Sample records for small structures research

  1. The Phenomenology of Small-Scale Turbulence

    NASA Astrophysics Data System (ADS)

    Sreenivasan, K. R.; Antonia, R. A.

    I have sometimes thought that what makes a man's work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein's philosophy Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure - the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.

  2. [Crystal structure of SMU.2055 protein from Streptococcus mutans and its small molecule inhibitors design and selection].

    PubMed

    Xiaodan, Chen; Xiurong, Zhan; Xinyu, Wu; Chunyan, Zhao; Wanghong, Zhao

    2015-04-01

    The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.

  3. Small Group Research

    ERIC Educational Resources Information Center

    McGrath, Joseph E.

    1978-01-01

    Summarizes research on small group processes by giving a comprehensive account of the types of variables primarily studied in the laboratory. These include group structure, group composition, group size, and group relations. Considers effects of power, leadership, conformity to social norms, and role relationships. (Author/AV)

  4. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO

    NASA Astrophysics Data System (ADS)

    Kuklin, A. I.; Rogachev, A. V.; Soloviov, D. V.; Ivankov, O. I.; Kovalev, Yu S.; Utrobin, P. K.; Kutuzov, S. A.; Soloviev, A. G.; Rulev, M. I.; Gordeliy, V. I.

    2017-05-01

    Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures.

  5. Education and Training that Meets the Needs of Small Business: A Systematic Review of Research

    ERIC Educational Resources Information Center

    Dawe, Susan; Nguyen, Nhi

    2007-01-01

    Small businesses account for the great majority of businesses and half the private sector employment in Australia, but only one third provide structured training for their employees. This study, a systematic review of existing research, set out to find clear evidence of intervention strategies that meet small business needs in relation to the…

  6. On the relation between the small world structure and scientific activities.

    PubMed

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers' productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications.

  7. Laboratory and Field Investigations of Small Crater Repair Technologies

    DTIC Science & Technology

    2007-09-01

    caps over debris backfill or specially placed or compacted backfill, structural systems to bridge craters, foamed crater backfills, and structural ...Jeb S. Tingle, and Timothy J. McCaffrey Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry...Engineer Research and Development Center (ERDC), Geotechnical and Structures Laboratory (GSL), Vicksburg, MS. The findings and recommendations presented

  8. The Application of Reflexivity in Small Business Research and Implications for the Business Practitioner

    ERIC Educational Resources Information Center

    Harrison, Nigel; Kirkham, Janet

    2014-01-01

    This paper is based on a review of the lead author's research, which took the form of a self-narrative from a practitioner about the perceived realities of one small business and its owner. The paper explores the practical application of auto-ethnographic reflexive research methodologies and seeks to demonstrate that structured ways can be…

  9. Structure, Fit and Coherence of Two Circumplex Assessments of Personality in a Population with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Lindsay, W. R.; Steptoe, L.; Hogue, T. E.; Mooney, P.; Taylor, J. L.; Morrissey, C.

    2009-01-01

    Background: Little research has been conducted investigating the way in which personality constructs relate to people with intellectual disabilities. The small amount of research that does exist suggests that underlying personality structure may be considerably different to that found in mainstream research. This hypothesis is, however, untested…

  10. Birthday Cake Activity Structured Arrangement for Helping Children Determining Quantities

    ERIC Educational Resources Information Center

    Mariana, Neni

    2010-01-01

    Few researches have been concerned about relation between children's spatial thinking and number sense. Narrowing for this small research, we focused on one component of spatial thinking, that is structuring objects, and one component of number senses, that is cardinality by determining quantities. This study focused on a design research that was…

  11. On the Relation between the Small World Structure and Scientific Activities

    PubMed Central

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers’ productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications. PMID:25780922

  12. Small business innovation research. Abstracts of 1988 phase 1 awards

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  13. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  14. Identification of small molecules capable of regulating conformational changes of telomeric G-quadruplex

    NASA Astrophysics Data System (ADS)

    Chen, Shuo-Bin; Liu, Guo-Cai; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2018-02-01

    Design of small molecules targeted at human telomeric G-quadruplex DNA is an extremely active research area. Interestingly, the telomeric G-quadruplex is a highly polymorphic structure. Changes in its conformation upon small molecule binding may be a powerful method to achieve a desired biological effect. However, the rational development of small molecules capable of regulating conformational change of telomeric G-quadruplex structures is still challenging. In this study, we developed a reliable ligand-based pharmacophore model based on isaindigotone derivatives with conformational change activity toward telomeric G-quadruplex DNA. Furthermore, virtual screening of database was conducted using this pharmacophore model and benzopyranopyrimidine derivatives in the database were identified as a strong inducer of the telomeric G-quadruplex DNA conformation, transforming it from hybrid-type structure to parallel structure.

  15. The Small-Angle Neutron Scattering Data Analysis of the Phospholipid Transport Nanosystem Structure

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Aksenov, V. L.; Ipatova, O. M.; Ivankov, O. I.

    2018-05-01

    The small-angle neutron scattering technique (SANS) is employed for investigation of structure of the phospholipid transport nanosystem (PTNS) elaborated in the V.N.Orekhovich Institute of Biomedical Chemistry (Moscow, Russia). The SANS spectra have been measured at the YuMO small-angle spectrometer of IBR-2 reactor (Joint Institute of Nuclear Research, Dubna, Russia). Basic characteristics of polydispersed population of PTNS unilamellar vesicles (average radius of vesicles, polydispersity, thickness of membrane, etc.) have been determined in three cases of the PTNS concentrations in D2O: 5%, 10%, and 25%. Numerical analysis is based on the separated form factors method (SFF). The results are discussed in comparison with the results of analysis of the small-angle X-ray scattering spectra collected at the Kurchatov Synchrotron Radiation Source of the National Research Center “Kurchatov Institute” (Moscow, Russia).

  16. Raman Optical Activity of Biological Molecules

    NASA Astrophysics Data System (ADS)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  17. Small business innovation research. Abstracts of completed 1987 phase 1 projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  18. Education, Training and Employment in Small-Scale Enterprises: Three Industries in Sao Paulo, Brazil. IIEP Research Report No. 63.

    ERIC Educational Resources Information Center

    Leite, Elenice M.; Caillods, Francoise

    Despite the prophecies forecasting their probable disappearance or annihilation, small-scale enterprises have persisted in the Brazilian industrial structure since 1950. To account for the survival of small firms in Brazil, specifically in the state of Sao Paulo, a study examined 100 small firms in three industrial sectors: clothing, mechanical…

  19. NASA SBIR product catalog, 1990

    NASA Technical Reports Server (NTRS)

    Schwenk, F. Carl; Gilman, J. A.

    1990-01-01

    Since 1983 the NASA Small Business Innovation Research (SBIR) program has benefitted both the agency and the high technology small business community. By making it possible for more small businesses to participate in NASA's research and development, SBIR also provides opportunities for these entrepreneurs to develop products which may also have significant commercial markets. Structured in three phases, the SBIR program uses Phase 1 to assess the technical feasibility of novel ideas proposed by small companies and Phase 2 to conduct research and development on the best concepts. Phase 3, not funded by SBIR, is the utilization and/or commercialization phase. A partial list of products of NASA SBIR projects which have advanced to some degree into Phase 3 are provided with a brief description.

  20. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.

    PubMed

    Xing, Pengyao; Zhao, Yanli

    2016-09-01

    Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Examining the Effects of Text Genre and Structure on Fourth-and Fifth-Grade Students' High-Level Comprehension as Evidenced in Small-Group Discussions

    ERIC Educational Resources Information Center

    Li, Mengyi; Murphy, P. Karen; Firetto, Carla M.

    2014-01-01

    Although there is a rich literature on the role of text genre and structure on students' literal comprehension, more research is needed regarding the role of these text features on students' high-level comprehension as evidenced in their small-group discussions. As such, the present study examined the effects of text genre (i.e., narrative and…

  2. Study of the Influence of Metallurgical Factors on Fatigue and Fracture of Aerospace Structural Materials

    DTIC Science & Technology

    1989-03-01

    11 II. MICROSTRUCTURE/ PROPERTY RELATIONSHIPS IN ADVANCED 12 STRUCTURAL ALLOYS A. Research Objectives 12 B. Summary of Research Efforts 12 1. Fracture...relationship is needed. Figure 5. Correlation between crack growth rates and effective 7 AK for small and large fatigue cracks in a titanium aluminide ...Microstructural/ Property Relationships in Advanced Structural Alloys Table I. Tensile and Fracture Properties of A-Fe-X Alloys in the 13 LT

  3. From SHAPE Signatures to 3-D Structures | Center for Cancer Research

    Cancer.gov

    RNAs undergo extensive folding to form sophisticated based-paired secondary structures that are, in part, indicators of more complex three-dimensional structures.  These 3-D shapes are an integral part of the cellular gene-expression machinery. Deconstructing these structures is no small matter, yet it is critical to understanding their function.

  4. A comparative study of internally and externally capped balloons using small scale test balloons

    NASA Technical Reports Server (NTRS)

    Bell, Douglas P.

    1994-01-01

    Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.

  5. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  6. An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.

  7. Using qualitative mixed methods to study small health care organizations while maximising trustworthiness and authenticity.

    PubMed

    Phillips, Christine B; Dwan, Kathryn; Hepworth, Julie; Pearce, Christopher; Hall, Sally

    2014-11-19

    The primary health care sector delivers the majority of health care in western countries through small, community-based organizations. However, research into these healthcare organizations is limited by the time constraints and pressure facing them, and the concern by staff that research is peripheral to their work. We developed Q-RARA-Qualitative Rapid Appraisal, Rigorous Analysis-to study small, primary health care organizations in a way that is efficient, acceptable to participants and methodologically rigorous. Q-RARA comprises a site visit, semi-structured interviews, structured and unstructured observations, photographs, floor plans, and social scanning data. Data were collected over the course of one day per site and the qualitative analysis was integrated and iterative. We found Q-RARA to be acceptable to participants and effective in collecting data on organizational function in multiple sites without disrupting the practice, while maintaining a balance between speed and trustworthiness. The Q-RARA approach is capable of providing a richly textured, rigorous understanding of the processes of the primary care practice while also allowing researchers to develop an organizational perspective. For these reasons the approach is recommended for use in small-scale organizations both within and outside the primary health care sector.

  8. Small Business Innovation Research, Post-Phase II Opportunity Assessment

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report outlines current Small Business Innovation Research (SBIR) Post-Phase II opportunity contract award results for the SBIR technology program from 2007 to 2011 for NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD). The report provides guidelines for incorporating SBIR technology into NASA programs and projects and provides a quantitative overview of the post-Phase II award patterns that correspond with each mission directorate at NASA Glenn Research Center (GRC). In recent years, one of NASA's goals has been to not only transfer SBIR technologies to commercial industries, but to ensure that NASA mission directorates incorporate SBIR technologies into their program and project activities. Before incorporating technologies into MD programs, it is important to understand each mission directorate structure because each directorate has different objectives and needs. The directorate program structures follow.

  9. An examination on the influence of small and medium enterprise (SME) stakeholder on green supply chain management practices

    NASA Astrophysics Data System (ADS)

    Shahlan, M. Z.; Sidek, A. A.; Suffian, S. A.; Hazza, M. H. F. A.; Daud, M. R. C.

    2018-01-01

    In this paper, climate change and global warming are the biggest current issues in the industrial sectors. The green supply chain managements (GSCM) is one of the crucial input to these issues. Effective GSCM can potentially secure the organization’s competitive advantage and improve the environmental performance of the network activities. In this study, the aim is to investigate and examine how a small and medium enterprises (SMEs) stakeholder pressure and top management influence green supply chain management practices. The study is further advance green supply chain management research in Malaysia focusing on SMEs manufacturing sector using structural equation modelling. Structural equation modelling is a multivariate statistical analysis technique used to examine structural relationship. It is the combination of factor analysis and multi regression analysis and used to analyse structural relationship between measure variable and latent factor. This research found that top management support and stakeholder pressure is the major influence for SMEs to adopt green supply chain management. The research also found that top management is fully mediate with the relationship between stakeholder pressure and monitoring supplier environmental performance.

  10. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes formore » 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.« less

  11. Data-driven high-throughput prediction of the 3-D structure of small molecules: review and progress. A response to the letter by the Cambridge Crystallographic Data Centre.

    PubMed

    Baldi, Pierre

    2011-12-27

    A response is presented to sentiments expressed in "Data-Driven High-Throughput Prediction of the 3-D Structure of Small Molecules: Review and Progress. A Response from The Cambridge Crystallographic Data Centre", recently published in the Journal of Chemical Information and Modeling, (1) which may give readers a misleading impression regarding significant impediments to scientific research posed by the CCDC.

  12. An Overview of Structural Characteristics in Problematic Video Game Playing.

    PubMed

    Griffiths, Mark D; Nuyens, Filip

    2017-01-01

    There are many different factors involved in how and why people develop problems with video game playing. One such set of factors concerns the structural characteristics of video games (i.e., the structure, elements, and components of the video games themselves). Much of the research examining the structural characteristics of video games was initially based on research and theorizing from the gambling studies field. The present review briefly overviews the key papers in the field to date. The paper examines a number of areas including (i) similarities in structural characteristics of gambling and video gaming, (ii) structural characteristics in video games, (iii) narrative and flow in video games, (iv) structural characteristic taxonomies for video games, and (v) video game structural characteristics and game design ethics. Many of the studies carried out to date are small-scale, and comprise self-selected convenience samples (typically using self-report surveys or non-ecologically valid laboratory experiments). Based on the small amount of empirical data, it appears that structural features that take a long time to achieve in-game are the ones most associated with problematic video game play (e.g., earning experience points, managing in-game resources, mastering the video game, getting 100% in-game). The study of video games from a structural characteristic perspective is of benefit to many different stakeholders including academic researchers, video game players, and video game designers, as well as those interested in prevention and policymaking by making the games more socially responsible. It is important that researchers understand and recognize the psycho-social effects and impacts that the structural characteristics of video games can have on players, both positive and negative.

  13. Big Trouble for Small Schools

    ERIC Educational Resources Information Center

    Bailey, Jon; Preston, Kim

    2007-01-01

    An analysis of the proposed changes to Nebraska's school finance formula and school structure shows that many of Nebraska's rural schools could suffer from imposition of a "small by choice" factor. Research has consistently shown that smaller schools have some advantages over their larger counterparts. The 2005 session of the Nebraska…

  14. Laboratory and Field Evaluation of In-Place Asphalt Recycling Technologies for Small Airfield Repair

    DTIC Science & Technology

    2013-06-01

    Mariely Mejías-Santiago and William D. Carruth Geotechnical and Structures Laboratory US Army Engineer Research and Development Center 3909 Halls...24. Pavement structure at Test Site 1. ....................................................................................... 28  Figure 25. Pavement... structure at ERDC test site. ................................................................................ 30  Figure 26. Heatwurx HWX-30 electric

  15. Characterizing protein domain associations by Small-molecule ligand binding

    PubMed Central

    Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2012-01-01

    Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168

  16. Biological Small Angle Scattering: Techniques, Strategies and Tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, Barnali; Muñoz, Inés G.; Urban, Volker S.

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins,more » and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications.« less

  17. Radon entry into basements: Approach, experimental structures, and instrumentation of the small structures research project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, W.J.; Modera, M.P.; Sextro, R.G.

    1992-02-01

    We describe the experimental approach, structures, and instrumentation of a research project on radon generation and transport in soil and entry into basements. The overall approach is to construct small precisely-fabricated basements in areas of different geology and climate, to control the pressures and ventilation rates in the structures, and to monitor radon concentrations and other relevant parameters over a period of one year or more. Two nearly air-tight structures have been constructed at the first site. The floor of each structure contains adjustable-width slots that serve as the only significant pathway for advective entry of radon. A layer ofmore » gravel underlays the floor of one structure; otherwise they are identical. The structures are instrumented for continuous or periodic monitoring of soil, structural, and meteorological parameters that affect radon entry. The pressure difference that drives advective radon entry can be maintained constant or varied over time. Soil gas and radon entry rates and associated parameters, such as soil gas pressures and radon concentrations, have been monitored for a range of steady-state and time-varying pressure differences between the interior of the structure and the soil. Examples of the experimentally-measured pressure and permeability fields in the soil around a structure are presented and discussed.« less

  18. Neighborhood Age Structure and its Implications for Health

    PubMed Central

    2006-01-01

    Age structure at the neighborhood level is rarely considered in contextual studies of health. However, age structure can play a critical role in shaping community life, the availability of resources, and the opportunities for social engagement—all factors that, research suggests, have direct and indirect effects on health. Age structure can be theorized as a compositional effect and as a contextual effect. In addition, the dynamic nature of age structure and the utility of a life course perspective as applied to neighborhood effects research merits attention. Four Chicago neighborhoods are summarized to illustrate how age structure varies across small space, suggesting that neighborhood age structure should be considered a key structural covariate in contextual research on health. Considering age structure implies incorporating not only meaningful cut points for important age groups (e.g., proportion 65 years and over) but attention to the shape of the distribution as well. PMID:16865558

  19. Investigations on physics of planetary atmospheres and small bodies of the Solar system, extrasolar planets and disk structures around the stars

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.

    2015-12-01

    The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards

  20. Cultivating Advanced Technical Writing Skills through a Graduate-Level Course on Writing Research Proposals

    ERIC Educational Resources Information Center

    McCarthy, Brian D.; Dempsey, Jillian L.

    2017-01-01

    A graduate-level course focused on original research proposals is introduced to address the uneven preparation in technical writing of new chemistry graduate students. This course focuses on writing original research proposals. The general course structure features extensive group discussions, small-group activities, and regular in-class…

  1. Children's Behaviors and Emotions in Small-Group Argumentative Discussion: Explore the Influence of Big Five Personality Factors

    ERIC Educational Resources Information Center

    Dong, Ting

    2009-01-01

    The assessment and structure of personality traits and small group learning during classroom discussions are both research fields that have undergone fast development in the past few decades. However, very few studies have investigated the relationship between individual personality characteristics and performance in discussions, especially with…

  2. Informing the improvement of forest products durability using small angle neutron scattering

    Treesearch

    Nayomi Plaza Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes

    2016-01-01

    A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...

  3. Leadership Identity in a Small Island Developing State: The Jamaican Context

    ERIC Educational Resources Information Center

    Floyd, Alan; Fuller, Carol

    2016-01-01

    While the role of leadership in improving schools is attracting more worldwide attention, there is a need for more research investigating leaders' experiences in different national contexts. Using focus-group and semi-structured interview data, this paper explores the background, identities and experiences of a small group of Jamaican school…

  4. Small UAV Research and Evolution in Long Endurance Electric Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Chu, Julio; Motter, Mark A.; Carter, Dennis L.; Ol, Michael; Zeune, Cale

    2007-01-01

    This paper describes recent research into the advancement of small, electric powered unmanned aerial vehicle (UAV) capabilities. Specifically, topics include the improvements made in battery technology, design methodologies, avionics architectures and algorithms, materials and structural concepts, propulsion system performance prediction, and others. The results of prototype vehicle designs and flight tests are discussed in the context of their usefulness in defining and validating progress in the various technology areas. Further areas of research need are also identified. These include the need for more robust operating regimes (wind, gust, etc.), and continued improvement in payload fraction vs. endurance.

  5. Mapping the social impacts of small dams: The case of Thailand's Ing River basin.

    PubMed

    Fung, Zali; Pomun, Teerapong; Charles, Katrina J; Kirchherr, Julian

    2018-05-24

    The social impacts of large dams have been studied extensively. However, small dams' social impacts have been largely neglected by the academic community. Our paper addresses this gap. We examine the social impacts of multiple small dams in one upstream and one downstream village in Thailand's Ing River basin. Our research is based on semi-structured interviews with beneficiaries, government and NGOs. We argue that small dams' social impacts are multi-faceted and unequal. The dams were perceived to reduce fish abundance and provide flood mitigation benefits. Furthermore, the dams enabled increased access to irrigation water for upstream farmers, who re-appropriated water via the dams at the expense of those downstream. The small dams thus engendered water allocation conflicts. Many scholars, practitioners and environmentalists argue that small dams are a benign alternative to large dams. However, the results of our research mandate caution regarding this claim.

  6. Lightweight Material Patches Allow for Quick Repairs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Cornerstone Research Group Inc., of Dayton, Ohio, has been the recipient of 16 Small Business Innovation Research (SBIR) contracts with NASA with a variety of different focuses, including projects like creating inflatable structures for radio frequency antennas and, most recently, healable polymer matrix composites for future space vehicles. One of its earlier SBIR contracts, with Kennedy Space Center, led to the development of a new type of structural patch for a variety of consumer uses: Rubbn Repair, for automotive uses; and Rec Repair for the outdoors and adventure market. Both are flexible, heat-activated structural patches.

  7. Providing structural modules with self-integrity monitoring

    NASA Astrophysics Data System (ADS)

    Walton, W. B.; Ibanez, P.; Yessaie, G.

    1988-08-01

    With the advent of complex space structures (i.e., U.S. Space Station), the need for methods for remotely detecting structural damage will become greater. Some of these structures will have hundreds of individual structural elements (i.e., strut members). Should some of them become damaged, it could be virtually impossible to detect it using visual or similar inspection techniques. The damage of only a few individual members may or may not be a serious problem. However, should a significant number of the members be damaged, a significant problem could be created. The implementation of an appropriate remote damage detection scheme would greatly reduce the likelihood of a serious problem related to structural damage ever occurring. This report presents the results of the research conducted on remote structural damage detection approaches and the related mathematical algorithms. The research was conducted for the Small Business Innovation and Research (SBIR) Phase 2 National Aeronautics and Space Administration (NASA) Contract NAS7-961.

  8. Providing structural modules with self-integrity monitoring

    NASA Technical Reports Server (NTRS)

    Walton, W. B.; Ibanez, P.; Yessaie, G.

    1988-01-01

    With the advent of complex space structures (i.e., U.S. Space Station), the need for methods for remotely detecting structural damage will become greater. Some of these structures will have hundreds of individual structural elements (i.e., strut members). Should some of them become damaged, it could be virtually impossible to detect it using visual or similar inspection techniques. The damage of only a few individual members may or may not be a serious problem. However, should a significant number of the members be damaged, a significant problem could be created. The implementation of an appropriate remote damage detection scheme would greatly reduce the likelihood of a serious problem related to structural damage ever occurring. This report presents the results of the research conducted on remote structural damage detection approaches and the related mathematical algorithms. The research was conducted for the Small Business Innovation and Research (SBIR) Phase 2 National Aeronautics and Space Administration (NASA) Contract NAS7-961.

  9. Characterization of Polystyrene Soft Nanoparticles Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Martin, Halie; White, Tyler; Saito, Tomonori; Dadmun, Mark

    Polymer nanocomposites have become a prominent area of research recently. With a growing variety of nanoparticles available, research probing the influence of particle morphology on the overall nanocomposite properties is also increasing. Nanoparticle dispersion is controlled by both the chemical nature and morphology of the nanoparticle where a crosslinked, fuzzy organic nanoparticle is anticipated to enhance the overall miscibility and create a homogenous dispersion within a like-polymer matrix. A semi-batch microemulsion polymerization forms organic, soft nanoparticles where the precise structure of the nanoparticle is controlled by monomer rate of addition and crosslinking density. We will report small angle neutron scattering results that correlate synthetic conditions to the structural characteristics of soft nanoparticles. This analysis provides characterization of the individual nanoparticle molecular weight, the radius of the crosslinked core, the thickness of the fuzzy interfacial layer, and provides insight into the overall topography of the soft nanoparticle. This research provides a pathway to investigate the effect of nanoscale structural features of the nanoparticle on their individual properties and those of nanocomposites that contain these soft nanoparticles. DOE-BES, Division of Materials Sciences and Engineering.

  10. Research-Supported Intervention and Discretion among Frontline Workers Implementing Home Visitation Services

    ERIC Educational Resources Information Center

    Willging, Cathleen E.; Trott, Elise M.; Fettes, Danielle; Gunderson, Lara; Green, Amy E.; Hurlburt, Michael S.; Aarons, Gregory A.

    2017-01-01

    Objective: We examine how frontline workers and supervisors delivering a research-supported intervention (RSI) to reduce child neglect negotiated system-related challenges, the pragmatics of RSI implementation, and their professional identities and relationships with clients. Methods: We conducted semi-structured interviews, small group…

  11. Neighborhood Research from a Spatially Oriented Strengths Perspective

    ERIC Educational Resources Information Center

    Mowbray, Carol T.; Woolley, Michael E.; Grogan-Kaylor, Andrew; Gant, Larry M.; Gilster, Megan E.; Williams Shanks, Trina R.

    2007-01-01

    Research investigating neighborhood effects on children and families has been largely deficit and individual-focused, investigated structural variables, and has typically produced equivocal findings and small effect sizes. We suggest an approach focused on community strengths and resources that stresses the role of measures of social interaction…

  12. A Matter of Alignment: An Organizational Analysis of the Advisor Role in Three Small Urban High Schools

    ERIC Educational Resources Information Center

    Phillippo, Katherine L.

    2009-01-01

    Recent research literature suggests that students benefit from positive relationships with their teachers. Small high schools attempt to formalize expectations for such relationships through a variety of organizational structures, including the advisor role. As advisors, teachers work with a group of students in order to guide and support them.…

  13. Disrupting Structural Racism: Counter-Narratives of Pride, Growth, and Transformation

    ERIC Educational Resources Information Center

    Tung, Rosann; Villavicencio, Adriana

    2018-01-01

    The authors set out to organize a small convening of educator-researcher teams from across seven districts engaged in My Brother's Keeper (MBK) efforts. Their goals were to gather a small enough number of participants to ensure deep conversation in a convening long enough to foster authentic connections among us, and to include mechanisms to…

  14. Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-03-01

    Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.

  15. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function. PMID:25714337

  16. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.

  17. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    NASA Astrophysics Data System (ADS)

    Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.

    2017-01-01

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D2 working gases at several discharge voltages and initial pressures are presented and analyzed.

  18. Influential Structures: Understanding the Role of the Head of Department in Relation to Women Academics' Research Careers

    ERIC Educational Resources Information Center

    Obers, Noëlle

    2015-01-01

    This study was conducted at a small "research-led" institution in South Africa. The data indicate that women produce less research than men and have low levels of professional self-esteem. Factors such as accrual of social capital, family responsibilities and self-esteem are constraints experienced by women academics in pursuing research…

  19. Sources of Inequities in Rural America: Implications for Rural Community Development and Research. Community Development Research Series.

    ERIC Educational Resources Information Center

    Fujimoto, Isao; Zone, Martin

    As part of a series prepared to acquaint small community officials with information on the latest community related research findings at the University of California at Davis, this monograph explicates the way in which tax structure, rural development assumptions, and even rural development policies and subsidies contribute to the inequities found…

  20. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Cooperative/Collaborative Learning: Research and Practice (Primarily) at the Collegiate Level, Parts I and II.

    ERIC Educational Resources Information Center

    Cooper, James L.; And Others

    1991-01-01

    Cooperative learning may be defined as a structured, systematic instructional strategy in which small groups work together toward a common goal. It differs from collaborative learning in its emphasis on highly structured techniques for ensuring positive interdependence within groups and its insistence on individual accountability rather than…

  2. Variable stiffness mechanisms with SMA actuators

    NASA Astrophysics Data System (ADS)

    Siler, Damin J.; Demoret, Kimberly B. J.

    1996-05-01

    Variable stiffness is a new branch of smart structures development with several applications related to aircraft. Previous research indicates that temporarily reducing the stiffness of an airplane wing can decrease control actuator sizing and improve aeroelastic roll performance. Some smart materials like shape memory alloys (SMA) can change their material stiffness properties, but they tend to gain stiffness in their `power on' state. An alternative is to integrate mechanisms into a structure and change stiffness by altering boundary conditions and structural load paths. An innovative concept for an axial strut mechanism was discovered as part of research into variable stiffness. It employs SMA springs (specifically Ni-Ti) in a way that reduces overall stiffness when the SMA springs gain stiffness. A simplified mathematical model for static analysis was developed, and a 70% reduction in stiffness was obtained for a particular selection of springs. The small force capacity of commercially available SMA springs limits the practicality of this concept for large load applications. However, smart material technology is still immature, and future advances may permit development of a heavy-duty, variable stiffness strut that is small and light enough for use in aircraft structures.

  3. Research challenges for structural use of small-diameter round timbers

    Treesearch

    Ron Wolfe

    2000-01-01

    Forest managers have identified forest stands overstocked with small-diameter trees as a critical forest health issue. Overstocked stands are subject to attack by insects and disease and, as a result of the heavy fuel load, risk total destruction by fire. Prescribed burning is an economic tool for suppressing the growth of brush and tree seedlings, but its use is often...

  4. Small Angle X-ray Scattering for Nanoparticle Research

    DOE PAGES

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    2016-04-07

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  5. Small Angle X-ray Scattering for Nanoparticle Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  6. Neutron and X-ray Scattering Study of Structure and Dynamics of Condensed Matters

    NASA Astrophysics Data System (ADS)

    Fujii, Yasuhiko

    In this article, I have reviewed a series of research on a various phase transitions such as (1) structural phase transitions of perovskite compounds driven by soft phonons, (2) pressure-induced molecular dissociation and metallization observed in solid halogens, and (3) the “Devil's Flower” type phase diagram observed in two compounds with frustrating interactions. Also commented is on the so-called “Small Science at Large Facility” typically symbolized by neutron and synchrotron radiation experiments like the present research.

  7. The teacher's role in promoting collaborative dialogue in the classroom.

    PubMed

    Webb, Noreen M

    2009-03-01

    Research on student-led small-group learning in schools going back nearly four decades has documented many types of student participation that promote learning. Less is known about how the teacher can foster effective groupwork behaviours. This paper reviews research that explores the role of the teacher in promoting learning in small groups. The focus is on how students can learn from their peers during small-group work, how teachers can prepare students for collaborative group work, and the role of teacher discourse and classroom norms in small-group dialogue. Studies selected for review focused on student-led small-group contexts for learning in which students were expected to collaborate, reported data from systematic observations of group work, and linked observational data to teacher practices and student learning outcomes. This review uncovered multiple dimensions of the teacher's role in fostering beneficial group dialogue, including preparing students for collaborative work, forming groups, structuring the group-work task, and influencing student interaction through teachers' discourse with small groups and with the class. Common threads through the research are the importance of students explaining their thinking, and teacher strategies and practices that may promote student elaboration of ideas.

  8. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  9. Unstructured grid research and use at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    Computational fluid dynamics applications of grid research at LRC include inlets, nozzles, and ducts; turbomachinery; propellers - ducted and unducted; and aircraft icing. Some issues related to internal flow grid generation are resolution requirements on several boundaries, shock resolution vs. grid periodicity, grid spacing at blade/shroud gap, grid generation in turbine blade passages, and grid generation for inlet/nozzle geometries. Aircraft icing grid generation issues include (1) small structures relative to airfoil chord must be resolved; (2) excessive number of grid points in far-field using structured grid; and (3) grid must be recreated as ice shape grows.

  10. Student leadership in small group science inquiry

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  11. Heterogeneous Biomedical Database Integration Using a Hybrid Strategy: A p53 Cantcer Research Database

    PubMed Central

    Bichutskiy, Vadim Y.; Colman, Richard; Brachmann, Rainer K.; Lathrop, Richard H.

    2006-01-01

    Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.) PMID:19458771

  12. ALEPH: Israel's Research Library Network: Background, Evolution, and Implications for Networking in a Small Country.

    ERIC Educational Resources Information Center

    Lazinger, Susan S.

    1991-01-01

    Describes ALEPH, the research library network in Israel, and analyzes the strengths and weaknesses of its decentralized structure. Highlights include comparisons between RLIN and ALEPH; centralized versus decentralized networks; the format of ALEPH; authority control in ALEPH; and non-Roman scripts in both networks. (16 references) (LRW)

  13. Microgravity

    NASA Image and Video Library

    2000-04-20

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  14. Preliminary Design Study of a Hybrid Airship for Flight Research

    NASA Technical Reports Server (NTRS)

    Browning, R. G. E.

    1981-01-01

    The feasibility of using components from four small helicopters and an airship envelope as the basis for a quad-rotor research aircraft was studied. Preliminary investigations included a review of candidate hardware and various combinations of rotor craft/airship configurations. A selected vehicle was analyzed to assess its structural and performance characteristics.

  15. Interlibrary Loan Trends: Staffing and Organization. SPEC Kit #187.

    ERIC Educational Resources Information Center

    Dearie, Tammie Nickelson, Comp.; Steel, Virginia, Comp.

    Topics related to research library interlibrary loan staffing and organizational structures were explored through a survey conducted by the Systems and Procedures Exchange Center (SPEC) of the Association of Research Libraries. Data gathered from 82 libraries show a very small increase in the number of full-time equivalents in loan units between…

  16. An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  17. About the Office of Grants Administration

    Cancer.gov

    OGA supports grants and cooperative agreements awarded to scientific institutions, small businesses, and individuals to help build, maintain, and enhance a cohesive and comprehensive cancer research agenda. Learn more about OGA and its program structure.

  18. Evaluation of small-diameter timber for value-added manufacturing : a stress wave approach

    Treesearch

    Xiping Wang; Robert J. Ross; John Punches; R. James Barbour; John W. Forsman; John R. Erickson

    2003-01-01

    The objective of this research was to investigate the use of a stress wave technology to evaluate the structural quality of small-diameter timber before harvest. One hundred and ninety-two Douglas-fir and ponderosa pine trees were sampled from four stands in southwestern Oregon and subjected to stress wave tests in the field. Twelve of the trees, six Douglas-fir and...

  19. Lam I-joists : a new structural building product from small-diameter, fire-prone timber

    Treesearch

    John F. Hunt; Jerrold E. Winandy

    2003-01-01

    The goal of our research is to promote healthy and sustainable forests by developing value-added uses for curved and small-diameter trees. In typical North American logging or thinning operations, much of this low- value timber is felled and left on the ground, chipped, or burned because most mills are not equipped to handle it. By understanding the fundamental...

  20. An Interactive, Versatile, Three-Dimensional Display, Manipulation and Plotting System for Biomedical Research

    ERIC Educational Resources Information Center

    Feldmann, Richard J.; And Others

    1972-01-01

    Computer graphics provides a valuable tool for the representation and a better understanding of structures, both small and large. Accurate and rapid construction, manipulation, and plotting of structures, such as macromolecules as complex as hemoglobin, are performed by a collection of computer programs and a time-sharing computer. (21 references)…

  1. Recent advances in the biomimicry of structural colours.

    PubMed

    Dumanli, Ahu Gümrah; Savin, Thierry

    2016-12-21

    Nature has mastered the construction of nanostructures with well-defined macroscopic effects and purposes. Structural colouration is a visible consequence of the particular patterning of a reflecting surface with regular structures at submicron length scales. Structural colours usually appear bright, shiny, iridescent or with a metallic look, as a result of physical processes such as diffraction, interference, or scattering with a typically small dissipative loss. These features have recently attracted much research effort in materials science, chemistry, engineering and physics, in order to understand and produce structural colours. In these early stages of photonics, researchers facing an infinite array of possible colour-producing structures are heavily inspired by the elaborate architectures they find in nature. We review here the recent technological strategies employed to artificially mimic the structural colours found in nature, as well as some of their current and potential applications.

  2. Feral Cats Are Better Killers in Open Habitats, Revealed by Animal-Borne Video.

    PubMed

    McGregor, Hugh; Legge, Sarah; Jones, Menna E; Johnson, Christopher N

    2015-01-01

    One of the key gaps in understanding the impacts of predation by small mammalian predators on prey is how habitat structure affects the hunting success of small predators, such as feral cats. These effects are poorly understood due to the difficulty of observing actual hunting behaviours. We attached collar-mounted video cameras to feral cats living in a tropical savanna environment in northern Australia, and measured variation in hunting success among different microhabitats (open areas, dense grass and complex rocks). From 89 hours of footage, we recorded 101 hunting events, of which 32 were successful. Of these kills, 28% were not eaten. Hunting success was highly dependent on microhabitat structure surrounding prey, increasing from 17% in habitats with dense grass or complex rocks to 70% in open areas. This research shows that habitat structure has a profound influence on the impacts of small predators on their prey. This has broad implications for management of vegetation and disturbance processes (like fire and grazing) in areas where feral cats threaten native fauna. Maintaining complex vegetation cover can reduce predation rates of small prey species from feral cat predation.

  3. Ion beams provided by small accelerators for material synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  4. [Application research of DEI technique based on synchrotron X-ray source in imaging rabbit eyeball in vitro].

    PubMed

    Yin, Hong-xia; Huang, Zhi-feng; Wang, Zhen-chang; Liu, Zhao-hui; Li, Yong; Zhu, Pei-ping

    2010-03-23

    To study the application of DEI technique in imaging the small structures of rabbit eyeball. DEI technique was used to image the eyeball of New Zealand white rabbit in vitro. The experiments were performed using beamline 4W1A at the topography station of Beijing Synchrotron Radiation Facility (BSRF). DEI image showed clearly the fine structures of the rabbit eyeball, such as the transparent cornea, the sclera, the ciliaris, and the ciliary body. DEI is a new X-ray imaging modality which achieves high contrast and spatial resolution. It also showed obvious effect of edge enhancement. DEI has good potential in observing the micro-structures of eyeballs and other small organs.

  5. Active Robust Control of Elastic Blade Element Containing Magnetorheological Fluid

    NASA Astrophysics Data System (ADS)

    Sivrioglu, Selim; Cakmak Bolat, Fevzi

    2018-03-01

    This research study proposes a new active control structure to suppress vibrations of a small-scale wind turbine blade filled with magnetorheological (MR) fluid and actuated by an electromagnet. The aluminum blade structure is manufactured using the airfoil with SH3055 code number which is designed for use on small wind turbines. An interaction model between MR fluid and the electromagnetic actuator is derived. A norm based multi-objective H2/H∞ controller is designed using the model of the elastic blade element. The H2/H∞ controller is experimentally realized under the impact and steady state aerodynamic load conditions. The results of experiments show that the MR fluid is effective for suppressing vibrations of the blade structure.

  6. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  7. An Examination of the Relationship among Structure, Trust, and Conflict Management Styles in Virtual Teams

    ERIC Educational Resources Information Center

    Liu, Xiaojing; Magjuka, Richard J.; Lee, Seung-hee

    2008-01-01

    The emergence of new technologies has made it increasingly easy for distributed collaboration in both educational and noneducational settings. Although the effectiveness in traditional settings of the dynamics of small group work has been widely researched, there is limited research that offers evidence on how teams can work effectively in a…

  8. Scientific Research with the Space Telescope: International Astronomical Union Colloquium No. 54. [conferences

    NASA Technical Reports Server (NTRS)

    Longair, M. S.; Warner, J. W.

    1979-01-01

    The application of the space telescope for extragalactic astronomy, planetary research, and stellar, interstellar, and galactic structural problems is discussed. Topics include investigations of small solar system objects, the physical characteristics of ionized gaseous nebulae, the central regions of active galaxies and quasars, problems of cosmology, and the distribution and composition of interstellar matter.

  9. Structural factors in HIV prevention: concepts, examples, and implications for research.

    PubMed

    Sumartojo, E

    2000-06-01

    HIV-prevention behavior is affected by the environment as well as by characteristics of individuals at risk. HIV-related structural factors are defined as barriers to, or facilitators of, an individual's HIV prevention behaviors; they may relate to economic, social, policy, organizational or other aspects of the environment. A relatively small number of intervention studies demonstrates the potential of structural interventions to increase HIV prevention in the United States and internationally. The promise of structural interventions has also been shown in studies of interventions to prevent disease or promote public health in areas other than HIV. Frameworks help define and exemplify structural barriers and facilitators for HIV prevention. One framework developed at Centers for Disease Control and Prevention gives examples of structural facilitators in terms of the economic resources, policy supports, societal attitudes, and organizational structures and functions associated with governments, service organizations, businesses, workforce organizations, faith communities, justice systems, media organizations, educational systems, and healthcare systems. Frameworks should assist researchers and health officials to identify important areas for structural research and programming. A structural approach is timely and innovative. Despite limitations, including the challenge of a new perspective on prevention and the difficulty of evaluating their effects, researchers and public health officials are urged to pursue structural interventions to prevent HIV.

  10. A semantic web ontology for small molecules and their biological targets.

    PubMed

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  11. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. Itmore » was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the procedure. It is believed that most critical for fabrication of high quality samples is control of the temperature of the sample during and after infiltration, and the rate and amount of time spent applying epoxy to the PDMS.« less

  12. Ultra-Structure database design methodology for managing systems biology data and analyses

    PubMed Central

    Maier, Christopher W; Long, Jeffrey G; Hemminger, Bradley M; Giddings, Morgan C

    2009-01-01

    Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping). Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find Ultra-Structure offers substantial benefits for biological information systems, the largest being the integration of diverse information sources into a common framework. This facilitates systems biology research by integrating data from disparate high-throughput techniques. It also enables us to readily incorporate new data types, sources, and domain knowledge with no change to the database structure or associated computer code. Ultra-Structure may be a significant step towards solving the hard problem of data management and integration in the systems biology era. PMID:19691849

  13. Explanatory models concerning the effects of small-area characteristics on individual health.

    PubMed

    Voigtländer, Sven; Vogt, Verena; Mielck, Andreas; Razum, Oliver

    2014-06-01

    Material and social living conditions at the small-area level are assumed to have an effect on individual health. We review existing explanatory models concerning the effects of small-area characteristics on health and describe the gaps future research should try to fill. Systematic literature search for, and analysis of, studies that propose an explanatory model of the relationship between small-area characteristics and health. Fourteen studies met our inclusion criteria. Using various theoretical approaches, almost all of the models are based on a three-tier structure linking social inequalities (posited at the macro-level), small-area characteristics (posited at the meso-level) and individual health (micro-level). No study explicitly defines the geographical borders of the small-area context. The health impact of the small-area characteristics is explained by specific pathways involving mediating factors (psychological, behavioural, biological). These pathways tend to be seen as uni-directional; often, causality is implied. They may be modified by individual factors. A number of issues need more attention in research on explanatory models concerning small-area effects on health. Among them are the (geographical) definition of the small-area context; the systematic description of pathways comprising small-area contextual as well as compositional factors; questions of direction of association and causality; and the integration of a time dimension.

  14. Hierarchical structure and dynamics of oligocarbonate-functionalized PEG block copolymer gels

    NASA Astrophysics Data System (ADS)

    Prabhu, Vivek; Wei, Guangmin; Ali, Samim; Venkataraman, Shrinivas; Yang, Yi Yan; Hedrick, James

    Hierarchical, self-assembled block copolymers in aqueous solutions provide advanced materials for biomaterial applications. Recent advancements in the synthesis of aliphatic polycarbonates have shown nontraditional micellar and hierarchical structures driven by the supramolecular assembly of the carbonate block functionality that includes cholesterol, vitamin D, and fluorene. This presentation shall describe the supramolecular assembly structure and dynamics observed by static and dynamic light scattering, small-angle neutron scattering and transmission electron microscopy in a model pi-pi stacking driven fluorene system. The combination of real-space and reciprocal space methods to develop appropriate models that quantify the structure from the micelle to transient gel network will be discussed. 1) Biomedical Research Council, Agency for Science, Technology and Research, Singapore, 2) NIST Materials Genome Initiative.

  15. Networks model of the East Turkistan terrorism

    NASA Astrophysics Data System (ADS)

    Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo

    2015-02-01

    The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.

  16. The Network of Global Corporate Control

    PubMed Central

    Vitali, Stefania; Glattfelder, James B.; Battiston, Stefano

    2011-01-01

    The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic “super-entity” that raises new important issues both for researchers and policy makers. PMID:22046252

  17. Investigation of the small-scale structure and dynamics of Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1991-01-01

    This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.

  18. The CADSS design automation system. [computerized design language for small digital systems

    NASA Technical Reports Server (NTRS)

    Franke, E. A.

    1973-01-01

    This research was designed to implement and extend a previously defined design automation system for the design of small digital structures. A description is included of the higher level language developed to describe systems as a sequence of register transfer operations. The system simulator which is used to determine if the original description is correct is also discussed. The design automation system produces tables describing the state transistions of the system and the operation of all registers. In addition all Boolean equations specifying system operation are minimized and converted to NAND gate structures. Suggestions for further extensions to the system are also given.

  19. Ethical Guidelines for Structural Interventions to Small-Scale Historic Stone Masonry Buildings.

    PubMed

    Hurol, Yonca; Yüceer, Hülya; Başarır, Hacer

    2015-12-01

    Structural interventions to historic stone masonry buildings require that both structural and heritage values be considered simultaneously. The absence of one of these value systems in implementation can be regarded as an unethical professional action. The research objective of this article is to prepare a guideline for ensuring ethical structural interventions to small-scale stone historic masonry buildings in the conservation areas of Northern Cyprus. The methodology covers an analysis of internationally accepted conservation documents and national laws related to the conservation of historic buildings, an analysis of building codes, especially Turkish building codes, which have been used in Northern Cyprus, and an analysis of the structural interventions introduced to a significant historic building in a semi-intact state in the walled city of Famagusta. This guideline covers issues related to whether buildings are intact or ruined, the presence of earthquake risk, the types of structural decisions in an architectural conservation project, and the values to consider during the decision making phase.

  20. Structural barriers and facilitators in HIV prevention: a review of international research.

    PubMed

    Parker, R G; Easton, D; Klein, C H

    2000-06-01

    This article provides an overview of a growing body of international research focusing on the structural and environmental factors that shape the spread of the HIV/AIDS epidemic, and create barriers and facilitators in relation to HIV-prevention programs. OVERVIEW OF STRUCTURAL-FACTORS LITERATURE: Most of the research on structural and environmental factors can be grouped into a small number of analytically distinct but interconnected categories: economic (under)development and poverty; mobility, including migration, seasonal work, and social disruption due to war and political instability; and gender inequalities. An additional focus in research on structural and environmental factors has been on the effects of particular governmental and intergovernmental policies in increasing or diminishing HIV vulnerability and transmission. A smaller subset of the research on structural factors describes and/or evaluates specific interventions in detail. Approaches that have received significant attention include targeted interventions developed for heterosexual women, female commercial sex workers, male truck drivers, and men who have sex with men. The structural and environmental factors literature offers important insights and reveals a number of productive intervention strategies that might be explored in both resource-rich and -poor settings. However, new methodologies are required to document and evaluate the effects of the structural interventions, which by their very nature involve large-scale elements that cannot be easily controlled by experimental or quasi-experimental research designs. Innovative, interdisciplinary approaches are needed that can move beyond the limited successes of traditional behavioral interventions and explicitly attempt to achieve broader social and structural change.

  1. Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  2. Performance Trend of Different Algorithms for Structural Design Optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  3. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.

    1989-01-01

    The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.

  4. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1more » 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.« less

  5. Discovery and structure-based design of 4,6-diaminonicotinamides as potent and selective IRAK4 inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhide, Rajeev S.; Keon, Alec; Weigelt, Carolyn

    2017-11-01

    The identification of small molecule inhibitors of IRAK4 for the treatment of autoimmune diseases has been an area of intense research. We discovered novel 4,6-diaminonicotinamides which potently inhibit IRAK4. Optimization efforts were aided by X-ray crystal structures of inhibitors bound to IRAK4. Structure activity relationship (SAR) studies led to the identification of compound 29 which exhibited sub-micromolar potency in a LTA stimulated cellular assay.

  6. In Silico Docking of Small-Molecule Inhibitors to the Escherichia coli Type III Secretion System EscN ATPase

    DTIC Science & Technology

    2014-07-01

    coordinates of the EscN protein (Zarivach et al., 2007) were downloaded in pdb file format from the Research Collaboratory for Structural Biology...catalytic activity. Two structurally related compounds were observed to adopt extended conformations in the active-site cleft and essentially...adopt a very compact conformation that occupied only one side of the cleft. Our goal was to determine the three-dimensional structures of the

  7. High Resolution Observations and Modeling of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, Thomas E.

    2001-01-01

    This research contract investigating the radiative transfer and dynamic physics of the smallest observable magnetic structures in the solar photosphere. Due to the lack of a high-resolution visible light satellite instrument for solar studies, all data were acquired using ground-based instrumentation. The primary goal of the investigation was to understand the formation and evolution of "G-band bright points" in relation to the associated magnetic elements. G-band bright points are small (on the order of 100 kin or less in diameter) bright signatures associated with magnetic flux elements in the photosphere. They are seen in the A2A-X2 4308 A molecular bandhead of the CH radical ill the solar spectrum and offer the highest spatial resolution and highest contrast "tracers" of small magnetic structure on the Sun.

  8. The personal receiving document management and the realization of email function in OAS

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao

    2017-05-01

    This software is an independent software system, suitable for small and medium enterprises, contains personal office, scientific research project management and system management functions, independently run in relevant environment, and to solve practical needs. This software is an independent software system, using the current popular B/S (browser/server) structure and ASP.NET technology development, using the Windows 7 operating system, Microsoft SQL Server2005 Visual2008 and database as a development platform, suitable for small and medium enterprises, contains personal office, scientific research project management and system management functions, independently run in relevant environment, and to solve practical needs.

  9. A Comprehensive Structural Study of Offshore Wind Turbine Foundation and Non-Model Based Damage Detection using Effective Mass with Application to Small Components/ Cables and a Truss Wind Turbine Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A.

    This research has two areas of focus. The first area is to investigate offshore wind turbine (OWT) designs, for use in the Maryland offshore wind area (MOWA), using intensive modeling techniques. The second focus area is to investigate a way to detect damage in wind turbine towers and small electrical components.

  10. Towards a Pharmacophore for Amyloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine sidemore » chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds may be required for future amyloid therapies. The structures described here start to define the amyloid pharmacophore, opening the way to structure-based design of improved diagnostics and therapeutics.« less

  11. Design and Control of Flapping Wing Micro Air Vehicles

    DTIC Science & Technology

    2011-09-01

    unsteady, low Re aerodynamics, micro-fabrication, and fluid - structure interaction. However, research into flapping wing control of such MAVs...and flown in confined spaces such as urban canyons, caves and indoors. MAVs will provide an organic ISR capability to small combat teams in the...Designing for highly coupled fluid -structure interactions  Micro-fabrication  Stability characterization and control Of these challenges, the most

  12. Protein Crystallography in Vaccine Research and Development.

    PubMed

    Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J

    2015-06-09

    The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.

  13. Protein Crystallography in Vaccine Research and Development

    PubMed Central

    Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J.

    2015-01-01

    The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines. PMID:26068237

  14. Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities

    USGS Publications Warehouse

    Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.

    2006-01-01

    NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  15. Feral Cats Are Better Killers in Open Habitats, Revealed by Animal-Borne Video

    PubMed Central

    McGregor, Hugh; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.

    2015-01-01

    One of the key gaps in understanding the impacts of predation by small mammalian predators on prey is how habitat structure affects the hunting success of small predators, such as feral cats. These effects are poorly understood due to the difficulty of observing actual hunting behaviours. We attached collar-mounted video cameras to feral cats living in a tropical savanna environment in northern Australia, and measured variation in hunting success among different microhabitats (open areas, dense grass and complex rocks). From 89 hours of footage, we recorded 101 hunting events, of which 32 were successful. Of these kills, 28% were not eaten. Hunting success was highly dependent on microhabitat structure surrounding prey, increasing from 17% in habitats with dense grass or complex rocks to 70% in open areas. This research shows that habitat structure has a profound influence on the impacts of small predators on their prey. This has broad implications for management of vegetation and disturbance processes (like fire and grazing) in areas where feral cats threaten native fauna. Maintaining complex vegetation cover can reduce predation rates of small prey species from feral cat predation. PMID:26288224

  16. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  17. Structural comparison of nickel electrodes and precursor phases

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia

    1989-01-01

    Researchers summarize previous Raman spectroscopic results and discuss important structural differences in the various phases of active mass and active mass precursors. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to x rays (i.e., does not scatter x rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging are discussed. The oxidation states and dopant contents are explained in terms of the nonstoichiometric structures.

  18. Influence of small-scale turbulence on cup anemometer calibrations

    NASA Astrophysics Data System (ADS)

    Marraccini, M.; Bak-Kristensen, K.; Horn, A.; Fifield, E.; Hansen, S. O.

    2017-11-01

    The paper presents and discusses the calibration results of cup anemometers under different levels of small-scale turbulence. Small-scale turbulence is known to govern the curvature of shear layers around structures and is not related to the traditional under and over speeding of cup anemometers originating from large-scale turbulence components. The paper has shown that the small-scale turbulence has a significant effect on the calibration results obtained for cup anemometers. At 10m/s the rotational speed seems to change by approx. 0.5% due to different simulations of the small-scale turbulence. The work which this paper is based on, is part of the TrueWind research project, aiming to increase accuracy of mast top-mounted cup anemometer measurements.

  19. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    DTIC Science & Technology

    2016-05-01

    Oak Ridge, TN Robert H Lambeth and Frederick L Beyer Weapons and Materials Research Directorate, ARL Approved for...nanocomposites: phase diagram, rheology and structure using a combined small angle neutron scattering and reverse Monte Carlo approach. Soft Matter. 2010;6

  20. Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach.

    PubMed

    Fakhry, Carl Tony; Kulkarni, Prajna; Chen, Ping; Kulkarni, Rahul; Zarringhalam, Kourosh

    2017-08-22

    Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a dramatic increase in the discovery of bacterial sRNAs. However, it is generally believed that the currently identified sRNAs constitute a limited subset of the bacterial sRNA repertoire. In several cases, sRNAs belonging to a specific class are already known and the challenge is to identify additional sRNAs belonging to the same class. In such cases, machine-learning approaches can be used to predict novel sRNAs in a given class. In this work, we develop novel bioinformatics approaches that integrate sequence and structure-based features to train machine-learning models for the discovery of bacterial sRNAs. We show that features derived from recurrent structural motifs in the ensemble of low energy secondary structures can distinguish the RNA classes with high accuracy. We apply this approach to predict new members in two broad classes of bacterial small RNAs: 1) sRNAs that bind to the RNA-binding protein RsmA/CsrA in diverse bacterial species and 2) sRNAs regulated by the master regulator of virulence, ToxT, in Vibrio cholerae. The involvement of sRNAs in bacterial adaptation to changing environments is an increasingly recurring theme in current research in microbiology. It is likely that future research, combining experimental and computational approaches, will discover many more examples of sRNAs as components of critical regulatory pathways in bacteria. We have developed a novel approach for prediction of small RNA regulators in important bacterial pathways. This approach can be applied to specific classes of sRNAs for which several members have been identified and the challenge is to identify additional sRNAs.

  1. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1990-01-01

    Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  2. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1987-01-01

    Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  3. Recent (1999-2003) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics

    NASA Astrophysics Data System (ADS)

    de Boer, D. H.; Hassan, M. A.; MacVicar, B.; Stone, M.

    2005-01-01

    Contributions by Canadian fluvial geomorphologists between 1999 and 2003 are discussed under four major themes: sediment yield and sediment dynamics of large rivers; cohesive sediment transport; turbulent flow structure and sediment transport; and bed material transport and channel morphology. The paper concludes with a section on recent technical advances. During the review period, substantial progress has been made in investigating the details of fluvial processes at relatively small scales. Examples of this emphasis are the studies of flow structure, turbulence characteristics and bedload transport, which continue to form central themes in fluvial research in Canada. Translating the knowledge of small-scale, process-related research to an understanding of the behaviour of large-scale fluvial systems, however, continues to be a formidable challenge. Models play a prominent role in elucidating the link between small-scale processes and large-scale fluvial geomorphology, and, as a result, a number of papers describing models and modelling results have been published during the review period. In addition, a number of investigators are now approaching the problem by directly investigating changes in the system of interest at larger scales, e.g. a channel reach over tens of years, and attempting to infer what processes may have led to the result. It is to be expected that these complementary approaches will contribute to an increased understanding of fluvial systems at a variety of spatial and temporal scales. Copyright

  4. Ultra-Small-Angle X-ray Scattering – X-ray Photon Correlation Spectroscopy Studies of Incipient Structural Changes in Amorphous Calcium Phosphate Based Dental Composites

    PubMed Central

    Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.

    2012-01-01

    The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649

  5. A Data Accounting System for Clinical Investigators

    PubMed Central

    Kashner, T. Michael; Hinson, Robert; Holland, Gloria J.; Mickey, Don D.; Hoffman, Keith; Lind, Lisa; Johnson, Linda D.; Chang, Barbara K.; Golden, Richard M.; Henley, Steven S.

    2007-01-01

    Clinical investigators often preprocess, process, and analyze their data without benefit of formally organized research centers to oversee data management. This article outlines a practical three-file structure to help guide these investigators track and document their data through processing and analyses. The proposed process can be implemented without additional training or specialized software. Thus, it is particularly well suited for research projects with small budgets or limited access to viable research/data coordinating centers. PMID:17460138

  6. The interprofessional team as a small group.

    PubMed

    Kane, R A

    1975-01-01

    Conflicts in interprofessional teamwork may be as much explained by group process considerations as by the interaction of professional roles and statuses. This paper examines the interprofessional team as a small group, using a synthesis of sources from social psychology, social group work, T-group literature, management theory, and health team research. Eight issues are considered in relation to the team as a small group, namely, (a) the individual in the group, (b) team size, (c) group norms, (d) democracy, (e) decision making and conflict resolution, (f) communication and structure, (g) leadership, and (h) group harmony and its relationship to group productivity.

  7. A venture capital view of challenges, opportunities, and innovation in biomedical research.

    PubMed

    Ratcliffe, L T

    2011-02-01

    Small biotech companies have been an important source of innovation, pipelines, and new products for the pharmaceutical industry, and are primarily financed by venture capital (VC). The significant changes happening within the VC industry have broad implications for these small companies. This includes a shift to financing later-stage programs with increasing interest in orphan or specialty indications. Nontraditional sources of capital and innovative risk-sharing structures can enable early-stage companies.

  8. Express Payload Project - A new method for rapid access to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Uhran, Mark L.; Timm, Marc G.

    1993-01-01

    The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.

  9. A Species Distribution Modeling Informed Conservation Assessment of Bog Spicebush

    DTIC Science & Technology

    2016-09-14

    small populations, or establishing new popu- lations to increase the metapopulation structure within clusters of popula- tions. These outplanting data...fire suppression, and flooding (e.g., due to beaver activity) on vege- tation composition and structure . This effort used vegetation and disturb- ance...Suppression to Prescription. Tall Timbers Research Station, Tallahassee, FL, pp 70–81. Godefroid, S., C. Piazza, G. Rossi, S. Buord, A. D. Stevens, R

  10. Innovative architectures for dense multi-microprocessor computers

    NASA Technical Reports Server (NTRS)

    Donaldson, Thomas; Doty, Karl; Engle, Steven W.; Larson, Robert E.; O'Reilly, John G.

    1988-01-01

    The results of a Phase I Small Business Innovative Research (SBIR) project performed for the NASA Langley Computational Structural Mechanics Group are described. The project resulted in the identification of a family of chordal-ring interconnection architectures with excellent potential to serve as the basis for new multimicroprocessor (MMP) computers. The paper presents examples of how computational algorithms from structural mechanics can be efficiently implemented on the chordal-ring architecture.

  11. The organization of scientists and its relation to scientific productivity: Perceptions of Chinese stem cell researchers

    PubMed Central

    Zhang, Joy Yueyue

    2013-01-01

    Chinese government funding of R&D ranks third in the world. Yet China ranks only 17th in terms of scientific productivity per unit of investment. The author recently conducted fieldwork on the team structure of 22 Chinese stem cell research groups. Interview data suggest that although Chinese research groups closely resemble their international counter-parts in many respects, there are also significant differences which are perceived by interviewees to affect levels of scientific productivity. One characteristic of Chinese research teams is a common deficiency in middle-layer positions. This shortage of experienced professionals is perceived by scientists participating in this study to have led to two consequences. First, inexperienced student researchers often form the backbone of scientific teams in China, which leads to frequent interruptions of research and extended laboratory training. Second, research teams consist of a relatively small number of personnel. These structural features are seen to create excessive social boundaries, which impede the exchange of information and further worsens the segmentation of resources. This article engages the question of the extent to which interviewees’ local ‘embedded’ understandings of these difficulties may make a productive contribution to the analysis of the structural, and infra-structural, organization of Chinese professional bioscience teams. PMID:24143153

  12. Radio stimulation and diagnostics of space plasmas

    NASA Technical Reports Server (NTRS)

    Lee, Min-Chang

    1993-01-01

    We have investigated the small-scale topside ionospheric plasma structures first observed at Millstone Hill, Massachusetts with the 440 MHz incoherent scatter radar. These small-scale obliquely propagating plasma modes occurring in the vicinity of the midlatitude ionospheric trough, have large radar cross-sections and narrow spectral widths. They have, until recently, been dismissed solely as hard target contamination of the incoherent scatter radar. The geophysical conditions associated with the ionospheric trough, such as the field-aligned current activity and steep plasma density gradients, suggest that these recently discovered small-scale topside ionospheric plasmas may also appear in the auroral and polar ionosphere. In fact, this speculation has been corroborated by the preliminary experiments and data analyses at Tromso, Norway and Sondrestromfjord, Greenland. The primary research results are highlighted. Described in Section 3 are the experiments conducted at Arecibo, Puerto Rico in the past summer for simulating the geophysical conditions of generating these topside ionospheric plasma structures. Recommendation for the future research is finally given. Attached as the appendix of this report are several chapters which present the detailed results of research in the concerned topside ionospheric clutter. Highlights of the research results include: (1) causes of the enhanced radar backscatter (ERB) phenomenon; (2) occurrence of the ERB phenomenon; (3) altitudes of the ERB phenomenon; (4) strength of the ERB returns; (5) range of altitudes of the ERB returns; (6) occurrence frequency of the ERB phenomenon; (7) Doppler effect of the ERB phenomenon; (8) persistency of the ERB; and (9) distinction between ERB phenomenon and space object signatures.

  13. Radio stimulation and diagnostics of space plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Min-Chang

    1993-02-01

    We have investigated the small-scale topside ionospheric plasma structures first observed at Millstone Hill, Massachusetts with the 440 MHz incoherent scatter radar. These small-scale obliquely propagating plasma modes occurring in the vicinity of the midlatitude ionospheric trough, have large radar cross-sections and narrow spectral widths. They have, until recently, been dismissed solely as hard target contamination of the incoherent scatter radar. The geophysical conditions associated with the ionospheric trough, such as the field-aligned current activity and steep plasma density gradients, suggest that these recently discovered small-scale topside ionospheric plasmas may also appear in the auroral and polar ionosphere. In fact, this speculation has been corroborated by the preliminary experiments and data analyses at Tromso, Norway and Sondrestromfjord, Greenland. The primary research results are highlighted. Described in Section 3 are the experiments conducted at Arecibo, Puerto Rico in the past summer for simulating the geophysical conditions of generating these topside ionospheric plasma structures. Recommendation for the future research is finally given. Attached as the appendix of this report are several chapters which present the detailed results of research in the concerned topside ionospheric clutter. Highlights of the research results include: (1) causes of the enhanced radar backscatter (ERB) phenomenon; (2) occurrence of the ERB phenomenon; (3) altitudes of the ERB phenomenon; (4) strength of the ERB returns; (5) range of altitudes of the ERB returns; (6) occurrence frequency of the ERB phenomenon; (7) Doppler effect of the ERB phenomenon; (8) persistency of the ERB; and (9) distinction between ERB phenomenon and space object signatures.

  14. Research and Process-Optimization on Mixed Crystal Caused Uneven-Performance of High-strength Structural Car Steel QStE500TM

    NASA Astrophysics Data System (ADS)

    Jian-wen, Li; Hong-yan, Liu

    Handan Iron and Steel production of high-strength structural car steel QStE500TM thin gauge products using Nb + Ti composite strengthening, with a small amount of Cr element to improve its hardenability, the process parameter control is inappropriate with Nb + Ti complex steel, it is easy to produce in the mixed crystal phenomenon, resulting in decreasing the toughness and uneven performance. In this paper, Gleeble 3500 thermal simulation testing machine for high-strength structural steel car QStE500TM product deformation austenite recrystallization behavior research, determined completely recrystallized, partial recrystallization and non-recrystallization region, provide theoretical basis and necessary data for reasonable controlled rolling process for production.

  15. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research), phase 2, option 2

    NASA Astrophysics Data System (ADS)

    Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.

    1988-12-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  16. Attitudes to research and research training among ophthalmologists and ophthalmology trainees in New Zealand.

    PubMed

    Jayasundera, Thiran; Fisk, Michael; McGhee, Charles N J

    2003-08-01

    To determine the attitudes to research and research training among ophthalmologists and ophthalmology trainees in New Zealand. A structured, self-administered questionnaire was devised and after preliminary validation a postal survey was sent to all ophthalmologists and ophthalmology registrars and fellows in New Zealand. A total of 82 replies were received from 115 questionnaires sent out; a response rate of 71.3%. An overwhelming majority found research to have benefited their education, clinical practice and career; 67.1% of the respondents intended to do research in the future. Although a majority (56.4%) felt research to be beneficial to ophthalmology training, 42.3% felt research would be of limited or no benefit when selecting candidates for vocational training. However, 97.5% of respondents felt that ophthalmology trainees should undertake some form of research during training, with most supporting small studies or case reports (44.4%) or a short structured training course in research (42.0%). Interestingly, 86.6% felt that research methodology and data analysis should be taught in a structured fashion with most supporting courses or seminars of a few weeks duration during the vocational training period. Many ophthalmologists felt inadequately equipped or trained to mentor and supervise trainees undertaking research and 41.5% of consultant ophthalmologists felt further training to fulfil this role would be beneficial. This survey suggests that New Zealand ophthalmologists generally approve of and support a place for research, possibly of a more structured design, during ophthalmology training.

  17. A Coherent VLSI Design Environment

    DTIC Science & Technology

    1987-12-31

    contract the total research volume in VLSI rose from an estimated $3,000,000 to over 3 $10,000,000, and a state-of-the-art VLSI fabrication facility costing...Research" 11:30 John Melngailic , "Submicron Structures Research at M.I.T." 11:55 Dimitri A. Antoniadis, "Status of the M.I.T. LSI Fabrication Facility ...1984. Contributions were made by Prof. Antoniadis and, to a small degree, Pro£ Glasser. Objective: • To develop techniques for fabricating integrated

  18. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  19. Measurements of Shock Effects Recorded by Hayabusa Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.

    2015-01-01

    We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD) [1,2]. As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.

  20. Measurements of Shock Effects Recorded by Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.

    2016-01-01

    We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD). As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.

  1. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK

    PubMed Central

    Bührmann, Mike; Wiedemann, Bianca M.; Müller, Matthias P.; Hardick, Julia; Ecke, Maria

    2017-01-01

    In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography. PMID:28892510

  2. [Qualitative evaluation of employer requirements associated with occupational health and safety as good practice in small-scale enterprises].

    PubMed

    Kuroki, Naomi; Miyashita, Nana; Hino, Yoshiyuki; Kayashima, Kotaro; Fujino, Yoshihisa; Takada, Mikio; Nagata, Tomohisa; Yamataki, Hajime; Sakuragi, Sonoko; Kan, Hirohiko; Morita, Tetsuya; Ito, Akiyoshi; Mori, Koji

    2009-09-01

    The purpose of this study was to identify what motivates employers to promote good occupational health and safety practices in small-scale enterprises. Previous studies have shown that small-scale enterprises generally pay insufficient attention to issues of occupational health and safety. These findings were mainly derived from questionnaire based surveys. Nevertheless, some small-scale enterprises in which employers exercise good leadership do take a progressive approach to occupational health and safety. Although good practices can be identified in small-scale enterprises, it remains unclear what motivates employers in small-scale enterprises to actively implement occupational health and safety practices. We speculated that identifying employer motivations in promoting occupational health would help to spread good practices among small-scale enterprises. Using a qualitative approach based on the KJ methods, we interviewed ten employers who actively promote occupational health and safety in the workplace. The employers were asked to discuss their views of occupational health and safety in their own words. A semi-structured interview format was used, and transcripts were made of the interviews. Each transcript was independently coded by two or more researchers. These transcripts and codes were integrated and then the research group members discussed the heading titles and structural relationships between them according to the KJ method. Qualitative analysis revealed that all the employers expressed a strong interest in a "good company" and "good management". They emphasized four elements of "good management", namely "securing human resources", "trust of business partners", "social responsibility" and "employer's health condition itself", and considered that addressing occupational health and safety was essential to the achievement of these four elements. Consistent with previous findings, the results showed that implementation of occupational health and safety activities depended on "cost", "human resources", "time to perform", and "advisory organization". These results suggest that employer awareness of the relationship between good management and occupational health is essential to the implementation of occupational health and safety practices in small-scale enterprises.

  3. Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity

    PubMed Central

    Memon, Muhammad Usman; Lim, Sungjoon

    2016-01-01

    This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure. PMID:27809240

  4. Turbulence study in the vicinity of piano key weir: relevance, instrumentation, parameters and methods

    NASA Astrophysics Data System (ADS)

    Tiwari, Harinarayan; Sharma, Nayan

    2017-05-01

    This research paper focuses on the need of turbulence, instruments reliable to capture turbulence, different turbulence parameters and some advance methodology which can decompose various turbulence structures at different levels near hydraulic structures. Small-scale turbulence research has valid prospects in open channel flow. The relevance of the study is amplified as we introduce any hydraulic structure in the channel which disturbs the natural flow and creates discontinuity. To recover this discontinuity, the piano key weir (PKW) might be used with sloped keys. Constraints of empirical results in the vicinity of PKW necessitate extensive laboratory experiments with fair and reliable instrumentation techniques. Acoustic Doppler velocimeter was established to be best suited within range of some limitations using principal component analysis. Wavelet analysis is proposed to decompose the underlying turbulence structure in a better way.

  5. Functions and Mechanisms of Sleep in Flies and Mammals

    DTIC Science & Technology

    2007-02-01

    serotonin receptor likely to mediate the known interaction between the serotonergic Raphe nucleus and the LC (Htr1d). We have also confirmed the prior... Chemistry . His research focuses on mass spectrometry, a technique that will augment research on the mechanisms of sleep and complement microarray gene...labeling (ICAT, ITRAQ, etc); 8) MALDI and electrospray FTMS for the identification of small molecule structure ; 9) Gas phase reactions within the FTMS

  6. Athena Research Ship System (Users Guide)

    DTIC Science & Technology

    1988-05-01

    Users may arrange for their own account any logistic support that does not impact the ship directly; such as crane service, drayage, small craft, flying...craft, photographic services, and the like. Any services that impact the ships’ structural, propulsion and electrical or electronic systems must be...by block number) This manual was developed to provide general information regarding the ATHENA RESEARCH SHIP SYSTEM and specific data relative to the

  7. Providing structural modules with self-integrity monitoring software user's manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    National Aeronautics and Space Administration (NASA) Contract NAS7-961 (A Small Business Innovation and Research (SBIR) contract from NASA) involved research dealing with remote structural damage detection using the concept of substructures. Several approaches were developed. The main two were: (1) the module (substructure) transfer function matrix (MTFM) approach; and (2) modal strain energy distribution method (MSEDM). Either method can be used with a global structure; however, the focus was on substructures. As part of the research contract, computer software was to be developed which would implement the developed methods. This was done and it was used to process all the finite element generated numerical data for the research. The software was written for the IBM AT personal computer. Copies of it were placed on floppy disks. This report serves as a user's manual for the two sets of damage detection software. Sections 2.0 and 3.0 discuss the use of the MTFM and MSEDM software, respectively.

  8. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    PubMed

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. CubeSat Batteries

    NASA Image and Video Library

    2017-01-11

    Daniel Perez, Ph.D., a graduate student from the University of Miami, displays a piece of the prototype structure for a new solid-state battery in the Prototype Laboratory at NASA's Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.

  10. CubeSat Batteries

    NASA Image and Video Library

    2017-01-11

    Daniel Perez, Ph.D., a graduate student from the University of Miami, prepares layers of the prototype structure for a new solid-state battery in the Prototype Laboratory at NASA's Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.

  11. Adaptive Optics of Small Choroidal Melanoma.

    PubMed

    Rodrigues, Murilo W; Say, Emil A; Shields, Carol L; Jorge, Rodrigo

    2017-04-01

    The authors report the use of an adaptive optics (AO) system in an asymptomatic patient with small choroidal melanoma. A noninvasive, novel assessment that detected potential photoreceptor abnormalities in the retina overlying the choroidal lesion and adjacent retina is presented. These findings may help current clinical evaluation to monitor structural damage to the outer retina and possibly justify earlier intervention in borderline cases. Future research is warranted to recognize full potential of this imaging modality. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:354-357.]. Copyright 2017, SLACK Incorporated.

  12. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  13. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  14. Visualization of small lesions in rat cartilage by means of laboratory-based x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Marenzana, Massimo; Hagen, Charlotte K.; Das Neves Borges, Patricia; Endrizzi, Marco; Szafraniec, Magdalena B.; Ignatyev, Konstantin; Olivo, Alessandro

    2012-12-01

    Being able to quantitatively assess articular cartilage in three-dimensions (3D) in small rodent animal models, with a simple laboratory set-up, would prove extremely important for the development of pre-clinical research focusing on cartilage pathologies such as osteoarthritis (OA). These models are becoming essential tools for the development of new drugs for OA, a disease affecting up to 1/3 of the population older than 50 years for which there is no cure except prosthetic surgery. However, due to limitations in imaging technology, high-throughput 3D structural imaging has not been achievable in small rodent models, thereby limiting their translational potential and their efficiency as research tools. We show that a simple laboratory system based on coded-aperture x-ray phase contrast imaging (CAXPCi) can correctly visualize the cartilage layer in slices of an excised rat tibia imaged both in air and in saline solution. Moreover, we show that small, surgically induced lesions are also correctly detected by the CAXPCi system, and we support this finding with histopathology examination. Following these successful proof-of-concept results in rat cartilage, we expect that an upgrade of the system to higher resolutions (currently underway) will enable extending the method to the imaging of mouse cartilage as well. From a technological standpoint, by showing the capability of the system to detect cartilage also in water, we demonstrate phase sensitivity comparable to other lab-based phase methods (e.g. grating interferometry). In conclusion, CAXPCi holds a strong potential for being adopted as a routine laboratory tool for non-destructive, high throughput assessment of 3D structural changes in murine articular cartilage, with a possible impact in the field similar to the revolution that conventional microCT brought into bone research.

  15. Smart Sensors Assess Structural Health

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.

  16. [Structural Study in the Platform for Drug Discovery, Informatics, and Structural Life Science].

    PubMed

    Senda, Toshiya

    2016-01-01

    The Platform for Drug Discovery, Informatics, and Structural Life Science (PDIS), which has been launched since FY2012, is a national project in the field of structural biology. The PDIS consists of three cores - structural analysis, control, and informatics - and aims to support life science researchers who are not familiar with structural biology. The PDIS project is able to provide full-scale support for structural biology research. The support provided by the PDIS project includes protein purification with various expression systems, large scale protein crystallization, crystal structure determination, small angle scattering (SAXS), NMR, electron microscopy, bioinformatics, etc. In order to utilize these methods of support, PDIS users need to submit an application form to the one-stop service office. Submitted applications will be reviewed by three referees. It is strongly encouraged that PDIS users have sufficient discussion with researchers in the PDIS project before submitting the application. This discussion is very useful in the process of project design, particularly for beginners in structural biology. In addition to this user support, the PDIS project has conducted R&D, which includes the development of synchrotron beamlines. In the PDIS project, PF and SPring-8 have developed beamlines for micro-crystallography, high-throughput data collection, supramolecular assembly, and native single anomalous dispersion (SAD) phasing. The newly developed beamlines have been open to all users, and have accelerated structural biology research. Beamlines for SAXS have also been developed, which has dramatically increased bio-SAXS users.

  17. Current Incentives for Scientists Lead to Underpowered Studies with Erroneous Conclusions.

    PubMed

    Higginson, Andrew D; Munafò, Marcus R

    2016-11-01

    We can regard the wider incentive structures that operate across science, such as the priority given to novel findings, as an ecosystem within which scientists strive to maximise their fitness (i.e., publication record and career success). Here, we develop an optimality model that predicts the most rational research strategy, in terms of the proportion of research effort spent on seeking novel results rather than on confirmatory studies, and the amount of research effort per exploratory study. We show that, for parameter values derived from the scientific literature, researchers acting to maximise their fitness should spend most of their effort seeking novel results and conduct small studies that have only 10%-40% statistical power. As a result, half of the studies they publish will report erroneous conclusions. Current incentive structures are in conflict with maximising the scientific value of research; we suggest ways that the scientific ecosystem could be improved.

  18. Current Incentives for Scientists Lead to Underpowered Studies with Erroneous Conclusions

    PubMed Central

    Higginson, Andrew D.; Munafò, Marcus R.

    2016-01-01

    We can regard the wider incentive structures that operate across science, such as the priority given to novel findings, as an ecosystem within which scientists strive to maximise their fitness (i.e., publication record and career success). Here, we develop an optimality model that predicts the most rational research strategy, in terms of the proportion of research effort spent on seeking novel results rather than on confirmatory studies, and the amount of research effort per exploratory study. We show that, for parameter values derived from the scientific literature, researchers acting to maximise their fitness should spend most of their effort seeking novel results and conduct small studies that have only 10%–40% statistical power. As a result, half of the studies they publish will report erroneous conclusions. Current incentive structures are in conflict with maximising the scientific value of research; we suggest ways that the scientific ecosystem could be improved. PMID:27832072

  19. Analytical and Experimental Research on Large Angle Maneuvers of Flexible Structures

    DTIC Science & Technology

    1990-05-04

    and achieved a much higher level of technical maturity than could be expected based upon I the the proposal and contractual requirements. This...would expect , for example, that a very smooth, small reference torque input should result in the flexible structure motion approaching the rigid body...alleviated on sound physical grounds by using the forced response data (e. g., the frequency response function) to impose the proper scaling on the system

  20. Structure-activity relationships in beta-defensin peptides.

    PubMed

    Taylor, Karen; Barran, Perdita E; Dorin, Julia R

    2008-01-01

    The beta-defensins comprise a large family of small cationic antimicrobial peptides widely distributed in plants, mammals and insects. These cysteine rich peptides display multifunctional properties with implications as potential therapeutic agents. Recent research has highlighted their role in both the innate and adaptive immune systems as well as being novel melanocortin ligands. Studies investigating structure and function provide an insight into the molecular basis of their immunological properties. (c) 2007 Wiley Periodicals, Inc.

  1. Overview of demonstrator program of Japanese Smart Materials and Structure System project

    NASA Astrophysics Data System (ADS)

    Tajima, Naoyuki; Sakurai, Tateo; Sasajima, Mikio; Takeda, Nobuo; Kishi, Teruo

    2003-08-01

    The Japanese Smart Material and Structure System Project started in 1998 as five years' program that funded by METI (Ministry of Economy, Trade and Industry) and supported by NEDO (New Energy and Industrial Technology Development Organization). Total budget of five years was finally about 3.8 billion Japanese yen. This project has been conducted as the Academic Institutions Centered Program, namely, one of collaborated research and development among seven universities (include one foreign university), seventeen Industries (include two foreign companies), and three national laboratories. At first, this project consisted of four research groups that were structural health monitoring, smart manufacturing, active/adaptive structures, and actuator material/devices. Two years later, we decided that two demonstrator programs should be added in order to integrate the developed sensor and actuator element into the smart structure system and verify the research and development results of above four research groups. The application target of these demonstrators was focused to the airplane, and two demonstrators that these shapes simulate to the fuselage of small commercial airplane (for example, Boeing B737) had been established. Both demonstrators are cylindrical structures with 1.5 m in diameter and 3 m in length that the first demonstrator has CFRP skin-stringer and the second one has CFRP skin. The first demonstrator integrates the following six innovative techniques: (1) impact monitoring using embedded small diameter optical fiber sensors newly developed in this program, (2) impact monitoring using the integrated acoustic emission (AE) systems, (3) whole-field strain mapping using the BOTDR/FBG integrated system, (4) damage suppression using embedded shape memory alloy (SMA) films, (5) maximum and cyclic strain sensing using smart composite patches, and (6) smart manufacturing using the integrated sensing system. The second one is for demonstrating the suppression of vibration and acoustic noise generated in the composite cylindrical structure. In this program, High-performance PZT actuators/sensors developed in this program are also installed. The whole tests and evaluations have now been finished. This paper presents the outline of demonstrator programs, followed by six presentations that show the detail verification results of industrial demonstration themes.

  2. NASA research on viscous drag reduction

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Maddalon, D. V.

    1982-01-01

    Research on natural laminar flow, laminar flow control by suction, and turbulent drag reduction is discussed. Preliminary results suggest that a significant amount of natural laminar flow can be achieved on small, straight wing airplanes. On larger, swept wing aircraft, laminar flow control by distributed suction is expected to result in significant fuel savings. The area over which laminar flow control is applied depends on tradeoffs involving structural complexity, maintenance, and cost. Several methods of reducing turbulent skin friction by altering the turbulence structure itself have shown promise in exploratory testing. The status of these technologies and the benefits of applying them to future aircraft are reviewed.

  3. Introduction to clinical and laboratory (small-animal) image registration and fusion.

    PubMed

    Zanzonico, Pat B; Nehmeh, Sadek A

    2006-01-01

    Imaging has long been a vital component of clinical medicine and, increasingly, of biomedical research in small-animals. Clinical and laboratory imaging modalities can be divided into two general categories, structural (or anatomical) and functional (or physiological). The latter, in particular, has spawned what has come to be known as "molecular imaging". Image registration and fusion have rapidly emerged as invaluable components of both clinical and small-animal imaging and has lead to the development and marketing of a variety of multi-modality, e.g. PET-CT, devices which provide registered and fused three-dimensional image sets. This paper briefly reviews the basics of image registration and fusion and available clinical and small-animal multi-modality instrumentation.

  4. Research of the small satellite data management system

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozhou; Zhou, Fengqi; Zhou, Jun

    2007-11-01

    Small satellite is the integration of light weight, small volume and low launch cost. It is a promising approach to realize the future space mission. A detailed study of the data management system has been carried out, with using new reconfiguration method based on System On Programmable Chip (SOPC). Compared with common structure of satellite, the Central Terminal Unit (CTU), the Remote Terminal Unit (RTU) and Serial Data Bus (SDB) of the data management are all integrated in single chip. Thus the reliability of the satellite is greatly improved. At the same time, the data management system has powerful performance owing to the modern FPGA processing ability.

  5. Numerical investigation of exact coherent structures in turbulent small-aspect-ratio Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Krygier, Michael; Crowley, Christopher J.; Schatz, Michael F.; Grigoriev, Roman O.

    2017-11-01

    As suggested by recent theoretical and experimental studies, fluid turbulence can be described as a walk between neighborhoods of unstable nonchaotic solutions of the Navier-Stokes equation known as exact coherent structures (ECS). Finding ECS in an experimentally-accessible setting is the first step toward rigorous testing of the dynamical role of ECS in 3D turbulence. We found several ECS (both relative periodic orbits and relative equilibria) in a weakly turbulent regime of small-aspect-ratio Taylor-Couette flow with counter-rotating cylinders. This talk will discuss how the geometry of these solutions guides the evolution of turbulent flow in the simulations. This work is supported by the Army Research Office (Contract # W911NF-15-1-0471).

  6. Displacement Based Multilevel Structural Optimization

    NASA Technical Reports Server (NTRS)

    Sobieszezanski-Sobieski, J.; Striz, A. G.

    1996-01-01

    In the complex environment of true multidisciplinary design optimization (MDO), efficiency is one of the most desirable attributes of any approach. In the present research, a new and highly efficient methodology for the MDO subset of structural optimization is proposed and detailed, i.e., for the weight minimization of a given structure under size, strength, and displacement constraints. Specifically, finite element based multilevel optimization of structures is performed. In the system level optimization, the design variables are the coefficients of assumed polynomially based global displacement functions, and the load unbalance resulting from the solution of the global stiffness equations is minimized. In the subsystems level optimizations, the weight of each element is minimized under the action of stress constraints, with the cross sectional dimensions as design variables. The approach is expected to prove very efficient since the design task is broken down into a large number of small and efficient subtasks, each with a small number of variables, which are amenable to parallel computing.

  7. Marshall Space Flight Center Test Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeffrey T.

    2005-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  8. Collected Papers in Structural Mechanics Honoring Dr. James H. Starnes, Jr.

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr. (Compiler); Nemeth, Michael P. (Compiler); Malone, John B. (Compiler)

    2006-01-01

    This special publication contains a collection of structural mechanics papers honoring Dr. James H. Starnes, Jr. presented at the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference held in Austin, Texas, April 18-21, 2005. Contributors to this publication represent a small number of those influenced by Dr. Starnes' technical leadership, his technical prowess and diversity, and his technical breath and depth in engineering mechanics. These papers cover some of the research areas Dr. Starnes investigated, which included buckling, postbuckling, and collapse of structures; composite structural mechanics, residual strength and damage tolerance of metallic and composite structures; and aircraft structural design, certification and verification. He actively pursued technical understanding and clarity, championed technical excellence, and modeled humility and perseverance.

  9. Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.

    PubMed

    Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony

    2007-03-01

    DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research.

  10. Emergency in-flight egress opening for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1980-01-01

    In support of a stall/spin research program, an emergency in-flight egress system is being installed in a light general aviation airplane. To avoid a major structural redesign for a mechanical door, an add-on 11.2 kg pyrotechnic-actuated system was developed to create an opening in the existing structure. The airplane skin will be explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel will be jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mock-ups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics.

  11. Small-world human brain networks: Perspectives and challenges.

    PubMed

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. "Putting on Band-Aids": The Contradictory Roles and "Small Wins" of Tempered Campus Radicals

    ERIC Educational Resources Information Center

    Westerman, Marni; Huey, Laura

    2012-01-01

    Nancy Fraser's propositions regarding the nature of "boundary" work carried out by experts within organizations suggests that individuals who work within bureaucratic structures are so constrained by the institutional context that they become detached, depoliticizing arbitrators of politicized claims. The purpose of the research reported…

  13. Student Success Skills: A Structured Group Intervention for School Counselors

    ERIC Educational Resources Information Center

    Webb, Linda; Brigman, Greg A.

    2007-01-01

    This article describes the Student Success Skills (SSS) small group intervention developed for school counselors targeting academic outcomes. The SSS program is based on extensive reviews of research about the skills students need to be successful. Studies supporting program effectiveness are briefly reviewed and show consistent patterns of…

  14. Fitting Residual Error Structures for Growth Models in SAS PROC MCMC

    ERIC Educational Resources Information Center

    McNeish, Daniel

    2017-01-01

    In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of…

  15. Defense Small Business Innovation Research Program (SBIR). Volume 1. Army Abstracts of Phase 1 Awards 1987.

    DTIC Science & Technology

    1988-04-01

    TECHNOLOGY TO PROTECT LAMINATED FIBERGLASS REIN- FORCES STRUCTURES FROM CHEMICAL AGENTS AND DECONTAMINANTS . FLAME0 RETARDENCY, ADHESION, ABRASION RESISTANCE...OFFICE: BRDC- PVD ALTHOUGH THERE ARE NO INTRINSIC CONFLICTS FOR THE SAME MATERIAL SYSTEMS TO ACHIEVE BOTH THE RADAR ABSORPTION AND THERMAL SUPPRESSION...VEHICLE TOPIC# 135 OFFICE: BRDC- PVD THE OBJECTIVE OF THE PHASE I RESEARCH AND DEVELOPMENT PROPOSED HEREIN IS TO DETERMINE WHICH MAJOR COMPONENTS OF THE

  16. Reconceptualizing the classification of PNAS articles

    PubMed Central

    Airoldi, Edoardo M.; Erosheva, Elena A.; Fienberg, Stephen E.; Joutard, Cyrille; Love, Tanzy; Shringarpure, Suyash

    2010-01-01

    PNAS article classification is rooted in long-standing disciplinary divisions that do not necessarily reflect the structure of modern scientific research. We reevaluate that structure using latent pattern models from statistical machine learning, also known as mixed-membership models, that identify semantic structure in co-occurrence of words in the abstracts and references. Our findings suggest that the latent dimensionality of patterns underlying PNAS research articles in the Biological Sciences is only slightly larger than the number of categories currently in use, but it differs substantially in the content of the categories. Further, the number of articles that are listed under multiple categories is only a small fraction of what it should be. These findings together with the sensitivity analyses suggest ways to reconceptualize the organization of papers published in PNAS. PMID:21078953

  17. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    PubMed

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.

  18. Collaboration patterns in the German political science co-authorship network.

    PubMed

    Leifeld, Philip; Wankmüller, Sandra; Berger, Valentin T Z; Ingold, Karin; Steiner, Christiane

    2017-01-01

    Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as "invisible colleges" or "groups of collaborators" as well as academic "stars" that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups.

  19. Collaboration patterns in the German political science co-authorship network

    PubMed Central

    Wankmüller, Sandra; Berger, Valentin T. Z.; Ingold, Karin; Steiner, Christiane

    2017-01-01

    Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as “invisible colleges” or “groups of collaborators” as well as academic “stars” that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups. PMID:28388621

  20. Ambiguity of non-systematic chemical identifiers within and between small-molecule databases.

    PubMed

    Akhondi, Saber A; Muresan, Sorel; Williams, Antony J; Kors, Jan A

    2015-01-01

    A wide range of chemical compound databases are currently available for pharmaceutical research. To retrieve compound information, including structures, researchers can query these chemical databases using non-systematic identifiers. These are source-dependent identifiers (e.g., brand names, generic names), which are usually assigned to the compound at the point of registration. The correctness of non-systematic identifiers (i.e., whether an identifier matches the associated structure) can only be assessed manually, which is cumbersome, but it is possible to automatically check their ambiguity (i.e., whether an identifier matches more than one structure). In this study we have quantified the ambiguity of non-systematic identifiers within and between eight widely used chemical databases. We also studied the effect of chemical structure standardization on reducing the ambiguity of non-systematic identifiers. The ambiguity of non-systematic identifiers within databases varied from 0.1 to 15.2 % (median 2.5 %). Standardization reduced the ambiguity only to a small extent for most databases. A wide range of ambiguity existed for non-systematic identifiers that are shared between databases (17.7-60.2 %, median of 40.3 %). Removing stereochemistry information provided the largest reduction in ambiguity across databases (median reduction 13.7 percentage points). Ambiguity of non-systematic identifiers within chemical databases is generally low, but ambiguity of non-systematic identifiers that are shared between databases, is high. Chemical structure standardization reduces the ambiguity to a limited extent. Our findings can help to improve database integration, curation, and maintenance.

  1. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research) phase 2, option 1

    NASA Astrophysics Data System (ADS)

    Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.

    1988-04-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  2. Hydrocarbon-Stapled Peptides: Principles, Practice, and Progress

    PubMed Central

    2015-01-01

    Protein structure underlies essential biological processes and provides a blueprint for molecular mimicry that drives drug discovery. Although small molecules represent the lion’s share of agents that target proteins for therapeutic benefit, there remains no substitute for the natural properties of proteins and their peptide subunits in the majority of biological contexts. The peptide α-helix represents a common structural motif that mediates communication between signaling proteins. Because peptides can lose their shape when taken out of context, developing chemical interventions to stabilize their bioactive structure remains an active area of research. The all-hydrocarbon staple has emerged as one such solution, conferring α-helical structure, protease resistance, cellular penetrance, and biological activity upon successful incorporation of a series of design and application principles. Here, we describe our more than decade-long experience in developing stapled peptides as biomedical research tools and prototype therapeutics, highlighting lessons learned, pitfalls to avoid, and keys to success. PMID:24601557

  3. Impact of new computing systems on computational mechanics and flight-vehicle structures technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storaasli, O. O.; Fulton, R. E.

    1984-01-01

    Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.

  4. Nanotechnology: Fundamental Principles and Applications

    NASA Astrophysics Data System (ADS)

    Ranjit, Koodali T.; Klabunde, Kenneth J.

    Nanotechnology research is based primarily on molecular manufacturing. Although several definitions have been widely used in the past to describe the field of nanotechnology, it is worthwhile to point out that the National Nanotechnology Initiative (NNI), a federal research and development scheme approved by the congress in 2001 defines nanotechnology only if the following three aspects are involved: (1) research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1-100 nanometer range, (2) creating and using structures, devices, and systems that have novel properties and functions because of their small and/or intermediate size, and (3) ability to control or manipulate on the atomic scale. Nanotechnology in essence is the technology based on the manipulation of individual atoms and molecules to build complex structures that have atomic specifications.

  5. Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing.

    PubMed

    Lee, Soo Hyeon; Chung, Bong Hyun; Park, Tae Gwan; Nam, Yoon Sung; Mok, Hyejung

    2012-07-17

    Because of RNA's ability to encode structure and functional information, researchers have fabricated diverse geometric structures from this polymer at the micro- and nanoscale. With their tunable structures, rigidity, and biocompatibility, novel two-dimensional and three-dimensional RNA structures can serve as a fundamental platform for biomedical applications, including engineered tissues, biosensors, and drug delivery vehicles. The discovery of the potential of small-interfering RNA (siRNA) has underscored the applications of RNA-based micro- and nanostructures in medicine. Small-interfering RNA (siRNA), synthetic double-stranded RNA consisting of approximately 21 base pairs, suppresses problematic target genes in a sequence-specific manner via inherent RNA interference (RNAi) processing. As a result, siRNA offers a potential strategy for treatment of many human diseases. However, due to inefficient delivery to cells and off-target effects, the clinical application of therapeutic siRNA has been very challenging. To address these issues, researchers have studied a variety of nanocarrier systems for siRNA delivery. In this Account, we describe several strategies for efficient siRNA delivery and selective gene silencing. We took advantage of facile chemical conjugation and complementary hybridization to design novel siRNA-based micro- and nanostructures. Using chemical crosslinkers and hydrophobic/hydrophilic polymers at the end of siRNA, we produced various RNA-based structures, including siRNA block copolymers, micelles, linear siRNA homopolymers, and microhydrogels. Because of their increased charge density and flexibility compared with conventional siRNA, these micro- and nanostructures can form polyelectrolyte complexes with poorly charged and biocompatible cationic carriers that are both more condensed and more homogenous than the complexes formed in other carrier systems. In addition, the fabricated siRNA-based structures are linked by cleavable disulfide bonds for facile generation of original siRNA in the cytosol and for target-specific gene silencing. These newly developed siRNA-based structures greatly enhance intracellular uptake and gene silencing both in vitro and in vivo, making them promising biomaterials for siRNA therapeutics.

  6. Supersonic Research Display for Tour

    NASA Image and Video Library

    1946-03-21

    On March 22, 1946, 250 members of the Institute of Aeronautical Science toured the NACA’s Aircraft Engine Research Laboratory. NACA Chairman Jerome Hunsaker and Secretary John Victory were on hand to brief the attendees in the Administration Building before the visited the lab’s test facilities. At each of the twelve stops, researchers provided brief presentations on their work. Topics included axial flow combustors, materials for turbine blades, engine cooling, icing prevention, and supersonic flight. The laboratory reorganized itself in October 1945 as World War II came to an end to address newly emerging technologies such as the jet engine, rockets, and high-speed flight. While design work began on what would eventually become the 8- by 6-Foot Supersonic Wind Tunnel, NACA Lewis quickly built several small supersonic tunnels. These small facilities utilized the Altitude Wind Tunnel’s massive air handling equipment to generate high-speed airflow. The display seen in this photograph was set up in the building that housed the first of these wind tunnels. Eventually the building would contain three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951. The small tunnels were used until the early 1960s to study the aerodynamic characteristics of supersonic inlets and exits.

  7. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations) on space biology research.

  8. Tools Lighten Designs, Maintain Structural Integrity

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Collier Research Corporation of Hampton, Virginia, licensed software developed at Langley Research Center to reduce design weight through the use of composite materials. The first license of NASA-developed software, it has now been used in everything from designing next-generation cargo containers, to airframes, rocket engines, ship hulls, and train bodies. The company now has sales of the NASA-derived software topping $4 million a year and has recently received several Small Business Innovation Research (SBIR) contracts to apply its software to nearly all aspects of the new Orion crew capsule design.

  9. Banana production systems: identification of alternative systems for more sustainable production.

    PubMed

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  10. Patterns of Relating Between Physicians and Medical Assistants in Small Family Medicine Offices

    PubMed Central

    Elder, Nancy C.; Jacobson, C. Jeffrey; Bolon, Shannon K.; Fixler, Joseph; Pallerla, Harini; Busick, Christina; Gerrety, Erica; Kinney, Dee; Regan, Saundra; Pugnale, Michael

    2014-01-01

    PURPOSE The clinician-colleague relationship is a cornerstone of relationship-centered care (RCC); in small family medicine offices, the clinician–medical assistant (MA) relationship is especially important. We sought to better understand the relationship between MA roles and the clinician-MA relationship within the RCC framework. METHODS We conducted an ethnographic study of 5 small family medicine offices (having <5 clinicians) in the Cincinnati Area Research and Improvement Group (CARInG) Network using interviews, surveys, and observations. We interviewed 19 MAs and supervisors and 11 clinicians (9 family physicians and 2 nurse practitioners) and observed 15 MAs in practice. Qualitative analysis used the editing style. RESULTS MAs’ roles in small family medicine offices were determined by MA career motivations and clinician-MA relationships. MA career motivations comprised interest in health care, easy training/workload, and customer service orientation. Clinician-MA relationships were influenced by how MAs and clinicians respond to their perceptions of MA clinical competence (illustrated predominantly by comparing MAs with nurses) and organizational structure. We propose a model, trust and verify, to describe the structure of the clinician-MA relationship. This model is informed by clinicians’ roles in hiring and managing MAs and the social familiarity of MAs and clinicians. Within the RCC framework, these findings can be seen as previously undefined constraints and freedoms in what is known as the Complex Responsive Process of Relating between clinicians and MAs. CONCLUSIONS Improved understanding of clinician-MA relationships will allow a better appreciation of how clinicians and MAs function in family medicine teams. Our findings may assist small offices undergoing practice transformation and guide future research to improve the education, training, and use of MAs in the family medicine setting. PMID:24615311

  11. Dynamical networks of influence in small group discussions.

    PubMed

    Moussaïd, Mehdi; Noriega Campero, Alejandro; Almaatouq, Abdullah

    2018-01-01

    In many domains of life, business and management, numerous problems are addressed by small groups of individuals engaged in face-to-face discussions. While research in social psychology has a long history of studying the determinants of small group performances, the internal dynamics that govern a group discussion are not yet well understood. Here, we rely on computational methods based on network analyses and opinion dynamics to describe how individuals influence each other during a group discussion. We consider the situation in which a small group of three individuals engages in a discussion to solve an estimation task. We propose a model describing how group members gradually influence each other and revise their judgments over the course of the discussion. The main component of the model is an influence network-a weighted, directed graph that determines the extent to which individuals influence each other during the discussion. In simulations, we first study the optimal structure of the influence network that yields the best group performances. Then, we implement a social learning process by which individuals adapt to the past performance of their peers, thereby affecting the structure of the influence network in the long run. We explore the mechanisms underlying the emergence of efficient or maladaptive networks and show that the influence network can converge towards the optimal one, but only when individuals exhibit a social discounting bias by downgrading the relative performances of their peers. Finally, we find a late-speaker effect, whereby individuals who speak later in the discussion are perceived more positively in the long run and are thus more influential. The numerous predictions of the model can serve as a basis for future experiments, and this work opens research on small group discussion to computational social sciences.

  12. Dynamical networks of influence in small group discussions

    PubMed Central

    Noriega Campero, Alejandro; Almaatouq, Abdullah

    2018-01-01

    In many domains of life, business and management, numerous problems are addressed by small groups of individuals engaged in face-to-face discussions. While research in social psychology has a long history of studying the determinants of small group performances, the internal dynamics that govern a group discussion are not yet well understood. Here, we rely on computational methods based on network analyses and opinion dynamics to describe how individuals influence each other during a group discussion. We consider the situation in which a small group of three individuals engages in a discussion to solve an estimation task. We propose a model describing how group members gradually influence each other and revise their judgments over the course of the discussion. The main component of the model is an influence network—a weighted, directed graph that determines the extent to which individuals influence each other during the discussion. In simulations, we first study the optimal structure of the influence network that yields the best group performances. Then, we implement a social learning process by which individuals adapt to the past performance of their peers, thereby affecting the structure of the influence network in the long run. We explore the mechanisms underlying the emergence of efficient or maladaptive networks and show that the influence network can converge towards the optimal one, but only when individuals exhibit a social discounting bias by downgrading the relative performances of their peers. Finally, we find a late-speaker effect, whereby individuals who speak later in the discussion are perceived more positively in the long run and are thus more influential. The numerous predictions of the model can serve as a basis for future experiments, and this work opens research on small group discussion to computational social sciences. PMID:29338013

  13. Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.

    2015-06-01

    The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.

  14. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  15. Unravelling Origami Metamaterial Behavior

    NASA Astrophysics Data System (ADS)

    Eidini, Maryam; Paulino, Glaucio

    2015-03-01

    Origami has shown to be a substantial source of inspiration for innovative design of mechanical metamaterials for which the material properties arise from their geometry and structural layout. Most research on origami-inspired materials relies on known patterns, especially on classic Miura-ori pattern. In the present research, we have created origami-inspired metamaterials and we have shown that the folded materials possess properties as remarkable as those of Miura-ori on which there is a lot of recent research. We have also introduced and placed emphasis on several important concepts that are confused or overlooked in the literature, e.g. concept of planar Poisson's ratio for folded materials from different conceptual viewpoints, and we have clarified the importance of such concepts by applying them to the folded sheet metamaterials introduced in our research. The new patterns are appropriate for a broad range of applications, from mechanical metamaterials to deployable and kinetic structures, at both small and large scales.

  16. Research on the Composition and Distribution of Organic Sulfur in Coal.

    PubMed

    Zhang, Lanjun; Li, Zenghua; Yang, Yongliang; Zhou, Yinbo; Li, Jinhu; Si, Leilei; Kong, Biao

    2016-05-13

    The structure and distribution of organic sulfur in coals of different rank and different sulfur content were studied by combining mild organic solvent extraction with XPS technology. The XPS results have shown that the distribution of organic sulfur in coal is related to the degree of metamorphism of coal. Namely, thiophenic sulfur content is reduced with decreasing metamorphic degree; sulfonic acid content rises with decreasing metamorphic degree; the contents of sulfate sulfur, sulfoxide and sulfone are rarely related with metamorphic degree. The solvent extraction and GC/MS test results have also shown that the composition and structure of free and soluble organic sulfur small molecules in coal is closely related to the metamorphic degree of coal. The free organic sulfur small molecules in coal of low metamorphic degree are mainly composed of aliphatic sulfides, while those in coal of medium and high metamorphic degree are mainly composed of thiophenes. Besides, the degree of aromatization of organic sulfur small molecules rises with increasing degree of coalification.

  17. CFIRP: What we learned in the first ten years

    USGS Publications Warehouse

    Chambers, C.L.; McComb, W.C.; Tappeiner, J. C.; Kellogg, L.D.; Johnson, R.L.; Spycher, G.

    1999-01-01

    In response to public dissatisfaction with forest management methods, we initiated the College of Forestry Integrated Research Project (CFIRP) to test alternative silvicultural systems in Douglas-fir (Pseudotsuga menziesii stands in western Oregon. We compared costs and biological and human responses among a control and three replicated silvicultural alternatives to clearcutting that retained structural features found in old Douglas-fir forests. Treatments were applied within 8- to 15-ha stands and attempted to mimic crown fires (modified clearcut), windthrow (green tree retention), and small-scale impacts such as root rot diseases (small patch group selection). We also compared costs in three unreplicated treatments (large patch group selection, wedge cut, and strip cut). Each treatment included differences in the pattern of retained dead trees (snags), as either scattered individuals or as clumps. Good communication among researchers and managers, a long-term commitment to the project, and careful documentation of research sites and data are important to the success of long-term silvicultural research projects. To date, over 30 publications have resulted from the project.

  18. Practical small-scale explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1983-01-01

    Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.

  19. Polymer Based Molecular Composites. Volume 171. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on 27-30 November 1989

    DTIC Science & Technology

    1990-09-01

    231 Harry L. Frisch PART V: IONOMERS/STRUCTURE SMALL ANGLE X - RAY SCATTERING ON POLY(ETHYLENE-METHACRYLIC ACID) LEAD AND LEAD SULFIDE IONOMERS 237...E.J. Kramer, R.J. Composto, R.S. Stein, T.P. Russell, G.P. Felcher, A. Mansour, and A. Karim * td:tt Papet Vil X - RAY REFLECTIVITY AND FLUORESCENCE...Sammann DETERMINATION OF PARTICLE SIZE OF A DISPERSED PHASE BY SMALL-ANGLE X - RAY SCATTERING 413 Frank C. Wilson *Invited Paper ix SYNTHESIS AND

  20. Research on Ultrasonic Flaw Detection of Steel Weld in Spatial Grid Structure

    NASA Astrophysics Data System (ADS)

    Du, Tao; Sun, Jiandong; Fu, Shengguang; Zhang, Changquan; Gao, Qing

    2017-06-01

    The welding quality of spatial grid member is an important link in quality control of steel structure. The paper analyzed the reasons that the welding seam of small-bore pipe with thin wall grid structure is difficult to be detected by ultrasonic wave from the theoretical and practical aspects. A series of feasible detection methods was also proposed by improving probe and operation approaches in this paper, and the detection methods were verified by project cases. Over the years, the spatial grid structure is widely used the engineering by virtue of its several outstanding characteristics such as reasonable structure type, standard member, excellent space integrity and quick installation. The wide application of spatial grid structure brings higher requirements on nondestructive test of grid structure. The implementation of new Code for Construction Quality Acceptance of Steel Structure Work GB50205-2001 strengthens the site inspection of steel structure, especially the site inspection of ultrasonic flaw detection in steel weld. The detection for spatial grid member structured by small-bore and thin-walled pipes is difficult due to the irregular influence of sound pressure in near-field region of sound field, sound beam diffusion generated by small bore pipe and reduction of sensitivity. Therefore, it is quite significant to select correct detecting conditions. The spatial grid structure of welding ball and bolt ball is statically determinate structure with high-order axial force which is connected by member bars and joints. It is welded by shrouding or conehead of member bars and of member bar and bolt-node sphere. It is obvious that to ensure the quality of these welding positions is critical to the quality of overall grid structure. However, the complexity of weld structure and limitation of ultrasonic detection method cause many difficulties in detection. No satisfactory results will be obtained by the conventional detection technology, so some special approaches must be used.

  1. Experimental search for Exact Coherent Structures in turbulent small aspect ratio Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Crowley, Christopher J.; Krygier, Michael; Grigoriev, Roman O.; Schatz, Michael F.

    2017-11-01

    Recent theoretical and experimental work suggests that the dynamics of turbulent flows are guided by unstable nonchaotic solutions to the Navier-Stokes equations. These solutions, known as exact coherent structures (ECS), play a key role in a fundamentally deterministic description of turbulence. In order to quantitatively demonstrate that actual turbulence in 3D flows is guided by ECS, high resolution, 3D-3C experimental measurements of the velocity need to be compared to solutions from direct numerical simulation of the Navier-Stokes equations. In this talk, we will present experimental measurements of fully time resolved, velocity measurements in a volume of turbulence in a counter-rotating, small aspect ratio Taylor-Couette flow. This work is supported by the Army Research Office (Contract # W911NF-16-1-0281).

  2. Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.

    2017-12-01

    A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.

  3. Recovery of Weak Factor Loadings When Adding the Mean Structure in Confirmatory Factor Analysis: A Simulation Study

    PubMed Central

    Ximénez, Carmen

    2016-01-01

    This article extends previous research on the recovery of weak factor loadings in confirmatory factor analysis (CFA) by exploring the effects of adding the mean structure. This issue has not been examined in previous research. This study is based on the framework of Yung and Bentler (1999) and aims to examine the conditions that affect the recovery of weak factor loadings when the model includes the mean structure, compared to analyzing the covariance structure alone. A simulation study was conducted in which several constraints were defined for one-, two-, and three-factor models. Results show that adding the mean structure improves the recovery of weak factor loadings and reduces the asymptotic variances for the factor loadings, particularly for the models with a smaller number of factors and a small sample size. Therefore, under certain circumstances, modeling the means should be seriously considered for covariance models containing weak factor loadings. PMID:26779071

  4. Comparison of MWIR unipolar barrier structures based on strained layer superlattices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ramirez, David A.; Myers, Stephen A.; Kuznetsova, Yuliya; Mathews, Sen; Schuler-Sandy, Theodore; Steenbergen, Elizabeth H.; Morath, Christian P.; Cowan, Vicent M.; Krishna, Sanjay

    2016-09-01

    In this work, we compare the performance of three MWIR unipolar barrier structures based on the InAs/GaSb Type-2 strained layer superlattice material system. We have designed, fabricated, and characterized pBiBn, pBn, and pBp detector structures. All the structures have been designed so that the cut off wavelength is around 5 microns at 100 K. We fabricated single-pixel devices and characterize their radiometric performance. In addition, we have characterized the degradation of the performance of the devices after exposing the devices to 63 MeV proton radiation to total ionizing dose of 100 kRad (Si). In this report, we compare the performance of the different structures with the objective of determining the advantages and disadvantages of the different designs. This work was supported by the Small Business Innovation Research (SBIR) program under the contract FA9453-14-C-0032, sponsored by the Air Force Research Laboratory (AFRL).

  5. International comparative study of systems for the government advancement of research and development

    NASA Technical Reports Server (NTRS)

    Ripke, M.; Foerst, R.

    1984-01-01

    The reorganization, structure and instruments of government advancement of research in three countries was compared: France, Sweden and the USA. In France the powers are centralized; in Sweden and the USA, decentralized. Assistance to projects is provided with grants and contracts in all three countries. France and Sweden also give loans with conditional waiving of reimbursement in case of failure. In all three countries indirect assistance is provided only with small tax breaks.

  6. From path models to commands during additive printing of large-scale architectural designs

    NASA Astrophysics Data System (ADS)

    Chepchurov, M. S.; Zhukov, E. M.; Yakovlev, E. A.; Matveykin, V. G.

    2018-05-01

    The article considers the problem of automation of the formation of large complex parts, products and structures, especially for unique or small-batch objects produced by a method of additive technology [1]. Results of scientific research in search for the optimal design of a robotic complex, its modes of operation (work), structure of its control helped to impose the technical requirements on the technological process for manufacturing and design installation of the robotic complex. Research on virtual models of the robotic complexes allowed defining the main directions of design improvements and the main goal (purpose) of testing of the the manufactured prototype: checking the positioning accuracy of the working part.

  7. Structuring the Curriculum around Big Ideas

    ERIC Educational Resources Information Center

    Alleman, Janet; Knighton, Barbara; Brophy, Jere

    2010-01-01

    This article provides an inside look at Barbara Knighton's classroom teaching. She uses big ideas to guide her planning and instruction and gives other teachers suggestions for adopting the big idea approach and ways for making the approach easier. This article also represents a "small slice" of a dozen years of collaborative research,…

  8. The Effect of School and Task Structure on Teacher Interaction, Classroom Organization and Student Affects.

    ERIC Educational Resources Information Center

    Abramowitz, Susan

    This research paper sought to determine whether smaller sized schools decrease student alienation and increase program diversity both within the school and compared to others. Hypotheses tested were: (1) participation in small work units positively affects teacher task interdependence resulting in greater teacher interaction; (2) teacher…

  9. CRITICAL MICELLIZATION DENSITY; A SMALL-ANGLE SCATTERING STRUCTURAL STUDY OF THE MONOMER-AGGREGATE TRANSITION OF BLOCK COPOLYMERS IN SUPERCRITICAL CO2. (R826115)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Technology, Learning Communities and Young People: The Future Something Project

    ERIC Educational Resources Information Center

    Herne, Steve; Adams, Jeff; Atkinson, Dennis; Dash, Paul; Jessel, John

    2013-01-01

    The "Future Something Project" ("FSP"), a two-year action research project, was devised to nurture the creative and technological talent of small groups of young people at risk by creating a structured network, mentored and driven by creative professionals exploring innovative ways for the two distinct target groups to work…

  11. Improving Survey Methods with Cognitive Interviews in Small- and Medium-Scale Evaluations

    ERIC Educational Resources Information Center

    Ryan, Katherine; Gannon-Slater, Nora; Culbertson, Michael J.

    2012-01-01

    Findings derived from self-reported, structured survey questionnaires are commonly used in evaluation and applied research to inform policy-making and program decisions. Although there are a variety of issues related to the quality of survey evidence (e.g., sampling precision), the validity of response processes--how respondents process thoughts…

  12. A Study of the Subject Headings Practices of Fifteen Small Liberal Arts College Libraries.

    ERIC Educational Resources Information Center

    Kissel, Laura J.

    This research was conducted in order to examine whether libraries are maintaining consistent and complete subject authority control and creating syndetic reference structure for popular topics. A descriptive study of 15 private liberal arts college libraries was conducted to determine whether the Library of Congress (LC) prescribed "see"…

  13. Who Benefits from Cooperative Learning with Movement Activity?

    ERIC Educational Resources Information Center

    Shoval, Ella; Shulruf, Boaz

    2011-01-01

    The goal of this study is to identify learners who are most likely to benefit from a small group cooperative learning strategy, which includes tasks involving movement activities. The study comprised 158 learners from five second and third grade classes learning about angles. The research tools included structured observation of each learner and…

  14. Low-cost, high-resolution scanning laser ophthalmoscope for the clinical environment

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Larichev, A.; Zamora, G.; Murillo, S.; Barriga, E. S.

    2010-02-01

    Researchers have sought to gain greater insight into the mechanisms of the retina and the optic disc at high spatial resolutions that would enable the visualization of small structures such as photoreceptors and nerve fiber bundles. The sources of retinal image quality degradation are aberrations within the human eye, which limit the achievable resolution and the contrast of small image details. To overcome these fundamental limitations, researchers have been applying adaptive optics (AO) techniques to correct for the aberrations. Today, deformable mirror based adaptive optics devices have been developed to overcome the limitations of standard fundus cameras, but at prices that are typically unaffordable for most clinics. In this paper we demonstrate a clinically viable fundus camera with auto-focus and astigmatism correction that is easy to use and has improved resolution. We have shown that removal of low-order aberrations results in significantly better resolution and quality images. Additionally, through the application of image restoration and super-resolution techniques, the images present considerably improved quality. The improvements lead to enhanced visualization of retinal structures associated with pathology.

  15. Supervisory Control System Architecture for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less

  16. Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy

    DOE PAGES

    Rames, Matthew; Yu, Yadong; Ren, Gang

    2014-08-15

    Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electronmore » microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol. Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high-resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography. Moreover, OpNS can be a high-throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.« less

  17. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar sail missions for such composite boom systems are already under consideration and development at NASA, as well as mission studies that will benefit from planned scaled-up versions of the composite boom technologies to be introduced. The paper presents ongoing research and development of thin-shell rollable composite booms designed under the particular stringent and challenging system requirements of relatively large solar sails housed on small satellites. These requirements will be derived and listed. Several new boom concepts are proposed and other existing ones are improved upon using thin-ply composite materials to yield unprecedented compact deployable structures. Some of these booms are shown in Fig. 1. For every boom to be introduced the scalable fabrication process developed to keep the overall boom system cost down will be shown. Finally, the initial results of purposely designed boom structural characterization test methods with gravity off-loading will be presented to compare their structural performance under expected and general load cases.

  18. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  19. Research of low cost wind generator rotors

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Ross, R. S.

    1978-01-01

    A feasibility program determined that it would be possible to significantly reduce the cost of manufacturing wind generator rotors by making them of cast urethane. Several high modulus urethanes which were structurally tested were developed. A section of rotor was also cast and tested showing the excellent aerodynamic surface which results. A design analysis indicated that a cost reduction of almost ten to one can be achieved with a small weight increase to achieve the same structural integrity as expected of current rotor systems.

  20. Experimental study designs to improve the evaluation of road mitigation measures for wildlife.

    PubMed

    Rytwinski, Trina; van der Ree, Rodney; Cunnington, Glenn M; Fahrig, Lenore; Findlay, C Scott; Houlahan, Jeff; Jaeger, Jochen A G; Soanes, Kylie; van der Grift, Edgar A

    2015-05-01

    An experimental approach to road mitigation that maximizes inferential power is essential to ensure that mitigation is both ecologically-effective and cost-effective. Here, we set out the need for and standards of using an experimental approach to road mitigation, in order to improve knowledge of the influence of mitigation measures on wildlife populations. We point out two key areas that need to be considered when conducting mitigation experiments. First, researchers need to get involved at the earliest stage of the road or mitigation project to ensure the necessary planning and funds are available for conducting a high quality experiment. Second, experimentation will generate new knowledge about the parameters that influence mitigation effectiveness, which ultimately allows better prediction for future road mitigation projects. We identify seven key questions about mitigation structures (i.e., wildlife crossing structures and fencing) that remain largely or entirely unanswered at the population-level: (1) Does a given crossing structure work? What type and size of crossing structures should we use? (2) How many crossing structures should we build? (3) Is it more effective to install a small number of large-sized crossing structures or a large number of small-sized crossing structures? (4) How much barrier fencing is needed for a given length of road? (5) Do we need funnel fencing to lead animals to crossing structures, and how long does such fencing have to be? (6) How should we manage/manipulate the environment in the area around the crossing structures and fencing? (7) Where should we place crossing structures and barrier fencing? We provide experimental approaches to answering each of them using example Before-After-Control-Impact (BACI) study designs for two stages in the road/mitigation project where researchers may become involved: (1) at the beginning of a road/mitigation project, and (2) after the mitigation has been constructed; highlighting real case studies when available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Design and Test of an Improved Crashworthiness Small Composite Airframe

    NASA Technical Reports Server (NTRS)

    Terry, James E.; Hooper, Steven J.; Nicholson, Mark

    2002-01-01

    The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.

  2. Targeting RNA in mammalian systems with small molecules.

    PubMed

    Donlic, Anita; Hargrove, Amanda E

    2018-05-03

    The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease. © 2018 Wiley Periodicals, Inc.

  3. Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9)

    PubMed Central

    Fu, Qinqin; Yuan, Y. Adam

    2013-01-01

    Intensive research interest has focused on small RNA-processing machinery and the RNA-induced silencing complex (RISC), key cellular machines in RNAi pathways. However, the structural mechanism regarding RISC assembly, the primary step linking small RNA processing and RNA-mediated gene silencing, is largely unknown. Human RNA helicase A (DHX9) was reported to function as an RISC-loading factor, and such function is mediated mainly by its dsRNA-binding domains (dsRBDs). Here, we report the crystal structures of human RNA helicase A (RHA) dsRBD1 and dsRBD2 domains in complex with dsRNAs, respectively. Structural analysis not only reveals higher siRNA duplex-binding affinity displayed by dsRBD1, but also identifies a crystallographic dsRBD1 pair of physiological significance in cooperatively recognizing dsRNAs. Structural observations are further validated by isothermal titration calorimetric (ITC) assay. Moreover, co-immunoprecipitation (co-IP) assay coupled with mutagenesis demonstrated that both dsRBDs are required for RISC association, and such association is mediated by dsRNA. Hence, our structural and functional efforts have revealed a potential working model for siRNA recognition by RHA tandem dsRBDs, and together they provide direct structural insights into RISC assembly facilitated by RHA. PMID:23361462

  4. Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9).

    PubMed

    Fu, Qinqin; Yuan, Y Adam

    2013-03-01

    Intensive research interest has focused on small RNA-processing machinery and the RNA-induced silencing complex (RISC), key cellular machines in RNAi pathways. However, the structural mechanism regarding RISC assembly, the primary step linking small RNA processing and RNA-mediated gene silencing, is largely unknown. Human RNA helicase A (DHX9) was reported to function as an RISC-loading factor, and such function is mediated mainly by its dsRNA-binding domains (dsRBDs). Here, we report the crystal structures of human RNA helicase A (RHA) dsRBD1 and dsRBD2 domains in complex with dsRNAs, respectively. Structural analysis not only reveals higher siRNA duplex-binding affinity displayed by dsRBD1, but also identifies a crystallographic dsRBD1 pair of physiological significance in cooperatively recognizing dsRNAs. Structural observations are further validated by isothermal titration calorimetric (ITC) assay. Moreover, co-immunoprecipitation (co-IP) assay coupled with mutagenesis demonstrated that both dsRBDs are required for RISC association, and such association is mediated by dsRNA. Hence, our structural and functional efforts have revealed a potential working model for siRNA recognition by RHA tandem dsRBDs, and together they provide direct structural insights into RISC assembly facilitated by RHA.

  5. Can small institutes address some problems facing biomedical researchers?

    PubMed

    Sheetz, Michael P

    2014-11-01

    At a time of historically low National Institutes of Health funding rates and many problems with the conduct of research (unfunded mandates, disgruntled reviewers, and rampant paranoia), there is a concern that biomedical research as a profession is waning in the United States (see "Rescuing US biomedical research from its systemic flaws" by Alberts and colleagues in the Proceedings of the National Academy of Sciences). However, it is wonderful to discover something new and to tackle tough puzzles. If we could focus more of our effort on discussing scientific problems and doing research, then we could be more productive and perhaps happier. One potential solution is to focus efforts on small thematic institutes in the university structure that can provide a stimulating and supportive environment for innovation and exploration. With an open-lab concept, there are economies of scale that can diminish paperwork and costs, while providing greater access to state-of-the-art equipment. Merging multiple disciplines around a common theme can catalyze innovation, and this enables individuals to develop new concepts without giving up the credit they deserve, because it is usually clear who did the work. Small institutes do not solve larger systemic problems but rather enable collective efforts to address the noisome aspects of the system and foster an innovative community effort to address scientific problems. © 2014 Sheetz.

  6. Utilization of the Building-Block Approach in Structural Mechanics Research

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn C.; McGowan, David M.; Bush, Harold G.; Waters, W. Allen

    2005-01-01

    In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are included from recent research and development programs for both subsonic and supersonic transports.

  7. A family of small-world network models built by complete graph and iteration-function

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Yao, Bing

    2018-02-01

    Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also obtained.

  8. Industry structures in private dental markets in Finland.

    PubMed

    Widström, E; Mikkola, H

    2012-12-01

    To use industrial organisation and organisational ecology research methods to survey industry structures and performance in the markets for private dental services and the effect of competition. Data on practice characteristics, performance, and perceived competition were collected from full-time private dentists (n = 1,121) using a questionnaire. The response rate was 59.6%. Cluster analysis was used to identify practice type based on service differentiation and process integration variables formulated from the questionnaire. Four strategic groups were identified in the Finnish markets: Solo practices formed one distinct group and group practices were classified into three clusters Integrated practices, Small practices, and Loosely integrated practices. Statistically significant differences were found in performance and perceived competitiveness between the groups. Integrated practices with the highest level of process integration and service differentiation performed better than solo and small practices. Moreover, loosely integrated and small practices outperformed solo practises. Competitive intensity was highest among small practices which had a low level of service differentiation and was above average among solo practises. Private dental care providers that had differentiated their services from public services and that had a high number of integrated service production processes enjoyed higher performance and less competitive pressures than those who had not.

  9. Morphological classification of bioaerosols from composting using scanning electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamer Vestlund, A.; FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW; Al-Ashaab, R.

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samplesmore » were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.« less

  10. Computational methods for prediction of RNA interactions with metal ions and small organic ligands.

    PubMed

    Philips, Anna; Łach, Grzegorz; Bujnicki, Janusz M

    2015-01-01

    In the recent years, it has become clear that a wide range of regulatory functions in bacteria are performed by riboswitches--regions of mRNA that change their structure upon external stimuli. Riboswitches are therefore attractive targets for drug design, molecular engineering, and fundamental research on regulatory circuitry of living cells. Several mechanisms are known for riboswitches controlling gene expression, but most of them perform their roles by ligand binding. As with other macromolecules, knowledge of the 3D structure of riboswitches is crucial for the understanding of their function. The development of experimental methods allowed for investigation of RNA structure and its complexes with ligands (which are either riboswitches' substrates or inhibitors) and metal cations (which stabilize the structure and are also known to be riboswitches' inhibitors). The experimental probing of different states of riboswitches is however time consuming, costly, and difficult to resolve without theoretical support. The natural consequence is the use of computational methods at least for initial research, such as the prediction of putative binding sites of ligands or metal ions. Here, we present a review on such methods, with a special focus on knowledge-based methods developed in our laboratory: LigandRNA--a scoring function for the prediction of RNA-small molecule interactions and MetalionRNA--a predictor of metal ions-binding sites in RNA structures. Both programs are available free of charge as a Web servers, LigandRNA at http://ligandrna.genesilico.pl and MetalionRNA at http://metalionrna.genesilico.pl/. © 2015 Elsevier Inc. All rights reserved.

  11. 3-D velocity structure model for long-period ground motion simulation of the hypothetical Nankai Earthquake

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Petukhin, A.; Koketsu, K.; Miyake, H.; Murotani, S.; Tsurugi, M.

    2010-12-01

    Three dimensional velocity structure model of southwest Japan is provided to simulate long-period ground motions due to the hypothetical subduction earthquakes. The model is constructed from numerous physical explorations conducted in land and offshore areas and observational study of natural earthquakes. Any available information is involved to explain crustal structure and sedimentary structure. Figure 1 shows an example of cross section with P wave velocities. The model has been revised through numbers of simulations of small to middle earthquakes as to have good agreement with observed arrival times, amplitudes, and also waveforms including surface waves. Figure 2 shows a comparison between Observed (dash line) and simulated (solid line) waveforms. Low velocity layers have added on seismological basement to reproduce observed records. The thickness of the layer has been adjusted through iterative analysis. The final result is found to have good agreement with the results from other physical explorations; e.g. gravity anomaly. We are planning to make long-period (about 2 to 10 sec or longer) simulations of ground motion due to the hypothetical Nankai Earthquake with the 3-D velocity structure model. As the first step, we will simulate the observed ground motions of the latest event occurred in 1946 to check the source model and newly developed velocity structure model. This project is partly supported by Integrated Research Project for Long-Period Ground Motion Hazard Maps by Ministry of Education, Culture, Sports, Science and Technology (MEXT). The ground motion data used in this study were provided by National Research Institute for Earth Science and Disaster Prevention Disaster (NIED). Figure 1 An example of cross section with P wave velocities Figure 2 Observed (dash line) and simulated (solid line) waveforms due to a small earthquake

  12. NASTRAN DMAP Fuzzy Structures Analysis: Summary of Research

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    2001-01-01

    The main proposed tasks of Cooperative Agreement NCC1-382 were: (1) developing MSC/NASTRAN DMAP language scripts to implement the Soize fuzzy structures approach for modeling the dynamics of complex structures; (2) benchmarking the results of the new code to those for a cantilevered beam in the literature; and (3) testing and validating the new code by comparing the fuzzy structures results to NASA Langley experimental and conventional finite element results for two model test structures representative of aircraft fuselage sidewall construction: (A) a small aluminum test panel (SLP, single longeron panel) with a single longitudinal stringer attached with bolts; and (B) a 47 by 72 inch flat aluminum fuselage panel (AFP, aluminum fuselage panel) including six longitudinal stringers and four frame stiffeners attached with rivets.

  13. The 3D structures of VDAC represent a native conformation

    PubMed Central

    Hiller, Sebastian; Abramson, Jeff; Mannella, Carmen; Wagner, Gerhard; Zeth, Kornelius

    2010-01-01

    The most abundant protein of the mitochondrial outer membrane is the voltage-dependent anion channel (VDAC), which facilitates the exchange of ions and molecules between mitochondria and cytosol and is regulated by interactions with other proteins and small molecules. VDAC has been extensively studied for more than three decades, and last year three independent investigations revealed a structure of VDAC-1 exhibiting 19 transmembrane β-strands, constituting a unique structural class of β-barrel membrane proteins. Here, we provide a historical perspective on VDAC research and give an overview of the experimental design used to obtain these structures. Furthermore, we validate the protein refolding approach and summarize biochemical and biophysical evidence that links the 19-stranded structure to the native form of VDAC. PMID:20708406

  14. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  15. RISC-Target Interaction: Cleavage and Translational Suppression

    PubMed Central

    van den Berg, Arjen; Mols, Johann; Han, Jiahuai

    2008-01-01

    Summary Small RNA molecules have been known and utilized to suppress gene expression for more than a decade. The discovery that these small RNA molecules are endogenously expressed in many organisms and have a critical role in controlling gene expression have led to the arising of a whole new field of research. Termed small interfering RNA (siRNA) or microRNA (miRNA) these ~22 nt RNA molecules have the capability to suppress gene expression through various mechanisms once they are incorporated in the multi-protein RNA-Induced Silencing Complex (RISC) and interact with their target mRNA. This review introduces siRNAs and microRNAs in a historical perspective and focuses on the key molecules in RISC, structural properties and mechanisms underlying the process of small RNA regulated post-transcriptional suppression of gene expression. PMID:18692607

  16. FINAL REPORT: DOE CONTRACT NUMBER FG0205ER64026 Biological Neutron Scattering: A Collaboration with the Oak Ridge Center for Structural Molecular Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trewhella, Jill

    2011-01-12

    The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set ofmore » researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools currently being accessed world-wide by researchers as an aid in neutron scattering data interpretation. In all, these collaborative projects and resulted in 29 original refereed journal articles published between 2005 and 2010 and engaged groups from at least 14 Universities (10 US, 4 international) and 3 National Laboratories (2 US, 1 international). An important final initiative from this project was to begin a process for international community agreement on a set of standards for the publication of biomolecular small-angle scattering data. This initiative is being championed with the International Union of Crystallography and has engaged a number of Journal Editors and is a very important step in the maturing of this now burgeoning field.« less

  17. A Qualitative Study of Perceptions of Bullying in Irish Primary Schools

    ERIC Educational Resources Information Center

    Purcell, Anita

    2012-01-01

    This small-scale research examined young children's, aged six to seven (n = 8), perceptions and understanding of bullying in Irish primary schools. It also included the views of the children's parents (n = 8) and teachers (n = 2) on bullying. The participants' views were obtained through semi-structured interviews which were analysed using the…

  18. "What Did I Change and Why Did I Do It?": Young Writers' Revision Practices

    ERIC Educational Resources Information Center

    Dix, Stephanie

    2006-01-01

    The article presents findings from a research project that investigated young, fluent writers' revision practices. The project adopted a qualitative approach, using semi-structured interviews based on the students' written scripts. This article focuses on a small sample of children and profiles the extent of their ability to reflect on their…

  19. Systematic Image Based Optical Alignment and Tensegrity

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Montgomery, Edward E, IV (Technical Monitor)

    2001-01-01

    This presentation will review the objectives and current status of two Small Business Innovative Research being performed by the Sirius Group, under the direction of MSFC. They all relate to the development of advanced optical systems technologies for automated segmented mirror alignment techniques and fundamental design methodologies for ultralight structures. These are important to future astronomical missions in space.

  20. Exploring the Cautionary Attitude toward Wikipedia in Higher Education: Implications for Higher Education Institutions

    ERIC Educational Resources Information Center

    Bayliss, Gemma

    2013-01-01

    This article presents the research findings of a small-scale study which aimed to explore the cautionary attitude toward the use of Wikipedia in the process of learning. A qualitative case study approach was taken, using literature review, institutional documentation, and semi-structured interviews with five members of academic teaching staff from…

  1. Virtual Parts Engineering Research Center

    DTIC Science & Technology

    2010-05-20

    engineering 10 materials. High strength alloys , composites (polymer composites and metallic composites), and the like cannot merely be replaced by...ceramics, smart materials, shape memory alloys , super plastic materials and nano- structured materials may be more appropriate substitutes in a reverse...molding process using thermosetting Bakelite. For remanufacturing the part in small quantities, machining has been identified as the most economical

  2. A synthesis of the literature on the biology, ecology, and management of western hemlock dwarf mistletoe.

    Treesearch

    John A. Muir; Paul E. Hennon

    2007-01-01

    Hemlock dwarf mistletoe (Arceuthobium tsugense [Rosendahl] G.N. Jones) is a small, inconspicuous parasite that has significant effects on tree growth and stand structure in coastal forest ecosystems of western North America. Most previous research focused on the effects of hemlock dwarf mistletoe on timber production. Previous clearcut harvesting...

  3. Technology and the Polity. Harvard University Program on Technology and Society; Research Review Number Four.

    ERIC Educational Resources Information Center

    Taviss, Irene, Ed.; Burbank, Judith, Ed.

    A small number of selected books and articles which deal with the impact of technological advancement on the American political structure have been abstracted for this document. Materials were chosen for abstracting which presented a significant analysis of issues, a useful compilation of data, or which are representative of different outlooks and…

  4. Shared community patterns following experimental fire in a semiarid grassland

    Treesearch

    Paulette L. Ford

    2007-01-01

    This paper presents a synthesis of experimental research testing effects of seasonal fire on community structure of plants, arthropods, and small mammals in shortgrass steppe. These groups of plants and animals share the same environment, and therefore, the species in the groups were predicted to respond in a similar way to changes in their environment resulting from...

  5. Sense of Community in Academic Communities of Practice: Predictors and Effects

    ERIC Educational Resources Information Center

    Nistor, Nicolae; Daxecker, Irene; Stanciu, Dorin; Diekamp, Oliver

    2015-01-01

    Sense of community (SoC) in communities of practice (CoP) seems to play a similar role to that of group cohesion in small groups: Both sustain participants' knowledge sharing, which in turn substantiates the socio-cognitive structures that make up the CoP such as scholar identities, practical repertoires in research and teaching or relationships…

  6. Students' Experiences of Academic Success with Dyslexia: A Call for Alternative Intervention

    ERIC Educational Resources Information Center

    Soni, Anita

    2017-01-01

    This article describes a small-scale study exploring the perspectives of five undergraduate students with dyslexia. Semi-structured interviews were conducted in two universities in the UK. The interviews explored participants' perceptions of their dyslexia label and how it had affected their academic success. The aim of the research was to…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okita, T.W.

    Part 1 of this research focuses on patterns of gene expression of ADPG-pyrophosphorylase in native and transgenic potato plants. To elucidate the mechanism controlling AGP expression during plant development, the expression of the potato tuber AGP small subunit (sAGP) gene was analyzed in transgenic potato plants using a promoter-{beta}-glucuronidase expression system. Part II evaluated the structure-function relationships of AGP.

  8. 3-Dimensional Protein Structure of Influenza

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The loss of productivity due to flu is staggering. Costs range as much as $20 billio a year. High mutation rates of the flu virus have hindered development of new drugs or vaccines. The secret lies in a small molecule which is attached to the host cell's surface. Each flu virus, no matter what strain, must remove this small molecule to escape the host cell to spread infection. Using data from space and earth grown crystals, researchers from the Center of Macromolecular Crystallography (CMC) are desining drugs to bind with this protein's active site. This lock and key fit reduces the spread of flu in the body by blocking its escape route. In collaboration with its corporate partner, the CMC has refined drug structure in preparation for clinical trials. Tested and approved relief is expected to reach drugstores by year 2004.

  9. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments.

    PubMed

    Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J

    2014-11-01

    Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.

  10. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

    PubMed Central

    Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J

    2014-01-01

    Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments. PMID:25485128

  11. Damage severity assessment in wind turbine blade laboratory model through fuzzy finite element model updating

    NASA Astrophysics Data System (ADS)

    Turnbull, Heather; Omenzetter, Piotr

    2017-04-01

    The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.

  12. The Effect Of Atributes Product’s Analysis, Halal Certification, And Product Innovation To The Interest Of Consumer Buying-Back Through The Advantage Competitive Of Micro Small And Medium Business (MSMB) In Medan

    NASA Astrophysics Data System (ADS)

    Aditi, Bunga

    2017-12-01

    This research is done to know and analyzing the effect of attribute, halal certification product, and product innovation on the competitiveness of Micro Small and Medium Business in Medan, knowing and analyzing the effect of product attribute, halal certification, and product innovation to consumer buying surge. The type of research used is explanatory research with quantitative approach. The population in this study is the community as consumers who are in the area of Medan province of North Sumatera. Total sample of 150 people. Sampling method which use an accidental sampling is the technique of determining samples by chance, example: consumers whomeets with researcher coincidentally can be sampled if the consumer is appropriate or suitable as a source of data. This research uses the method of Structural Equation Modeling analysis. The mainting of this research is showed that product attributes, halal certification, and product innovation had a positive and significant impact on competitive advantage which impact on consumer buy-back (surge) interest. The advantage competitive has affects consumer buying surge interest positively. Keywords: Product attributes, halal certification, product innovation, competitive advantage, consumer buying interest

  13. NDI method for quantification of weak bonding strength of composite structures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.F.

    This Phase 1 Final Report is for a Small Business Innovation Research program conducted for the Navy under Federal Contract N00189-96-M-JT09. The purpose was to investigate ways to determine the overall strength of a composite structure by using a nondestructive evaluative (NDE) optical technique, shearography. The purpose of the research was to determine if there is an effective way to assess the strength of composite components on in-service aircraft rather than in the front end of the composite manufacturing process. The goal was to determine the overall feasibility of such an NDE method, and to investigate various means of probingmore » the material under test.« less

  14. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    NASA Astrophysics Data System (ADS)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  15. Regenerative medicine in Brazil: small but innovative.

    PubMed

    McMahon, Dominique S; Singer, Peter A; Daar, Abdallah S; Thorsteinsdóttir, Halla

    2010-11-01

    Although Brazil has received attention for conducting one of the world's largest stem cell clinical trials for heart disease, little has been published regarding Brazil's regenerative medicine (RM) sector. Here we present a comprehensive case study of RM in Brazil, including analysis of the current activity, the main motivations for engaging in RM and the remaining challenges to development in this field. Our case study is primarily based on semi-structured interviews with experts on RM in Brazil, including researchers, policymakers, clinicians, representatives of firms and regulators. Driven by domestic health needs and strategic government support, Brazil is producing innovative RM research, particularly for clinical research in cardiology, orthopedics, diabetes and neurology. We describe the main RM research currently taking place in Brazil, as well as some of the economic, regulatory and policy events that have created a favorable environment for RM development. Brazilian RM researchers need to overcome several formidable challenges to research: research funding is inconsistent, importation of materials is costly and slow, and weak linkages between universities, hospitals and industry impede translational research. Although Brazil's contribution to the RM sector is small, its niche emphasis on clinical applications may become of global importance, particularly if Brazil manages to address the challenges currently impinging on RM innovation.

  16. Geophysics of Small Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Asphaug, Erik I.

    1998-01-01

    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  17. Activities of the Center for Space Construction

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar regolith, and we are at work on a project on path planning for planetary surface rovers.

  18. Scientific authorship and collaboration network analysis on malaria research in Benin: papers indexed in the web of science (1996-2016).

    PubMed

    Azondekon, Roseric; Harper, Zachary James; Agossa, Fiacre Rodrigue; Welzig, Charles Michael; McRoy, Susan

    2018-01-01

    To sustain the critical progress made, prioritization and a multidisciplinary approach to malaria research remain important to the national malaria control program in Benin. To document the structure of the malaria collaborative research in Benin, we analyze authorship of the scientific documents published on malaria from Benin. We collected bibliographic data from the Web Of Science on malaria research in Benin from January 1996 to December 2016. From the collected data, a mulitigraph co-authorship network with authors representing vertices was generated. An edge was drawn between two authors when they co-author a paper. We computed vertex degree, betweenness, closeness, and eigenvectors among others to identify prolific authors. We further assess the weak points and how information flow in the network. Finally, we perform a hierarchical clustering analysis, and Monte-Carlo simulations. Overall, 427 publications were included in this study. The generated network contained 1792 authors and 116,388 parallel edges which converted in a weighted graph of 1792 vertices and 95,787 edges. Our results suggested that prolific authors with higher degrees tend to collaborate more. The hierarchical clustering revealed 23 clusters, seven of which form a giant component containing 94% of all the vertices in the network. This giant component has all the characteristics of a small-world network with a small shortest path distance between pairs of three, a diameter of 10 and a high clustering coefficient of 0.964. However, Monte-Carlo simulations suggested our observed network is an unusual type of small-world network. Sixteen vertices were identified as weak articulation points within the network. The malaria research collaboration network in Benin is a complex network that seems to display the characteristics of a small-world network. This research reveals the presence of closed research groups where collaborative research likely happens only between members. Interdisciplinary collaboration tends to occur at higher levels between prolific researchers. Continuously supporting, stabilizing the identified key brokers and most productive authors in the Malaria research collaborative network is an urgent need in Benin. It will foster the malaria research network and ensure the promotion of junior scientists in the field.

  19. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  20. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  1. Data Publication and Interoperability for Long Tail Researchers via the Open Data Repository's (ODR) Data Publisher.

    NASA Astrophysics Data System (ADS)

    Stone, N.; Lafuente, B.; Bristow, T.; Keller, R.; Downs, R. T.; Blake, D. F.; Fonda, M.; Pires, A.

    2016-12-01

    Working primarily with astrobiology researchers at NASA Ames, the Open Data Repository (ODR) has been conducting a software pilot to meet the varying needs of this multidisciplinary community. Astrobiology researchers often have small communities or operate individually with unique data sets that don't easily fit into existing database structures. The ODR constructed its Data Publisher software to allow researchers to create databases with common metadata structures and subsequently extend them to meet their individual needs and data requirements. The software accomplishes these tasks through a web-based interface that allows collaborative creation and revision of common metadata templates and individual extensions to these templates for custom data sets. This allows researchers to search disparate datasets based on common metadata established through the metadata tools, but still facilitates distinct analyses and data that may be stored alongside the required common metadata. The software produces web pages that can be made publicly available at the researcher's discretion so that users may search and browse the data in an effort to make interoperability and data discovery a human-friendly task while also providing semantic data for machine-based discovery. Once relevant data has been identified, researchers can utilize the built-in application programming interface (API) that exposes the data for machine-based consumption and integration with existing data analysis tools (e.g. R, MATLAB, Project Jupyter - http://jupyter.org). The current evolution of the project has created the Astrobiology Habitable Environments Database (AHED)[1] which provides an interface to databases connected through a common metadata core. In the next project phase, the goal is for small research teams and groups to be self-sufficient in publishing their research data to meet funding mandates and academic requirements as well as fostering increased data discovery and interoperability through human-readable and machine-readable interfaces. This project is supported by the Science-Enabling Research Activity (SERA) and NASA NNX11AP82A, MSL. [1] B. Lafuente et al. (2016) AGU, submitted.

  2. 77 FR 46805 - Small Business Innovation Research Program Policy Directive

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Small Business Innovation Research Program Policy Directive; Small Business Technology Transfer Program Policy Directive; Small Business Innovation Research (SBIR) Program and Small Business Technology... ADMINISTRATION 13 CFR Chapter I RIN 3245-AF84 Small Business Innovation Research Program Policy Directive AGENCY...

  3. An Analysis of the Perceptions and Resources of Large University Classes

    PubMed Central

    Cash, Ceilidh Barlow; Letargo, Jessa; Graether, Steffen P.; Jacobs, Shoshanah R.

    2017-01-01

    Large class learning is a reality that is not exclusive to the first-year experience at midsized, comprehensive universities; upper-year courses have similarly high enrollment, with many class sizes greater than 200 students. Research into the efficacy and deficiencies of large undergraduate classes has been ongoing for more than 100 years, with most research associating large classes with weak student engagement, decreased depth of learning, and ineffective interactions. This study used a multidimensional research approach to survey student and instructor perceptions of large biology classes and to characterize the courses offered by a department according to resources and course structure using a categorical principal components analysis. Both student and instructor survey results indicated that a large class begins around 240 students. Large classes were identified as impersonal and classified using extrinsic qualifiers; however, students did identify techniques that made the classes feel smaller. In addition to the qualitative survey, we also attempted to quantify courses by collecting data from course outlines and analyzed the data using categorical principal component analysis. The analysis maps institutional change in resource allocation and teaching structure from 2010 through 2014 and validates the use of categorical principal components analysis in educational research. We examine what perceptions and factors are involved in a large class that is perceived to feel small. Our analysis suggests that it is not the addition of resources or difference in the lecturing method, but it is the instructor that determines whether a large class can feel small. PMID:28495937

  4. The blind men meet the elephant at the dam: Alternative spatial and taxonomic components reveal different insights about how low-head dams impact fish biodiversity

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Smith, Joseph M.; Hitchman, Sean M.

    2017-01-01

    Dams are ubiquitous environmental impacts that threaten aquatic ecosystems. The ability to compare across research studies is essential to conserve the native biodiversity that is impacted by the millions of low‐head dams that currently fragment streams and rivers. Here, we identify a previously unaddressed obstacle that impedes this generalization. Specifically, divergent spatial and taxonomic approaches that result from different conceptualizations of the dam‐biodiversity problem can produce conflicting science‐based conclusions about the same dam impact. In this research, using the same dammed and undammed sites, we evaluated the scientific generality of different conceptualizations of the dam‐biodiversity problem. We compared two different but commonly used spatial approaches—(1) above dam–below dam vs. (2) undammed–dammed comparisons—and 11 different, commonly used taxonomic approaches (three assemblage summaries, eight guilds). Sites above the dam structure had less diverse fish assemblages than sites below dams, whereas sites below the dam structure were similar to undammed sites. Thus, spatial approach 1 detected a large dam effect and spatial approach 2 detected a small dam effect. Similarly, some taxonomic responses (species richness, diversity, abundance, and number of guilds) detected large dam effects; other responses detected small (riffle specialist guild) or no dam effects (pool generalists). In summary, our results showed that how the problem was framed altered scientific conclusions and created different dam realities. The metaphor of how individual blind men disagree about the structure of an elephant, based on examinations of different body parts, reinforces the need for a coordinated, holistic perspective on dam research. Although no single approach is adequate for all problems, identifying the form, consequences of, and relationships among different research conceptualizations will set the stage for future syntheses of dam‐biodiversity research to advance science‐based conservation.

  5. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.

    1993-01-01

    The main focus was the development, implementation, and calibration of methods for performing molecular electronic structure calculations to high accuracy. These various methods were then applied to a number of chemical reactions and species of interest to NASA, notably in the area of combustion chemistry. Among the development work undertaken was a collaborative effort to develop a program to efficiently predict molecular structures and vibrational frequencies using energy derivatives. Another major development effort involved the design of new atomic basis sets for use in chemical studies: these sets were considerably more accurate than those previously in use. Much effort was also devoted to calibrating methods for computing accurate molecular wave functions, including the first reliable calibrations for realistic molecules using full CI results. A wide variety of application calculations were undertaken. One area of interest was the spectroscopy and thermochemistry of small molecules, including establishing small molecule binding energies to an accuracy rivaling, or even on occasion surpassing, the experiment. Such binding energies are essential input to modeling chemical reaction processes, such as combustion. Studies of large molecules and processes important in both hydrogen and hydrocarbon combustion chemistry were also carried out. Finally, some effort was devoted to the structure and spectroscopy of small metal clusters, with applications to materials science problems.

  6. “Modular Biospheres” New testbed platforms for public environmental education and research

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.

  7. An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  8. An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.

    2014-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  9. The system with zwitterionic lactose-based surfactant for complexation and delivery of small interfering ribonucleic acid—A structural and spectroscopic study

    NASA Astrophysics Data System (ADS)

    Skupin, Michalina; Sobczak, Krzysztof; Zieliński, Ryszard; Kozak, Maciej

    2016-05-01

    Systems suitable for the effective preparation of complexes with siRNA (small interfering RNA) are at the center of interest in the area of research work on the delivery of the RNA-based drugs (RNA-therapeutics). This article presents results of a study on the structural effects associated with siRNA complexation by a surfactant comprising a lactose group (N-(3-propanesulfone)-N-dodecyl-amino-beta-D-lactose hydrochloride, LA12). The double stranded siRNA oligomer (21 base pairs) used in this study is responsible for silencing a gene that can be important in the therapy of myotonic dystrophy type 1. The obtained siRNA/LA12 lipoplexes were studied using the methods of small angle scattering of synchrotron radiation, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, and electrophoretic mobility tests. Lipoplexes form in solution stable lamellar or cubic phases. The surfactant selected for the study shows much lower cytotoxicity and good complexation abilities of siRNA than dicationic or polycationic surfactants.

  10. Lightweight Solar Power for Small Satellites

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  11. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  12. The system with zwitterionic lactose-based surfactant for complexation and delivery of small interfering ribonucleic acid—A structural and spectroscopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skupin, Michalina; Sobczak, Krzysztof; Zieliński, Ryszard

    Systems suitable for the effective preparation of complexes with siRNA (small interfering RNA) are at the center of interest in the area of research work on the delivery of the RNA-based drugs (RNA-therapeutics). This article presents results of a study on the structural effects associated with siRNA complexation by a surfactant comprising a lactose group (N-(3-propanesulfone)-N-dodecyl-amino-beta-D-lactose hydrochloride, LA12). The double stranded siRNA oligomer (21 base pairs) used in this study is responsible for silencing a gene that can be important in the therapy of myotonic dystrophy type 1. The obtained siRNA/LA12 lipoplexes were studied using the methods of small anglemore » scattering of synchrotron radiation, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, and electrophoretic mobility tests. Lipoplexes form in solution stable lamellar or cubic phases. The surfactant selected for the study shows much lower cytotoxicity and good complexation abilities of siRNA than dicationic or polycationic surfactants.« less

  13. AN OVERVIEW OF COMPUTATIONAL LIFE SCIENCE DATABASES & EXCHANGE FORMATS OF RELEVANCE TO CHEMICAL BIOLOGY RESEARCH

    PubMed Central

    Hall, Aaron Smalter; Shan, Yunfeng; Lushington, Gerald; Visvanathan, Mahesh

    2016-01-01

    Databases and exchange formats describing biological entities such as chemicals and proteins, along with their relationships, are a critical component of research in life sciences disciplines, including chemical biology wherein small information about small molecule properties converges with cellular and molecular biology. Databases for storing biological entities are growing not only in size, but also in type, with many similarities between them and often subtle differences. The data formats available to describe and exchange these entities are numerous as well. In general, each format is optimized for a particular purpose or database, and hence some understanding of these formats is required when choosing one for research purposes. This paper reviews a selection of different databases and data formats with the goal of summarizing their purposes, features, and limitations. Databases are reviewed under the categories of 1) protein interactions, 2) metabolic pathways, 3) chemical interactions, and 4) drug discovery. Representation formats will be discussed according to those describing chemical structures, and those describing genomic/proteomic entities. PMID:22934944

  14. An overview of computational life science databases & exchange formats of relevance to chemical biology research.

    PubMed

    Smalter Hall, Aaron; Shan, Yunfeng; Lushington, Gerald; Visvanathan, Mahesh

    2013-03-01

    Databases and exchange formats describing biological entities such as chemicals and proteins, along with their relationships, are a critical component of research in life sciences disciplines, including chemical biology wherein small information about small molecule properties converges with cellular and molecular biology. Databases for storing biological entities are growing not only in size, but also in type, with many similarities between them and often subtle differences. The data formats available to describe and exchange these entities are numerous as well. In general, each format is optimized for a particular purpose or database, and hence some understanding of these formats is required when choosing one for research purposes. This paper reviews a selection of different databases and data formats with the goal of summarizing their purposes, features, and limitations. Databases are reviewed under the categories of 1) protein interactions, 2) metabolic pathways, 3) chemical interactions, and 4) drug discovery. Representation formats will be discussed according to those describing chemical structures, and those describing genomic/proteomic entities.

  15. Guard House at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A vehicle leaves the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 14, 1945. At 7 p.m. that evening President Truman announced that Japan had accepted terms for surrender and World War II was over. The end of the war brought significant changes for the laboratory. The NACA would cease its troubleshooting of military aircraft and return to research. Researchers would increase their efforts to address the new technologies that emerged during the war. The entire laboratory was reorganized in October to better investigate turbojets, ramjets, and rockets. The guard house sat on the main entrance to the laboratory off of Brookpark Road. The building was fairly small and easily crowded. In the early 1960s a new security facility was built several hundred feet beyond the original guard house. The original structure remained in place for several years but was not utilized. The subsequent structure was replaced in 2011 by a new building and entrance configuration.

  16. Genetic Moderation of Stress Effects on Corticolimbic Circuitry.

    PubMed

    Bogdan, Ryan; Pagliaccio, David; Baranger, David Aa; Hariri, Ahmad R

    2016-01-01

    Stress exposure is associated with individual differences in corticolimbic structure and function that often mirror patterns observed in psychopathology. Gene x environment interaction research suggests that genetic variation moderates the impact of stress on risk for psychopathology. On the basis of these findings, imaging genetics, which attempts to link variability in DNA sequence and structure to neural phenotypes, has begun to incorporate measures of the environment. This research paradigm, known as imaging gene x environment interaction (iGxE), is beginning to contribute to our understanding of the neural mechanisms through which genetic variation and stress increase psychopathology risk. Although awaiting replication, evidence suggests that genetic variation within the canonical neuroendocrine stress hormone system, the hypothalamic-pituitary-adrenal axis, contributes to variability in stress-related corticolimbic structure and function, which, in turn, confers risk for psychopathology. For iGxE research to reach its full potential it will have to address many challenges, of which we discuss: (i) small effects, (ii) measuring the environment and neural phenotypes, (iii) the absence of detailed mechanisms, and (iv) incorporating development. By actively addressing these challenges, iGxE research is poised to help identify the neural mechanisms underlying genetic and environmental associations with psychopathology.

  17. Heterogeneous road networks have no apparent effect on the genetic structure of small mammal populations.

    PubMed

    Grilo, Clara; Del Cerro, Irene; Centeno-Cuadros, Alejandro; Ramiro, Victor; Román, Jacinto; Molina-Vacas, Guillem; Fernández-Aguilar, Xavier; Rodríguez, Juan; Porto-Peter, Flávia; Fonseca, Carlos; Revilla, Eloy; Godoy, José A

    2016-09-15

    Roads are widely recognized to represent a barrier to individual movements and, conversely, verges can act as potential corridors for the dispersal of many small mammals. Both barrier and corridor effects should generate a clear spatial pattern in genetic structure. Nevertheless, the effect of roads on the genetic structure of small mammal populations still remains unclear. In this study, we examine the barrier effect that different road types (4-lane highway, 2-lane roads and single-lane unpaved roads) may have on the population genetic structure of three species differing in relevant life history traits: southern water vole Arvicola sapidus, the Mediterranean pine vole Microtus duodecimcostatus and the Algerian mouse Mus spretus. We also examine the corridor effect of highway verges on the Mediterranean pine vole and the Algerian mouse. We analysed the population structure through pairwise estimates of FST among subpopulations bisected by roads, identified genetic clusters through Bayesian assignment approaches, and used simple and partial Mantel tests to evaluate the relative barrier or corridor effect of roads. No strong evidences were found for an effect of roads on population structure of these three species. The barrier effect of roads seems to be site-specific and no corridor effect of verges was found for the pine vole and Algerian mouse populations. The lack of consistent results among species and for each road type lead us to believe that the ability of individual dispersers to use those crossing structures or the habitat quality in the highway verges may have a relatively higher influence on gene flow among populations than the presence of crossing structures per se. Further research should include microhabitat analysis and the estimates of species abundance to understand the mechanisms that underlie the genetic structure observed at some sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  19. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  20. Extreme Environments Test Capabilities at NASA GRC for Parker Hannifin Visit

    NASA Technical Reports Server (NTRS)

    Arnett, Lori

    2016-01-01

    The presentation includes general description on the following test facilities: Fuel Cell Testing Lab, Structural Dynamics Lab, Thermal Vacuum Test Facilities - including a description of the proposed Kinetic High Altitude Simulator concept, EMI Test Lab, and the Creek Road Cryogenic Complex - specifically the Small Multi-purpose Research Facility (SMiRF) and the Cryogenics Components Lab 7 (CCL-7).

  1. Adapting the Survivor Game to Create a Group Learning Term Project in Business Finance

    ERIC Educational Resources Information Center

    Campbell, Robert D.

    2017-01-01

    A large and growing body of research supports the view that the small-group learning structure can be an effective tool to enhance student performance and encourage innovative problem solving. This paper explains in detail how the framework of the popular television reality show Survivor has been adapted to form a vehicle for a college level group…

  2. An Evaluation of the "New Deal" in Further Education Colleges in England

    ERIC Educational Resources Information Center

    Loo, Sai; Lucas, Norman

    2004-01-01

    The article starts by providing a brief historical context for the introduction of the New Deal and then describes the aims and structure of the New Deal in FE (Further Education) colleges. Based on a small-scale research project on FE colleges in London and south-east England, the article analyses issues and challenges arising from the experience…

  3. The Value of Community Building: One Center's Story of How the VALUE Rubrics Provided Common Ground

    ERIC Educational Resources Information Center

    Jardeleza, Sarah; Cognato, April; Gottfried, Michael; Kimbirauskas, Ryan; Libarkin, Julie; Olson, Rachel; Ording, Gabriel; Owen, Jennifer; Rasmussen, Pamela; Stoltzfus, Jon; Thomas, Stephen

    2013-01-01

    Although their structures and funding sources differ, Research I institutions and small liberal arts colleges share the same goal of helping students master the knowledge and skills that will enable them to become informed citizens who are able to contribute effectively a democratic society. But how can this transformation be achieved, and what…

  4. Reviewing the Differences in Size, Composition and Structure between the Personal Networks of High-and Low-Performing Students

    ERIC Educational Resources Information Center

    Casquero, Oskar; Ovelar, Ramón; Romo, Jesús; Benito, Manuel

    2015-01-01

    An interesting aspect in the current literature about learning networks is the shift of focus from the understanding of the "whole network" of a course to the examination of the "personal networks" of individual students. This line of research is relatively new, based on small-scale studies and diverse analysis techniques,…

  5. Role of construction debris in release of copper, chromium, and arsenic from treated wood structures

    Treesearch

    Stan T. Lebow; Steven A. Halverson; Jeffrey J. Morrell; John Simonsen

    Recent research on the release of wood preservatives from treated wood used in sensitive environments has not considered the potential contribution from construction residues. This study sought to develop leaching rate data for small construction debris and compare those to the release rate from treated wood itself. Western hemlock boards were pressure treated with...

  6. Aircraft Survivability: Vulnerability Reduction, Spring 2006

    DTIC Science & Technology

    2006-01-01

    selected small arms, rocket propelled grenades, and shoulder-fired missiles will be presented. Figure 1 and Figure 2 illustrate previous demonstrations...lethality. Hands-on experience will be provided with threat munitions and missiles , test articles, damaged-air- craft hardware, live fire...non-linear effects of scale and operational environment. Current Efforts In the structures S&T program at the US Army Aviation and Missile Research

  7. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business... Business Administration (SBA) is reopening the comment period for the Small Business Innovation Research...

  8. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    NASA Astrophysics Data System (ADS)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  9. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  10. Electroosmotic Flow in Rectangular Nanochannels with Variable Wall potential: Generation of Multiple Nano-Vortices

    NASA Astrophysics Data System (ADS)

    Chen, Lei

    2005-11-01

    Electroosmotic flow in nanochannels is characterized by a very small Reynolds number so that mixing is difficult. While several researchers have presented results for the case of periodic wall potential, and for a sudden change in potential there has been no systematic study of the effect of the variation of wall potential on the flow structure. We have calculated the flow and mass transport in a two-dimensional nanochannel having discontinuities in wall potential. Multiple nano-vortices are generated within the bulk flow due to the overpotential at the surface. The distributions of potential, velocity and mole fractions are calculated numerically and the structure of the flow within the ``nano-vortices'' resembles that of the classical Lamb vortex. The parameters that affect the circulation are investigated as well. The long electrode limit (the aspect ratio much less than one ) is investigated for small channels (EDLs are overlapped) and wide (thin EDL) channels as well. It is found that the flow is two-dimensional only near the corners of the electrode and is fully-developed elsewhere. The flow can be thus decomposed into one-dimensional electroosmotic flow and Poiseuille flow. For a wide channel, a singular perturbation analysis is performed for the electroosmotic component. The results are compared with recently generated experimental data. *This work is supported by the Air Force Office of Scientific Research through its Multi-University Research Initiative(MURI) program.

  11. Damage classification and estimation in experimental structures using time series analysis and pattern recognition

    NASA Astrophysics Data System (ADS)

    de Lautour, Oliver R.; Omenzetter, Piotr

    2010-07-01

    Developed for studying long sequences of regularly sampled data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring (SHM). In this research, Autoregressive (AR) models were used to fit the acceleration time histories obtained from two experimental structures: a 3-storey bookshelf structure and the ASCE Phase II Experimental SHM Benchmark Structure, in undamaged and limited number of damaged states. The coefficients of the AR models were considered to be damage-sensitive features and used as input into an Artificial Neural Network (ANN). The ANN was trained to classify damage cases or estimate remaining structural stiffness. The results showed that the combination of AR models and ANNs are efficient tools for damage classification and estimation, and perform well using small number of damage-sensitive features and limited sensors.

  12. Donor defects and small polarons on the TiO2(110) surface

    NASA Astrophysics Data System (ADS)

    Moses, P. G.; Janotti, A.; Franchini, C.; Kresse, G.; Van de Walle, C. G.

    2016-05-01

    The role of defects in the chemical activity of the rutile TiO2(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend to localize in the form of small polarons, which are the factual cause of the deep states ˜1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO2 and related oxides.

  13. Evaluation of "credit card" libraries for inhibition of HIV-1 gp41 fusogenic core formation.

    PubMed

    Xu, Yang; Lu, Hong; Kennedy, Jack P; Yan, Xuxia; McAllister, Laura A; Yamamoto, Noboru; Moss, Jason A; Boldt, Grant E; Jiang, Shibo; Janda, Kim D

    2006-01-01

    Protein-protein interactions are of critical importance in biological systems, and small molecule modulators of such protein recognition and intervention processes are of particular interest. To investigate this area of research, we have synthesized small-molecule libraries that can disrupt a number of biologically relevant protein-protein interactions. These library members are designed upon planar motif, appended with a variety of chemical functions, which we have termed "credit-card" structures. From two of our "credit-card" libraries, a series of molecules were uncovered which act as inhibitors against the HIV-1 gp41 fusogenic 6-helix bundle core formation, viral antigen p24 formation, and cell-cell fusion at low micromolar concentrations. From the high-throughput screening assays we utilized, a selective index (SI) value of 4.2 was uncovered for compound 2261, which bodes well for future structure activity investigations and the design of more potent gp41 inhibitors.

  14. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  15. Tract-based Spatial Statistics and fMRI Analysis in Patients with Small Cell Lung Cancer before Prophylactic Cranial Irradiation

    NASA Astrophysics Data System (ADS)

    Benezi, S.; Bromis, K.; Karavasilis, E.; Karanasiou, I. S.; Koutsoupidou, M.; Matsopoulos, G.; Ventouras, E.; Uzunoglu, N.; Kouloulias, V.; Papathanasiou, M.; Foteineas, A.; Efstathopoulos, E.; Kelekis, N.; Kelekis, D.

    2015-09-01

    Prophylactic cranial irradiation (PCI) is known to increase life expectancy to a significant degree in Small Cell Lung Cancer (SCLC) patients. The overall scope of this research is to investigate changes in structural and functional connectivity between SCLC patients and controls before and after PCI treatment. In the current study specifically we use diffusion tensor imaging (DTI) and functional Magnetic Resonance (fMRI) to identify potential alterations in white matter structure and brain function respectively, in SCLC patients before PCI compared to healthy participants. The results in DTI analysis have showed lower fractional anisotropy (FA) and higher eigenvalues in white matter regions in the patient group. Similarly, in fMRI analysis a lower level of activation in the primary somatosensory cortex was reported. The results presented herein are subject to further investigation with larger patient and control groups.

  16. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  17. Advances in Organic Near-Infrared Materials and Emerging Applications.

    PubMed

    Qi, Ji; Qiao, Wenqiang; Wang, Zhi Yuan

    2016-06-01

    Much progress has been made in the field of research on organic near-infrared materials for potential applications in photonics, communications, energy, and biophotonics. This account mainly describes our research work on organic near-infrared materials; in particular, donor-acceptor small molecules, organometallics, and donor-acceptor polymers with the bandgaps less than 1.2 eV. The molecular designs, structure-property relationships, unique near-infrared absorption, emission and color/wavelength-changing properties, and some emerging applications are discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Temperature Sensing for Oil, Gas, and Structural Analysis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In 1996, Systems and Processes Engineering Corporation (SPEC), of Austin, Texas, undertook a NASA Small Business Innovation Research (SBIR) contract with Langley Research Center to develop a compact and lightweight digital thermal sensing (DTS) system for monitoring the cryogenic tanks on the X-33 prototype aircraft. That technology, along with a processor developed by SPEC for Goddard Space Flight Center, was space-qualified and integrated into several NASA missions. SPEC formed an ancillary organization, SensorTran, Inc., to continue work developing the DTS technology for a variety of commercial and industrial applications.

  19. Enhancing Transdisciplinary Research Through Collaborative Leadership

    PubMed Central

    Gray, Barbara

    2008-01-01

    Transcending the well-established and familiar boundaries of disciplinary silos poses challenges for even the most interpersonally competent scientists. This paper explores the challenges inherent in leading transdisciplinary projects, detailing the critical roles that leaders play in shepherding transdisciplinary scientific endeavors. Three types of leadership tasks are considered: cognitive, structural, and processual. Distinctions are made between leading small, co-located projects and large, dispersed ones. Finally, social-network analysis is proposed as a useful tool for conducting research on leadership, and, in particular, on the role of brokers, on complex transdisciplinary teams. PMID:18619392

  20. Predicting the global spread range via small subnetworks

    NASA Astrophysics Data System (ADS)

    Sun, Jiachen; Dong, Junyou; Ma, Xiao; Feng, Ling; Hu, Yanqing

    2017-04-01

    Modern online social network platforms are replacing traditional media due to their effectiveness in both spreading information and communicating opinions. One of the key problems in these online platforms is to predict the global spread range of any given information. Due to its gigantic size as well as time-varying dynamics, an online social network's global structure, however, is usually inaccessible to most researchers. Thus, it raises the very important issue of how to use solely small subnetworks to predict the global influence. In this paper, based on percolation theory, we show that the global spread range can be predicted well from only two small subnetworks. We test our methods in an artificial network and three empirical online social networks, such as the full Sina Weibo network with 99546027 nodes.

  1. Temporal efficiency evaluation and small-worldness characterization in temporal networks

    PubMed Central

    Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu

    2016-01-01

    Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks. PMID:27682314

  2. Temporal efficiency evaluation and small-worldness characterization in temporal networks

    NASA Astrophysics Data System (ADS)

    Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu

    2016-09-01

    Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks.

  3. It's a small world after all: contrasting hierarchical and edge networks in a simulated intelligence analysis task.

    PubMed

    Stanton, Neville A; Walker, Guy H; Sorensen, Linda J

    2012-01-01

    This article presents the rationale behind an important enhancement to a socio-technical model of organisations and teams derived from military research. It combines this with empirical results which take advantage of these enhancements. In Part 1, a new theoretical legacy for the model is developed based on Ergonomics theories and insights. This allows team communications data to be plotted into the model and for it to demonstrate discriminate validity between alternative team structures. Part 2 presents multinational data from the Experimental Laboratory for Investigating Collaboration, Information-sharing, and Trust (ELICIT) community. It was surprising to see that teams in both traditional hierarchical command and control and networked 'peer-to-peer' organisations operate in broadly the same area of the model, a region occupied by networks of communication exhibiting 'small world' properties. Small world networks may be of considerable importance for the Ergonomics analysis of team organisation and performance. This article is themed around macro and systems Ergonomics, and examines the effects of command and control structures. Despite some differences in behaviour and measures of agility, when given the freedom to do so, participants organised themselves into a small world network. This network type has important and interesting implications for the Ergonomics design of teams and organisations.

  4. Exploring the Specifications of Spatial Adjacencies and Weights in Bayesian Spatial Modeling with Intrinsic Conditional Autoregressive Priors in a Small-area Study of Fall Injuries

    PubMed Central

    Law, Jane

    2016-01-01

    Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147

  5. BeBot: A Modular Mobile Miniature Robot Platform Supporting Hardware Reconfiguration and Multi-standard Communication

    NASA Astrophysics Data System (ADS)

    Herbrechtsmeier, Stefan; Witkowski, Ulf; Rückert, Ulrich

    Mobile robots become more and more important in current research and education. Especially small ’on the table’ experiments attract interest, because they need no additional or special laboratory equipments. In this context platforms are desirable which are small, simple to access and relatively easy to program. An additional powerful information processing unit is advantageous to simplify the implementation of algorithm and the porting of software from desktop computers to the robot platform. In this paper we present a new versatile miniature robot that can be ideally used for research and education. The small size of the robot of about 9 cm edge length, its robust drive and its modular structure make the robot a general device for single and multi-robot experiments executed ’on the table’. For programming and evaluation the robot can be wirelessly connected via Bluetooth or WiFi. The operating system of the robot is based on the standard Linux kernel and the GNU C standard library. A player/stage model eases software development and testing.

  6. Linking structural biology with genome research: Beamlines for the Berlin ``Protein Structure Factory'' initiative

    NASA Astrophysics Data System (ADS)

    Illing, Gerd; Saenger, Wolfram; Heinemann, Udo

    2000-06-01

    The Protein Structure Factory will be established to characterize proteins encoded by human genes or cDNAs, which will be selected by criteria of potential structural novelty or medical or biotechnological usefulness. It represents an integrative approach to structure analysis combining bioinformatics techniques, automated gene expression and purification of gene products, generation of a biophysical fingerprint of the proteins and the determination of their three-dimensional structures either by NMR spectroscopy or by X-ray diffraction. The use of synchrotron radiation will be crucial to the Protein Structure Factory: high brilliance and tunable wavelengths are prerequisites for fast data collection, the use of small crystals and multiwavelength anomalous diffraction (MAD) phasing. With the opening of BESSY II, direct access to a third-generation XUV storage ring source with excellent conditions is available nearby. An insertion device with two MAD beamlines and one constant energy station will be set up until 2001.

  7. Controlling the intermediate structure of an ionic liquid for f-block element separations

    DOE PAGES

    Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...

    2017-04-19

    Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less

  8. Structural modification in the formation of starch - silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  9. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less

  10. Wide-range structurally optimized channel for monitoring the certified power of small-core reactors

    NASA Astrophysics Data System (ADS)

    Koshelev, A. S.; Kovshov, K. N.; Ovchinnikov, M. A.; Pikulina, G. N.; Sokolov, A. B.

    2016-12-01

    The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.

  11. Small-angle X-ray scattering probe of intermolecular interaction in red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Guan-Fen; Wang, We-Jia; Xu, Jia-Hua; Dong, Yu-Hui

    2015-03-01

    With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. Supported by National Basic Research Program of China (2009CB918600) and National Natural Science Foundation of China (10979005)

  12. Wide-range structurally optimized channel for monitoring the certified power of small-core reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Kovshov, K. N.; Ovchinnikov, M. A.

    The results of tests of a prototype version of a channel for monitoring the certified power of small-core reactors performed at the BR-K1 reactor at the All-Russian Scientific Research Institute of Experimental Physics are reported. An SNM-11 counter and commercial KNK-4 and KNK-3 compensated ion chambers were used as neutron detectors in the tested channel, and certified NCMM and CCMM measurement modules controlled by a PC with specialized software were used as measuring instruments. The specifics of metrological assurance of calibration of the channel in the framework of reactor power monitoring are discussed.

  13. The effect of disorder of small spheres on the photonic properties of the inverse binary NaCl-like structure

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Dijkstra, Marjolein

    2017-09-01

    Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.

  14. Small scale structure on cosmic strings

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1989-01-01

    The current understanding of cosmic string evolution is discussed, and the focus placed on the question of small scale structure on strings, where most of the disagreements lie. A physical picture designed to put the role of the small scale structure into more intuitive terms is presented. In this picture it can be seen how the small scale structure can feed back in a major way on the overall scaling solution. It is also argued that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small scale structure, which argued in any case would be extremely valuable in filling the gaps in the present understanding of cosmic string evolution.

  15. Thiophene-Based Organic Semiconductors.

    PubMed

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-10-24

    Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).

  16. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research.

    PubMed

    Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun

    2017-11-27

    Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.

  17. Joint Services Electronics Program.

    DTIC Science & Technology

    1987-04-30

    the specific objectives and progress in each work unit are reported. The focus of the JSEP project on transport properties of 1- dimensional...path. The properties of carrier transport and storage in various regions of these ultra-small, 3- dimensionally confined structures are not well...capabilities of MBE to grow and investigate the transport in these materials. SUMMARY OF RESEARCH: 1. One Dimensional Electron Transport One of the major goals

  18. Molecular Dynamics Characterization of the Conformational Landscape of Small Peptides: A Series of Hands-On Collaborative Practical Sessions for Undergraduate Students

    ERIC Educational Resources Information Center

    Rodrigues, João P. G. L. M.; Melquiond, Adrien S. J.; Bonvin, Alexandre M. J. J.

    2016-01-01

    Molecular modelling and simulations are nowadays an integral part of research in areas ranging from physics to chemistry to structural biology, as well as pharmaceutical drug design. This popularity is due to the development of high-performance hardware and of accurate and efficient molecular mechanics algorithms by the scientific community. These…

  19. Semiconductor-Based Nanotechnology Applications

    DTIC Science & Technology

    2012-11-07

    Nanotechnology Organization Conference, November 4-6, 2012 at the Hilton Arlington, VA 4. Selective toxicity of zinc oxide nanoparticles to cancer...surface structure of oxide nanoparticles , we have recently shown that both magnetic and photoluminescence properties can be tailored. ZnO nanoparticles ...as SnO2, ZnO , and CeO2, reported in 40 refereed research papers. In this ARO project, studies on ultra small particles of these oxides with

  20. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    PubMed Central

    Khraiwesh, Basel; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. PMID:21605713

  1. Small Business Innovation Research and Small Business Technology Transfer Programs

    NASA Technical Reports Server (NTRS)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  2. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.

    PubMed

    Maréchal, Eric

    2008-09-01

    Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry open new fields of research for chemogenomics.

  3. [Computational chemistry in structure-based drug design].

    PubMed

    Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu

    2013-07-01

    Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.

  4. Aligning Community Engagement With Traditional Authority Structures in Global Health Research: A Case Study From Northern Ghana

    PubMed Central

    Tindana, Paulina O.; Rozmovits, Linda; Boulanger, Renaud F.; Bandewar, Sunita V. S.; Aborigo, Raymond A.; Hodgson, Abraham V. O.; Kolopack, Pamela

    2011-01-01

    Despite the recognition of its importance, guidance on community engagement practices for researchers remains underdeveloped, and there is little empirical evidence of what makes community engagement effective in biomedical research. We chose to study the Navrongo Health Research Centre in northern Ghana because of its well-established community engagement practices and because of the opportunity it afforded to examine community engagement in a traditional African setting. Our findings suggest that specific preexisting features of the community have greatly facilitated community engagement and that using traditional community engagement mechanisms limits the social disruption associated with research conducted by outsiders. Finally, even in seemingly ideal, small, and homogeneous communities, cultural issues exist, such as gender inequities, that may not be effectively addressed by traditional practices alone. PMID:21852635

  5. Structural evolution and properties of small-size thiol-protected gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Ma, Miaomiao; Liu, Liren; Zhu, Hengjiang; Lu, Junzhe; Tan, Guiping

    2018-07-01

    Ligand-protected gold clusters are widely used in biosensors and catalysis. Understanding the structural evolution of these kinds of nanoclusters is important for experimental synthesis. Herein, based on the particle swarm optimisation algorithm and density functional theory method, we use [Au1(SH)2]n, [Au2(SH)3]n, [Au3(SH)4]n (n = 1-3) as basic units to research the structural evolution relationships from building blocks to the final whole structures. Results show that there is a 'line-ring-core' structural evolution pattern in the growth process of the nanoclusters. The core structures of the ligand-protected gold clusters consist of Au3, Au4, Au6 and Au7 atoms. The electronics and optics analysis reflects that stability and optical properties gradually enhance with increase in size. These results can be used to understand the initial growth stage and design new ligand-protected nanoclusters.

  6. Large-Scale 3D Printing: The Way Forward

    NASA Astrophysics Data System (ADS)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  7. Principal Component Analysis Based Measure of Structural Holes

    NASA Astrophysics Data System (ADS)

    Deng, Shiguo; Zhang, Wenqing; Yang, Huijie

    2013-02-01

    Based upon principal component analysis, a new measure called compressibility coefficient is proposed to evaluate structural holes in networks. This measure incorporates a new effect from identical patterns in networks. It is found that compressibility coefficient for Watts-Strogatz small-world networks increases monotonically with the rewiring probability and saturates to that for the corresponding shuffled networks. While compressibility coefficient for extended Barabasi-Albert scale-free networks decreases monotonically with the preferential effect and is significantly large compared with that for corresponding shuffled networks. This measure is helpful in diverse research fields to evaluate global efficiency of networks.

  8. Exploration of geomagnetic field anomaly with balloon for geophysical research

    NASA Astrophysics Data System (ADS)

    Jia, Wen-Kui

    The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.

  9. Mars Life? - Microscopic Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  10. Off The Scale - Expansion or Development? A Small Town within a Metropolitan Zone as an Alternative Place of Residence

    NASA Astrophysics Data System (ADS)

    Wójtowicz-Wróbel, Agnieszka

    2017-10-01

    The goal of this paper is to point out the types of spatial changes that the small towns located in Krakow’s range of influence are currently undergoing, as well as what are the consequences of the various types of changes in these towns. The author asks the question whether the current changes seen in small towns that are under the influence of Krakow can be described as sustainable development - at the basis of which is the increasing of the quality of the functional and spatial structure of a town while preserving its qualities and character - or, on the contrary, that it is more appropriate to describe the changes in the spatial structure of towns as an expansion, which is related only to an increase in their surface area or an increase in the density of their built environment? An attempt has also been made to determine the cause of these changes. An analysis of a set of towns in terms of their accessibility in relation to Krakow, as well as the demographic changes in towns in recent years, has been carried out. This research was useful in determining the dynamic of urban changes or their stagnation. Afterwards, groups of towns with varying degrees of transformation (towns that have been intensively transformed, towns with a balanced degree of spatial changes and towns which remain on the side-lines) were established. In addition, various forms of changes were defined - ranging from cities which register an increase in attractiveness and the changes that it brings while preserving their qualities in accordance with the principles of sustainable development, to settlements which are losing their small-town character as a result of intensive change, at the same time undergoing unification both in terms of space and form of use. From among the groups of towns, example which most fully illustrate the varying degrees and character of the changes of small towns in the area of Krakow has been selected. Based on the research that has been conducted, we can state that small towns in the vicinity of Krakow are undergoing intensive changes and are an attractive alternative in terms of serving as a place of residence, for instance in comparison to the suburban zone of Krakow. However, it is necessary to channel the changes in small towns in a manner that would take advantage of the opportunities for spatial, social and economic development on the one hand, while at the same time causing the intensive changes in those areas to not lead to the loss of their uniqueness, identity and small-town character, as well as the qualities of both a given town and its surroundings on the other. The research that had been performed and the conclusions that were drawn from it can serve as comparative material for other types of small towns and for metropolitan areas.

  11. Using Additive Manufacturing to Print a CubeSat Propulsion System

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Zemba, Michael; Shemelya, Corey; Wicker, Ryan; Espalin, David; MacDonald, Eric; Keif, Craig; Kwas, Andrew

    2015-01-01

    Small satellites, such as CubeSats, are increasingly being called upon to perform missions traditionally ascribed to larger satellite systems. However, the market of components and hardware for small satellites, particularly CubeSats, still falls short of providing the necessary capabilities required by ever increasing mission demands. One way to overcome this shortfall is to develop the ability to customize every build. By utilizing fabrication methods such as additive manufacturing, mission specific capabilities can be built into a system, or into the structure, that commercial off-the-shelf components may not be able to provide. A partnership between the University of Texas at El Paso, COSMIAC at the University of New Mexico, Northrop Grumman, and the NASA Glenn Research Center is looking into using additive manufacturing techniques to build a complete CubeSat, under the Small Spacecraft Technology Program. The W. M. Keck Center at the University of Texas at El Paso has previously demonstrated the ability to embed electronics and wires into the addtively manufactured structures. Using this technique, features such as antennas and propulsion systems can be included into the CubeSat structural body. Of interest to this paper, the team is investigating the ability to take a commercial micro pulsed plasma thruster and embed it into the printing process. Tests demonstrating the dielectric strength of the printed material and proof-of-concept demonstration of the printed thruster will be shown.

  12. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  13. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    PubMed

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA networks, (5) protein-DNA co-assembly structures, and (6) DNA block copolymers including trimers and pentamers. These results affirm that this method can produce a variety of chemical structures and in yields that are tunable. Using PCR-based preparation of DNA-bridged nanostructures, we can program the assembly of the nanoscale blocks through the adjustment of the primer intensity on the assembled units, the number of PCR cycles, or both. The resulting structures are highly complex and diverse and have interesting dynamics and collective properties. Potential applications of these materials include chirooptical materials, probe fabrication, and environmental and biomedical sensors.

  14. European Training and Research in Peritoneal Dialysis--A Network to Deliver Scientific Peritoneal Dialysis Training to a New Generation of Researchers.

    PubMed

    Machowska, Anna; van Wier, Tanja; Aufricht, Christoph; Beelen, Rob; Rutherford, Peter

    2015-01-01

    Peritoneal dialysis (PD) utilization varies across countries, and of the factors that explain the variation, the scientific and clinical knowledge of health care professionals is potentially important. In this paper, we describe a European collaboration--between 8 academic PD research programs, a small-to-medium-sized enterprise, and a large PD product manufacturer--that received significant research funding from the EU commission to establish a training network. European Training and Research in Peritoneal Dialysis (EuTRiPD) is providing training to 12 PhD students who have moved within the European Union and are completing research training. The underlying structure and processes within EuTRiPD (http://www.eutripd. eu) are described, and the benefits of the collaborative approach are discussed. This model could be useful to other research groups and will assist in maintaining and growing scientific expertise in PD research.

  15. Vibroacoustic Response Data of Stiffened Panels and Cylinders

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; Klos, Jake; Buehrle, Ralph; Schiller, Noah

    2008-01-01

    NASA has collected vibroacoustic response data on a variety of complex, aerospace structures to support research into numerical modeling of such structures. This data is being made available to the modeling community to promote the development and validation of analysis methods for these types of structures. Existing data from two structures is described, as well as plans for a data set from a third structure. The first structure is a 1.22 m by 1.22 m stiffened aluminum panel, typical of a commercial aircraft sidewall section. The second is an enclosed, stiffened aluminum cylinder, approximately 3.66 m long and 1.22 m in diameter, constructed to resemble a small aircraft fuselage with no windows and a periodic structure. The third structure is a filament-wound composite cylinder with composite stiffeners. Numerous combinations of excitation and response variables were measured on the structures, including: shaker excitation; diffuse acoustic field; velocity response from a laser vibrometer; intensity scans; and point acceleration.

  16. Born criminal? Differences in structural, functional and behavioural lateralization between criminals and noncriminals.

    PubMed

    Savopoulos, Priscilla; Lindell, Annukka K

    2018-02-15

    Over 100 years ago Lombroso [(1876/2006). Criminal man. Durham: Duke University Press] proposed a biological basis for criminality. Based on inspection of criminals' skulls he theorized that an imbalance of the cerebral hemispheres was amongst 18 distinguishing features of the criminal brain. Specifically, criminals were less lateralized than noncriminals. As the advent of neuroscientific techniques makes more fine-grained inspection of differences in brain structure and function possible, we review criminals' and noncriminals' structural, functional, and behavioural lateralization to evaluate the merits of Lombroso's thesis and investigate the evidence for the biological underpinning of criminal behaviour. Although the body of research is presently small, it appears consistent with Lombroso's proposal: criminal psychopaths' brains show atypical structural asymmetries, with reduced right hemisphere grey and white matter volumes, and abnormal interhemispheric connectivity. Functional asymmetries are also atypical, with criminal psychopaths showing a less lateralized cortical response than noncriminals across verbal, visuo-spatial, and emotional tasks. Finally, the incidence of non-right-handedness is higher in criminal than non-criminal populations, consistent with reduced cortical lateralization. Thus despite Lombroso's comparatively primitive and inferential research methods, his conclusion that criminals' lateralization differs from that of noncriminals is borne out by the neuroscientific research. How atypical cortical asymmetries predispose criminal behaviour remains to be determined.

  17. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review

    NASA Astrophysics Data System (ADS)

    van Rikxoort, Eva M.; van Ginneken, Bram

    2013-09-01

    Computed tomography (CT) is the modality of choice for imaging the lungs in vivo. Sub-millimeter isotropic images of the lungs can be obtained within seconds, allowing the detection of small lesions and detailed analysis of disease processes. The high resolution of thoracic CT and the high prevalence of lung diseases require a high degree of automation in the analysis pipeline. The automated segmentation of pulmonary structures in thoracic CT has been an important research topic for over a decade now. This systematic review provides an overview of current literature. We discuss segmentation methods for the lungs, the pulmonary vasculature, the airways, including airway tree construction and airway wall segmentation, the fissures, the lobes and the pulmonary segments. For each topic, the current state of the art is summarized, and topics for future research are identified.

  18. Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence

    NASA Astrophysics Data System (ADS)

    Kawata, Takuya; Alfredsson, P. Henrik

    2018-06-01

    Interscale interaction between small-scale structures near the wall and large-scale structures away from the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence. While the top-down influence from the large- to small-scale structures is well known, it has been unclear whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales. Such an "inverse" interscale transport of the Reynolds shear stress eventually supports the turbulent energy production at large scales.

  19. Collaborative Manufacturing for Small-Medium Enterprises

    NASA Astrophysics Data System (ADS)

    Irianto, D.

    2016-02-01

    Manufacturing systems involve decisions concerning production processes, capacity, planning, and control. In a MTO manufacturing systems, strategic decisions concerning fulfilment of customer requirement, manufacturing cost, and due date of delivery are the most important. In order to accelerate the decision making process, research on decision making structure when receiving order and sequencing activities under limited capacity is required. An effective decision making process is typically required by small-medium components and tools maker as supporting industries to large industries. On one side, metal small-medium enterprises are expected to produce parts, components or tools (i.e. jigs, fixture, mold, and dies) with high precision, low cost, and exact delivery time. On the other side, a metal small- medium enterprise may have weak bargaining position due to aspects such as low production capacity, limited budget for material procurement, and limited high precision machine and equipment. Instead of receiving order exclusively, a small-medium enterprise can collaborate with other small-medium enterprise in order to fulfill requirements high quality, low manufacturing cost, and just in time delivery. Small-medium enterprises can share their best capabilities to form effective supporting industries. Independent body such as community service at university can take a role as a collaboration manager. The Laboratory of Production Systems at Bandung Institute of Technology has implemented shared manufacturing systems for small-medium enterprise collaboration.

  20. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  1. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  2. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  3. Properties of II-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems. Materials Research Society Symposium Proceedings. Volume 161

    DTIC Science & Technology

    1990-11-21

    1989, ISBN 1-55899-063-1 Volume 176-Scientific Basis for Nuclear Waste Management XIII, V.M. Oversby, P.W. Brown, 1989, ISBN 1-55899-064-X Volume 177...J.M. PePUYDT, H. CHENG, M.A. HAASE AND J.E. POTTS 3M Company, 201-1N-35 / 3M Center, St. Paul , MN 55144. Recently, with the advent of thermal...their small business innovative research program. The authors wish to thank Larry Knight, director of the Center for X-ray Imaging at Brigham Young

  4. An overview of expert systems. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    An expert system is defined and its basic structure is discussed. The knowledge base, the inference engine, and uses of expert systems are discussed. Architecture is considered, including choice of solution direction, reasoning in the presence of uncertainty, searching small and large search spaces, handling large search spaces by transforming them and by developing alternative or additional spaces, and dealing with time. Existing expert systems are reviewed. Tools for building such systems, construction, and knowledge acquisition and learning are discussed. Centers of research and funding sources are listed. The state-of-the-art, current problems, required research, and future trends are summarized.

  5. Evaluation of ground motion scaling methods for analysis of structural systems

    USGS Publications Warehouse

    O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.

    2011-01-01

    Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.

  6. Techniques for hot structures testing

    NASA Technical Reports Server (NTRS)

    Deangelis, V. Michael; Fields, Roger A.

    1990-01-01

    Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.

  7. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-05-15

    Structure-function relationships of starch components remain a subject of research interest. Quinoa starch has very small granules (∼2μm) with unique properties. In this study, nine quinoa starches varied greatly in composition, structure, and physicochemical properties were selected for the analysis of structure-function relationships. Pearson correlation analysis revealed that the properties related to gelatinization such as swelling power, water solubility index, crystallinity, pasting, and thermal properties are much affected by the amylopectin chain profile and amylose content. The parameters of gel texture and amylose leaching are much related to amylopectin internal structure. Other properties such as enzyme susceptibility and particle size distribution are also strongly correlated with starch composition and amylopectin structure. Interesting findings indicate the importance of amylopectin internal structure and individual unit chain profile in determining the physicochemical properties of starch. This work highlights some relationships among composition, amylopectin structure and physicochemical properties of quinoa starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Small-strain measurement in bridge connections using the digital image correlation (DIC) technique

    NASA Astrophysics Data System (ADS)

    Desai, Niranjan

    2016-04-01

    Structural health monitoring (SHM) is emerging as a vital tool to help civil engineers improve the safety, maintainability, and reliability of critical structures and assists infrastructure owners with timely information for the continued safe and economic operation of their structure. SHM involves implementing a strategy that identifies and characterizes damage or undesirable performance in engineering structures. The goal of this research project was to determine the smallest strains measurable using standard digital image correlation (DIC) based SHM equipment. This practical investigation that had strong ties to the industry was motivated by damage observed in a real-world bridge, which was initially undetected. Its early detection would have led to reduced repair costs. To accomplish the aforementioned goal, tests were performed on a laboratory specimen that replicated a steel beam-to-column connection of the concerned bridge, involving progressively loading it in a manner in which it was loaded in the actual bridge, while simultaneously measuring the strains that developed in it using the aforementioned DIC-based equipment and software. Under the controlled conditions in the laboratory, the minimum resolution of the state-of-the-art system used in this investigation was determined. Due to the challenges faced in making these small-strain measurements even under highly controlled laboratory conditions, it was concluded that it is currently unrealistic to use the existing DIC technology in a real-world situation to measure strains as small as those that would need to be measured to detect the onset of damage in bridge connections. More work needs to be done in this area.

  9. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: The Small Business Administration (SBA) is publishing the Small Business...

  10. Exciplex: An Intermolecular Charge-Transfer Approach for TADF.

    PubMed

    Sarma, Monima; Wong, Ken-Tsung

    2018-04-03

    Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. In addition to pure TADF emitters achieved by the subtle manipulations of intramolecular charge transfer processes with sophisticated molecular structures, a new class of efficient TADF-based OLEDs with emitting layer formed by blending electron donor and acceptor molecules that involve intermolecular charge transfer have also been fabricated. In contrast to pure TADF materials, the exciplex-based systems can realize small ΔEST (0-0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the prospective to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency. Therefore, the challenging issue of achieving small ΔEST in organic systems could be solved. In this article, we summarize and discuss the latest and most significant developments regarding these rapidly evolving functional materials, wherein the majority of the reported exciplex forming systems are categorized into two sub-groups, viz. (a) exciplex as TADF emitters and (b) those as hosts for fluorescent, phosphorescent and TADF dopants according to their structural features and applications. The working mechanisms of the direct electroluminescence from the donor/acceptor interface and the exciplex-forming systems as co-host for the realization of high efficiency OLEDs are reviewed and discussed. This article delivers a summary of the current progresses and achievements of exciplex-based researches and points out the future challenges to trigger more research endeavors to this growing field.

  11. Systematic Review of Prenatal Cocaine Exposure and Adolescent Development

    PubMed Central

    Buckingham-Howes, Stacy; Berger, Sarah Shafer; Scaletti, Laura A.

    2013-01-01

    BACKGROUND AND OBJECTIVE: Previous research found that prenatal cocaine exposure (PCE) may increase children's vulnerability to behavior and cognition problems. Maturational changes in brain and social development make adolescence an ideal time to reexamine associations. The objective was to conduct a systematic review of published studies examining associations between PCE and adolescent development (behavior, cognition/school outcomes, physiologic responses, and brain morphology/functioning). METHODS: Articles were obtained from PubMed, PsycInfo, Web of Science, and CINAHL databases through July 2012 with search terms: prenatal drug, substance, or cocaine exposure; adolescence/adolescent; and in utero substance/drug exposure. Criteria for inclusion were nonexposed comparison group, human adolescents aged 11 to 19, peer-reviewed, English-language, and adolescent outcomes. RESULTS: Twenty-seven studies representing 9 cohorts met the criteria. Four outcome categories were identified: behavior, cognition/school performance, brain structure/function, and physiologic responses. Eleven examined behavior; 7 found small but significant differences favoring nonexposed adolescents, with small effect sizes. Eight examined cognition/school performance; 6 reported significantly lower scores on language and memory tasks among adolescents with PCE, with varying effect sizes varied. Eight examined brain structure/function and reported morphologic differences with few functional differences. Three examined physiologic responses with discordant findings. Most studies controlled for other prenatal exposures, caregiving environment, and violence exposure; few examined mechanisms. CONCLUSIONS: Consistent with findings among younger children, PCE increases the risk for small but significantly less favorable adolescent functioning. Although the clinical importance of differences is often unknown, the caregiving environment and violence exposure pose additional threats. Future research should investigate mechanisms linking PCE with adolescent functioning. PMID:23713107

  12. Research Progress on Dark Matter Model Based on Weakly Interacting Massive Particles

    NASA Astrophysics Data System (ADS)

    He, Yu; Lin, Wen-bin

    2017-04-01

    The cosmological model of cold dark matter (CDM) with the dark energy and a scale-invariant adiabatic primordial power spectrum has been considered as the standard cosmological model, i.e. the ΛCDM model. Weakly interacting massive particles (WIMPs) become a prominent candidate for the CDM. Many models extended from the standard model can provide the WIMPs naturally. The standard calculations of relic abundance of dark matter show that the WIMPs are well in agreement with the astronomical observation of ΩDM h2 ≈0.11. The WIMPs have a relatively large mass, and a relatively slow velocity, so they are easy to aggregate into clusters, and the results of numerical simulations based on the WIMPs agree well with the observational results of cosmic large-scale structures. In the aspect of experiments, the present accelerator or non-accelerator direct/indirect detections are mostly designed for the WIMPs. Thus, a wide attention has been paid to the CDM model based on the WIMPs. However, the ΛCDM model has a serious problem for explaining the small-scale structures under one Mpc. Different dark matter models have been proposed to alleviate the small-scale problem. However, so far there is no strong evidence enough to exclude the CDM model. We plan to introduce the research progress of the dark matter model based on the WIMPs, such as the WIMPs miracle, numerical simulation, small-scale problem, and the direct/indirect detection, to analyze the criterion for discriminating the ;cold;, ;hot;, and ;warm; dark matter, and present the future prospects for the study in this field.

  13. A stress wave based approach to NDE of logs for assessing potential veneer quality: Part I—small-diameter ponderosa pine.

    Treesearch

    Robert J. Ross; Susan W. Willits; William Von Segen; Terry Black; Brian K. Brashaw; Roy F. Pellerin

    1999-01-01

    Longitudinal stress wave nondestructive evaluation (NDE) techniques have been used in a variety of applications in the forest products industry. Recently, it has been shown that they can significantly aid in the assessment of log quality, particularly when they are used to predict performance of structural lumber obtained from a log. The purpose of the research...

  14. A six degree-of-freedom Lorentz vibration isolator with nonlinear controller

    NASA Astrophysics Data System (ADS)

    Fenn, Ralph C.

    1992-05-01

    The results of a phase 2 Small Business Innovation Research Program sponsored by MSFC are presented. Technology is developed for isolating acceleration sensitive microgravity experiments from structural vibration of a spacecraft, such as a space station. Two hardware articles are constructed: a six degree of freedom Lorentz force isolation and a one degree of freedom low acceleration testbed capable of tests at typical experiment accelerations.

  15. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.

    PubMed

    Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-12-16

    CONSPECTUS: Quantum chemistry and electronic structure theory have proven to be essential tools to the experimental chemist, in terms of both a priori predictions that pave the way for designing new experiments and rationalizing experimental observations a posteriori. Translating the well-established success of electronic structure theory in obtaining the structures and energies of small chemical systems to increasingly larger molecules is an exciting and ongoing central theme of research in quantum chemistry. However, the prohibitive computational scaling of highly accurate ab initio electronic structure methods poses a fundamental challenge to this research endeavor. This scenario necessitates an indirect fragment-based approach wherein a large molecule is divided into small fragments and is subsequently reassembled to compute its energy accurately. In our quest to further reduce the computational expense associated with the fragment-based methods and overall enhance the applicability of electronic structure methods to large molecules, we realized that the broad ideas involved in a different area, theoretical thermochemistry, are transferable to the area of fragment-based methods. This Account focuses on the effective merger of these two disparate frontiers in quantum chemistry and how new concepts inspired by theoretical thermochemistry significantly reduce the total number of electronic structure calculations needed to be performed as part of a fragment-based method without any appreciable loss of accuracy. Throughout, the generalized connectivity based hierarchy (CBH), which we developed to solve a long-standing problem in theoretical thermochemistry, serves as the linchpin in this merger. The accuracy of our method is based on two strong foundations: (a) the apt utilization of systematic and sophisticated error-canceling schemes via CBH that result in an optimal cutting scheme at any given level of fragmentation and (b) the use of a less expensive second layer of electronic structure method to recover all the missing long-range interactions in the parent large molecule. Overall, the work featured here dramatically decreases the computational expense and empowers the execution of very accurate ab initio calculations (gold-standard CCSD(T)) on large molecules and thereby facilitates sophisticated electronic structure applications to a wide range of important chemical problems.

  16. Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening

    PubMed Central

    Dandapani, Sivaraman; Rosse, Gerard; Southall, Noel; Salvino, Joseph M.; Thomas, Craig J.

    2015-01-01

    The selection, acquisition and use of high quality small molecule libraries for screening is an essential aspect of drug discovery and chemical biology programs. Screening libraries continue to evolve as researchers gain a greater appreciation of the suitability of small molecules for specific biological targets, processes and environments. The decisions surrounding the make-up of any given small molecule library is informed by a multitude of variables and opinions vary on best-practices. The fitness of any collection relies upon upfront filtering to avoiding problematic compounds, assess appropriate physicochemical properties, install the ideal level of structural uniqueness and determine the desired extent of molecular complexity. These criteria are under constant evaluation and revision as academic and industrial organizations seek out collections that yield ever improving results from their screening portfolios. Practical questions including cost, compound management, screening sophistication and assay objective also play a significant role in the choice of library composition. This overview attempts to offer advice to all organizations engaged in small molecule screening based upon current best practices and theoretical considerations in library selection and acquisition. PMID:26705509

  17. Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening.

    PubMed

    Dandapani, Sivaraman; Rosse, Gerard; Southall, Noel; Salvino, Joseph M; Thomas, Craig J

    The selection, acquisition and use of high quality small molecule libraries for screening is an essential aspect of drug discovery and chemical biology programs. Screening libraries continue to evolve as researchers gain a greater appreciation of the suitability of small molecules for specific biological targets, processes and environments. The decisions surrounding the make-up of any given small molecule library is informed by a multitude of variables and opinions vary on best-practices. The fitness of any collection relies upon upfront filtering to avoiding problematic compounds, assess appropriate physicochemical properties, install the ideal level of structural uniqueness and determine the desired extent of molecular complexity. These criteria are under constant evaluation and revision as academic and industrial organizations seek out collections that yield ever improving results from their screening portfolios. Practical questions including cost, compound management, screening sophistication and assay objective also play a significant role in the choice of library composition. This overview attempts to offer advice to all organizations engaged in small molecule screening based upon current best practices and theoretical considerations in library selection and acquisition.

  18. Scientific Ground of a New Optical Device for Contactless Measurement of the Small Spatial Displacements of Control Object Surfaces

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, I. P.; Parinov, I. A.

    2017-06-01

    It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.

  19. Helicity Evolution at Small x

    NASA Astrophysics Data System (ADS)

    Sievert, Michael; Kovchegov, Yuri; Pitonyak, Daniel

    2017-01-01

    We construct small- x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of ln2(1 / x) in the polarization-dependent evolution along with the powers of ln(1 / x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-Nc and large-Nc &Nf limits. After solving the large-Nc equations numerically we obtain the following small- x asymptotics for the flavor-singlet g1 structure function along with quarks hPDFs and helicity TMDs (in absence of saturation effects): g1S(x ,Q2) ΔqS(x ,Q2) g1L S(x ,kT2) (1/x) > αh (1/x) 2.31√{αsNc/2 π. We also give an estimate of how much of the proton's spin may be at small x and what impact this has on the so-called ``spin crisis.'' Work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286 (YK), the RIKEN BNL Research Center, and TMD Collaboration (DP), and DOE Contract No. DE-SC0012704 (MS).

  20. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  1. Mechanical Properties of Materials with Nanometer Scale Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less

  2. Tree Height and DBH Growth Model Establishment of Main Tree Species in Wuling Mountain Small Watershed

    NASA Astrophysics Data System (ADS)

    Luo, Jia; Zhang, Min; Zhou, Xiaoling; Chen, Jianhua; Tian, Yuxin

    2018-01-01

    Taken 4 main tree species in the Wuling mountain small watershed as research objects, 57 typical sample plots were set up according to the stand type, site conditions and community structure. 311 goal diameter-class sample trees were selected according to diameter-class groups of different tree-height grades, and the optimal fitting models of tree height and DBH growth of main tree species were obtained by stem analysis using Richard, Logistic, Korf, Mitscherlich, Schumacher, Weibull theoretical growth equations, and the correlation coefficient of all optimal fitting models reached above 0.9. Through the evaluation and test, the optimal fitting models possessed rather good fitting precision and forecast dependability.

  3. 3D reconstruction software comparison for short sequences

    NASA Astrophysics Data System (ADS)

    Strupczewski, Adam; Czupryński, BłaŻej

    2014-11-01

    Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.

  4. Small-Angle X-Ray Scattering Analysis of the Bifunctional Antibiotic Resistance Enzyme Aminoglycoside (6′) Acetyltransferase-Ie/Aminoglycoside (2″) Phosphotransferase-Ia Reveals a Rigid Solution Structure

    PubMed Central

    Caldwell, Shane J.

    2012-01-01

    Aminoglycoside (6′) acetyltransferase-Ie/aminoglycoside (2″) phosphotransferase-Ia [AAC(6′)-Ie/APH(2″)-Ia] is one of the most problematic aminoglycoside resistance factors in clinical pathogens, conferring resistance to almost every aminoglycoside antibiotic available to modern medicine. Despite 3 decades of research, our understanding of the structure of this bifunctional enzyme remains limited. We used small-angle X-ray scattering (SAXS) to model the structure of this bifunctional enzyme in solution and to study the impact of substrate binding on the enzyme. It was observed that the enzyme adopts a rigid conformation in solution, where the N-terminal AAC domain is fixed to the C-terminal APH domain and not loosely tethered. The addition of acetyl-coenzyme A, coenzyme A, GDP, guanosine 5′-[β,γ-imido]triphosphate (GMPPNP), and combinations thereof to the protein resulted in only modest changes to the radius of gyration (RG) of the enzyme, which were not consistent with any large changes in enzyme structure upon binding. These results imply some selective advantage to the bifunctional enzyme beyond coexpression as a single polypeptide, likely linked to an improvement in enzymatic properties. We propose that the rigid structure contributes to improved electrostatic steering of aminoglycoside substrates toward the two active sites, which may provide such an advantage. PMID:22290965

  5. Three-dimensional printing and deformation behavior of low-density target structures by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Stein, Ori; Campbell, John H.; Jiang, Lijia; Petta, Nicole; Lu, Yongfeng

    2017-08-01

    Two-photon polymerization (2PP), a 3D nano to microscale additive manufacturing process, is being used for the first time to fabricate small custom experimental packages ("targets") to support laser-driven high-energy-density (HED) physics research. Of particular interest is the use of 2PP to deterministically print low-density, low atomic-number (CHO) polymer matrices ("foams") at millimeter scale with sub-micrometer resolution. Deformation during development and drying of the foam structures remains a challenge when using certain commercial photo-resins; here we compare use of acrylic resins IP-S and IP-Dip. The mechanical strength of polymeric beam and foam structures is examined particularly the degree of deformation that occurs during the development and drying processes. The magnitude of the shrinkage in the two resins in quantified by printing sample structures and by use of FEA to simulate the deformation. Capillary drying forces are shown to be small and likely below the elastic limit of the core foam structure. In contrast the substantial shrinkage in IP-Dip ( 5-10%) cause large shear stresses and associated plastic deformation particularly near constrained boundaries such as the substrate and locations with sharp density variation. The inherent weakness of stitching boundaries is also evident and in certain cases can lead to delamination. Use of IP-S shows marked reduction in deformation with a minor loss of print resolution

  6. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  7. Electrohydrodynamic pressure enhanced by free space charge for electrically induced structure formation with high aspect ratio.

    PubMed

    Tian, Hongmiao; Wang, Chunhui; Shao, Jinyou; Ding, Yucheng; Li, Xiangming

    2014-10-28

    Electrically induced structure formation (EISF) is an interesting and unique approach for generating a microstructured duplicate from a rheological polymer by a spatially modulated electric field induced by a patterned template. Most of the research on EISF have so far used various dielectric polymers (with an electrical conductivity smaller than 10(-10) S/m that can be considered a perfect dielectric), on which the electric field induces a Maxwell stress only due to the dipoles (or bounded charges) in the polymer molecules, leading to a structure with a small aspect ratio. This paper presents a different approach for improving the aspect ratio allowed in EISF by doping organic salt into the perfect dielectric polymer, i.e., turning the perfect dielectric into a leaky dielectric, considering the fact that the free space charges enriched in the leaky dielectric polymer can make an additional contribution to the Maxwell stress, i.e., electrohydrodynamic pressure, which is desirable for high aspect ratio structuring. Our numerical simulations and experimental tests have shown that a leaky dielectric polymer, with a small conductivity comparable to that of deionized water, can be much more effective at being electrohydrodynamically deformed into a high aspect ratio in comparison with a perfect dielectric polymer when both of them have roughly the same dielectric constant.

  8. Structure Determination of Natural Products by Mass Spectrometry.

    PubMed

    Biemann, Klaus

    2015-01-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  9. Development of the Brican TD100 Small Uas and Payload Trials

    NASA Astrophysics Data System (ADS)

    Eggleston, B.; McLuckie, B.; Koski, W. R.; Bird, D.; Patterson, C.; Bohdanov, D.; Liu, H.; Mathews, T.; Gamage, G.

    2015-08-01

    The Brican TD100 is a high performance, small UAS designed and made in Brampton Ontario Canada. The concept was defined in late 2009 and it is designed for a maximum weight of 25 kg which is now the accepted cut-off defining small civil UASs. A very clean tractor propeller layout is used with a lightweight composite structure and a high aspect ratio wing to obtain good range and endurance. The design features and performance of the initial electrically powered version are discussed and progress with developing a multifuel engine version is described. The system includes features enabling operation beyond line of sight (BLOS) and the proving missions are described. The vehicle has been used for aerial photography and low cost mapping using a professional grade Nikon DSLR camera. For forest fire research a FLIR A65 IR camera was used, while for georeferenced mapping a new Applanix AP20 system was calibrated with the Nikon camera. The sorties to be described include forest fire research, wildlife photography of bowhead whales in the Arctic and surveys of endangered caribou in a remote area of Labrador, with all these applications including the DSLR camera.

  10. The Micromechanics of the Moving Contact Line

    NASA Technical Reports Server (NTRS)

    Han, Minsub; Lichter, Seth; Lin, Chih-Yu; Perng, Yeong-Yan

    1996-01-01

    The proposed research is divided into three components concerned with molecular structure, molecular orientation, and continuum averages of discrete systems. In the experimental program, we propose exploring how changes in interfacial molecular structure generate contact line motion. Rather than rely on the electrostatic and electrokinetic fields arising from the molecules themselves, we augment their interactions by an imposed field at the solid/liquid interface. By controling the field, we can manipulate the molecular structure at the solid/liquid interface. In response to controlled changes in molecular structure, we observe the resultant contact line motion. In the analytical portion of the proposed research we seek to formulate a system of equations governing fluid motion which accounts for the orientation of fluid molecules. In preliminary work, we have focused on describing how molecular orientation affects the forces generated at the moving contact line. Ideally, as assumed above, the discrete behavior of molecules can be averaged into a continuum theory. In the numerical portion of the proposed research, we inquire whether the contact line region is, in fact, large enough to possess a well-defined average. Additionally, we ask what types of behavior distinguish discrete systems from continuum systems. Might the smallness of the contact line region, in itself, lead to behavior different from that in the bulk? Taken together, our proposed research seeks to identify and accurately account for some of the molecular dynamics of the moving contact line, and attempts to formulate a description from which one can compute the forces at the moving contact line.

  11. Perceived Communication Skill Needs for Small Work Groups.

    ERIC Educational Resources Information Center

    Hawkins, Katherine; Fillion, Bryant

    A study examined communication skills essential for small work groups and whether the quality of small group teaching and research is in decline. The study reviewed small group research done previously by others and the problem of existing pedagogy and research in small group communication which does not provide practical solutions to real life…

  12. Complexity analysis on public transport networks of 97 large- and medium-sized cities in China

    NASA Astrophysics Data System (ADS)

    Tian, Zhanwei; Zhang, Zhuo; Wang, Hongfei; Ma, Li

    2018-04-01

    The traffic situation in Chinese urban areas is continuing to deteriorate. To make a better planning and designing of the public transport system, it is necessary to make profound research on the structure of urban public transport networks (PTNs). We investigate 97 large- and medium-sized cities’ PTNs in China, construct three types of network models — bus stop network, bus transit network and bus line network, then analyze the structural characteristics of them. It is revealed that bus stop network is small-world and scale-free, bus transit network and bus line network are both small-world. Betweenness centrality of each city’s PTN shows similar distribution pattern, although these networks’ size is various. When classifying cities according to the characteristics of PTNs or economic development level, the results are similar. It means that the development of cities’ economy and transport network has a strong correlation, PTN expands in a certain model with the development of economy.

  13. Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys

    DOE PAGES

    Zhang, Fuxiang; Zhao, Shijun; Jin, Ke; ...

    2017-01-04

    In this research, pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure wasfound in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~ 40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fccmore » and the hcp phases for the three alloys are very small, but they are sensitive to temperature. Finally, the critical transition pressure in NiCoCrFe varies from 1 GPa at room temperature to 6 GPa at 500 K.« less

  14. Evaluation of “Credit Card” Libraries for Inhibition of HIV-1 gp41 Fusogenic Core Formation

    PubMed Central

    Xu, Yang; Lu, Hong; Kennedy, Jack P.; Yan, Xuxia; McAllister, Laura; Yamamoto, Noboru; Moss, Jason A.; Boldt, Grant E.; Jiang, Shibo; Janda, Kim D.

    2008-01-01

    Protein-protein interactions are of critical importance in biological systems and small molecule modulators of such protein recognition and intervention processes are of particular interests. To investigate this area of research, we have synthesized small molecule libraries that can disrupt a number of biologically relevant protein-protein interactions. These library members are designed upon planar motifs, appended with a variety of chemical functions, which we have termed as “credit-card” structures. From two of our “credit-card” libraries, a series of molecules were uncovered which act as inhibitors against the HIV-1 gp41 fusogenic 6-helix bundle core formation, viral antigen p24 formation and cell-cell fusion at low micromolar concentrations. From the high-throughput screening assays we utilized, a selective index (SI) value of 4.2 was uncovered for compound 2261, which bodes well for future structure activity investigations and the design of more potent gp41 inhibitors. PMID:16827565

  15. Neutron Reflectometry and Small Angle Neutron Scattering of ABC Miktoarm Terpolymer Thin-Films

    NASA Astrophysics Data System (ADS)

    Arras, Matthias M. L.; Wang, Weiyu; Mahalik, Jyoti P.; Hong, Kunlun; Sumpter, Bobby G.; Smith, Gregory S.; Chernyy, Sergey; Kim, Hyeyoung; Russell, Thomas P.

    Due to the constraint of the junction point in miktoarm terpolymers, where three chains meet, ABC miktoarm terpolymers are promising to obtain nanostructured, long-range ordered materials. We present details of the thin-film structure of ABC miktoarm terpolymers in the poly(styrene), poly(isoprene), poly(2-vinylpyridine) (PS-PI-P2VP) system, investigated by neutron reflectometry and small angle neutron scattering. To this end, we synthesized partially deuterated versions of the PS-PI-P2VP and investigated annealed samples, spin-coated to various thicknesses of the bulk repeat period. Furthermore, we investigated the structural change upon selective blending with homopolymers or fullerenes. We find that thin-film constraints on the morphology can vanish after only twice the repetition period. In addition, it is indicated that nanoparticles improve the ordering in these systems, however, this seems to be not necessarily true for homopolymer blending. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

  16. Donor defects and small polarons on the TiO{sub 2}(110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, P. G.; Janotti, A., E-mail: janotti@udel.edu; Van de Walle, C. G.

    2016-05-14

    The role of defects in the chemical activity of the rutile TiO{sub 2}(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend tomore » localize in the form of small polarons, which are the factual cause of the deep states ∼1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO{sub 2} and related oxides.« less

  17. The effects of particle loading on turbulence structure and modelling

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Eaton, J. K.

    1989-01-01

    The objective of the present research was to extend the Direct Numerical Simulation (DNS) approach to particle-laden turbulent flows using a simple model of particle/flow interaction. The program addressed the simplest type of flow, homogeneous, isotropic turbulence, and examined interactions between the particles and gas phase turbulence. The specific range of problems examined include those in which the particle is much smaller than the smallest length scales of the turbulence yet heavy enough to slip relative to the flow. The particle mass loading is large enough to have a significant impact on the turbulence, while the volume loading was small enough such that particle-particle interactions could be neglected. Therefore, these simulations are relevant to practical problems involving small, dense particles conveyed by turbulent gas flows at moderate loadings. A sample of the results illustrating modifications of the particle concentration field caused by the turbulence structure is presented and attenuation of turbulence by the particle cloud is also illustrated.

  18. Control of a small working robot on a large flexible manipulator for suppressing vibrations

    NASA Technical Reports Server (NTRS)

    Lee, Soo Han

    1991-01-01

    The short term objective of this research is the completion of experimental configuration of the Small Articulated Robot (SAM) and the derivations of the actuator dynamics of the Robotic Arm, Large and Flexible (RALF). In order to control vibrations SAM should have larger bandwidth than that of the vibrations. The bandwidth of SAM consist of 3 parts; structural rigidity, processing speed of controller, and motor speed. The structural rigidity was increased to a reasonably high value by attaching aluminum angles at weak points and replacing thin side plates by thicker ones. The high processing speed of the controller was achieved by using parallel processors (three 68000 process, three interface board, and one main processor (IBM-XT)). Maximum joint speed and acceleration of SAM is known as about 4 rad/s and 15 rad/sq s. Hence SAM can move only .04 rad at 3 Hz which is the natural frequency of RALF. This will be checked by experiment.

  19. Applications of molecular modeling in coal research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, G.A.; Faulon, J.L.

    Over the past several years, molecular modeling has been applied to study various characteristics of coal molecular structures. Powerful workstations coupled with molecular force-field-based software packages have been used to study coal and coal-related molecules. Early work involved determination of the minimum-energy three-dimensional conformations of various published coal structures (Given, Wiser, Solomon and Shinn), and the dominant role of van der Waals and hydrogen bonding forces in defining the energy-minimized structures. These studies have been extended to explore various physical properties of coal structures, including density, microporosity, surface area, and fractal dimension. Other studies have related structural characteristics to cross-linkmore » density and have explored small molecule interactions with coal. Finally, recent studies using a structural elucidation (molecular builder) technique have constructed statistically diverse coal structures based on quantitative and qualitative data on coal and its decomposition products. This technique is also being applied to study coalification processes based on postulated coalification chemistry.« less

  20. PoLi: A Virtual Screening Pipeline Based On Template Pocket And Ligand Similarity

    PubMed Central

    Roy, Ambrish; Srinivasan, Bharath; Skolnick, Jeffrey

    2015-01-01

    Often in pharmaceutical research, the goal is to identify small molecules that can interact with and appropriately modify the biological behavior of a new protein target. Unfortunately, most proteins lack both known structures and small molecule binders, prerequisites of many virtual screening, VS, approaches. For such proteins, ligand homology modeling, LHM, that copies ligands from homologous and perhaps evolutionarily distant template proteins, has been shown to be a powerful VS approach to identify possible binding ligands. However, if we want to target a specific pocket for which there is no homologous holo template protein structure, then LHM will not work. To address this issue, in a new pocket based approach, PoLi, we generalize LHM by exploiting the fact that the number of distinct small molecule ligand binding pockets in proteins is small. PoLi identifies similar ligand binding pockets in a holo-template protein library, selectively copies relevant parts of template ligands and uses them for VS. In practice, PoLi is a hybrid structure and ligand based VS algorithm that integrates 2D fingerprint-based and 3D shape-based similarity metrics for improved virtual screening performance. On standard DUD and DUD-E benchmark databases, using modeled receptor structures, PoLi achieves an average enrichment factor of 13.4 and 9.6 respectively, in the top 1% of the screened library. In contrast, traditional docking based VS using AutoDock Vina and homology-based VS using FINDSITEfilt have an average enrichment of 1.6 (3.0) and 9.0 (7.9) on the DUD (DUD-E) sets respectively. Experimental validation of PoLi predictions on dihydrofolate reductase, DHFR, using differential scanning fluorimetry, DSF, identifies multiple ligands with diverse molecular scaffolds, thus demonstrating the advantage of PoLi over current state-of-the-art VS methods. PMID:26225536

  1. Large and small-scale structures in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.; Rehnberg, M. E.; Brown, Z. L.; Sremcevic, M.; Esposito, L. W.

    2017-09-01

    Observations made by the Cassini spacecraft have revealed both large and small scale structures in Saturn's rings in unprecedented detail. Analysis of high-resolution measurements by the Cassini Ultraviolet Spectrograph (UVIS) High Speed Photometer (HSP) and the Imaging Science Subsystem (ISS) show an abundance of intrinsic small-scale structures (or clumping) seen across the entire ring system. These include self-gravity wakes (50-100m), sub-km structure at the A and B ring edges, and "straw"/"ropy" structures (1-3km).

  2. Analysis of phytoplankton distribution and community structure in the German Bight with respect to the different size classes

    NASA Astrophysics Data System (ADS)

    Wollschläger, Jochen; Wiltshire, Karen Helen; Petersen, Wilhelm; Metfies, Katja

    2015-05-01

    Investigation of phytoplankton biodiversity, ecology, and biogeography is crucial for understanding marine ecosystems. Research is often carried out on the basis of microscopic observations, but due to the limitations of this approach regarding detection and identification of picophytoplankton (0.2-2 μm) and nanophytoplankton (2-20 μm), these investigations are mainly focused on the microphytoplankton (20-200 μm). In the last decades, various methods based on optical and molecular biological approaches have evolved which enable a more rapid and convenient analysis of phytoplankton samples and a more detailed assessment of small phytoplankton. In this study, a selection of these methods (in situ fluorescence, flow cytometry, genetic fingerprinting, and DNA microarray) was placed in complement to light microscopy and HPLC-based pigment analysis to investigate both biomass distribution and community structure of phytoplankton. As far as possible, the size classes were analyzed separately. Investigations were carried out on six cruises in the German Bight in 2010 and 2011 to analyze both spatial and seasonal variability. Microphytoplankton was identified as the major contributor to biomass in all seasons, followed by the nanophytoplankton. Generally, biomass distribution was patchy, but the overall contribution of small phytoplankton was higher in offshore areas and also in areas exhibiting higher turbidity. Regarding temporal development of the community, differences between the small phytoplankton community and the microphytoplankton were found. The latter exhibited a seasonal pattern regarding number of taxa present, alpha- and beta-diversity, and community structure, while for the nano- and especially the picophytoplankton, a general shift in the community between both years was observable without seasonality. Although the reason for this shift remains unclear, the results imply a different response of large and small phytoplankton to environmental influences.

  3. An Overview of the NASA FAP Hypersonics Project Airbreathing Propulsion Research

    NASA Technical Reports Server (NTRS)

    Auslender, A. H.; Suder, Kenneth L.; Thomas, Scott R.

    2009-01-01

    The propulsion research portfolio of the National Aeronautics and Space Administration Fundamental Aeronautics Program Hypersonics Project encompasses a significant number of technical tasks that are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime. An overall coordinated programmatic and technical effort has been structured to advance the state-of-the-art, via both experimental and analytical efforts. A subset of the entire hypersonics propulsion research portfolio is presented in this overview paper. To this end, two programmatic research disciplines are discussed; namely, (1) the Propulsion Discipline, including three associated research elements: the X-51A partnership, the HIFiRE-2 partnership, and the Durable Combustor Rig, and (2) the Turbine-Based Combine Cycle Discipline, including three associated research elements: the Combined Cycle Engine Large Scale Inlet Mode Transition Experiment, the small-scale Inlet Mode Transition Experiment, and the High-Mach Fan Rig.

  4. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    PubMed

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. © The Author(s) 2016. Published by Oxford University Press.

  5. Small-scale enzymatic digestion of glycoproteins and proteoglycans for analysis of oligosaccharides by LC-MS and FACE gel electrophoresis.

    PubMed

    Estrella, Ruby P; Whitelock, John M; Roubin, Rebecca H; Packer, Nicolle H; Karlsson, Niclas G

    2009-01-01

    Structural characterization of oligosaccharides from proteoglycans and other glycoproteins is greatly enhanced through the use of mass spectrometry and gel electrophoresis. Sample preparation for these sensitive techniques often requires enzymatic treatments to produce oligosaccharide sequences for subsequent analysis. This chapter describes several small-scale methods for in-gel, on-blot, and in-solution enzymatic digestions in preparation for graphitized carbon liquid chromatography-mass spectrometry (LC-MS) analysis, with specific applications indicated for glycosaminoglycans (GAGs) and N-linked oligosaccharides. In addition, accompanying procedures for oligosaccharide reduction by sodium borohydride, sample desalting via carbon microcolumn, desialylation by sialidase enzyme treatment, and small-scale oligosaccharide species fractionation are included. Fluorophore-assisted carbohydrate electrophoresis (FACE) is another useful method to isolate derivatized oligosaccharides. Overall, the modularity of these techniques provides ease and flexibility for use in conjunction with mass spectrometric and electrophoretic tools for glycomic research studies.

  6. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    NASA Astrophysics Data System (ADS)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  7. Functional Mixed Effects Model for Small Area Estimation.

    PubMed

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  8. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  9. Does Screen Size Matter for Smartphones? Utilitarian and Hedonic Effects of Screen Size on Smartphone Adoption

    PubMed Central

    Kim, Ki Joon

    2014-01-01

    Abstract This study explores the psychological effects of screen size on smartphone adoption by proposing an extended Technology Acceptance Model (TAM) that integrates an empirical comparison between large and small screens with perceived control, affective quality, and the original TAM constructs. A structural equation modeling analysis was conducted on data collected from a between-subjects experiment (N=130) in which users performed a web-based task on a smartphone with either a large (5.3 inches) or a small (3.7 inches) screen. Results show that a large screen, compared to a small screen, is likely to lead to higher smartphone adoption by simultaneously promoting both the utilitarian and hedonic qualities of smartphones, which in turn positively influence perceived ease of use of—and attitude toward—the device respectively. Implications and directions for future research are discussed. PMID:24694112

  10. Does screen size matter for smartphones? Utilitarian and hedonic effects of screen size on smartphone adoption.

    PubMed

    Kim, Ki Joon; Sundar, S Shyam

    2014-07-01

    This study explores the psychological effects of screen size on smartphone adoption by proposing an extended Technology Acceptance Model (TAM) that integrates an empirical comparison between large and small screens with perceived control, affective quality, and the original TAM constructs. A structural equation modeling analysis was conducted on data collected from a between-subjects experiment (N=130) in which users performed a web-based task on a smartphone with either a large (5.3 inches) or a small (3.7 inches) screen. Results show that a large screen, compared to a small screen, is likely to lead to higher smartphone adoption by simultaneously promoting both the utilitarian and hedonic qualities of smartphones, which in turn positively influence perceived ease of use of-and attitude toward-the device respectively. Implications and directions for future research are discussed.

  11. AGT 100 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  12. Solution structure of detergent micelles at conditions relevant to membrane protein crystallization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littrell, K.; Thiyagarajan, P.; Tiede, D.

    1999-07-02

    In this study small angle neutron scattering was used to characterize the formation of micelles in aqueous solutions of the detergents DMG and SPC as a function of detergent concentration and ionic strength of the solvent. The effects on the micelle structure of the additives glycerol and PEG, alone as well as in combination typical for actual membrane protein crystallization, were also explored. This research suggests that the micelles are cigar-like in form at the concentrations studied. The size of the micelles was observed to increase with increasing ionic strength but decrease with the addition of glycerol or PEG.

  13. 'The big ole gay express': sexual minority stigma, mobility and health in the small city.

    PubMed

    Keene, Danya E; Eldahan, Adam I; White Hughto, Jaclyn M; Pachankis, John E

    2017-03-01

    Recent research has examined how gay and bisexual men experience and navigate the variations in sexual minority stigma that exist across geographic contexts, with implications for their health. We extend this literature on stigma, mobility, and health by considering the unique and understudied setting of the small city. Drawing on semi-structured interviews (n = 29) conducted in two small US cities (New Haven and Hartford), we find that these small cities serve as both destinations and points of departure for gay and bisexual men in the context of stigma. New Haven and Hartford attracted gay and bisexual men from surrounding suburbs where sexual minority stigma was more prevalent and where there were fewer spaces and opportunities for gay life. Conversely, participants noted that these small cities did not contain the same identity affirming communities as urban gay enclaves, thus motivating movement from small cities to larger ones. Our data suggest these forms of mobility may mitigate stigma, but may also produce sexual health risks, thus drawing attention to small cities as uniquely important sites for HIV prevention. Furthermore, our analysis contributes to an understanding of how place, stigma and mobility can intersect to generate spatially distinct experiences of stigmatised identities and related health consequences.

  14. ‘The big ole gay express’: sexual minority stigma, mobility and health in the small city

    PubMed Central

    Keene, Danya E.; Eldahan, Adam I.; White Hughto, Jaclyn M.; Pachankis, John E.

    2016-01-01

    Recent research has examined how gay and bisexual men experience and navigate the variations in sexual minority stigma that exist across geographic contexts, with implications for their health. We extend this literature on stigma, mobility, and health by considering the unique and understudied setting of the small city. Drawing on semi-structured interviews (n = 29) conducted in two small US cities (New Haven and Hartford), we find that these small cities serve as both destinations and points of departure for gay and bisexual men in the context of stigma. New Haven and Hartford attracted gay and bisexual men from surrounding suburbs where sexual minority stigma was more prevalent and where there were fewer spaces and opportunities for gay life. Conversely, participants noted that these small cities did not contain the same identity affirming communities as urban gay enclaves, thus motivating movement from small cities to larger ones. Our data suggest these forms of mobility may mitigate stigma, but may also produce sexual health risks, thus drawing attention to small cities as uniquely important sites for HIV prevention. Furthermore, our analysis contributes to an understanding of how place, stigma and mobility can intersect to generate spatially distinct experiences of stigmatised identities and related health consequences. PMID:27604293

  15. The value of protein structure classification information-Surveying the scientific literature

    DOE PAGES

    Fox, Naomi K.; Brenner, Steven E.; Chandonia, John -Marc

    2015-08-27

    The Structural Classification of Proteins (SCOP) and Class, Architecture, Topology, Homology (CATH) databases have been valuable resources for protein structure classification for over 20 years. Development of SCOP (version 1) concluded in June 2009 with SCOP 1.75. The SCOPe (SCOP-extended) database offers continued development of the classic SCOP hierarchy, adding over 33,000 structures. We have attempted to assess the impact of these two decade old resources and guide future development. To this end, we surveyed recent articles to learn how structure classification data are used. Of 571 articles published in 2012-2013 that cite SCOP, 439 actually use data from themore » resource. We found that the type of use was fairly evenly distributed among four top categories: A) study protein structure or evolution (27% of articles), B) train and/or benchmark algorithms (28% of articles), C) augment non-SCOP datasets with SCOP classification (21% of articles), and D) examine the classification of one protein/a small set of proteins (22% of articles). Most articles described computational research, although 11% described purely experimental research, and a further 9% included both. We examined how CATH and SCOP were used in 158 articles that cited both databases: while some studies used only one dataset, the majority used data from both resources. Protein structure classification remains highly relevant for a diverse range of problems and settings.« less

  16. The value of protein structure classification information-Surveying the scientific literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Naomi K.; Brenner, Steven E.; Chandonia, John -Marc

    The Structural Classification of Proteins (SCOP) and Class, Architecture, Topology, Homology (CATH) databases have been valuable resources for protein structure classification for over 20 years. Development of SCOP (version 1) concluded in June 2009 with SCOP 1.75. The SCOPe (SCOP-extended) database offers continued development of the classic SCOP hierarchy, adding over 33,000 structures. We have attempted to assess the impact of these two decade old resources and guide future development. To this end, we surveyed recent articles to learn how structure classification data are used. Of 571 articles published in 2012-2013 that cite SCOP, 439 actually use data from themore » resource. We found that the type of use was fairly evenly distributed among four top categories: A) study protein structure or evolution (27% of articles), B) train and/or benchmark algorithms (28% of articles), C) augment non-SCOP datasets with SCOP classification (21% of articles), and D) examine the classification of one protein/a small set of proteins (22% of articles). Most articles described computational research, although 11% described purely experimental research, and a further 9% included both. We examined how CATH and SCOP were used in 158 articles that cited both databases: while some studies used only one dataset, the majority used data from both resources. Protein structure classification remains highly relevant for a diverse range of problems and settings.« less

  17. Smart Textiles for Strengthening of Structures

    NASA Astrophysics Data System (ADS)

    Górski, Marcin; Krzywoń, Rafał; Dawczyński, Szymon; Szojda, Leszek; Salvado, Rita; Lopes, Catarina; Araujo, Pedro; Velez, Fernando Jose; Castro-Gomes, Joao

    2016-11-01

    This paper presents results of mechanical tests on a prototype of an innovative structural strengthening in form of self-monitoring fabric. Smart textile employs carbon fibers conductivity for measuring strains while monitoring changes of electric resistance under increasing load. A general solution was tested in a series of calibrating tests on strengthening of small size concrete slabs. Promising results of simple specimen, has encouraged the research team to perform the next tests using mastered carbon fibre reinforced fabric. Main tests were performed on natural scale RC beam. Smart textile proved its efficiency in both: strengthening and monitoring of strains during load increase. New strengthening proposal was given 10% increase of loading capacity and the readings of strain changes were similar to those obtained in classical methods. In order to calibrate the prototype and to define range limits of solution usability, textile sensor was tested in areas of large deformations (timber beam) and aswell as very small strains (bridge bearing block). In both cases, the prototype demonstrated excellent performance in the range of importance for structural engineering. This paper also presents an example of use of the smart strengthening in situ, in a real life conditions.

  18. Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer.

    PubMed

    Tudisca, V; Bruni, F; Scoppola, E; Angelini, R; Ruzicka, B; Zulian, L; Soper, A K; Ricci, M A

    2014-09-01

    The process of dynamical arrest, leading to formation of different arrested states such as glasses and gels, along with the closely related process of aging, is central for both basic research and technology. Here we report on a study of the time-dependent structural evolution of two aqueous Laponite clay suspensions at different weight concentrations. Neutron diffraction experiments have been performed with the near and intermediate range order diffractometer (NIMROD) that allows studies of the structure of liquids and disordered materials over a continuous length scale ranging from 1 to 300 Å, i.e., from the atomistic to the mesoscopic scales. NIMROD is presently a unique diffractometer, bridging the length scales traditionally investigated by small angle neutron scattering or small angle x-ray scattering with that accessible by traditional diffractometers for liquids. Interestingly, we have unveiled a signature of aging of both suspensions in the length scale region of NIMROD. This phenomenon, ascribed to sporadic contacts between Laponite platelets at long times, has been observed with the sample arrested as gel or as repulsive glass. Moreover, water molecules within the layers closest to Laponite platelets surface show orientational and translational order, which maps into the crystalline structure of Laponite.

  19. "Non-cold" dark matter at small scales: a general approach

    NASA Astrophysics Data System (ADS)

    Murgia, R.; Merle, A.; Viel, M.; Totzauer, M.; Schneider, A.

    2017-11-01

    Structure formation at small cosmological scales provides an important frontier for dark matter (DM) research. Scenarios with small DM particle masses, large momenta or hidden interactions tend to suppress the gravitational clustering at small scales. The details of this suppression depend on the DM particle nature, allowing for a direct link between DM models and astrophysical observations. However, most of the astrophysical constraints obtained so far refer to a very specific shape of the power suppression, corresponding to thermal warm dark matter (WDM), i.e., candidates with a Fermi-Dirac or Bose-Einstein momentum distribution. In this work we introduce a new analytical fitting formula for the power spectrum, which is simple yet flexible enough to reproduce the clustering signal of large classes of non-thermal DM models, which are not at all adequately described by the oversimplified notion of WDM . We show that the formula is able to fully cover the parameter space of sterile neutrinos (whether resonantly produced or from particle decay), mixed cold and warm models, fuzzy dark matter, as well as other models suggested by effective theory of structure formation (ETHOS). Based on this fitting formula, we perform a large suite of N-body simulations and we extract important nonlinear statistics, such as the matter power spectrum and the halo mass function. Finally, we present first preliminary astrophysical constraints, based on linear theory, from both the number of Milky Way satellites and the Lyman-α forest. This paper is a first step towards a general and comprehensive modeling of small-scale departures from the standard cold DM model.

  20. Research on the magnetorheological finishing (MRF) technology with dual polishing heads

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Zhang, Yunfei; He, Jianguo; Zheng, Yongcheng; Luo, Qing; Hou, Jing; Yuan, Zhigang

    2014-08-01

    Magnetorheological finishing (MRF) is a key polishing technique capable of rapidly converging to the required surface figure. Due to the deficiency of general one-polishing-head MRF technology, a dual polishing heads MRF technology was studied and a dual polishing heads MRF machine with 8 axes was developed. The machine has the ability to manufacture large aperture optics with high figure accuracy. The large polishing head is suitable for polishing large aperture optics, controlling large spatial length's wave structures, correcting low-medium frequency errors with high removal rates. While the small polishing head has more advantages in manufacturing small aperture optics, controlling small spatial wavelength's wave structures, correcting mid-high frequency and removing nanoscale materials. Material removal characteristic and figure correction ability for each of large and small polishing head was studied. Each of two polishing heads respectively acquired stable and valid polishing removal function and ultra-precision flat sample. After a single polishing iteration using small polishing head, the figure error in 45mm diameter of a 50 mm diameter plano optics was significantly improved from 0.21λ to 0.08λ by PV (RMS 0.053λ to 0.015λ). After three polishing iterations using large polishing head , the figure error in 410mm×410mm of a 430mm×430mm large plano optics was significantly improved from 0.40λ to 0.10λ by PV (RMS 0.068λ to 0.013λ) .This results show that the dual polishing heads MRF machine not only have good material removal stability, but also excellent figure correction capability.

  1. Structural Reform: The Experience of Ten Schools Driving the Development of an All-Age Hard Federation across a Market Town in Northern England

    ERIC Educational Resources Information Center

    Howland, Gill

    2015-01-01

    This article provides a narrative which illustrates the experiences of one group of UK schools as they have attempted to introduce innovation in order to achieve their collective vision of improving educational opportunity for all pupils in their care. It considers the findings of a small-scale research project which follows, over a 3-year period,…

  2. Defense Small Business Innovation Research Program (SBIR) Abstracts of Phase I Awards 1984.

    DTIC Science & Technology

    1985-04-16

    PROTECTION OF SATELLITES FROM DIRECTED ENERGY WEAPONS, IS THE UTILIZATION OF HEAT PIPES WITHIN A SHIELD STRUCTURE. HEAT PIPES COULD BE DESIGNED TO...780 EDEN ROAD LANCASTER, PA 17601 ROBERT M. SHAUBACK TITLE: ANALYSIS AND PERFORMNCE EVALUATION OF HEAT PIPES WITH MULTIPLE HEAT SOURCES TOPIC: 97... PIPES CAPABLE OF ACCEPTING HEAT FROM MULTIPLE HEAT SOURCES. THERE IS NO THOROUGH ANALYTICAL OR EXPERIMENTAL BASIS FOR THE DESIGN OF HEAT PIPES OF

  3. Thin family: a new barcode concept

    NASA Astrophysics Data System (ADS)

    Allais, David C.

    1991-02-01

    This paper describes a new space-efficient family of thin bar code symbologies which are appropriate for representing small amounts of information. The proposed structure is 30 to 50 percent more compact than the narrowest existing bar code when 12 or fewer bits of information are to be encoded in each symbol. Potential applications for these symbologies include menus catalogs automated test and survey scoring and biological research such as the tracking of honey bees.

  4. Diffusion of vaporous guests into a seemingly non-porous organic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Simon A.; Janiak, Agnieszka; Thallapally, Praveen K.

    2014-10-07

    In this research, the tetragonal apohost phase of p-tert-butyltetramethoxythiacalix[4]arene absorbs hydrochloric acid and iodine. These guest molecules occupy different sites in the solid-state structure -- either within the small intrinsic voids of the macrocycle or within the interstitial spaces between the host molecules. This study illustrates the dynamic deformation of the host, providing strong mechanistic insight into the diffusion of guests into this seemingly non-porous material.

  5. A Small Stem Loop Structure Of The Ebola Virus Trailer Is Essential For Replication And Interacts With Heat Shock Protein A8

    DTIC Science & Technology

    2016-12-02

    agarose gel electrophoresis TR-16-205 Nucleic Acids Research, 2016 3 (Seakem GTG , Sigma-Aldrich) and purified using the QI- Aquick Gel Extraction Kit... gtg +cga 1923-1938 3′ LNA2 +caa+aaa+ga+aa+gaa+gaa 3E-5E eGFP, 3E-5E plasmid containing enhanced green fluorescent protein; aiSHAPE, antisense-interfered

  6. FY83 Posture Report: Research, Development, Engineering and Acquisition.

    DTIC Science & Technology

    1983-01-01

    to provide staff management and con- fluids, corrosion preventives, chemistry , chemical trol of Belvoir R&D Center’s force structure through the...vialiing boith FV82 antI FY83 fundsi. Early mianagenlerit r atar refletotrs anti c4tint racting fair sei-imi-generat itir iietlingp estabrlisliedi the phi...ft) to accommodate boats such as the fabrics. paper chemistry , preservatives, fuels, optical LCU, LCM-8. Ribbon Bridge Erection Boat, Small Tug. and

  7. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  8. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL.

    PubMed

    Cui, Yunxi; Koirala, Deepak; Kang, HyunJin; Dhakal, Soma; Yangyuoru, Philip; Hurley, Laurence H; Mao, Hanbin

    2014-05-01

    Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120-180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].

  9. The interplay of plant and animal disease in a changing landscape: the role of sudden aspen decline in moderating Sin Nombre virus prevalence in natural deer mouse populations.

    PubMed

    Lehmer, Erin M; Korb, Julie; Bombaci, Sara; McLean, Nellie; Ghachu, Joni; Hart, Lacey; Kelly, Ashley; Jara-Molinar, Edlin; O'Brien, Colleen; Wright, Kimberly

    2012-06-01

    We examined how climate-mediated forest dieback regulates zoonotic disease prevalence using the relationship between sudden aspen decline (SAD) and Sin Nombre virus (SNV) as a model system. We compared understory plant community structure, small mammal community composition, and SNV prevalence on 12 study sites within aspen forests experiencing levels of SAD ranging from <10.0% crown fade to >95.0% crown fade. Our results show that sites with the highest levels of SAD had reduced canopy cover, stand density, and basal area, and these differences were reflected by reductions in understory vegetation cover. Conversely, sites with the highest levels of SAD had greater understory standing biomass, suggesting that vegetation on these sites was highly clustered. Changes in forest and understory vegetation structure likely resulted in shifts in small mammal community composition across the SAD gradient, as we found reduced species diversity and higher densities of deer mice, the primary host for SNV, on sites with the highest levels of SAD. Sites with the highest levels of SAD also had significantly greater SNV prevalence compared to sites with lower levels of SAD, which is likely a result of their abundance of deer mice. Collectively, results of our research provide strong evidence to show SAD has considerable impacts on vegetation community structure, small mammal density and biodiversity and the prevalence of SNV.

  10. 48 CFR 227.7204 - Contracts under the Small Business Innovative Research Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Business Innovative Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovative Research Program. When contracting under the Small Business Innovative Research Program, follow the procedures at 227-7104. ...

  11. Lidar and Hyperspectral Remote Sensing for the Analysis of Coniferous Biomass Stocks and Fluxes

    NASA Astrophysics Data System (ADS)

    Halligan, K. Q.; Roberts, D. A.

    2006-12-01

    Airborne lidar and hyperspectral data can improve estimates of aboveground carbon stocks and fluxes through their complimentary responses to vegetation structure and biochemistry. While strong relationships have been demonstrated between lidar-estimated vegetation structural parameters and field data, research is needed to explore the portability of these methods across a range of topographic conditions, disturbance histories, vegetation type and climate. Additionally, research is needed to evaluate contributions of hyperspectral data in refining biomass estimates and determination of fluxes. To address these questions we are a conducting study of lidar and hyperspectral remote sensing data across sites including coniferous forests, broadleaf deciduous forests and a tropical rainforest. Here we focus on a single study site, Yellowstone National Park, where tree heights, stem locations, above ground biomass and basal area were mapped using first-return small-footprint lidar data. A new method using lidar intensity data was developed for separating the terrain and vegetation components in lidar data using a two-scale iterative local minima filter. Resulting Digital Terrain Models (DTM) and Digital Canopy Models (DCM) were then processed to retrieve a diversity of vertical and horizontal structure metrics. Univariate linear models were used to estimate individual tree heights while stepwise linear regression was used to estimate aboveground biomass and basal area. Three small-area field datasets were compared for their utility in model building and validation of vegetation structure parameters. All structural parameters were linearly correlated with lidar-derived metrics, with higher accuracies obtained where field and imagery data were precisely collocated . Initial analysis of hyperspectral data suggests that vegetation health metrics including measures of live and dead vegetation and stress indices may provide good indicators of carbon flux by mapping vegetation vigor or senescence. Additionally, the strength of hyperspectral data for vegetation classification suggests these data have additional utility for modeling carbon flux dynamics by allowing more accurate plant functional type mapping.

  12. Scaling properties of European research units

    PubMed Central

    Jamtveit, Bjørn; Jettestuen, Espen; Mathiesen, Joachim

    2009-01-01

    A quantitative characterization of the scale-dependent features of research units may provide important insight into how such units are organized and how they grow. The relative importance of top-down versus bottom-up controls on their growth may be revealed by their scaling properties. Here we show that the number of support staff in Scandinavian research units, ranging in size from 20 to 7,800 staff members, is related to the number of academic staff by a power law. The scaling exponent of ≈1.30 is broadly consistent with a simple hierarchical model of the university organization. Similar scaling behavior between small and large research units with a wide range of ambitions and strategies argues against top-down control of the growth. Top-down effects, and externally imposed effects from changing political environments, can be observed as fluctuations around the main trend. The observed scaling law implies that cost-benefit arguments for merging research institutions into larger and larger units may have limited validity unless the productivity per academic staff and/or the quality of the products are considerably higher in larger institutions. Despite the hierarchical structure of most large-scale research units in Europe, the network structures represented by the academic component of such units are strongly antihierarchical and suboptimal for efficient communication within individual units. PMID:19625626

  13. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  14. Maybe Small Is Too Small a Term: Introduction to Advancing Small Sample Prevention Science.

    PubMed

    Fok, Carlotta Ching Ting; Henry, David; Allen, James

    2015-10-01

    Prevention research addressing health disparities often involves work with small population groups experiencing such disparities. The goals of this special section are to (1) address the question of what constitutes a small sample; (2) identify some of the key research design and analytic issues that arise in prevention research with small samples; (3) develop applied, problem-oriented, and methodologically innovative solutions to these design and analytic issues; and (4) evaluate the potential role of these innovative solutions in describing phenomena, testing theory, and evaluating interventions in prevention research. Through these efforts, we hope to promote broader application of these methodological innovations. We also seek whenever possible, to explore their implications in more general problems that appear in research with small samples but concern all areas of prevention research. This special section includes two sections. The first section aims to provide input for researchers at the design phase, while the second focuses on analysis. Each article describes an innovative solution to one or more challenges posed by the analysis of small samples, with special emphasis on testing for intervention effects in prevention research. A concluding article summarizes some of their broader implications, along with conclusions regarding future directions in research with small samples in prevention science. Finally, a commentary provides the perspective of the federal agencies that sponsored the conference that gave rise to this special section.

  15. Constraint Logic Programming approach to protein structure prediction.

    PubMed

    Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico

    2004-11-30

    The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.

  16. [New sector of employment--a review of data on nanoproduction, research and development in the field of nanotechnology in Poland].

    PubMed

    Popławska, Magdalena; Mikołajczyk, Urszula; Bujak-Pietrek, Stella

    2015-01-01

    Nanotechnology is currently one of the fastest developing areas of science, focusing on the design, manufacture and use of nanomaterials. The term "nanomaterial" means any product made of nanometer-size (1-100 nm) structures. Due to the small size and unique properties of the applied nanomaterials there is a growing interest in their aplication in various fields of industry and science. In Poland, there are very few companies that carry on nanotechnology activities. Research institutes, universities and research units of the Polish Academy of Sciences predominate in these activities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Beyond Population and Environment: Household Life Cycle Demography and Land Use Allocation among Small Farm Colonists in the Amazon

    NASA Technical Reports Server (NTRS)

    Perz, Stephen G.; Walker, Robert T.; Caldas, Marcellus M.

    2006-01-01

    Most research featuring demographic factors in environmental change has focused on processes operating at the level of national or global populations. This paper focuses on household-level demographic life cycles among colonists in the Amazon, and evaluates the impacts on land use allocation. The analysis goes beyond prior research by including a broader suite of demographic variables, and by simultaneously assessing their impacts on multiple land uses with different economic and ecological implications. We estimate a system of structural equations that accounts for endogeneity among land uses, and the findings indicate stronger demographic effects than previous work. These findings bear implications for modeling land use, and the place of demography in environmental research.

  18. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  19. Ras history

    PubMed Central

    2010-01-01

    Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years. PMID:21686117

  20. Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2003-01-01

    A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

  1. Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high-order structure.

    PubMed

    Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo

    2017-04-01

    Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.

  2. A structural biology perspective on bioactive small molecules and their plant targets.

    PubMed

    Kumari, Selva; van der Hoorn, Renier A L

    2011-10-01

    Structural biology efforts in recent years have generated numerous co-crystal structures of bioactive small molecules interacting with their plant targets. These studies include the targets of various phytohormones, pathogen-derived effectors, herbicides and other bioactive compounds. Here we discuss that this collection of structures contains excellent examples of nine collective observations: molecular glues, allostery, inhibitors, molecular mimicry, promiscuous binding sites, unexpected electron densities, natural selection at atomic resolution, and applications in structure-guided mutagenesis and small molecule design. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The Structure and Climate of Size: Small Scale Schooling in an Urban District

    ERIC Educational Resources Information Center

    LeChasseur, Kimberly

    2009-01-01

    This study explores mechanisms involved in small scale schooling and student engagement. Specifically, this study questions the validity of arguments for small scale schooling reforms that confound the promised effects of small scale schooling "structures" (such as smaller enrollments, schools-within-schools, and smaller class sizes)…

  4. Reliable structural interpretation of small-angle scattering data from bio-molecules in solution--the importance of quality control and a standard reporting framework.

    PubMed

    Jacques, David A; Guss, Jules Mitchell; Trewhella, Jill

    2012-05-17

    Small-angle scattering is becoming an increasingly popular tool for the study of bio-molecular structures in solution. The large number of publications with 3D-structural models generated from small-angle solution scattering data has led to a growing consensus for the need to establish a standard reporting framework for their publication. The International Union of Crystallography recently established a set of guidelines for the necessary information required for the publication of such structural models. Here we describe the rationale for these guidelines and the importance of standardising the way in which small-angle scattering data from bio-molecules and associated structural interpretations are reported.

  5. Association between framing of the research question using the PICOT format and reporting quality of randomized controlled trials

    PubMed Central

    2010-01-01

    Background Experts recommend formulating a structured research question to guide the research design. However, the basis for this recommendation has not been formally evaluated. The aim of this study was to examine if a structured research question using the PICOT (Population, Intervention, Comparator, Outcome, Time-frame) format is associated with a better reporting quality of randomized controlled trials (RCTs). Methods We evaluated 89 RCTs reports published in three endocrinology journals in 2005 and 2006, the quality of reporting of which was assessed in a previous study. We examined whether the reports stated each of the five elements of a structured research question: population, intervention, comparator, outcome and time-frame. A PICOT score was created with a possible score between 0 and 5. Outcomes were: 1) a 14-point overall reporting quality score (OQS) based on the Consolidated Standards for Reporting Trials; and 2) a 3-point key score (KS), based on allocation concealment, blinding and use of intention-to-treat analysis. We conducted multivariable regression analyses using generalized estimating equations to determine if a higher PICOT score or the use of a structured research question were independently associated with a better reporting quality. Journal of publication, funding source and sample size were identified as factors associated with OQS in our previous report on this dataset, and therefore included in the model. Results A higher PICOT score was independently associated with OQS (incidence rate ratio (IRR) = 1.021, 95% CI: 1.012 to 1.029) and KS (IRR = 1.142, 95% CI: 1.079 to 1.210). A structured research question was present in 33.7% of the reports and it was associated with a better OQS (IRR = 1.095, 95% CI 1.059-1.132) and KS (IRR = 1.530, 95% CI 1.311-1.786). Conclusions Better framing of the research question using the PICOT format is independently associated with better overall reporting quality - although the effect is small - and better reporting of key methodologies. PMID:20137069

  6. 77 FR 63410 - SBIR/STTR Phase I to Phase II Transition Benchmarks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    .... Small Business Administration. ACTION: Notice of Small Business Innovation Research and Small Business... Administration (SBA) is publishing the Small Business Innovation Research (SBIR) and the Small Business...., Assistant Director, Office of Innovation, Small Business Administration, 409 Third Street SW., Washington...

  7. The Key Ingredients of the Electronic Structure of FeSe

    NASA Astrophysics Data System (ADS)

    Coldea, Amalia I.; Watson, Matthew D.

    2018-03-01

    FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here, we provide an overview of the current understanding of the electronic structure of FeSe, focusing in particular on its low-energy electronic structure as determined from angle-resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements of single-crystal samples. We discuss the unique place of FeSe among iron-based superconductors, as it is a multiband system exhibiting strong orbitally dependent electronic correlations and unusually small Fermi surfaces and is prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure that accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multiband multiorbital nematic electronic structure impacts our understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure helps to disentangle the role of different competing interactions relevant for enhancing superconductivity.

  8. The Cambridge Structural Database in retrospect and prospect.

    PubMed

    Groom, Colin R; Allen, Frank H

    2014-01-13

    The Cambridge Crystallographic Data Centre (CCDC) was established in 1965 to record numerical, chemical and bibliographic data relating to published organic and metal-organic crystal structures. The Cambridge Structural Database (CSD) now stores data for nearly 700,000 structures and is a comprehensive and fully retrospective historical archive of small-molecule crystallography. Nearly 40,000 new structures are added each year. As X-ray crystallography celebrates its centenary as a subject, and the CCDC approaches its own 50th year, this article traces the origins of the CCDC as a publicly funded organization and its onward development into a self-financing charitable institution. Principally, however, we describe the growth of the CSD and its extensive associated software system, and summarize its impact and value as a basis for research in structural chemistry, materials science and the life sciences, including drug discovery and drug development. Finally, the article considers the CCDC's funding model in relation to open access and open data paradigms. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Interactive and Versatile Navigation of Structural Databases.

    PubMed

    Korb, Oliver; Kuhn, Bernd; Hert, Jérôme; Taylor, Neil; Cole, Jason; Groom, Colin; Stahl, Martin

    2016-05-12

    We present CSD-CrossMiner, a novel tool for pharmacophore-based searches in crystal structure databases. Intuitive pharmacophore queries describing, among others, protein-ligand interaction patterns, ligand scaffolds, or protein environments can be built and modified interactively. Matching crystal structures are overlaid onto the query and visualized as soon as they are available, enabling the researcher to quickly modify a hypothesis on the fly. We exemplify the utility of the approach by showing applications relevant to real-world drug discovery projects, including the identification of novel fragments for a specific protein environment or scaffold hopping. The ability to concurrently search protein-ligand binding sites extracted from the Protein Data Bank (PDB) and small organic molecules from the Cambridge Structural Database (CSD) using the same pharmacophore query further emphasizes the flexibility of CSD-CrossMiner. We believe that CSD-CrossMiner closes an important gap in mining structural data and will allow users to extract more value from the growing number of available crystal structures.

  10. Economic performance of small ruminants in mixed-farming systems of Southern Ethiopia.

    PubMed

    Legesse, Getahun; Siegmund-Schultze, Marianna; Abebe, Girma; Zárate, Anne Valle

    2010-10-01

    This study evaluates the household income contribution and the profitability of traditional small ruminant enterprises in two mixed-farming systems of southern Ethiopia (viz. Adilo and Kofele). Small ruminant production is an integral part of mixed systems in the Ethiopian highlands. The assessment of the current economic performance of small ruminants indicates production-related opportunities and constraints and provides baseline data against which the success of future interventions can be measured. Detailed information on economic parameters was gathered through a 1-year period of flock and household monitoring (155 households) between September 2005 and August 2006. Structured surveys were conducted with the participating households to elicit information on income-expense details of small ruminant and other agricultural enterprises. Small ruminants contributed considerably to cash income and to a limited extent to human nutrition especially when other sources were in short supply. The annual profit per animal ranged from 20 to 37 Ethiopian Birr. The return to capital was 17% in Kofele and 29% in Adilo, with both values vastly exceeding the national interest rate. The sale of small ruminants contributed to 39% and 23% of total farm cash income among small ruminant keepers in Adilo and Kofele, respectively. Sale prices are highest before holidays. Researches should target at how to use available feed resources in a timely and cost-effective fashion to make use of the seasonal market opportunities.

  11. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs

    PubMed Central

    Naveed, Hammad; Hameed, Umar S.; Harrus, Deborah; Bourguet, William; Arold, Stefan T.; Gao, Xin

    2015-01-01

    Motivation: The inherent promiscuity of small molecules towards protein targets impedes our understanding of healthy versus diseased metabolism. This promiscuity also poses a challenge for the pharmaceutical industry as identifying all protein targets is important to assess (side) effects and repositioning opportunities for a drug. Results: Here, we present a novel integrated structure- and system-based approach of drug-target prediction (iDTP) to enable the large-scale discovery of new targets for small molecules, such as pharmaceutical drugs, co-factors and metabolites (collectively called ‘drugs’). For a given drug, our method uses sequence order–independent structure alignment, hierarchical clustering and probabilistic sequence similarity to construct a probabilistic pocket ensemble (PPE) that captures promiscuous structural features of different binding sites on known targets. A drug’s PPE is combined with an approximation of its delivery profile to reduce false positives. In our cross-validation study, we use iDTP to predict the known targets of 11 drugs, with 63% sensitivity and 81% specificity. We then predicted novel targets for these drugs—two that are of high pharmacological interest, the peroxisome proliferator-activated receptor gamma and the oncogene B-cell lymphoma 2, were successfully validated through in vitro binding experiments. Our method is broadly applicable for the prediction of protein-small molecule interactions with several novel applications to biological research and drug development. Availability and implementation: The program, datasets and results are freely available to academic users at http://sfb.kaust.edu.sa/Pages/Software.aspx. Contact: xin.gao@kaust.edu.sa and stefan.arold@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26286808

  12. Report of the wwPDB Small-Angle Scattering Task Force: data requirements for biomolecular modeling and the PDB.

    PubMed

    Trewhella, Jill; Hendrickson, Wayne A; Kleywegt, Gerard J; Sali, Andrej; Sato, Mamoru; Schwede, Torsten; Svergun, Dmitri I; Tainer, John A; Westbrook, John; Berman, Helen M

    2013-06-04

    This report presents the conclusions of the July 12-13, 2012 meeting of the Small-Angle Scattering Task Force of the worldwide Protein Data Bank (wwPDB; Berman et al., 2003) at Rutgers University in New Brunswick, New Jersey. The task force includes experts in small-angle scattering (SAS), crystallography, data archiving, and molecular modeling who met to consider questions regarding the contributions of SAS to modern structural biology. Recognizing there is a rapidly growing community of structural biology researchers acquiring and interpreting SAS data in terms of increasingly sophisticated molecular models, the task force recommends that (1) a global repository is needed that holds standard format X-ray and neutron SAS data that is searchable and freely accessible for download; (2) a standard dictionary is required for definitions of terms for data collection and for managing the SAS data repository; (3) options should be provided for including in the repository SAS-derived shape and atomistic models based on rigid-body refinement against SAS data along with specific information regarding the uniqueness and uncertainty of the model, and the protocol used to obtain it; (4) criteria need to be agreed upon for assessment of the quality of deposited SAS data and the accuracy of SAS-derived models, and the extent to which a given model fits the SAS data; (5) with the increasing diversity of structural biology data and models being generated, archiving options for models derived from diverse data will be required; and (6) thought leaders from the various structural biology disciplines should jointly define what to archive in the PDB and what complementary archives might be needed, taking into account both scientific needs and funding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Research environments that promote integrity.

    PubMed

    Jeffers, Brenda Recchia; Whittemore, Robin

    2005-01-01

    The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.

  14. How Does It Work? Mechanisms of Action in an In-Prison Restorative Justice Program.

    PubMed

    Armour, Marilyn; Sliva, Shannon

    2018-02-01

    Research is limited on mechanisms of action in restorative justice interventions. This multimethods study delineates the change processes underlying a successful in-prison group treatment program by (a) examining shifts in offenders' self-schemas and (b) identifying key program components that influence this movement. Researchers assigned to small groups as "co-facilitators" gathered data using participant observation, semi-structured interviews, and psychological assessments at three time points. Mechanisms of action include group norms and behaviors that contrast with prior experiences and uncover offenders' self-schemas through intrapsychic processes, which prompt them to test and act upon new possible selves through the group process.

  15. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  16. The growth of radiative filamentation modes in sheared magnetic fields

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1986-01-01

    Observations of prominences show them to require well-developed magnetic shear and to have complex small-scale structure. Researchers show here that these features are reflected in the results of the theory of radiative condensation. Researchers studied, in particular, the influence of the nominally negligible contributions of perpendicular (to B) thermal conduction. They find a large number of unstable modes, with closely spaced growth rates. Their scale widths across B show a wide range of longitudinal and transverse sizes, ranging from much larger than to much smaller than the magnetic shear scale, the latter characterization applying particularly in the direction of shear variation.

  17. 10 CFR 600.381 - Special provisions for Small Business Innovation Research Grants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Special provisions for Small Business Innovation Research... Organizations Additional Provisions § 600.381 Special provisions for Small Business Innovation Research Grants. (a) General. This section contains provisions applicable to the Small Business Innovation Reserach...

  18. 10 CFR 600.381 - Special provisions for Small Business Innovation Research Grants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Special provisions for Small Business Innovation Research... Organizations Additional Provisions § 600.381 Special provisions for Small Business Innovation Research Grants. (a) General. This section contains provisions applicable to the Small Business Innovation Reserach...

  19. 10 CFR 600.381 - Special provisions for Small Business Innovation Research Grants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Special provisions for Small Business Innovation Research... Organizations Additional Provisions § 600.381 Special provisions for Small Business Innovation Research Grants. (a) General. This section contains provisions applicable to the Small Business Innovation Reserach...

  20. 10 CFR 600.381 - Special provisions for Small Business Innovation Research Grants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Special provisions for Small Business Innovation Research... Organizations Additional Provisions § 600.381 Special provisions for Small Business Innovation Research Grants. (a) General. This section contains provisions applicable to the Small Business Innovation Reserach...

  1. 10 CFR 600.381 - Special provisions for Small Business Innovation Research Grants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Special provisions for Small Business Innovation Research... Organizations Additional Provisions § 600.381 Special provisions for Small Business Innovation Research Grants. (a) General. This section contains provisions applicable to the Small Business Innovation Reserach...

  2. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring.

    PubMed

    Baptista, Fabricio G; Budoya, Danilo E; de Almeida, Vinicius A D; Ulson, Jose Alfredo C

    2014-01-10

    The electromechanical impedance (EMI) technique is considered to be one of the most promising methods for developing structural health monitoring (SHM) systems. This technique is simple to implement and uses small and inexpensive piezoelectric sensors. However, practical problems have hindered its application to real-world structures, and temperature effects have been cited in the literature as critical problems. In this paper, we present an experimental study of the effect of temperature on the electrical impedance of the piezoelectric sensors used in the EMI technique. We used 5H PZT (lead zirconate titanate) ceramic sensors, which are commonly used in the EMI technique. The experimental results showed that the temperature effects were strongly frequency-dependent, which may motivate future research in the SHM field.

  3. Optical and force nanoscopy in microbiology.

    PubMed

    Xiao, Jie; Dufrêne, Yves F

    2016-10-26

    Microbial cells have developed sophisticated multicomponent structures and machineries to govern basic cellular processes, such as chromosome segregation, gene expression, cell division, mechanosensing, cell adhesion and biofilm formation. Because of the small cell sizes, subcellular structures have long been difficult to visualize using diffraction-limited light microscopy. During the last three decades, optical and force nanoscopy techniques have been developed to probe intracellular and extracellular structures with unprecedented resolutions, enabling researchers to study their organization, dynamics and interactions in individual cells, at the single-molecule level, from the inside out, and all the way up to cell-cell interactions in microbial communities. In this Review, we discuss the principles, advantages and limitations of the main optical and force nanoscopy techniques available in microbiology, and we highlight some outstanding questions that these new tools may help to answer.

  4. Multiplying Electrons With Diamond

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As researchers in the Space Communications Division of NASA s Glenn Research Center in 1992, Dr. Gerald Mearini, Dr. Isay Krainsky, and Dr. James Dayton made a secondary electron emission discovery that became the foundation for Mearini s company, GENVAC AeroSpace Corporation. Even after Mearini departed Glenn, then known as Lewis Research Center, his contact with NASA remained strong as he was awarded Small Business Innovation Research (SBIR) contracts to further develop his work. Mearini s work for NASA began with the investigation of diamond as a material for the suppression of secondary electron emissions. The results of his research were the opposite of what was expected diamond proved to be an excellent emitter rather than absorber. Mearini, Krainsky, and Dayton discovered that laboratory-grown diamond films can produce up to 45 electrons from a single incident electron. Having built an electron multiplier prototype at NASA, Mearini decided to start his own company to develop diamond structures usable in electron beam devices.

  5. MS2Analyzer: A Software for Small Molecule Substructure Annotations from Accurate Tandem Mass Spectra

    PubMed Central

    2015-01-01

    Systematic analysis and interpretation of the large number of tandem mass spectra (MS/MS) obtained in metabolomics experiments is a bottleneck in discovery-driven research. MS/MS mass spectral libraries are small compared to all known small molecule structures and are often not freely available. MS2Analyzer was therefore developed to enable user-defined searches of thousands of spectra for mass spectral features such as neutral losses, m/z differences, and product and precursor ions from MS/MS spectra in MSP/MGF files. The software is freely available at http://fiehnlab.ucdavis.edu/projects/MS2Analyzer/. As the reference query set, 147 literature-reported neutral losses and their corresponding substructures were collected. This set was tested for accuracy of linking neutral loss analysis to substructure annotations using 19 329 accurate mass tandem mass spectra of structurally known compounds from the NIST11 MS/MS library. Validation studies showed that 92.1 ± 6.4% of 13 typical neutral losses such as acetylations, cysteine conjugates, or glycosylations are correct annotating the associated substructures, while the absence of mass spectra features does not necessarily imply the absence of such substructures. Use of this tool has been successfully demonstrated for complex lipids in microalgae. PMID:25263576

  6. Inhibition of amyloid oligomerization into different supramolecular architectures by small molecules: mechanistic insights and design rules.

    PubMed

    Brahmachari, Sayanti; Paul, Ashim; Segal, Daniel; Gazit, Ehud

    2017-05-01

    Protein misfolding and aggregation have been associated with several human disorders, including Alzheimer's, Parkinson's and Huntington's diseases, as well as senile systemic amyloidosis and Type II diabetes. However, there is no current disease-modifying therapy available for the treatment of these disorders. In spite of extensive academic, pharmaceutical, medicinal and clinical research, a complete mechanistic model for this family of diseases is still lacking. In this review, we primarily discuss the different types of small molecular entities which have been used for the inhibition of the aggregation process of different amyloidogenic proteins under diseased conditions. These include small peptides, polyphenols, inositols, quinones and their derivatives, and metal chelator molecules. In recent years, these groups of molecules have been extensively studied using in vitro, in vivo and computational models to understand their mechanism of action and common structural features underlying the process of inhibition. A salient feature found to be instrumental in the process of inhibition is the balance between the aromatic unit that functions as the amyloid recognition unit and the hydrophilic amyloid breaker unit. The establishment of structure-function relationship for amyloid-modifying therapies by the various functional entities should serve as an important step toward the development of efficient therapeutics.

  7. The value of protein structure classification information—Surveying the scientific literature

    PubMed Central

    Fox, Naomi K.; Brenner, Steven E.

    2015-01-01

    ABSTRACT The Structural Classification of Proteins (SCOP) and Class, Architecture, Topology, Homology (CATH) databases have been valuable resources for protein structure classification for over 20 years. Development of SCOP (version 1) concluded in June 2009 with SCOP 1.75. The SCOPe (SCOP–extended) database offers continued development of the classic SCOP hierarchy, adding over 33,000 structures. We have attempted to assess the impact of these two decade old resources and guide future development. To this end, we surveyed recent articles to learn how structure classification data are used. Of 571 articles published in 2012–2013 that cite SCOP, 439 actually use data from the resource. We found that the type of use was fairly evenly distributed among four top categories: A) study protein structure or evolution (27% of articles), B) train and/or benchmark algorithms (28% of articles), C) augment non‐SCOP datasets with SCOP classification (21% of articles), and D) examine the classification of one protein/a small set of proteins (22% of articles). Most articles described computational research, although 11% described purely experimental research, and a further 9% included both. We examined how CATH and SCOP were used in 158 articles that cited both databases: while some studies used only one dataset, the majority used data from both resources. Protein structure classification remains highly relevant for a diverse range of problems and settings. Proteins 2015; 83:2025–2038. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26313554

  8. Description of and preliminary tests results for the Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Bingham, Jeffrey G.; Folkman, Steven L.

    1995-01-01

    An effort is currently underway to develop an experiment titled joint Damping E_periment (JDX) to fly on the Space Shuttle as Get Away Special Payload G-726. This project is funded by NASA's IN-Space Technology Experiments Program and is scheduled to fly in July 1995 on STS-69. JDX will measure the influence of gravity on the structural damping of a three bay truss having clearance fit pinned joints. Structural damping is an important parameter in the dynamics of space structures. Future space structures will require more precise knowledge of structural damping than is currently available. The mission objectives are to develop a small-scale shuttle flight experiment that allows researchers to: (1) characterize the influence of gravity and joint gaps on structural damping and dynamic behavior of a small-scale truss model, and (2) evaluate the applicability of low-g aircraft test results for predicting on-orbit behavior. Completing the above objectives will allow a better understanding and/or prediction of structural damping occurring in a pin jointed truss. Predicting damping in joints is quite difficult. One of the important variables influencing joint damping is gravity. Previous work has shown that gravity loads can influence damping in a pin jointed truss structure. Flying this experiment as a GAS payload will allow testing in a microgravity environment. The on-orbit data (in micro-gravity) will be compared with ground test results. These data will be used to help develop improved models to predict damping due to pinned joints. Ground and low-g aircraft testing of this experiment has been completed. This paper describes the experiment and presents results of both ground and low-g aircraft tests which demonstrate that damping of the truss is dramatically influenced by gravity.

  9. Fire Whirls

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Gollner, Michael J.; Xiao, Huahua

    2018-01-01

    Fire whirls present a powerful intensification of combustion, long studied in the fire research community because of the dangers they present during large urban and wildland fires. However, their destructive power has hidden many features of their formation, growth, and propagation. Therefore, most of what is known about fire whirls comes from scale modeling experiments in the laboratory. Both the methods of formation, which are dominated by wind and geometry, and the inner structure of the whirl, including velocity and temperature fields, have been studied at this scale. Quasi-steady fire whirls directly over a fuel source form the bulk of current experimental knowledge, although many other cases exist in nature. The structure of fire whirls has yet to be reliably measured at large scales; however, scaling laws have been relatively successful in modeling the conditions for formation from small to large scales. This review surveys the state of knowledge concerning the fluid dynamics of fire whirls, including the conditions for their formation, their structure, and the mechanisms that control their unique state. We highlight recent discoveries and survey potential avenues for future research, including using the properties of fire whirls for efficient remediation and energy generation.

  10. Simulation studies for surfaces and materials strength

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.

    1986-01-01

    During this reporting period three investigations were carried out. The first area of research concerned the analysis of the structure-energy relationship in small clusters. This study is very closely related to the improvement of the potential energy functions which are suitable and simple enough to be used in atomistic simulation studies. Parameters obtained from ab initio calculations for dimers and trimers of Al were used to estimate energetics and global minimum energy structures of clusters continuing up to 15 Al atoms. The second research topic addressed modeling of the collision process for atoms impinging on surfaces. In this simulation study qualitative aspects of the O atom collision with a graphite surface were analyzed. Four different O/graphite systems were considered and the aftermath of the impact was analyzed. The final area of investigation was related to the simulation of thin amorphous Si films on crystalline Si substrates. Parameters obtained in an earlier study were used to model an exposed amorphous Si surface and an a-Si/c-Si interface. Structural details for various film thicknesses were investigated at an atomistic level.

  11. Potential use of offshore marine structures in rebuilding an overfished rockfish species, bocaccio (Sebastes paucispinis)

    USGS Publications Warehouse

    Love, M.S.; Schroeder, D.M.; Lenarz, W.; MacCall, A.; Bull, A.S.; Thorsteinson, L.

    2006-01-01

    Although bocaccio (Sebastes paucispinis) was an economically important rockfish species along the west coast of North America, overfishing has reduced the stock to about 7.4% of its former unfished population. In 2003, using a manned research submersible, we conducted fish surveys around eight oil and gas platforms off southern California as part of an assessment of the potential value of these structures as fish habitat. From these surveys, we estimated that there was a minimum of 430,000 juvenile bocaccio at these eight structures. We determined this number to be about 20% of the average number of juvenile bocaccio that survive annually for the geographic range of the species. When these juveniles become adults, they will contribute about one percent (0.8%) of the additional amount of fish needed to rebuild the Pacific Coast population. By comparison, juvenile bocaccio recruitment to nearshore natural nursery grounds, as determined through regional scuba surveys, was low in the same year. This research demonstrates that a relatively small amount of artificial nursery habitat may be quite valuable in rebuilding an overfished species.

  12. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    USGS Publications Warehouse

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  13. Discovery of small-scale-structure in the large molecule/dust distribution in the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin A.; Fossey, Stephen J.; Sarre, Peter J.

    There is mounting evidence that far from being homogeneously distributed, interstellar matter can have a clumpy or filamentary structure on the scale of 10s to a few 1000s of AU and which is commonly described as small scale structure (SSS). Initially confined to VLBI HI observations and HI observations of high-velocity pulsars, evidence for SSS has also come indirectly from molecular radio studies of e.g. HCO+ and infrared absorption by H3+. Much of the recent data on SSS has been obtained through optical/UV detection of atomic and diatomic molecular lines. Is there small scale structure in the large molecule/dust distribution? While this question could in principle be explored by measuring differences in the interstellar extinction towards the components of binary stars, in practice this would be difficult. Rather we chose to investigate this by recording very high signal-to-noise spectra of diffuse interstellar absorption bands. Although the carriers remain unidentified, the diffuse bands are generally considered to be tracers of the large molecule/dust distribution and scale well with reddening. Using the Anglo-Australian Telescope we have made UCLES observations of pairs of stars with separations ranging between 500 and 30000 AU. The signal-to-noise achieved was up to 2000, thus allowing variations in central depth of less than a few tenths of a percent to be discernible. Striking differences in diffuse band strengths for closely spaced lines of sight are found showing clearly that there exists small-scale-structure in the large molecule/dust distribution. For example, in the Ophiuchus star-formation region the central depths for the λ6614 diffuse band towards the ρ Oph stars A, B, C and D/E all differ and range between 0.966 and 0.930. Further interesting behaviour is found when comparing the relative strengths of diffuse bands between closely parallel lines of sight. Taking again the ρ Oph group, for λ5797 the strengths follow the order DE > B > C > A whereas the λ5850 band, which has been associated with λ5797 as a member of the same 'family', follows a very different intensity pattern with C > B > A > DE. This opens a new avenue of diffuse band research in its own right and provides a rigorous test for models and theories of diffuse band carrier structure and behaviour.

  14. Ultrasonic guided waves in eccentric annular pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less

  15. Archaeal Viruses: Diversity, Replication, and Structure.

    PubMed

    Dellas, Nikki; Snyder, Jamie C; Bolduc, Benjamin; Young, Mark J

    2014-11-01

    The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have painted a portrait of enormous morphological and genetic diversity. For example, research centered around the various steps of the archaeal virus life cycle has led to the discovery of unique mechanisms employed by archaeal viruses during replication, maturation, and virion release. In many instances, archaeal virus proteins display very low levels of sequence homology to other proteins listed in the public database, and therefore, structural characterization of these proteins has played an integral role in functional assignment. These structural studies have not only provided insights into structure-function relationships but have also identified links between viruses across all three domains of life.

  16. 48 CFR 252.227-7018 - Rights in noncommercial technical data and computer software-Small Business Innovation Research...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technical data and computer software-Small Business Innovation Research (SBIR) Program. 252.227-7018 Section... Clauses 252.227-7018 Rights in noncommercial technical data and computer software—Small Business... Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program (MAR 2011...

  17. 77 FR 23228 - Notice of Submission for OMB Review; Small Business Innovation Research (SBIR) Program-Phase II...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... business concerns to submit a Phase II application for the Small Business Innovation Research (SBIR) Program (CFDA 84.133). This is in response to Public Law 106-554, the ``Small Business Reauthorization Act... DEPARTMENT OF EDUCATION Notice of Submission for OMB Review; Small Business Innovation Research...

  18. Strengthening Small Business Participation in Department of Defense Extramural Research and Development

    DTIC Science & Technology

    1983-01-01

    Management , on "The Small Business Innovation...Development Act of 1982 and Department of Defense Small Business Research Programs" before the National Contract Management Association (NOVA Chapter), Arlington, VA, May 25, 1983. 511 ...STRENGTHENING SMALL BUSINESS PARTICIPATION IN DEPARTMENT OF DEFENSE EXTRAMURAL RESEARCH AND DEVELOPMENT Bernard K. Dennis, Defense

  19. Joint Services Electronics Program: Electronics Research at the University of Texas at Austin

    DTIC Science & Technology

    1988-12-31

    structures. This system is also used routinely as an in-situ measure of alloy composition. We have shown that significant changes in the principal...RHEED streak intensity and shape are produced by very small changes in adatom coverage and that the profile is noticeably different for Ga and As...characteristic impedance measurement instruments. The oscillation frequency in the waveguide circuit could be varied from 8 to 12 GHz by changing the dc bias

  20. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  1. Acquisition of High Field Nuclear Magnetic Resonance Spectrometers for Research in Molecular Structure, Function and Dynamics

    DTIC Science & Technology

    2010-09-01

    starting materials at high concentration, such as plasmid DNA (3.6 µg/µL), pure lipofectamine, and pure cholesterol as received from the manufacturer, as...24), including analyzing the chemical composition of individual triglyceride -rich lipoproteins (25). A Raman spectrum appears when a small portion of...J. C., Keim, N. L., and Huser, T. (2005) Raman spectroscopic analysis of biochemical changes in individual triglyceride -rich lipoproteins in the pre

  2. From the sample preparation to the volume rendering images of small animals: A step by step example of a procedure to carry out the micro-CT study of the leafhopper insect Homalodisca vitripennis (Hemiptera: Cicadellidae)

    USDA-ARS?s Scientific Manuscript database

    Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pictures of structures inside of the body. Combining micro-CT with Digital Video Library systems, and linking this to Big Data, will change the way researchers, entomologist, and the public search and use anato...

  3. Micro Autonomous Systems Research: A Methodology for Quantitative Technology Assessment and Prototyping of Unmanned Vehicles

    DTIC Science & Technology

    2014-06-06

    Structure Flex Joints 6828 68% Power Primary: Lithium-Ion 7530 75% Secondary: Fuel Cells (miniature) 8843 88% Sensors IMU /LIDAR 7713 77...mission requirements taken into account; the payload included a LIDAR, sonar, and an IMU . Moreover, the focus moved to the integration of the entire...negligible for any pitch or roll angle less than 15 degrees. The small deflection assumption utilized instead seeks to minimize momentum generation. To

  4. QUANTUM NETWORKS WITH SINGLE ATOMS, PHOTONS AND PHONONS

    DTIC Science & Technology

    2016-10-04

    methodology, the NSSEFF research required an interdisciplinary ’toolkit’ from atomic physics, quantum optics, and nano-photonics for the control ...achieve a very small non -guided decay rate, i.e. Γ′ ’ 0.5Γ0. Moreover, one can engineer flatter bands, which leads to an increase of the group index...without the need to investigate over a wide range of PCW designs with different photonic band structures. To fully control spin-exchange coefficients

  5. Power System Overview for the Small RPS Centaur Flyby and the Mars Polar Hard Lander NASA COMPASS Studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    2014-01-01

    The NASA Glenn Research Center (GRC) Radioisotope Power System Program Office (RPSPO) sponsored two studies lead by their mission analysis team. The studies were performed by NASA GRCs Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team. Typically a complete toplevel design reference mission (DRM) is performed assessing conceptual spacecraft design, launch mass, trajectory, science strategy and sub-system design such as, power, propulsion, structure and thermal.

  6. Assessment of flood-induced changes of phytoplankton along a river-floodplain system using the morpho-functional approach.

    PubMed

    Mihaljević, Melita; Spoljarić, Dubravka; Stević, Filip; Zuna Pfeiffer, Tanja

    2013-10-01

    In this research, we aimed to find out how the differences in hydrological connectivity between the main river channel and adjacent floodplain influence the changes in phytoplankton community structure along a river-floodplain system. The research was performed in the River Danube floodplain (Croatian river section) in the period 2008-2009 characterised by different flooding pattern on an annual time scale. By utilising the morpho-functional approach and multivariate analyses, the flood-derived structural changes of phytoplankton were analysed. The lake stability during the isolation phase triggered the specific pattern of morpho-functional groups (MFG) which were characterised by cyanobacterial species achieving very high biomass. Adversely, the high water turbulence in the lake during the frequent and extreme flooding led to evident similarity between lake and river assemblages. Besides different diatom species (groups of small and large centrics and pennates), which are the most abundant representatives in the river phytoplankton, many other groups such as cryptophytes and colonial phytomonads appeared to indicate altered conditions in the floodplain driven by flooding. Having different functional properties, small centric diatom taxa sorted to only one MFG cannot clearly reflect environmental changes that are shown by the species-level pattern. Disadvantages in using the MFG approach highlight that it is still necessary to combine it with taxonomical approach in monitoring of phytoplankton in the river-floodplain ecosystems.

  7. Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, M. A., E-mail: elena@jinr.ru; Zemlyanaya, E. V.; Zhabitskaya, E. I.

    2015-01-15

    The structure of a polydispersed population of unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose solutions has been investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). Calculations within the model of separated form factors (SFF) show that the structure of the vesicle system depends strongly on the sucrose concentration.

  8. FEDERAL RESEARCH: Small Business Involvement in Federal Research and Development.

    DTIC Science & Technology

    1988-02-01

    Subcommittee on Innovation, Technology and Productivity, Committee on Small Business , U.S. Senate SFebruary 1988 FEDERAL RESEARCH Small Business ...Subcommittee on Innovation, Technology, and Productivity Committee on Small Business ~u United States Senate Dear 1r. Chairman: I In your September 30...1987, letter and in surbsequent discussions with your office, you asked us to&Lobtainj. information on the role of small business in the federal

  9. Experimental investigation of solid rocket motors for small sounding rockets

    NASA Astrophysics Data System (ADS)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  10. Your Idea and Your University: Issues in Academic Technology Transfer

    PubMed Central

    Smith, Charles D.

    2013-01-01

    Structured Abstract Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved s/he will be in the commercialization process. In some cases a university out-licenses the intellectual property, while in other cases the investigator may want to be involved in the development process and choose to start his or her own company to develop, and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including: career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, as well as his or her ability to run a company or step aside to allow business experts to make necessary decisions. This article discusses some personal considerations in deciding to start a spin-out company and provides information on some of the available government grants to assist you should you decide to undertake your product’s commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies are often the source of very early funding for new biomedical companies. PMID:21245769

  11. The Air Transportation Policy of Small States: Meeting the Challenges of Globalization

    NASA Technical Reports Server (NTRS)

    Antoniou, Andreas

    2001-01-01

    The air transport policies of small states are currently at a crossroad. Policy makers in these countries are facing a difficult dilemma: either follow the general trend of liberalization and pay the high cost of the resulting restructuring or maintain the existing regulatory and ownership structures at the risk of isolation thus undermining the viability and sustainability of their air transport sector and their economies in general. This paper proposes to explore the broad issues raised by this difficult dilemma, to outline its special significance in the context of small states and to delineate the options opened to the economic policymakers; in these states. After a brief note on the method of research, we sketch the main elements of the international air transport industry in which the airlines of small states are called upon to act. We then propose to review the main features of the analytical framework of this debate as it pertains to the special circumstances of these states. Then we focus on the challenges facing the airlines of Small States, while the next section proposes a number of the alternative policy options open to the policy makers in these states. The main conclusions are drawn in the final section.

  12. Diapers in war zones: ethnomedical factors in acute childhood gastroenteritis in Peshawar, Pakistan.

    PubMed

    Zaidi, Saira H; Smith-Morris, Carolyn

    2015-01-01

    This article considers ethnomedical knowledge and practices among parents related to contraction of acute gastroenteritis among children in Peshawar, Pakistan. Research methods included analysis of the Emergency Pediatric Services' admission register, a structured interview administered to 47 parents of patients seen in the Khyber Medical College Teaching Hospital, semi-structured interviews of 12 staff, and four home visits among families with children treated at the hospital. The use of native research assistants and participant observation contributed to the reliability of the findings, though the ethnographic, home-visit sample is small. Our research indicated that infection rates are exacerbated in homes through two culturally salient practices and one socioeconomic condition. Various misconceptions propagate the recurrence or perserverance of acute gastroenteritis including assumptions about teething leading to poor knowledge of disease etiology, rehydration solutions leading to increased severity of disease, and diaper usage leading to the spread of disease. In our Discussion, we suggest how hospital structures of authority and gender hierarchy may impact hospital interactions, the flow of information, and its respective importance to the patient's parents leading to possible propagation of disease. These ethnographic data offer a relatively brief but targeted course of action to improve the effectiveness of prevention and treatment efforts.

  13. Voltage control of nanoscale magnetoelastic elements: theory and experiments (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Carman, Gregory P.

    2015-09-01

    Electromagnetic devices rely on electrical currents to generate magnetic fields. While extremely useful this approach has limitations in the small-scale. To overcome the scaling problem, researchers have tried to use electric fields to manipulate a magnetic material's intrinsic magnetization (i.e. multiferroic). The strain mediated class of multiferroics offers up to 70% of energy transduction using available piezoelectric and magnetoelastic materials. While strain mediated multiferroic is promising, few studies exist on modeling/testing of nanoscale magnetic structures. This talk presents motivation, analytical models, and experimental data on electrical control of nanoscale single magnetic domain structures. This research is conducted in a NSF Engineering Research Center entitled Translational Applications for Nanoscale Multiferroics TANMS. The models combine micromagnetics (Landau-Lifshitz-Gilbert) with elastodynamics using the electrostatic approximation producing eight fully coupled nonlinear partial differential equations. Qualitative and quantitative verification is achieved with direct comparison to experimental data. The modeling effort guides fabrication and testing on three elements, i.e. nanoscale rings (onion states), ellipses (single domain reorientation), and superparamagnetic elements. Experimental results demonstrate electrical and deterministic control of the magnetic states in the 5-500 nm structures as measured with Photoemission Electron Microscopy PEEM, Magnetic Force Microscopy MFM, or Lorentz Transmission Electron Microscopy TEM. These data strongly suggests efficient control of nanoscale magnetic spin states is possible with voltage.

  14. 48 CFR 227.7204 - Contracts under the Small Business Innovation Research Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Business Innovation Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovation Research Program. When contracting under the Small Business Innovation Research Program, follow the procedures at 227-7104. [56 FR 36389, July 31, 1991, as amended at 76...

  15. 48 CFR 227.7204 - Contracts under the Small Business Innovation Research Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Business Innovation Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovation Research Program. When contracting under the Small Business Innovation Research Program, follow the procedures at 227-7104. [56 FR 36389, July 31, 1991, as amended at 76...

  16. 48 CFR 227.7204 - Contracts under the Small Business Innovation Research Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Business Innovation Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovation Research Program. When contracting under the Small Business Innovation Research Program, follow the procedures at 227-7104. [56 FR 36389, July 31, 1991, as amended at 76...

  17. 48 CFR 227.7204 - Contracts under the Small Business Innovation Research Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Business Innovation Research Program. 227.7204 Section 227.7204 Federal Acquisition Regulations System... under the Small Business Innovation Research Program. When contracting under the Small Business Innovation Research Program, follow the procedures at 227-7104. [56 FR 36389, July 31, 1991, as amended at 76...

  18. 78 FR 76886 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... market research. This research did not reveal any small business manufacturers that participated in the... respondent, a small business commercial appliance equipment dealer, claimed their market research found no... comments submitted, and after conducting thorough market research analysis, has concluded that there are no...

  19. Toughness characterization by small specimen test technique for HIPed joints of F82H steel aiming at first wall fabrication in fusion

    NASA Astrophysics Data System (ADS)

    Kishimoto, H.; Ono, T.; Sakasegawa, H.; Tanigawa, H.; Kohno, Y.; Kohyama, A.

    2013-09-01

    Reduced activation ferritic/martensitic steels (RAFMs), such as F82H steels, have been developed as candidates of structural materials for fusion. In the design of a fusion reactor, cooling channels are built in the first wall of the blanket. One large issue is to determine how to join rectangular tubes to thin panels to fabricate the first wall. Hot Isostatic Pressing (HIPing) is a solution to solve the issue. Because of the thin HIPed walls of the channels, the specimen size for inspection of HIPed interface is limited. In the present research, Small Specimen Test Techniques (SSTT) are screened for the destructive toughness investigation technique of HIPed F82H joints. 1/3 size Charpy V-notch impact (1/3 CVN) and small punch (SP) tests are employed for the present research. The toughness of the HIPed joints is strongly affected by various surface finishing of specimens treated previous to the HIPing. In the present research, several kinds of HIPed joints were surface finished by different methods and investigated by 1/3 CVN impact test. The HIPed F82H joints had different toughness ranging from 20% to 70% of the toughness of the F82H base metal. The SP test is also available for the investigation of toughness change by the HIPing. The sensitivity of 1/3 CVN impact test against toughness change was better than the SP test, it revealed that the SP test has some limitations.

  20. Research on a Neutron Detector With a Boron-Lined Honeycomb Neutron Converter

    NASA Astrophysics Data System (ADS)

    Fang, Zhujun; Yang, Yigang; Li, Yulan; Zhang, Zhi; Wang, Xuewu

    2017-04-01

    A new design of the boron-lined gaseous neutron detector composed of a boron-lined honeycomb neutron converter and an electron multiplier is proposed in this paper. The motivation for this research was to decrease the manufacturing difficulty and improve the robustness of the boron-lined gaseous neutron detector. The numerous anode wires in the traditional designs were removed, and the gas electron multiplier (GEM) was used as the electron multiplier. To drive the ionized electrons produced inside the honeycomb structure out to the incident surface of the GEM, a drift electric field was applied inside the holes of the honeycomb structure. The design principles of this detector were discussed. Geant4, Maxwell11, and Garfield9 were used to estimate the neutron absorption efficiency and the electron migration process. A prototype detector was constructed and experimentally evaluated. Both the simulation and experimental results indicate that this detector has the potential to be used in the applications of small angle neutron scattering for scientific research, and to replace the currently used 3He detectors, which have the trouble of very limited supply of 3He gas.

  1. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    DOE PAGES

    Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; ...

    2016-04-12

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. Furthermore, this observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less

  2. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    NASA Astrophysics Data System (ADS)

    Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; Christensen, Steven T.; Diercks, David; Schwartz, Craig P.; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S.; Tumas, William; Perkins, John D.; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M.; Zakutayev, Andriy

    2016-04-01

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  3. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures.

    PubMed

    Caskey, Christopher M; Holder, Aaron; Shulda, Sarah; Christensen, Steven T; Diercks, David; Schwartz, Craig P; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S; Tumas, William; Perkins, John D; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M; Zakutayev, Andriy

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  4. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caskey, Christopher M.; Colorado School of Mines, Golden, Colorado 80401; Larix Chemical Science, Golden, Colorado 80401

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less

  5. Small mammal abundance in Mediterranean post-fire habitats: a role for predators?

    NASA Astrophysics Data System (ADS)

    Torre, I.; Díaz, M.

    2004-05-01

    We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m 2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently-burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.

  6. An overview of animal science research 1945-2011 through science mapping analysis.

    PubMed

    Rodriguez-Ledesma, A; Cobo, M J; Lopez-Pujalte, C; Herrera-Viedma, E

    2015-12-01

    The conceptual structure of the field of Animal Science (AS) research is examined by means of a longitudinal science mapping analysis. The whole of the AS research field is analysed, revealing its conceptual evolution. To this end, an automatic approach to detecting and visualizing hidden themes or topics and their evolution across a consecutive span of years was applied to AS publications of the JCR category 'Agriculture, Dairy & Animal Science' during the period 1945-2011. This automatic approach was based on a coword analysis and combines performance analysis and science mapping. To observe the conceptual evolution of AS, six consecutive periods were defined: 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2005 and 2006-2011. Research in AS was identified as having focused on ten main thematic areas: ANIMAL-FEEDING, SMALL-RUMINANTS, ANIMAL-REPRODUCTION, DAIRY-PRODUCTION, MEAT-QUALITY, SWINE-PRODUCTION, GENETICS-AND-ANIMAL-BREEDING, POULTRY, ANIMAL-WELFARE and GROWTH-FACTORS-AND-FATTY-ACIDS. The results show how genomic studies gain in weight and integrate with other thematic areas. The whole of AS research has become oriented towards an overall framework in which animal welfare, sustainable management and human health play a major role. All this would affect the future structure and management of livestock farming. © 2014 Blackwell Verlag GmbH.

  7. Leadership: the critical success factor in the rise or fall of useful research activity.

    PubMed

    Henderson, Amanda; Winch, Sarah; Holzhauser, Kerri

    2009-12-01

    To describe how momentum towards building research capacity has developed through aligning research activity with executive responsibility via strategic planning processes that direct operational structures and processes for research activity. Reflecting on the development of research capacity over many years at complex tertiary referral hospitals reveals that building nursing knowledge is too important to be left to chance or whim but needs a strategic focus, appropriate resourcing and long-term sustainability through infrastructure. A number of key approaches we uncovered as successful include: (i) articulation of questions consistent with the strategic direction of the health context that can be addressed through research evidence; (ii) engagement and dissemination through making research meaningful; and (iii) feedback that informs the executive about the contribution of research activity to guide policy and practice decisions. Leadership teams need to ensure that the development of research knowledge is a strategic priority. The focus also needs to be more broadly on creating research capacity than focussing on small operational issues. Research capacity is developed when it is initiated, supported and monitored by leadership.

  8. Mapping the Small Molecule Interactome by Mass Spectrometry.

    PubMed

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  9. Simultaneous optimization of biomolecular energy function on features from small molecules and macromolecules

    PubMed Central

    Park, Hahnbeom; Bradley, Philip; Greisen, Per; Liu, Yuan; Mulligan, Vikram Khipple; Kim, David E.; Baker, David; DiMaio, Frank

    2017-01-01

    Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking, have been parameterized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties. PMID:27766851

  10. 76 FR 62313 - Small Business Size and Status Integrity

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... cooperative research and development agreement, as a small business concern. (f) Signature Requirement. Each..., cooperative agreement, or cooperative research and development agreement, as a small disadvantaged business... SMALL BUSINESS ADMINISTRATION 13 CFR Parts 121, 124, 125, 126, 127 RIN 3245-AG23 Small Business...

  11. The core contribution of transmission electron microscopy to functional nanomaterials engineering

    NASA Astrophysics Data System (ADS)

    Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu

    2016-01-01

    Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05460e

  12. Turning a Substrate Peptide into a Potent Inhibitor for the Histone Methyltransferase SETD8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, Russell A.; Zhu, Haizhong; Upadhyay, Anup K.

    SETD8 is a histone H4–K20 methyltransferase that plays an essential role in the maintenance of genomic integrity during mitosis and in DNA damage repair, making it an intriguing target for cancer research. While some small molecule inhibitors for SETD8 have been reported, the structural binding modes for these inhibitors have not been revealed. Using the complex structure of the substrate peptide bound to SETD8 as a starting point, different natural and unnatural amino acid substitutions were tested, and a potent (Ki 50 nM, IC50 0.33 μM) and selective norleucine containing peptide inhibitor has been obtained.

  13. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  14. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces

    DOE PAGES

    Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...

    2017-04-17

    Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less

  15. Conjugates of classical DNA/RNA binder with nucleobase: chemical, biochemical and biomedical applications.

    PubMed

    Saftic, Dijana; Ban, Zeljka; Matic, Josipa; Tumir, Lidija-Marija; Piantanida, Ivo

    2018-05-07

    Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class are nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder - nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Enabling Technologies for Entrepreneurial Opportunities in 3D printing of SmallSats

    NASA Technical Reports Server (NTRS)

    Kwas, Andrew; MacDonald, Eric; Muse, Dan; Wicker, Ryan; Kief, Craig; Aarestad, Jim; Zemba, Mike; Marshall, Bill; Tolbert, Carol; Connor, Brett

    2014-01-01

    A consortium of innovative experts in additive manufacturing (AM) comprising Northrup Grumman Technical Services, University of Texas at El Paso (UTEP), Configurable Space Microsystems Innovations & Applications Center (COSMIAC), NASA Glenn Research Center (GRC), and Youngstown State University, have made significant breakthroughs in the goal of creating the first complete 3D printed small satellite. Since AM machines are relatively inexpensive, this should lead to many entrepreneurial opportunities for the small satellite community. Our technology advancements are focused on the challenges of embedding key components within the structure of the article. We have demonstrated, using advanced fused deposition modeling techniques, complex geometric shapes which optimize the spacecraft design. The UTEP Keck Center has developed a method that interrupts the printing process to insert components into specific cavities, resulting in a spacecraft that has minimal internal space allocated for what traditionally were functional purposes. This allows us to increase experiment and instrument capability by provided added volume in a confined small satellite space. Leveraging initial progress made on a NASA contract, the team investigated the potential of new materials that exploit the AM process, producing candidate compositions that exceed the capabilities of traditional materials. These "new materials" being produced and tested include some that have improved radiation shielding, increased permeability, enhanced thermal properties, better conductive properties, and increased structural performance. The team also investigated materials that were previously not possible to be made. Our testing included standard mechanical tests such as vibration, tensile, thermal cycling, and impact resistance as well as radiation and electromagnetic tests. The initial results of these products and their performance will be presented and compared with standard properties. The new materials with the highest probability to disrupt the future of small satellite systems by driving down costs will be highlighted, in conjunction with the electronic embedding process.

  18. Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces.

    PubMed

    Kim, Jonghoon; Kim, Heejun; Park, Seung Bum

    2014-10-22

    In the search for new therapeutic agents for currently incurable diseases, attention has turned to traditionally "undruggable" targets, and collections of drug-like small molecules with high diversity and quality have become a prerequisite for new breakthroughs. To generate such collections, the diversity-oriented synthesis (DOS) strategy was developed, which aims to populate new chemical space with drug-like compounds containing a high degree of molecular diversity. The resulting DOS-derived libraries have been of great value for the discovery of various bioactive small molecules and therapeutic agents, and thus DOS has emerged as an essential tool in chemical biology and drug discovery. However, the key challenge has become how to design and synthesize drug-like small-molecule libraries with improved biological relevancy as well as maximum molecular diversity. This Perspective presents the development of privileged substructure-based DOS (pDOS), an efficient strategy for the construction of polyheterocyclic compound libraries with high biological relevancy. We envisioned the specific interaction of drug-like small molecules with certain biopolymers via the incorporation of privileged substructures into polyheterocyclic core skeletons. The importance of privileged substructures such as benzopyran, pyrimidine, and oxopiperazine in rigid skeletons was clearly demonstrated through the discovery of bioactive small molecules and the subsequent identification of appropriate target biomolecule using a method called "fluorescence difference in two-dimensional gel electrophoresis". Focusing on examples of pDOS-derived bioactive compounds with exceptional specificity, we discuss the capability of privileged structures to serve as chemical "navigators" toward biologically relevant chemical spaces. We also provide an outlook on chemical biology research and drug discovery using biologically relevant compound libraries constructed by pDOS, biology-oriented synthesis, or natural product-inspired DOS.

  19. Development of a frontal small overlap crashworthiness evaluation test.

    PubMed

    Sherwood, Christopher P; Mueller, Becky C; Nolan, Joseph M; Zuby, David S; Lund, Adrian K

    2013-01-01

    Small overlap frontal crashes are those in which crash forces are applied outboard of the vehicle's longitudinal frame rails. In-depth analyses of crashes indicate that such crashes account for a significant proportion of frontal crashes with seriously injured occupants. The objective of this research was to evaluate possible barrier crash tests that could be used to evaluate the crashworthiness of vehicles across a spectrum of small overlap crash types. Sixteen full-scale vehicle tests were conducted using 3 midsize passenger vehicles in up to 6 different test configurations, including vehicle-to-vehicle and barrier tests. All vehicles were tested at 64 km/h with an instrumented Hybrid III midsize male driver dummy. All test configurations resulted in primary loading of the wheel, suspension system, and hinge pillar. Vehicles underwent substantial lateral movement during the crash, which varied by crash configuration. The occupant compartments had significant intrusion, particularly to the most outboard structures. Inboard movement of the steering wheel in combination with outboard movement of the dummies (due to the lateral vehicle motion) caused limited interaction with the frontal air bag in most cases. When assessing overall crashworthiness (based on injury measures, structural deformation, and occupant kinematics), one vehicle had superior performance in each crash configuration. This was confirmation that the countermeasures benefiting performance in a single small overlap test also will provide a benefit in other crash configurations. Based on these test results, the Insurance Institute for Highway Safety has developed a small overlap crashworthiness evaluation with the following characteristics: a rigid flat barrier with a 150-mm corner radius, 25 percent overlap, 64 km/h test speed, and a Hybrid III midsize male driver dummy.

  20. 48 CFR 252.227-7018 - Rights in noncommercial technical data and computer software-Small Business Innovation Research...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technical data and computer software-Small Business Innovation Research (SBIR) Program. 252.227-7018 Section... Innovation Research (SBIR) Program. As prescribed in 227.7104(a), use the following clause: Rights in Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program (JUN 1995...

Top