is applied here to study the growth of an amyloid fibril, by calculating the free energy profile of a protein attaching to the end of a fibril. The simulation results suggest that the attaching protein readily becomes trapped in a mis-folded state, thereby inhibiting further growth of the fibril until the protein has readjusted to conform to the fibril structure, in line with experimental findings and previous simulations on small fragments of other proteins.
Minimum principles in electromagnetic scattering by small aspherical particles
NASA Astrophysics Data System (ADS)
Kostinski, Alex B.; Mongkolsittisilp, Ajaree
2013-12-01
We consider the question of optimal shapes, e.g., those causing minimal extinction among all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple discussion of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also shown. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose connecting low and high frequency regimes in a single minimum principle valid for all size parameters, provided that reasonable size distributions of randomly oriented aspherical particles wash out the resonances for intermediate size parameters. This proposal is further supported by the sum rule for integrated extinction.
Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics
NASA Astrophysics Data System (ADS)
Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi
2012-06-01
Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.
Particle shape effects on the fracture of discontinuously-reinforced 6061-A1 matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, N.; Song, S.G.; Gray, G.T., III
1996-05-01
Effects on fracture and ductility of a spherical and an angular particulate-reinforced 6061-Al composite containing 20(vol)% Al{sub 2}O{sub 3} were studied using SEM fractography and modeled using finite element method (FEM). The spherical particulate composite exhibited a slightly lower yield strength and work hardening rate but a considerably higher ductility than the angular counterpart. SEM fractography showed that during tensile deformation the spherical composite failed through void nucleation and linking in the matrix near the reinforcement/matrix interface, whereas the angular composite failed through particle fracture and matrix ligament rupture. FEM results indicate that the distinction between the failure modes formore » these two composites can be attributed to differences in development of internal stresses and strains within the composites due to particle shape.« less
Theory and operation of a three-gate time-of-flight velocity analyzer
NASA Technical Reports Server (NTRS)
Martus, K. E.; Orient, O. J.; Hodges, R. R.; Chutjian, A.
1993-01-01
Theoretical considerations and test results are presented for a new-type velocity analyzer for incident fast neutral particles, positive ions, and negative ions. Velocity analysis is carried out by means of a pulsed, three-gate time-of-flight (TOF) technique capable of eliminating alias velocities (harmonics) to sixth order. In addition the design and operation are presented of a four-element ion lens system, with small spherical and chromatic aberrations, suitable for interfacing a large-diameter ion beam from the TOF section with a subsequent mass analyzer.
Unsteady forces on a spherical particle accelerating or decelerating in an initially stagnant fluid
NASA Astrophysics Data System (ADS)
Keshav, Yashas Mudlapur Phaneesh
Flows with particles play an important role in a number of engineering applications. These include trajectories of droplets in sprays in fuel-injected-reciprocating-piston and gas-turbine engines, erosion of materials due to particle impact on a surface, and deposition of materials on surfaces by impinging droplets or particles that could solidify or bond on impact. For these applications, it is important to understand the forces that act on the particles so that their trajectories could be predicted. Considerable work has been done on understanding the forces acting on spherical particles, where the Reynolds numbers (Rep) based on the particle diameter and the relative speed between the particle and the fluid is less than unity. When Rep is larger than unity and when the particle is accelerating or decelerating, the added-mass effect and the Basset forces are not well understood. In this study, time-accurate numerical simulations were performed to study laminar incompressible flow induced by a single non-rotating rigid spherical particle that is accelerated or decelerated at a constant rate in an initially stagnant fluid, where the unsteady flow about the spherical particle is resolved. The Rep studied range from 0.01 to 100, and the acceleration number (Ac), where A c is the square of the relative velocity between the particle and the fluid divided by the acceleration times the particle diameter studied was in the range 2.13x-7 < |Ac |< 21337. Results obtained show the added mass effect for Rep up to 100 has the same functional form as those based on potential theory where the Rep is infinite and creeping flow where Rep is less than unity. The Basset force, however, differs considerably from those under creeping flow conditions and depends on Rep and the acceleration number (Ac). A model was developed to provide the magnitude of the added-mass effect and the Basset force in the range of Rep and Ac studied. Results obtained also show the effect of unsteadiness to become negligible when Ac reaches 80.
Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X; Park, J; Hong, YK
2015-04-01
Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased withmore » increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.« less
Sonochemical synthesis of silica particles and their size control
NASA Astrophysics Data System (ADS)
Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan
2016-09-01
Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.
Black holes and global structures of spherical spacetimes in Horava-Lifshitz theory
NASA Astrophysics Data System (ADS)
Greenwald, Jared; Lenells, Jonatan; Lu, J. X.; Satheeshkumar, V. H.; Wang, Anzhong
2011-10-01
We systematically study black holes in the Horava-Lifshitz theory by following the kinematic approach, in which a horizon is defined as the surface at which massless test particles are infinitely redshifted. Because of the nonrelativistic dispersion relations, the speed of light is unlimited, and test particles do not follow geodesics. As a result, there are significant differences in causal structures and black holes between general relativity (GR) and the Horava-Lifshitz theory. In particular, the horizon radii generically depend on the energies of test particles. Applying them to the spherical static vacuum solutions found recently in the nonrelativistic general covariant theory of gravity, we find that, for test particles with sufficiently high energy, the radius of the horizon can be made as small as desired, although the singularities can be seen, in principle, only by observers with infinitely high energy. In these studies, we pay particular attention to the global structure of the solutions, and find that, because of the foliation-preserving-diffeomorphism symmetry, Diff(M,F), they are quite different from the corresponding ones given in GR, even though the solutions are the same. In particular, the Diff(M,F) does not allow Penrose diagrams. Among the vacuum solutions, some give rise to the structure of the Einstein-Rosen bridge, in which two asymptotically flat regions are connected by a throat with a finite nonzero radius. We also study slowly rotating solutions in such a setup, and obtain all the solutions characterized by an arbitrary function A0(r). The case A0=0 reduces to the slowly rotating Kerr solution obtained in GR.
Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles.
Bagheri, G H; Bonadonna, C; Manzella, I; Pontelandolfo, P; Haas, P
2013-05-01
A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications.
A Comparative Study of Production of Glass Microspheres by using Thermal Process
NASA Astrophysics Data System (ADS)
Lee, May Yan; Tan, Jully; Heng, Jerry YY; Cheeseman, Christopher
2017-06-01
Microspheres are spherical particles that can be distinguished into two categories; solid or hollow. Microspheres typical ranges from 1 to 200 μm in diameter. Microsphere are made from glass, ceramic, carbon or plastic depending on applications. Solid glass microsphere is manufactured by direct burning of glass powders while hollow glass microspheres is produced by adding blowing agent to glass powder. This paper presented the production of glass microspheres by using the vertical thermal flame (VTF) process. Pre-treated soda lime glass powder with particle sized range from 90 to 125μm was used in this work. The results showed that glass microspheres produced by two passes through the flame have a more spherical shape as compared with the single pass. Under the Scanning Electron Microscope (SEM), it is observed that there is a morphology changed from uneven surface of glass powders to smooth spherical surface particles. Qualitative analysis for density of the pre-burned and burned particles was performed. Burned particles floats in water while pre-burned particles sank indicated the change of density of the particles. Further improvements of the VTF process in terms of the VTF set-up are required to increase the transformation of glass powders to glass microspheres.
Microphysical Characteristics of Tropical Updrafts in Clean Conditions.
NASA Astrophysics Data System (ADS)
Stith, Jeffrey L.; Haggerty, Julie A.; Heymsfield, Andrew; Grainger, Cedric A.
2004-05-01
The distributions of ice particles, precipitation embryos, and supercooled water are examined within updrafts in convective clouds in the Amazon and at Kwajalein, Marshall Islands, based on in situ measurements during two Tropical Rainfall Measuring Mission field campaigns. Composite vertical profiles of liquid water, small particle concentration, and updraft/downdraft magnitudes exhibit similar peak values for the two tropical regions. Updrafts were found to be favored locations for precipitation embryos in the form of liquid or frozen drizzle-sized droplets. Most updrafts glaciated rapidly, removing most of the liquid water between -5° and -17°C. However, occasional encounters with liquid water occurred in much colder updraft regions. The updraft magnitudes where liquid water was observed at cold (e.g., -16° to -19°C) temperatures do not appear to be stronger than updrafts without liquid water at similar temperatures, however. The concentrations of small spherical frozen particles in glaciated regions without liquid water are approximately one-half of the concentrations in regions containing liquid cloud droplets, suggesting that a substantial portion of the cloud droplets may be freezing at relatively warm temperatures. Further evidence for a possible new type of aggregate ice particle, a chain aggregate found at cloud midlevels, is given.
Hammons, Joshua A; Wang, Wei; Ilavsky, Jan; Pantoya, Michelle L; Weeks, Brandon L; Vaughn, Mark W
2008-01-07
Nanothermites composed of aluminum and molybdenum trioxide (MoO(3)) have a high energy density and are attractive energetic materials. To enhance the surface contact between the spherical Al nanoparticles and the sheet-like MoO(3) particles, the mixture can be cold-pressed into a pelleted composite. However, it was found that the burn rate of the pellets decreased as the density of the pellets increased, contrary to expectation. Ultra-small angle X-ray scattering (USAXS) data and scanning electron microscopy (SEM) were used to elucidate the internal structure of the Al nanoparticles, and nanoparticle aggregate in the composite. Results from both SEM imaging and USAXS analysis indicate that as the density of the pellet increased, a fraction of the Al nanoparticles are compressed into sintered aggregates. The sintered Al nanoparticles lost contrast after forming the larger aggregates and no longer scattered X-rays as individual particles. The sintered aggregates hinder the burn rate, since the Al nanoparticles that make them up can no longer diffuse freely as individual particles during combustion. Results suggest a qualitative relationship for the probability that nanoparticles will sinter, based on the particle sizes and the initial structure of their respective agglomerates, as characterized by the mass fractal dimension.
Coherent Backscattering in the Cross-Polarized Channel
NASA Technical Reports Server (NTRS)
Mischenko, Michael I.; Mackowski, Daniel W.
2011-01-01
We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.
Morphology-Dependent Resonances of Spherical Droplets with Numerous Microscopic Inclusions
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2014-01-01
We use the recently extended superposition T-matrix method to study the behavior of a sharp Lorenz-Mie resonance upon filling a spherical micrometer-sized droplet with tens and hundreds of randomly positioned microscopic inclusions. We show that as the number of inclusions increases, the extinction cross-section peak and the sharp asymmetry-parameter minimum become suppressed, widen, and move toward smaller droplet size parameters, while ratios of diagonal elements of the scattering matrix exhibit sharp angular features indicative of a distinctly nonspherical particle. Our results highlight the limitedness of the concept of an effective refractive index of an inhomogeneous spherical particle.
On biofouling of microplastic particles of different shapes - some mathematics
NASA Astrophysics Data System (ADS)
Bagaeva, Margarita; Chubarenko, Irina
2016-04-01
Transport of microplastic particles in marine environment is difficult to quantify because their physical properties may vary with time. We made an attempt to analyse the behaviour of slightly buoyant particles (e.g., polyethylene, polypropylene), most critical process for which is their fouling: it leads to an increase in the mean particle density and its sinking. Fouling covers the surface of a relatively light particle by a denser growing film; thus, the rate of increase in the total mass is directly proportional to the surface area, and the faster the fouling process is - the sooner the mean particle density reaches the water density; the particle begins sinking, leaves the surface layer with stronger currents and can no longer be transported too far. A simplified model of biofouling in marine environment of a slightly buoyant microplastics (ρp < ρw) is applied to particles of different shapes - spheres, films and fibres. It is supposed that the thickness of biofouling cover (of density ρb > ρw) increases with time at constant rate, and thus it can be considered as time. Geometrical considerations link surface area of particles of different shapes with time rate of increase in its mass due to fouling up to the water density. Geometrical calculations demonstrate that, for the same mass of plastic material, many small particles have larger surface area than one single large particle, and this way - macroplastics will stay longer at the water surface than microplastics. For spherical particles, the time of fouling up to the water density is directly proportional to the radius of a sphere: τsink ˜ R0/ 3n, where n = R0/ R, i.e., if the particle of radius R0reaches the water density in time τsink, the particle of radius R0/3 requires only τsink/9. Spherical shape has (for the given mass m0) the minimum surface area among all other possible shapes in 3-d space. The calculations performed for the same mass m0 have shown that the ratio of surface areas of a sphere (diameter 5 mm), a film (thickness of 15-30 microns) and a fibre (diameter of 30-100 microns) is about 1 / (50- 100) / (30-110) and thus, fibres appear to have the largest surface area for the given mass, immediately followed by films. Correspondingly, time of fouling up to sinking is of the same order of magnitude for films and fibres, and almost two orders of magnitude larger for spherical particles (of the same mass m0). More generally speaking, time of fouling is linearly dependent on the characteristic length scale of a particle (radius of sphere, thickness of the film, or radius of a fibre): the smaller the scale of the particle is - the faster it is fouled up to the water density. The conclusions are important for proper physical setting of the problem of microplastics transport in marine environment and for developing of physically-based parameterisations of microplastics particles properties in numerical models. The investigations are supported by Russian Science Foundation, project number 15-17-10020.
Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi
2013-01-01
Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968
Axial acoustic radiation force on a sphere in Gaussian field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Rongrong; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen
2015-10-28
Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated.more » Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.« less
The Electrochemical Behavior of Dispersions of Spherical Ultramicroelectrodes.
1986-07-30
means of bipolar electrolyses with dispersions. Polarization equations are predicted for highly simplified models based on the concept of the mixture...three-dimensional electrodes. Bipolar electrolyses on dispersions of spherical particles have been proposed and the behavior of such electrodes in the...photodecomposition of water (e.g. see (32-41)). It should be noted that the size range of the particles which will be most frequently used in dispersion
Gel Fabrication of Molybdenum “Beads”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowden, Richard Andrew; Armstrong, Beth L.; Cooley, Kevin M.
2016-11-01
Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however,more » the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.« less
Functionalized patchy particles using colloidal lenses
NASA Astrophysics Data System (ADS)
Middleton, Christine
2014-03-01
Colloidal assembly had been limited by the isotropic, nonspecific nature of interactions between spherical colloidal particles. By giving particles patches functionalized with single stranded DNA, these interactions can be made both directional and specific. We create patchy particles by adding patches to spherical emulsion droplets using the depletion interaction. First we make polystyrene particles in the shape of contact lenses to be the patches. The lenses are functionalized with single stranded DNA on their convex side. Then we put the lenses on the surface of oil emulsion droplets using the depletion interaction, creating a patch (or multiple patches) on the surface of each emulsion droplet. The emulsion droplets can now interact with each other in a specific, directional way through DNA functionalized patches.
NASA Astrophysics Data System (ADS)
Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.
2016-07-01
Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.
Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.
Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing
2014-04-01
Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.
NASA Astrophysics Data System (ADS)
Koleva, Rositza; Semkova, Jordanka; Krastev, Krasimir; Bankov, Nikolay; Malchev, Stefan; Benghin, Victor; Shurshakov, Vyacheslav
2017-04-01
The radiation field around the Earth is complex, composed of galactic cosmic rays, trapped particles of the Earth's radiation belts, solar energetic particles, albedo particles from the Earth's atmosphere and secondary radiation produced in the space vehicle shielding materials around the biological objects. Dose characteristics in near Earth and space radiation environment also depend on many other parameters such as the orbit parameters, solar cycle phase and current helio-and geophysical conditions. Since June 2007 till 2015 the Liulin-5 charged particle telescope has been observing the radiation characteristics in two different modules of the International Space Station (ISS). In the period from 2007 to 2009 measurements were conducted in the spherical tissue-equivalent phantom of MATROSHKA-R project located in the PIRS module of ISS. In the period from 2012 to 2015 measurements were conducted in and outside the phantom located in the Small Research Module of ISS. In this presentation attention is drawn to the obtained results for the dose rates, particle fluxes and dose equivalent rates in and outside the phantom from the galactic cosmic rays, trapped protons and solar energetic particle events which occurred in that period.
Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.
Machemer, Steven D
2004-01-15
Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.
Discrete Element Model for Suppression of Coffee-Ring Effect
NASA Astrophysics Data System (ADS)
Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan
2017-02-01
When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.
Nichols, A V; Blanche, P J; Gong, E L; Shore, V G; Forte, T M
1985-05-17
Incubation (24 h, 37 degrees C) of discoidal complexes of phosphatidylcholine and apolipoprotein A-I (molar ratio 95 +/- 10 egg yolk phosphatidylcholine-apolipoprotein A-I; 10.5 X 4.0 nm, long X short dimension; designated, class 3 complexes) with the ultracentrifugal d greater than 1.21 g/ml fraction transformed the discoidal complexes to a small product with apparent mean hydrated and nonhydrated diameter of 7.8 and 6.6 nm, respectively. Formation of the small product was associated with marked reduction in phosphatidylcholine-apolipoprotein AI molar ratio of the complexes (on average from 95:1 to 45:1). Phospholipase A2 activity of lecithin:cholesterol acyltransferase participated in the depletion process, as evidenced by production of unesterified fatty acids. In the presence of the d greater than 1.21 g/ml fraction or partially purified lecithin:cholesterol acyltransferase and a source of unesterified cholesterol, the small product could be transformed to a core-containing (cholesteryl ester) round product with a hydrated and nonhydrated diameter of 8.6 and 7.5 nm, respectively. By means of cross-linking with dimethylsuberimidate, the protein moiety of the small product was shown to contain primarily two apolipoprotein A-I molecules per particle, while the large product contained three apolipoprotein A-I molecules per particle. The increase in number of apolipoprotein A-I molecules per particle during transformation of the small to the large product appeared to result from fusion of the small particles during core build-up and release of excess apolipoprotein A-I from the fusion product. The results obtained with the model complexes were consistent for the most part with recent observations (Chen, C., Applegate, K., King, W.C., Glomset, J.A., Norum, K.R. and Gjone, E. (1984) J. Lipid Res. 25, 269-282) on the transformation, by lecithin:cholesterol acyltransferase, of the small spherical high-density lipoproteins of patients with familial lecithin:cholesterol acyltransferase deficiency.
Non-additive simple potentials for pre-programmed self-assembly
NASA Astrophysics Data System (ADS)
Mendoza, Carlos
2015-03-01
A major goal in nanoscience and nanotechnology is the self-assembly of any desired complex structure with a system of particles interacting through simple potentials. To achieve this objective, intense experimental and theoretical efforts are currently concentrated in the development of the so called ``patchy'' particles. Here we follow a completely different approach and introduce a very accessible model to produce a large variety of pre-programmed two-dimensional (2D) complex structures. Our model consists of a binary mixture of particles that interact through isotropic interactions that is able to self-assemble into targeted lattices by the appropriate choice of a small number of geometrical parameters and interaction strengths. We study the system using Monte Carlo computer simulations and, despite its simplicity, we are able to self assemble potentially useful structures such as chains, stripes, Kagomé, twisted Kagomé, honeycomb, square, Archimedean and quasicrystalline tilings. Our model is designed such that it may be implemented using discotic particles or, alternatively, using exclusively spherical particles interacting isotropically. Thus, it represents a promising strategy for bottom-up nano-fabrication. Partial Financial Support: DGAPA IN-110613.
DNA-nanoparticle superlattices formed from anisotropic building blocks
NASA Astrophysics Data System (ADS)
Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.
2010-11-01
Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.
Controlled Gelation of Particle Suspensions Using Controlled Solvent Removal in Picoliter Droplets
NASA Astrophysics Data System (ADS)
Vuong, Sharon; Walker, Lynn; Anna, Shelley
2013-11-01
Droplets in microfluidic devices have proven useful as uniform picoliter reactors for nanoparticle synthesis and as components in tunable emulsions. However, there can be significant transport between the component phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to monitor gelation of aqueous suspensions of spherical silica particles (Ludox) and disk-shaped clay particles (Laponite). Droplets are generated in a microfluidic device containing small wells that trap the droplets. We monitor the concentration process through size and shape changes of these droplets as a function of time in tens of droplets and use the large number of individual reactors to generate statistics regarding the gelation process. We also examine changes in suspension viscosity through fluorescent particle tracking as a function of dehydration rate, initial suspension concentration and initial droplet volume, and added salt, and compare the results with the Krieger-Dougherty model in which viscosity increases dramatically with particle volume fraction.
The Small Viral Membrane-Associated Protein P32 Is Involved in Bacteriophage PRD1 DNA Entry
Grahn, A. Marika; Daugelavičius, Rimantas; Bamford, Dennis H.
2002-01-01
The lipid-containing bacteriophage PRD1 infects a variety of gram-negative cells by injecting its linear double-stranded DNA genome into the host cell cytoplasm, while the protein capsid is left outside. The virus membrane and several structural proteins are involved in phage DNA entry. In this work we identified a new infectivity protein of PRD1. Disruption of gene XXXII resulted in a mutant phenotype defective in phage reproduction. The absence of the protein P32 did not compromise the particle assembly but led to a defect in phage DNA injection. In P32-deficient particles the phage membrane is unable to undergo a structural transformation from a spherical to a tubular form. Since P32− particles are able to increase the permeability of the host cell envelope to a degree comparable to that found with wild-type particles, we suggest that the tail-tube formation is needed to eject the DNA from the phage particle rather than to reach the host cell interior. PMID:11967303
Simulations of curved assemblies in soft matter and biological systems
NASA Astrophysics Data System (ADS)
Qiao, Cong
Viruses are small infectious agents that replicate only inside living cells of other organisms. In the viral life cycle, the self-assembly of the outer protein shell (capsid) is an essential step. We study this process in the hope of shedding light on development of antiviral drugs, gene therapy and other virus-related technologies that can benefit the humankind. More fundamentally, learning about the process of viral capsid assembly can elucidate the assembly mechanisms of a wide range of complex structures. In this work, we use molecular dynamics simulations and coarse-grained computational models to study viral capsid assembly in several situations where geometric constraints play a role in dictating assembly outcomes. We first focus on icosahedral viruses with single-stranded RNA genomes, in which case the capsid usually assembles around the genomic RNA. It is consistently observed in experiments that such viral particles are ''overcharged'', meaning the net negative charge on the viral genome is greater than the net positive charge on the viral capsid. We computationally investigate the mechanisms that lead to ``overcharging'', and more broadly, how the encapsidated genome length is influenced by the capsid. We perform both dynamical simulations of the assembly process and equilibrium calculations to determine the optimal genome length (meaning that which maximizes the assembly yield and/or minimizes the free energy of the assembled virus). We find that the optimal genome length is determined by the interplay between capsid size, net capsid charge, distribution of capsid charge and nucleic acid structures. Our simulations demonstrate that overcharging results from a combination of electrostatic screening and the geometric constraints associated with encapsulating a nucleic acid inside of a spherical virus. We then study the assembly of the immature HIV. In contrast to icosahedral viruses, the immature HIV forms an asymmetric particle, consisting of continuous regularly packed regions with local hexagonal order and vacancies. A similar lattice structure has been observed in experiments in which mutually attractive colloidal particles pack on the surface of a spherical droplet (G. Meng, J. Paulose, D. R. Nelson, and V. N. Manoharan, ''Elastic instability of a crystal growing on a curved surface'', Science 343, 634-637 (2014).), suggesting that the two systems experience a similar form of geometric frustration. We therefore study the adsorption and packing of spherical particles on a spherical template, as a function of the strength and range of interparticle attractions, as well as the radius of the spherical template. We observe that the adsorbed particles form two different classes of packing arrangements, one with icosahedrally ordered topological defects, and the other with highly disordered defects and vacancies. The latter regime is consistent with experiments on colloidal packing on spherical droplets and the immature HIV lattice. Our results suggest that the transition between these regimes is controlled by the range of the interparticle attractions. In the last chapter, we study a model for the assembly and budding of a capsid on a membrane, such as occurs during the exit of the immature HIV virus from a cell. We use a coarse-grained subunit model to represent the capsid proteins, and a fluid membrane model to represent the cell membrane. We find that the size and structure of the assembled capsid depends sensitively on the timescale of budding.
Spherical Particle in Nematic Liquid Crystal Under an External Field: The Saturn Ring Regime
NASA Astrophysics Data System (ADS)
Alama, Stan; Bronsard, Lia; Lamy, Xavier
2018-03-01
We consider a nematic liquid crystal occupying the exterior region in R^3 outside of a spherical particle, with radial strong anchoring. Within the context of the Landau-de Gennes theory, we study minimizers subject to an external field, modeled by an additional term which favors nematic alignment parallel to the field. When the external field is high enough, we obtain a scaling law for the energy. The energy scale corresponds to minimizers concentrating their energy in a boundary layer around the particle, with quadrupolar symmetry. This suggests the presence of a Saturn ring defect around the particle, rather than a dipolar director field typical of a point defect.
Influence of particle geometry and PEGylation on phagocytosis of particulate carriers.
Mathaes, Roman; Winter, Gerhard; Besheer, Ahmed; Engert, Julia
2014-04-25
Particle geometry of micro- and nanoparticles has been identified as an important design parameter to influence the interaction with cells such as macrophages. A head to head comparison of elongated, non-spherical and spherical micro- and nanoparticles with and without PEGylation was carried out to benchmark two phagocytosis inhibiting techniques. J774.A1 macrophages were incubated with fluorescently labeled PLGA micro- and nanoparticles and analyzed by confocal laser scanning microscope (CLSM) and flow cytometry (FACS). Particle uptake into macrophages was significantly reduced upon PEGylation or elongated particle geometry. A combination of both, an elongated shape and PEGylation, had the strongest phagocytosis inhibiting effect for nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
We consider for j=1/2, 3/2,... a spherically symmetric, static system of (2j+1) Dirac particles, each having total angular momentum j. The Dirac particles interact via a classical gravitational and electromagnetic field. The Einstein-Dirac-Maxwell equations for this system are derived. It is shown that, under weak regularity conditions on the form of the horizon, the only black hole solutions of the EDM equations are the Reissner-Nordstrom solutions. In other words, the spinors must vanish identically. Applied to the gravitational collapse of a "cloud" of spin-1/2-particles to a black hole, our result indicates that the Dirac particles must eventually disappear inside the event horizon.
Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment
NASA Astrophysics Data System (ADS)
Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae
2016-04-01
The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.
NASA Astrophysics Data System (ADS)
Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou
2016-11-01
In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.
Tailoring of Nano- and Microstructure in Biomimetically Synthesized Ceramic Films
2006-11-01
Eq. 5 where the Hamaker constant (A) for a flat and infinitely large substrate (subscript 1) and a spherical particle...is determined as (Israelachvili 1985): 232 12a A RV x = − Eq. 7 where the Hamaker constant for two like spherical particle (2) in a medium...close enough to be attracted to the equilibrium separation (0.3 nm). The Hamaker constants and the minimal interaction energies for substrate-solution
Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii
2016-12-01
The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.
Estimating cirrus cloud properties from MIPAS data
NASA Astrophysics Data System (ADS)
Mendrok, J.; Schreier, F.; Höpfner, M.
2007-04-01
High resolution mid-infrared limb emission spectra observed by the spaceborne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) showing evidence of cloud interference are analyzed. Using the new line-by-line multiple scattering [Approximate] Spherical Atmospheric Radiative Transfer code (SARTre), a sensitivity study with respect to cirrus cloud parameters, e.g., optical thickness and particle size distribution, is performed. Cirrus properties are estimated by fitting spectra in three distinct microwindows between 8 and 12 μm. For a cirrus with extremely low ice water path (IWP = 0.1 g/m2) and small effective particle size (D e = 10 μm) simulated spectra are in close agreement with observations in broadband signal and fine structures. We show that a multi-microwindow technique enhances reliability of MIPAS cirrus retrievals compared to single microwindow methods.
Dynamics of small flexible fibers in turbulent channel flow
NASA Astrophysics Data System (ADS)
Marchioli, Cristian; Dotto, Diego; Soldati, Alfredo
2017-11-01
In this paper we investigate the dynamics of small flexible fibers in turbulent channel flow. Our aim is to examine the effect of local shear and turbulence anisotropy on the translation and rotation of fibers with different elongation and inertia. To these aims, we use a Eulerian-Lagrangian approach based on direct numerical simulation of turbulence in the dilute regime, and we model fibers, which are longer than the Kolmogorov scale, as chains of sub-Kolmogorov rods connected through ball-and-socket joints that enable bending and twisting. Velocity, orientation and concentration statistics, extracted from simulations at Reτ = 300 , are presented to give insights into the complex fibers-turbulence interactions that arise when non-sphericity and deformability add to inertial bias. Compared to fibers that translate and rotate as rigid bodies relative to the surrounding fluid, flexible fibers exhibit a stronger tendency to accumulate in the near-wall region, where they are trapped by the same mechanisms that govern preferential concentration of spherical particles. In such region, the mean shear is strong enough to reduce bending and stretch the fibers. Preferential segregation into low-speed streaks and preferential orientation in the mean flow direction are also observed.
How the morphology of dusts influences packing density in small solar system bodies
NASA Astrophysics Data System (ADS)
Zangmeister, C.; Radney, J. G.; Zachariah, M. R.
2014-12-01
Large planetary seedlings, comets, and nanoscale soot particles are made from rigid, aggregated subunits that are compacted under low compression into larger structures spanning over 10 orders of magnitude in dimensional space. Here, we demonstrate that the packing density (Φf) of compacted rigid aggregates is independent of spatial scale for systems under weak compaction, a regime that includes small solar system bodies. The Φf of rigid aggregated structures across 6 orders of magnitude were measured using nanoscale spherical soot aerosol composed of aggregates with ≈ 17 nm monomeric subunits and aggregates made from uniform monomeric 6 mm spherical subunits at the macroscale. We find Φf = 0.36 ± 0.02 at both the nano- and macroscale. These values are remarkably similar to qf observed for comet nuclei and measured values of other rigid aggregated systems across a wide variety of spatial and formative conditions. We present a packing model that incorporates the aggregate morphology and show that Φf is independent of both monomer and aggregate size. These observations suggest thatqf of rigid aggregates is independent of spatial dimension across varied formative conditions ranging from interstellar space to pharmaceutical manufacturing.
Laser diffraction of acicular particles: practical applications
NASA Astrophysics Data System (ADS)
Scott, David M.; Matsuyama, Tatsushi
2014-08-01
Commercial laser diffraction instruments are widely used to measure particle size distribution (PSD), but the results are distorted for non-spherical (acicular) particles often encountered in practical applications. Consequently the distribution, which is reported in terms of equivalent spherical diameter, requires interpretation. For rod-like and plate-like particles, the PSD tends to be bi-modal, with the two modal sizes closely related to the median length and width, or width and thickness, of the particles. Furthermore, it is found that the bi-modal PSD for at least one instrument can typically be approximated by a bi-lognormal distribution. By fitting such a function to the reported distribution, one may extract quantitative information useful for process or product development. This approach is illustrated by examples of such measurement on industrial samples of polymer particles, crystals, bacteria, and clays.
NASA Astrophysics Data System (ADS)
Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth
2017-11-01
We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.
Absorption and scattering of light by nonspherical particles. [in atmosphere
NASA Technical Reports Server (NTRS)
Bohren, C. F.
1986-01-01
Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.
Glassy dynamics of dense particle assemblies on a spherical substrate.
Vest, Julien-Piera; Tarjus, Gilles; Viot, Pascal
2018-04-28
We study by molecular dynamics simulation a dense one-component system of particles confined on a spherical substrate. We more specifically investigate the evolution of the structural and dynamical properties of the system when changing the control parameters, the temperature and the curvature of the substrate. We find that the dynamics become glassy at low temperature, with a strong slowdown of the relaxation and the emergence of dynamical heterogeneity. The prevalent local 6-fold order is frustrated by curvature and we analyze in detail the role of the topological defects in the statics and the dynamics of the particle assembly.
Inducing Lift on Spherical Particles by Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.
Inducing Lift on Spherical Particles by Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.
The effect of steam sterilization on recombinant spider silk particles.
Lucke, Matthias; Winter, Gerhard; Engert, Julia
2015-03-15
In this work, the recombinant spider silk protein eADF4(C16) was used to fabricate particles in the submicron range using a micromixing method. Furthermore, particles in the micrometer range were produced using an ultrasonic atomizer system. Both particle species were manufactured by an all-aqueous process. The submicroparticles were 332 nm in average diameter, whereas 6.70 μm was the median size of the microparticles. Both particle groups showed a spherical shape and exhibited high β-sheet content in secondary structure. Submicro- and microparticles were subsequently steam sterilized and investigated with respect to particle size, secondary structure and thermal stability. Sterilization temperature and time were increased to assess the thermal stability of eADF4(C16) particles. Actually, particles remained stable and their properties did not change even after autoclaving at 134°C. Both, the untreated and the autoclaved submicroparticles showed no overt cytotoxicity on human dermal fibroblasts after incubation for 72 h. The eADF4(C16) particles were already loaded with proteins and small molecules in previous studies. With that, we can provide a highly promising parenteral drug delivery system based on a defined polypeptide carrier, manufactured with an all-aqueous process and being fully sterilizable. Copyright © 2015 Elsevier B.V. All rights reserved.
Information theory lateral density distribution for Earth inferred from global gravity field
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1981-01-01
Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.
A particle-particle collision strategy for arbitrarily shaped particles at low Stokes numbers
NASA Astrophysics Data System (ADS)
Daghooghi, Mohsen; Borazjani, Iman
2016-11-01
We present a collision strategy for particles with any general shape at low Stokes numbers. Conventional collision strategies rely upon a short -range repulsion force along particles centerline, which is a suitable choice for spherical particles and may not work for complex-shaped particles. In the present method, upon the collision of two particles, kinematics of particles are modified so that particles have zero relative velocity toward each other along the direction in which they have the minimum distance. The advantage of this novel technique is that it guaranties to prevent particles from overlapping without unrealistic bounce back at low Stokes numbers, which may occur if repulsive forces are used. This model is used to simulate sedimentation of many particles in a vertical channel and suspensions of non-spherical particles under simple shear flow. This work was supported by the American Chemical Society (ACS) Petroleum Research Fund (PRF) Grant Number 53099-DNI9. The computational resources were partly provided by the Center for Computational Research (CCR) at the University at Buffalo.
Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willa, R.; Koshelev, A. E.; Sadovskyy, I. A.
2017-11-27
The current-carrying capacity of type-II superconductors is decisively determined by how well material defect structures can immobilize vortex lines. In order to gain deeper insights into intrinsic pinning mechanisms, we have explored the case of vortex trapping by randomly distributed spherical inclusions using large-scale simulations of the time-dependent Ginzburg-Landau equations. We find that for a small density of particles having diameters of two coherence lengths, the vortex lattice preserves its structure and the critical current jc decays with the magnetic field following a power-law B-a with a ~ 0:66, which is consistent with predictions of strong pinning theory. For highermore » density of particles and/or larger inclusions, the lattice becomes progressively more disordered and the exponent smoothly decreases down to a ~ 0:3. At high magnetic fields, all inclusions capture a vortex and the critical current decays faster than B-1 as would be expected by theory. In the case of larger inclusions with diameter of four coherence length, the magnetic-field dependence of the critical current is strongly affected by the ability of inclusions to capture multiple vortex lines. We found that at small densities, the fraction of inclusions trapping two vortex lines rapidly grows within narrow field range leading to a shallow peak in jc(B)-dependence within this range. With increasing inclusion density, this peak transforms into a plateau, which then smooths out. Using the insights gained from simulations, we determine the limits of applicability of strong pinning theory and provide different routes to describe vortex pinning beyond those bounds.« less
Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors
NASA Astrophysics Data System (ADS)
Willa, R.; Koshelev, A. E.; Sadovskyy, I. A.; Glatz, A.
2018-01-01
The current-carrying capacity of type-II superconductors is decisively determined by how well material defect structures can immobilize vortex lines. In order to gain deeper insights into the fundamental pinning mechanisms, we have explored the case of vortex trapping by randomly distributed spherical inclusions using large-scale simulations of the time-dependent Ginzburg-Landau equations. We find that for a small density of particles having diameters of two coherence lengths, the vortex lattice preserves its structure and the critical current j c decays with the magnetic field following a power-law {B}-α with α ≈ 0.66, which is consistent with predictions of strong-pinning theory. For a higher density of particles and/or larger inclusions, the lattice becomes progressively more disordered and the exponent smoothly decreases down to α ≈ 0.3. At high magnetic fields, all inclusions capture a vortex and the critical current decays faster than {B}-1 as would be expected by theory. In the case of larger inclusions with a diameter of four coherence lengths, the magnetic-field dependence of the critical current is strongly affected by the ability of inclusions to capture multiple vortex lines. We found that at small densities, the fraction of inclusions trapping two vortex lines rapidly grows within narrow field range leading to a peak in j c(B)-dependence within this range. With increasing inclusion density, this peak transforms into a plateau, which then smooths out. Using the insights gained from simulations, we determine the limits of applicability of strong-pinning theory and provide different routes to describe vortex pinning beyond those bounds.
Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong
2016-01-01
Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061
Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong
2016-03-10
Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.
Tunable particles alter macrophage uptake based on combinatorial effects of physical properties
Garapaty, Anusha
2017-01-01
Abstract The ability to tune phagocytosis of particle‐based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non‐phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer‐by‐layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod‐shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc‐functionalized particles with macrophages during phagocytosis. PMID:29313025
Horák, D; Metalová, M; Svec, F; Drobník, J; Kálal, J; Borovicka, M; Adamyan, A A; Voronkova, O S; Gumargalieva, K Z
1987-03-01
The synthesis and properties of spherical radiopaque hydrogel particles designed for endovascular occlusion are reported. These particles were prepared by the hydroxyl acylation of low crosslinked poly (2-hydroxyethyl methacrylate) beads with a nontoxic radiopaque compound based on triiodobenzoic acid, without affecting their properties which are advantages in medical practice. The effect of the iodine content on the size of dry and swollen particles is discussed. It has been found that an iodine content of about 25-30 wt% is desirable in order to obtain an easily recognizable X-ray image. These particles make the immediate control of embolus application easy and enable periodical inspection of the polymer to check the successful blockage of the vessel. They also open up the method of endovascular occlusion to further improvement.
Whispering gallery modes in a spherical microcavity with a photoluminescent shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A.
2015-10-15
Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.
Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System
NASA Technical Reports Server (NTRS)
Blanchard, Richard A. (Inventor); Fuller, Kirk A. (Inventor); Ray, William Johnstone (Inventor); Shotton, Neil O. (Inventor); Frazier, Donald Odell (Inventor); Lowenthal, Mark D. (Inventor); Lewandowski, Mark Allan (Inventor)
2013-01-01
The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substantially spherical substrate particles to the at least one first conductor; converting the substrate particles into a plurality of substantially spherical diodes; forming at least one second conductor coupled to the substantially spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.
Black carbon radiative forcing at TOA decreased during aging.
Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao
2016-12-05
During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.
NASA Astrophysics Data System (ADS)
Lieb, Sydnie Marie
Soot released to the atmosphere is a dangerous pollutant for human health and the environment. Understanding the physical properties and surface properties of these particles is important to properly explaining the growth of soot particles in flames as well as their interactions with other particles and gases in the environment. Particles below 15 nm in diameter, nascent soot particles, dominate the early growth stages of soot formation; previously these particles were characterized as hard graphitic spheres. New evidence derived from the current dissertation work, to a large extent, challenges this prior characterization. This dissertation study begins by revisiting the use of atomic force microscope (AFM) as a tool to investigate the structural properties of nascent soot. The impact of tip artifacts, which are known to complicate measurements of features below 10 nm in diameter, are carefully considered so as to provide a concise interpretation of the morphology of nascent soot as seen by AFM. The results of the AFM morphology collaborate with earlier photo- and thermal-fragmentation particle mass spectrometry and Fourier transform infrared spectroscopy that nascent soot is not a graphitized carbon material and that they are not spherical. Furthermore, phase mode imaging is introduced as a method to investigate the physical properties of nascent soot particles in a greater detail and finer resolution. The helium ion microscope (HIM) has been identified as a useful technique for the imaging of nascent soot. Using this imaging method nascent soot particles were imaged with a high resolution that had not been obtained by prior techniques. The increased contrast provides a closer look at the nascent soot particles and further suggested that these particles are not as structurally homogeneous as previously thought. Geometric shape analysis was performed to characterize the particles in terms of sphericity, circularity, and fractal dimension. The geometric analysis showed that the particles deviate from spherical and that they are not characterized by a defined structure. This observation supports the theory that nascent soot is not homogenous in structure or composition, and challenges the classical assumption that spherical growth and aggregation are separate, size dependent processes. In light of the new evidence that suggests nascent soot particles are structurally inhomogenous, careful consideration must be given to mobility measurements of particle mass and size. The interpretation of particle volume of irregularly shaped nascent soot particles is considered in this dissertation work. Additionally, uncertainties in the mass density of nascent soot are reviewed and the error in mass calculation is quantified.
Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.
Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q
2015-05-01
The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.
Arresting relaxation in Pickering Emulsions
NASA Astrophysics Data System (ADS)
Atherton, Tim; Burke, Chris
2015-03-01
Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.
Katepalli, Hari; John, Vijay T; Tripathi, Anubhav; Bose, Arijit
2017-01-01
Using fumed and spherical silica particles of similar hydrodynamic size, we investigated the effects of particle shape and inter-particle interactions on the formation, stability and rheology of bromohexadecane-in-water Pickering emulsions. The interparticle interactions were varied from repulsive to attractive by modifying the salt concentration in the aqueous phase. Optical microscope images revealed smaller droplet sizes for the fumed silica stabilized emulsions. All the emulsions remained stable for several weeks. Cryo-SEM images of the emulsion droplets showed a hexagonally packed single layer of particles at oil-water interfaces in emulsions stabilized with silica spheres, irrespective of the nature of the inter-particle interactions. Thus, entropic, excluded volume interactions dominate the fate of spherical particles at oil-water interfaces. On the other hand, closely packed layers of particles were observed at oil-water interfaces for the fumed silica stabilized emulsions for both attractive and repulsive interparticle interactions. At the high salt concentrations, attractive inter-particles interactions led to aggregation of fumed silica particles, and multiple layers of these particles were then observed on the droplet surfaces. A network of fumed silica particles was also observed between the emulsion droplets, suggesting that enthalpic interactions are responsible for the determining particle configurations at oil-water interfaces as well as in the aqueous phase. Steady shear viscosity measurements over a range of shear stresses, as well as oscillatory shear measurements at 1Hz confirm the presence of a network in fumed silica suspensions and emulsions, and the lack of such a network when spherical particles are used. The fractal structure of fumed silica leads to several contact points and particle interlocking in the water as well as on the bromohexadecane-water interfaces, with corresponding effects on the structure and rheology of the emulsions. The attenuation of droplet motion due to the formation of a particle network can be exploited for stabilizing emulsions and for modulating their rheology. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bagheri, G.; Bonadonna, C.; Manzella, I.; Pontelandolfo, P.; Haas, P.
2012-12-01
A complete understanding and parameterization of both particle sedimentation and particle aggregation require systematic and detailed laboratory investigations performed in controlled conditions. For this purpose, a dedicated 4-meter-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques (CMEFE). Final design is a result of Computational Fluid Dynamics simulations combined with laboratory tests. With its diverging test section, the tunnel is designed to suspend particles of different shapes and sizes in order to study the aero-dynamical behavior of volcanic particles and their collision and aggregation. In current set-up, velocities between 5.0 to 27 ms-1 can be obtained, which correspond to typical volcanic particles with diameters between 10 to 40 mm. A combination of Particle Tracking Velocimetry (PTV) and statistical methods is used to derive particle terminal velocity. The method is validated using smooth spherical particles with known drag coefficient. More than 120 particles of different shapes (i.e. spherical, regular and volcanic) and compositions are 3D-scanned and almost 1 million images of their suspension in the test section of wind tunnel are recorded by a high speed camera and analyzed by a PTV code specially developed for the wind tunnel. Measured values of terminal velocity for tested particles are between 3.6 and 24.9 ms-1 which corresponds to Reynolds numbers between 8×103 and 1×105. In addition to the vertical wind tunnel, an apparatus with height varying between 0.5 and 3.5 m has been built to measure terminal velocity of micrometric particles in Reynolds number between 4 and 100. In these experiments, particles are released individually in the air at top of the apparatus and their terminal velocities are measured at the bottom of apparatus by a combination of high-speed camera imaging and PTV post-analyzing. Effects of shape, porosity and orientation of the particles on their terminal velocity are studied. Various shape factors are measured based on different methods, such as 3D-scanning, 2D-image processing, SEM image analysis, caliper measurements, pycnometer and buoyancy tests. Our preliminary experiments on non-smooth spherical particles and irregular particles reveal some interesting aspects. First, the effect of surface roughness and porosity is more important for spherical particles than for regular non-spherical and irregular particles. Second, results underline how, the aero-dynamical behavior of individual irregular particles is better characterized by a range of values of drag coefficients instead of a single value. Finally, since all the shape factors are calculated precisely for each individual particle, the resulted database can provide important information to benchmark and improve existing terminal-velocity models. Modifications of the wind tunnel, i.e. very low air speed (0.03-5.0 ms-1) for suspension of micrometric particles, and of the PTV code, i.e. multiple particle tracking and collision counting, have also been performed in combination to the installation of a particle charging device, a controlled humidifier and a high-power chiller (to reach values down to -20 °C) in order to investigate both wet and dry aggregation of volcanic particles.
Particle formation and characterization of mackerel reaction oil by gas saturated solution process.
Tanbirul Haque, A S M; Chun, Byung-Soo
2016-01-01
Most of the health benefits of fish oil can be attributed to the presence of omega-3 fatty acids like Docosahexenoic acid (DHA) and Eicosapentaenoic acid (EPA). There are few dietary sources of EPA and DHA other than oily fish. EPA and DHA have great potential effect on human health. In this research, Supercritical carbon dioxide (scCO2) extracted mackerel oil was reacted by enzyme at different systems to improve the EPA and DHA. Different types of immobilize enzyme TL-IM, RM-IM, Novozyme 435 were assessed for improving PUFAs. Best result was found at non-pressurized system using TL-IM. Reacted oil particle were obtained with polyethylene glycol by gas saturated solution process (PGSS). Different parameters like temperature, pressure, agitation speed and nozzle size effect on particle formulation were observed. SEM and PSA analysis showed, small size non spherical particles were obtained. It was found that after particle formation poly unsaturated fatty acids (PUFAs) were present in particle as same in oil. PUFAs release from particle was almost linear against constant time duration. Oil quality in particle not change significantly, in this contrast this study will be helpful for food and pharmaceutical industry to provide high EPA and DHA containing powder.
NASA Astrophysics Data System (ADS)
Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.
2017-06-01
The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.
Method for producing ceramic particles and agglomerates
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2001-01-01
A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.
Shukla, Shashi P; Roy, Mainak; Mukherjee, Poulomi; Das, Laboni; Neogy, Suman; Srivastava, Dinesh; Adhikari, Soumyakanti
2016-03-01
In view of potential biomedical application of the noble metal nanoparticles, we report a size controlled yet simple and green synthesis of resveratrol stabilized silver and gold nanoparticles having low polydispersity of size. Here, resveratrol plays two simultaneous roles, reducing the metal ions and providing efficient capping of the small nanoparticles. This gives rise to specific size of silver and gold nanoparticles at specific ratios of metal to resveratrol. The particles have been characterized by XRD and transmission electron microscopy. The nanoparticle sols are stable for months. The UV Visible absorption spectra of the silver sol show the plasmon peak of spherical nanoparticles, presence of which is further reflected in the TEM images. Size of the silver particles obtained is in between 11 to 21 nm depending on the ratio of resveratrol to metal ion used. Resveratrol capped silver nanoparticles exhibit high antibacterial activity against Gram negative wild type E coli BW (25113). The minimum inhibitory concentration (MIC) of nano-silver against the bacterium has been estimated to be 6.48 μg/ml, which is significantly lower than that reported in some earlier as well as recent publications. Reaction of gold ions with resveratrol, on the other hand, produces gold nanoparticles of sizes varying from 7 to 29 nm at different ratios of resveratrol to the metal ions. Particles with higher size and aspect ratio are formed at lower concentration of the capping agent whereas particles with very small size and pseudo-spherical morphology are formed at higher capping concentration. Difference in the formation kinetics of silver and gold nanoparticles has been attributed to the different growth mechanisms in the two cases. Possible modes of anchorage of resveratrol to silver nanoparticles have been investigated using surface enhanced resonance Raman spectroscopy (SERS) which shows that the silver nanoparticles are capped by resveratrol molecule primarily through O-Ag linkages of the p-OH aromatic ring. This, in turn, demonstrates the feasibility of using these nanoparticles as SERS templates.
Black holes and global structures of spherical spacetimes in Horava-Lifshitz theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwald, Jared; Satheeshkumar, V. H.; Lenells, Jonatan
We systematically study black holes in the Horava-Lifshitz theory by following the kinematic approach, in which a horizon is defined as the surface at which massless test particles are infinitely redshifted. Because of the nonrelativistic dispersion relations, the speed of light is unlimited, and test particles do not follow geodesics. As a result, there are significant differences in causal structures and black holes between general relativity (GR) and the Horava-Lifshitz theory. In particular, the horizon radii generically depend on the energies of test particles. Applying them to the spherical static vacuum solutions found recently in the nonrelativistic general covariant theorymore » of gravity, we find that, for test particles with sufficiently high energy, the radius of the horizon can be made as small as desired, although the singularities can be seen, in principle, only by observers with infinitely high energy. In these studies, we pay particular attention to the global structure of the solutions, and find that, because of the foliation-preserving-diffeomorphism symmetry, Diff(M,F), they are quite different from the corresponding ones given in GR, even though the solutions are the same. In particular, the Diff(M,F) does not allow Penrose diagrams. Among the vacuum solutions, some give rise to the structure of the Einstein-Rosen bridge, in which two asymptotically flat regions are connected by a throat with a finite nonzero radius. We also study slowly rotating solutions in such a setup, and obtain all the solutions characterized by an arbitrary function A{sub 0}(r). The case A{sub 0}=0 reduces to the slowly rotating Kerr solution obtained in GR.« less
NASA Astrophysics Data System (ADS)
Hoshyaripour, A.; Vogel, B.; Vogel, H.
2017-12-01
Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.
Phase behavior of charged hydrophobic colloids on flat and spherical surfaces
NASA Astrophysics Data System (ADS)
Kelleher, Colm P.
For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.
Photonic polymer-blend structures and method for making
Barnes, Michael D.
2004-06-29
The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.
Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components
NASA Astrophysics Data System (ADS)
Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.
2017-07-01
It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.
2011-08-01
inert steel particles and by Frost et al. (2005, 2007) with reactive aluminum and magnesium particles. All used sensitized nitromethane and were...particles in a spherical or cylindrical charge case was used with sensitized nitromethane . Frost et al. (2002), determined that for a given charge
Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery.
Maciel, Vinicius B V; Yoshida, Cristiana M P; Pereira, Susana M S S; Goycoolea, Francisco M; Franco, Telma T
2017-10-12
A polyelectrolyte complex system of chitosan-pectin nano- and microparticles was developed to encapsulate the hormone insulin. The aim of this work was to obtain small particles for oral insulin delivery without chemical crosslinkers based on natural and biodegradable polysaccharides. The nano- and microparticles were developed using chitosans (with different degrees of acetylation: 15.0% and 28.8%) and pectin solutions at various charge ratios (n⁺/n - given by the chitosan/pectin mass ratio) and total charge. Nano- and microparticles were characterized regarding particle size, zeta potential, production yield, encapsulation efficiency, stability in different media, transmission electron microscopy and cytotoxicity assays using Caco-2 cells. The insulin release was evaluated in vitro in simulated gastric and intestinal media. Small-sized particles (~240-~1900 nm) with a maximum production yield of ~34.0% were obtained. The highest encapsulation efficiency (~62.0%) of the system was observed at a charge ratio (n⁺/n - ) 5.00. The system was stable in various media, particularly in simulated gastric fluid (pH 1.2). Transmission electron microscopy (TEM) analysis showed spherical shape particles when insulin was added to the system. In simulated intestinal fluid (pH 6.8), controlled insulin release occurred over 2 h. In vitro tests indicated that the proposed system presents potential as a drug delivery for oral administration of bioactive peptides.
Energetic particles in spherical tokamak plasmas
McClements, K. G.; Fredrickson, E. D.
2017-03-21
Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together withmore » higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion–ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Lastly, ion acceleration has also been observed during merging-compression start-up in MAST.« less
Plasma coating of nanoparticles in the presence of an external electric field
NASA Astrophysics Data System (ADS)
Ebadi, Zahra; Pourali, Nima; Mohammadzadeh, Hosein
2018-04-01
Film deposition onto nanoparticles by low-pressure plasma in the presence of an external electric field is studied numerically. The plasma discharge fluid model along with surface deposition and heating models for nanoparticles, as well as a dynamics model considering the motion of nanoparticles, are employed for this study. The results of the simulation show that applying external field during the process increases the uniformity of the film deposited onto nanoparticles and leads to that nanoparticles grow in a spherical shape. Increase in film uniformity and particles sphericity is related to particle dynamics that is controlled by parameters of the external field like frequency and amplitude. The results of this work can be helpful to produce spherical core-shell nanoparticles in nanomaterial industry.
NASA Astrophysics Data System (ADS)
Letu, H.; Ishimoto, H.; Riedi, J.; Nakajima, T. Y.; -Labonnote, L. C.; Baran, A. J.; Nagao, T. M.; Skiguchi, M.
2015-11-01
Various ice particle habits are investigated in conjunction with inferring the optical properties of ice cloud for the Global Change Observation Mission-Climate (GCOM-C) satellite program. A database of the single-scattering properties of five ice particle habits, namely, plates, columns, droxtals, bullet-rosettes, and Voronoi, is developed. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor onboard the GCOM-C satellite, which is scheduled to be launched in 2017 by Japan Aerospace Exploration Agency (JAXA). A combination of the finite-difference time-domain (FDTD) method, Geometric Optics Integral Equation (GOIE) technique, and geometric optics method (GOM) are applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible-to-infrared spectral region, covering the SGLI channels for the size parameter, which is defined with respect to the equivalent-volume radius sphere, which ranges between 6 and 9000. The database includes the extinction efficiency, absorption efficiency, average geometrical cross-section, single-scattering albedo, asymmetry factor, size parameter of an equivalent volume sphere, maximum distance from the center of mass, particle volume, and six non-zero elements of the scattering phase matrix. The characteristics of the calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, the optical thickness and spherical albedo of ice clouds using the five ice particle habit models are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL). The optimal ice particle habit for retrieving the SGLI ice cloud properties was investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD, for bullet-rosette particle, with radii of equivalent volume spheres (r~) ranging between 6 to 10 μm, and the Voronoi particle, with r~ ranging between 28 to 38 μm, and 70 to 100 μm, is distributed stably as the scattering angle increases. It is confirmed that the SAD of small bullet rosette and all sizes of voronoi particles has a low angular dependence, indicating that the combination of the bullet-rosette and Voronoi models are sufficient for retrieval of the ice cloud spherical albedo and optical thickness as an effective habit models of the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particles (r~ = 30 μm) is compared to the conventional General Habit Mixture (GHM), Inhomogeneous Hexagonal Monocrystal (IHM), 5-plate aggregate and ensemble ice particle model. It is confirmed that the Voronoi habit model has an effect similar to the counterparts of some conventional models on the retrieval of ice cloud properties from space-borne radiometric observations.
Optical detection and characterization of ice crystals in LACIS
NASA Astrophysics Data System (ADS)
Kiselev, Alexei; Clauß, Tina; Niedermeier, Dennis; Hartmann, Susan; Wex, Heike; Stratmann, Frank
2010-05-01
Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved questions. The Leipzig Aerosol and Cloud Interaction Simulator (LACIS) is used to investigate the IN activity of different natural and artificial aerosol particles (mineral dust, soot etc.) in heterogeneous freezing processes (immersion or deposition freezing). A critical part of LACIS is the particle detection system allowing for size-resolved counting of activated seed particles and discrimination between ice crystals and water droplets. Recently, two instruments have been developed to provide these measurements at the LACIS facility. The Thermally-stabilized Optical Particle Spectrometer (TOPS) is measuring the particle size based on the intensity of light scattered by individual particles into a near-forward (15° to 45°) direction. Two symmetrical forward scattering channels allow for optical determination of the sensing volume, thus reducing the coincidence counting error and the edge zone effect. The backscatter channel (162° to 176°) equipped with a rotatable cross polarizer allows for establishing the change in linear polarization state of the scattered light. The backscatter elevation angle is limited so that the linear depolarization of light scattered by spherical particles of arbitrary size is zero. Any detectable signal in the depolarization channel can be therefore attributed to non-spherical particles (ice crystals). With consideration of the signal in the backscatter channel the separate counting of water drops and ice particle is possible. The Leipzig Ice Scattering Apparatus (LISA) is a modified version of the Small Ice Detector (SID3), developed at the Science and Technology Research Institute at the University of Hertfordshire, UK. The SID instruments have been developed primarily as wing-mounted systems for airborne studies of cloud ice particles. SID3 records the forward scattered light pattern with high angular resolution using an intensified CCD (780 by 582 pixels) at a rate of 20 images per second. In addition to the SID3 capabilities, LISA is able to measure the circular depolarization ratio in the range of scattering angles from 166° to 172°. Whereas particle size, shape and orientation are characterized by the angular distribution of forward-scattered light, the measured value of the circular depolarization can be used to validate the existing theoretical models of light scattering by irregular particles (RTDF, GSVM, T-Matrix, DDA). The first measurements done at the LACIS facility have demonstrated a promising sensitivity of LISA's depolarization channel to the shape of ice crystals. Results showed an increase of the mean circular depolarization ratio from 1.5 (characteristic for the liquid water droplets above 3 µm) to 2.5 for the "just frozen" almost-spherical droplets in the same size range. The presentation will describe details of instruments set up and present some exemplary results from experiments carried out at LACIS and AIDA (KIT) facilities.
NASA Astrophysics Data System (ADS)
Eslami, Ghiyam; Esmaeilzadeh, Esmaeil; Pérez, Alberto T.
2016-10-01
Up and down motion of a spherical conductive particle in dielectric viscous fluid driven by a DC electric field between two parallel electrodes was investigated. A nonlinear differential equation, governing the particle dynamics, was derived, based on Newton's second law of mechanics, and solved numerically. All the pertaining dimensionless groups were extracted. In contrast to similar previous works, hydrodynamic interaction between the particle and the electrodes, as well as image electric forces, has been taken into account. Furthermore, the influence of the microdischarge produced between the electrodes and the approaching particle on the particle dynamics has been included in the model. The model results were compared with experimental data available in the literature, as well as with some additional experimental data obtained through the present study showing very good agreement. The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic conductivity are very dominant factors determining the particle trajectory. A lower bound is derived for the charge transferred to the particle while rebounding from an electrode. It is found that the time and length scales of the post-microdischarge motion of the particle can be as small as microsecond and micrometer, respectively. The model is able to predict the so called settling/dwelling time phenomenon for the first time.
Growth and modelling of spherical crystalline morphologies of molecular materials
NASA Astrophysics Data System (ADS)
Shalev, O.; Biswas, S.; Yang, Y.; Eddir, T.; Lu, W.; Clarke, R.; Shtein, M.
2014-10-01
Crystalline, yet smooth, sphere-like morphologies of small molecular compounds are desirable in a wide range of applications but are very challenging to obtain using common growth techniques, where either amorphous films or faceted crystallites are the norm. Here we show solvent-free, guard flow-assisted organic vapour jet printing of non-faceted, crystalline microspheroids of archetypal small molecular materials used in organic electronic applications. We demonstrate how process parameters control the size distribution of the spheroids and propose an analytical model and a phase diagram predicting the surface morphology evolution of different molecules based on processing conditions, coupled with the thermophysical and mechanical properties of the molecules. This experimental approach opens a path for exciting applications of small molecular organic compounds in optical coatings, textured surfaces with controlled wettability, pharmaceutical and food substance printing and others, where thick organic films and particles with high surface area are needed.
Coagulation of grains in static and collapsing protostellar clouds
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.; Ruzmaikina, T. V.
1994-01-01
We simulate collisional evolution of grains in dense turbulent molecular cloud cores (or Bok globules) in static equilibrium and free-fall collapse, assuming spherical symmetry. Relative velocities are due to thermal motions, differential settling, and turbulence, with the latter dominant for sonic turbulence with an assumed Kolmogorov spectrum. Realistic criteria are used to determine outcomes of collisions (coagulation vs. destruction) as functions of particle size and velocity. Results are presented for a variety of cloud parameters (radial density profile, turbulent velocity) and particle properties (density, impact strength). Results are sensitive to the assumed mechanical properties (density and impact strength) of grain aggregates. Particle growth is enhanced if aggregates have low density or fractal structures. On a timescale of a few Myr, an initial population of 0.1 micrometers grains may produce dense compact particles approximately 1 micrometer in size, or fluffy aggregates approximately 100 micrometers. For impact strengths less than or equal to 10(exp 6) ergs/g, a steady state is reached between coagulation of small grains and collisional disruption of larger aggregates. Formation of macroscopic aggregates requires high mechanical strengths and low aggregate densities. We assume sonic turbulence during collapse, with varied eddy size scales determining the dissipation rate or turbulence strength. The degree of collisional evolution during collapse is sensitive to the assumed small-scale structure (inner sc ale) of the turbulence. Weak turbulence results in few collisions and preserves the precollapse particle size distribution with little change. Strong turbulence tends to produce net destruction, rather than particle growth, during infall, unless inpact strengths are greater than 10(exp 6)ergs/g.
Order and Jamming on Curved Surfaces
NASA Astrophysics Data System (ADS)
Burke, Christopher J.
Geometric frustration occurs when a physical system's preferred ordering (e.g. spherical particles packing in a hexagonal lattice) is incompatible with the system's geometry. An example of this occurs in arrested relaxation in Pickering emulsions. Pickering emulsions are emulsions (e.g. mixtures of oil and water) with colloidal particles mixed in. The particles tend to lie at an oil-water interface, and can coat the surface of droplets within the emulsion (e.g. an oil droplet surrounded by water.) If a droplet is deformed from its spherical ground state, more particles adsorb at the surface, and the droplet is allowed to relax, then the particles on the surface can become close packed and prevent further relaxation, arresting the droplet in a non-spherical shape. The resulting structures tend to be relatively well ordered with regions of highly hexagonal packings; however, the curvature of the surface prevents perfect ordering and defects in the packing are required. These defects may influence the stability of these structures, making it important to understand how to predict and control them for applications in the food, cosmetic, oil, and medical industries. In this work, we use simulations to study the ordering and stability of sphere packings on arrested emulsions droplets. We first isolate the role of surface geometry by creating packings on a static ellipsoidal surface. Next we perform simulations which include dynamic effects that are present in the experimental Pickering emulsion system. Packings are created by evolving an ellipsoidal surface towards a spherical shape at fixed volume; the effects of relaxation rate, interparticle attraction, and gravity are determined. Finally, we study jamming on curved surfaces. Packings of hard particles are used to study marginally stable packings and the role curvature plays in constraining them. We also study packings of soft particles, compressed beyond marginal stability, and find that geometric frustration plays an important role in determining their mechanical properties.
Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles
NASA Astrophysics Data System (ADS)
Kostinski, A. B.; Mongkolsittisilp, A.
2013-12-01
We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.
NASA Astrophysics Data System (ADS)
Manfred, K.; Adler, G. A.; Erdesz, F.; Franchin, A.; Lamb, K. D.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.
2017-12-01
Particle morphology has important implications for light scattering and radiative transfer, but can be difficult to measure. Biomass burning and other important aerosol sources can generate a mixture of both spherical and non-spherical particle morphologies, and it is necessary to represent these populations correctly in models. We describe a laser imaging nephelometer that measures the unpolarized scattering phase function of bulk aerosol at 375 and 405 nm using a wide-angle lens and CCD. We deployed this instrument to the Missoula Fire Sciences Laboratory to measure biomass burning aerosol morphology from controlled fires during the recent FIREX intensive laboratory study. Total integrated scattering signal agreed with that determined by a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrument uncertainties. We compared measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. We show that particle morphology can vary dramatically for different fuel types, and present results for two representative fires (pine tree vs arid shrub). We find that Mie theory is inadequate to describe the actual behavior of realistic aerosols from biomass burning in some situations. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide real-time, in situ information about dominant particle morphology that is vital for accurate radiative transfer calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mnasri, Najib; Materials, Environment and Energy Laboratory; Charnay, Clarence
Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM andmore » TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.« less
Mineralogy and origin of atmospheric particles in the industrial area of Huelva (SW Spain)
NASA Astrophysics Data System (ADS)
Bernabé, J. M.; Carretero, M. I.; Galán, E.
The mineralogy of atmospheric particles at the confluence of the Tinto and Odiel rivers, south of Huelva (a highly industrialized city in the SW Spain), was characterized in view to identify source origins. In spite of the small amount of sample collected, mineralogical characterization was performed by X-ray diffraction, polarized light microscopy and scanning electron microscopy with EDS analysis system, using an adequate sample preparation methodology. Sedimentable (SP) and aerosols particles were sampled an one-week basis every two months for one year. Quartz, calcite and feldspars were found to be the major minerals in both fractions, and phyllosilicates, dolomite and gypsum were also identified in lower content. Minor mineral particles included barite, apatite, sphalerite and pyrite. SEM studies revealed the additional presence of chalcopyrite in both SP and aerosols, and of chalcocite-covellite, halite and sylvite in the latter. Siderite, hematite and ankerite were only detected in the SP fraction. The concentrations of the previous minerals increased in summer by effect of the limited rain and the resulting scarcity of atmosphere washing. Non-mineral particles detected by SEM in SP and aerosol fractions included spherical, biological and compositionally complex particles. The main source of mineral particles was found to be the soil suspension in addition to the metallurgical and fertilizer production industries in the area.
Design of Polymer-Grafted Particles for Biocompatability
NASA Astrophysics Data System (ADS)
Trombly, David; Ganesan, Venkat
2009-03-01
Drug designers often coat drug particles with grafted polymers in order to introduce a net repulsion between the particles and blood proteins. This net repulsion results from the energy cost of compressing grafted chains on approach of proteins. It thus overcomes the Van Der Waals attraction between drug and protein which would otherwise cause particle-protein agglomeration and ultimately thrombosis. This study proposes to develop a fundamental understanding of the role of different features in controlling the efficacy of the grafted layers. We address this issue by developing a framework to predict the interactions between a polymer-coated spherical particle and a bare spherical particle. In order to fully capture the two-sphere system, a numerical solution of polymer mean field theory is used in a bispherical coordinate system. Results for protein-particle interaction energies for different design parameters will be presented. For biological applications, polyethylene glycol is often used as the grafted polymer. The unique properties of this molecule will be accounted for using the n-cluster model.
Effective friction of granular flows made of non-spherical particles
NASA Astrophysics Data System (ADS)
Somfai, Ellák; Nagy, Dániel B.; Claudin, Philippe; Favier, Adeline; Kálmán, Dávid; Börzsönyi, Tamás
2017-06-01
Understanding the rheology of dense granular matter is a long standing problem and is important both from the fundamental and the applied point of view. As the basic building blocks of granular materials are macroscopic particles, the nature of both the response to deformations and the dissipation is very different from that of molecular materials. In the absence of large gradients, the best approach formulates the constitutive equation as an effective friction: for sheared granular matter the ratio of the off-diagonal and the diagonal elements of the stress tensor depends only on dynamical parameters, in particular the inertial number. In this work we employ numerical simulations to extend this formalism to granular packings made of frictionless elongated particles. We measured how the shape of the particles affects the effective friction, volume fraction and first normal stress difference, and compared it to the spherical particle case. We had to introduce polydispersity in particle size in order to keep the systems of the more elongated particles disordered.
NASA Astrophysics Data System (ADS)
Priye, Aashish; Marlow, William H.
2013-10-01
The phenomenon of particle resuspension plays a vital role in numerous fields. Among many aspects of particle resuspension dynamics, a dominant concern is the accurate description and formulation of the van der Waals (vdW) interactions between the particle and substrate. Current models treat adhesion by incorporating a material-dependent Hamaker's constant which relies on the heuristic Hamaker's two-body interactions. However, this assumption of pairwise summation of interaction energies can lead to significant errors in condensed matter as it does not take into account the many-body interaction and retardation effects. To address these issues, an approach based on Lifshitz continuum theory of vdW interactions has been developed to calculate the principal many-body interactions between arbitrary geometries at all separation distances to a high degree of accuracy through Lifshitz's theory. We have applied this numerical implementation to calculate the many-body vdW interactions between spherical particles and surfaces with sinusoidally varying roughness profile and also to non-spherical particles (cubes, cylinders, tetrahedron etc) orientated differently with respect to the surface. Our calculations revealed that increasing the surface roughness amplitude decreases the adhesion force and non-spherical particles adhere to the surfaces more strongly when their flatter sides are oriented towards the surface. Such practical shapes and structures of particle-surface systems have not been previously considered in resuspension models and this rigorous treatment of vdW interactions provides more realistic adhesion forces between the particle and the surface which can then be coupled with computational fluid dynamics models to improve the predictive capabilities of particle resuspension dynamics.
NASA Technical Reports Server (NTRS)
Deepak, A.; Box, M. A.
1978-01-01
The paper presents a parametric study of the forwardscattering corrections for experimentally measured optical extinction coefficients in polydisperse particulate media, since some forward scattered light invariably enters, along with the direct beam, into the finite aperture of the detector. Forwardscattering corrections are computed by two methods: (1) using the exact Mie theory, and (2) the approximate Rayleigh diffraction formula for spherical particles. A parametric study of the dependence of the corrections on mode radii, real and imaginary parts of the complex refractive index, and half-angle of the detector's view cone has been carried out for three different size distribution functions of the modified gamma type. In addition, a study has been carried out to investigate the range of these parameters in which the approximate formulation is valid. The agreement is especially good for small-view cone angles and large particles, which improves significantly for slightly absorbing aerosol particles. Also discussed is the dependence of these corrections on the experimental design of the transmissometer systems.
NASA Astrophysics Data System (ADS)
He, G. C.; Ding, J.; Huang, C. H.; Kang, Q.
2018-01-01
Hydrophobic polystyrene nanoparticles bearing thiazole groups named HNP were used as collectors to improve recovery of microfine chalcopyrite in flotation. HNP adsorbs onto microfine particles selectively, which were modified hydrophobically to induce flotation effectively. Particle size and scanning electron microscope analysis for HNP show that HNP is a spherical nano particles with small size, uniform distribution and good dispersion. Infrared spectrum analysis for HNP proved that functional monomer 2-mercapto styrene acrylic thiazole was bonded chemically onto styrene. Flotation test results indicate that HNP is the right collector of chalcopyrite. Especially, the recovery of chalcopyrite is higher than 95% in neutral and acid media. FTIR results reveal that the flotation selectivity of collector HNP is due to strong chemical absorption onto chalcopyrite surface. Zeta potential analysis shows that the zeta potential of chalcopyrite decreased more quickly after interaction with HNP with the increase of pulp pH value, confirming that collector HNP is an anionic collector. Scanning electron microscope conform that HNP has good selective adsorption on chalcopyrite.
Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru
2015-01-01
The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.
Quasi-static Design of Electrically Small Ultra-Wideband Antennas
2017-02-01
this design reduces the width of the antenna, which implies that the bulb shape can be non -spherical at high frequencies. The stored energy in an...conclusion. The Quasi-static Antenna Design Algorithm generates three UWB non -spherical bulb shapes. The non -spherical bulb shape performs as well...TECHNICAL REPORT 3056 February 2017 Quasi-static Design of Electrically Small Ultra-Wideband Antennas Thomas O. Jones III Approved for public
NASA Astrophysics Data System (ADS)
Bertazzo, Sergio; Gentleman, Eileen; Cloyd, Kristy L.; Chester, Adrian H.; Yacoub, Magdi H.; Stevens, Molly M.
2013-06-01
The accumulation of calcified material in cardiovascular tissue is thought to involve cytochemical, extracellular matrix and systemic signals; however, its precise composition and nanoscale architecture remain largely unexplored. Using nano-analytical electron microscopy techniques, we examined valves, aortae and coronary arteries from patients with and without calcific cardiovascular disease and detected spherical calcium phosphate particles, regardless of the presence of calcific lesions. We also examined lesions after sectioning with a focused ion beam and found that the spherical particles are composed of highly crystalline hydroxyapatite that crystallographically and structurally differs from bone mineral. Taken together, these data suggest that mineralized spherical particles may play a fundamental role in calcific lesion formation. Their ubiquitous presence in varied cardiovascular tissues and from patients with a spectrum of diseases further suggests that lesion formation may follow a common process. Indeed, applying materials science techniques to ectopic and orthotopic calcification has great potential to lend critical insights into pathophysiological processes underlying calcific cardiovascular disease.
Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials. PMID:25366869
Electrohydrodynamic interactions of spherical particles under Quincke rotation
NASA Astrophysics Data System (ADS)
Das, Debasish; Saintillan, David
2012-11-01
Quincke rotation denotes the spontaneous rotation of dielectric particles immersed in a slightly dielectric liquid when subjected to a high enough DC electric field. It occurs when the charge relaxation time of the particles is greater than that of the fluid medium, causing the particles to become polarized in a direction opposite to that of the electric field and therefore giving rise to an unstable equilibrium position. When slightly perturbed, the particles start to rotate, and if the electric field exceeds a critical value the perturbations do not decay and the particle rotations reach a steady state with a constant angular velocity. We use a combination of numerical simulations and asymptotic theory to study the effect of electrohydrodynamic interactions between particles under Quincke rotation. We study the prototypical case of two equally charged spheres carrying no net charge and interacting with each other both hydrodynamically and electrically. The case of spherical particles free to roll on a horizontal grounded electrode is also described. We show that Quincke rotation results in self-propulsion of the particles in the plane of the electrode, and interactions between a pair of such ``rollers'' are analyzed.
Evaporation effects in a shock-driven multiphase instability with a spherical interface
NASA Astrophysics Data System (ADS)
Paudel, Manoj; Dahal, Jeevan; McFarland, Jacob
2017-11-01
This talk presents results from 3D numerical simulations of a shock driven instability of a gas-particle system with a spherical interface. Two cases, one with an evaporating particle cloud and another with a gas only approximation of this particle cloud, were run in the hydrodynamics code FLASH, developed at University of Chicago. It is shown that the gas only approximation, a classical Richtmyer Meshkov instability, cannot replicate effects from particles like, lag, clustering, and evaporation. Instead, both gas hydrodynamics and particle properties influence one another and are coupled. Results are presented to highlight the coupling of interface evolution and particle evaporation. Qualitative and quantitative differences in the RMI and SDMI are presented by studying the change in gas properties like density and vorticity within the interface. Similarly, the effect of gas hydrodynamics on particles distribution and evaporation is studied. Particle evaporation rates are compared with 1D models and show poor agreement. The variation in evaporation rates for similar sized particles and the role of gas hydrodynamics in these variation is explored.
Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra
2017-01-01
Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.
Saltation movement of large spherical particles
NASA Astrophysics Data System (ADS)
Chara, Z.; Dolansky, J.; Kysela, B.
2017-07-01
The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.
Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes
Sigurdsson, Jon Karl; Atzberger, Paul J.
2016-06-27
Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less
Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigurdsson, Jon Karl; Atzberger, Paul J.
Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less
Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.
Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming
2008-08-15
This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.
Sphericalization of the potential of interaction of anisotropic molecules with spherical particles
NASA Astrophysics Data System (ADS)
Fernández-Prini, R.; Japas, María L.
1986-09-01
The possibility of employing sphericalized intermolecular potentials to describe the interactions between nonpolar anisotropic molecules (CCl4 and benzene) with spherical nonpolar molecules (Ar, Xe, and CH4) has been tested for binary systems having liquid- and gas-like densities. Median and RAM sphericalization procedures have been used and their capacity to account for the experimental values of cross second virial coefficients and Henry's constants are compared. It is shown that the median sphericalized potentials, which are temperature and density independent, give a fairly good description of the data which is better than that provided by RAM potentials. The possibility of accounting correctly for the change of properties when the relative size of the interacting partners changes (e.g., conformal systems) is noteworthy.
Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites
Finkelman, R.B.
1970-01-01
On the basis of x-ray diffraction and electron microprobe data, spherical and ellipsoidal particles extracted from manganese nodules were divided into three groups. Group I particles are believed to be derived from iron meteorites, and Group II particles from stony meteorites. Group III particles are believed to be volcanic in origin.
Nano- and microparticles at fluid and biological interfaces.
Dasgupta, S; Auth, T; Gompper, G
2017-09-20
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Nano- and microparticles at fluid and biological interfaces
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Auth, T.; Gompper, G.
2017-09-01
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves
NASA Astrophysics Data System (ADS)
Gangwar, P. K.
2018-05-01
In this paper, CCW method has been used to study the behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves. The strength of overtaking waves is estimated under the assumption that both C+ and C- disturbances propagate in non-uniform region of same density distribution. It is assumed that the dusty gas is the mixture of a real gas and a large number of small spherical solid particles of uniform size. The solid particles are uniformly distributed in the medium. Maintaining equilibrium flow conditions, the expressions for shock strength has been derived both for freely propagation as well as under the effect of overtaking disturbances. The variation of all flow variables with propagation distance, mass concentration of solid particles in the mixture and the ratio of solid particles to the initial density of gas have been computed and discussed through graphs. It is found that the presence of dust particles in the gases medium has significant effects on the variation of flow variables and the shock is strengthened under the influence of overtaking disturbances. The results accomplished here been compared with those for ideal gas.
Luminescence studies of CdS spherical particles via hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Xu, Guo Qin; Liu, Bing; Xu, Shi Jie; Chew, Chwee Har; Chua, Soo Jin; Gana, Leong Ming
2000-06-01
The spherical particles of CdS consisting of nanoparticles (∼100 nm) were synthesized by a hydrothermal process. The particle formation and growth depend on the rate of sulfide-ion generation and diffusion-controlled aggregation of nanoparticles. As demonstrated in the profiles of powder X-ray diffraction, the crystalline phases are governed by the reaction temperature. Photoluminescence studies on CdS particles show two emission bands at the room temperature. The red emission at 680 nm is due to sulfur vacancies, and a new infrared red (IR) emission at 760 nm is attributed to self-activated centers. A red shift of IR band with the decrease of temperature was explained with a configurational coordinate model. The different saturation limits for the red and IR bands are discussed in terms of the formation of donor-acceptor pairs and exciton in CdS particles.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1981-01-01
Sliding friction experiments were performed in vacuum at room temperature on a plane-type SiC surface in contact with iron-based binary alloys. Multiangular and spherical wear particles were found to form as a result of multipass sliding. The multiangular particles were produced by primary and secondary cracking of the 0001, 10(-)10, and 11(-)20 plane-type cleavage planes under the Hertzian stress field or local inelastic deformation zone. When alloy surfaces are in contact with silicon carbide under a load of 0.2 N, the alloy around the contact area is subjected to stresses that are close to the elastic limit in the elastic deformation region and/or exceed it. It was also found that spherical wear particles may be produced by two mechanisms: a penny-shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and the attrition and fatigue of wear particles.
CUBE: Information-optimized parallel cosmological N-body simulation code
NASA Astrophysics Data System (ADS)
Yu, Hao-Ran; Pen, Ue-Li; Wang, Xin
2018-05-01
CUBE, written in Coarray Fortran, is a particle-mesh based parallel cosmological N-body simulation code. The memory usage of CUBE can approach as low as 6 bytes per particle. Particle pairwise (PP) force, cosmological neutrinos, spherical overdensity (SO) halofinder are included.
Bidispersed Sphere Packing on Spherical Surfaces
NASA Astrophysics Data System (ADS)
Atherton, Timothy; Mascioli, Andrew; Burke, Christopher
Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.
NASA Astrophysics Data System (ADS)
Faroughi, S. A.; Huber, C.
2015-12-01
Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with the results obtained with direct measurement methods such as laser diffraction.
Morphology of ductile metals eroded by a jet of spherical particles impinging at normal incidence
NASA Technical Reports Server (NTRS)
Veerabhadra Rao, P.; Young, S. G.; Buckley, D. H.
1983-01-01
Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used, together with surface profile measurements, in the present morphological study of the erosion of an aluminum alloy and copper by the normal impact of spherical glass erodent particles. The morphology of the damage pattern is a manifestation of the flow pattern of erodent particles, and yields insight into the mechanisms that may be active at different stages of erosion. The simultaneous appearance of radial cracks and concentric rings is reported, together with wave crests which contain an accumulation of metallic flakes. A preliminary analysis is advanced to explain the formation of the various damage patterns observed.
Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot
NASA Astrophysics Data System (ADS)
Zakeri, M.; Faraji, J.
2014-12-01
In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.
Divertor heat flux mitigation in the National Spherical Torus Experimenta)
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team
2009-02-01
Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.
Refractive index of colloidal dispersions of spheroidal particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeten, G.H.
1980-09-01
The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.
NASA Technical Reports Server (NTRS)
Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito
1989-01-01
All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.
Sicard, François; Striolo, Alberto
2017-06-29
The buckling mechanism in droplets stabilized by solid particles (armored droplets) is tackled at a mesoscopic level using dissipative particle dynamics simulations. We consider one spherical water droplet in a decane solvent coated with nanoparticle monolayers of two different types: Janus (particles whose surface shows two regions with different wetting properties) and homogeneous. The chosen particles yield comparable initial three-phase contact angles, selected to maximize the adsorption energy at the interface. We study the interplay between the evolution of droplet shape, layering of the particles, and their distribution at the interface when the volume of the droplets is reduced. We show that Janus particles affect strongly the shape of the droplet with the formation of a crater-like depression. This evolution is actively controlled by a close-packed particle monolayer at the curved interface. In contrast, homogeneous particles follow passively the volume reduction of the droplet, whose shape does not deviate too much from spherical, even when a nanoparticle monolayer/bilayer transition is detected at the interface. We discuss how these buckled armored droplets might be of relevance in various applications including potential drug delivery systems and biomimetic design of functional surfaces.
Continuous-feed optical sorting of aerosol particles
Curry, J. J.; Levine, Zachary H.
2016-01-01
We consider the problem of sorting, by size, spherical particles of order 100 nm radius. The scheme we analyze consists of a heterogeneous stream of spherical particles flowing at an oblique angle across an optical Gaussian mode standing wave. Sorting is achieved by the combined spatial and size dependencies of the optical force. Particles of all sizes enter the flow at a point, but exit at different locations depending on size. Exiting particles may be detected optically or separated for further processing. The scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. We performed detailed Monte Carlo simulations of particle trajectories through the optical field under the influence of convective air flow. We also developed a method for deriving effective velocities and diffusion constants from the Fokker-Planck equation that can generate equivalent results much more quickly. With an optical wavelength of 1064 nm, polystyrene particles with radii in the neighborhood of 275 nm, for which the optical force vanishes, may be sorted with a resolution below 1 nm. PMID:27410570
NASA Astrophysics Data System (ADS)
Richards, Simon D.; Leighton, Timothy G.; Brown, Niven R.
2003-10-01
Knowledge of the particle size distribution is required in order to predict ultrasonic absorption in polydisperse particulate suspensions. This paper shows that the method used to measure the particle size distribution can lead to important differences in the predicted absorption. A reverberation technique developed for measuring ultrasonic absorption by suspended particles is used to measure the absorption in suspensions of nonspherical particles. Two types of particulates are studied: (i) kaolin (china clay) particles which are platelike in form; and (ii) calcium carbonate particles which are more granular. Results are compared to theoretical predictions of visco-inertial absorption by suspensions of spherical particles. The particle size distributions, which are required for these predictions, are measured by laser diffraction, gravitational sedimentation and centrifugal sedimentation, all of which assume spherical particles. For a given sample, each sizing technique yields a different size distribution, leading to differences in the predicted absorption. The particle size distributions obtained by gravitational and centrifugal sedimentation are reinterpreted to yield a representative size distribution of oblate spheroids, and predictions for absorption by these spheroids are compared with the measurements. Good agreement between theory and measurement for the flat kaolin particles is obtained, demonstrating that these particles can be adequately represented by oblate spheroids.
Modeling light scattering by mineral dust particles using spheroids
NASA Astrophysics Data System (ADS)
Merikallio, Sini; Nousiainen, Timo
Suspended dust particles have a considerable influence on light scattering in both terrestrial and planetary atmospheres and can therefore have a large effect on the interpretation of remote sensing measurements. Assuming dust particles to be spherical is known to produce inaccurate results when modeling optical properties of real mineral dust particles. Yet this approximation is widely used for its simplicity. Here, we simulate light scattering by mineral dust particles using a distribution of model spheroids. This is done by comparing scattering matrices calculated from a dust optical database of Dubovik et al. [2006] with those measured in the laboratory by Volten et al. [2001]. Wavelengths of 441,6 nm and 632,8 nm and refractive indexes of Re = 1.55 -1.7 and Im = 0.001i -0.01i were adopted in this study. Overall, spheroids are found to fit the measurements significantly better than Mie spheres. Further, we confirm that the shape distribution parametrization developed in Nousiainen et al. (2006) significantly improves the accuracy of simulated single-scattering for small mineral dust particles. The spheroid scheme should therefore yield more reliable interpretations of remote sensing data from dusty planetary atmospheres. While the spheroidal scheme is superior to spheres in remote sensing applications, its performance is far from perfect especially for samples with large particles. Thus, additional advances are clearly possible. Further studies of the Martian atmosphere are currently under way. Dubovik et al. (2006) Application of spheroid models to account for aerosol particle nonspheric-ity in remote sensing of desert dust, JGR, Vol. 111, D11208 Volten et al. (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, JGR, Vol. 106, No. D15, pp. 17375-17401 Nousiainen et al. (2006) Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids, JQSRT 101, pp. 471-487
Charged particle capturing in air flow by linear Paul trap
NASA Astrophysics Data System (ADS)
Lapitsky, D. S.; Filinov, V. S.; Vladimirov, V. I.; Syrovatka, R. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Deputatova, L. V.
2018-01-01
The paper presents the simulation results of micro- and nanoparticle capturing in an air flows by linear Paul traps in assumption that particles gain their charges in corona discharge, its electric field strength is restricted by Paschen equation and spherical shape of particles.
A boundary element method for particle and droplet electrohydrodynamics in the Quincke regime
NASA Astrophysics Data System (ADS)
Das, Debasish; Saintillan, David
2014-11-01
Quincke electrorotation is the spontaneous rotation of dielectric particles suspended in a dielectric liquid of higher conductivity when placed in a sufficiently strong electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While spherical harmonics can be used to solve the governing equations for a spherical particle, they cannot be used to study the dynamics of particles of more complex shapes or deformable particles or droplets. Here, we develop a novel boundary element formulation to model the dynamics of a dielectric particle under Quincke rotation based on the Taylor-Melcher leaky dielectric model, and compare the numerical results to theoretical predictions. We then employ this boundary element method to analyze the dynamics of a two-dimensional drop under Quincke rotation, where we allow the drop to deform under the electric field. Extensions to three-dimensions and to the electrohydrodynamic interactions of multiple droplets are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Marcia A.; Cote, Raymond O.; Torczynski, John Robert
The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter inmore » the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow, Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates.« less
NASA Astrophysics Data System (ADS)
Wang, Cong; Gai, Guosheng; Yang, Yufen
2018-03-01
Natural microcrystalline graphite (MCG) composed of many crystallites is a promising new anode material for lithium-ion batteries (LiBs) and has received considerable attention from researchers. MCG with narrow particle size distribution and high sphericity exhibits excellent electrochemical performance. A nonaddition process to prepare natural MCG as a high-performance LiB anode material is described. First, raw MCG was broken into smaller particles using a pulverization system. Then, the particles were modified into near-spherical shape using a particle shape modification system. Finally, the particle size distribution was narrowed using a centrifugal rotor classification system. The products with uniform hemispherical shape and narrow size distribution had mean particle size of approximately 9 μm, 10 μm, 15 μm, and 20 μm. Additionally, the innovative pilot experimental process increased the product yield of the raw material. Finally, the electrochemical performance of the prepared MCG was tested, revealing high reversible capacity and good cyclability.
Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range.
Tanaka, Shunsuke; Nogami, Daisuke; Tsuda, Natsuki; Miyake, Yoshikazu
2009-06-15
Monodisperse titania spheres with particle diameters in the range 380-960 nm were successfully synthesized by hydrolysis and condensation of titanium tetraisopropoxide. The preparation was performed using ammonia or dodecylamine (DDA) as a catalyst in methanol/acetonitrile co-solvent at room temperature. The samples were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and nitrogen sorption measurement. The use of DDA was effective for the synthesis of monodisperse titania spheres with low coefficient of variation. When the titania spherical particles with coefficient of variation less than 4% were obtained, the colloidal crystallization easily occurred simply by centrifugation. The monodispersity was maintained even after crystallization of the particles by high temperature annealing. The titania particles prepared using DDA had mesopores near the surface of the spheres, providing high pore accessibility to the sphere from the surface-air interface. The particle size uniformity and photocatalytic reactivity of the titania prepared using DDA were higher than those of the titania prepared using ammonia.
Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.
Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru
2015-11-10
The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.
High-temperature LDV seed particle development
NASA Technical Reports Server (NTRS)
Frish, Michael B.; Pierce, Vicky G.
1989-01-01
The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such particles would also be valuable to manufacturers of ceramic or abrasive products, and this technique may find its greatest commercial potential in those areas.
High-temperature LDV seed particle development
NASA Astrophysics Data System (ADS)
Frish, Michael B.; Pierce, Vicky G.
1989-05-01
The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such particles would also be valuable to manufacturers of ceramic or abrasive products, and this technique may find its greatest commercial potential in those areas.
Solid colloidal optical wavelength filter
Alvarez, Joseph L.
1992-01-01
A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.
Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation.
Nicoud, Lucrèce; Lattuada, Marco; Lazzari, Stefano; Morbidelli, Massimo
2015-10-07
Gaining fundamental knowledge about diffusion in crowded environments is of great relevance in a variety of research fields, including reaction engineering, biology, pharmacy and colloid science. In this work, we determine the effective viscosity experienced by a spherical tracer particle immersed in a concentrated colloidal dispersion by means of Brownian dynamics simulations. We characterize how the effective viscosity increases from the solvent viscosity for small tracer particles to the macroscopic viscosity of the dispersion when large tracer particles are employed. Our results show that the crossover between these two regimes occurs at a tracer particle size comparable to the host particle size. In addition, it is found that data points obtained in various host dispersions collapse on one master curve when the normalized effective viscosity is plotted as a function of the ratio between the tracer particle size and the mean host particle size. In particular, this master curve was obtained by varying the volume fraction, the average size and the polydispersity of the host particle distribution. Finally, we extend these results to determine the size dependent effective viscosity experienced by a fractal cluster in a concentrated colloidal system undergoing aggregation. We include this scaling of the effective viscosity in classical aggregation kernels, and we quantify its impact on the kinetics of aggregate growth as well as on the shape of the aggregate distribution by means of population balance equation calculations.
Numerical study of heat and mass transfer in inertial suspensions in pipes.
NASA Astrophysics Data System (ADS)
Niazi Ardekani, Mehdi; Brandt, Luca
2017-11-01
Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).
Surface Microparticles in Liquid Helium. Quantum Archimedes' Principle
NASA Astrophysics Data System (ADS)
Dyugaev, A. M.; Lebedeva, E. V.
2017-12-01
Deviations from Archimedes' principle for spherical molecular hydrogen particles with the radius R 0 at the surface of 4He liquid helium have been investigated. The classical Archimedes' principle holds if R 0 is larger than the helium capillary length L cap ≅ 500 μm. In this case, the elevation of a particle above the liquid is h + R 0. At 30 μm < R 0 < 500 μm, the buoyancy is suppressed by the surface tension and h + R 3 0/ L 2 cap. At R 0 < 30 μm, the particle is situated beneath the surface of the liquid. In this case, the buoyancy competes with the Casimir force, which repels the particle from the surface deep into the liquid. The distance of the particle to the surface is h - R 5/3 c/ R 2/3 0 if R 0 > R c. Here, {R_c} \\cong {( {{\\hbar c}/{ρ g}} )^{1/5}} ≈ 1, where ħ is Planck's constant, c is the speed of light, g is the acceleration due to gravity, and ρ is the mass density of helium. For very small particles ( R 0 < R c), the distance h_ to the surface of the liquid is independent of their size, h_ = R c.
General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.
Wang, J; Flanagan, D R
1999-07-01
Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.
Aberration of a negative ion beam caused by space charge effect.
Miyamoto, K; Wada, S; Hatayama, A
2010-02-01
Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.
Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui
2013-01-01
This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745
Analysis of dark matter axion clumps with spherical symmetry
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Hertzberg, Mark P.
2018-01-01
Recently there has been much interest in the spatial distribution of light scalar dark matter, especially axions, throughout the universe. When the local gravitational interactions between the scalar modes are sufficiently rapid, it can cause the field to re-organize into a BEC of gravitationally bound clumps. While these clumps are stable when only gravitation is included, the picture is complicated by the presence of the axion's attractive self-interactions, which can potentially cause the clumps to collapse. Here we perform a detailed stability analysis to determine under what conditions the clumps are stable. In this paper we focus on spherical configurations, leaving aspherical configurations for future work. We identify branches of clump solutions of the axion-gravity-self-interacting system and study their stability properties. We find that clumps that are (spatially) large are stable, while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a maximum number of particles that can be in a clump. We map out the full space of solutions, which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approximation. We also consider repulsive self-interactions that may arise from a generic scalar dark matter candidate, finding a single stable branch that extends to arbitrary particle number.
NASA Astrophysics Data System (ADS)
Cai, Q.; Jansky, J.; Pasko, V. P.
2017-12-01
In order to initiate streamers and leaders under thunderstorm conditions the electric field should reach values on the order of critical breakdown field ( 30 kV cm-1 atm-1). The related conditions can be achievable in relatively small volumes around precipitation particles and recent studies [e.g., Sadighi et al., JGR, 120, 3660, 2015; Dubinova et al., Phys. Rev. Lett., 115, 015002, 2015; Babich et al., JGR, 121, 6393, 2016; Cai et al., GRL, 44, 5758, 2017] discuss different configurations of charged and uncharged hydrometeors as physical means for creating such conditions. In the present work formation of streamers by two spherical hydrometeors with different radii in uniform ambient field is investigated. Based on work [Cai et al., 2017], we note that two particles with same radius 2.5 mm can initiate streamer in the minimum field required for propagation of positive streamers in air (i.e., 4.4 kV/cm at ground level). We focus on 4.4 kV/cm since streamers will propagate and grow in electric field higher than this value and can form a leader. An image charge model of two spherical hydrometeors with different radius in uniform ambient field and avalanche-to streamer transition criterion from [Qin et al., JGR, 116, A06305, 2011] are used for investigating avalanche-to-streamer transition. Solution accuracy of electric field is confirmed by comparing our results with analytical results based on [Davis, Quart. J. Mech. Appl. Math., 27, 499-511, 1964] and [Lekner, J. Electrost. 69, 559-563, 2011]. We note that if we increase the radius of one of these two spheres, the radius of the other one should be decreased to keep streamer initiation at 4.4 kV/cm at ground level. Quantitative results on collision frequency of scenarios when avalanche to streamer transition is possible between two spherical hydrometeor particles with different radius at field 4.4 kV/cm are presented. The results are discussed by using different particle distribution from [Atlas and Ludlam, Quart. J. Roy. Meteor. Soc, 87, 523; Federer and Waldvogel, J. Appl. Meteor., 14, 91, 1975; Auer, Mon. Wea. Rev., 100, 325, 1972]. We also discuss a scenario when avalanche-to-streamer transition occurs outside of two water drops after they are connected with discharge channel as discussed in [Cooray, 24th International Conference on Lightning Protection, 1998].
Biochemical transformation of calciprotein particles in uraemia.
Smith, Edward R; Hewitson, Tim D; Hanssen, Eric; Holt, Stephen G
2018-05-01
Calciprotein particles (CPP) have emerged as nanoscale mediators of phosphate-induced toxicity in Chronic Kidney Disease (CKD). Uraemia favors ripening of the particle mineral content from the amorphous (CPP-I) to the crystalline state (CPP-II) but the pathophysiological significance of this transformation is uncertain. Clinical studies suggest an association between CPP ripening and inflammation, vascular dysfunction and mortality. Although ripening has been modelled in vitro, it is unknown whether particles synthesised in serum resemble their in vivo counterparts. Here we show that in vitro formation and ripening of CPP in uraemic serum is characterised by extensive physiochemical rearrangements involving the accretion of mineral, loss of surface charge and transformation of the mineral phase from a spherical arrangement of diffuse domains of amorphous calcium phosphate to densely-packed lamellar aggregates of crystalline hydroxyapatite. These physiochemical changes were paralleled by enrichment with small soluble apolipoproteins, complement factors and the binding of fatty acids. In comparison, endogenous CPP represent a highly heterogeneous mixture of particles with characteristics mostly intermediate to synthetic CPP-I and CPP-II, but are also uniquely enriched for carbonate-substituted apatite, DNA fragments, small RNA and microbe-derived components. Pathway analysis of protein enrichment predicted the activation of cell death and pro-inflammatory processes by endogenous CPP and synthetic CPP-II alike. This comprehensive characterisation validates the use of CPP-II generated in uraemic serum as in vitro equivalents of their endogenous counterparts and provides insight into the nature and pathological significance of CPP in CKD, which may act as vehicles for various bioactive ligands. Copyright © 2018 Elsevier Inc. All rights reserved.
Glass transition temperature of polymer nano-composites with polymer and filler interactions
NASA Astrophysics Data System (ADS)
Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi
2012-02-01
We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.
Radiation forces on small particles in the Solar System: A re-consideration
NASA Astrophysics Data System (ADS)
Burns, Joseph A.; Lamy, Philippe L.; Soter, Steven
2014-04-01
We respond to Klačka et al. (Klačka, J., Petržala, J., Pástor, P., Kómar, L. [2014]. Icarus, this issue, http://dx.doi.org/10.1016/j.icarus.2012.06.044.), who have criticized many previous derivations of the acceleration experienced by a spherical interplanetary particle owing to the Sun’s radiation. Much of their criticism arises from differences in semantics and notation as well as effects that are unimportant at Solar System speeds. Accordingly, in the appropriate limiting cases, most published expressions for the radiation forces, such as that found in Burns et al. (Burns, J.A., Lamy, P.L., Soter, S. [1979]. Icarus 40 1-48), are correct and duplicate the results of Klačka et al. (Klačka, J., Petržala, J., Pástor, P., Kómar, L. [2014]. Icarus, this issue, http://dx.doi.org/10.1016/j.icarus.2012.06.044).
NASA Technical Reports Server (NTRS)
Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.
2003-01-01
Nanometer sized particles of the chalcopyrite compounds CuInS2 and CuInSe2 were synthesized by thermal decomposition of molecular single-source precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively, in the non-coordinating solvent dioctyl phthalate at temperatures between 200 and 300 C. The nanoparticles range in size from 3 - 30 nm and are aggregated to form roughly spherical clusters of about 500 nm in diameter. X-ray diffraction of the nanoparticle powders shows greatly broadened lines indicative of very small particle sizes, which is confirmed by TEM. Peaks present in the XRD can be indexed to reference patterns for the respective chalcopyrite compounds. Optical spectroscopy and elemental analysis by energy dispersive spectroscopy support the identification of the nanoparticles as chalcopyrites.
Experimental light scattering by small particles: system design and calibration
NASA Astrophysics Data System (ADS)
Maconi, Göran; Kassamakov, Ivan; Penttilä, Antti; Gritsevich, Maria; Hæggström, Edward; Muinonen, Karri
2017-06-01
We describe a setup for precise multi-angular measurements of light scattered by mm- to μm-sized samples. We present a calibration procedure that ensures accurate measurements. Calibration is done using a spherical sample (d = 5 mm, n = 1.517) fixed on a static holder. The ultimate goal of the project is to allow accurate multi-wavelength measurements (the full Mueller matrix) of single-particle samples which are levitated ultrasonically. The system comprises a tunable multimode Argon-krypton laser, with 12 wavelengths ranging from 465 to 676 nm, a linear polarizer, a reference photomultiplier tube (PMT) monitoring beam intensity, and several PMT:s mounted radially towards the sample at an adjustable radius. The current 150 mm radius allows measuring all azimuthal angles except for ±4° around the backward scattering direction. The measurement angle is controlled by a motor-driven rotational stage with an accuracy of 15'.
Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves
2006-02-14
Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.
Charging of Aggregate Grains in Astrophysical Environments
NASA Astrophysics Data System (ADS)
Ma, Qianyu; Matthews, Lorin S.; Land, Victor; Hyde, Truell W.
2013-02-01
The charging of dust grains in astrophysical environments has been investigated with the assumption that these grains are homogeneous spheres. However, there is evidence which suggests that many grains in astrophysical environments are irregularly shaped aggregates. Recent studies have shown that aggregates acquire higher charge-to-mass ratios due to their complex structures, which in turn may alter their subsequent dynamics and evolution. In this paper, the charging of aggregates is examined including secondary electron emission and photoemission in addition to primary plasma currents. The results show that the equilibrium charge on aggregates can differ markedly from spherical grains with the same mass, but that the charge can be estimated for a given environment based on structural characteristics of the grain. The "small particle effect" due to secondary electron emission is also important for de terming the charge of micron-sized aggregates consisting of nano-sized particles.
Alizadeh, Amer; Wang, Moran
2017-03-01
Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.
2017-06-01
This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.
Corrosion Experiments Using Spherical Uranium Powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G. L.; Siekhaus, W. J.; Teslich, N. E.
2017-02-01
Corrosion experiments using spherical U powders are continuing with scanning electron microscopy (SEM) showing that the particles are highly textured, 5 m to 25 m diameters with 4% larger particles that are fused smaller particles. This U has a high specific surface area with no corners or back-sides, is well annealed with no machining work, and coated with a coherent oxide film, 30 nm to 300 nm thick. Exposure of this powder to low vapor pressure H 2O in the absence of O 2, i.e., a vacuum desiccator, resulted in a coherent oxide film growth of ~1 m/y, ~ 10Xmore » the growth rate in ambient air, displaying fracture along the growth plane at ~300 nm.« less
NASA Astrophysics Data System (ADS)
Wu, Kelu; Huang, Zhuanzhuan; Yu, Qiao-He; Wang, Yi-Yan; Xia, Tian-Long
2017-04-01
Different sizes of hexagonal spherical NaGdF4:Eu3+ particles are synthesized via a facile hydrothermal method with the use of ethylene glycol (EG), propylene glycol (PG) or butylene glycol (BG) as another solvent. The particle size decreases with the addition of EG, PG or BG and the decreasing trend in BG/H2O system is significantly more than that in the other two systems. Meanwhile, results show that luminescent properties of NaGdF4:Eu3+ are enhanced along with the decrease of particle size. Besides, the energy transfer from Dy3+ to Eu3+ is directly observed in the PL spectra of NaGdF4:Eu3+/Dy3+.
An approach for automated analysis of particle holograms
NASA Technical Reports Server (NTRS)
Stanton, A. C.; Caulfield, H. J.; Stewart, G. W.
1984-01-01
A simple method for analyzing droplet holograms is proposed that is readily adaptable to automation using modern image digitizers and analyzers for determination of the number, location, and size distributions of spherical or nearly spherical droplets. The method determines these parameters by finding the spatial location of best focus of the droplet images. With this location known, the particle size may be determined by direct measurement of image area in the focal plane. Particle velocity and trajectory may be determined by comparison of image locations at different instants in time. The method is tested by analyzing digitized images from a reconstructed in-line hologram, and the results show that the method is more accurate than a time-consuming plane-by-plane search for sharpest focus.
Toward automated analysis of particle holograms
NASA Technical Reports Server (NTRS)
Caulfield, H. J.
1987-01-01
A preliminary study of approaches for extracting and analyzing data from particle holograms is discussed. It concludes that: (1) for thin spherical particles, out-of-focus methods are optimum; (2) for thin nonspherical particles, out-of-focus methods are useful but must be supplemented by in-focus methods; (3) a complex method of projection and back projection can remove out-of-focus data for deep particles.
Preparation and Characterization of Colloidal Silica Particles under Mild Conditions
ERIC Educational Resources Information Center
Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.
2012-01-01
A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…
Close packing of rods on spherical surfaces
NASA Astrophysics Data System (ADS)
Smallenburg, Frank; Löwen, Hartmut
2016-04-01
We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.
Development and evaluation of spherical molecularly imprinted polymer beads.
Kempe, Henrik; Kempe, Maria
2006-06-01
The majority of studies on molecularly imprinted polymers has until now been carried out on irregularly shaped particles prepared by grinding of polymer monoliths. The preparation procedures are time- and labor-consuming and produce particles of wide size distributions. To answer the need for fast and straightforward routes to spherical molecularly imprinted polymer beads, we have developed a method comprising the formation of droplets of pre-polymerization solution directly in mineral oil by vigorous mixing followed by transformation of the droplets into solid spherical beads by photoinduced free-radical polymerization. No detergents or stabilizers were required for the droplet formation. Factors influencing the bead synthesis have been investigated and are detailed here. The beads were evaluated in parallel with corresponding irregularly shaped particles prepared from polymer monoliths. Conditions for the synthesis of propranolol-imprinted poly(methacrylic acid-co-trimethylolpropane trimethacrylate) beads in the size range of 1-100 microm in almost quantitative yield are described. The beads were applied as the recognition element in a 96-well plate format radioligand assay of propranolol in human serum.
NASA Technical Reports Server (NTRS)
Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel
2002-01-01
The effects of BaF2-CaF 2 particle morphology on PS304 feedstock powder flow ability have been investigated. BaF2-CaF2 eutectic powders were fabricated by comminution (angular) and by gas atomization (spherical). The fluoride powders were added incrementally to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. A linear relationship between flow time and concentration of BaF2-CaF2 powder was found. Flow of the powder blend with spherical BaF2-CaF2 was better than the angular BaF2-CaF2. Flow ability of the powder blend with angular fluorides decreased linearly with increasing fluoride concentration. Flow of the powder blend with spherical fluorides was independent of fluoride concentration. Results suggest that for this material blend, particle morphology plays a significant role in powder blend flow behavior, offering potential methods to improve powder flow ability and enhance the commercial potential. These findings may have applicability to other difficult-to-flow powders such as cohesive ceramics.
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-11-02
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-01-01
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701
Hydrodynamics of interaction of particles (including cells) with surfaces
NASA Astrophysics Data System (ADS)
Duszyk, Marek; Doroszewski, Jan
The study of the phenomena related to the motion of particles flowing in the proximity of the wall is pursued for purely cognitive reason as well as for some important practical purposes in various fields of technology, biology and medicine. When small spherical rigid particles move in the direction parallel to the surface their velocity is smaller than that of the fluid and depends on the ratio of the distance from the wall to the particle radius. The velocity of a particle falling down in a vertical cylinder is maximal in an eccentric position. A sphere in contact with the wall remains stationary. Translational velocity of spherical rigid particles the dimension of which are comparable to that of the tube is only slightly dependent of their lateral position. The differences in the flow parameters of deformable particles in comparison with rigid ones depend on the particle and fluid viscosity coefficient. When the particles move perpendicularly toward the wall, their velocity decreases as the particle approaches the surface. The change of particle velocity is inversely proportional to the gap. There are several theories explaining the influence of the channel diameter on the suspension viscosity (sigma phenomenon); a modern approach is based on the analysis of rheological properties of suspensions. The explanations of the Fahraeus effect (i.e. the fact that the concentration of particles flowing in a tube linking two containers are smaller than that in the containers) are based on non-uniform particle distribution in a transverse cross section and on the differences of velocities of particles and medium. The deviation of the velocity profile of a suspension of rigid particles flowing through a tube from the parabolic shape (blunting) does not depend on the flow velocity; as concerns deformable particles, however, this effect is the smaller the greater is the flow velocity. When the Reynolds number for particles is greater than 10 -3, there appears a component of particle velocity perpendicular to the streamline direction. This phenomenon is the cause of the lateral migration of particles. Neutrally buoyant rigid particles migrate to a certain concentrical region situated between the tube axis and the wall (tubular pinch region). Deformable neutrally buoyant particles migrate towards the tube axis, and deformable non-neutrally buoyant particles may move either toward the tube axis or toward the wall. In the research on the influence of the flow delimiting surface on the motion of particles in suspension a considerable progress has recently been made. However, the phenomena in this field are extremely complex. At present, two main types of approach may be distinguished. On a microscopic level direct interactions between particles and surfaces are analyzed. A macroscopic approach consists in treating particle suspension as fluid, and overall influence of the surface on its properties are studied. A comprehensive theory linking these two levels has not yet emerged.
DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E; Eric Frickey, E; Leung Heung, L
An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tendmore » to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were dried in air at 40 C. The granules were heated to 230 C for 30 minutes in argon to remove the remaining water and organic materials. The resulting product was spherical composite granules (100 to 2000 micron diameter) with a porous silica matrix containing small agglomerates of metal hydride particles. Open porosity in the silica matrix allows hydrogen to permeate rapidly through the matrix but the pores are small enough to contain the metal hydride particles. Additional porosity around the metal hydride particles, induced using abietic acid as a pore former, allows the particles to freely expand and contract without fracturing the brittle sol-gel matrix. It was demonstrated that the granules readily absorb and desorb hydrogen while remaining integral and dimensionally stable. Microcracking was observed after the granules were cycled in hydrogen five times. The strength of the granules was improved by coating them with a thin layer of a micro-porous polymer sol-gel that would allow hydrogen to freely pass through the coating but would filter out metal hydride poisons such as water and carbon monoxide. It was demonstrated that if a thin sol-gel coating was applied after the granules were cycled, the coating not only improved the strength of the granules but the coated granules retained their strength after additional hydrogen cycling tests. This additional strength is needed to extend the lifetime of the granules and to survive the compressive load in a large column of granules. Additional hydrogen adsorption tests are planned to evaluate the performance of coated granules after one hundred cycles. Tests will also be performed to determine the effects of metal hydride poisons on the granules. The results of these tests will be documented in a separate report. The process that was developed to form these granules could be scaled to a production process. The process to form granules from a mixture of metal hydride particles and pore former such as abietic acid can be scaled up using commercial granulators. The current laboratory-scale external gelation column produces approximately one gram of granules per hour. To increase the production output from a single column, multiple feed injection systems in a larger diameter column could be used.« less
Compressible instability of rapidly expanding spherical material interfaces
NASA Astrophysics Data System (ADS)
Mankbadi, Mina Reda
The focus herein is on the instability of a material interface formed during an abrupt release of concentrated energy as in detonative combustion, explosive dispersals, and inertial-confinement fusion. These applications are modeled as a spherical shock-tube in which high-pressure gas initially contained in a small spherical shell is suddenly released. A forward-moving shock and an inward-moving secondary shock are formed, and between them a material interface develops that separates high-density fluid from the low-density one. The wrinkling of this interface controls mixing and energy release. The interface's stability is studied with and without the inclusion of metalized particulates. A numerical scheme is developed to discretize the full nonlinear equations of the base flow, and the 3D linearized perturbed flow equations. Linearization is followed by spherical harmonic decomposition of the disturbances, thereby reducing the 3D computational domain to one-dimensional radial domain. The 3D physical nature of the disturbances is maintained throughout the procedure. An extended Roe-Pike scheme coupled with a WENO scheme is developed to capture the discontinuities and accurately predict the disturbances. In Chapter 2, the contact interface's stability is analyzed in the inviscid single-phase. The disturbances grow exponentially and the growth rate is insensitive to the radial initial-disturbance profile. For wave numbers less than 100, the results are in accordance with previous theories but clarify that compressibility reduces the growth rate. Unlike the classical RTI, the growth rate reaches saturation at high wavenumbers. The parametric studies show that for specific ratios of initial pressure and temperature, the instability can be eliminated altogether. Chapter 3 discusses the full effects of viscosity and thermal diffusivity. Although Prandtl number effects are minimal, viscous effects dampen the high-wave numbers. For a given Reynolds number there is a peak wave number at which the disturbances are most amplified. In Chapter 4, the multiphase case with metalized particles is investigated. The quasi steady gas-particle interaction forces and heat transfer decelerate the contact interface and reduce its Atwood number, which results in reducing the growth of the interfacial instabilities. A parametric study of the multiphase instability is presented to assist in controlling the instability.
Analyses of scattering characteristics of chosen anthropogenic aerosols
NASA Astrophysics Data System (ADS)
Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Muzal, Michal
2008-10-01
In the work, analyses of scattering profile of chosen anthropogenic aerosols for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) were made. As an example of anthropogenic aerosol three different pyrotechnic mixtures (DM11, M2, M16) were taken. Main parameters of smoke particles were firstly analyzed and well described, taking particle shape and size into special consideration. Shape of particles was analyzed on the basis of SEM pictures, and particle size was measured. Participation of particles in each fixed fraction characterized by range of sizes was analyzed and parameters of smoke particles of characteristic sizes and function describing aerosol size distribution (ASD) were determinated. Analyses of scattering profiles were carried out on the basis of both model of scattering on spherical and nonspherical particles. In the case of spherical particles Rayleigh-Mie model was used and for nonspherical particles analyses firstly model of spheroids was used, and then Rayleigh-Mie one. For each characteristic particle one calculated value of four parameters (effective scattering cross section σSCA, effective backscattering cross section σBSCA, scattering efficiency QSCA, backscattering efficiency QBSCA) and value of backscattering coefficient β for whole particles population. Obtained results were compared with the same parameters calculated for natural aerosol (cirrus cloud).
Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V
2018-07-01
In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.
Gueon, Donghee; Hwang, Jeong Tae; Yang, Seung Bo; Cho, Eunkyung; Sohn, Kwonnam; Yang, Doo-Kyung; Moon, Jun Hyuk
2018-01-23
A carbon host capable of effective and uniform sulfur loading is the key for lithium-sulfur batteries (LSBs). Despite the application of porous carbon materials of various morphologies, the carbon hosts capable of uniformly impregnating highly active sulfur is still challenging. To address this issue, we demonstrate a hierarchical pore-structured CNT particle host containing spherical macropores of several hundred nanometers. The macropore CNT particles (M-CNTPs) are prepared by drying the aerosol droplets in which CNTs and polymer particles are dispersed. The spherical macropore greatly improves the penetration of sulfur into the carbon host in the melt diffusion of sulfur. In addition, the formation of macropores greatly develops the volume of the micropore between CNT strands. As a result, we uniformly impregnate 70 wt % sulfur without sulfur residue. The S-M-CNTP cathode shows a highly reversible capacity of 1343 mA h g -1 at a current density of 0.2 C even at a high sulfur content of 70 wt %. Upon a 10-fold current density increase, a high capacity retention of 74% is observed. These cathodes have a higher sulfur content than those of conventional CNT hosts but nevertheless exhibit excellent performance. Our CNTPs and pore control technology will advance the commercialization of CNT hosts for LSBs.
Maturation of high-density lipoproteins
Shih, Amy Y.; Sligar, Stephen G.; Schulten, Klaus
2009-01-01
Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation. PMID:19570799
NASA Astrophysics Data System (ADS)
Aoi, Y.; Tominaga, T.
2013-03-01
Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.
Measurements of phoretic velocities of aerosol particles in microgravity conditions
NASA Astrophysics Data System (ADS)
Prodi, F.; Santachiara, G.; Travaini, S.; Vedernikov, A.; Dubois, F.; Minetti, C.; Legros, J. C.
2006-11-01
Measurements of thermo- and diffusio-phoretic velocities of aerosol particles (carnauba wax, paraffin and sodium chloride) were performed in microgravity conditions (Drop Tower facility, in Bremen, and Parabolic Flights, in Bordeaux). In the case of thermophoresis, a temperature gradient was obtained by heating the upper plate of the cell, while the lower one was maintained at environmental temperature. For diffusiophoresis, the water vapour gradient was obtained with sintered plates imbued with a water solution of MgCl 2 and distilled water, at the top and at the bottom of the cell, respectively. Aerosol particles were observed through a digital holographic velocimeter, a device allowing the determination of 3-D coordinates of particles from the observed volume. Particle trajectories and consequently particle velocities were reconstructed through the analysis of the sequence of particle positions. The experimental values of reduced thermophoretic velocities are between the theoretical values of Yamamoto and Ishihara [Yamamoto, K., Ishihara, Y., 1988. Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Phys. Fluids. 31, 3618-3624] and Talbot et al. [Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R., 1980. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737-758], and do not show a clear dependence on the thermal conductivity of the aerosol. The existence of negative thermophoresis is not confirmed in our experiments. Concerning diffusiophoretic experiments, the results obtained show a small increase of reduced diffusiophoretic velocity with the Knudsen number.
Janjua, Muhammad Ramzan Saeed Ashraf; Jamil, Saba; Jahan, Nazish; Khan, Shanza Rauf; Mirza, Saima
2017-05-31
Morphologically controlled synthesis of ferric oxide nano/micro particles has been carried out by using solvothermal route. Structural characterization displays that the predominant morphologies are porous hollow spheres, microspheres, micro rectangular platelets, octahedral and irregular shaped particles. It is also observed that solvent has significant effect on morphology such as shape and size of the particles. All the morphologies obtained by using different solvents are nearly uniform with narrow size distribution range. The values of full width at half maxima (FWHM) of all the products were calculated to compare their size distribution. The FWHM value varies with size of the particles for example small size particles show polydispersity whereas large size particles have shown monodispersity. The size of particles increases with decrease in polarity of the solvent whereas their shape changes from spherical to rectangular/irregular with decrease in polarity of the solvent. The catalytic activities of all the products were investigated for both dry and wet processes such as thermal decomposition of ammonium per chlorate (AP) and reduction of 4-nitrophenol in aqueous media. The results indicate that each product has a tendency to act as a catalyst. The porous hollow spheres decrease the thermal decomposition temperature of AP by 140 °C and octahedral Fe 3 O 4 particles decrease the decomposition temperature by 30 °C. The value of apparent rate constant (k app ) of reduction of 4-NP has also been calculated.
Matthew, I R; Frame, J W
1998-01-01
Low-vacuum scanning electron microscopy (Ivac SEM) was used to characterize the appearance of metal particles released from stressed and unstressed Champy miniplates placed in dogs and to study the relationship of the debris to the surrounding tissues. Under general endotracheal anesthesia, two Champy miniplates (titanium or stainless steel) were placed on the frontal bone in an animal model. One miniplate was bent to fit the curvature of the frontal bone (unstressed) and another miniplate of the same material was bent in a curve until the midpoint was raised 3 mm above the ends. The latter miniplate adapted to the skull curvature under tension during screw insertion (stressed). The miniplates and surrounding tissues were retrieved after intervals of 4, 12, and 24 weeks. Decalcified sections were prepared and examined by light microscopy and Ivac SEM. Under Ivac SEM examination, the titanium particles had a smooth, polygonal outline. Stainless steel particles were typically spherical, with numerous small projections on the surface. Most particles were 1 to 10 microns in diameter. The tissue response to the particles was variable; some particles were covered by fibrous connective tissue or enclosed by bone, and others were intracellular. The metal particles released from stressed or unstressed Champy miniplates were similar, and this was related to their source of origin and duration within the tissues. The tissue response to the particles appeared to depend on their location.
A facile production of microporous carbon spheres and their electrochemical performance in EDLC
NASA Astrophysics Data System (ADS)
Xia, Xiaohong; Shi, Lei; Liu, Hongbo; Yang, Li; He, Yuede
2012-03-01
In the absence of activation process, we prepared a series of carbon particles from saccharine, in which hydrothermal carbonization method was used. These particles have spherical or near-spherical morphology, controllable monodisperse particle size from the analyses of SEM. Raman and XRD results show that they are nongraphitizable. The BET surface area of these carbon spherules is around 400-500 m2 g-1 and the microporosity is about 84%, suggesting that the carbon particles are rich in micropores. The electrochemical behaviors were characterized by means of galvanostatic charging/discharging, cycle voltammetry and impedance spectroscopy. The results show that the specific capacitance of sucrose-based carbon spherule reached 164 F g-1 in 30% KOH electrolyte and a high volumetric capacitance over 170 F cm-3 was obtained. These carbon spherules could be promising materials for EDLC according to their facile preparation way, low cost and high packing density.
Computational study of the effect of gradient magnetic field in navigation of spherical particles
NASA Astrophysics Data System (ADS)
Karvelas, E. G.; Lampropoulos, N. K.; Papadimitriou, D. I.; Karakasidis, T. E.; Sarris, I. E.
2017-11-01
The use of spherical magnetic nanoparticles that are coated with drugs and can be navigated in arteries to attack tumors is proposed as an alternative to chemotherapy. Navigation of particles is due to magnetic field gradients that may be produced in an MRI device. In the present work, a computational study for the evaluation of the magnitude of the gradient magnetic field for particles navigation in Y bifurcations is presented. For this purpose, the presented method solves for the fluid flow and includes all the important forces that act on the particles in their discrete motion. The method is based on an iteration algorithm that adjusts the gradient magnetic field to minimize the particles’ deviation from a desired trajectory. Using the above mentioned method, the appropriate range of the gradient magnetic field for optimum navigation of nanoparticles’s aggregation is found.
Interpretation of Extinction in Gaussian-Beam Scattering
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The extinction efficiency for the interaction of a plane wave with a large nonabsorbing spherical particle is approximately 2.0. When a Gaussian beam of half-width w(sub 0) is incident upon a spherical particle of radius a with w(sub 0)/a less than 1, the extinction efficiency attains unexpectedly high or low values, contrary to intuitive expectations. The reason for this is associated with the so-called compensating term in the scattered field, which cancels the field of the Gaussian beam behind the particle, thereby producing the particle's shadow. I introduce a decomposition of the total exterior field into incoming and outgoing portions that are free of compensating terms. It is then shown that a suitably defined interaction efficiency has the intuitively expected asymptotic values of 2.0 for w(sub 0)/a much greater than 1 and 1.0 for w(sub 0)/a much less than 1.
Schmidt, Irma; Minceva, Mirjana; Arlt, Wolfgang
2012-02-17
The X-ray computed tomography (CT) is used to determine local parameters related to the column packing homogeneity and hydrodynamics in columns packed with spherically and irregularly shaped particles of same size. The results showed that the variation of porosity and axial dispersion coefficient along the column axis is insignificant, compared to their radial distribution. The methodology of using the data attained by CT measurements to perform a CFD simulation of a batch separation of model binary mixtures, with different concentration and separation factors is demonstrated. The results of the CFD simulation study show that columns packed with spherically shaped particles provide higher yield in comparison to columns packed with irregularly shaped particles only below a certain value of the separation factor. The presented methodology can be used for selecting a suited packing material for a particular separation task. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan
2014-03-01
Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.
Spheroidization of glass powders for glass ionomer cements.
Gu, Y W; Yap, A U J; Cheang, P; Kumar, R
2004-08-01
Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.
The margination propensity of spherical particles for vascular targeting in the microcirculation
Gentile, Francesco; Curcio, Antonio; Indolfi, Ciro; Ferrari, Mauro; Decuzzi, Paolo
2008-01-01
The propensity of circulating particles to drift laterally towards the vessel walls (margination) in the microcirculation has been experimentally studied using a parallel plate flow chamber. Fluorescent polystyrene particles, with a relative density to water of just 50 g/cm3comparable with that of liposomal or polymeric nanoparticles used in drug delivery and bio-imaging, have been used with a diameter spanning over three order of magnitudes from 50 nm up to 10 μm. The number n∼s of particles marginating per unit surface have been measured through confocal fluorescent microscopy for a horizontal chamber, and the corresponding total volume V∼s of particles has been calculated. Scaling laws have been derived as a function of the particle diameter d. In horizontal capillaries, margination is mainly due to the gravitational force for particles with d > 200 nm and V∼s increases with d4; whereas for smaller particles V∼s increases with d3. In vertical capillaries, since the particles are heavier than the fluid they would tend to marginate towards the walls in downward flows and towards the center in upward flows, with V∼s increasing with d9/2. However, the margination in vertical capillaries is predicted to be much smaller than in horizontal capillaries. These results suggest that, for particles circulating in an external field of volume forces (gravitation or magnetic), the strategy of using larger particles designed to marginate and adhere firmly to the vascular walls under flow could be more effective than that of using particles sufficiently small (d < 200 nm) to hopefully cross a discontinuous endothelium. PMID:18702833
Extinction by a Homogeneous Spherical Particle in an Absorbing Medium
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Videen, Gorden; Yang, Ping
2017-01-01
We use a recent computer implementation of the first principles theory of electromagnetic scattering to compute far-field extinction by a spherical particle embedded in an absorbing unbounded host. Our results show that the suppressing effect of increasing absorption inside the host medium on the ripple structure of the extinction efficiency factor as a function of the size parameter is similar to the well-known effect of increasing absorption inside a particle embedded in a nonabsorbing host. However, the accompanying effects on the interference structure of the extinction efficiency curves are diametrically opposite. As a result, sufficiently large absorption inside the host medium can cause negative particulate extinction. We offer a simple physical explanation of the phenomenon of negative extinction consistent with the interpretation of the interference structure as being the result of interference of the field transmitted by the particle and the diffracted field due to an incomplete wave front resulting from the blockage of the incident plane wave by the particle's geometrical projection.
Light scattering by lunar-like particle size distributions
NASA Technical Reports Server (NTRS)
Goguen, Jay D.
1991-01-01
A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.
Westerik, Nieke; Scholten, Elke; Corredig, Milena
2015-06-15
Protein microparticles were formed through emulsification of 25% (w/w) whey protein isolate (WPI) solutions containing various concentrations of calcium (0.0-400.0mM) in an oil phase stabilized by polyglycerol polyricinoleate (PGPR). The emulsions were heated (at 80°C) and the microparticles subsequently re-dispersed in an aqueous phase. Light microscopy and scanning electron microscopy (SEM) images revealed that control particles and those prepared with 7.4mM calcium were spherical and smooth. Particles prepared with 15.0mM calcium gained an irregular, cauliflower-like structure, and at concentrations larger than 30.0mM, shells formed and the particles were no longer spherical. These results describe, for the first time, the potential of modulating the properties of dense whey protein particles by using calcium, and may be used as structuring agents for the design of functional food matrices with increased protein and calcium content. Copyright © 2015. Published by Elsevier Ltd.
High-speed DNA-based rolling motors powered by RNase H
Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.
2016-01-01
DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next generation sensors, drug delivery platforms, and biological computing. Despite their exquisite programmability, DNA-based walkers are, however, challenging to work with due to their low fidelity and slow rates (~1 nm/min). Here, we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three-orders of magnitude greater than conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridise to a surface modified with complementary RNA; motion is achieved through the addition of RNase H, which selectively hydrolyses hybridised RNA. Spherical motors move in a self-avoiding manner, whereas anisotropic particles, such as dimerised particles or rod-shaped particles travel linearly without a track or external force. Finally, we demonstrate detection of single nucleotide polymorphism by measuring particle displacement using a smartphone camera. PMID:26619152
Rheology of dense granular flows for elongated particles
NASA Astrophysics Data System (ADS)
Nagy, Dániel B.; Claudin, Philippe; Börzsönyi, Tamás; Somfai, Ellák
2017-12-01
We study the rheology of dense granular flows for frictionless spherocylinders by means of 3D numerical simulations. As in the case of spherical particles, the effective friction μ is an increasing function of the inertial number I , and we systematically investigate the dependence of μ on the particle aspect ratio Q , as well as that of the normal stress differences, the volume fraction, and the coordination number. We show in particular that the quasistatic friction coefficient is nonmonotonic with Q : from the spherical case Q =1 , it first sharply increases, reaches a maximum around Q ≃1.05 , and then gently decreases until Q =3 , passing its initial value at Q ≃2 . We provide a microscopic interpretation for this unexpected behavior through the analysis of the distribution of dissipative contacts around the particles: as compared to spheres, slightly elongated grains enhance contacts in their central cylindrical band, whereas at larger aspect ratios particles tend to align and dissipate by preferential contacts at their hemispherical caps.
Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics
ERIC Educational Resources Information Center
Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei
2013-01-01
At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…
Sherman, H; Nguyen, A V; Bruckard, W
2016-11-22
Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.
On the Impact of Collisions on Particle Dispersion in a Shear Layer
NASA Astrophysics Data System (ADS)
Soteriou, Marios; Mosley, John
1999-11-01
In this numerical study the impact of collisions on the evolution of a dispersed phase in a gaseous shear layer flow is investigated. The disperse phase consists of spherical particles which may experience two modes of collision: In the first, the collision has no effect on the particles themselves and is simply registered for accounting purposes. In the second, the particles coalesce upon impact into a larger spherical particle. The two phase mixture is assumed to be dilute and hence the impact of the disperse phase on the carrier phase is disabled. The unaveraged evolution of the carrier phase is simulated by using the Lagrangian Vortex Element Method while that of the dispersed phase by computing the trajectories of individual particles. Thus the numerical model is totally Lagrangian and grid-free. Numerical results indicate that collisions are maximized at intermediate Stokes numbers and that for a given volume fraction they increase as the particles get smaller. Coalescence of particles tends to reduce the overall number of collisions in the flow and alters their locus, shifting them predominately upstream. It also has a dramatic impact on dispersion increasing it substantially for the cases that experience even moderate number of collisions.
Impact erosion prediction using the finite volume particle method with improved constitutive models
NASA Astrophysics Data System (ADS)
Leguizamón, Sebastián; Jahanbakhsh, Ebrahim; Maertens, Audrey; Vessaz, Christian; Alimirzazadeh, Siamak; Avellan, François
2016-11-01
Erosion damage in hydraulic turbines is a common problem caused by the high- velocity impact of small particles entrained in the fluid. In this investigation, the Finite Volume Particle Method is used to simulate the three-dimensional impact of rigid spherical particles on a metallic surface. Three different constitutive models are compared: the linear strainhardening (L-H), Cowper-Symonds (C-S) and Johnson-Cook (J-C) models. They are assessed in terms of the predicted erosion rate and its dependence on impact angle and velocity, as compared to experimental data. It has been shown that a model accounting for strain rate is necessary, since the response of the material is significantly tougher at the very high strain rate regime caused by impacts. High sensitivity to the friction coefficient, which models the cutting wear mechanism, has been noticed. The J-C damage model also shows a high sensitivity to the parameter related to triaxiality, whose calibration appears to be scale-dependent, not exclusively material-determined. After calibration, the J-C model is capable of capturing the material's erosion response to both impact velocity and angle, whereas both C-S and L-H fail.
Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak
For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less
Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography
Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak; ...
2017-01-28
For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less
Gyulai, Orsolya; Kovács, Anita; Sovány, Tamás; Csóka, Ildikó; Aigner, Zoltán
2018-04-20
This research work presents the use of the Quality by Design (QbD) concept for optimization of the spherical agglomeration crystallization method in the case of the active agent, ambroxol hydrochloride (AMB HCl). AMB HCl spherical crystals were formulated by the spherical agglomeration method, which was applied as an antisolvent technique. Spherical crystals have good flowing properties, which makes the direct compression tableting method applicable. This means that the amount of additives used can be reduced and smaller tablets can be formed. For the risk assessment, LeanQbD Software was used. According to its results, four independent variables (mixing type and time, dT (temperature difference between solvent and antisolvent), and composition (solvent/antisolvent volume ratio)) and three dependent variables (mean particle size, aspect ratio, and roundness) were selected. Based on these, a 2⁻3 mixed-level factorial design was constructed, crystallization was accomplished, and the results were evaluated using Statistica for Windows 13 program. Product assay was performed and it was revealed that improvements in the mean particle size (from ~13 to ~200 µm), roundness (from ~2.4 to ~1.5), aspect ratio (from ~1.7 to ~1.4), and flow properties were observed while polymorphic transitions were avoided.
Effects of Turbulence on Settling Velocities of Synthetic and Natural Particles
NASA Astrophysics Data System (ADS)
Jacobs, C.; Jendrassak, M.; Gurka, R.; Hackett, E. E.
2014-12-01
For large-scale sediment transport predictions, an important parameter is the settling or terminal velocity of particles because it plays a key role in determining the concentration of sediment particles within the water column as well as the deposition rate of particles onto the seabed. The settling velocity of particles is influenced by the fluid dynamic environment as well as attributes of the particle, such as its size, shape, and density. This laboratory study examines the effects of turbulence, generated by an oscillating grid, on both synthetic and natural particles for a range of flow conditions. Because synthetic particles are spherical, they serve as a reference for the natural particles that are irregular in shape. Particle image velocimetry (PIV) and high-speed imaging systems were used simultaneously to study the interaction between the fluid mechanics and sediment particles' dynamics in a tank. The particles' dynamics were analyzed using a custom two-dimensional tracking algorithm used to obtain distributions of the particle's velocity and acceleration. Turbulence properties, such as root-mean-square turbulent velocity and vorticity, were calculated from the PIV data. Results are classified by Stokes number, which was based-on the integral scale deduced from the auto-correlation function of velocity. We find particles with large Stokes numbers are unaffected by the turbulence, while particles with small Stokes numbers primarily show an increase in settling velocity in comparison to stagnant flow. The results also show an inverse relationship between Stokes number and standard deviation of the settling velocity. This research enables a better understanding of the interdependence between particles and turbulent flow, which can be used to improve parameterizations in large-scale sediment transport models.
Aerosol Airmass Type Mapping Over the Urban Mexico City Region From Space-based Multi-angle Imaging
NASA Technical Reports Server (NTRS)
Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.
2013-01-01
Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of approx. 0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.
Computer simulation of backscattering spectra from paint
NASA Astrophysics Data System (ADS)
Mayer, M.; Silva, T. F.
2017-09-01
To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.
Applicability of Rayleigh–Gans Scattering to Spherical Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerker, M.; Farone, W. A.; Matijevic, E.
1963-01-01
Exact computations of scattering functions for spheres are compared with those obtained from the Rayleigh-Gans theory of scattering of electromagnetic radiation. The range of validity for spheres as a guide for non-homogeneous particles and other geometries. This study is limited to non-absorbing particles with real indices of refraction. (C.E.S.)
Design of a Uranium Dioxide Spheroidization System
NASA Technical Reports Server (NTRS)
Cavender, Daniel P.; Mireles, Omar R.; Frendi, Abdelkader
2013-01-01
The plasma spheroidization system (PSS) is the first process in the development of tungsten-uranium dioxide (W-UO2) fuel cermets. The PSS process improves particle spherocity and surface morphology for coating by chemical vapor deposition (CVD) process. Angular fully dense particles melt in an argon-hydrogen plasma jet at between 32-36 kW, and become spherical due to surface tension. Surrogate CeO2 powder was used in place of UO2 for system and process parameter development. Particles range in size from 100 - 50 microns in diameter. Student s t-test and hypothesis testing of two proportions statistical methods were applied to characterize and compare the spherocity of pre and post process powders. Particle spherocity was determined by irregularity parameter. Processed powders show great than 800% increase in the number of spherical particles over the stock powder with the mean spherocity only mildly improved. It is recommended that powders be processed two-three times in order to reach the desired spherocity, and that process parameters be optimized for a more narrow particles size range. Keywords: spherocity, spheroidization, plasma, uranium-dioxide, cermet, nuclear, propulsion
Optical properties of soot particles: measurement - model comparison
NASA Astrophysics Data System (ADS)
Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.
2013-12-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.