Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.
Sharma, Divya; Cukras, Anthony R; Rogers, Elizabeth J; Southworth, Daniel R; Green, Rachel
2007-12-07
The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.
Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.
Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M
2018-06-08
Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
Structural insights into cell cycle control by essential GTPase Era.
Ji, Xinhua
Era (Escherichia coli Ras-like protein), essential for bacterial cell viability, is composed of an N-terminal GTPase domain and a C-terminal KH domain. In bacteria, it is required for the processing of 16S ribosomal RNA (rRNA) and maturation of 30S (small) ribosomal subunit. Era recognizes 10 nucleotides ( 1530 GAUCACCUCC 1539 ) near the 3' end of 16S rRNA and interacts with helix 45 (h45, nucleotides 1506-1529). GTP binding enables Era to bind RNA, RNA binding stimulates Era's GTP-hydrolyzing activity, and GTP hydrolysis releases Era from matured 30S ribosomal subunit. As such, Era controls cell growth rate via regulating the maturation of the 30S ribosomal subunit. Ribosomes manufacture proteins in all living organisms. The GAUCA sequence and h45 are highly conserved in all three kingdoms of life. Homologues of Era are present in eukaryotic cells. Hence, the mechanism of bacterial Era action also sheds light on the cell cycle control of eukaryotes.
Highly conserved small subunit residues influence rubisco large subunit catalysis.
Genkov, Todor; Spreitzer, Robert J
2009-10-30
The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.
Sharma, Anchal; Kumar, Pramod; Kesari, Pooja; Neetu; Katiki, Madhusudhanarao; Mishra, Manisha; Singh, Pradhyumna K; Gurjar, Bhola R; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra
2017-01-01
2S albumin is a low-molecular-weight seed storage protein belonging to the prolamin superfamily. In the present work a small 2S albumin (WTA) protein of ~16 kDa has been purified from the seeds of Wrightia tinctoria. The WTA is a heterodimer protein with a small subunit of ~5 kDa and a larger subunit of ~11 kDa bridged together through disulphide bonds. The protein exhibits deoxyribonucleases activity against closed circular pBR322 plasmid DNA and linear BL21 genomic DNA. The protein also showed antibacterial activity against Morexalla catarrhalis. CD studies indicate a high α-helical content in the protein. The conserved disulphide bonds in the protein suggest that the WTA is highly stable under high pH and temperature like other 2S albumin. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fu, Xinmiao; Chang, Zengyi
2004-04-02
Small heat shock proteins (sHsps) usually exist as oligomers that undergo dynamic oligomeric dissociation/re-association, with the dissociated oligomers as active forms to bind substrate proteins under heat shock conditions. In this study, however, we found that Hsp16.3, one sHsp from Mycobacterium tuberculosis, is able to sensitively modulate its chaperone-like activity in a range of physiological temperatures (from 25 to 37.5 degrees C) while its native oligomeric size is still maintained. Further analysis demonstrated that Hsp16.3 exposes higher hydrophobic surfaces upon temperatures increasing and that a large soluble complex between Hsp16.3 and substrate is formed only in the condition of heating temperature up to 35 and 37.5 degrees C. Structural analysis by fluorescence anisotropy showed that Hsp16.3 nonameric structure becomes more dynamic and variable at elevated temperatures. Moreover, subunit exchange between Hsp16.3 oligomers was found to occur faster upon temperatures increasing as revealed by fluorescence energy resonance transfer. These observations indicate that Hsp16.3 is able to modulate its chaperone activity by adjusting the dynamics of oligomeric dissociation/re-association process while maintaining its static oligomeric size unchangeable. A kinetic model is therefore proposed to explain the mechanism of sHsps-binding substrate proteins through oligomeric dissociation. The present study also implied that Hsp16.3 is at least capable of binding non-native proteins in vivo while expressing in the host organism that survives at 37 degrees C.
Mallik, Saurav; Kundu, Sudip
2013-01-01
Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU). Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA) is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs) in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins) have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli) are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder) at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend. PMID:23940533
Raleiras, Patrícia; Hammarström, Leif; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann
2015-07-01
The small subunit from the NiFe uptake hydrogenase, HupSL, in the cyanobacterium Nostoc punctiforme ATCC 29133, has been isolated in the absence of the large subunit (P. Raleiras, P. Kellers, P. Lindblad, S. Styring, A. Magnuson, J. Biol. Chem. 288 (2013) 18,345-18,352). Here, we have used flash photolysis to reduce the iron-sulfur clusters in the isolated small subunit, HupS. We used ascorbate as electron donor to the photogenerated excited state of Ru(II)-trisbipyridine (Ru(bpy)3), to generate Ru(I)(bpy)3 as reducing agent. Our results show that the isolated small subunit can be reduced by the Ru(I)(bpy)3 generated through flash photolysis. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Lin-Ru; Chou, Chang-Wei; Wu, Jing-Ying
2013-11-15
Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20{sub NLS} mutant gene and examined polysome profile of cells that had been transfected with the S20{sub NLS} gene. As a result, we observed the formation of recombinant 40S carried S20{sub NLS} but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletionmore » and restoration, we were able to restrain the nuclear-resided S20{sub NLS} in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20{sub NLS} in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20{sub NLS} is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20{sub NLS}. • Cytoplasm-retained S20{sub NLS} is crucial for creating a functional small subunit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreitzer, Robert J.
CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesismore » is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.« less
Whitney, Spencer Michael; Kane, Heather Jean; Houtz, Robert L; Sharwood, Robert Edward
2009-04-01
Manipulation of Rubisco within higher plants is complicated by the different genomic locations of the large (L; rbcL) and small (S; RbcS) subunit genes. Although rbcL can be accurately modified by plastome transformation, directed genetic manipulation of the multiple nuclear-encoded RbcS genes is more challenging. Here we demonstrate the viability of linking the S and L subunits of tobacco (Nicotiana tabacum) Rubisco using a flexible 40-amino acid tether. By replacing the rbcL in tobacco plastids with an artificial gene coding for a S40L fusion peptide, we found that the fusions readily assemble into catalytic (S40L)8 and (S40L)16 oligomers that are devoid of unlinked S subunits. While there was little or no change in CO2/O2 specificity or carboxylation rate of the Rubisco oligomers, their Kms for CO2 and O2 were reduced 10% to 20% and 45%, respectively. In young maturing leaves of the plastome transformants (called ANtS40L), the S40L-Rubisco levels were approximately 20% that of wild-type controls despite turnover of the S40L-Rubisco oligomers being only slightly enhanced relative to wild type. The reduced Rubisco content in ANtS40L leaves is partly attributed to problems with folding and assembly of the S40L peptides in tobacco plastids that relegate approximately 30% to 50% of the S40L pool to the insoluble protein fraction. Leaf CO2-assimilation rates in ANtS40L at varying pCO2 corresponded with the kinetics and reduced content of the Rubisco oligomers. This fusion strategy provides a novel platform to begin simultaneously engineering Rubisco L and S subunits in tobacco plastids.
Pinske, Constanze; Sawers, R. Gary
2012-01-01
During anaerobic growth Escherichia coli synthesizes two membrane-associated hydrogen-oxidizing [NiFe]-hydrogenases, termed hydrogenase 1 and hydrogenase 2. Each enzyme comprises a catalytic subunit containing the [NiFe] cofactor, an electron-transferring small subunit with a particular complement of [Fe-S] (iron-sulfur) clusters and a membrane-anchor subunit. How the [Fe-S] clusters are delivered to the small subunit of these enzymes is unclear. A-type carrier (ATC) proteins of the Isc (iron-sulfur-cluster) and Suf (sulfur mobilization) [Fe-S] cluster biogenesis pathways are proposed to traffic pre-formed [Fe-S] clusters to apoprotein targets. Mutants that could not synthesize SufA had active hydrogenase 1 and hydrogenase 2 enzymes, thus demonstrating that the Suf machinery is not required for hydrogenase maturation. In contrast, mutants devoid of the IscA, ErpA or IscU proteins of the Isc machinery had no detectable hydrogenase 1 or 2 activities. Lack of activity of both enzymes correlated with the absence of the respective [Fe-S]-cluster-containing small subunit, which was apparently rapidly degraded. During biosynthesis the hydrogenase large subunits receive their [NiFe] cofactor from the Hyp maturation machinery. Subsequent to cofactor insertion a specific C-terminal processing step occurs before association of the large subunit with the small subunit. This processing step is independent of small subunit maturation. Using western blotting experiments it could be shown that although the amount of each hydrogenase large subunit was strongly reduced in the iscA and erpA mutants, some maturation of the large subunit still occurred. Moreover, in contrast to the situation in Isc-proficient strains, these processed large subunits were not membrane-associated. Taken together, our findings demonstrate that both IscA and ErpA are required for [Fe-S] cluster delivery to the small subunits of the hydrogen-oxidizing hydrogenases; however, delivery of the Fe atom to the active site might have different requirements. PMID:22363723
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing has taken a central role in studies of microbial ecology, especially with regard to culture-independent methods based on molecular phylogenies of the small-subunit ribosomal RNA gene (16S rRNA gene). The ability to relate trends at the species or genus level to host/envir...
Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli.
Oehler, R; Polacek, N; Steiner, G; Barta, A
1997-01-01
Photolysis of [3H]tetracycline in the presence of Escherichia coli ribosomes results in an approximately 1:1 ratio of labelling ribosomal proteins and RNAs. In this work we characterize crosslinks to both 16S and 23S RNAs. Previously, the main target of photoincorporation of [3H]tetracycline into ribosomal proteins was shown to be S7, which is also part of the one strong binding site of tetracycline on the 30S subunit. The crosslinks on 23S RNA map exclusively to the central loop of domain V (G2505, G2576 and G2608) which is part of the peptidyl transferase region. However, experiments performed with chimeric ribosomal subunits demonstrate that peptidyltransferase activity is not affected by tetracycline crosslinked solely to the 50S subunits. Three different positions are labelled on the 16S RNA, G693, G1300 and G1338. The positions of these crosslinked nucleotides correlate well with footprints on the 16S RNA produced either by tRNA or the protein S7. This suggests that the nucleotides are labelled by tetracycline bound to the strong binding site on the 30S subunit. In addition, our results demonstrate that the well known inhibition of tRNA binding to the A-site is solely due to tetracycline crosslinked to 30S subunits and furthermore suggest that interactions of the antibiotic with 16S RNA might be involved in its mode of action. PMID:9092632
Cukras, Anthony R; Green, Rachel
2005-05-27
The ribosomal protein S13 is found in the head region of the small subunit, where it interacts with the central protuberance of the large ribosomal subunit and with the P site-bound tRNA through its extended C terminus. The bridging interactions between the large and small subunits are dynamic, and are thought to be critical in orchestrating the molecular motions of the translation cycle. S13 provides a direct link between the tRNA-binding site and the movements in the head of the small subunit seen during translocation, thereby providing a possible pathway of signal transduction. We have created and characterized an rpsM(S13)-deficient strain of Escherichia coli and have found significant defects in subunit association, initiation and translocation through in vitro assays of S13-deficient ribosomes. Targeted mutagenesis of specific bridge and tRNA contact elements in S13 provides evidence that these two interaction domains play critical roles in maintaining the fidelity of translation. This ribosomal protein thus appears to play a non-essential, yet important role by modulating subunit interactions in multiple steps of the translation cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack Preiss
Conversion of the Potato tuber ADP-glucose Pyrophopshorylase Regulatory Subunit into a Catalytic Subunit. ADP-glucose synthesis, a rate-limiting reaction in starch synthesis, is catalyzed by ADP-glucose pyrophosphorylase (ADPGlc PPase). The enzyme in plants is allosterically activated by 3-phosphoglycerate (3PGA) and inhibited by inorganic phosphate (Pi) and is composed of two subunits as a heterotetramer, a2b2. Subunit a is the catalytic subunit and subunit b is designated as the regulatory subunit.The b subunit increases the affinty of the activator for the catalytic subunit. Recent results have shown that the subunits are derived from the same ancestor subunit as the regulatory subunit canmore » be converted to a catalytically subunit via mutation of just two amino acids. Lys44 and Thr54 in the large subunit from potato tuber were converted to the homologous catalytic subunit residues, Arg33 and Lys43. The activity of the large subunit mutants cannot be readily tested with a co-expressed wild-type small (catalytic) subunit because of the intrinsic activity of the latter. We co-expressed the regulatory-subunit mutants with SmallD145N, an inactive S subunit in which the catalytic Asp145 was mutated. The activity of the small (catalytic) subunit was reduced more than three orders of magnitude. Coexpression of the L subunit double mutant LargeK44R/T54K with SmallD145N generated an enzyme with considerable activity, 10% and 18% of the wildtype enzyme, in the ADP-glucose synthetic and pyrophosphorolytic direction, respectively. Replacement of those two residues in the small subunit by the homologous amino acids in the L subunits (mutations R33K and K43T) decreased the activity one and two orders of magnitude. The wild-type enzyme and SmallD145NLargeK44R/T54K had very similar kinetic properties indicating that the substrate site has been conserved. The fact that only two mutations in the L subunit restored enzyme activity is very strong evidence that the large subunit is derived from the catalytic ancestor. Previous results showed that Asp145 in the small subunit of the wild-type is essential for catalysis, whereas the homologous Asp160 in the Large WT subunit is not. However, in this study, mutation D160N or D160E in the LK44R/T54K subunit abolished the activity, which shows the ancestral essential role of this residue and confirms that the catalysis of SmallD145NLarge K44R/T54K occurs in the L(b) subunit. A phylogenetic tree of the ADP-Glc PPases present in photosynthetic eukaryotes also sheds information about the origin of the subunits. The tree showed that plant Small and Large subunits can be divided into two and four distinct groups, respectively. The two main groups of S subunits are from dicot and monocot plants, whereas Large subunit groups correlate better with their documented tissue expression. The first Large-subunit group is generally expressed in photosynthetic tissues and comprises Large subunits from dicots and monocots. Group II displays a broader expression pattern, whereas groups III and IV are expressed in storage organs (roots, stems, tubers, seeds). Subunits from group III are only from dicot plants, whereas group IV are seed-specific subunits from monocots. These last two groups stem from the same branch of the phylogenetic tree and split before monocot and dicot separation. Thus few as two mutations turned the L subunit from Solanum tuberosum catalytic, showing that L and S subunits share a common catalytic ancestor, rather than a non-catalytic one. The L subunit evolved to have a regulatory role, lost catalytic residues more than 130 million years ago before monocots and dicots diverged, and preserved, possibly as a byproduct, the active site domain.« less
Heilek, G M; Noller, H F
1996-01-01
Directed hydroxyl radical probing was used to probe the rRNA neighborhood around protein S13 in the 30S ribosomal subunit. The unique cysteine at position 84 of S13 served as a tethering site for attachment of Fe(II)-1-(p-bromoacetamidobenzyl)-EDTA. Derivatized S13 (Fe-C84-S13) was then assembled into 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe(II) resulted in cleavage of the RNA backbone in two localized regions of the 3' major domain of 16S rRNA. One region spans nt 1308-1333 and is close to a site previously crosslinked to S13. A second set of cleavages is found in the 950/1230 helix. Both regions have been implicated in binding of S13 by previous chemical footprinting studies using base-specific chemical probes and solution-based hydroxyl radical probing. These results place both regions of 16S rRNA in proximity to position C84 of S13 in the three-dimensional structure of the 30S ribosomal subunit. PMID:8718688
Chiaruttini, C; Expert-Bezançon, A; Hayes, D; Ehresmann, B
1982-01-01
1-ethyl-3-dimethyl aminopropylcarbodiimide (EDC) was used to cross-link 30S ribosomal proteins to 16S rRNA within the E. coli 3OS ribosomal subunit. Covalently linked complexes containing 30S proteins and 16S rRNA, isolated by sedimentation of dissociated crosslinked 30S subunits through SDS containing sucrose gradients, were digested with RNase T1, and the resulting oligonucleotide-protein complexes were fractionated on SDS containing polyacrylamide gels. Eluted complexes containing 30S proteins S9 and S12 linked to oligonucleotides were obtained in pure form. Oligonucleotide 5'terminal labelling was successful in the case of S12 containing but not of the S9 containing complex and led to identification of the S12 bound oligonucleotide as CAACUCG which is located at positions 1316-1322 in the 16S rRNA sequence. Protein S12 is crosslinked to the terminal G of this heptanucleotide. Images PMID:6760129
An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum
NASA Technical Reports Server (NTRS)
Burggraf, S.; Larsen, N.; Woese, C. R.; Stetter, K. O.
1993-01-01
The 16S rRNA genes of Pyrobaculum aerophilum and Pyrobaculum islandicum were amplified by the polymerase chain reaction, and the resulting products were sequenced directly. The two organisms are closely related by this measure (over 98% similar). However, they differ in that the (lone) 16S rRNA gene of Pyrobaculum aerophilum contains a 713-bp intron not seen in the corresponding gene of Pyrobaculum islandicum. To our knowledge, this is the only intron so far reported in the small subunit rRNA gene of a prokaryote. Upon excision the intron is circularized. A secondary structure model of the intron-containing rRNA suggests a splicing mechanism of the same type as that invoked for the tRNA introns of the Archaea and Eucarya and 23S rRNAs of the Archaea. The intron contains an open reading frame whose protein translation shows no certain homology with any known protein sequence.
Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective
NASA Technical Reports Server (NTRS)
Gutell, R. R.; Larsen, N.; Woese, C. R.
1994-01-01
The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical modification (in the isolated rRNA), which suggests that considerable higher-order structure remains to be found (although all of it may not involve base-base interactions and so may not be detectable by comparative analysis). The agreement between the higher-order structure of the small-subunit rRNA and protection against chemical modification is not perfect, however; some bases shown to covary canonically are accessible to chemical modification (45).(ABSTRACT TRUNCATED AT 400 WORDS).
Burton, Rachel A.; Johnson, Philip E.; Beckles, Diane M.; Fincher, Geoffrey B.; Jenner, Helen L.; Naldrett, Mike J.; Denyer, Kay
2002-01-01
In most species, the synthesis of ADP-glucose (Glc) by the enzyme ADP-Glc pyrophosphorylase (AGPase) occurs entirely within the plastids in all tissues so far examined. However, in the endosperm of many, if not all grasses, a second form of AGPase synthesizes ADP-Glc outside the plastid, presumably in the cytosol. In this paper, we show that in the endosperm of wheat (Triticum aestivum), the cytosolic form accounts for most of the AGPase activity. Using a combination of molecular and biochemical approaches to identify the cytosolic and plastidial protein components of wheat endosperm AGPase we show that the large and small subunits of the cytosolic enzyme are encoded by genes previously thought to encode plastidial subunits, and that a gene, Ta.AGP.S.1, which encodes the small subunit of the cytosolic form of AGPase, also gives rise to a second transcript by the use of an alternate first exon. This second transcript encodes an AGPase small subunit with a transit peptide. However, we could not find a plastidial small subunit protein corresponding to this transcript. The protein sequence of the purified plastidial small subunit does not match precisely to that encoded by Ta.AGP.S.1 or to the predicted sequences of any other known gene from wheat or barley (Hordeum vulgare). Instead, the protein sequence is most similar to those of the plastidial small subunits from chickpea (Cicer arietinum) and maize (Zea mays) and rice (Oryza sativa) seeds. These data suggest that the gene encoding the major plastidial small subunit of AGPase in wheat endosperm has yet to be identified. PMID:12428011
Ehresmann, C; Moine, H; Mougel, M; Dondon, J; Grunberg-Manago, M; Ebel, J P; Ehresmann, B
1986-01-01
The initiation factor IF3 is platinated with trans-diamminedichloroplatinum(II) and cross-linked to Escherichia coli 30S ribosomal subunit. Two cross-linking sites are unambiguously identified on the 16S rRNA: a major one, in the region 819-859 in the central domain, and a minor one, in the region 1506-1529 in the 3'-terminal domain. Specific features of these sequences together with their particular location within the 30S subunit lead us to postulate a role for IF3, that conciliates topographical and functional observations made so far. Images PMID:2425339
Molecular mechanics of 30S subunit head rotation.
Mohan, Srividya; Donohue, John Paul; Noller, Harry F
2014-09-16
During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2.
Molecular mechanics of 30S subunit head rotation
Mohan, Srividya; Donohue, John Paul; Noller, Harry F.
2014-01-01
During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2. PMID:25187561
Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome
Polikanov, Yury S.; Osterman, Ilya A.; Szal, Teresa; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Kusochek, Pavel; Bulkley, David; Malanicheva, Irina A.; Efimenko, Tatyana A.; Efremenkova, Olga V.; Konevega, Andrey L.; Shaw, Karen J.; Bogdanov, Alexey A.; Rodnina, Marina V.; Dontsova, Olga A.; Mankin, Alexander S.; Steitz, Thomas A.; Sergiev, Petr V.
2014-01-01
SUMMARY We demonstrate that the antibiotic amicoumacin A (AMI) whose cellular target was unknown, is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G. PMID:25306919
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreitzer, Robert Joseph
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO 2 fixation in photosynthesis. However, it is a slow enzyme, and O 2 competes with CO 2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO 2. If carboxylation could be increased or oxygenation decreased, an increase in net CO 2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants,more » and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO 2/O 2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a possible structural pathway between the small-subunit βA-βB loop and alpha-helix 8 of the large-subunit α/β-barrel active site. Hybrid enzymes were also created comprised of plant small subunits and Chlamydomonas large subunits, and these enzymes have increases in CO 2/O 2 specificity, further indicating that small subunits may be the key for ultimately engineering an improved Rubisco enzyme.« less
Mundus, D; Wollenzien, P
1998-11-01
Site-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions U788/ U789 in Escherichia coli 30S subunits. For these studies, site-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides U788/U789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink sites made by the SSP reagent were identified at positions U561/U562, U920/U921, C866 and U723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides U788/U789 in the activated 30S subunit.
De Wachter, R; Neefs, J M; Goris, A; Van de Peer, Y
1992-01-01
The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing. PMID:1561081
Amino, Hisako; Osanai, Arihiro; Miyadera, Hiroko; Shinjyo, Noriko; Tomitsuka, Eriko; Taka, Hikari; Mineki, Reiko; Murayama, Kimie; Takamiya, Shinzaburo; Aoki, Takashi; Miyoshi, Hideto; Sakamoto, Kimitoshi; Kojima, Somei; Kita, Kiyoshi
2003-05-01
We recently reported that Ascaris suum mitochondria express stage-specific isoforms of complex II: the flavoprotein subunit and the small subunit of cytochrome b (CybS) of the larval complex II differ from those of adult enzyme, while two complex IIs share a common iron-sulfur cluster subunit (Ip). In the present study, A. suum larval complex II was highly purified to characterize the larval cytochrome b subunits in more detail. Peptide mass fingerprinting and N-terminal amino acid sequencing showed that the larval and adult cytochrome b (CybL) proteins are identical. In contrast, cDNA sequences revealed that the small subunit of larval cytochrome b (CybS(L)) is distinct from the adult CybS (CybS(A)). Furthermore, Northern analysis and immunoblotting showed stage-specific expression of CybS(L) and CybS(A) in larval and adult mitochondria, respectively. Enzymatic assays revealed that the ratio of rhodoquinol-fumarate reductase (RQFR) to succinate-ubiquinone reductase (SQR) activities and the K(m) values for quinones are almost identical for the adult and larval complex IIs, but that the fumarate reductase (FRD) activity is higher for the adult form than for the larval form. These results indicate that the adult and larval A. suum complex IIs have different properties than the complex II of the mammalian host and that the larval complex II is able to function as a RQFR. Such RQFR activity of the larval complex II would be essential for rapid adaptation to the dramatic change of oxygen availability during infection of the host.
USDA-ARS?s Scientific Manuscript database
The original description of Henneguya adiposa, a myxozoan parasitizing channel catfish Ictalurus punctatus, is supplemented with new data on spore morphology, including photomicrographs and line drawings, as well as 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence. Elongate, translucent, linear...
Saggu, Miguel; Zebger, Ingo; Ludwig, Marcus; Lenz, Oliver; Friedrich, Bärbel; Hildebrandt, Peter; Lendzian, Friedhelm
2009-06-12
This study provides the first spectroscopic characterization of the membrane-bound oxygen-tolerant [NiFe] hydrogenase (MBH) from Ralstonia eutropha H16 in its natural environment, the cytoplasmic membrane. The H2-converting MBH is composed of a large subunit, harboring the [NiFe] active site, and a small subunit, capable in coordinating one [3Fe4S] and two [4Fe4S] clusters. The hydrogenase dimer is electronically connected to a membrane-integral cytochrome b. EPR and Fourier transform infrared spectroscopy revealed a strong similarity of the MBH active site with known [NiFe] centers from strictly anaerobic hydrogenases. Most redox states characteristic for anaerobic [NiFe] hydrogenases were identified except for one remarkable difference. The formation of the oxygen-inhibited Niu-A state was never observed. Furthermore, EPR data showed the presence of an additional paramagnetic center at high redox potential (+290 mV), which couples magnetically to the [3Fe4S] center and indicates a structural and/or redox modification at or near the proximal [4Fe4S] cluster. Additionally, significant differences regarding the magnetic coupling between the Nia-C state and [4Fe4S] clusters were observed in the reduced form of the MBH. The spectroscopic properties are discussed with regard to the unusual oxygen tolerance of this hydrogenase and in comparison with those of the solubilized, dimeric form of the MBH.
Pilger, Beatrice D; Cui, Can; Coen, Donald M
2004-05-01
The interaction between the catalytic subunit Pol and the processivity subunit UL42 of herpes simplex virus DNA polymerase has been characterized structurally and mutationally and is a potential target for novel antiviral drugs. We developed and validated an assay for small molecules that could disrupt the interaction of UL42 and a Pol-derived peptide and used it to screen approximately 16,000 compounds. Of 37 "hits" identified, four inhibited UL42-stimulated long-chain DNA synthesis by Pol in vitro, of which two exhibited little inhibition of polymerase activity by Pol alone. One of these specifically inhibited the physical interaction of Pol and UL42 and also inhibited viral replication at concentrations below those that caused cytotoxic effects. Thus, a small molecule can inhibit this protein-protein interaction, which provides a starting point for the discovery of new antiviral drugs.
Ahmed, Tofayel; Shi, Jian
2017-01-01
Abstract Chloroplastic translation is mediated by a bacterial-type 70S chloroplast ribosome. During the evolution, chloroplast ribosomes have acquired five plastid-specific ribosomal proteins or PSRPs (cS22, cS23, bTHXc, cL37 and cL38) which have been suggested to play important regulatory roles in translation. However, their exact locations on the chloroplast ribosome remain elusive due to lack of a high-resolution structure, hindering our progress to understand their possible roles. Here we present a cryo-EM structure of the 70S chloroplast ribosome from spinach resolved to 3.4 Å and focus our discussion mainly on the architecture of the 30S small subunit (SSU) which is resolved to 3.7 Å. cS22 localizes at the SSU foot where it seems to compensate for the deletions in 16S rRNA. The mRNA exit site is highly remodeled due to the presence of cS23 suggesting an alternative mode of translation initiation. bTHXc is positioned at the SSU head and appears to stabilize the intersubunit bridge B1b during thermal fluctuations. The translation factor plastid pY binds to the SSU on the intersubunit side and interacts with the conserved nucleotide bases involved in decoding. Most of the intersubunit bridges are conserved compared to the bacteria, except for a new bridge involving uL2c and bS6c. PMID:28582576
Bengtsson, Johan; Eriksson, K Martin; Hartmann, Martin; Wang, Zheng; Shenoy, Belle Damodara; Grelet, Gwen-Aëlle; Abarenkov, Kessy; Petri, Anna; Rosenblad, Magnus Alm; Nilsson, R Henrik
2011-10-01
The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa ( http://microbiology.se/software/metaxa/ ), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.
Disordered organic electronic materials based on non-benzenoid 1,6-methano[10]annulene rings
Tovar, John D; Streifel, Benjamin C; Peart, Patricia A
2014-10-07
Conjugated polymers and small molecules including the nonplanar aromatic 1,6-methano[10]annulene ring structure along with aromatic subunits, such as diketopyrrolopyrrole, and 2,1,3-benzothiadiazole, substituted with alkyl chains in a "Tail In," "Tail Out," or "No Tail" regiochemistry are disclosed.
Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan
NASA Astrophysics Data System (ADS)
Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka
2004-08-01
In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; Kempf, Michael; Chen, Fei; Satomi, Masataka; Nicholson, Wayne; Kern, Roger
2003-01-01
One of the spore-formers isolated from a spacecraft-assembly facility, belonging to the genus Bacillus, is described on the basis of phenotypic characterization, 16S rDNA sequence analysis and DNA-DNA hybridization studies. It is a Gram-positive, facultatively anaerobic, rod-shaped eubacterium that produces endospores. The spores of this novel bacterial species exhibited resistance to UV, gamma-radiation, H2O2 and desiccation. The 18S rDNA sequence analysis revealed a clear affiliation between this strain and members of the low G+C Firmicutes. High 16S rDNA sequence similarity values were found with members of the genus Bacillus and this was supported by fatty acid profiles. The 16S rDNA sequence similarity between strain FO-92T and Bacillus benzoevorans DSM 5391T was very high. However, molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in this genus, but DNA-DNA hybridization data support the proposal of FO-92T as Bacillus nealsonii sp. nov. (type strain is FO-92T =ATCC BAAM-519T =DSM 15077T).
Role of Small Subunit in Mediating Assembly of Red-type Form I Rubisco
Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C.; Hartl, F. Ulrich; Hayer-Hartl, Manajit
2015-01-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. PMID:25371207
Admir J. Giachini; Kentaro Hosaka; Eduardo Nouhra; Joseph Spatafora; James M. Trappe
2010-01-01
Phylogenetic relationships among Geastrales, Gomphales, Hysterangiales, and Phallales were estimated via combined sequences: nuclear large subunit ribosomal DNA (nuc-25S-rDNA), mitochondrial small subunit ribosomal DNA (mit-12S-rDNA), and mitochondrial atp6 DNA (mit-atp6-DNA). Eighty-one taxa comprising 19 genera and 58 species...
Hirawake, H; Taniwaki, M; Tamura, A; Kojima, S; Kita, K
1997-01-01
Complex II (succinate-ubiquinone oxidoreductase) is an important enzyme complex in both the tricarboxylic acid cycle and the aerobic respiratory chains of mitochondria in eukaryotic cells and prokaryotic organisms. In this study, the amino acid sequences of the large (cybL) and small (cybS) subunits of cytochrome b in human liver complex II were deduced from cDNAs isolated by homology probing with mixed primers for the polymerase chain reaction. The mature cybL and cybS contain 140 and 103 amino acids, respectively, and show little similarity to the amino acid sequences of the subunits from other species in contrast to the highly conserved features of the flavoprotein (Fp) subunit and iron-sulfur protein (Ip) subunit. From hydrophobicity analysis, both cybL and cybS appear to have three transmembrane segments, indicating their role as membrane-anchors for the enzyme complex. Histidine residues, which are possible heme axial ligands in cytochrome b of complex II, were found in the second transmembrane segment of each subunit. The genes for cybL (SDHC) and cybS (SDHD) were mapped to chromosome 1q21 and 11q23, respectively by fluorescent in situ hybridization (FISH).
Gauthier, A; Turmel, M; Lemieux, C
1988-10-01
A major obstacle to our understanding of the mechanisms governing the inheritance, recombination and segregation of chloroplast genes in Chlamydomonas is that the majority of antibiotic resistance mutations that have been used to gain insights into such mechanisms have not been physically localized on the chloroplast genome. We report here the physical mapping of two chloroplast antibiotic resistance mutations: one conferring cross-resistance to erythromycin and spiramycin in Chlamydomonas moewusii (er-nM1) and the other conferring resistance to streptomycin in the interfertile species C. eugametos (sr-2). The er-nM1 mutation results from a C to G transversion at a well-known site of macrolide resistance within the peptidyl transferase loop region of the large subunit rRNA gene. This locus, designated rib-2 in yeast mitochondrial DNA, corresponds to residue C-2611 in the 23 S rRNA of Escherichia coli. The sr-2 locus maps within the small subunit (SSU) rRNA gene at a site that has not been described previously. The mutation results from an A to C transversion at a position equivalent to residue A-523 in the E. coli 16 S rRNA. Although this region of the E. coli SSU rRNA has no binding affinity for streptomycin, it binds to ribosomal protein S4, a protein that has long been associated with the response of bacterial cells to this antibiotic. We propose that the sr-2 mutation indirectly affects the nearest streptomycin binding site through an altered interaction between a ribosomal protein and the SSU rRNA.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV), a highly cell-associated lymphotropic alphaherpesvirus, is the causative agent of a neoplastic disease in domestic chickens, called Marek’s disease (MD). In the unique long region of the MDV genome, open reading frames UL39 and UL40 encode the large and small subunits o...
Nmd3p Is a Crm1p-Dependent Adapter Protein for Nuclear Export of the Large Ribosomal Subunit
Ho, Jennifer Hei-Ngam; Kallstrom, George; Johnson, Arlen W.
2000-01-01
In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway. PMID:11086007
Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go.
García-Nafría, Javier; Nehmé, Rony; Edwards, Patricia C; Tate, Christopher G
2018-06-20
G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins. The structural determinants of coupling of G s to four different GPCRs have been elucidated 1-4 , but the molecular details of how the other G-protein classes couple to GPCRs are unknown. Here we present the cryo-electron microscopy structure of the serotonin 5-HT 1B receptor (5-HT 1B R) bound to the agonist donitriptan and coupled to an engineered G o heterotrimer. In this complex, 5-HT 1B R is in an active state; the intracellular domain of the receptor is in a similar conformation to that observed for the β 2 -adrenoceptor (β 2 AR) 3 or the adenosine A 2A receptor (A 2A R) 1 in complex with G s . In contrast to the complexes with G s , the gap between the receptor and the Gβ-subunit in the G o -5-HT 1B R complex precludes molecular contacts, and the interface between the Gα-subunit of G o and the receptor is considerably smaller. These differences are likely to be caused by the differences in the interactions with the C terminus of the G o α-subunit. The molecular variations between the interfaces of G o and G s in complex with GPCRs may contribute substantially to both the specificity of coupling and the kinetics of signalling.
Role of small subunit in mediating assembly of red-type form I Rubisco.
Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C; Hartl, F Ulrich; Hayer-Hartl, Manajit
2015-01-09
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Topography of Escherichia coli ribosomal proteins. The order of reactivity of thiol groups*
Bakardjieva, Anastasia; Crichton, Robert R.
1974-01-01
1. 30S and 50S ribosomal subunits of Escherichia coli were treated with N-[2,3-14C]-ethylmaleimide and iodo[14C]acetamide. 2. The proteins in the native subunits which reacted with the reagents were S1,‡ S2, S12, S13, S18, S21, L2, L5, L6, L10, L11, L15, L17, L20, L26+28 and L27. 3. Several proteins, such as S1, S12, S14, S18, L2, L6, L10, L11 and either L26 or 28, had thiol groups in an oxidized form and reacted to a greater extent after reduction with β-mercaptoethanol or dithiothreitol. 4. The total number of thiol groups in 30S and 50S subunits was determined as 16–17 and 26–27 respectively. The total number of thiol groups in each ribosomal protein was also determined. 5. The reaction of 30S and 50S subunits with iodoacetamide under several different conditions established the order of reactivity of thiol groups. PMID:4618476
GABAA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors.
Has, Ahmad Tarmizi Che; Chebib, Mary
2018-05-15
GABAA receptors (GABAARs) are members of the Cys-loop ligand-gated ion channel (LGIC) superfamily, which includes nicotinic acetylcholine, glycine, and serotonin (5HT3) receptors [1,2,3,4]. LGICs typically mediate fast synaptic transmission via the movement of ions through channels gated by neurotransmitters, such as acetylcholine for nicotinic receptors and GABA for GABAARs [5]. The term Cys-loop receptors originates from the presence of a conserved disulphide bond (or bridge) which holds together two cysteine amino acids of the loop that forms from the structure of polypeptides in the extracellular domain of the receptor's subunit [6]. GABAARs are pentameric transmembrane protein complexes consisting of five subunits from a variety of polypeptide subunits [7,8]. All of these subunits are pseudo-symmetrically organized in the plane of the membrane, with a Cl--selective channel in the middle of the complex. To date, nineteen GABAAR subunits have been identified and categorized into eight classes, α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3, but their variety is further broadened by the existence of several splice forms for certain subunits (e.g., α6, β2 and γ2) [9,10,11,12]. The subunits within each class have an amino acid sequence homology of 70% or more, whereas those with a sequence homology of 30% or less are grouped into different classes [13,14]. A subunit consists of four transmembrane domains (TM1-TM4), each forming an α-helix; a large extracellular N-terminal domain that incorporates part of the orthosteric agonist/antagonist binding site; a large intracellular loop between the TM3 and TM4; a small intracellular loop between TM1 and TM2; a small extracellular loop between TM2 and TM3; and a C-terminal extracellular domain [15,16]. Each subunit is arranged in such a way as to create principal and complementary interfaces with the other subunits, and in a position such that the TM2 of each subunit forms the wall of the channel pore [17,18,19]. The major subunit combination found in the brain comprises α1, β2 and γ2 subunits with the stoichiometry 2α1:2β2:1γ2 [18,20]. For the GABAA α1β2γ2 receptors, the subunits form a specific arrangement in which α1 and β2 subunits alternate with each other and are connected by a γ2 subunit (Figure A) [16,20,21]. For minor subtypes, different α and β subunits have been detected to co-exist as proven by the existence of GABAARs containing α1α2, α1α3, α1α5, α2α3, α3α5, α4α1, α4α2 and α4α3 in the central nervous system [22,23]. Meanwhile, the same pattern has been detected with β and γ subunits, at least the co-occurrence of β in the same GABAAR as well as γ2 with γ3, indicating that these subunits have the capacity to co-exist with each other [24,25,26]. Since different subunits can actually occur in one receptor, GABAARs are considered to exist in a multi-subunit arrangement, leading to ambiguity in the determination of a receptor's stoichiometry. In this review, we first briefly discuss the different subunit arrangements of α1 and β3 subunits in the binary α1β3 receptors. Then we review the GABAA ε-containing receptors predominantly in terms of the ability of ε subunit to present in different position in the ternary α1β3ε receptors, which introduce distinct populations of receptor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Problem-Based Test: Functional Analysis of Mutant 16S rRNAs
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2010-01-01
Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…
Qin, Huibin; Lang, Huihua; Yang, Hongjiang
2013-09-01
Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.
Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales).
Song, Jie; Cui, Bao-Kai
2017-04-20
The aim of this study was to characterize the molecular relationship, origin and historical biogeography of the species in important brown rot fungal genus Laetiporus from East Asia, Europe, Pan-America, Hawaii and South Africa. We used six genetic markers to estimate a genus-level phylogeny including (1) the internal transcribed spacer (ITS), (2) nuclear large subunit rDNA (nrLSU), (3) nuclear small subunit rDNA (nrSSU), (4) translation elongation factor 1-α (EF-1α), (5) DNA-directed RNA polymerase II subunit 2 (RPB2), and (6) mitochondrial small subunit rDNA (mtSSU). Results of multi-locus phylogenetic analyses show clade support for at least seventeen species-level lineages including two new Laetiporus in China. Molecular dating using BEAST estimated the present crown group diverged approximately 20.16 million years ago (Mya) in the early Miocene. Biogeographic analyses using RASP indicated that Laetiporus most likely originated in temperate zones with East Asia and North America having the highest probability (48%) of being the ancestral area. Four intercontinental dispersal routes and a possible concealed dispersal route were established for the first time.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV) infected cells express a viral ribonucleotide reductase (RR) that is distinguishable from that present in uninfected cells by monoclonal antibody T81. Open reading frames UL39 and UL40 of the MDV genome encode the large (RR1) and small (RR2) subunits of RR enzyme, respe...
Hartman, Amber L; Riddle, Sean; McPhillips, Timothy; Ludäscher, Bertram; Eisen, Jonathan A
2010-06-12
For more than two decades microbiologists have used a highly conserved microbial gene as a phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA sequence analysis has increased correspondingly. We present WATERS, an integrated approach for 16 S rDNA analysis that bundles a suite of publicly available 16 S rDNA analysis software tools into a single software package. The "toolkit" includes sequence alignment, chimera removal, OTU determination, taxonomy assignment, phylogentic tree construction as well as a host of ecological analysis and visualization tools. WATERS employs a flexible, collection-oriented 'workflow' approach using the open-source Kepler system as a platform. By packaging available software tools into a single automated workflow, WATERS simplifies 16 S rDNA analyses, especially for those without specialized bioinformatics, programming expertise. In addition, WATERS, like some of the newer comprehensive rRNA analysis tools, allows researchers to minimize the time dedicated to carrying out tedious informatics steps and to focus their attention instead on the biological interpretation of the results. One advantage of WATERS over other comprehensive tools is that the use of the Kepler workflow system facilitates result interpretation and reproducibility via a data provenance sub-system. Furthermore, new "actors" can be added to the workflow as desired and we see WATERS as an initial seed for a sizeable and growing repository of interoperable, easy-to-combine tools for asking increasingly complex microbial ecology questions.
Vogel, L; Haustein, D
1989-01-01
The Ig subunit structure of murine B lymphocytes was studied by employing different radiolabelling techniques in combination with chemical cross-linking. The main membrane structure of IgM was a half molecule that was disulphide-linked to proteins with MW 30,000, 45,000 and 55,000, respectively. Small amounts of mu 2L2, microL disulphide-linked to a protein with MW 50,000, and free microL were also detected. The main IgD structures were half molecules disulphide-linked to two proteins with MW 14,000 and two proteins with MW 16,000. Furthermore, IgD half molecules disulphide-linked to a protein with MW 16,000 and free half molecules could be demonstrated. Labelling with hydrophobic reagents showed that all Ig molecules and the protein with MW 50,000, linked to microL, penetrated the lipid bilayer, whereas the other IgM- and IgD-linked proteins probably did not. Additional proteins which were associated exclusively with IgM were detected by chemical cross-linking. These findings offer new possibilities for the investigation of the function(s) of antigen receptors on B cells. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:2787780
Bou-Assaf, George M; Chamoun, Jean E; Emmett, Mark R; Fajer, Piotr G; Marshall, Alan G
2010-04-15
Solution-phase hydrogen/deuterium exchange (HDX) monitored by mass spectrometry is an excellent tool to study protein-protein interactions and conformational changes in biological systems, especially when traditional methods such as X-ray crystallography or nuclear magnetic resonance are not feasible. Peak overlap among the dozens of proteolytic fragments (including those from autolysis of the protease) can be severe, due to high protein molecular weight(s) and the broad isotopic distributions due to multiple deuterations of many peptides. In addition, different subunits of a protein complex can yield isomeric proteolytic fragments. Here, we show that depletion of (13)C and/or (15)N for one or more protein subunits of a complex can greatly simplify the mass spectra, increase the signal-to-noise ratio of the depleted fragment ions, and remove ambiguity in assignment of the m/z values to the correct isomeric peptides. Specifically, it becomes possible to monitor the exchange progress for two isobaric fragments originating from two or more different subunits within the complex, without having to resort to tandem mass spectrometry techniques that can lead to deuterium scrambling in the gas phase. Finally, because the isotopic distribution for a small to medium-size peptide is essentially just the monoisotopic species ((12)C(c)(1)H(h)(14)N(n)(16)O(o)(32)S(s)), it is not necessary to deconvolve the natural abundance distribution for each partially deuterated peptide during HDX data reduction.
Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association.
Pulk, Arto; Maiväli, Ulo; Remme, Jaanus
2006-05-01
The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.
Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association
Pulk, Arto; Maiväli, Ülo; Remme, Jaanus
2006-01-01
The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts. PMID:16556933
Diversity of endosymbiotic Nostoc in Gunnera magellanica from Tierra del Fuego, Chile [corrected].
Fernández-Martínez, M A; de Los Ríos, A; Sancho, L G; Pérez-Ortega, S
2013-08-01
Global warming is causing ice retreat in glaciers worldwide, most visibly over the last few decades in some areas of the planet. One of the most affected areas is the region of Tierra del Fuego (southern South America). Vascular plant recolonisation of recently deglaciated areas in this region is initiated by Gunnera magellanica, which forms symbiotic associations with the cyanobacterial genus Nostoc, a trait that likely confers advantages in this colonisation process. This symbiotic association in the genus Gunnera is notable as it represents the only known symbiotic relationship between angiosperms and cyanobacteria. The aim of this work was to study the genetic diversity of the Nostoc symbionts in Gunnera at three different, nested scale levels: specimen, population and region. Three different genomic regions were examined in the study: a fragment of the small subunit ribosomal RNA gene (16S), the RuBisCO large subunit gene coupled with its promoter sequence and a chaperon-like protein (rbcLX) and the ribosomal internal transcribed spacer (ITS) region. The identity of Nostoc as the symbiont was confirmed in all the infected rhizome tissue analysed. Strains isolated in the present study were closely related to strains known to form symbioses with other organisms, such as lichen-forming fungi or bryophytes. We found 12 unique haplotypes in the 16S rRNA (small subunit) region analysis, 19 unique haplotypes in the ITS region analysis and 57 in the RuBisCO proteins region (rbcLX). No genetic variability was found among Nostoc symbionts within a single host plant while Nostoc populations among different host plants within a given sampling site revealed major differences. Noteworthy, interpopulation variation was also shown between recently deglaciated soils and more ancient ones, between eastern and western sites and between northern and southern slopes of Cordillera Darwin. The cell structure of the symbiotic relationship was observed with low-temperature scanning electron microscopy, showing changes in morphology of both cyanobiont cells (differentiate more heterocysts) and plant cells (increased size). Developmental stages of the symbiosis, including cell walls and membranes and EPS matrix states, were also observed.
Nuclear export of the small ribosomal subunit requires the Ran–GTPase cycle and certain nucleoporins
Moy, Terence I.; Silver, Pamela A.
1999-01-01
After their assembly in the nucleolus, ribosomal subunits are exported from the nucleus to the cytoplasm. After export, the 20S rRNA in the small ribosomal subunit is cleaved to yield 18S rRNA and the small 5′ ITS1 fragment. The 5′ ITS1 RNA is normally degraded by the cytoplasmic Xrn1 exonuclease, but in strains lacking XRN1, the 5′ ITS1 fragment accumulates in the cytoplasm. Using the cytoplasmic localization of the 5′ ITS1 fragment as an indicator for the export of the small ribosomal subunit, we have identified genes that are required for ribosome export. Ribosome export is dependent on the Ran–GTPase as mutations in Ran or its regulators caused 5′ ITS1 to accumulate in the nucleoplasm. Mutations in the genes encoding the nucleoporin Nup82 and in the NES exporter Xpo1/Crm1 also caused the nucleoplasmic accumulation of 5′ ITS1. Mutants in a subset of nucleoporins and in the nuclear transport factors Srp1, Kap95, Pse1, Cse1, and Mtr10 accumulate the 5′ ITS1 in the nucleolus and affect ribosome assembly. In contrast, we did not detect nuclear accumulation of 5′ ITS1 in 28 yeast strains that have mutations in other genes affecting nuclear trafficking. PMID:10465789
Liu, Cong; Powell, Kelly A.; Mundt, Kirsten; Wu, LeJung; Carr, Antony M.; Caspari, Thomas
2003-01-01
The signalosome is implicated in regulating cullin-dependent ubiquitin ligases. We find that two signalosome subunits, Csn1 and Csn2, are required to regulate ribonucleotide reductase (RNR) through the degradation of a small protein, Spd1, that acts to anchor the small RNR subunit in the nucleus. Spd1 destruction correlates with the nuclear export of the small RNR subunit, which, in turn, correlates with a requirement for RNR in replication and repair. Spd1 degradation is promoted by two separate CSN-dependent mechanisms. During unperturbed S phase, Spd1 degradation is independent of checkpoint proteins. In irradiated G2 cells, Spd1 degradation requires the DNA damage checkpoint. The signalosome copurifies with Pcu4 (cullin 4). Pcu4, Csn1, and Csn2 promote the degradation of Spd1, identifying a new function for the signalosome as a regulator of Pcu4-containing E3 ubiquitin ligase. PMID:12695334
Humphreys, Jean; Browning, Karen S.; Ravel, Joanne M.
1988-01-01
A kinase has been isolated from wheat (Triticum aestivum) germ that phosphorylates the 220 kilodaltons (kD) subunit of wheat germ initiation factor (eIF) 4F, the 80 kD subunit of eIF-4B (an isozyme form of eIF-4F) and eIF-4G (the functional equivalent to mammalian eIF-4B). The kinase elutes from Sephacryl S-200 slightly in front of ovalbumin. The kinase phosphorylates casein and histone IIA to a small extent, but does not phosphorylate phosvitin. Of the wheat germ initiation factors, elongation factors, and small and large ribosomal subunits, only eIF-4F, eIF-4B, and eIF-4G are phosphorylated to a significant extent. The kinase phosphorylates eIF-4F to the extent of two phosphates per mole of the 220 kD subunit and phosphorylates eIF-4B to the extent of one phosphate per mole of the 80 kD subunit. The 26 kD subunit of eIF-4F and the 28 kD subunit of eIF-4B are not phosphorylated by the kinase. The kinase phosphorylates the 59 kD component of eIF-4G to the extent of 0.25 phosphate per mole of eIF-4G. Phosphorylation of eIF-4F and eIF-4B does not affect their ability to support the binding of mRNA to small ribosomal subunits in vitro. Images Fig. 2 Fig. 3 PMID:16666331
Baumgardt, Kathrin; Gilet, Laetitia; Figaro, Sabine; Condon, Ciarán
2018-06-05
Ribosomal RNAs are processed from primary transcripts containing 16S, 23S and 5S rRNAs in most bacteria. Maturation generally occurs in a two-step process, consisting of a first crude separation of the major species by RNase III during transcription, followed by precise trimming of 5' and 3' extensions on each species upon accurate completion of subunit assembly. The various endo- and exoribonucleases involved in the final processing reactions are strikingly different in Escherichia coli and Bacillus subtilis, the two best studied representatives of Gram-negative and Gram-positive bacteria, respectively. Here, we show that the one exception to this rule is the protein involved in the maturation of the 3' end of 16S rRNA. Cells depleted for the essential B. subtilis YqfG protein, a homologue of E. coli YbeY, specifically accumulate 16S rRNA precursors bearing 3' extensions. Remarkably, the essential nature of YqfG can be suppressed by deleting the ribosomal RNA degrading enzyme RNase R, i.e. a ΔyqfG Δrnr mutant is viable. Our data suggest that 70S ribosomes containing 30S subunits with 3' extensions of 16S rRNA are functional to a degree, but become substrates for degradation by RNase R and are eliminated.
2014-01-01
Background In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four amino acids (Asp, His, Asn, Gln) at each of the 12 ligating positions because these amino acids are alternative coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences. We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1” (H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted for Cys. Results Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit, indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme. Conclusions We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A. macleodii “deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be functional and also suggests a new limiting factor in the production of active enzyme. PMID:24934472
Simonetti, Angelita; Marzi, Stefano; Billas, Isabelle M. L.; Tsai, Albert; Fabbretti, Attilio; Myasnikov, Alexander G.; Roblin, Pierre; Vaiana, Andrea C.; Hazemann, Isabelle; Eiler, Daniel; Steitz, Thomas A.; Puglisi, Joseph D.; Gualerzi, Claudio O.; Klaholz, Bruno P.
2013-01-01
Translation initiation factor 2 (IF2) promotes 30S initiation complex (IC) formation and 50S subunit joining, which produces the 70S IC. The architecture of full-length IF2, determined by small angle X-ray diffraction and cryo electron microscopy, reveals a more extended conformation of IF2 in solution and on the ribosome than in the crystal. The N-terminal domain is only partially visible in the 30S IC, but in the 70S IC, it stabilizes interactions between IF2 and the L7/L12 stalk of the 50S, and on its deletion, proper N-formyl-methionyl(fMet)-tRNAfMet positioning and efficient transpeptidation are affected. Accordingly, fast kinetics and single-molecule fluorescence data indicate that the N terminus promotes 70S IC formation by stabilizing the productive sampling of the 50S subunit during 30S IC joining. Together, our data highlight the dynamics of IF2-dependent ribosomal subunit joining and the role played by the N terminus of IF2 in this process. PMID:24029017
Pratte, Dagmar; Singh, Ujjwala; Murat, Guillaume; Kressler, Dieter
2013-01-01
Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these ’Mak5 cluster’ factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation. PMID:24312670
Subunit association of gamma-glutamyltranspeptidase of Escherichia coli K-12.
Hashimoto, W; Suzuki, H; Nohara, S; Tachi, H; Yamamoto, K; Kumagai, H
1995-12-01
gamma-Glutamyltranspeptidase [EC 2.3.2.2] of Escherichia coli K-12 consists of one large subunit and one small subunit, which can be separated from each other by high-performance liquid chromatography. Using ion spray mass spectrometry, the masses of the large and the small subunit were determined to be 39,207 and 20,015, respectively. The large subunit exhibited no gamma-glutamyltranspeptidase activity and the small subunit had little enzymatic activity, but a mixture of the two subunits showed partial recovery of the enzymatic activity. The results of native-polyacrylamide gel electrophoresis suggested that they could partially recombine, and that the recombined dimer exhibited enzymatic activity. The gene of gamma-glutamyltranspeptidase encoded a signal peptide, and the large and small subunits in a single open reading frame in that order. Two kinds of plasmid were constructed encoding the signal peptide and either the large or the small subunit. A gamma-glutamyltranspeptidase-less mutant of E. coli K-12 was transformed with each plasmid or with both of them. The strain harboring the plasmid encoding each subunit produced a small amount of the corresponding subunit protein in the periplasmic space but exhibited no enzymatic activity. The strain transformed with both plasmids together exhibited the enzymatic activity, but its specific activity was approximately 3% of that of a strain harboring a plasmid encoding the intact structural gene. These results indicate that a portion of the separated large and small subunits can be reconstituted in vitro and exhibit the enzymatic activity, and that the expressed large and small subunits independently are able to associate in vivo and be folded into an active structure, though the specific activity of the associated subunits was much lower than that of native enzyme. This suggests that the synthesis of gamma-glutamyltranspeptidase in a single precursor polypeptide and subsequent processing are more effective to construct the intact structure of gamma-glutamyltranspeptidase than the association of the separated large and small subunits.
Ochs, Kerstin; Rust, René C.; Niepmann, Michael
1999-01-01
Most eukaryotic initiation factors (eIFs) are required for internal translation initiation at the internal ribosome entry site (IRES) of picornaviruses. eIF4B is incorporated into ribosomal 48S initiation complexes with the IRES RNA of foot-and-mouth disease virus (FMDV). In contrast to the weak interaction of eIF4B with capped cellular mRNAs and its release upon entry of the ribosomal 60S subunit, eIF4B remains tightly associated with the FMDV IRES during formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. The interaction of eIF4B with the IRES in 48S and 80S complexes is independent of the location of the initiator AUG and thus independent of the mechanism by which the small ribosomal subunit is placed at the actual start codon, either by direct internal ribosomal entry or by scanning. eIF4B does not greatly rearrange its binding to the IRES upon entry of the ribosomal subunits, and the interaction of eIF4B with the IRES is independent of the polypyrimidine tract-binding protein, which enhances FMDV translation. PMID:10438840
Aquilina, J Andrew; Shrestha, Sudichhya; Morris, Amie M; Ecroyd, Heath
2013-05-10
αB-crystallin and HSP27 are mammalian intracellular small heat shock proteins. These proteins exchange subunits in a rapid and temperature-dependent manner. This facile subunit exchange suggests that differential expression could be used by the cell to regulate the response to stress. A robust technique defines parameters for the dynamic interaction between the major mammalian small heat shock proteins. Small heat shock proteins (sHSPs) exist as large polydisperse species in which there is constant dynamic subunit exchange between oligomeric and dissociated forms. Their primary role in vivo is to bind destabilized proteins and prevent their misfolding and aggregation. αB-Crystallin (αB) and HSP27 are the two most widely distributed and most studied sHSPs in the human body. They are coexpressed in different tissues, where they are known to associate with each other to form hetero-oligomeric complexes. In this study, we aimed to determine how these two sHSPs interact to form hetero-oligomers in vitro and whether, by doing so, there is an increase in their chaperone activity and stability compared with their homo-oligomeric forms. Our results demonstrate that HSP27 and αB formed polydisperse hetero-oligomers in vitro, which had an average molecular mass that was intermediate of each of the homo-oligomers and which were more thermostable than αB, but less so than HSP27. The hetero-oligomer chaperone function was found to be equivalent to that of αB, with each being significantly better in preventing the amorphous aggregation of α-lactalbumin and the amyloid fibril formation of α-synuclein in comparison with HSP27. Using mass spectrometry to monitor subunit exchange over time, we found that HSP27 and αB exchanged subunits 23% faster than the reported rate for HSP27 and αA and almost twice that for αA and αB. This represents the first quantitative evaluation of αB/HSP27 subunit exchange, and the results are discussed in the broader context of regulation of function and cellular proteostasis.
Lee, Byung-Hoo; Eskandari, Razieh; Jones, Kyra; Reddy, Kongara Ravinder; Quezada-Calvillo, Roberto; Nichols, Buford L.; Rose, David R.; Hamaker, Bruce R.; Pinto, B. Mario
2012-01-01
Starch digestion involves the breakdown by α-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-border epithelial cells, and each contains a catalytic N- and C-terminal subunit. All four subunits have α-1,4-exohydrolytic glucosidase activity, and the SI N-terminal subunit has an additional exo-debranching activity on the α-1,6-linkage. Inhibition of α-amylase and/or α-glucosidases is a strategy for treatment of type 2 diabetes. We illustrate here the concept of “toggling”: differential inhibition of subunits to examine more refined control of glucogenesis of the α-amylolyzed starch malto-oligosaccharides with the aim of slow glucose delivery. Recombinant MGAM and SI subunits were individually assayed with α-amylolyzed waxy corn starch, consisting mainly of maltose, maltotriose, and branched α-limit dextrins, as substrate in the presence of four different inhibitors: acarbose and three sulfonium ion compounds. The IC50 values show that the four α-glucosidase subunits could be differentially inhibited. The results support the prospect of controlling starch digestion rates to induce slow glucose release through the toggling of activities of the mucosal α-glucosidases by selective enzyme inhibition. This approach could also be used to probe associated metabolic diseases. PMID:22851177
Hirawake, H; Taniwaki, M; Tamura, A; Amino, H; Tomitsuka, E; Kita, K
1999-08-04
We have mapped large (cybL) and small (cybS) subunits of cytochrome b in the succinate-ubiquinone oxidoreductase (complex II) of human mitochondria to chromosome 1q21 and 11q23, respectively (H. Hirawake et al., Cytogenet. Cell Genet. 79 (1997) 132-138). In the present study, the human SDHD gene encoding cybS was cloned and characterized. The gene comprises four exons and three introns extending over 19 kb. Sequence analysis of the 5' promoter region showed several motifs for the binding of transcription factors including nuclear respiratory factors NRF-1 and NRF-2 at positions -137 and -104, respectively. In addition to this gene, six pseudogenes of cybS were isolated and mapped on the chromosome.
Rasoul-Amini, S; Ghasemi, Y; Morowvat, M H; Ghoshoon, M B; Raee, M J; Mosavi-Azam, S B; Montazeri-Najafabady, N; Nouri, F; Parvizi, R; Negintaji, N; Khoubani, S
2010-01-01
A unicellular cyanobacterium, Synechococcus nidulans (Pringsheim) Komárek, was isolated from paddy-fields and applied in the biotransformation experiment of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The obtained products were chromatographically purified followed by their characterization using spectroscopic methods. 11beta,17beta-dihydroxyandrost-4-en-3-one (2), 11beta-hydroxyandrost-4-en-3,17-dione (3), and androst-4-ene-3,17-dione (4) were the main bioproducts in the hydrocortisone bioconversion. The observed bioreaction characteristics were the side chain degradation of the substrate to prepare compounds (2) and (3) following the 11beta-dehydroxylation for accumulation of the compound (4). Time course study showed the accumulation of the product (2) from the second day of the fermentation and compounds (3) and (4) from the third day. All the metabolites reached their maximum concentration in seven days. Cyanobacterial 16S rRNA gene was also amplified by PCR. Sequences were amplified using the universal prokaryotic primers which amplify a approximately 400-bp region of the 16S rRNA gene. PCR products were sequenced to confirm their authenticity as 16S rRNA gene of cyanobacteria. The result of PCR blasted with other sequenced cyanobacteria in NCBI showed 99% identity to the 16S small subunit rRNA of seven Synechococcus species.
Wear, Emma K; Wilbanks, Elizabeth G; Nelson, Craig E; Carlson, Craig A
2018-03-09
Primers targeting the 16S small subunit ribosomal RNA marker gene, used to characterize bacterial and archaeal communities, have recently been re-evaluated for marine planktonic habitats. To investigate whether primer selection affects the ecological interpretation of bacterioplankton populations and community dynamics, amplicon sequencing with four primer sets targeting several hypervariable regions of the 16S rRNA gene was conducted on both mock communities constructed from cloned 16S rRNA genes and a time-series of DNA samples from the temperate coastal Santa Barbara Channel. Ecological interpretations of community structure (delineation of depth and seasonality, correlations with environmental factors) were similar across primer sets, while population dynamics varied. We observed substantial differences in relative abundances of taxa known to be poorly resolved by some primer sets, such as Thaumarchaeota and SAR11, and unexpected taxa including Roseobacter clades. Though the magnitude of relative abundances of common OTUs differed between primer sets, the relative abundances of the OTUs were nonetheless strongly correlated. We do not endorse one primer set but rather enumerate strengths and weaknesses to facilitate selection appropriate to a system or experimental goal. While 16S rRNA gene primer bias suggests caution in assessing quantitative population dynamics, community dynamics appear robust across studies using different primers. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Hirota, Ryuichi; Kato, Junichi; Morita, Hiromu; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao
2002-03-01
The cbbL and cbbS genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large and small subunits in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 were cloned and sequenced. The deduced gene products, CbbL and CbbS, had 93 and 87% identity with Thiobacillus intermedius CbbL and Nitrobacter winogradskyi CbbS, respectively. Expression of cbbL and cbbS in Escherichia coli led to the detection of RubisCO activity in the presence of 0.1 mM isopropyl-beta-D-thiogalactopyranoside (IPTG). To our knowledge, this is the first paper to report the genes involved in the carbon fixation reaction in chemolithotrophic ammonia-oxidizing bacteria.
Sehrish, Tina; Symonds, V. Vaughan; Soltis, Douglas E.; Soltis, Pamela S.; Tate, Jennifer A.
2015-01-01
Allopolyploids, formed by hybridization and chromosome doubling, face the immediate challenge of having duplicated nuclear genomes that interact with the haploid and maternally inherited cytoplasmic (plastid and mitochondrial) genomes. Most of our knowledge of the genomic consequences of allopolyploidy has focused on the fate of the duplicated nuclear genes without regard to their potential interactions with cytoplasmic genomes. As a step toward understanding the fates of nuclear-encoded subunits that are plastid-targeted, here we examine the retention and expression of the gene encoding the small subunit of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco; rbcS) in multiple populations of allotetraploid Tragopogon miscellus (Asteraceae). These polyploids formed recently (~80 years ago) and repeatedly from T. dubius and T. pratensis in the northwestern United States. Examination of 79 T. miscellus individuals from 10 natural populations, as well as 25 synthetic allotetraploids, including reciprocally formed plants, revealed a low percentage of naturally occurring individuals that show a bias in either gene (homeolog) loss (12%) or expression (16%), usually toward maintaining the maternal nuclear copy of rbcS. For individuals showing loss, seven retained the maternally derived rbcS homeolog only, while three had the paternally derived copy. All of the synthetic polyploid individuals examined (S0 and S1 generations) retained and expressed both parental homeologs. These results demonstrate that cytonuclear coordination does not happen immediately upon polyploid formation in Tragopogon miscellus. PMID:26646761
Widespread and Persistent Populations of a Major New Marine Actinomycete Taxon in Ocean Sediments
Mincer, Tracy J.; Jensen, Paul R.; Kauffman, Christopher A.; Fenical, William
2002-01-01
A major taxon of obligate marine bacteria within the order Actinomycetales has been discovered from ocean sediments. Populations of these bacteria (designated MAR 1) are persistent and widespread, spanning at least three distinct ocean systems. In this study, 212 actinomycete isolates possessing MAR 1 morphologies were examined and all but two displayed an obligate requirement of seawater for growth. Forty-five of these isolates, representing all observed seawater-requiring morphotypes, were partially sequenced and found to share characteristic small-subunit rRNA signature nucleotides between positions 207 and 468 (Escherichia coli numbering). Phylogenetic characterization of seven representative isolates based on almost complete sequences of genes encoding 16S rRNA (16S ribosomal DNA) yielded a monophyletic clade within the family Micromonosporaceae and suggests novelty at the genus level. This is the first evidence for the existence of widespread populations of obligate marine actinomycetes. Organic extracts from cultured members of this new group exhibit remarkable biological activity, suggesting that they represent a prolific resource for biotechnological applications. PMID:12324350
Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni
2014-01-01
Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623
Fernández-Pevida, Antonio; Martín-Villanueva, Sara; Murat, Guillaume; Lacombe, Thierry; Kressler, Dieter; de la Cruz, Jesús
2016-09-19
The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João M; Belizário, José E
2017-12-01
Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD 198 ↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (k cat /K M ) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.
Fernández-Pevida, Antonio; Martín-Villanueva, Sara; Murat, Guillaume; Lacombe, Thierry; Kressler, Dieter; de la Cruz, Jesús
2016-01-01
The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D. PMID:27422873
Teixeira, M M; Campaner, M; Camargo, E P
1994-01-01
To improve the diagnosis of Phytomonas infections in plants, we developed a polymerase chain reaction (PCR) assay using synthetic oligonucleotides complementary to conserved sequences of the 18S small subunit ribosomal (SSU) gene. From 10 ng upward of DNA of cultures of Phytomonas isolated from plants, fruits, and insects, PCR amplified an 800-bp DNA band that, after restriction analysis and probe hybridization, proved to be of 18S rDNA Phytomonas origin. PCR was also done with sap samples of tomatoes experimentally infected with Phytomonas, yielding amplified 800-bp ribosomal DNA bands before any flagellate could be detected by microscopic examination of the fruit sap.
Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum.
Nakabachi, Atsushi; Ishikawa, Hajime; Kudo, Toshiaki
2003-03-01
Aposymbiotic pea aphids, which were deprived of their intracellular symbiotic bacterium, Buchnera, exhibit growth retardation and no fecundity. High performance liquid chromatographic (HPLC) analysis revealed that these aposymbiotic aphids, when reared on broad bean plants, accumulated a large amount of histamine. To assess the possibility of extraordinary proliferation of microorganisms other than Buchnera, we enumerated eubacteria and fungi in aphids using the real-time quantitative PCR method that targets genes encoding small-subunit rRNAs. The result showed that these microorganisms were extremely abundant in the aposymbiotic aphids reared on plants. Microbial communities in aposymbiotic aphids were further profiled by phylogenetic analysis of small-subunit rDNAs. Of 172 nonchimeric sequences of fungal 18S rDNAs, 138 (80.2%) belonged to the phylum Ascomycota. Among them, 21 clustered within a monophyletic group consisting of insect-pathogenic fungi and yeast-like symbionts of homopteran insects. Thirty-one (18.0%), two (1.2%), and one (0.6%) clones were clustered within the Basidiomycota, Zygomycota, and Oomycota, respectively. Of 167 nonchimeric sequences of eubacterial 16S rDNAs, 84 (50.3%) belonged to the gamma-subdivision of Proteobacteria to which most primary endosymbionts of insects and prolific histamine producers belong. Forty (24.0%), 25 (15.0%), 10 (6.0%), and five (3.0%) clones were clustered within alpha-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Actinobacteria, and beta-Proteobacteria, respectively. Three had no phylogenetic association with known taxonomic divisions. None of the sequences studied in this study coincided exactly with those deposited in GenBank.
René, Olivier; Alix, Jean-Hervé
2011-01-01
The late stages of 30S and 50S ribosomal subunits biogenesis have been studied in a wild-type (wt) strain of Escherichia coli (MC4100) subjected to a severe heat stress (45–46°C). The 32S and 45S ribosomal particles (precursors to 50S subunits) and 21S ribosomal particles (precursors to 30S subunits) accumulate under these conditions. They are authentic precursors, not degraded or dead-end particles. The 21S particles are shown, by way of a modified 3′5′ RACE procedure, to contain 16S rRNA unprocessed, or processed at its 5′ end, and not at the 3′ end. This implies that maturation of 16S rRNA is ordered and starts at its 5′-terminus, and that the 3′-terminus is trimmed at a later step. This observation is not limited to heat stress conditions, but it also can be verified in bacteria growing at a normal temperature (30°C), supporting the idea that this is the general pathway. Assembly defects at very high temperature are partially compensated by plasmid-driven overexpression of the DnaK/DnaJ chaperones. The ribosome assembly pattern in wt bacteria under a severe heat stress is therefore reminiscent of that observed at lower temperatures in E. coli mutants lacking the chaperones DnaK or DnaJ. PMID:21059683
Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41
Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo
2015-01-01
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044
Dean, Caroline; Elzen, Peter van den; Tamaki, Stanley; Dunsmuir, Pamela; Bedbrook, John
1985-01-01
Of the eight nuclear genes in the plant multi-gene family which encodes the small subunit (rbcS) of Petunia (Mitchell) ribulose bisphosphate carboxylase, one rbcS gene accounts for 47% of the total rbcS gene expression in petunia leaf tissue. Expression of each of five other rbcS genes is detected at levels between 2 and 23% of the total rbcS expression in leaf tissue, while expression of the remaining two rbcS genes is not detected. There is considerable variation (500-fold) in the levels of total rbcS mRNA in six organs of petunia (leaves, sepals, petals, stems, roots and stigmas/anthers). One gene, SSU301, showed the highest levels of steady-state mRNA in each of the organs examined. We discuss the differences in the steady-state mRNA levels of the individual rbcS genes in relation to their gene structure, nucleotide sequence and genomic linkage. ImagesFig. 2.Fig. 3. PMID:16453647
Wu, Yixuan; Albrecht, Todd R; Baillat, David; Wagner, Eric J; Tong, Liang
2017-04-25
The metazoan Integrator complex (INT) has important functions in the 3'-end processing of noncoding RNAs, including the uridine-rich small nuclear RNA (UsnRNA) and enhancer RNA (eRNA), and in the transcription of coding genes by RNA polymerase II. The INT contains at least 14 subunits, but its molecular mechanism of action is poorly understood, because currently there is little structural information about its subunits. The endonuclease activity of INT is mediated by its subunit 11 (IntS11), which belongs to the metallo-β-lactamase superfamily and is a paralog of CPSF-73, the endonuclease for pre-mRNA 3'-end processing. IntS11 forms a stable complex with Integrator complex subunit 9 (IntS9) through their C-terminal domains (CTDs). Here, we report the crystal structure of the IntS9-IntS11 CTD complex at 2.1-Å resolution and detailed, structure-based biochemical and functional studies. The complex is composed of a continuous nine-stranded β-sheet with four strands from IntS9 and five from IntS11. Highly conserved residues are located in the extensive interface between the two CTDs. Yeast two-hybrid assays and coimmunoprecipitation experiments confirm the structural observations on the complex. Functional studies demonstrate that the IntS9-IntS11 interaction is crucial for the role of INT in snRNA 3'-end processing.
Crystal Structure of an Activated Variant of Small Heat Shock Protein Hsp16.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mchaourab, Hassane S.; Lin, Yi-Lun; Spiller, Benjamin W.
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the {alpha}-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved {alpha}-crystallin domain nor does it disturb themore » interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the {alpha}-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent {beta}-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.« less
Crystal structure of an activated variant of small heat shock protein Hsp16.5.
McHaourab, Hassane S; Lin, Yi-Lun; Spiller, Benjamin W
2012-06-26
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.
Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji
2016-12-01
Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddaramappa, Shivakumara; Delano, Susana; Green, Lance D.
2012-01-01
Dehalogenimonas lykanthroporepellens is the type species of the genus Dehalogenimonas, which belongs to a deeply branching lineage within the phylum Chloroflexi. This strictly anaerobic, mesophilic, non spore forming, Gram negative staining bacterium was first isolated from chlorinated solvent contaminated groundwater at a Superfund site located near Baton Rouge, Louisiana, USA. D. lykanthroporepellens was of interest for genome sequencing for two reasons: (a) its unusual ability to couple growth with reductive dechlorination of environmentally important polychlorinated aliphatic alkanes and (b) its phylogenetic position distant from previously sequenced bacteria. The 1,686,510 bp circular chromosome of strain BL-DC-9{sup T} contains 1,720 predicted proteinmore » coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small unit rRNA (16S) locus.« less
Mars, Ruben A T; Mendonça, Karoline; Denham, Emma L; van Dijl, Jan Maarten
2015-10-01
One of the best-characterized general stress responses in bacteria is the σB-mediated stress response of the Gram-positive soil bacterium Bacillus subtilis. The σB regulon contains approximately 200 protein-encoding genes and 136 putative regulatory RNAs. One of these σB-dependent RNAs, named S1136-S1134, was recently mapped as being transcribed from the S1136 promoter on the opposite strand of the essential rpsD gene, which encodes the ribosomal primary-binding protein S4. Accordingly, S1136-S1134 transcription results in an rpsD-overlapping antisense RNA (asRNA). Upon exposure of B. subtilis to ethanol, the S1136 promoter was found to be induced, while rpsD transcription was downregulated. By quantitative PCR, we show that the activation of transcription from the S1136 promoter is directly responsible for the downregulation of rpsD upon ethanol exposure. We also show that this downregulation of rpsD leads to a reduced level of the small (30S) ribosomal subunit upon ethanol stress. The activation of the S1136 promoter thus represents the first example of antisense transcription-mediated regulation in the general stress response of B. subtilis and implicates the reduction of ribosomal protein abundance as a new aspect in the σB-dependent stress response. We propose that the observed reduction in the level of the small ribosomal subunit, which contains the ribosome-decoding center, may protect B. subtilis cells against misreading and spurious translation of possibly toxic aberrant peptides under conditions of ethanol stress. Copyright © 2015 Elsevier B.V. All rights reserved.
Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus
Huynh, Nhung T.; Hesketh, Emma L.; Saxena, Pooja; Meshcheriakova, Yulia; Ku, You-Chan; Hoang, Linh T.; Johnson, John E.; Ranson, Neil A.; Lomonossoff, George P.; Reddy, Vijay S.
2016-01-01
SUMMARY Empty virus-like particles (eVLPs) of Cowpea mosaic virus (CPMV) are currently being utilized as reagents in various biomedical and nanotechnology applications. Here, we report the crystal structure of CPMV eVLPs determined using X-ray crystallography at 2.3 Å resolution and compare it with previously reported cryo-electron microscopy (cryo-EM) of eVLPs and virion crystal structures. Although the X-ray and cryo-EM structures of eVLPs are mostly similar, there exist significant differences at the C terminus of the small (S) subunit. The intact C terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, we report the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions that identify the C termini of S subunits undergo proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed. PMID:27021160
Conserved small mRNA with an unique, extended Shine-Dalgarno sequence
Hahn, Julia; Migur, Anzhela; von Boeselager, Raphael Freiherr; Kubatova, Nina; Kubareva, Elena; Schwalbe, Harald
2017-01-01
ABSTRACT Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3′-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level. PMID:27834614
Guzmán-Cornejo, Carmen; Paredes-León, Ricardo; Labruna, Marcelo B; Nava, Santiago; Venzal, José M
2012-10-01
Nothoaspis reddelli Keirans and Clifford, 1975 , was described from 3 males collected in Grutas de Xtacumbilxunaán, Campeche, Mexico, although females have remained undescribed for 37 yr. Recently adult females of this species were collected from Cueva de Villa Luz ( = Cueva de las Sardinas, Cueva del Azufre), in Tapijulapa, Tabasco, Mexico. Here we present a morphological description of the female stage, together with 16S rDNA sequences that confirm the conspecificity of our female, male, and nymphal specimens. The female integument of the anterior portion of the dorsal surface is smooth (nothoaspis), appearing to consist of 3 large "subunits," 1 anterior and 2 posterior, each with a small sublateral "subunit" on either side. The remaining dorsal covered integument is a cell-like configuration. The hood is large and bluntly rounded, and visible dorsally. The spiracular plate is oval. It possesses 1 pair of posthypostomal setae. The palpal trochanter has 1 pair of setae and a 5/5 hypostome decreasing to 4/4 at the apex. There is a single central pore at the base of the hypostome.
Structural model of the 50S subunit of E.Coli ribosomes from solution scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svergun, D.I.; Koch, M.H.J.; Pedersen, J.S.
1994-12-31
The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from themore » protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA.« less
Prevotella jejuni sp. nov., isolated from the small intestine of a child with coeliac disease.
Hedberg, Maria E; Israelsson, Anne; Moore, Edward R B; Svensson-Stadler, Liselott; Wai, Sun Nyunt; Pietz, Grzegorz; Sandström, Olof; Hernell, Olle; Hammarström, Marie-Louise; Hammarström, Sten
2013-11-01
Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3 : 27, CD3 : 28(T), CD3 : 33, CD3 : 32 and CD3 : 34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3 : 27, CD3 : 28(T) and CD3 : 33, between CD3 : 32 and Prevotella histicola CCUG 55407(T), and between CD3 : 34 and Prevotella melaninogenica CCUG 4944B(T). Strains CD3 : 27, CD3 : 28(T) and CD3 : 33 were clearly different from all recognized species within the genus Prevotella and related most closely to but distinct from P. melaninogenica. Based on 16S rRNA, RNA polymerase β-subunit (rpoB) and 60 kDa chaperonin protein subunit (cpn60) gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3 : 27, CD3 : 28(T) and CD3 : 33 are considered to represent a novel species within the genus Prevotella, for which the name Prevotella jejuni sp. nov. is proposed. Strain CD3 : 28(T) ( = CCUG 60371(T) = DSM 26989(T)) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C.
Prevotella jejuni sp. nov., isolated from the small intestine of a child with coeliac disease
Israelsson, Anne; Moore, Edward R. B.; Svensson-Stadler, Liselott; Wai, Sun Nyunt; Pietz, Grzegorz; Sandström, Olof; Hernell, Olle; Hammarström, Marie-Louise
2013-01-01
Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3 : 27, CD3 : 28T, CD3 : 33, CD3 : 32 and CD3 : 34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3 : 27, CD3 : 28T and CD3 : 33, between CD3 : 32 and Prevotella histicola CCUG 55407T, and between CD3 : 34 and Prevotella melaninogenica CCUG 4944BT. Strains CD3 : 27, CD3 : 28T and CD3 : 33 were clearly different from all recognized species within the genus Prevotella and related most closely to but distinct from P. melaninogenica. Based on 16S rRNA, RNA polymerase β-subunit (rpoB) and 60 kDa chaperonin protein subunit (cpn60) gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3 : 27, CD3 : 28T and CD3 : 33 are considered to represent a novel species within the genus Prevotella, for which the name Prevotella jejuni sp. nov. is proposed. Strain CD3 : 28T ( = CCUG 60371T = DSM 26989T) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C. PMID:23793857
Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings.
Schabereiter-Gurtner, C; Piñar, G; Vybiral, D; Lubitz, W; Rölleke, S
2001-11-01
A molecular approach was chosen to analyse the correlation between bacterial colonisation and rosy discolouration of masonry and lime wall paintings of two historically important buildings in Austria and Germany. The applied molecular method included PCR amplification of genes encoding the small subunit rRNA of bacteria (16S rDNA), genetic fingerprinting by denaturing gradient gel electrophoresis (DGGE), construction of 16S rDNA clone libraries, and comparative phylogenetic sequence analyses. The bacterial community of one red-pigmented biofilm sampled in Herberstein (Austria) contained bacteria phylogenetically related to the genera Saccharopolyspora, Nocardioides, Pseudonocardia, Rubrobacter, and to a Kineococcus-like bacterium. The bacterial community of the second red-pigmented biofilm sampled in Herberstein contained bacteria related to Arthrobacter, Comamonas, and to Rubrobacter. Rubrobacter-related 16S rDNA sequences were the most abundant. In the red-pigmented biofilm sampled in Burggen (Germany), only Rubrobacter-related bacteria were identified. No Rubrobacter-related bacteria were detected in non-rosy biofilms. The majority of sequences (70%) obtained from the bacterial communities of the three investigated rosy biofilms were related to sequences of the genus Rubrobacter (red-pigmented bacteria), demonstrating a correlation between Rubrobacter-related bacteria and the phenomenon of rosy discolouration of masonry and lime wall paintings.
Leavitt, Justin C.; Gilcrease, Eddie B.; Wilson, Kassandra; Casjens, Sherwood R.
2013-01-01
Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2 kbp region. Our in vivo studies that show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful. PMID:23562538
Boopathi, Thangavelu; Faria, Daphne Georgina; Cheon, Ju-Yong; Youn, Seok Hyun; Ki, Jang-Seu
2015-01-01
The small and large nuclear subunit molecular phylogeny of the genus Prorocentrum demonstrated that the species are dichotomized into two clades. These two clades were significantly different (one-factor ANOVA, p < 0.01) with patterns compatible for both small and large subunit Bayesian phylogenetic trees, and for a larger taxon sampled dinoflagellate phylogeny. Evaluation of the molecular divergence levels showed that intraspecies genetic variations were significantly low (t-test, p < 0.05), than those for interspecies variations (> 2.9% and > 26.8% dissimilarity in the small and large subunit [D1/D2], respectively). Based on the calculated molecular divergence, the genus comprises two genetically distinct groups that should be considered as two separate genera, thereby setting the pace for major systematic changes for the genus Prorocentrum sensu Dodge. Moreover, the information presented in this study would be useful for improving species identification, detection of novel clades from environmental samples. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.
Restricted Protein Phosphatase 2A Targeting by Merkel Cell Polyomavirus Small T Antigen
Kwun, Hyun Jin; Shuda, Masahiro; Camacho, Carlos J.; Gamper, Armin M.; Thant, Mamie; Chang, Yuan
2015-01-01
ABSTRACT Merkel cell polyomavirus (MCV) is a newly discovered human cancer virus encoding a small T (sT) oncoprotein. We performed MCV sT FLAG-affinity purification followed by mass spectroscopy (MS) analysis, which identified several protein phosphatases (PP), including PP2A A and C subunits and PP4C, as potential cellular interacting proteins. PP2A targeting is critical for the transforming properties of nonhuman polyomaviruses, such as simian virus 40 (SV40), but is not required for MCV sT-induced rodent cell transformation. We compared similarities and differences in PP2A binding between MCV and SV40 sT. While SV40 sT coimmunopurified with subunits PP2A Aα and PP2A C, MCV sT coimmunopurified with PP2A Aα, PP2A Aβ, and PP2A C. Scanning alanine mutagenesis at 29 sites across the MCV sT protein revealed that PP2A-binding domains lie on the opposite molecular surface from a previously described large T stabilization domain (LSD) loop that binds E3 ligases, such as Fbw7. MCV sT-PP2A interactions can be functionally distinguished by mutagenesis from MCV sT LSD-dependent 4E-BP1 hyperphosphorylation and viral DNA replication enhancement. MCV sT has a restricted range for PP2A B subunit substitution, inhibiting only the assembly of B56α into the phosphatase holoenzyme. In contrast, SV40 sT inhibits the assembly of B55α, B56α and B56ε into PP2A. We conclude that MCV sT is required for Merkel cell carcinoma growth, but its in vitro transforming activity depends on LSD interactions rather than PP2A targeting. IMPORTANCE Merkel cell polyomavirus is a newly discovered human cancer virus that promotes cancer, in part, through expression of its small T (sT) oncoprotein. Animal polyomavirus sT oncoproteins have been found to cause experimental tumors by blocking the activities of a group of phosphatases called protein phosphatase 2A (PP2A). Our structural analysis reveals that MCV sT also displaces the B subunit of PP2A to inhibit PP2A activity. MCV sT, however, only displaces a restricted subset of PP2A B subunits, which is insufficient to cause tumor cell formation in vitro. MCV sT instead transforms tumor cells through another region called the large T stabilization domain. The PP2A targeting and transforming activities lie on opposite faces of the MCV sT molecule and can be genetically separated from each other. PMID:25631078
Functional conservation of RNA polymerase II in fission and budding yeasts.
Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P
2000-02-04
The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.
Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome.
Li, Xiaojun; Sun, Qingan; Jiang, Cai; Yang, Kailu; Hung, Li-Wei; Zhang, Junjie; Sacchettini, James C
2015-10-06
The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schwarte, Sandra; Tiedemann, Ralph
2011-06-01
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39), the most abundant protein in nature, catalyzes the assimilation of CO(2) (worldwide about 10(11) t each year) by carboxylation of ribulose-1,5-bisphosphate. It is a hexadecamer consisting of eight large and eight small subunits. Although the Rubisco large subunit (rbcL) is encoded by a single gene on the multicopy chloroplast genome, the Rubisco small subunits (rbcS) are encoded by a family of nuclear genes. In Arabidopsis thaliana, the rbcS gene family comprises four members, that is, rbcS-1a, rbcS-1b, rbcS-2b, and rbcS-3b. We sequenced all Rubisco genes in 26 worldwide distributed A. thaliana accessions. In three of these accessions, we detected a gene duplication/loss event, where rbcS-1b was lost and substituted by a duplicate of rbcS-2b (called rbcS-2b*). By screening 74 additional accessions using a specific polymerase chain reaction assay, we detected five additional accessions with this duplication/loss event. In summary, we found the gene duplication/loss in 8 of 100 A. thaliana accessions, namely, Bch, Bu, Bur, Cvi, Fei, Lm, Sha, and Sorbo. We sequenced an about 1-kb promoter region for all Rubisco genes as well. This analysis revealed that the gene duplication/loss event was associated with promoter alterations (two insertions of 450 and 850 bp, one deletion of 730 bp) in rbcS-2b and a promoter deletion (2.3 kb) in rbcS-2b* in all eight affected accessions. The substitution of rbcS-1b by a duplicate of rbcS-2b (i.e., rbcS-2b*) might be caused by gene conversion. All four Rubisco genes evolve under purifying selection, as expected for central genes of the highly conserved photosystem of green plants. We inferred a single positive selected site, a tyrosine to aspartic acid substitution at position 72 in rbcS-1b. Exactly the same substitution compromises carboxylase activity in the cyanobacterium Anacystis nidulans. In A. thaliana, this substitution is associated with an inferred recombination. Functional implications of the substitution remain to be evaluated.
Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation.
Mulet, M; Gomila, M; Ramírez, A; Cardew, S; Moore, E R B; Lalucat, J; García-Valdés, E
2017-02-01
Fifty-two Pseudomonas strains that were difficult to identify at the species level in the phenotypic routine characterizations employed by clinical microbiology laboratories were selected for genotypic-based analysis. Species level identifications were done initially by partial sequencing of the DNA dependent RNA polymerase sub-unit D gene (rpoD). Two other gene sequences, for the small sub-unit ribosonal RNA (16S rRNA) and for DNA gyrase sub-unit B (gyrB) were added in a multilocus sequence analysis (MLSA) study to confirm the species identifications. These sequences were analyzed with a collection of reference sequences from the type strains of 161 Pseudomonas species within an in-house multi-locus sequence analysis database. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of these strains complemented the DNA sequenced-based phylogenetic analyses and were observed to be in accordance with the results of the sequence data. Twenty-three out of 52 strains were assigned to 12 recognized species not commonly detected in clinical specimens and 29 (56 %) were considered representatives of at least ten putative new species. Most strains were distributed within the P. fluorescens and P. aeruginosa lineages. The value of rpoD sequences in species-level identifications for Pseudomonas is emphasized. The correct species identifications of clinical strains is essential for establishing the intrinsic antibiotic resistance patterns and improved treatment plans.
Peccia, Jordan; Marchand, Eric A.; Silverstein, Joann; Hernandez, Mark
2000-01-01
Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using 32P radiolabels, probe specificity was characterized by hybridization dissociation temperature (Td) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined Tds. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris. PMID:10877807
Mansfield, K. G.; Carville, A.; Shvetz, D.; MacKey, J.; Tzipori, S.; Lackner, A. A.
1997-01-01
Enterocytozoon bieneusi is a common opportunistic pathogen of human patients with acquired immune deficiency syndrome (AIDS) causing significant morbidity and mortality. In a retrospective analysis utilizing conventional histochemical techniques, in situ hybridization, polymerase chain reaction, and ultrastructural examination, we identified 18 simian-immunodeficiency-virus-infected macaques (16 Macaca mulatta, 1 M. nemestrina, and 1 M. cyclopis) with Enterocytozoon infection of the hepatobiliary system and small intestine. The organisms were readily identified in the bile ducts and gall bladder by special stains and by in situ hybridization using a probe directed against the small subunit ribosomal RNA of human origin E. bieneusi. Infection of the biliary system was associated with a nonsuppurative and proliferative cholecystitis and choledochitis. Hepatic involvement was characterized by bridging portal fibrosis and nodular hepatocellular regeneration accompanied by marked bile ductular and septal duct hyperplasia. Ultrastructurally, all developmental stages of the organism were found in direct contact with the host cell cytoplasm; spores and sporoblasts contained a double layer of polar tubes. Sequencing of a 607-bp segment of the small subunit ribosomal RNA revealed 97 and 100% identity to two clones of small subunit ribosomal RNA derived from E. bieneusi of human origin. Extensive morphological and genetic similarities between the simian and human enterocytozoons suggest that experimentally infected macaques may serve as a useful model of microsporidial infection in AIDS. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9094995
Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather
2014-01-01
The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.
Subunit interface dynamics in hexadecameric rubisco.
van Lun, Michiel; van der Spoel, David; Andersson, Inger
2011-09-02
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) plays an important role in the global carbon cycle as a hub for biomass. Rubisco catalyzes not only the carboxylation of RuBP with carbon dioxide but also a competing oxygenation reaction of RuBP with a negative impact on photosynthetic yield. The functional active site is built from two large (L) subunits that form a dimer. The octameric core of four L(2) dimers is held at each end by a cluster of four small (S) subunits, forming a hexadecamer. Each large subunit contacts more than one S subunit. These interactions exploit the dynamic flexibility of Rubisco, which we address in this study. Here, we describe seven different types of interfaces of hexadecameric Rubisco. We have analyzed these interfaces with respect to the size of the interface area and the number of polar interactions, including salt bridges and hydrogen bonds in a variety of Rubisco enzymes from different organisms and different kingdoms of life, including the Rubisco-like proteins. We have also performed molecular dynamics simulations of Rubisco from Chlamydomonas reinhardtii and mutants thereof. From our computational analyses, we propose structural checkpoints of the S subunit to ensure the functionality and/or assembly of the Rubisco holoenzyme. These checkpoints appear to fine-tune the dynamics of the enzyme in a way that could influence enzyme performance. Copyright © 2011 Elsevier Ltd. All rights reserved.
2010-01-01
We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002)]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small. PMID:20672062
Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus.
Huynh, Nhung T; Hesketh, Emma L; Saxena, Pooja; Meshcheriakova, Yulia; Ku, You-Chan; Hoang, Linh T; Johnson, John E; Ranson, Neil A; Lomonossoff, George P; Reddy, Vijay S
2016-04-05
Empty virus-like particles (eVLPs) of Cowpea mosaic virus (CPMV) are currently being utilized as reagents in various biomedical and nanotechnology applications. Here, we report the crystal structure of CPMV eVLPs determined using X-ray crystallography at 2.3 Å resolution and compare it with previously reported cryo-electron microscopy (cryo-EM) of eVLPs and virion crystal structures. Although the X-ray and cryo-EM structures of eVLPs are mostly similar, there exist significant differences at the C terminus of the small (S) subunit. The intact C terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, we report the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions that identify the C termini of S subunits undergo proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural characterization of ribosome recruitment and translocation by type IV IRES.
Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S
2016-05-09
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.
Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.
2015-01-01
ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors. PMID:26311868
Xu, Yi; Wu, Jianxiang; Fu, Shuai; Li, Chenyang; Zhu, Zeng-Rong
2015-01-01
ABSTRACT The ubiquitin/26S proteasome system plays a vital role in regulating host defenses against pathogens. Previous studies have highlighted different roles for the ubiquitin/26S proteasome in defense during virus infection in both mammals and plants, but their role in the vectors that transmit those viruses is still unclear. In this study, we determined that the 26S proteasome is present in the small brown planthopper (SBPH) (Laodelphgax striatellus) and has components similar to those in plants and mammals. There was an increase in the accumulation of Rice stripe virus (RSV) in the transmitting vector SBPH after disrupting the 26S proteasome, indicating that the SBPH 26S proteasome plays a role in defense against RSV infection by regulating RSV accumulation. Yeast two-hybrid analysis determined that a subunit of the 26S proteasome, named RPN3, could interact with RSV NS3. Transient overexpression of RPN3 had no effect on the RNA silencing suppressor activity of RSV NS3. However, NS3 could inhibit the ability of SBPH rpn3 to complement an rpn3 mutation in yeast. Our findings also indicate that the direct interaction between RPN3 and NS3 was responsible for inhibiting the complementation ability of RPN3. In vivo, we found an accumulation of ubiquitinated protein in SBPH tissues where the RSV titer was high, and silencing of rpn3 resulted in malfunction of the SBPH proteasome-mediated proteolysis. Consequently, viruliferous SBPH in which RPN3 was repressed transmitted the virus more effectively as a result of higher accumulation of RSV. Our results suggest that the RSV NS3 protein is able to hijack the 26S proteasome in SBPH via a direct interaction with the RPN3 subunit to attenuate the host defense response. IMPORTANCE We show, for the first time, that the 26S proteasome components are present in the small brown planthopper and play a role in defense against its vectored plant virus (RSV). In turn, RSV encodes a protein that subverts the SBPH 26S proteasome via direct interaction with the 26S proteasome subunit RPN3. Our results imply that the molecular arms race observed in plant hosts can be extended to the insect vector that transmits those viruses. PMID:25653432
Choi, Hae-young; Oh, Jina
2018-01-01
We report the first genetic identification of eggs of four species of Anguilliformes caught in the northern East China Sea during August 2016, where leptocephali and adults have been collected. The species were Ophisurus macrorhynchos and Echelus uropterus belonging to the Ophichthidae, and Ariosoma majus and Gnathophis heterognathos belonging to the Congridae. The eggs were identified using three molecular genetic markers (mitochondrial 12S rRNA, 16S rRNA, and cytochrome c oxidase subunit 1), sequences obtained from local adult specimens, and geographical distribution data. All eggs were in the early or middle developmental stages. For all species except A. majus, the eggs were found near the range of small leptocephali in the East China Sea and the southern Korean Peninsula, which indicates these species had spawned along the continental near these areas during the summer. PMID:29621326
Conformational Response of 30S-bound IF3 to A-Site Binders Streptomycin and Kanamycin
Chulluncuy, Roberto; Espiche, Carlos; Nakamoto, Jose Alberto; Fabbretti, Attilio; Milón, Pohl
2016-01-01
Aminoglycoside antibiotics are widely used to treat infectious diseases. Among them, streptomycin and kanamycin (and derivatives) are of importance to battle multidrug-resistant (MDR) Mycobacterium tuberculosis. Both drugs bind the small ribosomal subunit (30S) and inhibit protein synthesis. Genetic, structural, and biochemical studies indicate that local and long-range conformational rearrangements of the 30S subunit account for this inhibition. Here, we use intramolecular FRET between the C- and N-terminus domains of the flexible IF3 to monitor real-time perturbations of their binding sites on the 30S platform. Steady and pre-steady state binding experiments show that both aminoglycosides bring IF3 domains apart, promoting an elongated state of the factor. Binding of Initiation Factor IF1 triggers closure of IF3 bound to the 30S complex, while both aminoglycosides revert the IF1-dependent conformation. Our results uncover dynamic perturbations across the 30S subunit, from the A-site to the platform, and suggest that both aminoglycosides could interfere with prokaryotic translation initiation by modulating the interaction between IF3 domains with the 30S platform. PMID:27983590
Espinar-Marchena, Francisco; Rodríguez-Galán, Olga; Fernández-Fernández, José; Linnemann, Jan; de la Cruz, Jesús
2018-05-18
The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits.
Espinar-Marchena, Francisco; Rodríguez-Galán, Olga; Fernández-Fernández, José; Linnemann, Jan; de la Cruz, Jesús
2018-01-01
Abstract The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits. PMID:29788267
Hemsley, Piers A.; Hurst, Charlotte H.; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R.; De Cothi, Elizabeth A.; Steele, John F.; Knight, Heather
2014-01-01
The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation–induced freezing tolerance. In addition, these three subunits are required for low temperature–induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770
He, Xi; Han, Ning; Wang, Yan-Ping
2016-01-01
Lactobacillus kefiranofaciens ZW3 was obtained from kefir grains, which have high lactose hydrolytic activity. In this study, a heterodimeric LacLM-type β-galactosidase gene (lacLM) from ZW3 was isolated, which was composed of two overlapping genes, lacL (1,884 bp) and lacM (960 bp) encoding large and small subunits with calculated molecular masses of 73,620 and 35,682 Da, respectively. LacLM, LacL, and LacM were expressed in Escherichia coli BL21(DE3) and these recombinant proteins were purified and characterized. The results showed that, compared with the recombinant holoenzyme, the recombinant large subunit exhibits obviously lower thermostability and hydrolytic activity. Moreover, the optimal temperature and pH of the holoenzyme and large subunit are 60°C and 7.0, and 50°C and 8.0, respectively. However, the recombinant small subunit alone has no activity. Interestingly, the activity and thermostability of the large subunit were greatly improved after mixing it with the recombinant small subunit. Therefore, the results suggest that the small subunit might play an important role in maintaining the stability of the structure of the catalytic center located in the large subunit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machaalani, R., E-mail: rita.machaalani@sydney.edu.au; Bosch Institute, The University of Sydney, NSW 2006; The Children's Hospital at Westmead, NSW 2145
Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and comparedmore » mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.« less
Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; McCann, Kathleen L.; Qiu, Chen
Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C’-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease,more » Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins.« less
Weiss, Andy; Moore, Brittney D; Tremblay, Miguel H J; Chaput, Dale; Kremer, Astrid; Shaw, Lindsey N
2017-01-15
Staphylococcus aureus is a major human pathogen that causes infection in a wide variety of sites within the human body. Its ability to adapt to the human host and to produce a successful infection requires precise orchestration of gene expression. While DNA-dependent RNA polymerase (RNAP) is generally well characterized, the roles of several small accessory subunits within the complex have yet to be fully explored. This is particularly true for the omega (ω or RpoZ) subunit, which has been extensively studied in Gram-negative bacteria but largely neglected in Gram-positive counterparts. In Escherichia coli, it has been shown that ppGpp binding, and thus control of the stringent response, is facilitated by ω. Interestingly, key residues that facilitate ppGpp binding by ω are not conserved in S. aureus, and consequently, survival under starvation conditions is unaffected by rpoZ deletion. Further to this, ω-lacking strains of S. aureus display structural changes in the RNAP complex, which result from increased degradation and misfolding of the β' subunit, alterations in δ and σ factor abundance, and a general dissociation of RNAP in the absence of ω. Through RNA sequencing analysis we detected a variety of transcriptional changes in the rpoZ-deficient strain, presumably as a response to the negative effects of ω depletion on the transcription machinery. These transcriptional changes translated to an impaired ability of the rpoZ mutant to resist stress and to fully form a biofilm. Collectively, our data underline, for the first time, the importance of ω for RNAP stability, function, and cellular physiology in S. aureus IMPORTANCE: In order for bacteria to adjust to changing environments, such as within the host, the transcriptional process must be tightly controlled. Transcription is carried out by DNA-dependent RNA polymerase (RNAP). In addition to its major subunits (α 2 ββ') a fifth, smaller subunit, ω, is present in all forms of life. Although this small subunit is well studied in eukaryotes and Gram-negative bacteria, only limited information is available for Gram-positive and pathogenic species. In this study, we investigated the structural and functional importance of ω, revealing key roles in subunit folding/stability, complex assembly, and maintenance of transcriptional integrity. Collectively, our data underline, for the first time, the importance of ω for RNAP function and cellular harmony in S. aureus. Copyright © 2016 American Society for Microbiology.
Shah, H N; Gharbia, S E; Scully, C; Finegold, S M
1995-03-01
Eight oligonucleotides based upon regions of the small subunit 16S ribosomal RNA gene sequences were analysed against a background of their position within the molecule and their two-dimensional structure to rationalise their use in recognising Prevotella intermedia and Prevotella nigrescens. The 41 clinical isolates from both oral and respiratory sites and two reference strains were subjected to DNA-DNA hybridisation and multilocus enzyme electrophoresis to confirm their identity. Alignment of oligonucleotide probes designated I Bi-2 to I Bi-6 (for P. intermedia) and 2Bi-2 (for P. nigrescens) with the 16S rRNA suggested that these probes lacked specificity or were constructed from hypervariable regions. A 52-mer oligonucleotide (designated Bi) reliably detected both species. Because of the high degree of concordance between the 16S rRNAs of both species, it was necessary to vary the stringency of hybridisation conditions for detection of both species. Thus probe I Bi-I recognised P. intermedia while I Bi-I detected both P. intermedia and P. nigrescens at low stringency. However, under conditions of high stringency only P. nigrescens was recognised by probe 2Bi-I. These probes were highly specific and did not hybridise with DNA from the closely related P. corporis, nor other periodontal pathogens such as Fusobacterium nucleatum, Actinobacillus actinomycetemcomitans, Treponema denticola and several pigmented species such as Prevotella melaninogenica, P. denticola, P. loescheii, Porphyromonas asaccharolytica, Py. endodontalis, Py. gingivalis, Py. levii, and Py. macacae.
Yong, Hoi-Sen; Lim, Phaik-Eem; Tan, Ji; Song, Sze-Looi; Suana, I Wayan; Eamsobhana, Praphathip
2015-01-01
Bactrocera caudata is a pest of pumpkin flower. Specimens of B. caudata from the northern hemisphere (mainland Asia) and southern hemisphere (Indonesia) were analysed using the partial DNA sequences of the nuclear 28S rRNA and internal transcribed spacer region 2 (ITS-2) genes, and the mitochondrial cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit II (COII) and 16S rRNA genes. The COI, COII, 16S rDNA and concatenated COI+COII+16S and COI+COII+16S+28S+ITS-2 nucleotide sequences revealed that B. caudata from the northern hemisphere (Peninsular Malaysia, East Malaysia, Thailand) was distinctly different from the southern hemisphere (Indonesia: Java, Bali and Lombok), without common haplotype between them. Phylogenetic analysis revealed two distinct clades (northern and southern hemispheres), indicating distinct genetic lineage. The uncorrected ‘p’ distance for the concatenated COI+COII+16S nucleotide sequences between the taxa from the northern and southern hemispheres (‘p’ = 4.46-4.94%) was several folds higher than the ‘p’ distance for the taxa in the northern hemisphere (‘p’ = 0.00-0.77%) and the southern hemisphere (‘p’ = 0.00%). This distinct difference was also reflected by concatenated COI+COII+16S+28S+ITS-2 nucleotide sequences with an uncorrected 'p' distance of 2.34-2.69% between the taxa of northern and southern hemispheres. In accordance with the type locality the Indonesian taxa belong to the nominal species. Thus the taxa from the northern hemisphere, if they were to constitute a cryptic species of the B. caudata species complex based on molecular data, need to be formally described as a new species. The Thailand and Malaysian B. caudata populations in the northern hemisphere showed distinct genetic structure and phylogeographic pattern. PMID:26090853
Rodermel, S; Haley, J; Jiang, C Z; Tsai, C H; Bogorad, L
1996-01-01
Multimeric protein complexes in chloroplasts and mitochondria are generally composed of products of both nuclear and organelle genes of the cell. A central problem of eukaryotic cell biology is to identify and understand the molecular mechanisms for integrating the production and accumulation of the products of the two separate genomes. Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively. Transgenic tobacco plants containing antisense rbcS DNA have reduced levels of rbcS mRNA, normal levels of rbcL mRNA, and coordinately reduced LS and SS proteins. Our previous experiments indicated that the rate of translation of rbcL mRNA might be reduced in some antisense plants; direct evidence is presented here. After a short-term pulse there is less labeled LS protein in the transgenic plants than in wild-type plants, indicating that LS accumulation is controlled in the mutants at the translational and/or posttranslational levels. Consistent with a primary restriction at translation, fewer rbcL mRNAs are associated with polysomes of normal size and more are free or are associated with only a few ribosomes in the antisense plants. Effects of the rbcS antisense mutation on mRNA and protein accumulation, as well as on the distribution of mRNAs on polysomes, appear to be minimal for other chloroplast and nuclear photosynthetic genes. Our results suggest that SS protein abundance specifically contributes to the regulation of LS protein accumulation at the level of rbcL translation initiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 8 PMID:8632983
Light organ symbioses in fishes.
Haygood, M G
1993-01-01
Most bioluminescent fishes are self-luminescent, but a substantial minority of bioluminescent teleosts produce light that is due to symbiotic luminous bacteria housed in elaborate light organs. The majority of symbiotically bioluminescent fishes (ten families in five orders) harbors common free-living species of marine luminous bacteria: Photobacterium phosphoreum, P. leiognathi, and P. fischeri (= Vibrio fischeri). Others, associated with the beryciform family Anomalopidae and nine families in the lophiiform suborder Ceratioidei, have apparently obligate symbionts that have recently been identified by small subunit (16S) rRNA analysis as new groups within the genus Vibrio. This article summarizes what is currently known about relationships between light organ symbionts and their hosts, including characteristics of light organ environments, physiology of light organ symbionts, and the evolution of light organ symbionts and their associations.
Waldvogel, H J; Kubota, Y; Trevallyan, S C; Kawaguchi, Y; Fritschy, J M; Mohler, H; Faull, R L
1997-10-01
The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon terminals. The type 2 neurons comprised 20% of the total population of alpha1-subunit-immunoreactive neurons. The remaining large-sized alpha1-immunoreactive cells were designated type 3 cells; they were positive for parvalbumin and were distinguished by long branching dendrites extending dorsally for 600-800 microm into the striatum. These neurons comprised 5% of the total population of alpha1-subunit-immunoreactive neurons and were surrounded by enkephalin-immunoreactive terminals. Electron microscopy showed that the alpha1-subunit type 3 neurons had an indented nuclear membrane and were densely covered with small axon terminals which established alpha1-subunit-immunoreactive symmetrical synaptic contacts with the soma and dendrites. These results provide a detailed characterization of the distribution, morphology and chemical characteristics of the alpha1-subunit-immunoreactive neurons in the rat striatum and suggest that the type 1 and type 2 neurons comprise of separate populations of striatal interneurons while the type 3 neurons may represent the large striatonigral projection neurons described by Bolam et al. [Bolam J. P., Somogyi P., Totterdell S. and Smith A. D. (1981) Neuroscience 6, 2141-2157.].
Wachter, Rebekka M; Salvucci, Michael E; Carmo-Silva, A Elizabete; Barta, Csengele; Genkov, Todor; Spreitzer, Robert J
2013-11-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is prone to inactivation from non-productive binding of sugar-phosphates. Reactivation of Rubisco requires conformational remodeling by a specific chaperone, Rubisco activase. Rubisco activase from tobacco and other plants in the family Solanaceae is an inefficient activator of Rubisco from non-Solanaceae plants and from the green alga Chlamydomonas reinhardtii. To determine if the Rubisco small subunit plays a role in the interaction with Rubisco activase, a hybrid Rubisco (SSNT) composed of tobacco small subunits and Chlamydomonas large subunits was constructed. The SSNT hybrid, like other hybrid Rubiscos containing plant small subunits, supported photoautotrophic growth in Chlamydomonas, but growth in air was much slower than for cells containing wild-type Rubisco. The kinetic properties of the SSNT hybrid Rubisco were similar to the wild-type enzyme, indicating that the poor growth in air was probably caused by disruption of pyrenoid formation and the consequent impairment of the CO2concentrating mechanism. Recombinant Rubisco activase from Arabidopsis activated the SSNT hybrid Rubisco and hybrid Rubiscos containing spinach and Arabidopsis small subunits at rates similar to the rates with wild-type Rubisco. However, none of the hybrid Rubiscos was activated by tobacco Rubisco activase. That replacement of Chlamydomonas small subunits with plant small subunits does not affect the species-specific interaction between Rubisco and Rubisco activase suggests that the association is not dominated by the small subunits that surround the Rubisco central solvent channel. Therefore, the geometry of a side-on binding mode is more consistent with the data than a top-on or ring-stacking binding mode.
Binding of adenine to Stx2, the protein toxin from Escherichia coli O157:H7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraser, Marie E., E-mail: frasm@ucalgary.ca; Cherney, Maia M.; Marcato, Paola
2006-07-01
Crystals of Stx2 were grown in the presence of adenosine and adenine. In both cases, the resulting electron density showed only adenine bound at the active site of the A subunit, proving that the holotoxin is an active N-glycosidase. Stx2 is a protein toxin whose catalytic subunit acts as an N-glycosidase to depurinate a specific adenine base from 28S rRNA. In the holotoxin, the catalytic portion, A1, is linked to the rest of the A subunit, A2, and A2 interacts with the pentameric ring formed by the five B subunits. In order to test whether the holotoxin is active asmore » an N-glycosidase, Stx2 was crystallized in the presence of adenosine and adenine. The crystals diffracted to ∼1.8 Å and showed clear electron density for adenine in the active site. Adenosine had been cleaved, proving that Stx2 is an active N-glycosidase. While the holotoxin is active against small substrates, it would be expected that the B subunits would interfere with the binding of the 28S rRNA.« less
A comparative study of COI and 16 S rRNA genes for DNA barcoding of cultivable carps in India.
Mohanty, Mausumee; Jayasankar, Pallipuram; Sahoo, Lakshman; Das, Paramananda
2015-02-01
The 5' region of the mitochondrial DNA gene cytochrome c oxidase subunit I (COI) is the standard marker for DNA barcoding. However, 16 S rRNA has also been advocated for DNA barcoding in many animal species. Herein, we directly compare the usefulness of COI and 16 S rRNA in discriminating six cultivable carp species: Labeo rohita, Catla catla, Cirrhinus mrigala, Labeo fimbriatus, Labeo bata and Cirrhinus reba from India. Analysis of partial sequences of these two gene fragments from 171 individuals indicated close genetic relationship between Catla catla and Labeo rohita. The results of the present study indicated COI to be more useful than 16 S rRNA for DNA barcoding of Indian carps.
Frost, Jennifer M; Kim, M Yvonne; Park, Guen Tae; Hsieh, Ping-Hung; Nakamura, Miyuki; Lin, Samuel J H; Yoo, Hyunjin; Choi, Jaemyung; Ikeda, Yoko; Kinoshita, Tetsu; Choi, Yeonhee; Zilberman, Daniel; Fischer, Robert L
2018-05-15
The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin. Copyright © 2018 the Author(s). Published by PNAS.
Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.
Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R
2017-01-15
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.
Nagata, K; Mizuta, T; Tonokatu, Y; Fukuda, Y; Okamura, H; Hayashi, T; Shimoyama, T; Tamura, T
1992-01-01
Monoclonal antibodies (MAbs) against the native urease of Helicobacter pylori NCTC 11637 were found to clearly inhibit the urease activity. Interestingly, synergistic inhibition by two MAbs recognizing different subunits was also observed. Ten MAbs were produced and classified as two isotypes of the immunoglobulin G (IgG) subclass, IgG1, and IgG2a. Western blot (immunoblot) analysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that five MAbs recognized the large subunit and the other five recognized the small subunit of the urease. Among the MAbs, L2 and S2, which recognized the large and the small subunits, respectively, were also able to inhibit the urease activity of clinical isolates from H. pylori-infected patients. The combination of L2 and S2 led to augmented synergistic inhibition. L2, but not S2, could also inhibit the urease activity from Helicobacter mustelae; enzyme-linked immunosorbent assay and Western blot analysis showed that L2 cross-reacted with this urease. These results suggested that the epitope recognized by L2 had a structure common to both Helicobacter species and may be involved in the active site of the urease. In contrast to the MAbs, a polyclonal antibody in sera from mice immunized with H. pylori urease did not have the ability to inhibit H. pylori urease activity. However, the polyclonal antibody retained the ability to abolish the inhibitory action of these MAbs. Moreover, other MAbs which could not inhibit H. pylori urease activity also abolished the inhibitory action. Images PMID:1383158
PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato
NASA Technical Reports Server (NTRS)
Chen, B. Y.; Janes, H. W.; Gianfagna, T.
1998-01-01
Four ADP-glucose pyrophosphorylase (AGP) cDNAs were cloned from tomato fruit and leaves by the PCR techniques. Three of them (agp S1, agp S2, and agp S3) encode the large subunit of AGP, the fourth one (agp B) encodes the small subunit. The deduced amino acid sequences of the cDNAs show very high identities (96-98%) to the corresponding potato AGP isoforms, although there are major differences in tissue expression profiles. All four tomato AGP transcripts were detected in fruit and leaves; the predominant ones in fruit are agp B and agp S1, whereas in leaves they are agp B and agp S3. Genomic southern analysis suggests that the four AGP transcripts are encoded by distinct genes.
NASA Technical Reports Server (NTRS)
Winker, S.; Woese, C. R.
1991-01-01
The number of small subunit rRNA sequences is now great enough that the three domains Archaea, Bacteria and Eucarya (Woese et al., 1990) can be reliably defined in terms of their sequence "signatures". Approximately 50 homologous positions (or nucleotide pairs) in the small subunit rRNA characterize and distinguish among the three. In addition, the three can be recognized by a variety of nonhomologous rRNA characters, either individual positions and/or higher-order structural features. The Crenarchaeota and the Euryarchaeota, the two archaeal kingdoms, can also be defined and distinguished by their characteristic compositions at approximately fifteen positions in the small subunit rRNA molecule.
Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria
Weiss, Andy; Shaw, Lindsey N.
2015-01-01
The DNA-dependent RNA polymerase core enzyme in Gram-positive bacteria consists of seven subunits. Whilst four of them (α2ββ′) are essential, three smaller subunits, δ, ε and ω (∼9–21.5 kDa), are considered accessory. Both δ and ω have been viewed as integral components of RNAP for several decades; however, ε has only recently been described. Functionally these three small subunits carry out a variety of tasks, imparting important, supportive effects on the transcriptional process of Gram-positive bacteria. While ω is thought to have a wide range of roles, reaching from maintaining structural integrity of RNAP to σ factor recruitment, the only suggested function for ε thus far is in protecting cells from phage infection. The third subunit, δ, has been shown to have distinct influences in maintaining transcriptional specificity, and thus has a key role in cellular fitness. Collectively, all three accessory subunits, although dispensable under laboratory conditions, are often thought to be crucial for proper RNAP function. Herein we provide an overview of the available literature on each subunit, summarizing landmark findings that have deepened our understanding of these proteins and their function, and outline future challenges in understanding the role of these small subunits in the transcriptional process. PMID:25878038
Structural characterization of ribosome recruitment and translocation by type IV IRES
Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S
2016-01-01
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI: http://dx.doi.org/10.7554/eLife.13567.001 PMID:27159451
Moreno, H; Rudy, B; Llinás, R
1997-12-09
Human epithelial kidney cells (HEK) were prepared to coexpress alpha1A, alpha2delta with different beta calcium channel subunits and green fluorescence protein. To compare the calcium currents observed in these cells with the native neuronal currents, electrophysiological and pharmacological tools were used conjointly. Whole-cell current recordings of human epithelial kidney alpha1A-transfected cells showed small inactivating currents in 80 mM Ba2+ that were relatively insensitive to calcium blockers. Coexpression of alpha1A, betaIb, and alpha2delta produced a robust inactivating current detected in 10 mM Ba2+, reversibly blockable with low concentration of omega-agatoxin IVA (omega-Aga IVA) or synthetic funnel-web spider toxin (sFTX). Barium currents were also supported by alpha1A, beta2a, alpha2delta subunits, which demonstrated the slowest inactivation and were relatively insensitive to omega-Aga IVA and sFTX. Coexpression of beta3 with the same combination as above produced inactivating currents also insensitive to low concentration of omega-Aga IVA and sFTX. These data indicate that the combination alpha1A, betaIb, alpha2delta best resembles P-type channels given the rate of inactivation and the high sensitivity to omega-Aga IVA and sFTX. More importantly, the specificity of the channel blocker is highly influenced by the beta subunit associated with the alpha1A subunit.
Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae.
Belyy, Alexander; Levanova, Nadezhda; Tabakova, Irina; Rospert, Sabine; Belyi, Yury
2016-01-01
The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5' untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62-K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62-K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62-K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62-K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62-K70 segment of Rps26 and the 5' untranslated region of mRNA. The data suggested a specific role of the Y62-K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62-K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5' untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62-K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.M.; Pampa, K.J.; Manjula, M.
2014-06-20
Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{supmore » +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.« less
Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand.
Hetzer, Adrian; Morgan, Hugh W; McDonald, Ian R; Daughney, Christopher J
2007-07-01
Surveys of Champagne Pool, one of New Zealand's largest terrestrial hot springs and rich in arsenic ions and compounds, have been restricted to geological and geochemical descriptions, and a few microbiological studies applying culture-independent methods. In the current investigation, a combination of culture and culture-independent approaches were chosen to determine microbial density and diversity in Champagne Pool. Recovered total DNA and adenosine 5'-triphosphate (ATP) content of spring water revealed relatively low values compared to other geothermal springs within New Zealand and are in good agreement with low cell numbers of 5.6 +/- 0.5 x 10(6) cells/ml obtained for Champagne Pool water samples by 4',6-diamidino-2-phenylindole (DAPI) staining. Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA (small-subunit ribosomal nucleic acid) gene clone library analyses of environmental DNA indicated the abundance of Sulfurihydrogenibium, Sulfolobus, and Thermofilum-like populations in Champagne Pool. From these results, media were selected to target the enrichment of hydrogen-oxidizing and sulfur-dependent microorganisms. Three isolates were successfully obtained having 16S rRNA gene sequences with similarities of approximately 98% to Thermoanaerobacter tengcongensis, 94% to Sulfurihydrogenibium azorense, and 99% to Thermococcus waiotapuensis, respectively.
Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.
2007-01-01
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256
Architecture of human translation initiation factor 3
Querol-Audi, Jordi; Sun, Chaomin; Vogan, Jacob M.; Smith, Duane; Gu, Yu; Cate, Jamie; Nogales, Eva
2013-01-01
SUMMARY Eukaryotic translation initiation factor 3 (eIF3) plays a central role in protein synthesis by organizing the formation of the 43S preinitiation complex. Using genetic tag visualization by electron microscopy, we reveal the molecular organization of ten human eIF3 subunits, including an octameric core. The structure of eIF3 bears a close resemblance to that of the proteasome lid, with a conserved spatial organization of eight core subunits containing PCI and MPN domains that coordinate functional interactions in both complexes. We further show that eIF3 subunits a and c interact with initiation factors eIF1 and eIF1A, which control the stringency of start codon selection. Finally, we find that subunit j, which modulates messenger RNA interactions with the small ribosomal subunit, makes multiple independent interactions with the eIF3 octameric core. These results highlight the conserved architecture of eIF3 and how it scaffolds key factors that control translation initiation in higher eukaryotes, including humans. PMID:23623729
Moriggi, Giulia; Nieto, Blanca; Dosil, Mercedes
2014-12-01
During the biogenesis of small ribosomal subunits in eukaryotes, the pre-40S particles formed in the nucleolus are rapidly transported to the cytoplasm. The mechanisms underlying the nuclear export of these particles and its coordination with other biogenesis steps are mostly unknown. Here we show that yeast Rrp12 is required for the exit of pre-40S particles to the cytoplasm and for proper maturation dynamics of upstream 90S pre-ribosomes. Due to this, in vivo elimination of Rrp12 leads to an accumulation of nucleoplasmic 90S to pre-40S transitional particles, abnormal 35S pre-rRNA processing, delayed elimination of processing byproducts, and no export of intermediate pre-40S complexes. The exportin Crm1 is also required for the same pre-ribosome maturation events that involve Rrp12. Thus, in addition to their implication in nuclear export, Rrp12 and Crm1 participate in earlier biosynthetic steps that take place in the nucleolus. Our results indicate that, in the 40S subunit synthesis pathway, the completion of early pre-40S particle assembly, the initiation of byproduct degradation and the priming for nuclear export occur in an integrated manner in late 90S pre-ribosomes.
How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase
Bowman, Lisa; Flanagan, Lindsey; Fyfe, Paul K.; Parkin, Alison; Hunter, William N.; Sargent, Frank
2014-01-01
Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated that His229 from the large subunit was close to the proximal [4Fe–3S] cluster in the small subunit. In addition, His229 was observed to lie close to a buried glutamic acid (Glu73), which is conserved in oxygen-tolerant hydrogenases. His229 and Glu73 of the Hyd-5 large subunit were found to be important in both hydrogen oxidation activity and the oxygen-tolerance mechanism. Substitution of His229 or Glu73 with alanine led to a loss in the ability of Hyd-5 to oxidize hydrogen in air. Furthermore, the H229A variant was found to have lost the overpotential requirement for activity that is always observed with oxygen-tolerant [NiFe]-hydrogenases. It is possible that His229 has a role in stabilizing the super-oxidized form of the proximal cluster in the presence of oxygen, and it is proposed that Glu73could play a supporting role in fine-tuning the chemistry of His229 to enable this function. PMID:24428762
Interactions of 2’-O-methyl oligoribonucleotides with the RNA models of the 30S subunit A-site
Jasiński, Maciej; Kulik, Marta; Wojciechowska, Monika; Stolarski, Ryszard
2018-01-01
Synthetic oligonucleotides targeting functional regions of the prokaryotic rRNA could be promising antimicrobial agents. Indeed, such oligonucleotides were proven to inhibit bacterial growth. 2’-O-methylated (2’-O-Me) oligoribonucleotides with a sequence complementary to the decoding site in 16S rRNA were reported as inhibitors of bacterial translation. However, the binding mode and structures of the formed complexes, as well as the level of selectivity of the oligonucleotides between the prokaryotic and eukaryotic target, were not determined. We have analyzed three 2’-O-Me oligoribonucleotides designed to hybridize with the models of the prokaryotic rRNA containing two neighboring aminoglycoside binding pockets. One pocket is the paromomycin/kanamycin binding site corresponding to the decoding site in the small ribosomal subunit and the other one is the close-by hygromycin B binding site whose dynamics has not been previously reported. Molecular dynamics (MD) simulations, as well as isothermal titration calorimetry, gel electrophoresis and spectroscopic studies have shown that the eukaryotic rRNA model is less conformationally stable (in terms of hydrogen bonds and stacking interactions) than the corresponding prokaryotic one. In MD simulations of the eukaryotic construct, the nucleotide U1498, which plays an important role in correct positioning of mRNA during translation, is flexible and spontaneously flips out into the solvent. In solution studies, the 2’-O-Me oligoribonucleotides did not interact with the double stranded rRNA models but all formed stable complexes with the single-stranded prokaryotic target. 2’-O-Me oligoribonucleotides with one and two mismatches bound less tightly to the eukaryotic target. This shows that at least three mismatches between the 2’-O-Me oligoribonucleotide and eukaryotic rRNA are required to ensure target selectivity. The results also suggest that, in the ribosome environment, the strand invasion is the preferred binding mode of 2’-O-Me oligoribonucleotides targeting the aminoglycoside binding sites in 16S rRNA. PMID:29351348
The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity.
Andrade, José M; Dos Santos, Ricardo F; Chelysheva, Irina; Ignatova, Zoya; Arraiano, Cecília M
2018-06-01
Ribosome biogenesis is a complex process involving multiple factors. Here, we show that the widely conserved RNA chaperone Hfq, which can regulate sRNA-mRNA basepairing, plays a critical role in rRNA processing and ribosome assembly in Escherichia coli Hfq binds the 17S rRNA precursor and facilitates its correct processing and folding to mature 16S rRNA Hfq assists ribosome assembly and associates with pre-30S particles but not with mature 30S subunits. Inactivation of Hfq strikingly decreases the pool of mature 70S ribosomes. The reduction in ribosome levels depends on residues located in the distal face of Hfq but not on residues found in the proximal and rim surfaces which govern interactions with the sRNAs. Our results indicate that Hfq-mediated regulation of ribosomes is independent of its function as sRNA-regulator. Furthermore, we observed that inactivation of Hfq compromises translation efficiency and fidelity, both features of aberrantly assembled ribosomes. Our work expands the functions of the Sm-like protein Hfq beyond its function in small RNA-mediated regulation and unveils a novel role of Hfq as crucial in ribosome biogenesis and translation. © 2018 The Authors.
Iwata, Fumiko; Shinjyo, Noriko; Amino, Hisako; Sakamoto, Kimitoshi; Islam, M Khyrul; Tsuji, Naotoshi; Kita, Kiyoshi
2008-03-01
The mitochondrial metabolic pathway of the parasitic nematode Ascaris suum changes dramatically during its life cycle, to adapt to changes in the environmental oxygen concentration. We previously showed that A. suum mitochondria express stage-specific isoforms of complex II (succinate-ubiquinone reductase: SQR/quinol-fumarate reductase: QFR). The flavoprotein (Fp) and small subunit of cytochrome b (CybS) in adult complex II differ from those of infective third stage larval (L3) complex II. However, there is no difference in the iron-sulfur cluster (Ip) or the large subunit of cytochrome b (CybL) between adult and L3 isoforms of complex II. In the present study, to clarify the changes that occur in the respiratory chain of A. suum larvae during their migration in the host, we examined enzymatic activity, quinone content and complex II subunit composition in mitochondria of lung stage L3 (LL3) A. suum larvae. LL3 mitochondria showed higher QFR activity ( approximately 160 nmol/min/mg) than mitochondria of A. suum at other stages (L3: approximately 80 nmol/min/mg; adult: approximately 70 nmol/min/mg). Ubiquinone content in LL3 mitochondria was more abundant than rhodoquinone ( approximately 1.8 nmol/mg versus approximately 0.9 nmol/mg). Interestingly, the results of two-dimensional bule-native/sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses showed that LL3 mitochondria contained larval Fp (Fp(L)) and adult Fp (Fp(A)) at a ratio of 1:0.56, and that most LL3 CybS subunits were of the adult form (CybS(A)). This clearly indicates that the rearrangement of complex II begins with a change in the isoform of the anchor CybS subunit, followed by a similar change in the Fp subunit.
Falade, Mofolusho O.; Opene, Anthony J.; Benson, Otarigho
2016-01-01
DNA barcoding has been adopted as a gold standard rapid, precise and unifying identification system for animal species and provides a database of genetic sequences that can be used as a tool for universal species identification. In this study, we employed mitochondrial genes 16S rRNA (16S) and cytochrome oxidase subunit I (COI) for the identification of some Nigerian freshwater catfish and Tilapia species. Approximately 655 bp were amplified from the 5′ region of the mitochondrial cytochrome C oxidase subunit I (COI) gene whereas 570 bp were amplified for the 16S rRNA gene. Nucleotide divergences among sequences were estimated based on Kimura 2-parameter distances and the genetic relationships were assessed by constructing phylogenetic trees using the neighbour-joining (NJ) and maximum likelihood (ML) methods. Analyses of consensus barcode sequences for each species, and alignment of individual sequences from within a given species revealed highly consistent barcodes (99% similarity on average), which could be compared with deposited sequences in public databases. The nucleotide distance between species belonging to different genera based on COI ranged from 0.17% between Sarotherodon melanotheron and Coptodon zillii to 0.49% between Clarias gariepinus and C. zillii, indicating that S. melanotheron and C. zillii are closely related. Based on the data obtained, the utility of COI gene was confirmed in accurate identification of three fish species from Southwest Nigeria. PMID:27990256
Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean
2006-07-01
The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.
Gene copy number variation and its significance in cyanobacterial phylogeny
2012-01-01
Background In eukaryotes, variation in gene copy numbers is often associated with deleterious effects, but may also have positive effects. For prokaryotes, studies on gene copy number variation are rare. Previous studies have suggested that high numbers of rRNA gene copies can be advantageous in environments with changing resource availability, but further association of gene copies and phenotypic traits are not documented. We used one of the morphologically most diverse prokaryotic phyla to test whether numbers of gene copies are associated with levels of cell differentiation. Results We implemented a search algorithm that identified 44 genes with highly conserved copies across 22 fully sequenced cyanobacterial taxa. For two very basal cyanobacterial species, Gloeobacter violaceus and a thermophilic Synechococcus species, distinct phylogenetic positions previously found were supported by identical protein coding gene copy numbers. Furthermore, we found that increased ribosomal gene copy numbers showed a strong correlation to cyanobacteria capable of terminal cell differentiation. Additionally, we detected extremely low variation of 16S rRNA sequence copies within the cyanobacteria. We compared our results for 16S rRNA to three other eubacterial phyla (Chroroflexi, Spirochaetes and Bacteroidetes). Based on Bayesian phylogenetic inference and the comparisons of genetic distances, we could confirm that cyanobacterial 16S rRNA paralogs and orthologs show significantly stronger conservation than found in other eubacterial phyla. Conclusions A higher number of ribosomal operons could potentially provide an advantage to terminally differentiated cyanobacteria. Furthermore, we suggest that 16S rRNA gene copies in cyanobacteria are homogenized by both concerted evolution and purifying selection. In addition, the small ribosomal subunit in cyanobacteria appears to evolve at extraordinary slow evolutionary rates, an observation that has been made previously for morphological characteristics of cyanobacteria. PMID:22894826
Yamaguchi, K; von Knoblauch, K; Subramanian, A R
2000-09-15
Identification of all the protein components of a plastid (chloroplast) ribosomal 30 S subunit has been achieved, using two-dimensional gel electropholesis, high performance liquid chromatography purification, N-terminal sequencing, polymerase chain reaction-based screening of cDNA library, nucleotide sequencing, and mass spectrometry (electrospray ionization, matrix-assisted laser desorption/ionization time-of-flight, and reversed-phase HPLC coupled with electrospray ionization mass spectrometry). 25 proteins were identified, of which 21 are orthologues of all Escherichia coli 30 S ribosomal proteins (S1-S21), and 4 are plastid-specific ribosomal proteins (PSRPs) that have no homologues in the mitochondrial, archaebacterial, or cytosolic ribosomal protein sequences in data bases. 12 of the 25 plastid 30 S ribosomal proteins (PRPs) are encoded in the plastid genome, whereas the remaining 13 are encoded by the nuclear genome. Post-translational transit peptide cleavage sites for the maturation of the 13 cytosolically synthesized PRPs, and post-translational N-terminal processing in the maturation of the 12 plastid synthesized PRPs are described. Post-translational modifications in several PRPs were observed: alpha-N-acetylation of S9, N-terminal processings leading to five mature forms of S6 and two mature forms of S10, C-terminal and/or internal modifications in S1, S14, S18, and S19, leading to two distinct forms differing in mass and/or charge (the corresponding modifications are not observed in E. coli). The four PSRPs in spinach plastid 30 S ribosomal subunit (PSRP-1, 26.8 kDa, pI 6.2; PSRP-2, 21.7 kDa, pI 5.0; PSRP-3, 13.8 kDa, pI 4.9; PSRP-4, 5.2 kDa, pI 11.8) comprise 16% (67.6 kDa) of the total protein mass of the 30 S subunit (429.3 kDa). PSRP-1 and PSRP-3 show sequence similarities with hypothetical photosynthetic bacterial proteins, indicating their possible origins in photosynthetic bacteria. We propose the hypothesis that PSRPs form a "plastid translational regulatory module" on the 30 S ribosomal subunit structure for the possible mediation of nuclear factors on plastid translation.
Ribosome Biogenesis in African Trypanosomes Requires Conserved and Trypanosome-Specific Factors
Umaer, Khan; Ciganda, Martin
2014-01-01
Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention. PMID:24706018
The function of the Mediator complex in plant immunity.
An, Chuanfu; Mou, Zhonglin
2013-03-01
Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.
Photosynthetic Trichomes Contain a Specific Rubisco with a Modified pH-Dependent Activity.
Laterre, Raphaëlle; Pottier, Mathieu; Remacle, Claire; Boutry, Marc
2017-04-01
Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO 2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundle-sheath (C4 plants), and guard cells. In certain species, photosynthesis also takes place in the secretory cells of glandular trichomes, which are epidermal outgrowths (hairs) involved in the secretion of specialized metabolites. However, photosynthesis and, in particular, Rubisco have not been characterized in trichomes. Here, we show that tobacco ( Nicotiana tabacum ) trichomes contain a specific Rubisco small subunit, NtRbcS-T, which belongs to an uncharacterized phylogenetic cluster (T). This cluster contains RbcS from at least 33 species, including monocots, many of which are known to possess glandular trichomes. Cluster T is distinct from the cluster M, which includes the abundant, functionally characterized RbcS isoforms expressed in mesophyll or bundle-sheath cells. Expression of NtRbcS-T in Chlamydomonas reinhardtii and purification of the full Rubisco complex showed that this isoform conferred higher V max and K m values as well as higher acidic pH-dependent activity than NtRbcS-M, an isoform expressed in the mesophyll. This observation was confirmed with trichome extracts. These data show that an ancient divergence allowed for the emergence of a so-far-uncharacterized RbcS cluster. We propose that secretory trichomes have a particular Rubisco uniquely adapted to secretory cells where CO 2 is released by the active specialized metabolism. © 2017 American Society of Plant Biologists. All Rights Reserved.
Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia
2015-01-01
Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056
Ferreira-Paim, Kennio; Ferreira, Thatiana Bragine; Andrade-Silva, Leonardo; Mora, Delio Jose; Springer, Deborah J; Heitman, Joseph; Fonseca, Fernanda Machado; Matos, Dulcilena; Melhem, Márcia Souza Carvalho; Silva-Vergara, Mario León
2014-01-01
Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States. In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region. BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99-100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified. Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode.
Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3.
Ng, C Leong; Lang, Kathrin; Meenan, Nicola Ag; Sharma, Amit; Kelley, Ann C; Kleanthous, Colin; Ramakrishnan, V
2010-10-01
The toxin colicin E3 targets the 30S subunit of bacterial ribosomes and cleaves a phosphodiester bond in the decoding center. We present the crystal structure of the 70S ribosome in complex with the cytotoxic domain of colicin E3 (E3-rRNase). The structure reveals how the rRNase domain of colicin binds to the A site of the decoding center in the 70S ribosome and cleaves the 16S ribosomal RNA (rRNA) between A1493 and G1494. The cleavage mechanism involves the concerted action of conserved residues Glu62 and His58 of the cytotoxic domain of colicin E3. These residues activate the 16S rRNA for 2' OH-induced hydrolysis. Conformational changes observed for E3-rRNase, 16S rRNA and helix 69 of 23S rRNA suggest that a dynamic binding platform is required for colicin E3 binding and function.
van Keulen, H; Campbell, S R; Erlandsen, S L; Jarroll, E L
1991-06-01
In an attempt to study Giardia at the DNA sequence level, the rRNA genes of three species, Giardia duodenalis, Giardia ardeae and Giardia muris were cloned and restriction enzyme maps were constructed. The rDNA repeats of these Giardia show completely different restriction enzyme recognition patterns. The size of the rDNA repeat ranges from approximately 5.6 kb in G. duodenalis to 7.6 kb in both G. muris and G. ardeae. These size differences are mainly attributable to the variation in length of the spacer. Minor differences exist among these Giardia in the sizes of their small subunit rRNA and the internal transcribed spacer between small and large subunit rRNA. The genetic maps were constructed by sequence analysis of the DNA around the 5' and 3' ends of the mature rRNA genes and between the rRNA covering the 5.8S rRNA gene and internal transcribed spacer. Comparison of the 5.8S rDNA and 3' end of large subunit rDNA from these three Giardia species showed considerable sequence variation, but the rDNA sequences of G. duodenalis and G. ardeae appear more closely related to each other than to G. muris.
Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B
2013-02-01
Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O(2) concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and 16S small subunit ribosomal RNA (16S rRNA) gene sequencing (clone libraries and 454-pyrotags). Estimates of MGA abundance as a proportion of total bacteria were similar across all three methods although estimates based on CARD-FISH were consistently lower in the OMZ (5.6%±1.9%) than estimates based on 16S rRNA gene clone libraries (11.0%±3.9%) or pyrotags (9.9%±1.8%). Five previously defined MGA subgroups were recovered in 16S rRNA gene clone libraries and five novel subgroups were defined (HF770D10, P262000D03, P41300E03, P262000N21 and A714018). Rarefaction analysis of pyrotag data indicated that the ultimate richness of MGA was very nearly sampled. Spearman's rank analysis of MGA abundances by CARD-FISH and O(2) concentrations resulted in significant correlation. Analyzed in more detail by 16S rRNA pyrotag sequencing, MGA operational taxonomic units affiliated with subgroups Arctic95A-2 and A714018 comprised 0.3-2.4% of total bacterial sequences and displayed strong correlations with decreasing O(2) concentration. This study is the first comprehensive description of MGA diversity using complementary techniques. These results provide a phylogenetic framework for interpreting future studies on ecotype selection among MGA subgroups, and suggest a potentially important role for MGA in the ecology and biogeochemistry of OMZs.
Matsutani, Sachiko
2004-08-09
In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and alpha-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants than to fungi.
Sen, Anindito; Baxa, Ulrich; Simon, Martha N; Wall, Joseph S; Sabate, Raimon; Saupe, Sven J; Steven, Alasdair C
2007-02-23
Fungal prions are infectious filamentous polymers of proteins that are soluble in uninfected cells. In its prion form, the HET-s protein of Podospora anserina participates in a fungal self/non-self recognition phenomenon called heterokaryon incompatibility. Like other prion proteins, HET-s has a so-called "prion domain" (its C-terminal region, HET-s-(218-289)) that is responsible for induction and propagation of the prion in vivo and for fibril formation in vitro. Prion fibrils are thought to have amyloid backbones of polymerized prion domains. A relatively detailed model has been proposed for prion domain fibrils of HET-s based on a variety of experimental constraints (Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., Saupe, S. J., and Riek, R. (2005) Nature 435, 844-848). To test specific predictions of this model, which envisages axial stacking of beta-solenoids with two coils per subunit, we examined fibrils by electron microscopy. Electron diffraction gave a prominent meridional reflection at (0.47 nm)(-1), indicative of cross-beta structure, as predicted. STEM (scanning transmission electron microscopy) mass-per-unit-length measurements yielded 1.02 +/- 0.16 subunits per 0.94 nm, in agreement with the model prediction (1 subunit per 0.94 nm). This is half the packing density of approximately 1 subunit per 0.47 nm previously obtained for fibrils of the yeast prion proteins, Ure2p and Sup35p, whence it follows that the respective amyloid architectures are basically different.
Modulation of neuronal and recombinant GABAA receptors by redox reagents
Amato, Alessandra; Connolly, Christopher N; Moss, Stephen J; Smart, Trevor G
1999-01-01
The functional role played by the postulated disulphide bridge in γ-aminobutyric acid type A (GABAA) receptors and its susceptibility to oxidation and reduction were studied using recombinant (murine receptor subunits expressed in human embryonic kidney cells) and rat neuronal GABAA receptors in conjunction with whole-cell and single channel patch-clamp techniques. The reducing agent dithiothreitol (DTT) reversibly potentiated GABA-activated responses (IGABA) of α1β1 or α1β2 receptors while the oxidizing reagent 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) caused inhibition. Redox modulation of IGABA was independent of GABA concentration, membrane potential and the receptor agonist and did not affect the GABA EC50 or Hill coefficient. The endogenous antioxidant reduced glutathione (GSH) also potentiated IGABA in α1β2 receptors, while both the oxidized form of DTT and glutathione (GSSG) caused small inhibitory effects. Recombinant receptors composed of α1β1γ2S or α1β2γ2S were considerably less sensitive to DTT and DTNB. For neuronal GABAA receptors, IGABA was enhanced by flurazepam and relatively unaffected by redox reagents. However, in cultured sympathetic neurones, nicotinic acetylcholine-activated responses were inhibited by DTT whilst in cerebellar granule neurones, NMDA-activated currents were potentiated by DTT and inhibited by DTNB. Single GABA-activated ion channel currents exhibited a conductance of 16 pS for α1β1 constructs. DTT did not affect the conductance or individual open time constants determined from dwell time histograms, but increased the mean open time by affecting the channel open probability without increasing the number of cell surface receptors. A kinetic model of the effects of DTT and DTNB suggested that the receptor existed in equilibrium between oxidized and reduced forms. DTT increased the rate of entry into reduced receptor forms and also into desensitized states. DTNB reversed these kinetic effects. Our results indicate that GABAA receptors formed by α and β subunits are susceptible to regulation by redox agents. Inclusion of the γ2 subunit in the receptor, or recording from some neuronal GABAA receptors, resulted in reduced sensitivity to DTT and DTNB. Given the suggested existence of αβ subunit complexes in some areas of the central nervous system together with the generation and release of endogenous redox compounds, native GABAA receptors may be subject to regulation by redox mechanisms. PMID:10226147
Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae
Belyy, Alexander; Levanova, Nadezhda; Tabakova, Irina; Rospert, Sabine
2016-01-01
ABSTRACT The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5′ untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62–K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62–K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62–K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62–K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62–K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5′ untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62–K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast. PMID:27303706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogle, James M.; Brodersen, Ditlev E.; Clemons, William M.
Crystal structures of the 30S ribosomal subunit in complex with messenger RNA and cognate transfer RNA in the A site, both in the presence and absence of the antibiotic paromomycin, have been solved at between 3.1 and 3.3 angstroms resolution. Cognate transfer RNA (tRNA) binding induces global domain movements of the 30S subunit and changes in the conformation of the universally conserved and essential bases A1492, A1493, and G530 of 16S RNA. These bases interact intimately with the minor groove of the first two base pairs between the codon and anticodon, thus sensing Watson-Crick base-pairing geometry and discriminating against near-cognatemore » tRNA. The third, or 'wobble,' position of the codon is free to accommodate certain noncanonical base pairs. By partially inducing these structural changes, paromomycin facilitates binding of near-cognate tRNAs.« less
The morphology of cometary dust: Subunit size distributions down to tens of nanometres
NASA Astrophysics Data System (ADS)
Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus
2017-04-01
The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M.S. Bentley, Properties of cometary dust down to the nanometre scale, poster at the conference 'Comets: A new vision after Rosetta/Philae' in Toulouse, 14-18 November 2016.
Panfoli, Isabella; Ponassi, Marco; Ravera, Silvia; Calzia, Daniela; Beitia, Maider; Morelli, Alessandro; Rosano, Camillo
2017-01-22
F 1 F o -ATP synthase is a multisubunit enzyme responsible for the synthesis of ATP. Among its multiple subunits (8 in E. coli, 17 in yeast S. cerevisiae, 16 in vertebrates), two subunits a and c are known to play a central role controlling the H + flow through the inner mitochondrial membrane which allows the subsequent synthesis of ATP, but the pathway followed by H + within the two proteins is still a matter of debate. In fact, even though the structure of ATP synthase is now well defined, the molecular mechanisms determining the function of both F 1 and F O domains are still largely unknown. In this study, we propose a pathway for proton migration along the ATP synthase by hydrogen-bonded chain mechanism, with a key role of serine and threonine residues, by X-ray diffraction data on the subunit a of E. coli Fo. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panfoli, Isabella; Ponassi, Marco; Ravera, Silvia
F{sub 1}F{sub o}-ATP synthase is a multisubunit enzyme responsible for the synthesis of ATP. Among its multiple subunits (8 in E. coli, 17 in yeast S. cerevisiae, 16 in vertebrates), two subunits a and c are known to play a central role controlling the H{sup +} flow through the inner mitochondrial membrane which allows the subsequent synthesis of ATP, but the pathway followed by H{sup +} within the two proteins is still a matter of debate. In fact, even though the structure of ATP synthase is now well defined, the molecular mechanisms determining the function of both F{sub 1} andmore » F{sub O} domains are still largely unknown. In this study, we propose a pathway for proton migration along the ATP synthase by hydrogen-bonded chain mechanism, with a key role of serine and threonine residues, by X-ray diffraction data on the subunit a of E. coli Fo.« less
NASA Astrophysics Data System (ADS)
Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki
2013-08-01
Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.
Karakousis, A; Tan, L; Ellis, D; Alexiou, H; Wormald, P J
2006-04-01
To date, no single reported DNA extraction method is suitable for the efficient extraction of DNA from all fungal species. The efficiency of extraction is of particular importance in PCR-based medical diagnostic applications where the quantity of fungus in a tissue biopsy may be limited. We subjected 16 medically relevant fungi to physical, chemical and enzymatic cell wall disruption methods which constitutes the first step in extracting DNA. Examination by light microscopy showed that grinding with mortar and pestle was the most efficient means of disrupting the rigid fungal cell walls of hyphae and conidia. We then trialled several published DNA isolation protocols to ascertain the most efficient method of extraction. Optimal extraction was achieved by incorporating a lyticase and proteinase K enzymatic digestion step and adapting a DNA extraction procedure from a commercial kit (MO BIO) to generate high yields of high quality DNA from all 16 species. DNA quality was confirmed by the successful PCR amplification of the conserved region of the fungal 18S small-subunit rRNA multicopy gene.
Yamaguchi, Masaya; Yu, Shanshan; Qiao, Renping; ...
2014-12-06
The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the “Platform” centers around a cullin-RING-like E3 ligase catalytic core; the “Arc Lamp” is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, viamore » their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a > 200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.« less
1985-01-01
A panel of monoclonal antibodies (Mab's) has been raised against human platelet thrombospondin (TSP). One Mab, designated A2.5, inhibits the hemagglutinating activity of TSP and immunoprecipitates the NH2 terminal 25 kD heparin binding domain of TSP (Dixit, V.M., D. M. Haverstick, K. M. O'Rourke, S. W. Hennessy, G. A. Grant, S. A. Santoro, and W. A. Frazier, 1985, Biochemistry, in press). Another Mab, C6.7, blocks the thrombin-stimulated aggregation of live platelets and immunoprecipitates an 18-kD fragment distinct from the heparin binding domain (Dixit, V. M., D. M. Haverstick, K. M. O'Rourke, S. W. Hennessy, G. A. Grant, S. A. Santoro, and W. A. Frazier, 1985, Proc. Natl. Acad. Sci. 82: 3472-3476). To determine the relative locations of the epitopes for these Mabs in the three-dimensional structure of TSP, we have examined TSP-Mab complexes by electron microscopy of rotary- shadowed proteins. The TSP molecule is composed of three 180-kD subunits, each of which consists of a small globular domain (approximately 8 nm diam) and a larger globular domain (approximately 16 nm diam) connected by a thin, flexible strand. The subunit interaction site is on the thin connecting strands, nearer the small globular domains. Mab A2.5 binds to the cluster of three small domains, indicating that this region contains the heparin binding domain and thus represents the NH2 termini of the TSP peptide chains. Mab C6.7 binds to the large globular domains on the side opposite the point at which the connecting strand enters the domain, essentially the maximum possible distance from the A2.5 epitope. Using high sensitivity automated NH2 terminal sequencing of TSP chymotryptic peptides we have ordered these fragments within the TSP peptide chain and have confirmed that the epitope for C6.7 in fact lies near the extreme COOH terminus of the peptide chain. In combination with other data, we have been able to construct a map of the linear order of the identified domains of TSP that indicates that to a large extent, the domains are arranged co- linearly with the peptide chain. PMID:2413043
Patarca, R; Dorta, B; Ramirez, J L
1982-01-01
As part of a project pertaining the organization of ribosomal genes in Kinetoplastidae, we have created a data base for published sequences of ribosomal nucleic acids, with information in Spanish. As a first step in their processing, we have written a computer program which introduces the new feature of determining the length of the fragments produced after single or multiple digestion with any of the known restriction enzymes. With this information we have detected conserved SAU 3A sites: (i) at the 5' end of the 5.8S rRNA and at the 3' end of the small subunit rRNA, both included in similar larger sequences; (ii) in the 5.8S rRNA of vertebrates (a second one), which is not present in lower eukaryotes, showing a clear evolutive divergence; and, (iii) at the 5' terminal of the small subunit rRNA, included in a larger conserved sequence. The possible biological importance of these sequences is discussed. PMID:6278402
Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P
1997-02-01
The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).
Differential targeting of Gbetagamma-subunit signaling with small molecules.
Bonacci, Tabetha M; Mathews, Jennifer L; Yuan, Chujun; Lehmann, David M; Malik, Sundeep; Wu, Dianqing; Font, Jose L; Bidlack, Jean M; Smrcka, Alan V
2006-04-21
G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.
Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2.
Aigner, H; Wilson, R H; Bracher, A; Calisse, L; Bhat, J Y; Hartl, F U; Hayer-Hartl, M
2017-12-08
Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO 2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
van Keulen, H; Gutell, R R; Campbell, S R; Erlandsen, S L; Jarroll, E L
1992-10-01
The total nucleotide sequence of the rDNA of Giardia muris, an intestinal protozoan parasite of rodents, has been determined. The repeat unit is 7668 basepairs (bp) in size and consists of a spacer of 3314 bp, a small-subunit rRNA (SSU-rRNA) gene of 1429, and a large-subunit rRNA (LSU-rRNA) gene of 2698 bp. The spacer contains long direct repeats and is heterogeneous in size. The LSU-rRNA of G. muris was compared to that of the human intestinal parasite Giardia duodenalis, to the bird parasite Giardia ardeae, and to that of Escherichia coli. The LSU-rRNA has a size comparable to the 23S rRNA of E. coli but shows structural features typical for eukaryotes. Some variable regions are typically small and account for the overall smaller size of this rRNA. The structure of the G. muris LSU-rRNA is similar to that of the other Giardia rRNA, but each rRNA has characteristic features residing in a number of variable regions.
Song, Bongkeun; Kerkhof, Lee J; Häggblom, Max M
2002-08-06
4-Chlorobenzoate and 4-bromobenzoate were readily degraded in denitrifying enrichment cultures established with river sediment, estuarine sediment or agricultural soil as inoculum. Stable denitrifying consortia were obtained and maintained by serial dilution and repeated feeding of substrates. Microbial community analyses were performed to characterize the 4-chlorobenzoate and 4-bromobenzoate degrading consortia with terminal restriction fragment length polymorphism (T-RFLP) and cloning of 16S rRNA genes from the cultures. Interestingly, two major terminal restriction fragments (T-RFs) in the 4-chlorobenzoate degrading consortia and one T-RF in the 4-bromobenzoate utilizing consortium were observed from T-RFLP analysis regardless of their geographical and ecological origins. The two T-RFs (clones 4CB1 and 4CB2) in 4-chlorobenzoate degrading consortia were identified as members of the beta-subunit of the Proteobacteria on the basis of 16S rRNA sequencing analysis. Phylogenetic analysis of 16S rRNA genes showed that clone 4CB1 was closely related to Thauera aromatica while clone 4CB2 was distantly related to the genera Limnobacter and Ralstonia. The 4-bromobenzoate utilizing consortium mainly consisted of one T-RF, which was identical to clone 4CB2 in spite of different enrichment substrate. This suggests that degradation of 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions was mediated by bacteria belonging to the beta-subunit of the Proteobacteria.
Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong
2016-01-01
Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140
Yonemoto, Isaac T; Matteri, Christopher W; Nguyen, Thao Amy; Smith, Hamilton O; Weyman, Philip D
2013-07-02
Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii "Deep ecotype" that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity. We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions. Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement.
Crystallization of the Nonameric Small Terminase Subunit of Bacteriophage P22
DOE Office of Scientific and Technical Information (OSTI.GOV)
A Roy; A Bhardwaj; G Cingolani
2011-12-31
The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometrymore » of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.« less
Crystallization of the Nonameric Small Terminase Subunit of bacteriophage P22
DOE Office of Scientific and Technical Information (OSTI.GOV)
A Roy; A Bhardwaj; G Cingoloni
2011-12-31
The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometrymore » of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.« less
Diversity, Productivity, and Stability of an Industrial Microbial Ecosystem
Tang, Pei-Zhong; Becker, Scott; Hoang, Tony; Bilgin, Damla; Lim, Yan Wei; Peterson, Todd C.; Mayfield, Stephen; Haerizadeh, Farzad; Shurin, Jonathan B.; Bafna, Vineet; McBride, Robert
2016-01-01
Managing ecosystems to maintain biodiversity may be one approach to ensuring their dynamic stability, productivity, and delivery of vital services. The applicability of this approach to industrial ecosystems that harness the metabolic activities of microbes has been proposed but has never been tested at relevant scales. We used a tag-sequencing approach with bacterial small subunit rRNA (16S) genes and eukaryotic internal transcribed spacer 2 (ITS2) to measuring the taxonomic composition and diversity of bacteria and eukaryotes in an open pond managed for bioenergy production by microalgae over a year. Periods of high eukaryotic diversity were associated with high and more-stable biomass productivity. In addition, bacterial diversity and eukaryotic diversity were inversely correlated over time, possibly due to their opposite responses to temperature. The results indicate that maintaining diverse communities may be essential to engineering stable and productive bioenergy ecosystems using microorganisms. PMID:26896141
Diversity, Productivity, and Stability of an Industrial Microbial Ecosystem.
Beyter, Doruk; Tang, Pei-Zhong; Becker, Scott; Hoang, Tony; Bilgin, Damla; Lim, Yan Wei; Peterson, Todd C; Mayfield, Stephen; Haerizadeh, Farzad; Shurin, Jonathan B; Bafna, Vineet; McBride, Robert
2016-04-01
Managing ecosystems to maintain biodiversity may be one approach to ensuring their dynamic stability, productivity, and delivery of vital services. The applicability of this approach to industrial ecosystems that harness the metabolic activities of microbes has been proposed but has never been tested at relevant scales. We used a tag-sequencing approach with bacterial small subunit rRNA (16S) genes and eukaryotic internal transcribed spacer 2 (ITS2) to measuring the taxonomic composition and diversity of bacteria and eukaryotes in an open pond managed for bioenergy production by microalgae over a year. Periods of high eukaryotic diversity were associated with high and more-stable biomass productivity. In addition, bacterial diversity and eukaryotic diversity were inversely correlated over time, possibly due to their opposite responses to temperature. The results indicate that maintaining diverse communities may be essential to engineering stable and productive bioenergy ecosystems using microorganisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojis, T.L.; Heinzmann, C.; Bateman, J.B.
1994-09-01
Mutations in the gene for the {beta}-subunit of the human rod photoreceptor cGMP phosphodiesterase (PDEB) are responsible for some recessively inherited cases of retinitis pigmentosa (RP). The gene has been localized to human chromosome 4p16.3, near the Huntington disease locus (IT15), by in situ hybridization, somatic cell hybrid and linkage mapping. We previously identified and characterized RFLPs within PDEB, which we have used to establish the linkage relationships with nine other chromosome 4p16 markers in the CEPH v.6.0 database; the most likely locus order is D4S90-[PDEB-D4S115-D4S43]-[D4S95-D4S125]-IT15-[D4S126-D4S412]-D4S10. Using a combination of PDEB RFLPs and microsatellite variation in these linked marker loci,more » we analyzed ten families manifesting autosomal forms of RP for linkage to the PDEB reigon. PDEB was excluded as the disease-causing gene in three autosomal dominant (AD) RP families using PDEB RFLPs. While linkage to PDEB itself could not be ruled out, tight linkage to two closely linked markers (D4S115 and D4S43) was excluded in two additional AD and in three of five autosomal recessive (AR) RP families. Our data provide further evidence for the genetic heterogeneity in families with autosomal forms of RP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petroulakis, E.; Cao, Z.; Salo, T.
Mutations in the HEXA gene that encodes the {alpha}-subunit of the heterodimeric lysosomal enzyme {beta}-hexosaminidase A, or Hex A ({alpha}{beta}), cause G{sub M2} gangliosidosis, type 1. The infantile form (Tay-Sachs disease) results when there is no residual Hex A activity, while less severe and more variable clinical phenotypes result when residual Hex A activity is present. A non-Jewish male who presented with an acute psychotic episode at age 16 was diagnosed with a subacute encephalopathic form of G{sub M2} gangliosidosis. At age 19, chronic psychosis with intermittent acute exacerbations remains the most disabling symptom in this patient and his affectedmore » brother although both exhibit some ataxia and moderately severe dysarthria. We have found a 4 bp insertion (+TATC 1278) associated with infantile Tay-Sachs disease on one allele; no previously identified mutation was found on the second allele. SSCP analysis detected a shift in exon 13 and sequencing revealed a G1422C mutation in the second allele that results in a Trp474Cys substitution. The presence of the mutation was confirmed by the loss of HaeIII and ScrFI sites in exon 13 PCR products from the subjects and their father. The mutation was introduced into the {alpha}-subunit cDNA and Hex S ({alpha}{alpha}) and Hex A ({alpha}{beta}) were transiently expressed in monkey COS-7 cells. The Trp474Cys mutant protein had approximately 5% and 12% of wild-type Hex S and Hex A activity, respectively. Western blot analysis revealed a small amount of residual mature {alpha}-subunit and a normal level of precursor protein. We conclude that the Trp474Cys mutation is the cause of the Hex A deficiency associated with a subacute (juvenile-onset) phenotype in this patient. Like other mutations in exon 13 of HEXA, it appears to affect intracellular processing. Studies of the defect in intracellular processing are in progress.« less
Differential Targeting of Gβγ-Subunit Signaling with Small Molecules
NASA Astrophysics Data System (ADS)
Bonacci, Tabetha M.; Mathews, Jennifer L.; Yuan, Chujun; Lehmann, David M.; Malik, Sundeep; Wu, Dianqing; Font, Jose L.; Bidlack, Jean M.; Smrcka, Alan V.
2006-04-01
G protein βγ subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gβγ subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gβγ subunit functions. Several compounds bound to Gβγ subunits with affinities from 0.1 to 60 μM and selectively modulated functional Gβγ-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.
Horz, Hans-Peter; Yimga, Merlin Tchawa; Liesack, Werner
2001-01-01
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA. PMID:11526021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan Jianguo; Soderlund, David M., E-mail: dms6@cornell.ed
2010-09-15
We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}{sub 1} and {beta}{sub 2} auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 {mu}M), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were {approx}more » 9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 {mu}M), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 {mu}M), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin {approx} 15-fold and that tefluthrin was {approx} 10-fold more potent than deltamethrin as a use-dependent modifier of Na{sub v}1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na{sub v}1.2 sodium channel coexpressed with the rat {beta}{sub 1} and {beta}{sub 2} subunits in oocytes showed that the Na{sub v}1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na{sub v}1.2 isoform. These results implicate sodium channels containing the Na{sub v}1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.« less
Li, S; Cullen, D; Hjort, M; Spear, R; Andrews, J H
1996-01-01
Aureobasidium pullulans, a cosmopolitan yeast-like fungus, colonizes leaf surfaces and has potential as a biocontrol agent of pathogens. To assess the feasibility of rRNA as a target for A. pullulans-specific oligonucleotide probes, we compared the nucleotide sequences of the small-subunit rRNA (18S) genes of 12 geographically diverse A. pullulans strains. Extreme sequence conservation was observed. The consensus A. pullulans sequence was compared with other fungal sequences to identify potential probes. A 21-mer probe which hybridized to the 12 A. pullulans strains but not to 98 other fungi, including 82 isolates from the phylloplane, was identified. A 17-mer highly specific for Cladosporium herbarum was also identified. These probes have potential in monitoring and quantifying fungi in leaf surface and other microbial communities. PMID:8633850
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu
We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased inmore » the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin shifted channel gating to hyperpolarized potentials. • The β1 subunit had opposite effects on the actions of tefluthrin and deltamethrin. • Auxiliary subunits are required for full reconstitution of channel function. • Channels in HEK293 cells exhibit properties similar to channels in neurons.« less
Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria.
Nelson, K E; Thonney, M L; Woolston, T K; Zinder, S H; Pell, A N
1998-10-01
The 16S rRNA sequences and selected phenotypic characteristics were determined for six recently isolated bacteria that can tolerate high levels of hydrolyzable and condensed tannins. Bacteria were isolated from the ruminal contents of animals in different geographic locations, including Sardinian sheep (Ovis aries), Honduran and Colombian goats (Capra hircus), white-tail deer (Odocoileus virginianus) from upstate New York, and Rocky Mountain elk (Cervus elaphus nelsoni) from Oregon. Nearly complete sequences of the small-subunit rRNA genes, which were obtained by PCR amplification, cloning, and sequencing, were used for phylogenetic characterization. Comparisons of the 16S rRNA of the six isolates showed that four of the isolates were members of the genus Streptococcus and were most closely related to ruminal strains of Streptococcus bovis and the recently described organism Streptococcus gallolyticus. One of the other isolates, a gram-positive rod, clustered with the clostridia in the low-G+C-content group of gram-positive bacteria. The sixth isolate, a gram-negative rod, was a member of the family Enterobacteriaceae in the gamma subdivision of the class Proteobacteria. None of the 16S rRNA sequences of the tannin-tolerant bacteria examined was identical to the sequence of any previously described microorganism or to the sequence of any of the other organisms examined in this study. Three phylogenetically distinct groups of ruminal bacteria were isolated from four species of ruminants in Europe, North America, and South America. The presence of tannin-tolerant bacteria is not restricted by climate, geography, or host animal, although attempts to isolate tannin-tolerant bacteria from cows on low-tannin diets failed.
Phenotypic and Phylogenetic Characterization of Ruminal Tannin-Tolerant Bacteria
Nelson, Karen E.; Thonney, Michael L.; Woolston, Tina K.; Zinder, Stephen H.; Pell, Alice N.
1998-01-01
The 16S rRNA sequences and selected phenotypic characteristics were determined for six recently isolated bacteria that can tolerate high levels of hydrolyzable and condensed tannins. Bacteria were isolated from the ruminal contents of animals in different geographic locations, including Sardinian sheep (Ovis aries), Honduran and Colombian goats (Capra hircus), white-tail deer (Odocoileus virginianus) from upstate New York, and Rocky Mountain elk (Cervus elaphus nelsoni) from Oregon. Nearly complete sequences of the small-subunit rRNA genes, which were obtained by PCR amplification, cloning, and sequencing, were used for phylogenetic characterization. Comparisons of the 16S rRNA of the six isolates showed that four of the isolates were members of the genus Streptococcus and were most closely related to ruminal strains of Streptococcus bovis and the recently described organism Streptococcus gallolyticus. One of the other isolates, a gram-positive rod, clustered with the clostridia in the low-G+C-content group of gram-positive bacteria. The sixth isolate, a gram-negative rod, was a member of the family Enterobacteriaceae in the gamma subdivision of the class Proteobacteria. None of the 16S rRNA sequences of the tannin-tolerant bacteria examined was identical to the sequence of any previously described microorganism or to the sequence of any of the other organisms examined in this study. Three phylogenetically distinct groups of ruminal bacteria were isolated from four species of ruminants in Europe, North America, and South America. The presence of tannin-tolerant bacteria is not restricted by climate, geography, or host animal, although attempts to isolate tannin-tolerant bacteria from cows on low-tannin diets failed. PMID:9758806
NASA Technical Reports Server (NTRS)
Springer, E.; Sachs, M. S.; Woese, C. R.; Boone, D. R.
1995-01-01
Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.
Jaswal, Ravinder Kumar; Sodhi, Harpreet Singh; Sharma, Shivani
2014-01-01
Five Pleurotus hybrid dikaryons, developed through cross-breeding of P. florida PAU-5 (PF-5) and P. sajor-caju PAU-3 (PSC-3) were characterized with respect to textural properties, color, and enzymatic and genetic variability. Texture profile revealed significant differences in springiness, resilience, cohesiveness, and chewiness between all hybrids compared to the parents. Among the hybrid cultures, maximum whiteness was reported in hybrid 37, whereas hybrid 8 had minimum whiteness. Three hybrids (16, 37, 42) showed an increased linear growth rate in relation to PF-5, whereas no hybrid showed a higher growth rate than PSC-3. Maximum endoglucanase and xylanase activity was observed in hybrid 46, whereas minimum activity occurred in hybrid 42. Laccase and protease activity was higher in hybrid 37 and 46, respectively. Four hybrids (16, 37, 42, 46) showed increased peroxidase activity in relation to PF-5, whereas hybrid 46 showed activity higher than the parent PSC-3. Comparison of isozyme patterns confirmed the hybrid nature of hybrid 16. The large variation in the intensity of bands could be a result of recombination. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of extracellular enzymes revealed 60.3- and 43-KDa bands in all the hybrids. An additional 25-KDa band was reported in hybrids 37, 42, and 46 and the parent PF-5, indicating their close relatedness. Parental strains showed higher divergence in small-subunit ribosomal DNA region compared with the internal transcribed spacer region, indicating their significance in varietal discrimination. Hybrid 46 had a small-subunit ribosomal DNA region more similar to that of PSC-3 compared with PF-5, whereas the internal transcribed spacer region of hybrids 42 and 46 revealed close resemblance to that of PF-5 and PSC-3, respectively.
Wegayehu, Teklu; Karim, Md Robiul; Li, Junqiang; Adamu, Haileeyesus; Erko, Berhanu; Zhang, Longxian; Tilahun, Getachew
2017-01-17
Cryptosporidium and Giardia duodenalis are gastro-intestinal parasites that infect human and animals worldwide. Both parasites share a broad host range and are believed to be zoonosis. The aim of this study was to identify the species of Cryptosporidium and assemblages of G. duodenalis in lambs and to elucidate their role in zoonotic transmission. A total of 389 fecal samples were collected from lambs and screened by microscopy and nested PCR targeting the small-subunit ribosomal RNA for Cryptosporidium; and the small-subunit ribosomal RNA, triose phosphate isomerase, β-giardin, and glutamate dehydrogenase genes for G. duodenalis. The prevalence of Cryptosporidium and G. duodenalis was 2.1% (8/389) and 2.6% (10/389), respectively. The infection rate at the three study sites ranged from 1.3 to 3.1% for Cryptosporidium and 1.6 to 3.9% for G. duodenalis; but variation was not statistically significant (p > 0.05). The finding also showed that there is no sex and age group associated difference in the occurrence of Cryptosporidium and G. duodenalis infections in lambs. Sequence analysis revealed that lambs were mono-infection with C. ubiquitum and G. duodenalis assemblage E. The analysis also indicated the presence of genetic variation within isolates of assemblage E; with 4 of them are novel genotypes at the small-subunit ribosomal RNA, β-giardin, and glutamate dehydrogenase genes. The findings of the current study showed that lambs are capable of harboring C. ubiquitum and G. duodenalis assemblage E. This finding suggests that lambs might be sources for potentially zoonotic Cryptosporidium species. This was first molecular study in lambs and contributes to a better understanding of the epidemiology of Cryptosporidium and G. duodenalis in central Ethiopia.
NASA Technical Reports Server (NTRS)
Li, Xiangyang; Xing, Jinpeng; Gianfagna, Thomas J.; Janes, Harry W.
2002-01-01
ADP-glucose pyrophosphorylase (AGPase, EC2.7.7.27) is a key regulatory enzyme in starch biosynthesis. The enzyme is a heterotetramer with two S and two B subunits. In tomato, there are three multiple forms of the S subunit gene. Agp S1, S2 and B are highly expressed in fruit from 10 to 25 days after anthesis. Agp S3 is only weakly expressed in fruit. Sucrose significantly elevates expression of Agp S1, S2 and B in both leaves and fruits. Agp S1 exhibits the highest degree of regulation by sucrose. In fact, sucrose may be required for Agp S1 expression. For excised leaves incubated in water, no transcripts for Agp S1 could be detected in the absence of sucrose, whereas it took up to 16 h in water before transcripts were no longer detectable for Agp S2 and B. Neither Agp S3 nor the tubulin gene is affected by sucrose, demonstrating that this response is specifically regulated by a carbohydrate metabolic signal, and is not due to a general increase in metabolism caused by sucrose treatment. Truncated versions of the promoter for Agp S1 indicate that a specific region 1.3-3.0 kb upstream from the transcription site is responsible for sucrose sensitivity. This region of the S1 promoter contains several cis-acting elements present in the promoters of other genes that are also regulated by sucrose. c2002 Elsevier Science Ireland Ltd. All rights reserved.
Wang, Yan-li; Li, Lin-fang; Li, Dong-xian; Wang, Baile; Zhang, Keqin; Niu, Xuemei
2015-07-29
Nematophagous fungi are globally distributed soil fungi and well-known natural predators of soil-dwelling nematodes. Pochonia chlamydosporia can be found in diverse nematode-suppressive soils as a parasite of nematode eggs and is one of the most studied potential biological control agents of nematodes. However, little is known about the functions of small molecules in the process of infection of nematodes by this parasitic fungus or about small-molecule-mediated interactions between the pathogenic fungus and its host. Our recent study demonstrated that a P. chlamydosporia strain isolated from root knots of tobacco infected by the root-knot nematode Meloidogyne incognita produced a class of yellow pigment metabolite aurovertins, which induced the death of the free-living nematode Panagrellus redivevus. Here we report that nematicidal P. chlamydosporia strains obtained from the nematode worms tended to yield a total yellow pigment aurovertin production exceeding the inhibitory concentration shown in nematicidal bioassays. Aurovertin D was abundant in the pigment metabolites of P. chlamydosporia strains. Aurovertin D showed strong toxicity toward the root-knot nematode M. incognita and exerted profound and detrimental effects on the viability of Caenorhabditis elegans even at a subinhibitory concentration. Evaluation of the nematode mutation in the β subunit of F1-ATPase, together with the application of RNA interference in screening each subunit of F1FO-ATPase in the nematode worms, demonstrated that the β subunit of F1-ATPase might not be the specific target for aurovertins in nematodes. The resistance of C. elegans daf-2(e1370) and the hypersensitivity of C. elegans daf-16(mu86) to aurovertin D indicated that DAF-16/FOXO transcription factor in nematodes was triggered in response to the aurovertin attack. These findings advance our understanding of the roles of aurovertin production in the interactions between nematodes and the pathogen fungus P. chlamydosporia.
Fan, Hongying; Zhao, Fuping; Zhu, Caiye; Li, Fadi; Liu, Jidong; Zhang, Li; Wei, Caihong; Du, Lixin
2016-05-01
China has a long history of sheep (Ovis aries [O. aries]) breeding and an abundance of sheep genetic resources. Knowledge of the complete O. aries mitogenome should facilitate the study of the evolutionary history of the species. Therefore, the complete mitogenome of O. aries was sequenced and annotated. In order to characterize the mitogenomes of 3 Chinese sheep breeds (Altay sheep [AL], Shandong large-tailed sheep [SD], and small-tailed Hulun Buir sheep [sHL]), 19 sets of primers were employed to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) sequence of each breed. The sizes of the complete mitochondrial genomes of the sHL, AL, and SD breeds were 16,617 bp, 16,613 bp, and 16,613 bp, respectively. The mitochondrial genomes were deposited in the GenBank database with accession numbers KP702285 (AL sheep), KP981378 (SD sheep), and KP981380 (sHL sheep) respectively. The organization of the 3 analyzed sheep mitochondrial genomes was similar, with each consisting of 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA), 13 protein-coding genes, and 1 control region (D-loop). The NADH dehydrogenase subunit 6 (ND6) and 8 tRNA genes were encoded on the light strand, whereas the rest of the mitochondrial genes were encoded on the heavy strand. The nucleotide skewness of the coding strands of the 3 analyzed mitogenomes was biased toward A and T. We constructed a phylogenetic tree using the complete mitogenomes of each type of sheep to allow us to understand the genetic relationships between Chinese breeds of O. aries and those developed and utilized in other countries. Our findings provide important information regarding the O. aries mitogenome and the evolutionary history of O. aries inside and outside China. In addition, our results provide a foundation for further exploration of the taxonomic status of O. aries.
Fan, Hongying; Zhao, Fuping; Zhu, Caiye; Li, Fadi; Liu, Jidong; Zhang, Li; Wei, Caihong; Du, Lixin
2016-01-01
China has a long history of sheep (Ovis aries [O. aries]) breeding and an abundance of sheep genetic resources. Knowledge of the complete O. aries mitogenome should facilitate the study of the evolutionary history of the species. Therefore, the complete mitogenome of O. aries was sequenced and annotated. In order to characterize the mitogenomes of 3 Chinese sheep breeds (Altay sheep [AL], Shandong large-tailed sheep [SD], and small-tailed Hulun Buir sheep [sHL]), 19 sets of primers were employed to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) sequence of each breed. The sizes of the complete mitochondrial genomes of the sHL, AL, and SD breeds were 16,617 bp, 16,613 bp, and 16,613 bp, respectively. The mitochondrial genomes were deposited in the GenBank database with accession numbers KP702285 (AL sheep), KP981378 (SD sheep), and KP981380 (sHL sheep) respectively. The organization of the 3 analyzed sheep mitochondrial genomes was similar, with each consisting of 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA), 13 protein-coding genes, and 1 control region (D-loop). The NADH dehydrogenase subunit 6 (ND6) and 8 tRNA genes were encoded on the light strand, whereas the rest of the mitochondrial genes were encoded on the heavy strand. The nucleotide skewness of the coding strands of the 3 analyzed mitogenomes was biased toward A and T. We constructed a phylogenetic tree using the complete mitogenomes of each type of sheep to allow us to understand the genetic relationships between Chinese breeds of O. aries and those developed and utilized in other countries. Our findings provide important information regarding the O. aries mitogenome and the evolutionary history of O. aries inside and outside China. In addition, our results provide a foundation for further exploration of the taxonomic status of O. aries. PMID:26954183
Molecular Approach to the Identification of Fish in the South China Sea
Zhang, Junbin; Hanner, Robert
2012-01-01
Background DNA barcoding is one means of establishing a rapid, accurate, and cost-effective system for the identification of species. It involves the use of short, standard gene targets to create sequence profiles of known species against sequences of unknowns that can be matched and subsequently identified. The Fish Barcode of Life (FISH-BOL) campaign has the primary goal of gathering DNA barcode records for all the world's fish species. As a contribution to FISH-BOL, we examined the degree to which DNA barcoding can discriminate marine fishes from the South China Sea. Methodology/Principal Findings DNA barcodes of cytochrome oxidase subunit I (COI) were characterized using 1336 specimens that belong to 242 species fishes from the South China Sea. All specimen provenance data (including digital specimen images and geospatial coordinates of collection localities) and collateral sequence information were assembled using Barcode of Life Data System (BOLD; www.barcodinglife.org). Small intraspecific and large interspecific differences create distinct genetic boundaries among most species. In addition, the efficiency of two mitochondrial genes, 16S rRNA (16S) and cytochrome b (cytb), and one nuclear ribosomal gene, 18S rRNA (18S), was also evaluated for a few select groups of species. Conclusions/Significance The present study provides evidence for the effectiveness of DNA barcoding as a tool for monitoring marine biodiversity. Open access data of fishes from the South China Sea can benefit relative applications in ecology and taxonomy. PMID:22363454
Gómez, Fernando; Moreira, David; López-García, Purificación
2012-01-01
Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates. Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates. © 2011 The Author(s) Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.
Heidelberg, Laura S.; Warren, James W.
2013-01-01
Many drugs used to treat anxiety are positive modulators of GABAA receptors, which mediate fast inhibitory neurotransmission. The GABAA receptors can be assembled from a combination of at least 16 different subunits. The receptor’s subunit composition determines its pharmacologic and functional properties, and subunit expression varies throughout the brain. A primary goal for new treatments targeting GABAA receptors is the production of subunit-selective modulators acting upon a discrete population of receptors. The anxiolytic 4-amino-7-hydroxy-2-methyl-5,6,7,8,-tetrahydrobenzo[b]thieno[2,3-b]pyridine-3-carboxylic acid, but-2-ynyl ester (SB-205384) is widely considered to be selective for α3-containing GABAA receptors. However, it has been tested only on α1-, α2-, and α3-containing receptors. We examined the activity of SB-205384 at recombinant receptors containing the six different α subunits and found that receptors containing the α3, α5, and α6 subunits were potentiated by SB-205384, with the α6 subunit conferring the greatest responsiveness. Properties associated with chimeric α1/α6 subunits suggested that multiple structural domains influence sensitivity to SB-205384. Point mutations of residues within the extracellular N-terminal domain identified a leucine residue located in loop E of the agonist binding site as an important determinant of high sensitivity to modulation. In the α6 subunit the identity of this residue is species-dependent, with the leucine found in rat subunits but not in human. Our results indicate that SB-205384 is not an α3-selective modulator, and instead acts at several GABAA receptor isoforms. These findings have implications for the side-effect profile of this anxiolytic as well as for its use in neuronal and animal studies as a marker for contribution from α3-containing receptors. PMID:23902941
Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast
Konikkat, Salini; Woolford, John L.
2017-01-01
Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ~76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae. We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly. PMID:28062837
2017-01-01
The catalytic inefficiencies of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) often limit plant productivity. Strategies to engineer more efficient plant Rubiscos have been hampered by evolutionary constraints, prompting interest in Rubisco isoforms from non-photosynthetic organisms. The methanogenic archaeon Methanococcoides burtonii contains a Rubisco isoform that functions to scavenge the ribulose-1,5-bisphosphate (RuBP) by-product of purine/pyrimidine metabolism. The crystal structure of M. burtonii Rubisco (MbR) presented here at 2.6 Å resolution is composed of catalytic large subunits (LSu) assembled into pentamers of dimers, (L2)5, and differs from Rubiscos from higher plants where LSus are glued together by small subunits (SSu) into hexadecameric L8S8 enzymes. MbR contains a unique 29-amino acid insertion near the C terminus, which folds as a separate domain in the structure. This domain, which is visualized for the first time in this study, is located in a similar position to SSus in L8S8 enzymes between LSus of adjacent L2 dimers, where negatively charged residues coordinate around a Mg2+ ion in a fashion that suggests this domain may be important for the assembly process. The Rubisco assembly domain is thus an inbuilt SSu mimic that concentrates L2 dimers. MbR assembly is ligand-stimulated, and we show that only 6-carbon molecules with a particular stereochemistry at the C3 carbon can induce oligomerization. Based on MbR structure, subunit arrangement, sequence, phylogenetic distribution, and function, MbR and a subset of Rubiscos from the Methanosarcinales order are proposed to belong to a new Rubisco subgroup, named form IIIB. PMID:28154188
Gunn, Laura H; Valegård, Karin; Andersson, Inger
2017-04-21
The catalytic inefficiencies of the CO 2 -fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) often limit plant productivity. Strategies to engineer more efficient plant Rubiscos have been hampered by evolutionary constraints, prompting interest in Rubisco isoforms from non-photosynthetic organisms. The methanogenic archaeon Methanococcoides burtonii contains a Rubisco isoform that functions to scavenge the ribulose-1,5-bisphosphate (RuBP) by-product of purine/pyrimidine metabolism. The crystal structure of M. burtonii Rubisco (MbR) presented here at 2.6 Å resolution is composed of catalytic large subunits (LSu) assembled into pentamers of dimers, (L 2 ) 5 , and differs from Rubiscos from higher plants where LSus are glued together by small subunits (SSu) into hexadecameric L 8 S 8 enzymes. MbR contains a unique 29-amino acid insertion near the C terminus, which folds as a separate domain in the structure. This domain, which is visualized for the first time in this study, is located in a similar position to SSus in L 8 S 8 enzymes between LSus of adjacent L 2 dimers, where negatively charged residues coordinate around a Mg 2+ ion in a fashion that suggests this domain may be important for the assembly process. The Rubisco assembly domain is thus an inbuilt SSu mimic that concentrates L 2 dimers. MbR assembly is ligand-stimulated, and we show that only 6-carbon molecules with a particular stereochemistry at the C 3 carbon can induce oligomerization. Based on MbR structure, subunit arrangement, sequence, phylogenetic distribution, and function, MbR and a subset of Rubiscos from the Methanosarcinales order are proposed to belong to a new Rubisco subgroup, named form IIIB. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Rat lung glutathione S-transferases. Evidence for two distinct types of 22000-Mr subunits.
Singh, S V; Partridge, C A; Awasthi, Y C
1984-01-01
Two immunologically distinct types of 22000-Mr subunits are present in rat lung glutathione S-transferases. One of these subunits is probably similar to Ya subunits of rat liver glutathione S-transferases, whereas the other subunit Ya' is immunologically distinct. Glutathione S-transferase II (pI7.2) of rat lung is a heterodimer (YaYa') of these subunits, and glutathione S-transferase VI (pI4.8) of rat lung is a homodimer of Ya' subunits. On hybridization in vitro of the subunits of glutathione S-transferase II of rat lung three active dimers having pI values 9.4, 7.2 and 4.8 are obtained. Immunological properties and substrate specificities indicate that the hybridized enzymes having pI7.2 and 4.8 correspond to glutathione S-transferases II and VI of rat lung respectively. Images Fig. 1. Fig. 5. PMID:6433888
2012-01-01
Background Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa. Results Four gene regions were examined, two mitochondrial (cytochrome c oxidase subunit I [COI] and small subunit ribosomal 16S rDNA [16S]) and two nuclear (elongation factor 1 alpha [EF1α] and phosphoenolpyruvate carboxykinase [PEPCK]). Bayesian and parsimony approaches to phylogeny reconstruction resulted in five well-supported major lineages, which were confirmed using a general mixed Yule-coalescent (GMYC) model. Results from the EF1α gene were significantly incongruent with both mitochondrial and nuclear (PEPCK) results, possibly due to incomplete lineage sorting of the EF1α gene. Mean between-clade distance estimated using the COI and PEPCK data was found to be an order of magnitude greater than the within-clade distance and comparable to that previously reported for other recognised Baetis species. Analysis of the Isolation by Distance (IBD) between all samples showed a small but significant effect of IBD. Within each lineage the contribution of IBD was minimal. Tentative dating analyses using an uncorrelated log-normal relaxed clock and two published estimates of COI mutation rates suggest that diversification within the group occurred throughout the Pliocene and mid-Miocene (~2.4–11.5 mya). Conclusions The distinct lineages of B. harrisoni correspond to categorical environmental variation, with two lineages comprising samples from streams that flow through acidic Table Mountain Sandstone and three lineages with samples from neutral-to-alkaline streams found within eastern South Africa, Malawi and Zambia. The results of this study suggest that B. harrisoni as it is currently recognised is not a single species with a wide geographic range and pH-tolerance, but may comprise up to five species under the phylogenetic species concept, each with limited pH-tolerances, and that the B. harrisoni species group is thus in need of taxonomic review. PMID:22373076
Liu, Liang; Chen, Jiyun; Yang, Bo; Wang, Yonghua
2015-03-06
Small heat shock proteins (sHSPs) are ubiquitous chaperones that play a vital role in protein homeostasis. sHSPs are characterized by oligomeric architectures and dynamic exchange of subunits. The flexible oligomeric assembling associating with function remains poorly understood. Based on the structural data, it is certainly agreed that two dimerization models depend on the presence or absence of a β6 strand to differentiate nonmetazoan sHSPs from metazoan sHSPs. Here, we report the Sulfolobus solfataricus Hsp20.1 ACD dimer structure, which shows a distinct dimeric interface. We observed that, in the absence of β6, Hsp20.1 dimer does not depend on β7 strand for forming dimer interface as metazoan sHSPs, nor dissociates to monomers. This is in contrast to other published sHSPs. Our structure reveals a variable, highly polar dimer interface that has advantages for rapid subunits exchange and substrate binding. Remarkably, we find that the C-terminal truncation variant has chaperone activity comparable to that of wild-type despite lack of the oligomer structure. Our further study indicates that the N-terminal region is essential for the oligomer and dimer binding to the target protein. Together, the structure and function of Hsp20.1 give more insight into the thermal protection mechanism of sHSPs. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional Analysis of a Wheat AGPase Plastidial Small Subunit with a Truncated Transit Peptide.
Yang, Yang; Gao, Tian; Xu, Mengjun; Dong, Jie; Li, Hanxiao; Wang, Pengfei; Li, Gezi; Guo, Tiancai; Kang, Guozhang; Wang, Yonghua
2017-03-01
ADP-glucose pyrophosphorylase (AGPase), the key enzyme in starch synthesis, consists of two small subunits and two large subunits with cytosolic and plastidial isoforms. In our previous study, a cDNA sequence encoding the plastidial small subunit (TaAGPS1b) of AGPase in grains of bread wheat ( Triticum aestivum L.) was isolated and the protein subunit encoded by this gene was characterized as a truncated transit peptide (about 50% shorter than those of other plant AGPS1bs). In the present study, TaAGPS1b was fused with green fluorescent protein (GFP) in rice protoplast cells, and confocal fluorescence microscopy observations revealed that like other AGPS1b containing the normal transit peptide, TaAGPS1b-GFP was localized in chloroplasts. TaAGPS1b was further overexpressed in a Chinese bread wheat cultivar, and the transgenic wheat lines exhibited a significant increase in endosperm AGPase activities, starch contents, and grain weights. These suggested that TaAGPS1b subunit was targeted into plastids by its truncated transit peptide and it could play an important role in starch synthesis in bread wheat grains.
Satratoxin G interaction with 40S and 60S ribosomal subunits precedes apoptosis in the macrophage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Hee Kyong; Shinozuka, Junko; Islam, Zahidul
2009-06-01
Satratoxin G (SG) and other macrocyclic trichothecene mycotoxins are potent inhibitors of eukaryotic translation that are potentially immunosuppressive. The purpose of this research was to test the hypothesis that SG-induced apoptosis in the macrophage correlates with binding of this toxin to the ribosome. Exposure of RAW 264.7 murine macrophages to SG at concentrations of 10 to 80 ng/ml induced DNA fragmentation within 4 h that was indicative of apoptosis. To relate these findings to ribosome binding of SG, RAW cells were exposed to different toxin concentrations for various time intervals, ribosomal fractions isolated by sucrose density gradient ultracentrifugation and resultantmore » fractions analyzed for SG by competitive ELISA. SG was found to specifically interact with 40S and 60S ribosomal subunits as early as 5 min and that, at high concentrations or extended incubation times, the toxin induced polysome disaggregation. While co-incubation with the simple Type B trichothecene DON had no effect on SG uptake into cell cytoplasm, it inhibited SG binding to the ribosome, suggesting that the two toxins bound to identical sites and that SG binding was reversible. Although both SG and DON induced mobilization of p38 and JNK 1/2 to the ribosome, phosphorylation of ribosomal bound MAPKs occurred only after DON treatment. SG association with the 40S and 60S subunits was also observed in the PC-12 neuronal cell model which is similarly susceptible to apoptosis. To summarize, SG rapidly binds small and large ribosomal subunits in a concentration- and time-dependent manner that was consistent with induction of apoptosis.« less
Tammaro, Margaret; Liao, Shuren; McCane, Jill; Yan, Hong
2015-10-15
The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5' strand to generate 3' ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5'->3' directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN's 3'->5' helicase activity and DNA2's 5'->3' ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis
Aich, Abhishek; Wang, Cong; Chowdhury, Arpita; Ronsör, Christin; Pacheu-Grau, David; Richter-Dennerlein, Ricarda; Dennerlein, Sven
2018-01-01
Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines. PMID:29381136
Assembly of the epithelial Na+ channel evaluated using sucrose gradient sedimentation analysis.
Cheng, C; Prince, L S; Snyder, P M; Welsh, M J
1998-08-28
Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Na+ channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S. In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the alpha subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the alpha subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the alpha subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.
Sardana, Richa; White, Joshua P; Johnson, Arlen W
2013-06-01
Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.
Tokarev, Yuri S; Peat, Katy M; Malysh, Julia M; Senderskiy, Igor V
2018-06-21
A microsporidium was found in a Mediterranean cricket Gryllus bimaculatus from a pet market in the UK and a lab stock at the Moscow Zoo (originating from London Zoo). The spores were ovoid, uninucleate, 6.3 × 3.7 μm in size (unfixed), in packets by of 8, 16, or 32. The spores were easily discharged upon dessication or slight mechanical pressure. The polar tube was isofilar, with 15-16 coils arranged in 1-2 rows. The polaroplast was composed of thin lamellae and occupied about one third of the spore volume. The endospore was 200 nm thick, thinning over the anchoring disc. The exospore was thin, uniform, and with no ornamentation. Phylogenetics based upon small subunit ribosomal RNA (Genbank accession # MG663123) and RNA polymerase II largest subunit (# MG664544) genes placed the parasite at the base of the Trachipleistophora/Vavraia lineage. The RPB1 locus was polymorphic but similar genetic structure and identical clones were found in both isolates, confirming their common geographic origin. Due to in insufficient ultrastructural data and prominent divergence from described species, the parasite is provisionally placed to the collective taxon Microsporidium.
A functional network involved in the recycling of nucleocytoplasmic pre-60S factors
Lebreton, Alice; Saveanu, Cosmin; Decourty, Laurence; Rain, Jean-Christophe; Jacquier, Alain; Fromont-Racine, Micheline
2006-01-01
Eukaryotic pre-ribosomes go through cytoplasmic maturation steps before entering translation. The nucleocytoplasmic proteins participating in these late stages of maturation are reimported to the nucleus. In this study, we describe a functional network focused on Rei1/Ybr267w, a strictly cytoplasmic pre-60S factor indirectly involved in nuclear 27S pre-ribosomal RNA processing. In the absence of Rei1, the nuclear import of at least three other pre-60S factors is impaired. The accumulation in the cytoplasm of a small complex formed by the association of Arx1 with a novel factor, Alb1/Yjl122w, inhibits the release of the putative antiassociation factor Tif6 from the premature large ribosomal subunits and its recycling to the nucleus. We propose a model in which Rei1 is a key factor for the coordinated dissociation and recycling of the last pre-60S factors before newly synthesized large ribosomal subunits enter translation. PMID:16651379
Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution
NASA Astrophysics Data System (ADS)
Quade, Nick; Boehringer, Daniel; Leibundgut, Marc; van den Heuvel, Joop; Ban, Nenad
2015-07-01
Hepatitis C virus (HCV), a widespread human pathogen, is dependent on a highly structured 5'-untranslated region of its mRNA, referred to as internal ribosome entry site (IRES), for the translation of all of its proteins. The HCV IRES initiates translation by directly binding to the small ribosomal subunit (40S), circumventing the need for many eukaryotic translation initiation factors required for mRNA scanning. Here we present the cryo-EM structure of the human 40S ribosomal subunit in complex with the HCV IRES at 3.9 Å resolution, determined by focused refinement of an 80S ribosome-HCV IRES complex. The structure reveals the molecular details of the interactions between the IRES and the 40S, showing that expansion segment 7 (ES7) of the 18S rRNA acts as a central anchor point for the HCV IRES. The structural data rationalizes previous biochemical and genetic evidence regarding the initiation mechanism of the HCV and other related IRESs.
Liu, Huanhuan; Ma, Yan; Chen, Na; Guo, Siyi; Liu, Huili; Guo, Xiaoyu; Chong, Kang; Xu, Yunyuan
2014-01-01
Polygalacturonase (PG), one of the hydrolases responsible for cell wall pectin degradation, is involved in organ consenescence and biotic stress in plants. PG1 is composed of a catalytic subunit, PG2, and a non-catalytic PG1β subunit. OsBURP16 belongs to the PG1β-like subfamily of BURP-family genes and encodes one putative PG1β subunit precursor in rice (Oryza sativa L.). Transcription of OsBURP16 is induced by cold, salinity and drought stresses, as well as by abscisic acid (ABA) treatment. Analysis of plant survival rates, relative ion leakage rates, accumulation levels of H2O2 and water loss rates of leaves showed that overexpression of OsBURP16 enhanced sensitivity to cold, salinity and drought stresses compared with controls. Young leaves of Ubi::OsBURP16 transgenic plants showed reduced cell adhesion and increased cuticular transpiration rate. Mechanical strength measurement of Ubi::OsBURP16 plants showed that reduced force was required to break leaves as compared with wild type. Transgenic rice showed enhanced PG activity and reduced pectin content. All these results suggested that overexpression of OsBURP16 caused pectin degradation and affected cell wall integrity as well as transpiration rate, which decreased tolerance to abiotic stresses. The cell wall is a barrier against biotic and abiotic stresses. Overexpression of stress-inducible OsBURP16, the beta-subunit of polygalacturonase 1, decreases pectin contents and cell adhesion in rice. Analyses of plant survival, ion leakage, H2O2 levels, and leaf water loss showed that these effects of overexpression were accompanied by enhanced sensitivity to cold, salinity and drought compared to the wild-type. Our data therefore provide new information on links between polygalacturonase activity and abiotic stress resistance in rice. PMID:24237159
Cleator, John H; Wells, Christopher A; Dingus, Jane; Kurtz, David T; Hildebrandt, John D
2018-05-01
Ser54 of G s α binds guanine nucleotide and Mg 2+ as part of a conserved sequence motif in GTP binding proteins. Mutating the homologous residue in small and heterotrimeric G proteins generates dominant-negative proteins, but by protein-specific mechanisms. For α i/o , this results from persistent binding of α to βγ , whereas for small GTP binding proteins and α s this results from persistent binding to guanine nucleotide exchange factor or receptor. This work examined the role of βγ interactions in mediating the properties of the Ser54-like mutants of G α subunits. Unexpectedly, WT- α s or N54- α s coexpressed with α 1B -adrenergic receptor in human embryonic kidney 293 cells decreased receptor stimulation of IP3 production by a cAMP-independent mechanism, but WT- α s was more effective than the mutant. One explanation for this result would be that α s , like Ser47 α i/o , blocks receptor activation by sequestering βγ ; implying that N54- α S has reduced affinity for βγ since it was less effective at blocking IP3 production. This possibility was more directly supported by the observation that WT- α s was more effective than the mutant in inhibiting βγ activation of phospholipase C β 2. Further, in vitro synthesized N54- α s bound biotinylated- βγ with lower apparent affinity than did WT- α s The Cys54 mutation also decreased βγ binding but less effectively than N54- α s Substitution of the conserved Ser in α o with Cys or Asn increased βγ binding, with the Cys mutant being more effective. This suggests that Ser54 of α s is involved in coupling changes in nucleotide binding with altered subunit interactions, and has important implications for how receptors activate G proteins. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Single channel properties of human α3 AChRs: impact of β2, β4 and α5 subunits
Nelson, Mark E; Lindstrom, Jon
1999-01-01
We performed single channel analysis on human α3 acetylcholine receptors (AChRs) in Xenopus oocytes and native AChRs from the human neuroblastoma cell line IMR-32. α3 AChRs exhibit channel properties that reflect subunit composition.α3β2 AChR open times were 0.71 ± 0.14 and 3.5 ± 0.4 ms with a predominant conductance of 26 pS. α3β4 AChRs had open times of 1.4 ± 0.2 and 6.5 ± 0.8 ms and a predominant conductance of 31 pS. Burst times were 0.82 ± 0.12 and 5.3 ± 0.7 ms for α3β2 and 1.7 ± 0.1 and 16 ± 1 ms for α3β4. Desensitization was faster for AChRs with the β2 subunit than for those with the β4 subunit.One open time for α3α5β2 AChRs (5.5 ± 0.3 ms) was different from those of α3β2 AChRs. For α3α5β4 AChRs, an additional conductance, open time and burst time (36 pS, 22 ± 3 ms and 43 ± 4 ms, respectively) were different from those for α3β4 AChRs.α3 AChRs were inhibited by hexamethonium or mecamylamine. The rate constants for block of α3β4 by hexamethonium and of α3β2 by mecamylamine were 1.2 × 107 and 4.6 × 107 M−1 s−1, respectively.AChRs from IMR-32 cells had a predominant conductance of 32 pS and open times of 1.5 ± 0.3 and 9.6 ± 1.2 ms. These properties were most similar to those of α3β4 AChRs expressed in oocytes. Antibodies revealed that 5 ± 2% of IMR-32 α3 AChRs contained α5 subunits and 6 ± 2% contained β2 subunits. IMR-32 α3 AChRs are primarily α3β4 AChRs. PMID:10200416
Liu, Huanhuan; Ma, Yan; Chen, Na; Guo, Siyi; Liu, Huili; Guo, Xiaoyu; Chong, Kang; Xu, Yunyuan
2014-05-01
Polygalacturonase (PG), one of the hydrolases responsible for cell wall pectin degradation, is involved in organ consenescence and biotic stress in plants. PG1 is composed of a catalytic subunit, PG2, and a non-catalytic PG1β subunit. OsBURP16 belongs to the PG1β-like subfamily of BURP-family genes and encodes one putative PG1β subunit precursor in rice (Oryza sativa L.). Transcription of OsBURP16 is induced by cold, salinity and drought stresses, as well as by abscisic acid (ABA) treatment. Analysis of plant survival rates, relative ion leakage rates, accumulation levels of H2 O2 and water loss rates of leaves showed that overexpression of OsBURP16 enhanced sensitivity to cold, salinity and drought stresses compared with controls. Young leaves of Ubi::OsBURP16 transgenic plants showed reduced cell adhesion and increased cuticular transpiration rate. Mechanical strength measurement of Ubi::OsBURP16 plants showed that reduced force was required to break leaves as compared with wild type. Transgenic rice showed enhanced PG activity and reduced pectin content. All these results suggested that overexpression of OsBURP16 caused pectin degradation and affected cell wall integrity as well as transpiration rate, which decreased tolerance to abiotic stresses. © 2013 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation
Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.
2016-01-01
Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435
mRNA bound to the 30S subunit is a HigB toxin substrate
Schureck, Marc A.; Maehigashi, Tatsuya; Miles, Stacey J.; Marquez, Jhomar; Dunham, Christine M.
2016-01-01
Activation of bacterial toxins during stress results in cleavage of mRNAs in the context of the ribosome. These toxins are thought to function as global translational inhibitors yet recent studies suggest each may have distinct mRNA specificities that result in selective translation for bacterial survival. Here we demonstrate that mRNA in the context of a bacterial 30S subunit is sufficient for ribosome-dependent toxin HigB endonucleolytic activity, suggesting that HigB interferes with the initiation step of translation. We determined the X-ray crystal structure of HigB bound to the 30S, revealing that two solvent-exposed clusters of HigB basic residues directly interact with 30S 16S rRNA helices 18, 30, and 31. We further show that these HigB residues are essential for ribosome recognition and function. Comparison with other ribosome-dependent toxins RelE and YoeB reveals that each interacts with similar features of the 30S aminoacyl (A) site yet does so through presentation of diverse structural motifs. PMID:27307497
Structural Basis of PP2A Inhibition by Small t Antigen
Cho, Uhn Soo; Morrone, Seamus; Sablina, Anna A; Arroyo, Jason D; Hahn, William C; Xu, Wenqing
2007-01-01
The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 Å resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3–7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST. PMID:17608567
MUC1 and MUC4: Switching the Emphasis from Large to Small
Carraway, Kermit L.
2011-01-01
Summation The MUC1 and MUC4 membrane mucins are each composed of a large alpha (α) and a small beta (β) subunit. The α subunits are fully exposed at the cell surface and contain variable numbers of repeated amino acid sequences that are heavily glycosylated. In contrast, the β subunits are much smaller and are anchored within the cell membrane, with their amino-terminal portions exposed at the cell surface and their carboxy-terminal tails facing the cytosol. Studies over the last several years are challenging the long-held belief that α subunits play the predominant role in cancer by conferring cellular properties that allow tumor cells to evade immune recognition and destruction. Indeed, the β subunits of MUC1 and MUC4 have emerged as oncogenes, as they engage signaling pathways responsible for tumor initiation and progression. Thus, a switch in the emphasis from the large α to the small β subunits offers attractive possibilities for successful clinical application. Such a focus shift is further supported by the absence of allelic polymorphism and variable glycosylation in the β subunit as well as by the presence of the β subunit in most MUC1 and MUC4 isoforms expressed by tumors. MUC1α, also known as CA15.3, is a Food and Drug Administration-approved serum biomarker for breast cancer, but its use is no longer recommended by the American Society of Clinical Oncology. However, comparison of β subunit expression in normal and malignant breast tissues may offer a novel approach to the exploitation of membrane mucins as biomarkers, as MUC1β-induced gene signatures with prognostic and predictive values in breast cancer have been reported. Preclinical studies with peptides that interfere with MUC1β oncogenic functions also look promising. PMID:21728842
Nakamura, K; Yamaki, M; Sarada, M; Nakayama, S; Vibat, C R; Gennis, R B; Nakayashiki, T; Inokuchi, H; Kojima, S; Kita, K
1996-01-05
Complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli is composed of four nonidentical subunits encoded by the sdhCDAB operon. Gene products of sdhC and sdhD are small hydrophobic subunits that anchor the hydrophilic catalytic subunits (flavoprotein and iron-sulfur protein) to the cytoplasmic membrane and are believed to be the components of cytochrome b556 in E. coli complex II. In the present study, to elucidate the role of two hydrophobic subunits in the heme b ligation and functional assembly of complex II, plasmids carrying portions of the sdh gene were constructed and introduced into E. coli MK3, which lacks succinate dehydrogenase and fumarate reductase activities. The expression of polypeptides with molecular masses of about 19 and 17 kDa was observed when sdhC and sdhD were introduced into MK3, respectively, indicating that sdhC encodes the large subunit (cybL) and sdhD the small subunit (cybS) of cytochrome b556. An increase in cytochrome b content was found in the membrane when sdhD was introduced, while the cytochrome b content did not change when sdhC was introduced. However, the cytochrome b expressed by the plasmid carrying sdhD differed from cytochrome b556 in its CO reactivity and red shift of the alpha absorption peak to 557.5 nm at 77 K. Neither hydrophobic subunit was able to bind the catalytic portion to the membrane, and only succinate dehydrogenase activity, not succinate-ubiquinone oxidoreductase activity, was found in the cytoplasmic fractions of the cells. In contrast, significantly higher amounts of cytochrome b556 were expressed in the membrane when sdhC and sdhD genes were both present, and the catalytic portion was found to be localized in the membrane with succinate-ubiquitnone oxidoreductase and succinate oxidase activities. These results strongly suggest that both hydrophobic subunits are required for heme insertion into cytochrome b556 and are essential for the functional assembly of E. coli complex II in the membrane. Accumulation of the catalytic portion in the cytoplasm was found when sdhCDAB was introduced into a heme synthesis mutant, suggesting the importance of heme in the assembly of E. coli complex II.
Ferreira-Paim, Kennio; Ferreira, Thatiana Bragine; Andrade-Silva, Leonardo; Mora, Delio Jose; Springer, Deborah J.; Heitman, Joseph; Fonseca, Fernanda Machado; Matos, Dulcilena; Melhem, Márcia Souza Carvalho; Silva-Vergara, Mario León
2014-01-01
Background Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States. Methods In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region. Results BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99–100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified. Conclusions Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode. PMID:25251413
Godazgar, Mahdieh; Zhang, Quan; Chibalina, Margarita V; Rorsman, Patrik
2018-05-01
Na + current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na + (Na V ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary β-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-β-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β-cells, but not in HEK cells, inactivation of a single Na V subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that Na V channels adopt different inactivation behaviours depending on the local membrane environment. Pancreatic β-cells are equipped with voltage-gated Na + channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na + current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na + channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the β-cell. It has been proposed that the biphasic inactivation reflects the contribution of different Na V α-subunits. We tested this possibility by expression of TTX-resistant variants of the Na V subunits found in β-cells (Na V 1.3, Na V 1.6 and Na V 1.7) in insulin-secreting Ins1 cells and in non-β-cells (including HEK and CHO cells). We found that all Na V subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. Na V 1.7 inactivated at 15--20 mV more negative membrane potentials than Na V 1.3 and Na V 1.6 in Ins1 cells but this small difference is insufficient to solely explain the biphasic inactivation in Ins1 cells. In Ins1 cells, but never in the other cell types, widely different components of Na V inactivation (separated by 30 mV) were also observed following expression of a single type of Na V α-subunit. The more positive component exhibited a voltage dependence of inactivation similar to that found in HEK and CHO cells. We propose that biphasic Na V inactivation in insulin-secreting cells reflects insertion of channels in membrane domains that differ with regard to lipid and/or membrane protein composition. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Overexpression of α3/α5/β4 nicotinic receptor subunits modifies impulsive-like behavior.
Viñals, Xavier; Molas, Susanna; Gallego, Xavier; Fernández-Montes, Rubén D; Robledo, Patricia; Dierssen, Mara; Maldonado, Rafael
2012-05-01
Recent studies have revealed that sequence variants in genes encoding the α3/α5/β4 nicotinic acetylcholine receptor subunits are associated with nicotine dependence. In this study, we evaluated two specific aspects of executive functioning related to drug addiction (impulsivity and working memory) in transgenic mice over expressing α3/α5/β4 nicotinic receptor subunits. Impulsivity and working memory were evaluated in an operant delayed alternation task, where mice must inhibit responding between 2 and 8s in order to receive food reinforcement. Working memory was also evaluated in a spontaneous alternation task in an open field. Transgenic mice showed less impulsive-like behavior than wild-type controls, and this behavioral phenotype was related to the number of copies of the transgene. Thus, transgenic Line 22 (16-28 copies) showed a more pronounced phenotype than Line 30 (4-5 copies). Overexpression of these subunits in Line 22 reduced spontaneous alternation behavior suggesting deficits in working memory processing in this particular paradigm. These results reveal the involvement of α3/α5/β4 nicotinic receptor subunits in working memory and impulsivity, two behavioral traits directly related to the vulnerability to develop nicotine dependence. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Bensinger, Dennis; Neumann, Theresa; Scholz, Christoph; Voss, Constantin; Knorr, Sabine; Kuckelkorn, Ulrike; Hamacher, Kay; Kloetzel, Peter-Michael; Schmidt, Boris
2016-07-15
The ubiquitin/proteasome system is the major protein degradation pathway in eukaryotes with several key catalytic cores. Targeting the β5 subunit with small-molecule inhibitors is an established therapeutic strategy for hematologic cancers. Herein, we report a mouse-trap-like conformational change that influences molecular recognition depending on the substitution pattern of a bound ligand. Variation of the size of P1 residues from the highly β5-selective proteasome inhibitor BSc2118 allows for discrimination between inhibitory strength and substrate conversion. We found that increasing molecular size strengthens inhibition, whereas decreasing P1 size accelerates substrate conversion. Evaluation of substrate hydrolysis after silencing of β5 activity reveals significant residual activity for large residues exclusively. Thus, classification of the β5 subunit as chymotrypsin-like and the use of the standard tyrosine-containing substrate should be reconsidered.
2002-01-01
numerous animal clades, including arthropods (Giribet & Ribera , 1998, 2000). The mitochondrial cytochrome oxidase subunits I and II have proven useful as...16S and 28S, D2 rRNA. Insect Molecular Biology, 6, 273-284. Giribet, G. & Ribera , C. (1998) The position of arthropods in animal kingdom: a search...for a reliable outgroup for internal arthropod phylogeny. Molecular Phylogenetics and Evolution, 9, 481-488. Giribet, G. & Ribera , C. (2000) A review
Structure and Function Study of Phi29 DNA packaging motor
NASA Astrophysics Data System (ADS)
Fang, Huaming
A powerful nanomotor is employed by the tailed dsDNA virus to package the genome into a preformed protein shell during the process of replication. The bacteriophage phi29 is an excellent model for investigating the viral DNA packaging mechanism. The phi29 DNA packaging motor is composed of three ring structures: the dodecameric connector ring, the hexameric pRNA ring and the hexameric ATPase gp16 ring. The connector is the central hub for the DNA to enter and to exit. There are four positively charged lysine rings scattered inside the highly negatively charged connector channel. It is speculated that these positive charged lysine rings may play active roles during DNA packaging in many models. To test this prevalent view, the basic lysine residues were mutated to neutral alanines and the pH environment was altered. Amazingly, the results were beyond expectation. Neither the DNA translocation nor the one-way traffic property of the channel were measurably influenced by the alteration of the charge of lysine residues when the basic lysine residues mutated to neutral alanines or the pH environment changed to acid or basic. The ATPase or the terminase is the central part of the viral DNA packaging motor. The phi29 ATPase is highly hydrophobic and tends to aggregate in solution. A green fluorescent protein tag (eGFP) fused to the N-terminus of gp16 enhanced its solubility and stability. The eGFP-gp16 showed similar activity to wild type gp16 and was easily detected by fluorescent instruments. The interaction between eGFP-gp16 and DNA in the various conditions were investigated by electrophoretic mobility shift assay, FRET and sucrose gradient. gamma-S-ATP dramatically increased gp16 binding affinity to DNA and ATP, ADP, phosphate could release gp16 from gp16-DNA-gamma-S-ATP complex. The sliding of gp16 out of the gp16-DNA-gamma-S-ATP complex could be blocked by addition of Steptavidin to ends of dsDNA which is conjugated with biotins. Also, we found that six eGFP-gp16 molecules were required to bind to one short dsDNA molecule. The inhibitive curve of Walker B mutant gp16 analyzed by binomial distribution model showed that one inactive mutant gp16 in the gp16 ring could block the function of the motor and the stoichiometry of gp16 was six. These findings facilitate our understanding of the molecular mechanism of viral DNA packaging: a novel viral DNA packaging model "push through a one-way valve" was proposed. In this model, the connector functioned as a valve to allow DNA to enter but prevented it from sliding out during DNA packaging; the six subunits in the gp16 ring acted sequentially to push DNA into the connector channel. ATP binding of gp16 induced a conformation change with a high affinity for dsDNA. Then, the ATP was hydrolyzed which resulted in the movement of subdomains in this individual gp16 subunit and DNA was pushed forward, followed by the double helix of dsDNA being brought forward to the adjacent subunit in the gp16 ring. The elucidation of the viral DNA packaging mechanism holds great potential for developing artificial motors for delivering drugs and other molecular cargos.
YAGI, Tatsuhiko; HIGUCHI, Yoshiki
2013-01-01
Hydrogenases are microbial enzymes which catalyze uptake and production of H2. Hydrogenases are classified into 10 classes based on the electron carrier specificity, or into 3 families, [NiFe]-family (including [NiFeSe]-subfamily), [FeFe]-family and [Fe]-family, based on the metal composition of the active site. H2 is heterolytically cleaved on the enzyme (E) to produce EHaHb, where Ha and Hb have different rate constants for exchange with the medium hydron. X-ray crystallography unveiled the three-dimensional structures of hydrogenases. The simplest [NiFe]-hydrogenase is a heterodimer, in which the large subunit bears the Ni-Fe center buried deep in the protein, and the small subunit bears iron-sulfur clusters, which mediate electron transfer between the Ni-Fe center and the protein surface. Some hydrogenases have additional subunit(s) for interaction with their electron carriers. Various redox states of the enzyme were characterized by EPR, FTIR, etc. Based on the kinetic, structural and spectroscopic studies, the catalytic mechanism of [NiFe]-hydrogenase was proposed to explain H2-uptake, H2-production and isotopic exchange reactions. PMID:23318679
Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition.
Doherty, Geoff P; Fogg, Mark J; Wilkinson, Anthony J; Lewis, Peter J
2010-12-01
Bacterial RNA polymerases (RNAPs) contain several small auxiliary subunits known to co-purify with the core α, β and β' subunits. The ω subunit is conserved between Gram-positive and Gram-negative bacteria, while the δ subunit is conserved within, but restricted to, Gram-positive bacteria. Although various functions have been assigned to these subunits via in vitro assays, very little is known about their in vivo roles. In this work we constructed a pair of vectors to investigate the subcellular localization of the δ and ω subunits in Bacillus subtilis with respect to the core RNAP. We found these subunits to be closely associated with RNAP involved in transcribing both mRNA and rRNA operons. Quantification of these subunits revealed δ to be present at equimolar levels with RNAP and ω to be present at around half the level of core RNAP. For comparison, the localization and quantification of RNAP β' and ω subunits in Escherichia coli was also investigated. Similar to B. subtilis, β' and ω closely associated with the nucleoid and formed subnucleoid regions of high green fluorescent protein intensity, but, unlike ω in B. subtilis, ω levels in E. coli were close to parity with those of β'. These results indicate that δ is likely to be an integral RNAP subunit in Gram-positives, whereas ω levels differ substantially between Gram-positives and -negatives. The ω subunit may be required for RNAP assembly and subsequently be turned over at different rates or it may play roles in Gram-negative bacteria that are performed by other factors in Gram-positives.
Yang, F; Curran, S C; Li, L S; Avarbock, D; Graf, J D; Chua, M M; Lu, G; Salem, J; Rubin, H
1997-01-01
Two nrdF genes, nrdF1 and nrdF2, encoding the small subunit (R2) of ribonucleotide reductase (RR) from Mycobacterium tuberculosis have 71% identity at the amino acid level and are both highly homologous with Salmonella typhimurium R2F. The calculated molecular masses of R2-1 and R2-2 are 36,588 (322 amino acids [aa]) and 36,957 (324 aa) Da, respectively. Western blot analysis of crude M. tuberculosis extracts indicates that both R2s are expressed in vivo. Recombinant R2-2 is enzymatically active when assayed with pure recombinant M. tuberculosis R1 subunit. Both ATP and dATP are activators for CDP reduction up to 2 and 1 mM, respectively. The gene encoding M. tuberculosis R2-1, nrdF1, is not linked to nrdF2, nor is either gene linked to the gene encoding the large subunit, M. tuberculosis nrdE. The gene encoding MTP64 was found downstream from nrdF1, and the gene encoding alcohol dehydrogenase was found downstream from nrdF2. A nrdA(Ts) strain of E. coli (E101) could be complemented by simultaneous transformation with M. tuberculosis nrdE and nrdF2. An M. tuberculosis nrdF2 variant in which the codon for the catalytically necessary tyrosine was replaced by the phenylalanine codon did not complement E101 when cotransformed with M. tuberculosis nrdE. Similarly, M. tuberculosis nrdF1 and nrdE did not complement E101. Activity of recombinant M. tuberculosis RR was inhibited by incubating the enzyme with a peptide corresponding to the 7 C-terminal amino acid residues of the R2-2 subunit. M. tuberculosis is a species in which a nrdEF system appears to encode the biologically active species of RR and also the only bacterial species identified so far in which class I RR subunits are not arranged on an operon. PMID:9335290
The Respiratory Arsenite Oxidase: Structure and the Role of Residues Surrounding the Rieske Cluster
Warelow, Thomas P.; Oke, Muse; Schoepp-Cothenet, Barbara; Dahl, Jan U.; Bruselat, Nicole; Sivalingam, Ganesh N.; Leimkühler, Silke; Thalassinos, Konstantinos; Kappler, Ulrike; Naismith, James H.; Santini, Joanne M.
2013-01-01
The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a −20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter. PMID:24023621
2013-01-01
Background Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii “Deep ecotype” that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity. Results We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions. Conclusions Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement. PMID:23819621
Liu, Zewen; Williamson, Martin S; Lansdell, Stuart J; Denholm, Ian; Han, Zhaojun; Millar, Neil S
2005-06-14
Neonicotinoids, such as imidacloprid, are nicotinic acetylcholine receptor (nAChR) agonists with potent insecticidal activity. Since its introduction in the early 1990s, imidacloprid has become one of the most extensively used insecticides for both crop protection and animal health applications. As with other classes of insecticides, resistance to neonicotinoids is a significant threat and has been identified in several pest species, including the brown planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. In this study, radioligand binding experiments have been conducted with whole-body membranes prepared from imidacloprid-susceptible and imidacloprid-resistant strains of N. lugens. The results reveal a much higher level of [3H]imidacloprid-specific binding to the susceptible strain than to the resistant strain (16.7 +/- 1.0 and 0.34 +/- 0.21 fmol/mg of protein, respectively). With the aim of understanding the molecular basis of imidacloprid resistance, five nAChR subunits (Nlalpha1-Nlalpha4 and Nlbeta1) have been cloned from N. lugens.A comparison of nAChR subunit genes from imidacloprid-sensitive and imidacloprid-resistant populations has identified a single point mutation at a conserved position (Y151S) in two nAChR subunits, Nlalpha1 and Nlalpha3. A strong correlation between the frequency of the Y151S point mutation and the level of resistance to imidacloprid has been demonstrated by allele-specific PCR. By expression of hybrid nAChRs containing N. lugens alpha and rat beta2 subunits, evidence was obtained that demonstrates that mutation Y151S is responsible for a substantial reduction in specific [3H]imidacloprid binding. This study provides direct evidence for the occurrence of target-site resistance to a neonicotinoid insecticide.
Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Nurmikko, Arto V
2011-01-01
We present a fully implantable, wireless, neurosensor for multiple-location neural interface applications. The device integrates two independent 16-channel intracortical microelectrode arrays and can simultaneously acquire 32 channels of broadband neural data from two separate cortical areas. The system-on-chip implantable sensor is built on a flexible Kapton polymer substrate and incorporates three very low power subunits: two cortical subunits connected to a common subcutaneous subunit. Each cortical subunit has an ultra-low power 16-channel preamplifier and multiplexer integrated onto a cortical microelectrode array. The subcutaneous epicranial unit has an inductively coupled power supply, two analog-to-digital converters, a low power digital controller chip, and microlaser-based infrared telemetry. The entire system is soft encapsulated with biocompatible flexible materials for in vivo applications. Broadband neural data is conditioned, amplified, and analog multiplexed by each of the cortical subunits and passed to the subcutaneous component, where it is digitized and combined with synchronization data and wirelessly transmitted transcutaneously using high speed infrared telemetry.
Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit
Bian, Xiaochun; Ren, Jianhua; De Vries, Matthew; Schnegelsberg, Birthe; Cockayne, Debra A; Ford, Anthony P D W; Galligan, James J
2003-01-01
P2X receptors are ATP-gated cation channels composed of one or more of seven different subunits. P2X receptors participate in intestinal neurotransmission but the subunit composition of enteric P2X receptors is unknown. In this study, we used tissues from P2X3 wild-type (P2X3+/+) mice and mice in which the P2X3 subunit gene had been deleted (P2X3−/−) to investigate the role of this subunit in neurotransmission in the intestine. RT-PCR analysis of mRNA from intestinal tissues verified P2X3 gene deletion. Intracellular electrophysiological methods were used to record synaptic and drug-induced responses from myenteric neurons in vitro. Drug-induced longitudinal muscle contractions were studied in vitro. Intraluminal pressure-induced reflex contractions (peristalsis) of ileal segments were studied in vitro using a modified Trendelenburg preparation. Gastrointestinal transit was measured as the progression in 30 min of a liquid radioactive marker administered by gavage to fasted mice. Fast excitatory postsynaptic potentials recorded from S neurons (motoneurons and interneurons) were similar in tissues from P2X3+/+ and P2X3−/− mice. S neurons from P2X3+/+ and P2X3−/− mice were depolarized by application of ATP but not α,β-methylene ATP, an agonist of P2X3 subunit-containing receptors. ATP and α,β-methylene ATP induced depolarization of AH (sensory) neurons from P2X3+/+ mice. ATP, but not α,β-methylene ATP, caused depolarization of AH neurons from P2X3−/− mice. Peristalsis was inhibited in ileal segments from P2X3−/− mice but longitudinal muscle contractions caused by nicotine and bethanechol were similar in segments from P2X3+/+ and P2X3−/− mice. Gastrointestinal transit was similar in P2X3+/+ and P2X3−/− mice. It is concluded that P2X3 subunit-containing receptors participate in neural pathways underlying peristalsis in the mouse intestine in vitro. P2X3 subunits are localized to AH (sensory) but not S neurons. P2X3 receptors may contribute to detection of distention or intraluminal pressure increases and initiation of reflex contractions. PMID:12813150
Reysenbach, A L; Ehringer, M; Hershberger, K
2000-02-01
The use of molecular phylogenetic approaches in microbial ecology has revolutionized our view of microbial diversity at high temperatures and led to the proposal of a new kingdom within the Archaea, namely, the "Korarchaeota." We report here the occurrence of another member of this archaeal group and a deeply rooted bacterial sequence from a thermal spring in Yellowstone National Park (USA). The DNA of a mixed community growing at 83 degrees C, pH 7.6, was extracted and the small subunit ribosomal RNA gene (16S rDNA) sequences were obtained using the polymerase chain reaction. The products were cloned and five different phylogenetic types ("phylotypes") were identified: four archaeal phylotypes, designated pBA1, pBA2, pBA3, and pBA5, and only one bacterial phylotype, designated pBB. pBA5 is very closely related to the korarchaeotal phylotype, pJP27, from Obsidian Pool in Yellowstone National Park. The pBB phylotype is a lineage within the Aquificales and, based on 16S rRNA sequence, is different enough from the members of the Aquificales to constitute a different genus. In situ hybridization with bacterial-specific and Aquificales-specific fluorescent oligonucleotide probes indicated the bacterial population dominated the community and most likely contributed significantly to biogeochemical cycling within the community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okita, T.W.
Part 1 of this research focuses on patterns of gene expression of ADPG-pyrophosphorylase in native and transgenic potato plants. To elucidate the mechanism controlling AGP expression during plant development, the expression of the potato tuber AGP small subunit (sAGP) gene was analyzed in transgenic potato plants using a promoter-{beta}-glucuronidase expression system. Part II evaluated the structure-function relationships of AGP.
Structure-based design and screening of inhibitors for an essential bacterial GTPase, Der.
Hwang, Jihwan; Tseitin, Vladimir; Ramnarayan, Kal; Shenderovich, Mark D; Inouye, Masayori
2012-05-01
Der is an essential and widely conserved GTPase that assists assembly of a large ribosomal subunit in bacteria. Der associates specifically with the 50S subunit in a GTP-dependent manner and the cells depleted of Der accumulate the structurally unstable 50S subunit, which dissociates into an aberrant subunit at a lower Mg(2+) concentration. As Der is an essential and ubiquitous protein in bacteria, it may prove to be an ideal cellular target against which new antibiotics can be developed. In the present study, we describe our attempts to identify novel antibiotics specifically targeting Der GTPase. We performed the structure-based design of Der inhibitors using the X-ray crystal structure of Thermotoga maritima Der (TmDer). Virtual screening of commercially available chemical library retrieved 257 small molecules that potentially inhibit Der GTPase activity. These 257 chemicals were tested for their in vitro effects on TmDer GTPase and in vivo antibacterial activities. We identified three structurally diverse compounds, SBI-34462, -34566 and -34612, that are both biologically active against bacterial cells and putative enzymatic inhibitors of Der GTPase homologs. We also presented the possible interactions of each compound with the Der GTP-binding site to understand the mechanism of inhibition. Therefore, our lead compounds inhibiting Der GTPase provide scaffolds for the development of novel antibiotics against antibiotic-resistant pathogenic bacteria.
Beltrame, M; Bianchi, M E
1990-01-01
We have cloned the genes for small acidic ribosomal proteins (A-proteins) of the fission yeast Schizosaccharomyces pombe. S. pombe contains four transcribed genes for small A-proteins per haploid genome, as is the case for Saccharomyces cerevisiae. In contrast, multicellular eucaryotes contain two transcribed genes per haploid genome. The four proteins of S. pombe, besides sharing a high overall similarity, form two couples of nearly identical sequences. Their corresponding genes have a very conserved structure and are transcribed to a similar level. Surprisingly, of each couple of genes coding for nearly identical proteins, one is essential for cell growth, whereas the other is not. We suggest that the unequal importance of the four small A-proteins for cell survival is related to their physical organization in 60S ribosomal subunits. Images PMID:2325655
Segerstolpe, Asa; Lundkvist, Pär; Osheim, Yvonne N; Beyer, Ann L; Wieslander, Lars
2008-08-01
In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A(0)-A(2) sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.
Integrator complex plays an essential role in adipose differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otani, Yuichiro; Nakatsu, Yusuke; Sakoda, Hideyuki
2013-05-03
Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reducedmore » to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps.« less
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
Pausch, Patrick; Müller-Esparza, Hanna; Gleditzsch, Daniel; Altegoer, Florian; Randau, Lennart; Bange, Gert
2017-08-17
CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids. Type I CRISPR-Cas systems employ highly diverse, multi-subunit surveillance Cascade complexes that facilitate duplex formation between crRNA and complementary target DNA for R-loop formation, retention, and DNA degradation by the subsequently recruited nuclease Cas3. Typically, the large subunit recognizes bona fide targets through the PAM (protospacer adjacent motif), and the small subunit guides the non-target DNA strand. Here, we present the Apo- and target-DNA-bound structures of the I-Fv (type I-F variant) Cascade lacking the small and large subunits. Large and small subunits are functionally replaced by the 5' terminal crRNA cap Cas5fv and the backbone protein Cas7fv, respectively. Cas5fv facilitates PAM recognition from the DNA major groove site, in contrast to all other described type I systems. Comparison of the type I-Fv Cascade with an anti-CRISPR protein-bound I-F Cascade reveals that the type I-Fv structure differs substantially at known anti-CRISPR protein target sites and might therefore be resistant to viral Cascade interception. Copyright © 2017 Elsevier Inc. All rights reserved.
Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas
2009-06-01
The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.
Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng
2014-08-01
A Gram-stain-negative bacterial strain, 10-17(T), was isolated from traditional sourdough in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain 10-17(T) was phylogenetically related to Enterobacter hormaechei CIP 103441(T), Enterobacter cancerogenus LMG 2693(T), Enterobacter asburiae JCM 6051(T), Enterobacter mori LMG 25706(T), Enterobacter ludwigii EN-119(T) and Leclercia adecarboxylata LMG 2803(T), having 99.5%, 99.3%, 98.7%, 98.5%, 98.4% and 98.4% 16S rRNA gene sequence similarity, respectively. On the basis of polyphasic characterization data obtained in the present study, a novel species, Enterobacter xiangfangensis sp. nov., is proposed and the type strain is 10-17(T) ( = LMG 27195(T) = NCIMB 14836(T) = CCUG 62994(T)). Enterobacter sacchari Zhu et al. 2013 was reclassified as Kosakonia sacchari comb. nov. on the basis of 16S rRNA, rpoB, gyrB, infB and atpD gene sequence analysis and the type strain is strain SP1(T)( = CGMCC 1.12102(T) = LMG 26783(T)). © 2014 IUMS.
Basha, Eman; Fowler, Mary E.; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha
2016-01-01
The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. PMID:27474115
Structure and variation of the mitochondrial genome of fishes.
Satoh, Takashi P; Miya, Masaki; Mabuchi, Kohji; Nishida, Mutsumi
2016-09-07
The mitochondrial (mt) genome has been used as an effective tool for phylogenetic and population genetic analyses in vertebrates. However, the structure and variability of the vertebrate mt genome are not well understood. A potential strategy for improving our understanding is to conduct a comprehensive comparative study of large mt genome data. The aim of this study was to characterize the structure and variability of the fish mt genome through comparative analysis of large datasets. An analysis of the secondary structure of proteins for 250 fish species (248 ray-finned and 2 cartilaginous fishes) illustrated that cytochrome c oxidase subunits (COI, COII, and COIII) and a cytochrome bc1 complex subunit (Cyt b) had substantial amino acid conservation. Among the four proteins, COI was the most conserved, as more than half of all amino acid sites were invariable among the 250 species. Our models identified 43 and 58 stems within 12S rRNA and 16S rRNA, respectively, with larger numbers than proposed previously for vertebrates. The models also identified 149 and 319 invariable sites in 12S rRNA and 16S rRNA, respectively, in all fishes. In particular, the present result verified that a region corresponding to the peptidyl transferase center in prokaryotic 23S rRNA, which is homologous to mt 16S rRNA, is also conserved in fish mt 16S rRNA. Concerning the gene order, we found 35 variations (in 32 families) that deviated from the common gene order in vertebrates. These gene rearrangements were mostly observed in the area spanning the ND5 gene to the control region as well as two tRNA gene cluster regions (IQM and WANCY regions). Although many of such gene rearrangements were unique to a specific taxon, some were shared polyphyletically between distantly related species. Through a large-scale comparative analysis of 250 fish species mt genomes, we elucidated various structural aspects of the fish mt genome and the encoded genes. The present results will be important for understanding functions of the mt genome and developing programs for nucleotide sequence analysis. This study demonstrated the significance of extensive comparisons for understanding the structure of the mt genome.
Genotyping of Giardia lamblia isolates from humans in China and Korea using ribosomal DNA Sequences.
Yong, T S; Park, S J; Hwang, U W; Yang, H W; Lee, K W; Min, D Y; Rim, H J; Wang, Y; Zheng, F
2000-08-01
Genetic characterization of a total of 15 Giardia lamblia isolates, 8 from Anhui Province, China (all from purified cysts) and 7 from Seoul, Korea (2 from axenic cultures and 5 from purified cysts), was performed by polymerase chain reaction amplification and sequencing of a 295-bp region near the 5' end of the small subunit ribosomal DNA (eukaryotic 16S rDNA). Phylogenetic analyses were subsequently conducted using sequence data obtained in this study, as well as sequences published from other Giardia isolates. The maximum parsimony method revealed that G. lamblia isolates from humans in China and Korea are divided into 2 major lineages, assemblages A and B. All 7 Korean isolates were grouped into assemblage A, whereas 4 Chinese isolates were grouped into assemblage A and 4 into assemblage B. Two Giardia microti isolates and 2 dog-derived Giardia isolates also grouped into assemblage B, whereas Giardia ardeae and Giardia muris were unique.
Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa
2014-01-01
We previously found a very large NAD-dependent glutamate dehydrogenase with approximately 170 kDa subunit from Janthinobacterium lividum (Jl-GDH) and predicted that GDH reaction occurred in the central domain of the subunit. To gain further insights into the role of the central domain, several single point mutations were introduced. The enzyme activity was completely lost in all single mutants of R784A, K810A, K820A, D885A, and S1142A. Because, in sequence alignment analysis, these residues corresponded to the residues responsible for glutamate binding in well-known small GDH with approximately 50 kDa subunit, very large GDH and well-known small GDH may share the same catalytic mechanism. In addition, we demonstrated that C1141, one of the three cysteine residues in the central domain, was responsible for the inhibition of enzyme activity by HgCl2, and HgCl2 functioned as an activating compound for a C1141T mutant. At low concentrations, moreover, HgCl2 was found to function as an activating compound for a wild-type Jl-GDH. This suggests that the mechanism for the activation is entirely different from that for the inhibition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Haitian; Hahm, Joseph; Diggs, Stephen
The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3', 5'-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes tomore » small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. Finally, this molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.« less
Fan, Haitian; Hahm, Joseph; Diggs, Stephen; ...
2015-07-10
The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3', 5'-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes tomore » small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. Finally, this molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.« less
Andersen, Jeremy C; Wu, Jin; Gruwell, Matthew E; Gwiazdowski, Rodger; Santana, Sharlene E; Feliciano, Natalie M; Morse, Geoffrey E; Normark, Benjamin B
2010-12-01
Armored scale insects (Hemiptera: Diaspididae) are among the most invasive insects in the world. They have unusual genetic systems, including diverse types of paternal genome elimination (PGE) and parthenogenesis. Intimate relationships with their host plants and bacterial endosymbionts make them potentially important subjects for the study of co-evolution. Here, we expand upon recent phylogenetic work (Morse and Normark, 2006) by analyzing armored scale and endosymbiont DNA sequences from 125 species of armored scale insect, represented by 253 samples and eight outgroup species. We used fragments of four different gene regions: the nuclear protein-coding gene Elongation Factor 1α (EF1α), the large ribosomal subunit (28S) rDNA, a mitochondrial region spanning parts of cytochrome oxidase I (COI) and cytochrome oxidase II (COII), and the small ribosomal subunit (16S) rDNA from the primary bacterial endosymbiont Uzinura diaspidicola. Maximum likelihood, and Bayesian analyses were performed producing highly congruent topological results. A comparison of two datasets, one with and one without missing data, found that missing data had little effect on topology. Our results broadly corroborate several major features of the existing classification, although we do not find any of the subfamilies, tribes or subtribes to be monophyletic as currently constituted. Using ancestral state reconstruction we estimate that the ancestral armored scale had the late PGE sex system, and it may as well have been pupillarial, though results differed between reconstruction methods. These results highlight the need for a complete revision of this family, and provide the groundwork for future taxonomic work in armored scale insects. Copyright © 2010 Elsevier Inc. All rights reserved.
Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael
2012-01-01
Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD-FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.
Zakrzewicz, Anna; Richter, Katrin; Agné, Alisa; Wilker, Sigrid; Siebers, Kathrin; Fink, Bijan; Krasteva-Christ, Gabriela; Althaus, Mike; Padberg, Winfried; Hone, Arik J.; McIntosh, J. Michael; Grau, Veronika
2017-01-01
Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopus laevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR. PMID:28725182
NASA Technical Reports Server (NTRS)
Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.
1994-01-01
When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.
Ribosomal small subunit domains radiate from a central core
NASA Astrophysics Data System (ADS)
Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O'Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean
2016-02-01
The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2‧OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit.
Ferrero, Rut; Torres, Magdalena
2002-01-01
Background Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) when the latter is produced at low concentrations. This enzyme exists mainly as a heterodimer consisting of one α and one β subunit and converts GTP to the second intracellular messenger cGMP. In turn, cGMP plays a key role in regulating several physiological processes in the nervous system. The aim of the present study was to explore the effects of a NO donor on sGC activity and its protein and subunit mRNA levels in a neural cell model. Results Continuous exposure of bovine adrenal chromaffin cells in culture to the nitric oxide donor, diethylenetriamine NONOate (DETA/NO), resulted in a lower capacity of the cells to synthesize cGMP in response to a subsequent NO stimulus. This effect was not prevented by an increase of intracellular reduced glutathione level. DETA/NO treatment decreased sGC subunit mRNA and β1 subunit protein levels. Both sGC activity and β1 subunit levels decreased more rapidly in chromaffin cells exposed to NO than in cells exposed to the protein synthesis inhibitor, cycloheximide, suggesting that NO decreases β1 subunit stability. The presence of cGMP-dependent protein kinase (PKG) inhibitors effectively prevented the DETA/NO-induced down regulation of sGC subunit mRNA and partially inhibited the reduction in β1 subunits. Conclusions These results suggest that activation of PKG mediates the drop in sGC subunit mRNA levels, and that NO down-regulates sGC activity by decreasing subunit mRNA levels through a cGMP-dependent mechanism, and by reducing β1 subunit stability. PMID:12350235
Ribosomal RNA sequence suggest microsporidia are extremely ancient eukaryotes
NASA Technical Reports Server (NTRS)
Vossbrinck, C. R.; Maddox, J. V.; Friedman, S.; Debrunner-Vossbrinck, B. A.; Woese, C. R.
1987-01-01
A comparative sequence analysis of the 18S small subunit ribosomal RNA (rRNA) of the microsporidium Vairimorpha necatrix is presented. The results show that this rRNA sequence is more unlike those of other eukaryotes than any known eukaryote rRNA sequence. It is concluded that the lineage leading to microsporidia branched very early from that leading to other eukaryotes.
Location of the β4 transmembrane helices in the BK potassium channel
Wu, Roland S.; Chudasama, Neelesh; Zakharov, Sergey I.; Doshi, Darshan; Motoike, Howard; Liu, Guoxia; Yao, Yongneng; Niu, Xiaowei; Deng, Shi-Xian; Landry, Donald W.; Karlin, Arthur; Marx, Steven O.
2009-01-01
Large-conductance, voltage- and Ca2+-gated potassium (BK) channels control excitability in a number of cell types. BK channels are composed of α subunits, which contain the voltage-sensor domains and the Ca2+- sensor domains, and form the pore, and often one of four types of β subunits, which modulate the channel in a cell-specific manner. β4 is expressed in neurons throughout the brain. Deletion of β4 in mice causes temporal lobe epilepsy. Compared to channels composed of α alone, channels composed of α and β4 activate and deactivate more slowly. We inferred the locations of the two β4 transmembrane (TM) helices, TM1 and TM2, relative to the seven αTM helices, S0-S6, from the extent of disulfide bond formation between cysteines substituted in the extracellular flanks of these TM helices. We found that β4 TM2 is close to α S0 and that β4 TM1 is close to both α S1 and S2. At least at their extracellular ends, TM1 and TM2 are not close to S3 through S6. In six of eight of the most highly crosslinked cysteine pairs, four crosslinks from TM2 to S0 and one each from TM1 to S1 and S2 had small effects on the V50 and on the rates of activation and deactivation. That disulfide crosslinking caused only small functional perturbations is consistent with the proximity of the extracellular ends of TM2 to S0 and of TM1 to S1 and to S2, in both the open and closed states. PMID:19571123
Phylogenetic Analyses of Meloidogyne Small Subunit rDNA.
De Ley, Irma Tandingan; De Ley, Paul; Vierstraete, Andy; Karssen, Gerrit; Moens, Maurice; Vanfleteren, Jacques
2002-12-01
Phylogenies were inferred from nearly complete small subunit (SSU) 18S rDNA sequences of 12 species of Meloidogyne and 4 outgroup taxa (Globodera pallida, Nacobbus abberans, Subanguina radicicola, and Zygotylenchus guevarai). Alignments were generated manually from a secondary structure model, and computationally using ClustalX and Treealign. Trees were constructed using distance, parsimony, and likelihood algorithms in PAUP* 4.0b4a. Obtained tree topologies were stable across algorithms and alignments, supporting 3 clades: clade I = [M. incognita (M. javanica, M. arenaria)]; clade II = M. duytsi and M. maritima in an unresolved trichotomy with (M. hapla, M. microtyla); and clade III = (M. exigua (M. graminicola, M. chitwoodi)). Monophyly of [(clade I, clade II) clade III] was given maximal bootstrap support (mbs). M. artiellia was always a sister taxon to this joint clade, while M. ichinohei was consistently placed with mbs as a basal taxon within the genus. Affinities with the outgroup taxa remain unclear, although G. pallida and S. radicicola were never placed as closest relatives of Meloidogyne. Our results show that SSU sequence data are useful in addressing deeper phylogeny within Meloidogyne, and that both M. ichinohei and M. artiellia are credible outgroups for phylogenetic analysis of speciations among the major species.
Phylogenetic Analyses of Meloidogyne Small Subunit rDNA
De Ley, Irma Tandingan; De Ley, Paul; Vierstraete, Andy; Karssen, Gerrit; Moens, Maurice; Vanfleteren, Jacques
2002-01-01
Phylogenies were inferred from nearly complete small subunit (SSU) 18S rDNA sequences of 12 species of Meloidogyne and 4 outgroup taxa (Globodera pallida, Nacobbus abberans, Subanguina radicicola, and Zygotylenchus guevarai). Alignments were generated manually from a secondary structure model, and computationally using ClustalX and Treealign. Trees were constructed using distance, parsimony, and likelihood algorithms in PAUP* 4.0b4a. Obtained tree topologies were stable across algorithms and alignments, supporting 3 clades: clade I = [M. incognita (M. javanica, M. arenaria)]; clade II = M. duytsi and M. maritima in an unresolved trichotomy with (M. hapla, M. microtyla); and clade III = (M. exigua (M. graminicola, M. chitwoodi)). Monophyly of [(clade I, clade II) clade III] was given maximal bootstrap support (mbs). M. artiellia was always a sister taxon to this joint clade, while M. ichinohei was consistently placed with mbs as a basal taxon within the genus. Affinities with the outgroup taxa remain unclear, although G. pallida and S. radicicola were never placed as closest relatives of Meloidogyne. Our results show that SSU sequence data are useful in addressing deeper phylogeny within Meloidogyne, and that both M. ichinohei and M. artiellia are credible outgroups for phylogenetic analysis of speciations among the major species. PMID:19265950
Peterson, G L; Hokin, L E
1980-01-01
Purification of the (Na+ + K+)-activated ATPase has been improved 2-fold the respect to both purity and yield over the previous method [Peterson, Ewing, Hootman & Conte (1978) J. Biol. Chem. 253, 4762-4770] by using Lubrol WX and non-denaturing concentrations of sodium dodecyl sulphate (SDS). The enzyme was purified 200-fold over the homogenate. The preparation had a specific activity of about 600 mumol of Pi/h per mg of protein, and was about 60% pure according to quantification of Coomassie Blue-stained SDS/polyacrylamide gels. The yield of purified enzyme was about 10 mg of protein per 100g of dry brine-shrimp (Artemia salina) cysts. The method is highly suitable for purification either on a small scale (10-25g of dry cysts) or on a large scale (900g of dry cysts) and methods are described for both. The large (Na+ + K+)-activated ATPase subunit (alpha-subunit) was isolated in pure form by SDS-gel filtration on Bio-Gel A 1.5m. The small subunit (beta-subunit) was eluted with other contaminating proteins on the Bio-Gel column, but was isolated in pure form by extraction from SDS/polyacrylamide gels. The amino acid and carbohydrate compositions of both subunits are reported. The alpha-subunit contained 5.2% carbohydrate by weight, and the beta-subunit 9.2%. Sialic acid was absent from both subunits. Images Fig. 3. Fig. 4. PMID:6272692
Zahurancik, Walter J.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Suo, Zucai
2015-01-01
Numerous genetic studies have provided compelling evidence to establish DNA polymerase ε (Polε) as the primary DNA polymerase responsible for leading strand synthesis during eukaryotic nuclear genome replication. Polε is a heterotetramer consisting of a large catalytic subunit that contains the conserved polymerase core domain as well as a 3′ → 5′ exonuclease domain common to many replicative polymerases. In addition, Polε possesses three small subunits that lack a known catalytic activity but associate with components involved in a variety of DNA replication and maintenance processes. Previous enzymatic characterization of the Polε heterotetramer from budding yeast suggested that the small subunits slightly enhance DNA synthesis by Polε in vitro. However, similar studies of the human Polε heterote-tramer (hPolε) have been limited by the difficulty of obtaining hPolε in quantities suitable for thorough investigation of its catalytic activity. Utilization of a baculovirus expression system for overexpression and purification of hPolε from insect host cells has allowed for isolation of greater amounts of active hPolε, thus enabling a more detailed kinetic comparison between hPolε and an active N-terminal fragment of the hPolε catalytic subunit (p261N), which is readily overexpressed in Escherichia coli. Here, we report the first pre-steady-state studies of fully-assembled hPolε. We observe that the small subunits increase DNA binding by hPolε relative to p261N, but do not increase processivity during DNA synthesis on a single-stranded M13 template. Interestingly, the 3′ → 5′ exonuclease activity of hPolε is reduced relative to p261N on matched and mismatched DNA substrates, indicating that the presence of the small subunits may regulate the proofreading activity of hPolε and sway hPolε toward DNA synthesis rather than proofreading. PMID:25684708
Matsuyoshi, Hiroko; Takimoto, Koichi; Yunoki, Takakazu; Erickson, Vickie L; Tyagi, Pradeep; Hirao, Yoshihiko; Wanaka, Akio; Yoshimura, Naoki
2012-09-17
Dorsal root ganglia contain heterogeneous populations of primary afferent neurons that transmit various sensory stimuli. This functional diversity may be correlated with differential expression of voltage-gated K(+) (Kv) channels. Here, we examine cellular distributions of Kv4 pore-forming and ancillary subunits that are responsible for fast-inactivating A-type K(+) current. Expression pattern of Kv α-subunit, β-subunit and auxiliary subunit was investigated using immunohistochemistry, in situ hybridization and RT-PCR technique. The two pore-forming subunits Kv4.1 and Kv4.3 show distinct cellular distributions: Kv4.3 is predominantly in small-sized C-fiber neurons, whereas Kv4.1 is seen in DRG neurons in various sizes. Furthermore, the two classes of Kv4 channel auxiliary subunits are also distributed in different-sized cells. KChIP3 is the only significantly expressed Ca(2+)-binding cytosolic ancillary subunit in DRGs and present in medium to large-sized neurons. The membrane-spanning auxiliary subunit DPP6 is seen in a large number of DRG neurons in various sizes, whereas DPP10 is restricted in small-sized neurons. Distinct combinations of Kv4 pore-forming and auxiliary subunits may constitute A-type channels in DRG neurons with different physiological roles. Kv4.1 subunit, in combination with KChIP3 and/or DPP6, form A-type K(+) channels in medium to large-sized A-fiber DRG neurons. In contrast, Kv4.3 and DPP10 may contribute to A-type K(+) current in non-peptidergic, C-fiber somatic afferent neurons. Copyright © 2012 Elsevier Inc. All rights reserved.
Assembly and mechanism of a group II ECF transporter.
Karpowich, Nathan K; Wang, Da-Neng
2013-02-12
Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.
Yamaji, Takuya; Ishikawa, Tadashi; Nomura, Masashi
2016-01-01
The white-spotted globular bug Eysarcoris guttigerus (Thunberg) (Hemiptera: Pentatomidae) is widely distributed in East Asia and the Pacific region. In Japan, the species is found in grassy or composite weeds in the western area of the main islands and Ryukyu Islands of Japan. One notable characteristic of the Eysarcoris genus is the two white spots on the scutellum. This is not the case with the Ishigaki Island population, however, which sports red spots instead of white, suggesting that intraspecific variation exists in the species. Therefore, we investigated intraspecific variation in E. guttigerus using mitochondrial NADH dehydrogenase subunit 2 (ND2), cytochrome oxidase subunit 1 (CO1), cytochrome b (Cytb), tRNA-Serine (tRNAser), NADH dehydrogenase subunit 1 (ND1), and 16S ribosomal RNA (16SrRNA) genes from 13 populations of Japan. The obtained maximum likelihood phylogenetic tree was divided into three groups—Group 1: Mainland, Group 2: Central Ryukyu Islands (Okinawa-Amamioshima Islands), and Group 3: South Ryukyu Islands (Ishigaki Island). The Ishigaki population was significantly separated from the other populations with consistent differences in spot color. The estimated period of divergence between the Ishigaki population and the other populations was consistent with the period of formation of the Kerama Gap in the Ryukyu arc. Thus, the process of formation of the Kerama Gap may have influenced the intraspecific variation of E. guttigerus. PMID:26798143
Role of Mex67-Mtr2 in the Nuclear Export of 40S Pre-Ribosomes
Occhipinti, Laura; Kemmler, Stefan; Panse, Vikram G.
2012-01-01
Nuclear export of mRNAs and pre-ribosomal subunits (pre40S and pre60S) is fundamental to all eukaryotes. While genetic approaches in budding yeast have identified bona fide export factors for mRNAs and pre60S subunits, little is known regarding nuclear export of pre40S subunits. The yeast heterodimeric transport receptor Mex67-Mtr2 (TAP-p15 in humans) binds mRNAs and pre60S subunits in the nucleus and facilitates their passage through the nuclear pore complex (NPC) into the cytoplasm by interacting with Phe-Gly (FG)-rich nucleoporins that line its transport channel. By exploiting a combination of genetic, cell-biological, and biochemical approaches, we uncovered an unanticipated role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. We show that recruitment of Mex67-Mtr2 to pre40S subunits requires loops emanating from its NTF2-like domains and that the C-terminal FG-rich nucleoporin interacting UBA-like domain within Mex67 contributes to the transport of pre40S subunits to the cytoplasm. Remarkably, the same loops also recruit Mex67-Mtr2 to pre60S subunits and to the Nup84 complex, the respective interactions crucial for nuclear export of pre60S subunits and mRNAs. Thus Mex67-Mtr2 is a unique transport receptor that employs a common interaction surface to participate in the nuclear export of both pre-ribosomal subunits and mRNAs. Mex67-Mtr2 could engage a regulatory crosstalk among the three major export pathways for optimal cellular growth and proliferation. PMID:22956913
Orlova, Irina; Nagegowda, Dinesh A.; Kish, Christine M.; Gutensohn, Michael; Maeda, Hiroshi; Varbanova, Marina; Fridman, Eyal; Yamaguchi, Shinjiro; Hanada, Atsushi; Kamiya, Yuji; Krichevsky, Alexander; Citovsky, Vitaly; Pichersky, Eran; Dudareva, Natalia
2009-01-01
Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta. PMID:20028839
Cox, Robert H; Fromme, Samantha
2016-12-01
We have shown that three components contribute to functional voltage gated K + (K v ) currents in rat small mesenteric artery myocytes: (1) Kv1.2 plus Kv1.5 with Kvβ1.2 subunits, (2) Kv2.1 probably associated with Kv9.3 subunits, and (3) Kv7.4 subunits. To confirm and address subunit stoichiometry of the first two, we have compared the biophysical properties of K v currents in small mesenteric artery myocytes with those of K v subunits heterologously expressed in HEK293 cells using whole cell voltage clamp methods. Selective inhibitors of Kv1 (correolide, COR) and Kv2 (stromatoxin, ScTx) channels were used to separate these K v current components. Conductance-voltage and steady state inactivation data along with time constants of activation, inactivation, and deactivation of native K v components were generally well represented by those of Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels. The slope of the steady state inactivation-voltage curve (availability slope) proved to be the most sensitive measure of accessory subunit presence. The availability slope curves exhibited a single peak for both native K v components. Availability slope curves for Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels expressed in human embryonic kidney cells also exhibited a single peak that shifted to more depolarized voltages with increasing accessory to α subunit transfection ratio. Availability slope curves for SxTc-insensitive currents were similar to those of Kv1.2-1.5 expressed with Kvβ1.2 at a 1:5 molar ratio while curves for COR-insensitive currents closely resembled those of Kv2.1 expressed with Kv9.3 at a 1:1 molar ratio. These results support the suggested K v subunit combinations in small mesenteric artery, and further suggest that Kv1 α and Kvβ1.2 but not Kv2.1 and Kv9.3 subunits are present in a saturated (4:4) stoichiometry.
Fukayama, Hiroshi; Koga, Atsushi; Hatanaka, Tomoko; Misoo, Shuji
2015-04-01
Effects of overexpression of high activity-type Rubisco small subunit (RbcS) from a cold-resistant plant, timothy (Phleum pratense), on kinetic properties of Rubisco were studied in rice (Oryza sativa). The full-length mRNA sequence of timothy RbcS (PpRbcS1) was determined by 5'RACE and 3'RACE. The coding sequence of PpRbcS1 was fused to the chlorophyll a/b-binding protein promoter and introduced into rice. PpRbcS was highly expressed in leaf blade and accounted for approximately 30 % of total RbcS in homozygous transgenic lines. However, the catalytic turnover rate and K m for CO2 of Rubisco did not significantly change in these transgenic lines compared to non-transgenic rice, suggesting that PpRbcS1 is not effective for improvement of catalytic efficiency of rice Rubisco. The photosynthetic rate and growth were essentially unchanged, whereas the photosynthetic rate at low CO2 condition was marginally increased in transgenic lines. Rubisco content was significantly increased, whereas soluble protein, nitrogen, and chlorophyll contents were unchanged in transgenic lines compared to non-transgenic rice. Because the kinetic properties were similar, observed slight increase in photosynthetic rate at low CO2 is considered to be large due to increase in Rubisco content in transgenic lines. Introduction of foreign RbcS is an effective approach for the improvement of Rubisco kinetics and photosynthesis. However, in this study, it was suggested that RbcS of high activity-type Rubisco, even showing higher amino acid identity with rice RbcS, did not always enhance the catalytic turnover rate of Rubisco in rice. Thus, we should carefully select RbcS to be overexpressed before introduction.
Kurtzman, Cletus P; Robnett, Christie J
2014-11-01
The new anamorphic yeast Kuraishia piskuri, f.a., sp. nov. is described for three strains that were isolated from insect frass from trees growing in Florida, USA (type strain, NRRL YB-2544, CBS 13714). Species placement was based on phylogenetic analysis of nuclear gene sequences for the D1/D2 domains of large subunit rRNA, small subunit rRNA, translation elongation factor-1α, and subunits B1 and B2 of RNA polymerase II B. From this analysis, the anamorphic species Candida borneana, Candida cidri, Candida floccosa, Candida hungarica, and Candida ogatae were transferred to the genus Kuraishia as new combinations and Candida anatomiae, Candida ernobii, Candida ishiwadae, Candida laoshanensis, Candida molendini-olei, Candida peltata, Candida pomicola, Candida populi, Candida wickerhamii, and Candida wyomingensis were transferred to the genus Nakazawaea. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
da Mota, F F; Gomes, E A; Paiva, E; Rosado, A S; Seldin, L
2004-01-01
To avoid the limitations of 16S rRNA-based phylogenetic analysis for Paenibacillus species, the usefulness of the RNA polymerase beta-subunit encoding gene (rpoB) was investigated as an alternative to the 16S rRNA gene for taxonomic studies. Partial rpoB sequences were generated for the type strains of eight nitrogen-fixing Paenibacillus species. The presence of only one copy of rpoB in the genome of P. graminis strain RSA19(T) was demonstrated by denaturing gradient gel electrophoresis and hybridization assays. A comparative analysis of the sequences of the 16S rRNA and rpoB genes was performed and the eight species showed between 91.6-99.1% (16S rRNA) and 77.9-97.3% (rpoB) similarity, allowing a more accurate discrimination between the different species using the rpoB gene. Finally, 24 isolates from the rhizosphere of different cultivars of maize previously identified as Paenibacillus spp. were assigned correctly to one of the nitrogen-fixing species. The data obtained in this study indicate that rpoB is a powerful identification tool, which can be used for the correct discrimination of the nitrogen-fixing species of agricultural and industrial importance within the genus Paenibacillus.
Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency
Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei
2015-01-01
Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. PMID:26208645
Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.
Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei
2015-11-01
Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Extrasynaptic αβ subunit GABAA receptors on rat hippocampal pyramidal neurons
Mortensen, Martin; Smart, Trevor G
2006-01-01
Extrasynaptic GABAA receptors that are tonically activated by ambient GABA are important for controlling neuronal excitability. In hippocampal pyramidal neurons, the subunit composition of these extrasynaptic receptors may include α5βγ and/or α4βδ subunits. Our present studies reveal that a component of the tonic current in the hippocampus is highly sensitive to inhibition by Zn2+. This component is probably not mediated by either α5βγ or α4βδ receptors, but might be explained by the presence of αβ isoforms. Using patch-clamp recording from pyramidal neurons, a small tonic current measured in the absence of exogenous GABA exhibited both high and low sensitivity to Zn2+ inhibition (IC50 values, 1.89 and 223 μm, respectively). Using low nanomolar and micromolar GABA concentrations to replicate tonic currents, we identified two components that are mediated by benzodiazepine-sensitive and -insensitive receptors. The latter indicated that extrasynaptic GABAA receptors exist that are devoid of γ2 subunits. To distinguish whether the benzodiazepine-insensitive receptors were αβ or αβδ isoforms, we used single-channel recording. Expressing recombinant α1β3γ2, α5β3γ2, α4β3δ and α1β3 receptors in human embryonic kidney (HEK) or mouse fibroblast (Ltk) cells, revealed similar openings with high main conductances (∼25–28 pS) for γ2 or δ subunit-containing receptors whereas αβ receptors were characterized by a lower main conductance state (∼11 pS). Recording from pyramidal cell somata revealed a similar range of channel conductances, indicative of a mixture of GABAA receptors in the extrasynaptic membrane. The lowest conductance state (∼11 pS) was the most sensitive to Zn2+ inhibition in accord with the presence of αβ receptors. This receptor type is estimated to account for up to 10% of all extrasynaptic GABAA receptors on hippocampal pyramidal neurons. PMID:17023503
Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice
Suo, Meng; Wang, Ping
2016-01-01
Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985
Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin.
Saito, M; Shinozaki-Kuwahara, N; Hirasawa, M; Takada, K
2016-02-01
A Gram-stain-positive, catalase-negative, coccus-shaped organism was isolated from the oral cavity of tufted capuchin (Cebus apella). Comparative 16S rRNA gene sequence analysis suggested classification of the organism within the genus Streptococcus. Strain M8T was related most closely to Streptococcus oralis ATCC 35037T (96.17 % similarity) followed by Streptococcus massiliensis CCUG 49690T (95.90 %) based on the 16S rRNA gene. Strain M8T was related most closely to S. massiliensis CCUG 49690T (86.58 %) based on the RNA polymerase β subunit-encoding gene (rpoB), and to Streptococcus tigurinus AZ_3aT (81.26 %) followed by S. massiliensis CCUG 49690T (80.45 %) based on the 60 kDa heat-shock protein gene (groEL). The phylogenetic trees of 16S rRNA, rpoB and groEL gene sequences showed that strain M8T was most closely related to S. massiliensis. Based on phenotypic characterization as well as 16S rRNA gene and housekeeping gene (rpoB and groEL) sequence data, a novel taxon, Streptococcus oricebi sp. nov. (type strain M8T = JCM 30719T = DSM 100101T), is proposed.
2007-09-01
16 Senecio sp. Groundsel yes P medium medium E AK Ft. Greely 6 Sida spinosa Prickly sida A small medium N&S 16 ER D C TR -07-11 11...small C4, CAM N&S Sida spinosa Prickly sida Malvaceae A small medium many considerable C3 N&S 1 Screened for explosives tolerance. 2 A, annual; P...Portulaca oleracea, and h. Sida spinosa. ERDC TR-07-11 16 3 Short-Term Screening for Energetics Tolerance Introduction Short-term screening
Halimi, Yair; Dessau, Moshe; Pollak, Shaul; Ast, Tslil; Erez, Tamir; Livnat-Levanon, Nurit; Karniol, Baruch; Hirsch, Joel A; Chamovitz, Daniel A
2011-09-01
The COP9 Signalosome protein complex (CSN) is a pleiotropic regulator of plant development and contains eight-subunits. Six of these subunits contain the PCI motif which mediates specific protein interactions necessary for the integrity of the complex. COP9 complex subunit 7 (CSN7) contains an N-terminal PCI motif followed by a C-terminal extension which is also necessary for CSN function. A yeast-interaction trap assay identified the small subunit of ribonucelotide reductase (RNR2) from Arabidopsis as interacting with the C-terminal section of CSN7. This interaction was confirmed in planta by both bimolecular fluorescence complementation and immuoprecipitation assays with endogenous proteins. The subcellular localization of RNR2 was primarily nuclear in meristematic regions, and cytoplasmic in adult cells. RNR2 was constitutively nuclear in csn7 mutant seedlings, and was also primarily nuclear in wild type seedlings following exposure to UV-C. These two results correlate with constitutive expression of several DNA-damage response genes in csn7 mutants, and to increased tolerance of csn7 seedlings to UV-C treatment. We propose that the CSN is a negative regulator of RNR activity in Arabidopsis.
Factors Affecting Nuclear Export of the 60S Ribosomal Subunit In Vivo
Stage-Zimmermann, Tracy; Schmidt, Ute; Silver, Pamela A.
2000-01-01
In Saccharomyces cerevisiae, the 60S ribosomal subunit assembles in the nucleolus and then is exported to the cytoplasm, where it joins the 40S subunit for translation. Export of the 60S subunit from the nucleus is known to be an energy-dependent and factor-mediated process, but very little is known about the specifics of its transport. To begin to address this problem, an assay was developed to follow the localization of the 60S ribosomal subunit in S. cerevisiae. Ribosomal protein L11b (Rpl11b), one of the ∼45 ribosomal proteins of the 60S subunit, was tagged at its carboxyl terminus with the green fluorescent protein (GFP) to enable visualization of the 60S subunit in living cells. A panel of mutant yeast strains was screened for their accumulation of Rpl11b–GFP in the nucleus as an indicator of their involvement in ribosome synthesis and/or transport. This panel included conditional alleles of several rRNA-processing factors, nucleoporins, general transport factors, and karyopherins. As predicted, conditional alleles of rRNA-processing factors that affect 60S ribosomal subunit assembly accumulated Rpl11b–GFP in the nucleus. In addition, several of the nucleoporin mutants as well as a few of the karyopherin and transport factor mutants also mislocalized Rpl11b–GFP. In particular, deletion of the previously uncharacterized karyopherin KAP120 caused accumulation of Rpl11b–GFP in the nucleus, whereas ribosomal protein import was not impaired. Together, these data further define the requirements for ribosomal subunit export and suggest a biological function for KAP120. PMID:11071906
Fuchs, Gabriele; Petrov, Alexey N; Marceau, Caleb D; Popov, Lauren M; Chen, Jin; O'Leary, Seán E; Wang, Richard; Carette, Jan E; Sarnow, Peter; Puglisi, Joseph D
2015-01-13
Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.
Neely, Alan; Hidalgo, Patricia
2014-01-01
Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826
Yoshikawa, Harunori; Komatsu, Wataru; Hayano, Toshiya; Miura, Yutaka; Homma, Keiichi; Izumikawa, Keiichi; Ishikawa, Hideaki; Miyazawa, Naoki; Tachikawa, Hiroyuki; Yamauchi, Yoshio; Isobe, Toshiaki; Takahashi, Nobuhiro
2011-01-01
Ribosome biogenesis starts with transcription of the large ribosomal RNA precursor (47S pre-rRNA), which soon combines with numerous factors to form the 90S pre-ribosome in the nucleolus. Although the subsequent separation of the pre-90S particle into pre-40S and pre-60S particles is critical for the production process of mature small and large ribosomal subunits, its molecular mechanisms remain undetermined. Here, we present evidence that p32, fibrillarin (FBL), and Nop52 play key roles in this separation step. Mass-based analyses combined with immunoblotting showed that p32 associated with 155 proteins including 31 rRNA-processing factors (of which nine were components of small subunit processome, and six were those of RIX1 complex), 13 chromatin remodeling components, and six general transcription factors required for RNA polymerase III-mediated transcription. Of these, a late rRNA-processing factor Nop52 interacted directly with p32. Immunocytochemical analyses demonstrated that p32 colocalized with an early rRNA-processing factor FBL or Nop52 in the nucleolus and Cajal bodies, but was excluded from the nucleolus after actinomycin D treatment. p32 was present in the pre-ribosomal fractions prepared by cell fractionation or separated by ultracentrifugation of the nuclear extract. p32 also associated with pre-rRNAs including 47S/45S and 32S pre-rRNAs. Furthermore, knockdown of p32 with a small interfering RNA slowed the early processing from 47S/45S pre-rRNAs to 18S rRNA and 32S pre-rRNA. Finally, Nop52 was found to compete with FBL for binding to p32 probably in the nucleolus. Given the fact that FBL and Nop52 are associated with pre-ribosome particles distinctly different from each other, we suggest that p32 is a new rRNA maturation factor involved in the remodeling from pre-90S particles to pre-40S and pre-60S particles that requires the exchange of FBL for Nop52. PMID:21536856
Long, Minnan; Liu, Jingjing; Chen, Zhifeng; Bleijlevens, Boris; Roseboom, Winfried; Albracht, Simon P J
2007-01-01
A soluble hydrogenase from Allochromatium vinosum was purified. It consisted of a large (M (r) = 52 kDa) and a small (M (r) = 23 kDa) subunit. The genes encoding for both subunits were identified. They belong to an open reading frame where they are preceded by three more genes. A DNA fragment containing all five genes was cloned and sequenced. The deduced amino acid sequences of the products characterized the complex as a member of the HoxEFUYH type of [NiFe] hydrogenases. Detailed sequence analyses revealed binding sites for eight Fe-S clusters, three [2Fe-2S] clusters and five [4Fe-4S] clusters, six of which are also present in homologous subunits of [FeFe] hydrogenases and NADH:ubiquione oxidoreductases (complex I). This makes the HoxEFUYH type of hydrogenases the one that is evolutionary closest to complex I. The relative positions of six of the potential Fe-S clusters are predicted on the basis of the X-ray structures of the Clostridium pasteurianum [FeFe] hydrogenase I and the hydrophilic domain of complex I from Thermus thermophilus. Although the HoxF subunit contains binding sites for flavin mononucleotide and NAD(H), cell-free extracts of A. vinosum did not catalyse a H(2)-dependent reduction of NAD(+). Only the hydrogenase module (HoxYH) could be purified. Its electron paramagnetic resonance (EPR) and IR spectral properties showed the presence of a Ni-Fe active site and a [4Fe-4S] cluster. Its activity was sensitive to carbon monoxide. No EPR signals from a light-sensitive Ni(a)-C* state could be observed. This study presents the first IR spectroscopic data on the HoxYH module of a HoxEFUYH type of [NiFe] hydrogenase.
McLoughlin, Fionn; Basha, Eman; Fowler, Mary E; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha; Vierling, Elizabeth
2016-10-01
The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. © 2016 American Society of Plant Biologists. All Rights Reserved.
Wang, Ke; Xie, Hui; Li, Yu; Xu, Chun-Ling; Yu, Lu; Wang, Dong-Wei
2013-12-18
Paratylenchus shenzhenensis n. sp. was collected from the rhizosphere soil of Anthurium andraeanum in Shenzhen, Guangdong Province, China. The new species is characterized by having a female with a small body (249-302 μm), well developed stylet (17-21 μm), rounded head with four submedian lobes and lip-region with a slight depression at the oral area, small post-vulval uterine sac with a few vestigial cells; male with body dorsally curved behind the cloacal opening, stylet absent, pharynx degenerate, prominent penial sheath; and juveniles with a stylet. It is morphologically similar to P. minutus. The internal transcribed spacer sequences of ribosomal DNA (ITS-rDNA) of the new species only have 72-73% identity with P. minutus, confirming its status as a separate species. The D2/D3 region of 28S ribosomal DNA (28S rDNA) and 18S small subunit ribosomal DNA (18S rDNA) from P. shenzhenensis n. sp. were also amplified and sequenced in this study.
Protective Immunity to Ricin Toxin Conferred by Antibodies against the Toxin’s Binding Subunit (RTB)
Yermakova, Anastasiya; Mantis, Nicholas J.
2011-01-01
The B subunit (RTB) of ricin toxin is a galactose-/N-acetyl galactosamine-specific lectin that promotes attachment and entry of ricin into host cells. RTB is also the archetype of the so-called R-type lectin family, whose members include haemagglutinins of botulinum neurotoxin (BoNT) progenitor toxins, as well as the binding subunits of cytolethal distending toxins. Although RTB is an appealing subunit vaccine candidate, as well as a potential target for immunotherapeutics, the degree to which RTB immunization elicits protective antibodies against ricin toxin remains unresolved. To address this issue, groups of mice were immunized with RTB and then challenged with 5xLD50s of ricin administered intraperitoneally. Despite high RTB-specific serum antibody titers, groups of RTB immunized mice were only partially immune to ricin challenge. Analysis of a collection of RTB-specific B cell hybridomas suggested that only a small fraction of antibodies against RTB have demonstrable neutralizing activity. Two RTB-specific neutralizing monoclonal IgG1 antibodies, 24B11 and SylH3, when passively administered to mice, were sufficient to protect the animals against a 5xLD50 dose of ricin. Both 24B11 and SylH3 blocked ricin attachment to terminal galactose residues and prevented toxin binding to the surfaces of bone marrow-derived macrophages (BMM), suggesting that they function by steric hindrance and recognize epitopes located on RTB’s carbohydrate recognition sub-domains (1α or 2γ). These data raise the possibility of using specific RTB sub-domains, rather than RTB itself, as antigens to more efficiently elicit neutralizing antibodies and protective immunity against ricin. PMID:21872634
Machiavelli, G A; Artese, R; Benencia, H; Bruno, O; Guerra, L; Basso, A; Burdman, J A
1999-04-01
Within a population of 16 pituitary adenomas we found high levels of glycoprotein alpha subunits in the sera of patients with somatotrophic tumors. This finding was correlated with the presence of mRNA alpha subunit in these tumors indicating the adenomas themselves as the origin of the circulating alpha-subunit. Synthesis of these two hormones, which are chemically very different, by the same tumor cells indicates a high degree of differentiation of these cells. We are unable at this time to conclusively correlate differentiation of these tumors aggressively.
Interpersonal distance regulates functional grouping tendencies of agents in team sports.
Passos, Pedro; Milho, João; Fonseca, Sofia; Borges, João; Araújo, Duarte; Davids, Keith
2011-01-01
The authors examined whether, similar to collective agent behaviors in complex, biological systems (e.g., schools of fish and colonies of ants), performers in team sports displayed functional coordination tendencies, based on local interaction rules during performance. To investigate this issue, they used videogrammetry and digitizing procedures to observe interpersonal interactions in common 4 versus 2 + 2 subphases of the team sport of rugby union, involving 16 participants aged between 16 and 17 years of age. They observed pattern-forming dynamics in attacking subunits (n = 4 players) attempting to penetrate 2 defensive lines (n = 2 players in each). Data showed that within each attacking subunit, the 4 players displayed emergent functional grouping tendencies that differed between the 2 defensive lines. Results confirmed that grouping tendencies in attacking subunits of team games are sensitive to different task constraints, such as relative positioning to nearest defenders. It was concluded that running correlations were particularly useful for measuring the level of interpersonal coordination in functional grouping tendencies within attacking subunits.
Geranyl diphosphate synthase large subunit, and methods of use
Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.
2001-10-16
A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.
Ekaphan Kraichak; Sittiporn Parnmen; Robert Lücking; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Armin Mangold; Joel A. Mercado-Diaz; Khwanruan Papong; Dries Van der Broeck; Gothamie Weerakoon; H. Thorsten Lumbsch; NO-VALUE
2014-01-01
We present an updated 3-locus molecular phylogeny of tribe Ocellularieae, the second largest tribe within subfamily Graphidoideae in the Graphidaceae. Adding 165 newly generated sequences from the mitochondrial small subunit rDNA (mtSSU), the nuclear large subunit rDNA (nuLSU), and the second largest subunit of the DNA-directed RNA polymerase II (RPB2), we currently...
The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope.
Morag, Omry; Sgourakis, Nikolaos G; Baker, David; Goldbourt, Amir
2015-01-27
Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6-16.7 Å and a tilt of 36.1-36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies.
The NMR–Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope
Morag, Omry; Sgourakis, Nikolaos G.; Baker, David; Goldbourt, Amir
2015-01-01
Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6–16.7 Å and a tilt of 36.1–36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies. PMID:25587134
Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis
Liiv, Aivar; Karitkina, Diana; Maiväli, Ülo; Remme, Jaanus
2005-01-01
Background The ribosome is a two-subunit enzyme known to exhibit structural dynamism during protein synthesis. The intersubunit bridges have been proposed to play important roles in decoding, translocation, and the peptidyl transferase reaction; yet the physical nature of their contributions is ill understood. An intriguing intersubunit bridge, B2a, which contains 23S rRNA helix 69 as a major component, has been implicated by proximity in a number of catalytically important regions. In addition to contacting the small ribosomal subunit, helix 69 contacts both the A and P site tRNAs and several translation factors. Results We scanned the loop of helix 69 by mutagenesis and analyzed the mutant ribosomes using a plasmid-borne IPTG-inducible expression system. We assayed the effects of 23S rRNA mutations on cell growth, contribution of mutant ribosomes to cellular polysome pools and the ability of mutant ribosomes to function in cell-free translation. Mutations A1912G, and A1919G have very strong growth phenotypes, are inactive during in vitro protein synthesis, and under-represented in the polysomes. Mutation Ψ1917C has a very strong growth phenotype and leads to a general depletion of the cellular polysome pool. Mutation A1916G, having a modest growth phenotype, is apparently defective in the assembly of the 70S ribosome. Conclusion Mutations A1912G, A1919G, and Ψ1917C of 23S rRNA strongly inhibit translation. Mutation A1916G causes a defect in the 50S subunit or 70S formation. Mutations Ψ1911C, A1913G, C1914A, Ψ1915C, and A1918G lack clear phenotypes. PMID:16053518
Identification and characterization of microRNAs in the pancreatic fluke Eurytrema pancreaticum.
Xu, Min-Jun; Wang, Chun-Ren; Huang, Si-Yang; Fu, Jing-Hua; Zhou, Dong-Hui; Chang, Qiao-Cheng; Zheng, Xu; Zhu, Xing-Quan
2013-01-25
Eurytrema pancreaticum is one of the most common flukes, which mainly infects ruminants globally and infects human beings accidentally; causing eurytremiasis that has high veterinary and economic importance. MicroRNAs (miRNAs) are small non-coding RNAs and are now considered as a key mechanism of gene regulation at the post-transcription level. We investigated the global miRNA expression profile of E. pancreaticum adults using next-generation sequencing technology combined with real-time quantitative PCR. By using the genome of the closely-related species Schistosoma japonicum as reference, we obtained 27 miRNA candidates out of 16.45 million raw sequencing reads, with 13 of them found as known miRNAs in S. japonicum and/or S. mansoni, and the remaining 14 miRNAs were considered as novel. Five out of the 13 known miRNAs coming from one family named as sja-miR-2, including family members from miR-2a to miR-2e. Targets of 19 miRNAs were successfully predicated out of the 17401 mRNA and EST non-redundant sequences of S. japonicum. It was found that a significant high number of targets were related to "chch domain-containing protein mitochondrial precursor" (n = 29), "small subunit ribosomal protein s30e" (n = 21), and "insulin-induced gene 1 protein" (n = 9). Besides, "egg protein cp3842" (n = 2), "fumarate hydratase" (n = 2), "ubiquitin-conjugating enzyme" (n = 2), and "sperm-associated antigen 6" (n = 1) were also found as targets of the miRNAs of E. pancreaticum. The present study represents the first global characterization of E. pancreaticum miRNAs, which provides novel resources for a better understanding of the parasite, which, in turn, has implications for the effective control of the disease it causes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehmeyer, B.; Cashmore, A.R.; Schaefer, E.
Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light.more » These distinct expression characteristics are shown to reflect differences at the level of transcription.« less
Modulation of Gain-of-function α6*-Nicotinic Acetylcholine Receptor by β3 Subunits*
Dash, Bhagirathi; Lukas, Ronald J.
2012-01-01
We previously have shown that β3 subunits either eliminate (e.g. for all-human (h) or all-mouse (m) α6β4β3-nAChR) or potentiate (e.g. for hybrid mα6hβ4hβ3- or mα6mβ4hβ3-nAChR containing subunits from different species) function of α6*-nAChR expressed in Xenopus oocytes, and that nAChR hα6 subunit residues Asn-143 and Met-145 in N-terminal domain loop E are important for dominant-negative effects of nAChR hβ3 subunits on hα6*-nAChR function. Here, we tested the hypothesis that these effects of β3 subunits would be preserved even if nAChR α6 subunits harbored gain-of-function, leucine- or valine-to-serine mutations at 9′ or 13′ positions (L9′S or V13′S) in their second transmembrane domains, yielding receptors with heightened functional activity and more amenable to assessment of effects of β3 subunit incorporation. However, coexpression with β3 subunits potentiates rather than suppresses function of all-human, all-mouse, or hybrid α6(L9′S or V13′S)β4*- or α6(N143D+M145V)L9′Sβ2*-nAChR. This contrasts with the lack of consistent function when α6(L9′S or V13′S) and β2 subunits are expressed alone or in the presence of wild-type β3 subunits. These results provide evidence that gain-of-function hα6hβ2*-nAChR (i.e. hα6(N143D+M145V)L9′Shβ2hβ3 nAChR) could be produced in vitro. These studies also indicate that nAChR β3 subunits can be assembly partners in functional α6*-nAChR and that 9′ or 13′ mutations in the nAChR α6 subunit second transmembrane domain can act as gain-of-function and/or reporter mutations. Moreover, our findings suggest that β3 subunit coexpression promotes function of α6*-nAChR. PMID:22315221
Bowers, Holly A.; Tomas, Carmelo; Tengs, Torstein; Kempton, Jason W.; Lewitus, Alan J.; Oldach, David W.
2010-01-01
Species within the class Raphidophyceae were associated with fish kill events in Japanese, European, Canadian, and U.S. coastal waters. Fish mortality was attributable to gill damage with exposure to reactive oxygen species (peroxide, superoxide, and hydroxide radicals), neurotoxins, physical clogging, and hemolytic substances. Morphological identification of these organisms in environmental water samples is difficult, particularly when fixatives are used. Because of this difficulty and the continued global emergence of these species in coastal estuarine waters, we initiated the development and validation of a suite of real-time polymerase chain reaction (PCR) assays. Sequencing was used to generate complete data sets for nuclear encoded small-subunit ribosomal RNA (SSU rRNA; 18S); internal transcribed spacers 1 and 2, 5.8S; and plastid encoded SSU rRNA (16S) for confirmed raphidophyte cultures from various geographic locations. Sequences for several Chattonella species (C. antiqua, C. marina, C. ovata, C. subsalsa, and C. verruculosa), Heterosigma akashiwo, and Fibrocapsa japonica were generated and used to design rapid and specific PCR assays for several species including C. verruculosa Hara et Chihara, C. subsalsa Biecheler, the complex comprised of C. marina Hara et Chihara, C. antiqua Ono and C. ovata, H. akashiwo Ono, and F. japonica Toriumi et Takano using appropriate loci. With this comprehensive data set, we were also able to perform phylogenetic analyses to determine the relationship between these species. PMID:20411032
Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann
2013-06-21
In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandropoulos, Dimitris I.; Moushi, Eleni E.; Papatriantafyllopoulou, Constantina
Here, the employment of cyanato (OCN -) group in high oxidation state manganese cluster chemistry, in conjunction with carboxylate ions and the organic chelating/bridging ligand 2-(hydroxymethyl)pyridine (hmpH), is reported. The syntheses, crystal structures, and magnetochemical characterization are described for [Mn 16O 8(OR) 4(OCN) 4(O 2CMe) 12(hmp) 6(ROH) 2] (R = Me (1), Et (2)) and [Mn 18O 14(O 2CR) 18(hmp) 4(hmpH) 2(H 2O) 2] (R = Me (3), Et (4)). The 2:1:1:1 reactions of Mn(O 2CMe) 2·4H 2O, hmpH, NaOCN and NEt 3 in solvent MeOH or EtOH afford the isostructural complexes [Mn 16O 8(OR) 4(OCN) 4(O 2CMe) 12(hmp) 6(ROH)more » 2] (R = Me (1), Et (2)). The [Mn 16(μ 4-O) 4(μ 3-O) 4(μ-OMe) 4(μ 3-OR) 6(μ-OR) 6] 10+ core of representative complex 1 comprises a Mn II 4Mn III 4 double-cubane subunit attached on either side to two symmetry-related Mn IIMn III 3 defective dicubanes. A similar reaction of Mn(O 2CR) 2·4H 2O, hmpH, NaOCN and NEt 3, but in solvent MeCN, led instead to the formation of [Mn 18O 14(O 2CR) 18(hmp) 4(hmpH) 2(H 2O) 2] (R = Me (3), Et (4)). Compounds 3 and 4 are very similar to each other and can be described as a central [Mn III 4(μ-O) 6] rodlike subunit attached on either side to two symmetry-related [Mn 7O 9] subunits. Variable-temperature, solid-state dc and ac magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions in all compounds, and possible S = 2 or 1 (for 1 and 2) and S = 0 (for 3 and 4) ground state spin values. The combined results demonstrate the ability of cyanato groups to facilitate the formation of new polynuclear Mn II/III complexes with structures different than these obtained from the use of the related azides.« less
Alexandropoulos, Dimitris I.; Moushi, Eleni E.; Papatriantafyllopoulou, Constantina; ...
2015-12-02
Here, the employment of cyanato (OCN -) group in high oxidation state manganese cluster chemistry, in conjunction with carboxylate ions and the organic chelating/bridging ligand 2-(hydroxymethyl)pyridine (hmpH), is reported. The syntheses, crystal structures, and magnetochemical characterization are described for [Mn 16O 8(OR) 4(OCN) 4(O 2CMe) 12(hmp) 6(ROH) 2] (R = Me (1), Et (2)) and [Mn 18O 14(O 2CR) 18(hmp) 4(hmpH) 2(H 2O) 2] (R = Me (3), Et (4)). The 2:1:1:1 reactions of Mn(O 2CMe) 2·4H 2O, hmpH, NaOCN and NEt 3 in solvent MeOH or EtOH afford the isostructural complexes [Mn 16O 8(OR) 4(OCN) 4(O 2CMe) 12(hmp) 6(ROH)more » 2] (R = Me (1), Et (2)). The [Mn 16(μ 4-O) 4(μ 3-O) 4(μ-OMe) 4(μ 3-OR) 6(μ-OR) 6] 10+ core of representative complex 1 comprises a Mn II 4Mn III 4 double-cubane subunit attached on either side to two symmetry-related Mn IIMn III 3 defective dicubanes. A similar reaction of Mn(O 2CR) 2·4H 2O, hmpH, NaOCN and NEt 3, but in solvent MeCN, led instead to the formation of [Mn 18O 14(O 2CR) 18(hmp) 4(hmpH) 2(H 2O) 2] (R = Me (3), Et (4)). Compounds 3 and 4 are very similar to each other and can be described as a central [Mn III 4(μ-O) 6] rodlike subunit attached on either side to two symmetry-related [Mn 7O 9] subunits. Variable-temperature, solid-state dc and ac magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions in all compounds, and possible S = 2 or 1 (for 1 and 2) and S = 0 (for 3 and 4) ground state spin values. The combined results demonstrate the ability of cyanato groups to facilitate the formation of new polynuclear Mn II/III complexes with structures different than these obtained from the use of the related azides.« less
Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH
Crichton, Robert R.; Bryce, Charles F. A.
1973-01-01
1. The dissociation of horse spleen apoferritin as a function of pH was analysed by sedimentation-velocity techniques. The oligomer is stable in the range pH2.8–10.6. Between pH2.8 and 1.6 and 10.6 and 13.0 both oligomer and subunits can be detected. At pH values between 1.6 and 1.0 the subunit is the only species observed, although below pH1.0 aggregation of the subunits to a particle sedimenting much faster than the oligomer occurs. 2. When apoferritin is first dissociated into subunits at low pH values and then dialysed into buffers of pH1.5–5.0, the subunit reassociates to oligomer in the pH range 3.1–4.3. 3. U.v.-difference spectroscopy was used to study conformational changes occurring during the dissociation process. The difference spectrum in acid can be accounted for by the transfer of four to five tyrosine residues/subunit from the interior of the protein into the solvent. This process is reversed on reassociation, but shows the same hysteresis as found by sedimentation techniques. The difference spectrum in alkali is more complex, but is consistent with the deprotonation of tyrosine residues, which appear to have rather high pK values. 4. In addition to the involvement of tyrosine residues in the conformational change at low pH values, spectral evidence is presented that one tryptophan residue/subunit also changes its environment before dissociation and subsequent to reassociation. 5. Analysis of the dissociation and reassociation of apoferritin at low pH values suggests that this is a co-operative process involving protonation and deprotonation of at least two carboxyl functions of rather low intrinsic pK. The dissociation at alkaline pH values does not appear to be co-operative. 6. Of the five tyrosine residues/subunit only one can be nitrated with tetranitromethane. Guanidination of lysine residues results in the modification of seven out of a total of nine residues/subunit. Nine out of the ten arginine residues/subunit react with cyclohexanedione. PMID:4737425
Quantification of Transthyretin Kinetic Stability in Human Plasma Using Subunit Exchange
2015-01-01
The transthyretin (TTR) amyloidoses are a group of degenerative diseases caused by TTR aggregation, requiring rate-limiting tetramer dissociation. Kinetic stabilization of TTR, by preferential binding of a drug to the native tetramer over the dissociative transition state, dramatically slows the progression of familial amyloid polyneuropathy. An established method for quantifying the kinetic stability of recombinant TTR tetramers in buffer is subunit exchange, in which tagged TTR homotetramers are added to untagged homotetramers at equal concentrations to measure the rate at which the subunits exchange. Herein, we report a subunit exchange method for quantifying the kinetic stability of endogenous TTR in human plasma. The subunit exchange reaction is initiated by the addition of a substoichiometric quantity of FLAG-tagged TTR homotetramers to endogenous TTR in plasma. Aliquots of the subunit exchange reaction, taken as a function of time, are then added to an excess of a fluorogenic small molecule, which immediately arrests further subunit exchange. After binding, the small molecule reacts with the TTR tetramers, rendering them fluorescent and detectable in human plasma after subsequent ion exchange chromatography. The ability to report on the extent of TTR kinetic stabilization resulting from treatment with oral tafamidis is important, especially for selection of the appropriate dose for patients carrying rare mutations. This method could also serve as a surrogate biomarker for the prediction of the clinical outcome. Subunit exchange was used to quantify the stabilization of WT TTR from senile systemic amyloidosis patients currently being treated with tafamidis (20 mg orally, once daily). TTR kinetic stability correlated with the tafamidis plasma concentration. PMID:24661308
Richert, Kathrin; Brambilla, Evelyne; Stackebrandt, Erko
2005-01-01
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.
Tammaro, Margaret; Liao, Shuren; McCane, Jill; Yan, Hong
2015-01-01
The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5′ strand to generate 3′ ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5′->3′ directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN's 3′->5′ helicase activity and DNA2's 5′->3′ ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway. PMID:26227969
Kopacz-Jodczyk, T; Paszkiewicz-Gadek, A; Lopaczyński, W; Gałasiński, W
1984-04-06
A rapid and simple procedure for isolation of 40S and 60S ribosomal subunits by ion-exchange column chromatography is described. The dissociated ribosomes can be separated and non-ribosomal proteins and low-molecular-weight substances removed. An assessment by physicochemical and functional criteria showed that the ribosomal subunits obtained are active and sufficiently homogeneous.
Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon
2012-01-01
The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124
Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi
2014-01-01
Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity.
Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi
2014-01-01
Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity. PMID:24254313
Graf, Michael; Arenz, Stefan; Huter, Paul; Dönhöfer, Alexandra; Nováček, Jiří
2017-01-01
Abstract Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA. PMID:27986857
Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.
2010-01-01
N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261
Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A
2007-02-23
N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.
Muller, Félix; Brissac, Terry; Le Bris, Nadine; Felbeck, Horst; Gros, Olivier
2010-08-01
Archaea may be involved in global energy cycles, and are known for their ability to interact with eukaryotic species (sponges, corals and ascidians) or as archaeal-bacterial consortia. The recently proposed phylum Thaumarchaeota may represent the deepest branching lineage in the archaeal phylogeny emerging before the divergence between Euryarchaeota and Crenarchaeota. Here we report the first characterization of two marine thaumarchaeal species from shallow waters that consist of multiple giant cells. One species is coated with sulfur-oxidizing γ-Proteobacteria. These new uncultured thaumarchaeal species are able to live in the sulfide-rich environments of a tropical mangrove swamp, either on living tissues such as roots or on various kinds of materials such as stones, sunken woods, etc. These archaea and archaea/bacteria associations have been studied using light microscopy, transmission electron microscopy and scanning electron microscopy. Species identification of archaeons and the putative bacterial symbiont have been assessed by 16S small subunit ribosomal RNA analysis. The sulfur-oxidizing ability of the bacteria has been assessed by genetic investigation on alpha-subunit of the adenosine-5'-phosphosulfate reductase/oxidase's (AprA). Species identifications have been confirmed by fluorescence in situ hybridization using specific probes designed in this study. In this article, we describe two new giant archaeal species that form the biggest archaeal filaments ever observed. One of these species is covered by a specific biofilm of sulfur-oxidizing γ-Proteobacteria. This study highlights an unexpected morphological and genetic diversity of the phylum Thaumarchaeota. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Beati, Lorenza; Cáceres, Abraham G; Lee, Jamie A; Munstermann, Leonard E
2004-02-01
Lutzomyia spp. are New World phlebotomine sand flies, many of which are involved in the transmission of human diseases, such as leishmaniases and bartonellosis. The systematic classification of the approximately 400 species in the genus has been based on morphological characters, but the relationships within the genus are still very much in question. We have inferred phylogenies of 32 species of phlebotomine sand flies belonging to seven sub-genera and two species groups, by using fragments of the mitochondrial small subunit (12SrRNA) and of the nuclear large subunit (28SrRNA) ribosomal gene sequences. The subgenus Helcocyrtomyia and the Verrucarum species group, prominent representatives of the Peruvian sand fly fauna, were represented by 11 and 7 species, respectively. Although based on a limited number of taxa, the resulting phylogenies, based on 837 characters, provide an initial phylogenetic backbone for the progressive reconstruction of infrageneric relationships within Lutzomyia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, R.; Blaha, G; Grodzicki, R
2010-01-01
Viomycin and capreomycin belong to the tuberactinomycin family of antibiotics, which are among the most effective antibiotics against multidrug-resistant tuberculosis. Here we present two crystal structures of the 70S ribosome in complex with three tRNAs and bound to either viomycin or capreomycin at 3.3- and 3.5-{angstrom} resolution, respectively. Both antibiotics bind to the same site on the ribosome, which lies at the interface between helix 44 of the small ribosomal subunit and helix 69 of the large ribosomal subunit. The structures of these complexes suggest that the tuberactinomycins inhibit translocation by stabilizing the tRNA in the A site in themore » pretranslocation state. In addition, these structures show that the tuberactinomycins bind adjacent to the binding sites for the paromomycin and hygromycin B antibiotics, which may enable the development of new derivatives of tuberactinomycins that are effective against drug-resistant strains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Robin E.; Blaha, Gregor; Grodzicki, Robert L.
2010-05-03
Viomycin and capreomycin belong to the tuberactinomycin family of antibiotics, which are among the most effective antibiotics against multidrug-resistant tuberculosis. Here we present two crystal structures of the 70S ribosome in complex with three tRNAs and bound to either viomycin or capreomycin at 3.3- and 3.5-{angstrom} resolution, respectively. Both antibiotics bind to the same site on the ribosome, which lies at the interface between helix 44 of the small ribosomal subunit and helix 69 of the large ribosomal subunit. The structures of these complexes suggest that the tuberactinomycins inhibit translocation by stabilizing the tRNA in the A site in themore » pretranslocation state. In addition, these structures show that the tuberactinomycins bind adjacent to the binding sites for the paromomycin and hygromycin B antibiotics, which may enable the development of new derivatives of tuberactinomycins that are effective against drug-resistant strains.« less
A Structural Model for the Single-Stranded DNA Genome of Filamentous Bacteriophage Pf1†
Tsuboi, Masamichi; Tsunoda, Masaru; Overman, Stacy A.; Benevides, James M.; Thomas, George J.
2010-01-01
The filamentous bacteriophage Pf1, which infects strain PAK of Pseudomonas aeruginosa, is a flexible filament (~2000 × 6.5 nm) consisting of a covalently closed DNA loop of 7349 nucleotides sheathed by 7350 copies of a 46-residue α-helical subunit. The subunit α-helices, which are inclined at a small average angle (~16°) from the virion axis, are arranged compactly around the DNA core. Orientations of the Pf1 DNA nucleotides with respect to the filament axis are not known. In this work we report and interpret the polarized Raman spectra of oriented Pf1 filaments. We demonstrate that the polarizations of DNA Raman band intensities establish that the nucleotide bases of packaged Pf1 DNA are well ordered within the virion and that the base planes are positioned close to parallel to the filament axis. The present results are combined with a previously proposed projection of the intraviral path of Pf1 DNA (1) to develop a novel molecular model for the Pf1 assembly. PMID:20078135
The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).
Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan
2015-01-01
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.
Cameron, Krasnodara; Bartle, Emily; Roark, Ryan; Fanelli, David; Pham, Melissa; Pollard, Beth; Borkowski, Brian; Rhoads, Sarah; Kim, Joon; Rocha, Monica; Kahlson, Martha; Kangala, Melinda; Gentile, Lisa
2012-06-01
The endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases. To begin to understand this differential regulation, we have cloned the S1S2 and amino terminal domains (ATD) of the NMDA GluN2B and GluN2D and AMPA GluA2 subunits. Here we present results that show that PS and PREGAS bind to different sites in the ATD of the GluA2 subunit, which when combined with previous results from our lab, now identifies two binding domains for each neurosteroid. We also show both neurosteroids bind only to the ATD of the GluN2D subunit, suggesting that this binding is distinct from that of the AMPA GluA2 subunit, with both leading to iGluR inhibition. Finally, we provide evidence that both PS and PREGAS bind to the S1S2 domain of the NMDA GluN2B subunit. Neurosteroid binding to the S1S2 domain of NMDA subunits responsible for potentiation of iGluRs and to the ATD of NMDA subunits responsible for inhibition of iGluRs, provides an interesting option for therapeutic design. Copyright © 2012 Elsevier Inc. All rights reserved.
Potvin, Éric; Kim, So-Young; Yang, Eun Jin; Head, Martin J; Kim, Hyun-Cheol; Nam, Seung-Il; Yim, Joung Han; Kang, Sung-Ho
2018-03-25
A study of modern sediment from the Western Arctic has revealed the presence of a distinctive brown-colored cyst with a spherical central body bearing unbranched processes that are usually solid with a small basal pericoel. Distinctive barbs project from some processes, and process tips are usually minutely expanded into conjoined barbs. The archeopyle is apical and saphopylic. This cyst corresponds to Islandinium? cezare morphotype 2 of Head et al. (2001, J. Quat. Sci., 16:621). Phylogenetic analyses based on the small and large subunit rRNA genes infer close relationship with Islandinium minutum, the type of which is that of the genus. Re-examination of specimens of I. minutum reveals the presence of minute barbs on its processes, but differences with Islandinium? cezare morphotype 2 remain based on size, process distribution, and barb development. Furthermore, the internal transcribed spacer shows I. minutum to be distinct from this morphotype. On the basis of these small but discrete differences, we propose the new subspecies Islandinium minutum subsp. barbatum subsp. nov. Molecular sequencing of other cysts encountered, namely Echinidinium karaense, an unidentified flattened cyst, and "Polykrikos quadratus", places them in the Monovela clade, the latter showing greater morphological variability than previously thought. © 2018 The Author(s) Journal of Eukaryotic Microbiology © 2018 International Society of Protistologists.
Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.
2012-01-01
Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism. PMID:22922757
Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.
2012-08-26
Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface,more » a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. This data supports the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.« less
Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; ...
2014-08-11
Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R 2:C 2), with a regulatory subunit homodimer (R 2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the typemore » IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.« less
Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S
2014-10-10
Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Kitahara, Kei; Kajiura, Akimasa; Sato, Neuza Satomi; Suzuki, Tsutomu
2007-01-01
Ribosomal protein L2 is a highly conserved primary 23S rRNA-binding protein. L2 specifically recognizes the internal bulge sequence in Helix 66 (H66) of 23S rRNA and is localized to the intersubunit space through formation of bridge B7b with 16S rRNA. The L2-binding site in H66 is highly conserved in prokaryotic ribosomes, whereas the corresponding site in eukaryotic ribosomes has evolved into distinct classes of sequences. We performed a systematic genetic selection of randomized rRNA sequences in Escherichia coli, and isolated 20 functional variants of the L2-binding site. The isolated variants consisted of eukaryotic sequences, in addition to prokaryotic sequences. These results suggest that L2/L8e does not recognize a specific base sequence of H66, but rather a characteristic architecture of H66. The growth phenotype of the isolated variants correlated well with their ability of subunit association. Upon continuous cultivation of a deleterious variant, we isolated two spontaneous mutations within domain IV of 23S rRNA that compensated for its weak subunit association, and alleviated its growth defect, implying that functional interactions between intersubunit bridges compensate ribosomal function. PMID:17553838
Arias, Erick; Kubicki, Brian
2018-01-07
A new salamander belonging to the genus Nototriton, subgenus Nototriton, is described from the Caribbean slopes of the southeastern Cordillera de Talamanca in Costa Rica, within Parque Internacional La Amistad, at an elevation ca. 1500 m a.s.l. This new taxon is distinguished from its congeners by its morphological characteristics and by its differentiation in DNA sequences of the 16S rRNA, cytochrome oxidase subunit I (COI), and cytochrome b mitochondrial genes. This new species represents the southernmost extension known for the genus Nototriton.
Thompson, Fabiano L; Bruce, Thiago; Gonzalez, Alessandra; Cardoso, Alexander; Clementino, Maysa; Costagliola, Marcela; Hozbor, Constanza; Otero, Ernesto; Piccini, Claudia; Peressutti, Silvia; Schmieder, Robert; Edwards, Robert; Smith, Mathew; Takiyama, Luis Roberto; Vieira, Ricardo; Paranhos, Rodolfo; Artigas, Luis Felipe
2011-02-01
The bacterioplankton diversity of coastal waters along a latitudinal gradient between Puerto Rico and Argentina was analyzed using a total of 134,197 high-quality sequences from the V6 hypervariable region of the small-subunit ribosomal RNA gene (16S rRNA) (mean length of 60 nt). Most of the OTUs were identified into Proteobacteria, Bacteriodetes, Cyanobacteria, and Actinobacteria, corresponding to approx. 80% of the total number of sequences. The number of OTUs corresponding to species varied between 937 and 1946 in the seven locations. Proteobacteria appeared at high frequency in the seven locations. An enrichment of Cyanobacteria was observed in Puerto Rico, whereas an enrichment of Bacteroidetes was detected in the Argentinian shelf and Uruguayan coastal lagoons. The highest number of sequences of Actinobacteria and Acidobacteria were obtained in the Amazon estuary mouth. The rarefaction curves and Good coverage estimator for species diversity suggested a significant coverage, with values ranging between 92 and 97% for Good coverage. Conserved taxa corresponded to aprox. 52% of all sequences. This study suggests that human-contaminated environments may influence bacterioplankton diversity.
Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes
Hinnebusch, Alan G.
2011-01-01
Summary: The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5′ end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an “open” conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a “closed” conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the “P” site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded “landing pad” for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site. PMID:21885680
Bashan, Anat; Yonath, Ada
2009-01-01
Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by “gluing” symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment. PMID:19915655
Prp43p Is a DEAH-Box Spliceosome Disassembly Factor Essential for Ribosome Biogenesis
Combs, D. Joshua; Nagel, Roland J.; Ares, Manuel; Stevens, Scott W.
2006-01-01
The known function of the DEXH/D-box protein Prp43p is the removal of the U2, U5, and U6 snRNPs from the postsplicing lariat-intron ribonucleoprotein complex. We demonstrate that affinity-purified Prp43p-associated material includes the expected spliceosomal components; however, we also identify several preribosomal complexes that are specifically purified with Prp43p. Conditional prp43 mutant alleles confer a 35S pre-rRNA processing defect, with subsequent depletion of 27S and 20S precursors. Upon a shift to a nonpermissive temperature, both large and small-ribosomal-subunit proteins accumulate in the nucleolus of prp43 mutants. Pulse-chase analysis demonstrates delayed kinetics of 35S, 27S, and 20S pre-rRNA processing with turnover of these intermediates. Microarray analysis of pre-mRNA splicing defects in prp43 mutants shows a very mild effect, similar to that of nonessential pre-mRNA splicing factors. Prp43p is the first DEXH/D-box protein shown to function in both RNA polymerase I and polymerase II transcript metabolism. Its essential function is in its newly characterized role in ribosome biogenesis of both ribosomal subunits, positioning Prp43p to regulate both pre-mRNA splicing and ribosome biogenesis. PMID:16382144
The scanning model for translation: an update
1989-01-01
The small (40S) subunit of eukaryotic ribosomes is believed to bind initially at the capped 5'-end of messenger RNA and then migrate, stopping at the first AUG codon in a favorable context for initiating translation. The first-AUG rule is not absolute, but there are rules for breaking the rule. Some anomalous observations that seemed to contradict the scanning mechanism now appear to be artifacts. A few genuine anomalies remain unexplained. PMID:2645293
Marchán, Daniel F; Fernández, Rosa; de Sosa, Irene; Díaz Cosín, Darío J; Novo, Marta
2017-07-01
Spatial and temporal aspects of the evolution of cryptic species complexes have received less attention than species delimitation within them. The phylogeography of the cryptic complex Hormogaster elisae (Oligochaeta, Hormogastridae) lacks knowledge on several aspects, including the small-scale distribution of its lineages or the palaeogeographic context of their diversification. To shed light on these topics, a dense specimen collection was performed in the center of the Iberian Peninsula - resulting in 28 new H. elisae collecting points, some of them as close as 760m from each other- for a higher resolution of the distribution of the cryptic lineages and the relationships between the populations. Seven molecular regions were amplified: mitochondrial subunit 1 of cytochrome c oxidase (COI), 16S rRNA and tRNA Leu, Ala, and Ser (16S t-RNAs), one nuclear ribosomal gene (a fragment of 28S rRNA) and one nuclear protein-encoding gene (histone H3) in order to infer their phylogenetic relationships. Different representation methods of the pairwise divergence in the cytochrome oxidase I sequence (heatmap and genetic landscape graphs) were used to visualize the genetic structure of H. elisae. A nested approach sensu Mairal et al. (2015) (connecting the evolutionary rates of two datasets of different taxonomic coverage) was used to obtain one approximation to a time-calibrated phylogenetic tree based on external Clitellata fossils and a wide molecular dataset. Our results indicate that limited active dispersal ability and ecological or biotic barriers could explain the isolation of the different cryptic lineages, which never co-occur. Rare events of long distance dispersal through hydrochory appear as one of the possible causes of range expansion. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhuang, Chao; Zhou, Zhifang; Illman, Walter A.; Guo, Qiaona; Wang, Jinguo
2017-09-01
The classical aquitard-drainage model COMPAC has been modified to simulate the compaction process of a heterogeneous aquitard consisting of multiple sub-units (Multi-COMPAC). By coupling Multi-COMPAC with the parameter estimation code PEST++, the vertical hydraulic conductivity ( K v) and elastic ( S ske) and inelastic ( S skp) skeletal specific-storage values of each sub-unit can be estimated using observed long-term multi-extensometer and groundwater level data. The approach was first tested through a synthetic case with known parameters. Results of the synthetic case revealed that it was possible to accurately estimate the three parameters for each sub-unit. Next, the methodology was applied to a field site located in Changzhou city, China. Based on the detailed stratigraphic information and extensometer data, the aquitard of interest was subdivided into three sub-units. Parameters K v, S ske and S skp of each sub-unit were estimated simultaneously and then were compared with laboratory results and with bulk values and geologic data from previous studies, demonstrating the reliability of parameter estimates. Estimated S skp values ranged within the magnitude of 10-4 m-1, while K v ranged over 10-10-10-8 m/s, suggesting moderately high heterogeneity of the aquitard. However, the elastic deformation of the third sub-unit, consisting of soft plastic silty clay, is masked by delayed drainage, and the inverse procedure leads to large uncertainty in the S ske estimate for this sub-unit.
Effects of detergents on ribosomal precursor subunits of Bacillus megaterium.
Body, A; Brownstein, B H
1978-01-01
Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction.
Effects of Detergents on Ribosomal Precursor Subunits of Bacillus megaterium
Body, Barbara A.; Brownstein, Bernard H.
1978-01-01
Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction. PMID:412833
Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R
2017-11-01
While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with immunolabeling at perisynaptic locations in Fmr1 KO mice. While α4 immunogold particles were also reduced at perisynaptic locations in the Fmr1 KO mice, the labeling was increased at synaptic sites. Together these findings suggest that, in the dentate gyrus, altered surface expression of the δ subunit, rather than a decrease in δ subunit expression alone, could be limiting δ subunit-mediated tonic inhibition in this model of FXS. Finding ways to increase surface expression of the δ subunit of the GABA A R could be a novel approach to treatment of hyperexcitability-related alterations in FXS. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi, E-mail: nomurat@shinshu-u.ac.jp
Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly,more » cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.« less
Emulsifying properties of acidic subunits of soy 11S globulin.
Liu, M; Lee, D S; Damodaran, S
1999-12-01
The emulsifying properties of the acidic subunits (AS11S) isolated from soy glycinin (11S) have been studied. The isolated AS11S existed in solution mainly as a dimer species. Circular dichroic analysis indicated only a slight increase in aperiodic structure and no significant difference in beta-sheet structure when compared with those of soy 11S. At similar experimental conditions, the emulsifying properties of AS11S were superior to those of soy 11S and heat-denatured 11S. Emulsions prepared with 1% AS11S remained very stable without any visible oil separation for more than a month under gentle agitating conditions, whereas those prepared with 1% 11S collapsed and separated into phases within 2-3 days. The AS11S-stabilized emulsions were very stable below 0.15 M ionic strength. Studies on the rate of adsorption and surface tension reduction at the air-water interface showed that AS11S was significantly more surface active than soy 11S. It is proposed that, because the mass fraction of acidic subunits in soy 11S is approximately 60% and it is relatively easy to separate the acidic subunits from soy 11S, it may be industrially feasible to develop an economical process to isolate functional acidic subunits for use in emulsion-based food products.
Okolie, Charles Emeka; Cockayne, Alan; Penfold, Christopher; James, Richard
2013-11-19
Staphylococcus aureus produces several toxins, including Panton-Valentine leukocidin (PVL). The involvement of PVL in primary skin infections, necrotizing pneumonia, musculoskeletal disorders, brain abscess, and other diseases, some of which are life-threatening, has been reported. Following expert opinion, we aimed to provide the tools for establishment of sequence-based diagnostics and therapeutics for those conditions. We engineered the synergistic S and F (LukS-PV and LukF-PV respectively) pro-toxin subunits from Staphylococcus aureus USA400 into separate expression E. coli BL21(DE3)-pLysS hosts. Following Nickel affinity chromatography (NAC), the F subunit came out without bands of impurity. The S sub-unit did not come off very pure after NAC thus necessitating further purification by size exclusion and ion-exchange chromatography. The purification plots showed that the BioLogic-LP and AKTA systems are reliable for following the progress of the chromatographic purification in real-time. Computer predicted Mw for the 6His-LukF-PV and 6His-LukS-PV were 35645.41 Da and 33530.04 Da respectively, while the mass spectrometry results were 35643.57 Da and 33528.34 Da respectively. The BioLogic-LP and AKTA systems are commendable for reliability and user-friendliness. As a recent work elsewhere also reported that a second round of chromatography was necessary to purify the S subunit after the first attempt, we speculate that the S subunit might contain yet unidentified motif(s) requiring further treatment. The purified S and F sub-units of PVL were supplied to the Nottingham Cancer Immunotherapy group who used them to establish sequence-based monoclonal antibodies for diagnostic and therapeutic uses targeting PVL.
Okamoto, Takuji; Maruyama, Akihiko; Imura, Satoshi; Takeyama, Haruko; Naganuma, Takeshi
2004-05-01
Halomonas variabilis and phylogenetically related organisms were isolated from various habitats such as Antarctic terrain and saline ponds, deep-sea sediment, deep-sea waters affected by hydrothermal plumes, and hydrothermal vent fluids. Ten strains were selected for physiological and phylogenetic characterization in detail. All of those strains were found to be piezotolerant and psychrotolerant, as well as euryhaline halophilic or halotolerant. Their stress tolerance may facilitate their wide occurrence, even in so-called extreme environments. The 16S rDNA-based phylogenetic relationship was complemented by analyses of the DNA gyrase subunit B gene (gyrB) and genes involved in the synthesis of the major compatible solute, ectoine: diaminobutyric acid aminotransferase gene (ectB) and ectoine synthase gene (ectC). The phylogenetic relationships of H. variabilis and related organisms were very similar in terms of 16S rDNA, gyrB, and ectB. The ectC-based tree was inconsistent with the other phylogenetic trees. For that reason, ectC was inferred to derive from horizontal transfer.
Pseudopropionibacterium sp. nov., a novel red-pigmented species isolated from human gingival sulcus.
Saito, Masanori; Shinozaki-Kuwahara, Noriko; Tsudukibashi, Osamu; Hashizume-Takizawa, Tomomi; Kobayashi, Ryoki; Kurita-Ochiai, Tomoko
2018-04-24
Strain SK-1 T is a novel Gram stain-positive, pleomorphic, rod-shaped, non-spore forming, and non-motile organism, designated SK-1 T , isolated from human gingival sulcus that produces acetic acid, propionic acid, lactic acid, and succinic acid as end products of glucose fermentation. Strain SK-1 T had the closest relatedness to Pseudopropionibacterium (Propionibacterium) propionicum with sequence homologies of the 16S rRNA and RNA polymerase β subunit (rpoB) genes of 96.6% and 93.1%, respectively. The genomic DNA G + C content of the isolate was 61.8 mol%. Based on the sequence data of the 16S rRNA and housekeeping (rpoB) genes, we propose a novel taxon, Pseudopropionibacterium rubrum sp. nov. (type strain SK-1 T = JCM 31317T= DSM 100122T). The 16S rRNA and rpoB gene sequences of strain SK-1 T were deposited to the DNA Data Bank of Japan under the accession numbers LC002971 and LC102236, respectively. © 2018 The Societies and John Wiley & Sons Australia, Ltd.
Li, Hao; van der Linden, Wouter A; Verdoes, Martijn; Florea, Bogdan I; McAllister, Fiona E; Govindaswamy, Kavitha; Elias, Joshua E; Bhanot, Purnima; Overkleeft, Herman S; Bogyo, Matthew
2014-08-15
The ubiquitin-proteasome system (UPS) is a potential pathway for therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature of this proteolytic pathway, proteasome inhibitors must avoid inhibition of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational design of inhibitors that induce selective parasite killing difficult. In this study, we developed a chemical probe that labels all catalytic sites of the Plasmodium proteasome. Using this probe, we identified several subunit selective small molecule inhibitors of the parasite enzyme complex. Treatment with an inhibitor that is specific for the β5 subunit during blood stage schizogony led to a dramatic decrease in parasite replication while short-term inhibition of the β2 subunit did not affect viability. Interestingly, coinhibition of both the β2 and β5 catalytic subunits resulted in enhanced parasite killing at all stages of the blood stage life cycle and reduced parasite levels in vivo to barely detectable levels. Parasite killing was achieved with overall low host toxicity, something that has not been possible with existing proteasome inhibitors. Our results highlight differences in the subunit dependency of the parasite and human proteasome, thus providing a strategy for development of potent antimalarial drugs with overall low host toxicity.
Baroudi, Djamel; Khelef, Djamel; Goucem, Rachid; Adjou, Karim T; Adamu, Haileeyesus; Zhang, Hongwei; Xiao, Lihua
2013-09-23
Only a small number of birds have been identified by molecular techniques as having Cryptosporidium meleagridis, the third most important species for human cryptosporidiosis. In this study, using PCR-RFLP analysis of the small subunit (SSU) rRNA gene, we examined the ileum of 90 dead chickens from 23 farms and 57 dead turkeys from 16 farms in Algeria for Cryptosporidium spp. C. meleagridis-positive specimens were subtyped by sequence analysis of the 60 kDa glycoprotein gene. Cryptosporidium infection rates were 34% and 44% in chickens and turkeys, respectively, with all positive turkeys (25) and most positive chickens (26/31) having C. meleagridis. All C. meleagridis specimens belonged to a new subtype family. The frequent occurrence of C. meleagridis in chickens and turkeys illustrates the potential for zoonotic transmission of cryptosporidiosis in Algeria. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Antler, Gilad; Turchyn, Alexandra V.; Ono, Shuhei; Sivan, Orit; Bosak, Tanja
2017-04-01
Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide.
Qiao, Xin; Sun, Guangchun; Clare, Jeffrey J; Werkman, Taco R; Wadman, Wytse J
2014-01-01
Background and purpose Voltage-activated Na+ channels contain one distinct α-subunit. In the brain NaV1.1, NaV1.2, NaV1.3 and NaV1.6 are the four most abundantly expressed α-subunits. The antiepileptic drugs (AEDs) carbamazepine, phenytoin and lamotrigine have voltage-gated Na+ channels as their primary therapeutic targets. This study provides a systematic comparison of the biophysical properties of these four α-subunits and characterizes their interaction with carbamazepine, phenytoin and lamotrigine. Experimental approach Na+ currents were recorded in voltage-clamp mode in HEK293 cells stably expressing one of the four α-subunits. Key results NaV1.2 and NaV1.3 subunits have a relatively slow recovery from inactivation, compared with the other subunits and NaV1.1 subunits generate the largest window current. Lamotrigine evokes a larger maximal shift of the steady-state inactivation relationship than carbamazepine or phenytoin. Carbamazepine shows the highest binding rate to the α-subunits. Lamotrigine binding to NaV1.1 subunits is faster than to the other α-subunits. Lamotrigine unbinding from the α-subunits is slower than that of carbamazepine and phenytoin. Conclusions and implications The four Na+ channel α-subunits show subtle differences in their biophysical properties, which, in combination with their (sub)cellular expression patterns in the brain, could contribute to differences in neuronal excitability. We also observed differences in the parameters that characterize AED binding to the Na+ channel subunits. Particularly, lamotrigine binding to the four α-subunits suggests a subunit-specific response. Such differences will have consequences for the clinical efficacy of AEDs. Knowledge of the biophysical and binding parameters could be employed to optimize therapeutic strategies and drug development. PMID:24283699
Regulation of Plasmodium yoelii oocyst development by strain- and stage-specific small-subunit rRNA.
Qi, Yanwei; Zhu, Feng; Eastman, Richard T; Fu, Young; Zilversmit, Martine; Pattaradilokrat, Sittiporn; Hong, Lingxian; Liu, Shengfa; McCutchan, Thomas F; Pan, Weiqing; Xu, Wenyue; Li, Jian; Huang, Fusheng; Su, Xin-zhuan
2015-03-10
One unique feature of malaria parasites is the differential transcription of structurally distinct rRNA (rRNA) genes at different developmental stages: the A-type genes are transcribed mainly in asexual stages, whereas the S-type genes are expressed mostly in sexual or mosquito stages. Conclusive functional evidence of different rRNAs in regulating stage-specific parasite development, however, is still absent. Here we performed genetic crosses of Plasmodium yoelii parasites with one parent having an oocyst development defect (ODD) phenotype and another producing normal oocysts to identify the gene(s) contributing to the ODD. The parent with ODD--characterized as having small oocysts and lacking infective sporozoites--was obtained after introduction of a plasmid with a green fluorescent protein gene into the parasite genome and subsequent passages in mice. Quantitative trait locus analysis of genome-wide microsatellite genotypes of 48 progeny from the crosses linked an ~200-kb segment on chromosome 6 containing one of the S-type genes (D-type small subunit rRNA gene [D-ssu]) to the ODD. Fine mapping of the plasmid integration site, gene expression pattern, and gene knockout experiments demonstrated that disruption of the D-ssu gene caused the ODD phenotype. Interestingly, introduction of the D-ssu gene into the same parasite strain (self), but not into a different subspecies, significantly affected or completely ablated oocyst development, suggesting a stage- and subspecies (strain)-specific regulation of oocyst development by D-ssu. This study demonstrates that P. yoelii D-ssu is essential for normal oocyst and sporozoite development and that variation in the D-ssu sequence can have dramatic effects on parasite development. Malaria parasites are the only known organisms that express structurally distinct rRNA genes at different developmental stages. The differential expression of these genes suggests that they play unique roles during the complex life cycle of the parasites. Conclusive functional proof of different rRNAs in regulating parasite development, however, is still absent or controversial. Here we functionally demonstrate for the first time that a stage-specifically expressed D-type small-subunit rRNA gene (D-ssu) is essential for oocyst development of the malaria parasite Plasmodium yoelii in the mosquito. This study also shows that variations in D-ssu sequence and/or the timing of transcription may have profound effects on parasite oocyst development. The results show that in addition to protein translation, rRNAs of malaria parasites also regulate parasite development and differentiation in a strain-specific manner, which can be explored for controlling parasite transmission. Copyright © 2015 Qi et al.
Han, Dong-Yun; Guan, Bo-Jhih; Wang, Ya-Juan; Hatzoglou, Maria; Mu, Ting-Wei
2015-09-18
Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that verapamil treatment enhances the calnexin-assisted forward trafficking and subunit assembly, which leads to substantially enhanced functional surface expression of the mutant receptors. Since verapamil is an FDA-approved drug that crosses blood-brain barrier and has been used as an additional medication for some epilepsies, our findings suggest that verapamil holds great promise to be developed to ameliorate IGE resulting from α1(D219N) subunit trafficking deficiency.
Evans, Paul N.; Hinds, Lyn A.; Sly, Lindsay I.; McSweeney, Christopher S.; Morrison, Mark; Wright, André-Denis G.
2009-01-01
The composition of the methanogenic archaeal community in the foregut contents of Tammar wallabies (Macropus eugenii) was studied using 16S rRNA and methyl coenzyme reductase subunit A (mcrA) gene clone libraries. Methanogens belonging to the Methanobacteriales and a well-supported cluster of uncultivated archaeon sequences previously observed in the ovine and bovine rumens were found. Methanogen densities ranged from 7.0 × 105 and 3.9 × 106 cells per gram of wet weight. PMID:19218421
Metataxonomics reveal vultures as a reservoir for Clostridium perfringens.
Meng, Xiangli; Lu, Shan; Yang, Jing; Jin, Dong; Wang, Xiaohong; Bai, Xiangning; Wen, Yumeng; Wang, Yiting; Niu, Lina; Ye, Changyun; Rosselló-Móra, Ramon; Xu, Jianguo
2017-02-22
The Old World vulture may carry and spread pathogens for emerging infections since they feed on the carcasses of dead animals and participate in the sky burials of humans, some of whom have died from communicable diseases. Therefore, we studied the precise fecal microbiome of the Old World vulture with metataxonomics, integrating the high-throughput sequencing of almost full-length small subunit ribosomal RNA (16S rRNA) gene amplicons in tandem with the operational phylogenetic unit (OPU) analysis strategy. Nine vultures of three species were sampled using rectal swabs on the Qinghai-Tibet Plateau, China. Using the Pacific Biosciences sequencing platform, we obtained 54 135 high-quality reads of 16S rRNA amplicons with an average of 1442±6.9 bp in length and 6015±1058 reads per vulture. Those sequences were classified into 314 OPUs, including 102 known species, 50 yet to be described species and 161 unknown new lineages of uncultured representatives. Forty-five species have been reported to be responsible for human outbreaks or infections, and 23 yet to be described species belong to genera that include pathogenic species. Only six species were common to all vultures. Clostridium perfringens was the most abundant and present in all vultures, accounting for 30.8% of the total reads. Therefore, using the new technology, we found that vultures are an important reservoir for C. perfringens as evidenced by the isolation of 107 strains encoding for virulence genes, representing 45 sequence types. Our study suggests that the soil-related C. perfringens and other pathogens could have a reservoir in vultures and other animals.
Metataxonomics reveal vultures as a reservoir for Clostridium perfringens
Meng, Xiangli; Lu, Shan; Yang, Jing; Jin, Dong; Wang, Xiaohong; Bai, Xiangning; Wen, Yumeng; Wang, Yiting; Niu, Lina; Ye, Changyun; Rosselló-Móra, Ramon; Xu, Jianguo
2017-01-01
The Old World vulture may carry and spread pathogens for emerging infections since they feed on the carcasses of dead animals and participate in the sky burials of humans, some of whom have died from communicable diseases. Therefore, we studied the precise fecal microbiome of the Old World vulture with metataxonomics, integrating the high-throughput sequencing of almost full-length small subunit ribosomal RNA (16S rRNA) gene amplicons in tandem with the operational phylogenetic unit (OPU) analysis strategy. Nine vultures of three species were sampled using rectal swabs on the Qinghai-Tibet Plateau, China. Using the Pacific Biosciences sequencing platform, we obtained 54 135 high-quality reads of 16S rRNA amplicons with an average of 1442±6.9 bp in length and 6015±1058 reads per vulture. Those sequences were classified into 314 OPUs, including 102 known species, 50 yet to be described species and 161 unknown new lineages of uncultured representatives. Forty-five species have been reported to be responsible for human outbreaks or infections, and 23 yet to be described species belong to genera that include pathogenic species. Only six species were common to all vultures. Clostridium perfringens was the most abundant and present in all vultures, accounting for 30.8% of the total reads. Therefore, using the new technology, we found that vultures are an important reservoir for C. perfringens as evidenced by the isolation of 107 strains encoding for virulence genes, representing 45 sequence types. Our study suggests that the soil-related C. perfringens and other pathogens could have a reservoir in vultures and other animals. PMID:28223683
Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A
1992-06-01
Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.
Francis, Michael M; Evans, Susan P; Jensen, Michael; Madsen, David M; Mancuso, Joel; Norman, Kenneth R; Maricq, Andres Villu
2005-05-19
Nicotinic (cholinergic) neurotransmission plays a critical role in the vertebrate nervous system, underlies nicotine addiction, and nicotinic receptor dysfunction leads to neurological disorders. The C. elegans neuromuscular junction (NMJ) shares many characteristics with neuronal synapses, including multiple classes of postsynaptic currents. Here, we identify two genes required for the major excitatory current found at the C. elegans NMJ: acr-16, which encodes a nicotinic AChR subunit homologous to the vertebrate alpha7 subunit, and cam-1, which encodes a Ror receptor tyrosine kinase. acr-16 mutants lack fast cholinergic current at the NMJ and exhibit synthetic behavioral deficits with other known AChR mutants. In cam-1 mutants, ACR-16 is mislocalized and ACR-16-dependent currents are disrupted. The postsynaptic deficit in cam-1 mutants is accompanied by alterations in the distribution of cholinergic vesicles and associated synaptic proteins. We hypothesize that CAM-1 contributes to the localization or stabilization of postsynaptic ACR-16 receptors and presynaptic release sites.
David, Solomon R; Wright, Jeremy J
2017-11-01
The spotted gar (Lepisosteus oculatus) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to the U.S. gulf coast and a peripheral population in the southern Great Lakes Basin. Despite significant conservation concerns for this species in the Great Lakes watersheds where it occurs, few genetic examinations and comparisons of these populations have been performed. We investigated inter- and intrapopulational variation in several mitochondrial genetic markers (cytochrome oxidase subunit I, COI; cytochrome oxidase subunit II, COII; and 16S rRNA, 16S) from spotted gars taken from core and peripheral populations. Genetic diversity was highest in the Mississippi River Basin and lowest in the Great Lakes Basin, while the Nueces River Basin (Texas) population showed the greatest level of divergence from other populations. Average genetic distance among core and peripheral populations was over an order of magnitude less than that seen between L. oculatus and its sister species, the Florida gar (L. platyrhincus), although a significant correlation was found between genetic and geographical distance in L. oculatus. Genetic divergence in spotted gars is likely to be related to a combination of geographic isolation and founder effects associated with recent colonization following glacial retreat. Despite its apparent lack of significant genetic differentiation or haplotype diversity, the Great Lakes population of spotted gars has previously been shown to be a unique component of the species, and additional studies are needed to determine the genetic mechanisms underlying regional adaptations as well as potential morphological differentiation among spotted gar populations. © 2017 Wiley Periodicals, Inc.
Rousselot, Morgane; Jaenicke, Elmar; Lamkemeyer, Tobias; Harris, J Robin; Pirow, Ralph
2006-09-01
Many branchiopod crustaceans are endowed with extracellular, high-molecular-weight hemoglobins whose exact structural characteristics have remained a matter of conjecture. By using a broad spectrum of techniques, we provide precise and coherent information on the hemoglobin of one of the phylogenetically 'oldest' extant branchiopods, the tadpole shrimp Triops cancriformis. The hemoglobin dissociated under reducing conditions into two subunits, designated TcHbA and TcHbB, with masses of 35,775+/-4 and 36,055+/-4 Da, respectively, determined by ESI-MS. Nonreducing conditions showed only two disulfide-bridged dimers, a homodimer of TcHbA, designated D1 (71,548+/-5 Da), and the heterodimer D2 (71,828+/-5 Da). Carbamidomethylation of free SH groups revealed the presence of three cysteines per subunit and indicated one intrasubunit and one intersubunit disulfide bridge. Ultracentrifugation and light-scattering experiments under nondenaturating conditions yielded mass estimates that suggested an uneven number of 17 subunits forming the native hemoglobin. This unrealistic number resulted from the presence of two size classes (16-mer and 18-mer), which were recognized by native PAGE and Ferguson plot analysis. ESI-MS revealed three hemoglobin isoforms with masses of 588.1 kDa, 662.0 kDa, and 665.0 kDa. The 16-mer and the smaller 18-mer species are supposed to be composed of TcHbA only, given the dominance of this subunit type in SDS/PAGE. Transmission electron microscopy of negatively stained specimens showed a population of compact molecules with geometrical extensions of 14, 16 and 9 nm. The proposed stoichiometric model of quarternary structure provides the missing link to achieve a mechanistic understanding of the structure-function relationships among the multimeric arthropodan hemoglobins.
NASA Astrophysics Data System (ADS)
Ronimus, R. S.; Morgan, H. W.
2004-06-01
Vital clues on life's origins within the galaxy exist here on present day Earth. Life is currently divided into the three domains Bacteria, Archaea and Eukarya based on the phylogeny of small ribosomal subunit RNA (16S/18S) gene sequences. The domains are presumed to share a ``last universal common ancestor'' (LUCA). Hyperthermophilic bacteria and archaea, which are able to thrive at 80^{circ}C or higher, dominate the bottom of the tree of life and are thus suggested to be the least evolved, or most ``ancient''. Geochemical data indicates that life first appeared on Earth approximately 3.8 billion years ago in a hot environment. Due to these considerations, hyperthermophiles represent the most appropriate microorganisms to investigate the origins of metabolism. The central biochemical pathway of gluconeogenesis/glycolysis (the Embden-Meyerhof pathway) which produces six carbon sugars from three carbon compounds is present in all organisms and can provide important hints concerning the early development of metabolism. Significantly, there are a number of striking deviations from the textbook canonical reaction sequence that are found, particularly in hyperthermophilic archaea. In this paper the phylogenetic istribution of enzymes of the pathway is detailed; overall, the distribution pattern provides strong evidence for the pathway to have developed from the bottom-up.
Palù, Giorgio; Loregian, Arianna
2013-09-01
Protein-protein interactions (PPIs) play a key role in many biological processes, including virus replication in the host cell. Since most of the PPIs are functionally essential, a possible strategy to inhibit virus replication is based on the disruption of viral protein complexes by peptides or small molecules that interfere with subunit interactions. In particular, an attractive target for antiviral drugs is the binding between the subunits of essential viral enzymes. This review describes the development of new antiviral compounds that inhibit herpesvirus and influenza virus replication by blocking interactions between subunit proteins of their polymerase complexes. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular phylogeny of Laetiporus and other brown rot polypore genera in North America
Daniel L. Lindner; Mark T. Banik
2008-01-01
Phylogenetic relationships were investigated among North American species of Laetiporus, Leptoporus, Phaeolus, Pycnoporellus, and Wolfiporia using ITS, nuclear large subunit and mitochondrial small subunit rDNA sequences. Members of these genera have poroid hymenophores, simple septate hyphae and cause brown rots in a variety of...
Choi, Eunsil; Kang, Nalae; Jeon, Young; Pai, Hyun-Sook
2016-01-01
ABSTRACT The unique Escherichia coli GTPase Der (double Era-like GTPase), which contains tandemly repeated GTP-binding domains, has been shown to play an essential role in 50S ribosomal subunit biogenesis. The depletion of Der results in the accumulation of precursors of 50S ribosomal subunits that are structurally unstable at low Mg2+ concentrations. Der homologs are ubiquitously found in eubacteria. Conversely, very few are conserved in eukaryotes, and none is conserved in archaea. In the present study, to verify their conserved role in bacterial 50S ribosomal subunit biogenesis, we cloned Der homologs from two gammaproteobacteria, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium; two pathogenic bacteria, Staphylococcus aureus and Neisseria gonorrhoeae; and the extremophile Deinococcus radiodurans and then evaluated whether they could functionally complement the E. coli der-null phenotype. Only K. pneumoniae and S. Typhimurium Der proteins enabled the E. coli der-null strain to grow under nonpermissive conditions. Sucrose density gradient experiments revealed that the expression of K. pneumoniae and S. Typhimurium Der proteins rescued the structural instability of 50S ribosomal subunits, which was caused by E. coli Der depletion. To determine what allows their complementation, we constructed Der chimeras. We found that only Der chimeras harboring both the linker and long C-terminal regions could reverse the growth defects of the der-null strain. Our findings suggest that ubiquitously conserved essential GTPase Der is involved in 50S ribosomal subunit biosynthesis in various bacteria and that the linker and C-terminal regions may participate in species-specific recognition or interaction with the 50S ribosomal subunit. IMPORTANCE In Escherichia coli, Der (double Era-like GTPase) is an essential GTPase that is important for the production of mature 50S ribosomal subunits. However, to date, its precise role in ribosome biogenesis has not been clarified. In this study, we used five Der homologs from gammaproteobacteria, pathogenic bacteria, and an extremophile to elucidate their conserved function in 50S ribosomal subunit biogenesis. Among them, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium Der homologs implicated the participation of Der in ribosome assembly in E. coli. Our results show that the linker and C-terminal regions of Der homologs are correlated with its functional complementation in E. coli der mutants, suggesting that they are involved in species-specific recognition or interaction with 50S ribosomal subunits. PMID:27297882
Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R
2011-02-01
Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.
Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals
Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; ...
2015-04-30
In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less
Shewry, P R; Gilbert, S M; Savage, A W J; Tatham, A S; Wan, Y-F; Belton, P S; Wellner, N; D'Ovidio, R; Békés, F; Halford, N G
2003-02-01
The gene encoding high-molecular-weight (HMW) subunit 1Bx20 was isolated from durum wheat cv. Lira. It encodes a mature protein of 774 amino acid residues with an M(r) of 83,913. Comparison with the sequence of subunit 1Bx7 showed over 96% identity, the main difference being the substitution of two cysteine residues in the N-terminal domain of subunit 1Bx7 with tyrosine residues in 1Bx20. Comparison of the structures and stabilities of the two subunits purified from wheat using Fourier-transform infra-red and circular dichroism spectroscopy showed no significant differences. However, incorporation of subunit 1Bx7 into a base flour gave increased dough strength and stability measured by Mixograph analysis, while incorporation of subunit 1Bx20 resulted in small positive or negative effects on the parameters measured. It is concluded that the different effects of the two subunits could relate to the differences in their cysteine contents, thereby affecting the cross-linking and hence properties of the glutenin polymers.
Rodríguez, Laura; Liehr, Tomas; Martínez-Fernández, María Luisa; Lara, Ana; Torres, Antonio; Martínez-Frías, María Luisa
2008-04-02
Here we report on a healthy and fertile 30 years old man, who was carrier of a small supernumerary marker chromosome (sSMC). The application of molecular techniques such as fluorescence in situ hybridisation (FISH), microdissection and reverse painting, helped to characterize the sSMC which resulted to be derived from chromosome 16. In fact, the presence of euchromatin material from the long arm (16q) in the sSMC was demonstrated, and the karyotype can be written as mos 47, XY,+min(16)(:p11.1->q12.1:)[20]/46, XY [10].
Rodríguez, Laura; Liehr, Tomas; Martínez-Fernández, María Luisa; Lara, Ana; Torres, Antonio; Martínez-Frías, María Luisa
2008-01-01
Here we report on a healthy and fertile 30 years old man, who was carrier of a small supernumerary marker chromosome (sSMC). The application of molecular techniques such as fluorescence in situ hybridisation (FISH), microdissection and reverse painting, helped to characterize the sSMC which resulted to be derived from chromosome 16. In fact, the presence of euchromatin material from the long arm (16q) in the sSMC was demonstrated, and the karyotype can be written as mos 47, XY,+min(16)(:p11.1->q12.1:)[20]/46, XY [10]. PMID:18471313
Total Synthesis of Dolatrienoic Acid: A Subunit of Dolastatin 14.
Mouné, Sylvie; Niel, Gilles; Busquet, Magali; Eggleston, Ian; Jouin, Patrick
1997-05-16
The (7R,15R)- and (7S,15R)-diastereomers of dolatrienoic acid were synthesized using a convergent strategy. Fragment C5-C9 was obtained through enantiodifferentiation of racemic pentane-1,3,5-triol as the key step, fixing the chirality at C7 of fragments 4 and ent-4. The chirality at C15 of the fragment C10-C16 was introduced from L-glutamic acid. Coupling of these two fragments led to the aldehydes (7R,15R)- and (7S,15R)-2 which were homologated by Horner-Wadsworth-Emmons condensation to give (7R,15R)- and (7S,15R)-dolatrienoic acids.
1999-06-01
subunits are expressed ubiquitously and appear to be encoded by small and quite homogeneous gene families. In plants , however, A and C subunit gene...1996). In both plants and animals, different B subunit isoforms are encoded by two or more unrelated gene families, some of which are expressed in a...PP2A functions in whole plants and in mammalian tissue culture cells. This genetic system may also prove useful for analyzing interactions between
Dunn, Casey W; Pugh, Philip R; Haddock, Steven H D
2005-12-01
Siphonophores are a group of pelagic colonial hydrozoans (Cnidaria) that have long been of general interest because of the division of labor between the polyps and medusae that make up these "superorganisms." These polyps and medusae are each homologous to free living animals but are generated by an incomplete asexual budding process that leaves them physiologically integrated. They are functionally specialized for different tasks and are precisely organized within each colony. The number of functional types of polyps and medusae varies across taxa, and different authors have used this character to construct phylogenies polarized in opposite directions, depending on whether they thought siphonophore evolution proceeded by a reduction or an increase in functional specialization. We have collected taxa across all major groups of siphonophores, many of which are found exclusively in the deep sea, using remotely operated underwater vehicles (ROVs) and by SCUBA diving from ships in the open ocean. We have used 52 siphonophores and four outgroup taxa to estimate the siphonophore phylogeny with molecular data from the nuclear small subunit ribosomal RNA gene (18S) and the mitochondrial large subunit ribosomal RNA gene (16S). Parsimony reconstructions indicate that functionally specialized polyps and medusae have been gained and lost across the phylogeny. Maximum likelihood and Bayesian analyses of morphological data suggest that the transition rate for decreased functional specialization is greater than the transition rate for increased functional specialization for three out of the four investigated categories of polyps and medusae. The present analysis also bears on several long-standing questions about siphonophore systematics. It indicates that the cystonects are sister to all other siphonophores, a group that we call the Codonophora. We also find that the Calycophorae are nested within the Physonectae, and that the Brachystelia, a historically recognized grouping of short-stemmed taxa, are polyphyletic. [Cnidaria; colonial animals; deep sea; division of labor; functional specialization; Hydrozoa; phylogenetics; Siphonophores.].
Subunit mass fingerprinting of mitochondrial complex I.
Morgner, Nina; Zickermann, Volker; Kerscher, Stefan; Wittig, Ilka; Abdrakhmanova, Albina; Barth, Hans-Dieter; Brutschy, Bernhard; Brandt, Ulrich
2008-10-01
We have employed laser induced liquid bead ion desorption (LILBID) mass spectrometry to determine the total mass and to study the subunit composition of respiratory chain complex I from Yarrowia lipolytica. Using 5-10 pmol of purified complex I, we could assign all 40 known subunits of this membrane bound multiprotein complex to peaks in LILBID subunit fingerprint spectra by comparing predicted protein masses to observed ion masses. Notably, even the highly hydrophobic subunits encoded by the mitochondrial genome were easily detectable. Moreover, the LILBID approach allowed us to spot and correct several errors in the genome-derived protein sequences of complex I subunits. Typically, the masses of the individual subunits as determined by LILBID mass spectrometry were within 100 Da of the predicted values. For the first time, we demonstrate that LILBID spectrometry can be successfully applied to a complex I band eluted from a blue-native polyacrylamide gel, making small amounts of large multiprotein complexes accessible for subunit mass fingerprint analysis even if they are membrane bound. Thus, the LILBID subunit mass fingerprint method will be of great value for efficient proteomic analysis of complex I and its assembly intermediates, as well as of other water soluble and membrane bound multiprotein complexes.
Rotenone Activates Phagocyte NADPH Oxidase through Binding to Its Membrane Subunit gp91phox
Zhou, Hui; Zhang, Feng; Chen, Shih-heng; Zhang, Dan; Wilson, Belinda; Hong, Jau-shyong; Gao, Hui-Ming
2011-01-01
Rotenone, a widely used pesticide, reproduces Parkinsonism in rodents and associates with increased risk for Parkinson’s disease. We previously reported rotenone increased superoxide production through stimulating microglial phagocyte NADPH oxidase (PHOX). The present study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91phox, the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91phox. Functional studies showed both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91phox/p22phox) and cytosolic subunits (p67phox and p47phox). Rotenone-elicited extracellular superoxide release in p47phox-deficient macrophages suggested rotenone enabled to activate PHOX through a p47phox-independent mechanism. Increased membrane translocation of p67phox, elevated binding of p67phox to rotenone-treated membrane fractions, and co-immunoprecipitation of p67phox and gp91phox in rotenone-treated wild-type and p47phox-deficient macrophages indicated p67phox played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91phox. Rac1, a Rho-like small GTPase, enhanced p67phox-gp91phox interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91phox; such an interaction triggered membrane translocation of p67phox, leading to PHOX activation and superoxide production. PMID:22094225
Sardana, Richa; Liu, Xin; Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M; Tollervey, David; Correll, Carl C; Johnson, Arlen W
2015-02-01
In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins.
Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M.; Tollervey, David; Correll, Carl C.; Johnson, Arlen W.
2015-01-01
In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins. PMID:25710520
Subunit Dissociation and Metal Binding by Escherichia coli apo-Manganese Superoxide Dismutase
Whittaker, Mei M.; Lerch, Thomas F.; Kirillova, Olga; Chapman, Michael S.; Whittaker, James W.
2010-01-01
Metal binding by apo-manganese superoxide dismutase (apo-MnSOD) is essential for functional maturation of the enzyme. Previous studies have demonstrated that metal binding by apo-MnSOD is conformationally gated, requiring protein reorganization for the metal to bind. We have now solved the X-ray crystal structure of apo-MnSOD at 1.9 Å resolution. The organization of active site residues is independent of the presence of the metal cofactor, demonstrating that protein itself templates the unusual metal coordination geometry. Electrophoretic analysis of mixtures of apo- and (Mn2)-MnSOD, dye-conjugated protein, or C-terminal Strep-tag II fusion protein reveals a dynamic subunit exchange process associated with cooperative metal binding by the two subunits of the dimeric protein. In contrast, (S126C) (SS) apo-MnSOD, which contains an inter-subunit covalent disulfide crosslink, exhibits anticooperative metal binding. The protein concentration dependence of metal uptake kinetics implies that protein dissociation is involved in metal binding by the wild type apo-protein, although other processes may also contribute to gating metal uptake. Protein concentration dependent small-zone size exclusion chromatography is consistent with apo-MnSOD dimer dissociation at low protein concentration (KD = 1×10−6 M). Studies on metal uptake by apo-MnSOD in Escherichia coli cells show that the protein exhibits similar behavior in vivo and in vitro. PMID:21044611
Shamayeva, Katsiaryna; Guzanova, Alena; Řeha, David; Csefalvay, Eva; Carey, Jannette; Weiserova, Marie
2017-01-01
Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested. PMID:28133570
Molecular modeling on porphyrin derivatives as β5 subunit inhibitor of 20S proteasome.
Arba, Muhammad; Nur-Hidayat, Andry; Ruslin; Yusuf, Muhammad; Sumarlin; Hertadi, Rukman; Wahyudi, Setyanto Tri; Surantaadmaja, Slamet Ibrahim; Tjahjono, Daryono H
2018-06-01
The ubiquitin-proteasome system plays an important role in protein quality control. Currently, inhibition of the proteasome has been validated as a promising approach in anticancer therapy. The 20S core particle of the proteasome harbors β5 subunit which is a crucial active site in proteolysis. Targeting proteasome β5 subunit which is responsible for the chymotrypsin-like activity of small molecules has been regarded as an important way for achieving therapeutics target. In the present study, a series of porphyrin derivatives bearing either pyridine or pyrazole rings as meso-substituents were designed and evaluated as an inhibitor for the β5 subunit of the proteasome by employing molecular docking and dynamics simulations. The molecular docking was performed with the help of AutoDock 4.2, while molecular dynamics simulation was done using AMBER 14. All compounds bound to the proteasome with similar binding modes, and each porphyrin-proteasome complex was stable during 30 ns MD simulation as indicated by root-mean-square-deviation (RMSD) value. An analysis on protein residue fluctuation of porphyrin binding demonstrates that in all complexes, porphyrin binding produces minor fluctuation on amino acid residues. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculation shows that the binding affinities of mono-H 2 PyP, bis-H 2 PzP, and tetra-H 2 PyP were comparable with that of the potential inhibitor, HU10. It is noted that the electrostatic interaction increases with the number of meso-substituents, which was favourable for porphyrin binding. The present study shows that both electrostatic and van der Waals interaction are the main force which controls the interaction of porphyrin compounds with the proteasome. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S
2016-06-01
Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Ancient Mitochondrial DNA Analyses of Ascaris Eggs Discovered in Coprolites from Joseon Tomb
Oh, Chang Seok; Seo, Min; Hong, Jong Ha; Chai, Jong-Yil; Oh, Seung Whan; Park, Jun Bum; Shin, Dong Hoon
2015-01-01
Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples. PMID:25925186
The equine LH/CGβ subunit combines divergent intracellular traits of the human LHβ and CGβ subunits
Cohen, Limor; Bousfield, George R; Ben-Menahem, David
2017-01-01
The pituitary LHβ and placental CGβ subunits are products of different genes in primates. The major structural difference between the two subunits is in the carboxy-terminal region, where the short carboxyl sequence of hLHβ is replaced by a longer O-glycosylated carboxy-terminal peptide (CTP) in hCGβ. In association with this structural deviation, there are marked differences in the secretion kinetics and polarized routing of the two subunits. In equids, however, the CGβ and LHβ subunits are products of the same gene expressed in the placenta and pituitary (eLH/CGβ), and both contain a CTP. This unusual expression pattern intrigued us and led to our study of eLH/CGβ subunit secretion by transfected CHO and MDCK cells. In continuous labeling and pulse chase experiments, the secretion of the eLH/CGβ subunit from the transfected CHO cells was inefficient (medium recovery of 16–25%) and slow (t1/2 >6.5 hrs). This indicated that, the secretion of the eLH/CGβ subunit resembles that of hLHβ rather than hCGβ. In MDCK cells grown on Transwell filters, the eLH/CGβ subunit was preferentially secreted from the apical side, similar to the hCGβ subunit secretory route (~65% of the total protein secreted). Taken together, these data suggested that secretion of the eLH/CGβ subunit integrates features of both hLHβ and hCGβ subunits. We propose that the evolution of this intracellular behavior may fulfill the physiological demands for biosynthesis of the eLH/CGβ subunit in the pituitary as well as in the placenta. PMID:25796287
Zaremberg, V; Moreno, S
1996-04-01
Spontaneous mutations in the gene which encodes the regulatory subunit of cAMP-dependent protein kinase (PKA) of Saccharomyces cerevisiae (BCY1) have been isolated previously [Cannon, J. F., Gibbs, J. B. & Tatchell, K. (1986) Genetics 113, 247-264] by selection of ras2::LEU2 revertants that grew on non-fermentable carbon sources. The revertants were placed into groups of increasing severity based on the number of PKA-dependent traits affected [Cannon, J. F., Gitan, R. & Tatchell, K. (1990) J. Biol. Chem. 265, 11897-11904]. In this work the ras2 mutation has been crossed out in each bcy1 allele and the phenotypes of these mutants have been assessed. The order of severity of the mutants in both genetic backgrounds is maintained but the severity of each mutant in the normal background is higher than in the ras2::LEU2 background. Total catalytic-subunit and regulatory-subunit activities were measured in crude extracts of the bcy1 ras2::LEU2 mutants. With one exception (bcy1-6) the calculated regulatory subunit/catalytic subunit ratios of the bcy1 mutants relative to that of wild-type cells were greater than one. The dependence of PKA activity on cAMP was measured in permeabilized cells. The strains show an activity ratio in the absence and presence of cAMP in the range 0.5-1 for Kemptide phosphorylation. Overexpression of the high-affinity cAMP phosphodiesterase gene (PDE2) in the bcy1 ras2::LEU2 strains did not alter their PKA-dependent phenotypes. However, transformants were not observed from the parental ras2::LEU2 strain and the bcy1-6 ras2::LEU2 strain. The results are discussed with respect to a hypothesis for the molecular mechanism of the differential reversal of ras2 phenotypes by the bcy1 alleles. Mutations in the regulatory subunit are predicted to affect the structure of the holoenzyme such that the catalytic subunit is capable of maintaining an active catalytic state, without the need to dissociate from the regulatory subunit.
Pinske, Constanze
2012-01-01
A-type carrier (ATC) proteins of the Isc (iron-sulfur cluster) and Suf (sulfur mobilization) iron-sulfur ([Fe-S]) cluster biogenesis pathways are proposed to traffic preformed [Fe-S] clusters to apoprotein targets. In this study, we analyzed the roles of the ATC proteins ErpA, IscA, and SufA in the maturation of the nitrate-inducible, multisubunit anaerobic respiratory enzymes formate dehydrogenase N (Fdh-N) and nitrate reductase (Nar). Mutants lacking SufA had enhanced activities of both enzymes. While both Fdh-N and Nar activities were strongly reduced in an iscA mutant, both enzymes were inactive in an erpA mutant and in a mutant unable to synthesize the [Fe-S] cluster scaffold protein IscU. It could be shown for both Fdh-N and Nar that loss of enzyme activity correlated with absence of the [Fe-S] cluster-containing small subunit. Moreover, a slowly migrating form of the catalytic subunit FdnG of Fdh-N was observed, consistent with impeded twin arginine translocation (TAT)-dependent transport. The highly related Fdh-O enzyme was also inactive in the erpA mutant. Although the Nar enzyme has its catalytic subunit NarG localized in the cytoplasm, it also exhibited aberrant migration in an erpA iscA mutant, suggesting that these modular enzymes lack catalytic integrity due to impaired cofactor biosynthesis. Cross-complementation experiments demonstrated that multicopy IscA could partially compensate for lack of ErpA with respect to Fdh-N activity but not Nar activity. These findings suggest that ErpA and IscA have overlapping roles in assembly of these anaerobic respiratory enzymes but demonstrate that ErpA is essential for the production of active enzymes. PMID:22081393
Binding-dependent disorder-order transition in PKI alpha: a fluorescence anisotropy study.
Hauer, J A; Taylor, S S; Johnson, D A
1999-05-25
The conformational flexibility of peptidyl ligands may be an essential element of many peptide-macromolecular interactions. Consequently, the alpha-carbonyl backbone flexibility of the 8 kDa protein kinase inhibitor (PKI alpha) peptide of cAMP-dependent protein kinase (cAPK) free in solution and bound to cAPK was assessed by time-resolved fluorescence anisotropy. Specifically, three full-length, single-site PKI alpha mutants (V3C, S28C, and S59C) were prepared, and fluorescein iodoacetamide (FI) was selectively conjugated to the side chains of each substituted cysteine. The time-resolved anisotropy decay profiles of the labeled mutants were well fit to a model-free nonassociative biexponential equation. Free in solution, the three labeled proteins had very similar anisotropy decays arising primarily from local alpha-carbonyl backbone movements. Only a small fraction of the anisotropy decay was associated with slower, whole-body tumbling, confirming that PKI alpha is highly disordered at all three locations. Complexation of the mutants with the catalytic (C) subunit of cAPK decreased the rate of whole-body tumbling for all three mutants. The effects on the rapid decay processes, however, were dependent upon the site of conjugation. The anisotropy decay profiles of both FI-V3C- and FI-S28C-PKI alpha were associated with significantly reduced contributions from the fast decay processes, while that of FI-S59C-PKI alpha was largely unaffected by binding to the C-subunit. The results suggest that the cAPK-binding domain of PKI alpha extends from the its N-terminus to residues beyond Ser28 but does not include the segment around Ser59, which is still part of a highly flexible domain when bound to the C-subunit.
The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase
Tabib-Salazar, Aline; Liu, Bing; Doughty, Philip; Lewis, Richard A.; Ghosh, Somadri; Parsy, Marie-Laure; Simpson, Peter J.; O’Dwyer, Kathleen; Matthews, Steve J.; Paget, Mark S.
2013-01-01
RbpA is a small non–DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA–σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria. PMID:23605043
USDA-ARS?s Scientific Manuscript database
For starch digestion to glucose, two luminal alpha-amylases and four gut mucosal alpha-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal alpha-glucosidases on cooked (gelatinized) starch. Gelatinized ...
Pseudoknot and translational control in the expression of the S15 ribosomal protein.
Bénard, L; Philippe, C; Ehresmann, B; Ehresmann, C; Portier, C
1996-01-01
Translational autocontrol of the expression of the ribosomal protein S15 proceeds through the transitory formation of a pseudoknot. A synopsis of the known data is used to propose a molecular model of the mechanism involved and for the role of the pseudoknot. This latter structure is able to recruit 30S ribosomal subunits to initiate translation, but also to bind S15 and to stop translation by trapping the ribosome on its loading site. Information on the S15 protein recognition of the messenger RNA site was deduced from mutational analyses and chemical probing. A comparison of this messenger site with the S15 ribosomal binding site was conducted by analysing hydroxyl radical footprintings of these two sites. The existence of two subsites in 16S RNA suggests that the ribosomal protein S15 might present either two different binding sites or at least one common subsite. Clues for the presence of a common site between the messenger and 16S RNA are given which cannot rule out that recognition specificity is linked to a few other determinants. Whether these determinants are different or not remains an open question.
Shi, Chang-Xin; Kortüm, K Martin; Zhu, Yuan Xiao; Bruins, Laura A; Jedlowski, Patrick; Votruba, Patrick G; Luo, Moulun; Stewart, Robert A; Ahmann, Jonathan; Braggio, Esteban; Stewart, A Keith
2017-12-01
Bortezomib is highly effective in the treatment of multiple myeloma; however, emergent drug resistance is common. Consequently, we employed CRISPR targeting 19,052 human genes to identify unbiased targets that contribute to bortezomib resistance. Specifically, we engineered an RPMI8226 multiple myeloma cell line to express Cas9 infected by lentiviral vector CRISPR library and cultured derived cells in doses of bortezomib lethal to parental cells. Sequencing was performed on surviving cells to identify inactivated genes responsible for drug resistance. From two independent whole-genome screens, we selected 31 candidate genes and constructed a second CRISPR sgRNA library, specifically targeting each of these 31 genes with four sgRNAs. After secondary screening for bortezomib resistance, the top 20 "resistance" genes were selected for individual validation. Of these 20 targets, the proteasome regulatory subunit PSMC6 was the only gene validated to reproducibly confer bortezomib resistance. We confirmed that inhibition of chymotrypsin-like proteasome activity by bortezomib was significantly reduced in cells lacking PSMC6. We individually investigated other members of the PSMC group (PSMC1 to 5) and found that deficiency in each of those subunits also imparts bortezomib resistance. We found 36 mutations in 19S proteasome subunits out of 895 patients in the IA10 release of the CoMMpass study (https://themmrf.org). Our findings demonstrate that the PSMC6 subunit is the most prominent target required for bortezomib sensitivity in multiple myeloma cells and should be examined in drug-refractory populations. Mol Cancer Ther; 16(12); 2862-70. ©2017 AACR . ©2017 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Pia Miglietta, Maria; Hourdez, Stephane; Cowart, Dominique A.; Schaeffer, Stephen W.; Fisher, Charles
2010-11-01
At least six morphospecies of vestimentiferan tubeworms are associated with cold seeps in the Gulf of Mexico (GOM). The physiology and ecology of the two best-studied species from depths above 1000 m in the upper Louisiana slope (Lamellibrachia luymesi and Seepiophila jonesi) are relatively well understood. The biology of one rare species from the upper slope (escarpiid sp. nov.) and three morphospecies found at greater depths in the GOM (Lamellibrachia sp. 1, L. sp. 2, and Escarpia laminata) are not as well understood. Here we address species distributions and boundaries of cold-seep tubeworms using phylogenetic hypotheses based on two mitochondrial genes. Fragments of the mitochondrial large ribosomal subunit rDNA (16S) and cytochrome oxidase subunit I (COI) genes were sequenced for 167 vestimentiferans collected from the GOM and analyzed in the context of other seep vestimentiferans for which sequence data were available. The analysis supported five monophyletic clades of vestimentiferans in the GOM. Intra-clade variation in both genes was very low, and there was no apparent correlation between the within-clade diversity and collection depth or location. Two of the morphospecies of Lamellibrachia from different depths in the GOM could not be distinguished by either mitochondrial gene. Similarly, E. laminata could not be distinguished from other described species of Escarpia from either the west coast of Africa or the eastern Pacific using COI. We suggest that the mitochondrial COI and 16S genes have little utility as barcoding markers for seep vestimentiferan tubeworms.
Iida, Satoshi; Chen, Wei; Nakadai, Tomoyoshi; Ohkuma, Yoshiaki; Roeder, Robert G
2015-02-01
PR domain-containing 16 (PRDM16) induces expression of brown fat-specific genes in brown and beige adipocytes, although the underlying transcription-related mechanisms remain largely unknown. Here, in vitro studies show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex, is recruited to the enhancer of the brown fat-specific uncoupling protein 1 (Ucp1) gene through this interaction, and enhances thyroid hormone receptor (TR)-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. Complementary cell-based studies show that upon forskolin treatment, PRDM16 induces Ucp1 expression in undifferentiated murine embryonic fibroblasts, that this induction depends on MED1 and TR, and, consistent with a direct effect, that PRDM16 is recruited to the Ucp1 enhancer. Related studies have defined MED1 and PRDM16 interaction domains important for Ucp1 versus Ppargc1a induction by PRDM16. These results reveal novel mechanisms for PRDM16 function through the Mediator complex. © 2015 Iida et al.; Published by Cold Spring Harbor Laboratory Press.
An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpowich, Nathan K.; Song, Jinmei; Wang, Da-Neng
2016-06-13
ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein–substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface inmore » which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.« less
Elson, Joanna L.; Smith, Paul M.; Greaves, Laura C.; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M.A.; Taylor, Robert W.; Vila-Sanjurjo, Antón
2015-01-01
Mitochondrial DNA mutations are well recognized as an important cause of disease, with over two hundred variants in the protein encoding and mt-tRNA genes associated with human disorders. In contrast, the two genes encoding the mitochondrial rRNAs (mt-rRNAs) have been studied in far less detail. This is because establishing the pathogenicity of mt-rRNA mutations is a major diagnostic challenge. Only two disease causing mutations have been identified at these loci, both mapping to the small subunit (SSU). On the large subunit (LSU), however, the evidence for the presence of pathogenic LSU mt-rRNA changes is particularly sparse. We have previously expanded the list of deleterious SSU mt-rRNA mutations by identifying highly disruptive base changes capable of blocking the activity of the mitoribosomal SSU. To do this, we used a new methodology named heterologous inferential analysis (HIA). The recent arrival of near-atomic-resolution structures of the human mitoribosomal LSU, has enhanced the power of our approach by permitting the analysis of the corresponding sites of mutation within their natural structural context. Here, we have used these tools to determine whether LSU mt-rRNA mutations found in the context of human disease and/or ageing could disrupt the function of the mitoribosomal LSU. Our results clearly show that, much like the for SSU mt-rRNA, LSU mt-rRNAs mutations capable of compromising the function of the mitoribosomal LSU are indeed present in clinical samples. Thus, our work constitutes an important contribution to an emerging view of the mitoribosome as an important element in human health. PMID:26349026
The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre.
Fritsch, Johannes; Scheerer, Patrick; Frielingsdorf, Stefan; Kroschinsky, Sebastian; Friedrich, Bärbel; Lenz, Oliver; Spahn, Christian M T
2011-10-16
Hydrogenases are abundant enzymes that catalyse the reversible interconversion of H(2) into protons and electrons at high rates. Those hydrogenases maintaining their activity in the presence of O(2) are considered to be central to H(2)-based technologies, such as enzymatic fuel cells and for light-driven H(2) production. Despite comprehensive genetic, biochemical, electrochemical and spectroscopic investigations, the molecular background allowing a structural interpretation of how the catalytic centre is protected from irreversible inactivation by O(2) has remained unclear. Here we present the crystal structure of an O(2)-tolerant [NiFe]-hydrogenase from the aerobic H(2) oxidizer Ralstonia eutropha H16 at 1.5 Å resolution. The heterodimeric enzyme consists of a large subunit harbouring the catalytic centre in the H(2)-reduced state and a small subunit containing an electron relay consisting of three different iron-sulphur clusters. The cluster proximal to the active site displays an unprecedented [4Fe-3S] structure and is coordinated by six cysteines. According to the current model, this cofactor operates as an electronic switch depending on the nature of the gas molecule approaching the active site. It serves as an electron acceptor in the course of H(2) oxidation and as an electron-delivering device upon O(2) attack at the active site. This dual function is supported by the capability of the novel iron-sulphur cluster to adopt three redox states at physiological redox potentials. The second structural feature is a network of extended water cavities that may act as a channel facilitating the removal of water produced at the [NiFe] active site. These discoveries will have an impact on the design of biological and chemical H(2)-converting catalysts that are capable of cycling H(2) in air.
Narihiro, Takashi; Sekiguchi, Yuji
2011-01-01
Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721
Plastid transformation for Rubisco engineering and protocols for assessing expression.
Whitney, Spencer M; Sharwood, Robert E
2014-01-01
The assimilation of CO2 within chloroplasts is catalyzed by the bi-functional enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco. Within higher plants the Rubisco large subunit gene, rbcL, is encoded in the plastid genome, while the Rubisco small subunit gene, RbcS is coded in the nucleus by a multi-gene family. Rubisco is considered a poor catalyst due to its slow turnover rate and its additional fixation of O2 that can result in wasteful loss of carbon through the energy requiring photorespiratory cycle. Improving the carboxylation efficiency and CO2/O2 selectivity of Rubisco within higher plants has been a long-term goal which has been greatly advanced in recent times using plastid transformation techniques. Here we present experimental methodologies for efficiently engineering Rubisco in the plastids of a tobacco master-line and analyzing leaf Rubisco content.
Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling
2016-08-01
Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia
Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J. Rovie-Ryan; Snounou, Georges; Escalante, Ananias A.
2016-01-01
Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia. PMID:27433965
Particle-based platforms for malaria vaccines.
Wu, Yimin; Narum, David L; Fleury, Sylvain; Jennings, Gary; Yadava, Anjali
2015-12-22
Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.
Han, Pei-Jie; Li, Ai-Hua; Wang, Qi-Ming; Bai, Feng-Yan
2016-07-01
Four strains, CB 266(T), CB 272, XZ 44D1(T) and XZ 49D2, isolated from shrub plant leaves in China were identified as two novel species of the genus Ballistosporomyces by the sequence analysis of the small subunit of ribosomal RNA (SSU rRNA), the D1/D2 domains of the large subunit of rRNA (LSU rRNA) and internal transcribed spacer (ITS) + 5.8S rRNA region, and physiological comparisons. Ballistosporomyces changbaiensis sp. nov. (type strain CB 266(T) = CGMCC 2.02298(T) = CBS 10124(T), Mycobank number MB 815700) and Ballistosporomyces bomiensis sp. nov. (type strain XZ 44D1(T) = CGMCC 2.02661(T) = CBS 12512(T), Mycobank number MB 815701) are proposed to accommodate these two new species.
Tsurutani, Junji; Castillo, S Sianna; Brognard, John; Granville, Courtney A; Zhang, Chunyu; Gills, Joell J; Sayyah, Jacqueline; Dennis, Phillip A
2005-07-01
Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells. Nicotinic activation of Akt increased phosphorylation of multiple downstream substrates of Akt in a time-dependent manner, including GSK-3, FKHR, tuberin, mTOR and S6K1. Since nicotine or NNK bind to cell surface nicotinic acetylcholine receptors (nAchR), we used RT-PCR to assess expression of nine alpha and three beta nAchR subunits in five NSCLC cell lines and two types of primary lung epithelial cells. NSCLC cells express multiple nAchR subunits in a cell line-specific manner. Agonists of alpha3/alpha4 or alpha7 subunits activated Akt in a time-dependent manner, suggesting that tobacco components utilize these subunits to activate Akt. Cellular outcomes after nicotine or NNK administration were also assessed. Nicotine or NNK increased proliferation of NSCLC cells in an Akt-dependent manner that was closely linked with changes in cyclin D1 expression. Despite similar induction of proliferation, only nicotine decreased apoptosis caused by serum deprivation and/or chemotherapy. Protection conferred by nicotine was NFkappaB-dependent. Collectively, these results identify tobacco component-induced, Akt-dependent proliferation and NFkappaB-dependent survival as cellular processes that could underlie the detrimental effects of smoking in cancer patients.
Atkinson, Nicky; Leitão, Nuno; Orr, Douglas J; Meyer, Moritz T; Carmo-Silva, Elizabete; Griffiths, Howard; Smith, Alison M; McCormick, Alistair J
2017-04-01
Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO 2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
6-Shogaol induces caspase-independent paraptosis in cancer cells via proteasomal inhibition.
Nedungadi, Divya; Binoy, Anupama; Pandurangan, Nanjan; Pal, Sanjay; Nair, Bipin G; Mishra, Nandita
2018-03-15
An α, β-unsaturated carbonyl compound of ginger, 6-Shogaol (6S), induced extensive cytoplasmic vacuolation and cell death in breast cancer cell (MDA-MB-231) and non-small lung cancer (A549) cells. In the presence of autophagic inhibitors the cells continued to exhibit cytoplasmic vacuolation and cell death clearly distinguishing it from the classic autophagic process. 6S induced death did not exhibit the characteristic apoptotic features like caspase cleavage, phosphatidyl serine exposure and DNA fragmentation. The immunofluorescence with the Endoplasmic Reticulum (ER) resident protein, calreticulin indicated that the vacuoles were of ER origin, typical of paraptosis. This was supported by the increase in level of microtubule associated protein light chain 3B (LC3 I and LC3 II) and polyubiquitin binding protein, p62. The level of ER stress markers like polyubiquitinated proteins, Bip and CHOP also consistently increased. We have found that 6S inhibits the 26S proteasome. The proteasomal inhibitory activity was elucidated by a) molecular docking of 6S onto the active site of β5 subunit and b) reduced fluorescence by the fluorogenic substrate of the chymotrypsin-like subunit. In conclusion these studies demonstrate for the first time that proteasomal inhibition by 6S induces cell death via paraptosis. So 6-shogaol may act as a template for anti-cancer lead discovery against the apoptosis resistant cancer cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Small terminase couples viral DNA-binding to genome-packaging ATPase activity
Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C.; Cingolani, Gino
2012-01-01
SUMMARY Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here, we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ~23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology. PMID:22771211
Genetic Diversity of Daphnia pulex in the Middle and Lower Reaches of the Yangtze River
Wang, Wenping; Zhang, Kun; Deng, Daogui; Zhang, Ya-Nan; Peng, Shuixiu; Xu, Xiaoxue
2016-01-01
Increased human activities and environmental changes may lead to genetic diversity variations of Cladocerans in water. Daphnia pulex are distributed throughout the world and often regarded as a model organism. The 16S rDNA, cytochrome c oxidase subunit I (COI), and 18S genes were used as molecular marks. The genetic diversity and phylogeny of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River were studied. For 16S rDNA, COI gene, and 18S gene, the A+T content (65.4%, 58.4%, and 54.6%) was significantly higher than the G+C content (34.6%, 41.6% and 45.4%). This result was consistent with higher A and T contents among invertebrates. Based on the genetic distances of 16S rDNA and COI genes, the genetic differences of D. pulex from 10 water bodies located in the middle and lower reaches of the Yangtze River in China was minimal (0%–0.8% for 16S rDNA and 0%–1.5% for COI gene). However, D. pulex evolved into two branches in the phylogenetic trees, which coincided with its geographical distribution. Compared with D. pulex from other countries, the average genetic distance of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River reached 9.1%–10.5%, thereby indicating that D. pulex may have evolved into different subspecies. PMID:27015539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu-Zhong Zhang; Ewart, G.; Capaldi, R.A.
The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane({sup 35}S)sulfonate and sodium methyl 4-({sup 3}H)formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibodymore » (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C-domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage produce from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.« less
Lessons from isolable nickel(I) precursor complexes for small molecule activation.
Yao, Shenglai; Driess, Matthias
2012-02-21
Small-molecule activation by transition metals is essential to numerous organic transformations, both biological and industrial. Creating useful metal-mediated activation systems often depends on stabilizing the metal with uncommon low oxidation states and low coordination numbers. This provides a redox-active metal center with vacant coordination sites well suited for interacting with small molecules. Monovalent nickel species, with their d(9) electronic configuration, are moderately strong one-electron reducing agents that are synthetically attractive if they can be isolated. They represent suitable reagents for closing the knowledge gap in nickel-mediated activation of small molecules. Recently, the first strikingly stable dinuclear β-diketiminate nickel(I) precursor complexes were synthesized, proving to be suitable promoters for small-molecule binding and activation. They have led to many unprecedented nickel complexes bearing activated small molecules in different reduction stages. In this Account, we describe selected achievements in the activation of nitrous oxide (N(2)O), O(2), the heavier chalcogens (S, Se, and Te), and white phosphorus (P(4)) through this β-diketiminatonickel(I) precursor species. We emphasize the reductive activation of O(2), owing to its promise in oxidation processes. The one-electron-reduced O(2) activation product, that is, the corresponding β-diketiminato-supported Ni-O(2) complex, is a genuine superoxonickel(II) complex, representing an important intermediate in the early stages of O(2) activation. It selectively acts as an oxygen-atom transfer agent, hydrogen-atom scavenger, or both towards exogenous organic substrates to yield oxidation products. The one-electron reduction of the superoxonickel(II) moiety was examined by using elemental potassium, β-diketiminatozinc(II) chloride, and β-diketiminatoiron(I) complexes, affording the first heterobimetallic complexes featuring a [NiO(2)M] subunit (M is K, Zn, or Fe). Through density functional theory (DFT) calculations, the geometric and electronic structures of these complexes were established and their distinctive reactivity, including the unprecedented monooxygenase-like activity of a bis(μ-oxo)nickel-iron complex, was studied. The studies have further led to other heterobimetallic complexes containing a [NiO(2)M] core, which are useful for understanding the influence of the heterometal on structure-reactivity relationships. The activation of N(2)O led directly to the hydrogen-atom abstraction product bis(μ-hydroxo)nickel(II) species and prevented isolation of any intermediate. In contrast, the activation of elemental S, Se, and Te with the same nickel(I) reagent furnished activation products with superchalcogenido E(2)(-) (E is S, Se, or Te) and dichalcogenido E(2)(2-) ligand in different activation stages. The isolable supersulfidonickel(II) subunit may serve as a versatile building block for the synthesis of heterobimetallic disulfidonickel(II) complexes with a [NiS(2)M] core. In the case of white phosphorus, the P(4) molecule has been coordinated to the nickel(I) center of dinuclear β-diketiminatonickel(I) precursor complexes; however, the whole P(4) subunit is a weaker electron acceptor than the dichalcogen ligands E(2), thus remaining unreduced. This P(4) binding mode is rare and could open new doors for subsequent functionalization of P(4). Our advances in understanding how these small molecules are bound to a nickel(I) center and are activated for further transformation offer promise for designing new catalysts. These nickel-containing complexes offer exceptional potential for nickel-mediated transformations of organic molecules and as model compounds for mimicking active sites of nickel-containing metalloenzymes.
Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B.; Webb, Kristofor; Bennett, Eric J.; Vinterbo, Staal; Potter, Clinton S.; Carragher, Bridget; Joazeiro, Claudio A. P.
2014-01-01
All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes. PMID:25349383
Kv channel subunits that contribute to voltage-gated K+ current in renal vascular smooth muscle.
Fergus, Daniel J; Martens, Jeffrey R; England, Sarah K
2003-03-01
The rat renal arterial vasculature displays differences in K(+) channel current phenotypes along its length. Small arcuate to cortical radial arteries express a delayed rectifier phenotype, while the predominant Kv current in larger arcuate and interlobar arteries is composed of both transient and sustained components. We sought to determine whether Kvalpha subunits in the rat renal interlobar and arcuate arteries form heterotetramers, which may account for the unique currents, and whether modulatory Kvbeta subunits are present in renal vascular smooth muscle cells. RT-PCR indicated the presence of several different Kvalpha subunit isoform transcripts. Co-immunoprecipitation with immunoblotting and immunohistochemical evidence suggests that a portion of the K(+) current phenotype is a heteromultimer containing delayed-rectifier Kv1.2 and A-type Kv1.4 channel subunits. RT-PCR and immunoblot analyses also demonstrated the presence of both Kvbeta1.2 and Kvbeta1.3 in renal arteries. These results suggest that heteromultimeric formation of Kvalpha subunits and the presence of modulatory Kvbeta subunits are important factors in mediating Kv currents in the renal microvasculature and suggest a potentially critical role for these channel subunits in blood pressure regulation.
Hexadecameric structure of an invertebrate gap junction channel.
Oshima, Atsunori; Matsuzawa, Tomohiro; Murata, Kazuyoshi; Tani, Kazutoshi; Fujiyoshi, Yoshinori
2016-03-27
Innexins are invertebrate-specific gap junction proteins with four transmembrane helices. These proteins oligomerize to constitute intercellular channels that allow for the passage of small signaling molecules associated with neural and muscular electrical activity. In contrast to the large number of structural and functional studies of connexin gap junction channels, few structural studies of recombinant innexin channels are reported. Here we show the three-dimensional structure of two-dimensionally crystallized Caenorhabditis elegans innexin-6 (INX-6) gap junction channels. The N-terminal deleted INX-6 proteins are crystallized in lipid bilayers. The three-dimensional reconstruction determined by cryo-electron crystallography reveals that a single INX-6 gap junction channel comprises 16 subunits, a hexadecamer, in contrast to chordate connexin channels, which comprise 12 subunits. The channel pore diameters at the cytoplasmic entrance and extracellular gap region are larger than those of connexin26. Two bulb densities are observed in each hemichannel, one in the pore and the other at the cytoplasmic side of the hemichannel in the channel pore pathway. These findings imply a structural diversity of gap junction channels among multicellular organisms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cloning and characterization of two novel zebrafish P2X receptor subunits.
Diaz-Hernandez, Miguel; Cox, Jane A; Migita, Keisuke; Haines, William; Egan, Terrance M; Voigt, Mark M
2002-07-26
In this report we describe the cloning and characterization of two P2X receptor subunits cloned from the zebrafish (Danio rerio). Primary sequence analysis suggests that one cDNA encodes an ortholog of the mammalian P2X(4) subunit and the second cDNA encodes the ortholog of the mammalian P2X(5) subunit. The zP2X(4) subunit forms a homo-oligomeric receptor that displays a low affinity for ATP (EC(50)=274+/-48 microM) and very low affinity (EC(50)>500 microM) for other purinergic ligands such as alphabetameATP, suramin, and PPADS. As seen with the mammalian orthologs, the zP2X(5) subunit forms a homo-oligomeric receptor that yields very small whole-cell currents (<20pA), making determination of an EC(50) problematic. Both subunit genes were physically mapped onto the zebrafish genome using radiation hybrid analysis of the T51 panel, with the zp2x4 localized to LG21 and zp2x5 to LG5.
DEAD-Box RNA Helicase Dbp4 Is Required for Small-Subunit Processome Formation and Function
Soltanieh, Sahar; Osheim, Yvonne N.; Spasov, Krasimir; Trahan, Christian; Beyer, Ann L.
2014-01-01
DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5′ end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA. PMID:25535329
Zou, Kai-Nan; Ren, Li-Jie; Ping, Yuan; Ma, Ke; Li, Hui; Cao, Yu; Zhou, Huai-Gu; Wei, Yi-Liang
2016-10-01
In recent years, forensic scientists have focused on the discrimination of body fluids using microbial signatures. In this study, we performed PCR-based detection of microbial signatures of vaginal fluid, saliva, and feces in a Han Chinese population. We investigated the 16S rRNA genes of Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus iners, and Atopobium vaginae in vaginal fluid, the 16S rRNA and the glucosyltransferase enzyme genes of Streptococcus salivarius and Streptococcus mutans in saliva, and the 16S rRNA genes of Enterococcus species, the RNA polymerase β-subunit gene of Bacteroides uniformis and Bacteroides vulgatus, and the α-1-6 mannanase gene of Bacteroides thetaiotaomicron in feces. As a result, the detection proportions of L. crispatus, L. gasseri, L. jensenii, L. iners, and A. vaginae were 15/16, 5/16, 8/16, 14/16, and 3/16 in 16 vaginal fluid donors, respectively. L. crispatus and L. jensenii were specifically detected in vaginal fluid; L. gasseri, L. iners, and A. vaginae were also detected in non-vaginal fluid. S. salivarius and S. mutans were not specifically detected in saliva. The detection proportions of Enterococcus species, B. uniformis, B. vulgatus, and B. thetaiotaomicron in 16 feces samples were 16/16, 12/16, 15/16, and 11/16, respectively. B. uniformis and B. thetaiotaomicron were specifically detected in feces. In addition, DNA samples prepared for the identification of body fluid can also be used for individual identification by short tandem repeat typing. The mean detection sensitivities of L. crispatus and L. jensenii were 0.362 and 0.249 pg/uL, respectively. In conclusion, L. crispatus, L. jensenii, B. uniformis, and B. thetaiotaomicron can be used as effective markers for forensic identification of vaginal fluid and feces. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E.; Arons, Elena; Zaman, Paula; Polach, Kevin J.; Matar, Majed; Yung, Lai-Ming; Yu, Paul B.; Bowman, Frederick P.; Opotowsky, Alexander R.; Waxman, Aaron B.; Loscalzo, Joseph; Leopold, Jane A.; Maron, Bradley A.
2016-01-01
Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10−9 to 10−7 M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor–small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro. Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo. Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.—Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension. PMID:27006450
Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A
2016-07-01
Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension. © FASEB.
Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.
Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut
2005-08-15
Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.
Papillomavirus E7 Oncoproteins Share Functions with Polyomavirus Small T Antigens
White, Elizabeth A.; Kramer, Rebecca E.; Hwang, Justin H.; Pores Fernando, Arun T.; Naetar, Nana; Hahn, William C.; Roberts, Thomas M.; Schaffhausen, Brian S.; Livingston, David M.
2014-01-01
ABSTRACT Many of the small DNA tumor viruses encode transforming proteins that function by targeting critical cellular pathways involved in cell proliferation and survival. In this study, we have examined whether some of the functions of the polyomavirus small T antigens (ST) are shared by the E6 and E7 oncoproteins of two oncogenic papillomaviruses. Using three different assays, we have found that E7 can provide some simian virus 40 (SV40) or murine polyomavirus (PyV) ST functions. Both human papillomavirus 16 (HPV16) and bovine papillomavirus (BPV1) E7 proteins are capable of partially substituting for SV40 ST in a transformation assay that also includes SV40 large T antigen, the catalytic subunit of cellular telomerase, and oncogenic Ras. Like SV40 ST, HPV16 E7 has the ability to override a quiescence block induced by mitogen deprivation. Like PyV ST, it also has the ability to inhibit myoblast differentiation. At least two of these activities are dependent upon the interaction of HPV16 E7 with retinoblastoma protein family members. For small T antigens, interaction with PP2A is needed for each of these functions. Even though there is no strong evidence that E6 or E7 share the ability of small T to interact with PP2A, E7 provides these functions related to cellular transformation. IMPORTANCE DNA tumor viruses have provided major insights into how cancers develop. Some viruses, like the human papillomaviruses, can cause cancer directly. Both the papillomaviruses and the polyomaviruses have served as tools for understanding pathways that are often perturbed in cancer. Here, we have compared the functions of transforming proteins from several DNA tumor viruses, including two papillomaviruses and two polyomaviruses. We tested the papillomavirus E6 and E7 oncoproteins in three functional assays and found that E7 can provide some or all of the functions of the SV40 small T antigen, another well-characterized oncoprotein, in two of these assays. In a third assay, papillomavirus E7 has the same effect as the murine polyomavirus small T protein. In summary, we report several new functions for the papillomavirus E7 proteins, which will contribute new insights into the roles of viruses in cancer and the cellular pathways they perturb in carcinogenesis. PMID:25540383
Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan
2015-04-01
Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode. © 2015 IUMS.
Staab, J F; Ginkel, D L; Rosenberg, G B; Munford, R S
1994-09-23
Acyloxyacyl hydrolase, a leukocyte enzyme that acts on bacterial lipopolysaccharides (LPSs) and many glycerolipids, is synthesized as a precursor polypeptide that undergoes internal disulfide linkage before being proteolytically processed into two subunits. The larger subunit contains an amino acid sequence (Gly-X-Ser-X-Gly) that is found at the active sites of many lipases, while the smaller subunit has amino acid sequence similarity to saposins (sphingolipid activator proteins), cofactors for sphingolipid glycohydrolases. We show here that both acyloxyacyl hydrolase subunits are required for catalytic activity toward LPS and glycerophosphatidylcholine. In addition, mutations that truncate or delete the small subunit have profound effects on the intracellular localization, proteolytic processing, and stability of the enzyme in baby hamster kidney cells. Remarkably, proteolytic cleavage of the precursor protein increases the activity of the enzyme toward LPS by 10-20-fold without altering its activity toward glycerophosphatidylcholine. Proper orientation of the two subunits thus seems very important for the substrate specificity of this unusual enzyme.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus encodes a ribonucleotide reductase (RR) that consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme and both subunits are necessary for enzyme activity. It is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleo...
1985-01-01
An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP- dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density. PMID:2993318
Saha, Anusree; Das, Shubhajit; Moin, Mazahar; Dutta, Mouboni; Bakshi, Achala; Madhav, M. S.; Kirti, P. B.
2017-01-01
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops. PMID:28966624
USDA-ARS?s Scientific Manuscript database
In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal alpha-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhi...
USDA-ARS?s Scientific Manuscript database
Three new non-ascosporic, ascomycetous yeast genera are proposed based on their isolation from currently described species and genera. Phylogenetic placement of the genera was determined from analysis of nuclear gene sequences for D1/D2 large subunit rRNA, small subunit rRNA, translation elongation...
The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes.
Schäfer, Thorsten; Strauss, Daniela; Petfalski, Elisabeth; Tollervey, David; Hurt, Ed
2003-03-17
Recent reports have increased our knowledge of the consecutive steps during 60S ribosome biogenesis substantially, but 40S subunit formation is less well understood. Here, we investigate the maturation of nucleolar 90S pre-ribosomes into cytoplasmic 40S pre-ribosomes. During the transition from 90S to 40S particles, the majority of non-ribosomal proteins (approximately 30 species) dissociate, and significantly fewer factors associate with 40S pre-ribosomes. Notably, some of these components are part of both early 90S and intermediate 40S pre-particles in the nucleolus (e.g. Enp1p, Dim1p and Rrp12p), whereas others (e.g. Rio2p and Nob1p) are found mainly on late cytoplasmic pre-40S subunits. Finally, temperature-sensitive mutants mapping either in earlier (enp1-1) or later (rio2-1) components exhibit defects in the formation and nuclear export of pre-40S subunits. Our data provide an initial biochemical map of the pre-40S ribosomal subunit on its path from the nucleolus to the cytoplasm. This pathway involves fewer changes in composition than seen during 60S biogenesis.
Burgess, D; Penton, A; Dunsmuir, P; Dooner, H
1997-02-01
Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.
Ishiguro, T; Nakajima, M; Naito, M; Muto, T; Tsuruo, T
1996-02-15
B16-F10 and B16-BL6 are B16 mouse melanoma sublines that preferentially metastasize to the lung following i.v. and s.c. injections, respectively. To study molecular mechanisms underlying the different metastatic behaviors exhibited by the B16 melanoma sublines, we performed differential hybridization of the genes transcribed in these cells and compared their expression levels. We isolated four genes that were highly expressed in B16-F10 cells but not in B16-BL6 cells: TI-225 (polyubiquitin), TI-229 (pyruvate kinase), TI-241 (LRF-1 homologue), and TI-227 (novel gene). Triosephosphate isomerase, 10-formyltetrahydrofolate dehydrogenase, tyrosinase-related protein 2, cytochrome c oxidase, ATP synthetase alpha subunit, RNA helicase, and ribosomal protein (L37, J1, acidic phosphoprotein), however, showed higher expression in B16-BL6 cells than in B16-F10 cells. Among these clones, transfection of TI-241 into the low metastatic clone F1 converted the parental cells from low- into high-metastatic cells. TI-241 may regulate the expression of various genes as a transcription factor in the complex process of metastasis.
Zhang, Hong-Fei; Wu, Yan-Ling; Jiang, Shi-Kun; Wang, Pu; Sugiyama, Hiroshi; Chen, Xing-Lai; Zhang, Wen; Ji, Yan-Juan; Guo, Chuan-Xin
2012-06-18
In order to develop an optimal subunit as a T-recognition element in hairpin polyamides, 15 novel chirality-modified polyamides containing (R)-α,β-diaminopropionic acid ((R) β α-NH 2), (S)-α,β-diaminopropionic acid ((S) β α-NH 2), (1R,3S)-3-aminocyclopentanecarboxylic acid ((RS) Cp), (1S,3R)-3-amino-cyclopentanecarboxylic acid ((RS) Cp), (1R,3R)-3-aminocyclopentanecarboxylic acid ((RR) Cp) and (1S,3S)-3-amino-cyclopentanecarboxylic acid ((SS) Cp) residues were synthesized. Their binding characteristics to DNA sequences 5'-TGCNCAT-3'/3'-ACGN'GTA-5' (N⋅N'=A⋅T, T⋅A, G⋅C and C⋅G) were systemically studied by surface plasmon resonance (SPR) and molecular simulation (MSim) techniques. SPR showed that polyamide 4, AcIm-(S) β α-NH 2-ImPy-γ-ImPy-β-Py-βDp (β/(S) β α-NH 2 pair), bound to a DNA sequence containing a core binding site of 5'-TGCACAT-3' with a dissociation equilibrium constant (K(D) ) of 4.5×10(-8) m. This was a tenfold improvement in specificity over 5'-TGCTCAT-3' (K(D) =4.5×10(-7) M). MSim studies supported the SPR results. More importantly, for the first time, we found that chiral 3-aminocyclopentanecarboxylic acids in polyamides can be employed as base readers with only a small decrease in binding affinity to DNA. In particular, SPR showed that polyamide 9 ((RR) Cp/β pair) had a 15-fold binding preference for 5'-TGCTCAT-3' over 5'-TGCACAT-3'. A large difference in standard free energy change for A⋅T over T⋅A was determined (ΔΔG(o) =5.9 kJ mol(-1) ), as was a twofold decrease in interaction energy by MSim. Moreover, a 1:1 stoichiometry (9 to 5'-TGCTCAT-3'/3'-ACGAGTA-5') was shown by MSim to be optimal for the chiral five-membered cycle to fit the minor groove. Collectively, the study suggests that the (S)-α-amino-β-aminopropionic acid and (1R,3R)-3-aminocyclopentanecarboxylic acid can serve as a T-recognition element, and the stereochemistry and the nature of these subunits significantly influence binding properties in these recognition events. Subunit (1R,3R)-3-aminocyclopentanecarboxylic acid broadens our scope to design novel polyamides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tabor, C W; Tabor, H
1987-11-25
We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).
Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz
2012-01-01
The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. PMID:22481887
Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz
2012-01-01
The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.
Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia).
Sinniger, Frederic; Reimer, James D; Pawlowski, Jan
2008-12-01
The order Zoantharia is known for its chaotic taxonomy and difficult morphological identification. One method that potentially could help for examining such troublesome taxa is DNA barcoding, which identifies species using standard molecular markers. The mitochondrial cytochrome oxidase subunit I (COI) has been utilized to great success in groups such as birds and insects; however, its applicability in many other groups is controversial. Recently, some studies have suggested that barcoding is not applicable to anthozoans. Here, we examine the use of COI and mitochondrial 16S ribosomal DNA for zoanthid identification. Despite the absence of a clear barcoding gap, our results show that for most of 54 zoanthid samples, both markers could separate samples to the species, or species group, level, particularly when easily accessible ecological or distributional data were included. Additionally, we have used the short V5 region of mt 16S rDNA to identify eight old (13 to 50 years old) museum samples. We discuss advantages and disadvantages of COI and mt 16S rDNA as barcodes for Zoantharia, and recommend that either one or both of these markers be considered for zoanthid identification in the future.
Chiral Redox-Active Isosceles Triangles
Nalluri, Siva Krishna Mohan; Liu, Zhichang; Wu, Yilei; ...
2016-04-12
Designing small-molecule organic redox-active materials, with potential applications in energy storage, has received considerable interest of late. Herein, we report on the synthesis, characterization, and application of two rigid chiral triangles, each of which consist of non-identical pyromellitic diimide (PMDI) and naphthalene diimide (NDI)-based redox-active units. 1H and 13C NMR spectroscopic investigations in solution confirm the lower symmetry (C2 point group) associated with these two isosceles triangles. Single-crystal X-ray diffraction analyses reveal their rigid triangular prism-like geometries. Unlike previously investigated equilateral triangle containing three identical NDI subunits, both isosceles triangles do not choose to form one-dimensional supramolecular nanotubes by dintmore » of [C–H···O] interaction-driven columnar stacking. The rigid isosceles triangle, composed of one NDI and two PMDI subunits, forms—in the presence of N,N-dimethylformamide—two different types of intermolecular NDI–NDI and NDI–PMDI π–π stacked dimers with opposite helicities in the solid state. Cyclic voltammetry reveals that both isosceles triangles can accept reversibly up to six electrons. Continuous-wave electron paramagnetic resonance and electron–nuclear double-resonance spectroscopic investigations, supported by density functional theory calculations, on the single-electron reduced radical anions of the isosceles triangles confirm the selective sharing of unpaired electrons among adjacent redox-active NDI subunit(s) within both molecules. The isosceles triangles have been employed as electrode-active materials in organic rechargeable lithium-ion batteries. The evaluation of the structure–performance relationships of this series of diimide-based triangles reveals that the increase in the number of NDI subunits, replacing PMDI ones, within the molecules improves the electrochemical cell performance of the batteries.« less
Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias.
Clarke, Laurence J; Soubrier, Julien; Weyrich, Laura S; Cooper, Alan
2014-11-01
Studies of insect assemblages are suited to the simultaneous DNA-based identification of multiple taxa known as metabarcoding. To obtain accurate estimates of diversity, metabarcoding markers ideally possess appropriate taxonomic coverage to avoid PCR-amplification bias, as well as sufficient sequence divergence to resolve species. We used in silico PCR to compare the taxonomic coverage and resolution of newly designed insect metabarcodes (targeting 16S) with that of existing markers [16S and cytochrome oxidase c subunit I (COI)] and then compared their efficiency in vitro. Existing metabarcoding primers amplified in silico <75% of insect species with complete mitochondrial genomes available, whereas new primers targeting 16S provided >90% coverage. Furthermore, metabarcodes targeting COI appeared to introduce taxonomic PCR-amplification bias, typically amplifying a greater percentage of Lepidoptera and Diptera species, while failing to amplify certain orders in silico. To test whether bias predicted in silico was observed in vitro, we created an artificial DNA blend containing equal amounts of DNA from 14 species, representing 11 insect orders and one arachnid. We PCR-amplified the blend using five primer sets, targeting either COI or 16S, with high-throughput amplicon sequencing yielding more than 6 million reads. In vitro results typically corresponded to in silico PCR predictions, with newly designed 16S primers detecting 11 insect taxa present, thus providing equivalent or better taxonomic coverage than COI metabarcodes. Our results demonstrate that in silico PCR is a useful tool for predicting taxonomic bias in mixed template PCR and that researchers should be wary of potential bias when selecting metabarcoding markers. © 2014 John Wiley & Sons Ltd.
Cozens, A L; Walker, J E
1986-01-01
The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249
Kakinuma, Hiroaki; Ozaki, Mamoru; Sato, Hitoshi; Takahashi, Hiroaki
2008-09-05
Autism has been associated with chromosomal aberrations, including duplications at chromosome 4, and the identification of genetic factors contributing to the etiology of this disease is the focus of much research. Here we report a Japanese girl with mosaic of chromosome 4p duplication, mos 46,XX,dup(4)(p12p16)[54]/46,XX[6], who was diagnosed with autism at 3 years of age. Fluorescence in situ hybridization (FISH) with probes covering the region spanning a cluster of the gamma aminobutyric acid A (GABA-A) receptor subunit genes in the proximal short arm of chromosome 4 demonstrated total three signals for the GABRG1, GABRA4, and GABRA2 genes, but only two signals for GABRB1. This suggests that aberrant copy number of the GABA-A receptor subunit genes may contribute to the etiology of autism in this patient. 2007 Wiley-Liss, Inc.
MiniCORVET is a Vps8-containing early endosomal tether in Drosophila.
Lőrincz, Péter; Lakatos, Zsolt; Varga, Ágnes; Maruzs, Tamás; Simon-Vecsei, Zsófia; Darula, Zsuzsanna; Benkő, Péter; Csordás, Gábor; Lippai, Mónika; Andó, István; Hegedűs, Krisztina; Medzihradszky, Katalin F; Takáts, Szabolcs; Juhász, Gábor
2016-06-02
Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila.
S-nitrosylation of the IGF-1 receptor disrupts the cell proliferative action of IGF-1.
Okada, Kazushi; Zhu, Bao-Ting
2017-09-30
The insulin-like growth factor 1 receptor (IGF-1R) is a disulfide-linked heterotetramer containing two α-subunits and two β-subunits. Earlier studies demonstrate that nitric oxide (NO) can adversely affect IGF-1 action in the central nervous system. It is known that NO can induce S-nitrosylation of the cysteine residues in proteins, thereby partly contributing to the regulation of protein function. In the present study, we sought to determine whether S-nitrosylation of the cysteine residues in IGF-1R is an important post-translational modification that regulates its response to IGF-1. Using cultured SH-SY5Y human neuroblastoma cells as an in vitro model, we found that treatment of cells with S-nitroso-cysteine (SNOC), a NO donor that can nitrosylate the cysteine residues in proteins, induces S-nitrosylation of the β subunit of IGF-1R but not its α-subunit. IGF-1Rβ S-nitrosylation by SNOC is coupled with increased dissociation of the IGF-1R protein complex. In addition, disruption of the IGF-1R function resulting from S-nitrosylation of the IGF-1Rβ subunit is associated with disruption of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, we observed that SNOC-induced IGF-1Rβ S-nitrosylation results in a dose-dependent inhibition of cell proliferation and survival. Together, these results suggest that elevated nitrosative stress may result in dysfunction of cellular IGF-1R signaling through S-nitrosylation of the cysteine residues in the IGF-1Rβ subunit, thereby disrupting the downstream PI3K and MAPK signaling functions and ultimately resulting in inhibition of cell proliferation and survival. Copyright © 2017. Published by Elsevier Inc.
The Involvement of Ser1898 of the Human L-Type Calcium Channel in Evoked Secretion
Bachnoff, Niv; Cohen-Kutner, Moshe; Atlas, Daphne
2011-01-01
A PKA consensus phosphorylation site S1928 at the α 11.2 subunit of the rabbit cardiac L-type channel, CaV1.2, is involved in the regulation of CaV1.2 kinetics and affects catecholamine secretion. This mutation does not alter basal CaV1.2 current properties or regulation of CaV1.2 current by PKA and the beta-adrenergic receptor, but abolishes CaV1.2 phosphorylation by PKA. Here, we test the contribution of the corresponding PKA phosphorylation site of the human α 11.2 subunit S1898, to the regulation of catecholamine secretion in bovine chromaffin cells. Chromaffin cells were infected with a Semliki-Forest viral vector containing either the human wt or a mutated S1898A α 11.2 subunit. Both subunits harbor a T1036Y mutation conferring nifedipine insensitivity. Secretion evoked by depolarization in the presence of nifedipine was monitored by amperometry. Depolarization-triggered secretion in cells infected with either the wt α 11.2 or α 11.2/S1898A mutated subunit was elevated to a similar extent by forskolin. Forskolin, known to directly activate adenylyl-cyclase, increased the rate of secretion in a manner that is largely independent of the presence of S1898. Our results are consistent with the involvement of additional PKA regulatory site(s) at the C-tail of α 11.2, the pore forming subunit of CaV1.2. PMID:22216029
Tan, Wenbin; Chernova, Margarita; Gao, Lin; Sun, Victor; Liu, Huaxu; Jia, Wangcun; Langer, Stephanie; Wang, Gang; Mihm, Martin C; Nelson, J Stuart
2014-11-01
Port-wine stain (PWS) is a congenital, progressive vascular malformation but the pathogenesis remains incompletely understood. We sought to investigate the activation status of various kinases, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, AKT, phosphatidylinositol 3-kinase, P70 ribosomal S6 kinase, and phosphoinositide phospholipase C γ subunit, in PWS biopsy tissues. Immunohistochemistry was performed on 19 skin biopsy samples from 11 patients with PWS. c-Jun N-terminal kinase, extracellular signal-regulated kinase, and P70 ribosomal S6 kinase in pediatric and adult PWS blood vessels were consecutively activated. Activation of AKT and phosphatidylinositol 3-kinase was found in many adult hypertrophic PWS blood vessels but not in infants. Phosphoinositide phospholipase C γ subunit showed strong activation in nodular PWS blood vessels. Infantile PWS sample size was small. Our data suggest a subsequent activation profile of various kinases during different stages of PWS: (1) c-Jun N-terminal and extracellular signal-regulated kinases are firstly and consecutively activated in all PWS tissues, which may contribute to both the pathogenesis and progressive development of PWS; (2) AKT and phosphatidylinositol 3-kinase are subsequently activated, and are involved in the hypertrophic development of PWS blood vessels; and (3) phosphoinositide phospholipase C γ subunit is activated in the most advanced stage of PWS and may participate in nodular formation. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Microbial Analysis of Bite Marks by Sequence Comparison of Streptococcal DNA
Kennedy, Darnell M.; Stanton, Jo-Ann L.; García, José A.; Mason, Chris; Rand, Christy J.; Kieser, Jules A.; Tompkins, Geoffrey R.
2012-01-01
Bite mark injuries often feature in violent crimes. Conventional morphometric methods for the forensic analysis of bite marks involve elements of subjective interpretation that threaten the credibility of this field. Human DNA recovered from bite marks has the highest evidentiary value, however recovery can be compromised by salivary components. This study assessed the feasibility of matching bacterial DNA sequences amplified from experimental bite marks to those obtained from the teeth responsible, with the aim of evaluating the capability of three genomic regions of streptococcal DNA to discriminate between participant samples. Bite mark and teeth swabs were collected from 16 participants. Bacterial DNA was extracted to provide the template for PCR primers specific for streptococcal 16S ribosomal RNA (16S rRNA) gene, 16S–23S intergenic spacer (ITS) and RNA polymerase beta subunit (rpoB). High throughput sequencing (GS FLX 454), followed by stringent quality filtering, generated reads from bite marks for comparison to those generated from teeth samples. For all three regions, the greatest overlaps of identical reads were between bite mark samples and the corresponding teeth samples. The average proportions of reads identical between bite mark and corresponding teeth samples were 0.31, 0.41 and 0.31, and for non-corresponding samples were 0.11, 0.20 and 0.016, for 16S rRNA, ITS and rpoB, respectively. The probabilities of correctly distinguishing matching and non-matching teeth samples were 0.92 for ITS, 0.99 for 16S rRNA and 1.0 for rpoB. These findings strongly support the tenet that bacterial DNA amplified from bite marks and teeth can provide corroborating information in the identification of assailants. PMID:23284761
Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome.
Yu, Zanlin; Kleifeld, Oded; Lande-Atir, Avigail; Bsoul, Maisa; Kleiman, Maya; Krutauz, Daria; Book, Adam; Vierstra, Richard D; Hofmann, Kay; Reis, Noa; Glickman, Michael H; Pick, Elah
2011-04-01
Subunit composition and architectural structure of the 26S proteasome lid is strictly conserved between all eukaryotes. This eight-subunit complex bears high similarity to the eukaryotic translation initiation factor 3 and to the COP9 signalosome (CSN), which together define the proteasome CSN/COP9/initiation factor (PCI) troika. In some unicellular eukaryotes, the latter two complexes lack key subunits, encouraging questions about the conservation of their structural design. Here we demonstrate that, in Saccharomyces cerevisiae, Rpn5 plays dual roles by stabilizing proteasome and CSN structures independently. Proteasome and CSN complexes are easily dissected, with Rpn5 the only subunit in common. Together with Rpn5, we identified a total of six bona fide subunits at roughly stoichiometric ratios in isolated, affinity-purified CSN. Moreover, the copy of Rpn5 associated with the CSN is required for enzymatic hydrolysis of Rub1/Nedd8 conjugated to cullins. We propose that multitasking by a single subunit, Rpn5 in this case, allows it to function in different complexes simultaneously. These observations demonstrate that functional substitution of subunits by paralogues is feasible, implying that the canonical composition of the three PCI complexes in S. cerevisiae is more robust than hitherto appreciated.
Chaverri, P.; Liu, M.; Hodge, K.T.
2008-01-01
The present taxonomic revision deals with Neotropical species of three entomopathogenic genera that were once included in Hypocrella s. l.: Hypocrella s. str. (anamorph Aschersonia), Moelleriella (anamorph aschersonia-like), and Samuelsia gen. nov (anamorph aschersonia-like). Species of Hypocrella, Moelleriella, and Samuelsia are pathogens of scale insects (Coccidae and Lecaniidae, Homoptera) and whiteflies (Aleyrodidae, Homoptera) and are common in tropical regions. Phylogenetic analyses of DNA sequences from nuclear ribosomal large subunit (28S), translation elongation factor 1-α (TEF 1-α), and RNA polymerase II subunit 1 (RPB1) and analyses of multiple morphological characters demonstrate that the three segregated genera can be distinguished by the disarticulation of the ascospores and shape and size of conidia. Moelleriella has filiform multi-septate ascospores that disarticulate at the septa within the ascus and aschersonia-like anamorphs with fusoid conidia. Hypocrella s. str. has filiform to long-fusiform ascospores that do not disarticulate and Aschersonia s. str. anamorphs with fusoid conidia. The new genus proposed here, Samuelsia, has filiform to long-fusiform ascospores that do not disarticulate and aschersonia-like anamorphs with small allantoid conidia. In addition, the present study presents and discusses the evolution of species, morphology, and ecology in Hypocrella, Moelleriella, and Samuelsia based on multigene phylogenetic analyses. PMID:18490956
Cloning and sequencing of the allophycocyanin genes from Spirulina maxima (Cyanophyta)
NASA Astrophysics Data System (ADS)
Qin, Song; Hiroyuki, Kojima; Yoshikazu, Kawata; Shin-Ichi, Yano; Zeng, Cheng-Kui
1998-03-01
The genes coding for the α-and β-subunit of allophycocyanin ( apcA and apcB) from the cyanophyte Spirulina maxima were cloned and sequenced. The results revealed 44.4% of nucleotide sequence similarity and 30.4% of similarity of deduced amino acid sequence between them. The amino acid sequence identities between S. maxima and S. platensis are 99.4% for α subunit and 100% for β subunit.
Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.
Yuan, X J; Wang, J; Juhaszova, M; Golovina, V A; Rubin, L J
1998-04-01
K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cyt and explored the molecular identification of voltage-gated K+ (KV)- and Ca(2+)-activated K+ (KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct KV currents [IK(V)], a rapidly inactivating (A-type) and a noninactivating delayed rectifier, as well as a slowly activated KCa current [IK(Ca)] were identified. IK(V) was reversibly inhibited by 4-aminopyridine (5 mM), whereas IK(Ca) was significantly inhibited by charybdotoxin (10-20 nM). K+ channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. Five KV-channel alpha-subunit genes from the Shaker subfamily (KV1.1, KV1.2, KV1.4, KV1.5, and KV1.6), a KV-channel alpha-subunit gene from the Shab subfamily (KV2.1), a KV-channel modulatory alpha-subunit (KV9.3), and a KCa-channel alpha-subunit gene (rSlo), as well as three KV-channel beta-subunit genes (KV beta 1.1, KV beta 2, and KV beta 3) are expressed in PASMC. The data suggest that 1) native K+ channels in PASMC are encoded by multiple genes; 2) the delayed rectifier IK(V) may be generated by the KV1.1, KV1.2, KV1.5, KV1.6, KV2.1, and/or KV2.1/KV9.3 channels; 3) the A-type IK(V) may be generated by the KV1.4 channel and/or the delayed rectifier KV channels (KV1 subfamily) associated with beta-subunits; and 4) the IK(Ca) may be generated by the rSlo gene product. The function of the KV channels plays an important role in the regulation of membrane potential and [Ca2+]cyt in PASMC.
Tangerina, Marcelo M P; Correa, Hebelin; Haltli, Brad; Vilegas, Wagner; Kerr, Russell G
2017-01-01
Shrimp fisheries along the Brazilian coast have significant environmental impact due to high by-catch rates (21 kg per kilogram of shrimp). Typically discarded, by-catch contains many invertebrates that may host a great variety of bacterial genera, some of which may produce bioactive natural products with biotechnological applications. Therefore, to utilize by-catch that is usually discarded we explored the biotechnological potential of culturable bacteria of two abundant by-catch invertebrate species, the snail Olivancillaria urceus and the sea star Luidia senegalensis. Sediment from the collection area was also investigated. Utilizing multiple isolation approaches, 134 isolates were obtained from the invertebrates and sediment. Small-subunit rRNA (16S) gene sequencing revealed that the isolates belonged to Proteobacteria, Firmicutes and Actinobacteria phyla and were distributed among 28 genera. Several genera known for their capacity to produce bioactive natural products (Micromonospora, Streptomyces, Serinicoccus and Verrucosispora) were retrieved from the invertebrate samples. To query the bacterial isolates for their ability to produce bioactive metabolites, all strains were fermented and fermentation extracts profiled by UP LC-HRMS and tested for antimicrobial activity. Four strains exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus warneri.
Meza-Basso, Luis; Alberdi, Miren; Raynal, Monique; Ferrero-Cadinanos, Maria-Luz; Delseny, Michel
1986-01-01
Changes induced by cold treatment in young rapeseed (Brassica napus) seedlings were investigated at the molecular level. Following germination at 18°C for 48 hours, one half of the seedlings was transferred to 0°C for another 48 hour period, the other half being kept at 18°C as a control. Newly synthesized proteins were labeled for the last 6 hours of incubation with [35S]methionine. The different polypeptides were separated by two-dimensional electrophoresis in polyacrylamide gels. Newly synthesized proteins were revealed by fluorography. Protein synthesis clearly continues at 0°C and some polypeptides preferentially accumulate at this temperature. On the other hand, synthesis of several others is repressed while many are insensitive to cold treatment. Similar changes are also observed when mRNA is prepared from cold treated seedlings, translated in vitro in a reticulocyte cell free system and compared with the products of mRNA extracted from control samples. Among the genes which are repressed we identified the small subunit of ribulose 1,6-bisphosphate carboxylase. These changes are also detectable after shorter treatments. Images Fig. 1 Fig. 2 Fig. 3 PMID:16665102
Mansfield, J M; Campbell, J H; Bhandari, A R; Jesionowski, A M; Vickerman, M M
2012-07-01
Small subunit rRNA sequencing and phylogenetic analysis were used to identify cultivable and uncultivable microorganisms present in the dental plaque of symptomatic and asymptomatic partially erupted third molars to determine the prevalence of putative periodontal pathogens in pericoronal sites. Template DNA prepared from subgingival plaque collected from partially erupted symptomatic and asymptomatic mandibular third molars and healthy incisors was used in polymerase chain reaction with broad-range oligonucleotide primers to amplify 16S rRNA bacterial and archaeal genes. Amplicons were cloned, sequenced, and compared with known nucleotide sequences in online databases to identify the microorganisms present. Two thousand three hundred two clones from the plaque of 12 patients carried bacterial sequences from 63 genera belonging to 11 phyla, including members of the uncultivable TM7, SR1, and Chloroflexi, and difficult-to-cultivate Synergistetes and Spirochaetes. Dialister invisus, Filifactor alocis, Fusobacterium nucleatum, Porphyromonas endodontalis, Prevotella denticola, Tannerella forsythia, and Treponema denticola, which have been associated with periodontal disease, were found in significantly greater abundance in pericoronal compared with incisor sites. Dialister invisus and F nucleatum were found in greater abundance in sites exhibiting clinical symptoms. The archaeal species, Methanobrevibacter oralis, which has been associated with severe periodontitis, was found in 3 symptomatic patients. These findings have provided new insights into the complex microbiota of pericoronitis. Several bacterial and archaeal species implicated in periodontal disease were recovered in greater incidence and abundance from the plaque of partially erupted third molars compared with incisors, supporting the hypothesis that the pericoronal region may provide a favored niche for periodontal pathogens in otherwise healthy mouths. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland
Marteinsson, Viggó Thór; Hauksdóttir, Sigurbjörg; Hobel, Cédric F. V.; Kristmannsdóttir, Hrefna; Hreggvidsson, Gudmundur Oli; Kristjánsson, Jakob K.
2001-01-01
Geothermal energy has been harnessed and used for domestic heating in Iceland. In wells that are typically drilled to a depth of 1,500 to 2,000 m, the temperature of the source water is 50 to 130°C. The bottoms of the boreholes can therefore be regarded as subterranean hot springs and provide a unique opportunity to study the subterranean biosphere. Large volumes of geothermal fluid from five wells and a mixture of geothermal water from 50 geothermal wells (hot tap water) were sampled and concentrated through a 0.2-μm-pore-size filter. Cells were observed in wells RG-39 (91.4°C) and MG-18 (71.8°C) and in hot tap water (76°C), but no cells were detected in wells SN-4, SN-5 (95 to 117°C), and RV-5 (130°C). Archaea and Bacteria were detected by whole-cell fluorescent in situ hybridization. DNAs were extracted from the biomass, and small-subunit rRNA genes (16S rDNAs) were amplified by PCR using primers specific for the Archaea and Bacteria domains. The PCR products were cloned and sequenced. The sequence analysis showed 11 new operational taxonomic units (OTUs) out of 14, 3 of which were affiliated with known surface OTUs. Samples from RG-39 and hot tap water were inoculated into enrichment media and incubated at 65 and 85°C. Growth was observed only in media based on geothermal water. 16S rDNA analysis showed enrichments dominated with Desulfurococcales relatives. Two strains belonging to Desulfurococcus mobilis and to the Thermus/Deinococcus group were isolated from borehole RG-39. The results indicate that subsurface volcanic zones are an environment that provides a rich subsurface for novel thermophiles. PMID:11526029
Phylogenetic diversity analysis of subterranean hot springs in Iceland.
Marteinsson, V T; Hauksdóttir, S; Hobel, C F; Kristmannsdóttir, H; Hreggvidsson, G O; Kristjánsson, J K
2001-09-01
Geothermal energy has been harnessed and used for domestic heating in Iceland. In wells that are typically drilled to a depth of 1,500 to 2,000 m, the temperature of the source water is 50 to 130 degrees C. The bottoms of the boreholes can therefore be regarded as subterranean hot springs and provide a unique opportunity to study the subterranean biosphere. Large volumes of geothermal fluid from five wells and a mixture of geothermal water from 50 geothermal wells (hot tap water) were sampled and concentrated through a 0.2-microm-pore-size filter. Cells were observed in wells RG-39 (91.4 degrees C) and MG-18 (71.8 degrees C) and in hot tap water (76 degrees C), but no cells were detected in wells SN-4, SN-5 (95 to 117 degrees C), and RV-5 (130 degrees C). Archaea and Bacteria were detected by whole-cell fluorescent in situ hybridization. DNAs were extracted from the biomass, and small-subunit rRNA genes (16S rDNAs) were amplified by PCR using primers specific for the Archaea and Bacteria domains. The PCR products were cloned and sequenced. The sequence analysis showed 11 new operational taxonomic units (OTUs) out of 14, 3 of which were affiliated with known surface OTUs. Samples from RG-39 and hot tap water were inoculated into enrichment media and incubated at 65 and 85 degrees C. Growth was observed only in media based on geothermal water. 16S rDNA analysis showed enrichments dominated with Desulfurococcales relatives. Two strains belonging to Desulfurococcus mobilis and to the Thermus/Deinococcus group were isolated from borehole RG-39. The results indicate that subsurface volcanic zones are an environment that provides a rich subsurface for novel thermophiles.
Xiao, Enzong; Krumins, Valdis; Xiao, Tangfu; Dong, Yiran; Tang, Song; Ning, Zengping; Huang, Zhengyu; Sun, Weimin
2017-02-01
Investigation of microbial communities of soils contaminated by antimony (Sb) and arsenic (As) is necessary to obtain knowledge for their bioremediation. However, little is known about the depth profiles of microbial community composition and structure in Sb and As contaminated soils. Our previous studies have suggested that historical factors (i.e., soil and sediment) play important roles in governing microbial community structure and composition. Here, we selected two different types of soil (flooded paddy soil versus dry corn field soil) with co-contamination of Sb and As to study interactions between these metalloids, geochemical parameters and the soil microbiota as well as microbial metabolism in response to Sb and As contamination. Comprehensive geochemical analyses and 16S rRNA amplicon sequencing were used to shed light on the interactions of the microbial communities with their environments. A wide diversity of taxonomical groups was present in both soil cores, and many were significantly correlated with geochemical parameters. Canonical correspondence analysis (CCA) and co-occurrence networks further elucidated the impact of geochemical parameters (including Sb and As contamination fractions and sulfate, TOC, Eh, and pH) on vertical distribution of soil microbial communities. Metagenomes predicted from the 16S data using PICRUSt included arsenic metabolism genes such as arsenate reductase (ArsC), arsenite oxidase small subunit (AoxA and AoxB), and arsenite transporter (ArsA and ACR3). In addition, predicted abundances of arsenate reductase (ArsC) and arsenite oxidase (AoxA and AoxB) genes were significantly correlated with Sb contamination fractions, These results suggest potential As biogeochemical cycling in both soil cores and potentially dynamic Sb biogeochemical cycling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.
A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland
Pester, Michael; Bittner, Norbert; Deevong, Pinsurang; Wagner, Michael; Loy, Alexander
2015-01-01
Methane emission from peatlands contributes substantially to global warming but is significantly reduced by sulfate reduction, which is fuelled by globally increasing aerial sulfur pollution. However, the biology behind sulfate reduction in terrestrial ecosystems is not well understood and the key players for this process as well as their abundance remained unidentified. Comparative 16S rRNA gene stable isotope probing in the presence and absence of sulfate indicated that a Desulfosporosinus species, which constitutes only 0.006% of the total microbial community 16S rRNA genes, is an important sulfate reducer in a long-term experimental peatland field site. Parallel stable isotope probing using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] identified no additional sulfate reducers under the conditions tested. For the identified Desulfosporosinus species a high cell-specific sulfate reduction rate of up to 341 fmol SO42− cell−1 day−1 was estimated. Thus, the small Desulfosporosinus population has the potential to reduce sulfate in situ at a rate of 4.0–36.8 nmol (g soil w. wt.)−1 day−1, sufficient to account for a considerable part of sulfate reduction in the peat soil. Modeling of sulfate diffusion to such highly active cells identified no limitation in sulfate supply even at bulk concentrations as low as 10 μM. Collectively, these data show that the identified Desulfosporosinus species, despite being a member of the ‘rare biosphere’, contributes to an important biogeochemical process that diverts the carbon flow in peatlands from methane to CO2 and, thus, alters their contribution to global warming. PMID:20535221
Ruscic, Katarina J.; Miceli, Francesco; Villalba-Galea, Carlos A.; Dai, Hui; Mishina, Yukiko; Bezanilla, Francisco; Goldstein, Steve A. N.
2013-01-01
Human IKs channels activate slowly with the onset of cardiac action potentials to repolarize the myocardium. IKs channels are composed of KCNQ1 (Q1) pore-forming subunits that carry S4 voltage-sensor segments and KCNE1 (E1) accessory subunits. Together, Q1 and E1 subunits recapitulate the conductive and kinetic properties of IKs. How E1 modulates Q1 has been unclear. Investigators have variously posited that E1 slows the movement of S4 segments, slows opening and closing of the conduction pore, or modifies both aspects of electromechanical coupling. Here, we show that Q1 gating current can be resolved in the absence of E1, but not in its presence, consistent with slowed movement of the voltage sensor. E1 was directly demonstrated to slow S4 movement with a fluorescent probe on the Q1 voltage sensor. Direct correlation of the kinetics of S4 motion and ionic current indicated that slowing of sensor movement by E1 was both necessary and sufficient to determine the slow-activation time course of IKs. PMID:23359697
Hoover, G J; el-Mowafi, A; Simko, E; Kocal, T E; Ferguson, H W; Hayes, M A
1998-07-01
In an attempt to find plasma proteins that might be involved in the constitutive resistance of rainbow trout to furunculosis, a disease caused by Aeromonas salmonicida (AS), we purified serum and plasma proteins based on their calcium- and carbohydrate-dependent affinity for A. salmonicida lipopolysaccharide (LPS) coupled to an epoxy-activated synthetic matrix (Toyopearl AF Epoxy 650M). A multimeric family of high molecular weight (96 to 200-kDa) LPS-binding proteins exhibiting both calcium and mannose dependent binding was isolated. Upon reduction the multimers collapsed to subunits of approximately 16-kDa as estimated by 1D-PAGE and exhibited pI values of 5.30 and 5.75 as estimated from 2D-PAGE. Their N-terminal sequences were related to rainbow trout ladderlectin (RT-LL), a Sepharose-binding protein. Polyclonal antibodies to the LPS-purified 16-kDa subunits recognized both the reduced 16-kDa subunits and the non-reduced multimeric forms. A calcium- and N-acetylglucosamine (GlcNAc)-dependent LPS-binding multimeric protein (approximately 207-kDa) composed of 34.5-kDa subunits was purified and found to be identical to trout serum amyloid P (SAP) by N-terminal sequence (DLQDLSGKVFV). A protein of 24-kDa, in reduced and non-reduced conditions, was isolated and had N-terminal sequence identity with a known C-reactive protein (CRP) homologue, C-polysaccharide-binding protein 2 (TCBP2) of rainbow trout. A novel calcium-dependent LPS-binding protein was purified and termed rainbow trout lectin 37 (RT-L37). This protein, composed of dimers, tetramers and pentamers of 37 kDa subunits (pI 5.50-6.10) with N-terminal sequence (IQE(D/N)GHAEAPGATTVLNEILR) showed no close homology to proteins known or predicted from cDNA sequences. These findings demonstrate that rainbow trout have several blood proteins with lectin properties for the LPS of A. salmonicida; the biological functions of these proteins in resistance to furunculosis are still unknown.
78 FR 60008 - Colorado Disaster Number CO-00065
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... Application Deadline Date: 06/16/2014. ADDRESSES: Submit completed loan applications to: U.S. Small Business... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13768 and 13769] Colorado Disaster Number CO-00065 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of...
78 FR 60008 - Colorado Disaster Number CO-00065
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... Application Deadline Date: 06/16/2014. ADDRESSES: Submit completed loan applications to: U.S. Small Business... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13768 and 13769] Colorado Disaster Number CO-00065 AGENCY: U.S. Small Business Administration. ACTION: Amendment 2. SUMMARY: This is an amendment of...
[Chymotripsin-like activity and subunit composition of proteasomes in human cancers].
Kondakova, I V; Spirina, L V; Koval, V D; Shashova, E E; Choinzonov, E L; Ivanova, E V; Kolomiets, L A; Chernyshova, A L; Slonimskaya, E M; Usynin, E A; Afanasyev, S G
2014-01-01
Activity of the proteasome, polyfunctional enzymatic complex, is known to undergo changes during cancer development. This phenomenon is, probably, caused by the changes in subunit composition of proteasomes. In present work, we studied chymotrypsin-like activity of proteasomes, subunit composition and their association in breast cancer, head and neck squamous cell carcinoma, endometrial cancer, renal cancer, bladder cancer, stomach cancer and colorectal cancer. The increase of proteasome activity was revealed in most cancer tissues compared with adjacent tissues except for the renal cell carcinoma. Changes in proteasome activity in cancer tissues compared with correspondent normal tissues were accompanied by modification of its subunit composition. High proteasome activity was observed in combination with an increased expression of immune subunits and/or proteasome activator PA28, associated with activity of 20S proteasome. In breast cancer, head and neck squamous cell carcinoma, bladder cancer, stomach cancer and colorectal cancer we additionally found higher expression of Rpt6 subunit of 26S proteasome. Correlations between chymotrypsin like proteasome activity and subunit expressions were found in human cancer tissues. In summary, we suggest that proteasome ac- tivation and changes in its subunit composition plays an important role in cancer pathogenesis.
5SRNAdb: an information resource for 5S ribosomal RNAs.
Szymanski, Maciej; Zielezinski, Andrzej; Barciszewski, Jan; Erdmann, Volker A; Karlowski, Wojciech M
2016-01-04
Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA-protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit
NASA Technical Reports Server (NTRS)
Chen, B. Y.; Janes, H. W.
1997-01-01
ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.
Hwang, Justin H.; Jiang, Tao; Kulkarni, Shreya; Faure, Nathalie; Schaffhausen, Brian S.
2013-01-01
Protein phosphatase 2A (PP2A) regulates almost all cell signaling pathways. It consists of a scaffolding A subunit to which a catalytic C subunit and one of many regulatory B subunits bind. Of the more than 80 PP2A isoforms, 10% use Aβ as a scaffold. This study demonstrates the isoform-specific function of the A scaffold subunits. Polyomaviruses have shown the importance of phosphotyrosine, PI3K, and p53 in transformation. Comparisons of polyoma and SV40 small T antigens implicate Aβ in the control of differentiation. Knockdown of Aβ enhanced differentiation. Akt signaling regulated differentiation; its activation or inhibition promoted or blocked it, respectively. Aβ bound Akt. Enhancement of PP2A Aβ/Akt interaction by polyoma small T antigen increased turnover of Akt Ser-473 phosphorylation. Conversely, knockdown of Aβ promoted Akt activity and reduced turnover of phosphate at Ser-473 of Akt. These data provide new insight into the regulation of Akt, a protein of extreme importance in cancer. Furthermore, our results suggest that the role for Aβ in differentiation and perhaps tumor suppression may lie partly in its ability to negatively regulate Akt. PMID:24052256
Sheen, Jenq-Yunn; Bogorad, Lawrence
1986-01-01
Transcripts of three distinct ribulose-1,5-bisphosphate carboxylase (RuBPC) small subunit (SS) genes account for ∼90% of the mRNA for this protein in maize leaves. Transcripts of two of them constitute >80% of the SS mRNA in 24-h greening maize leaves. The third gene contribute ∼10%. Transcripts of all three nuclear-encoded SS genes are detectable in bundle sheath (BSC) and mesophyll cells (MC) of etiolated maize leaves. The level of mRNA for each gene is different in etioplasts of MC but all drop during photoregulated development of chloroplasts in MC and follow a pattern of transitory rise and fall in BSC. The amounts of LS and SS proteins continue to increase steadily well after the mRNA levels reach their peaks in BSC. The molar ratio of mRNA for chloroplast-encoded RuBPC large subunit (LS) to the nuclear genome encoded SS is about 10:1 although LS and SS proteins are present in about equimolar amounts. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:16453739
Esquivel, M Gloria; Genkov, Todor; Nogueira, Ana S; Salvucci, Michael E; Spreitzer, Robert J
2013-12-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA-βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.
Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b.
Richter, Hagen; Rompf, Judith; Wiegel, Julia; Rau, Kristina; Randau, Lennart
2017-11-01
CRISPR arrays are transcribed into long precursor RNA species, which are further processed into mature CRISPR RNAs (crRNAs). Cas proteins utilize these crRNAs, which contain spacer sequences that can be derived from mobile genetic elements, to mediate immunity during a reoccurring virus infection. Type I CRISPR-Cas systems are defined by the presence of different Cascade interference complexes containing large and small subunits that play major roles during target DNA selection. Here, we produce the protein and crRNA components of the Type I-B CRISPR-Cas complex of Clostridium thermocellum and Methanococcus maripaludis. The C. thermocellum Cascade complexes were reconstituted and analyzed via size-exclusion chromatography. Activity of the heterologous M. maripaludis CRISPR-Cas system was followed using phage lambda plaques assays. The reconstituted Type-I-B Cascade complex contains Cas7, Cas5, Cas6b and the large subunit Cas8b. Cas6b can be omitted from the reconstitution protocol. The large subunit Cas8b was found to be represented by two tightly associated protein fragments and a small C-terminal Cas8b segment was identified in recombinant complexes and C. thermocellum cell lysate. Production of Cas8b generates a small C-terminal fragment, which is suggested to fulfill the role of the missing small subunit. A heterologous, synthetic M. maripaludis Type I-B system is active in E. coli against phage lambda, highlighting a potential for genome editing using endogenous Type-I-B CRISPR-Cas machineries. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent.
Owen, Barbara A L; H Lang, Walter; McMurray, Cynthia T
2009-05-01
Here we report that the human DNA mismatch complex MSH2-MSH3 recognizes small loops by a mechanism different from that of MSH2-MSH6 for single-base mismatches. The subunits MSH2 and MSH3 can bind either ADP or ATP with similar affinities. Upon binding to a DNA loop, however, MSH2-MSH3 adopts a single 'nucleotide signature', in which the MSH2 subunit is occupied by an ADP molecule and the MSH3 subunit is empty. Subsequent ATP binding and hydrolysis in the MSH3 subunit promote ADP-ATP exchange in the MSH2 subunit to yield a hydrolysis-independent ATP-MSH2-MSH3-ADP intermediate. Human MSH2-MSH3 and yeast Msh2-Msh6 both undergo ADP-ATP exchange in the Msh2 subunit but, apparently, have opposite requirements for ATP hydrolysis: ADP release from DNA-bound Msh2-Msh6 requires ATP stabilization in the Msh6 subunit, whereas ADP release from DNA-bound MSH2-MSH3 requires ATP hydrolysis in the MSH3 subunit. We propose a model in which lesion binding converts MSH2-MSH3 into a distinct nucleotide-bound form that is poised to be a molecular sensor for lesion specificity.
Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA
Naveau, Marie; Lazennec-Schurdevin, Christine; Panvert, Michel; Dubiez, Etienne; Mechulam, Yves; Schmitt, Emmanuelle
2013-01-01
Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2–GDPNP–tRNA complex. PMID:23193270
Jin, Zhe; Bhandage, Amol K; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis
2014-01-01
The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.
Jin, Zhe; Bhandage, Amol K.; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R.; Birnir, Bryndis
2014-01-01
The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838
Wyroba, E; Surmacz, L; Osinska, M; Wiejak, J
2007-01-01
Phagosome maturation is a complex process enabling degradation of internalised particles. Our data obtained at the gene, protein and cellular level indicate that the set of components involved in this process and known up to now in mammalian cells is functioning in unicellular eukaryote. Rab7-interacting partners: homologues of its effector RILP (Rab-interacting lysosomal protein) and LAMP-2 (lysosomal membrane protein 2) as well as alpha7 subunit of the 26S proteasome were revealed in Paramecium phagolysosomal compartment. We identified the gene/transcript fragments encoding RILP-related proteins (RILP1 and RILP2) in Paramecium by PCR/RT-PCR and sequencing. The deduced amino acid sequences of RILP1 and RILP2 show 60.5% and 58.3% similarity, respectively, to the region involved in regulating of lysosomal morphology and dynein-dynactin recruitment of human RILP. RILP colocalised with Rab7 in Paramecium lysosomes and at phagolysosomal membrane during phagocytosis of both the latex beads and bacteria. In the same compartment LAMP-2 was present and its expression during latex internalisation was 2.5-fold higher than in the control when P2 protein fractions (100,000 x g) of equal load were quantified by immunoblotting. LAMP-2 cross-reacting polypeptide of approximately106 kDa was glycosylated as shown by fluorescent and Western analysis of the same blot preceded by PNGase F treatment. The alpha7 subunit of 26S proteasome was detected close to the phagosomal membrane in the small vesicles, in some of which it colocalised with Rab7. Immunoblotting confirmed presence of RILP-related polypeptide and a7 subunit of 26S proteasome in Paramecium protein fractions. These results suggest that Rab7, RILP and LAMP-2 may be involved in phagosome maturation in Paramecium.
Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers
Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A.; Gupta, Piyush B.; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan
2017-01-01
The use of proteasome inhibitors to target cancer’s dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers. PMID:28028240
Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice
Fujisawa, Yukiko; Kato, Teruhisa; Ohki, Shizuka; Ishikawa, Atsushi; Kitano, Hidemi; Sasaki, Takuji; Asahi, Tadashi; Iwasaki, Yukimoto
1999-01-01
Transgenic rice containing an antisense cDNA for the α subunit of rice heterotrimeric G protein produced little or no mRNA for the subunit and exhibited abnormal morphology, including dwarf traits and the setting of small seeds. In normal rice, the mRNA for the α subunit was abundant in the internodes and florets, the tissues closely related to abnormality in the dwarf transformants. The position of the α-subunit gene was mapped on rice chromosome 5 by mapping with the restriction fragment length polymorphism. The position was closely linked to the locus of a rice dwarf mutant, Daikoku dwarf (d-1), which is known to exhibit abnormal phenotypes similar to those of the transformants that suppressed the endogenous mRNA for the α subunit by antisense technology. Analysis of the cDNAs for the α subunits of five alleles of Daikoku dwarf (d-1), ID-1, DK22, DKT-1, DKT-2, and CM1361–1, showed that these dwarf mutants had mutated in the coding region of the α-subunit gene. These results show that the G protein functions in the formation of normal internodes and seeds in rice. PMID:10377457
Kida, Hiroshi; Sugano, Yuri; Iizuka, Ryo; Fujihashi, Masahiro; Yohda, Masafumi; Miki, Kunio
2008-11-14
Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of alpha and beta subunits and forms a "jellyfish-like" structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two alpha and two beta subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of alpha (alpha1 and alpha2) and beta subunits (beta1 and beta2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD beta1 subunit at 1.9 A resolution and its functional analysis. TsPFD beta1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The beta hairpin linkers of beta1 subunits assemble to form a beta barrel "body" around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the beta1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric beta1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD beta1 subunits act as molecular chaperones in living cells of some archaea.
Structure of ratcheted ribosomes with tRNAs in hybrid states
Julián, Patricia; Konevega, Andrey L.; Scheres, Sjors H. W.; Lázaro, Melisa; Gil, David; Wintermeyer, Wolfgang; Rodnina, Marina V.; Valle, Mikel
2008-01-01
During protein synthesis, tRNAs and mRNA move through the ribosome between aminoacyl (A), peptidyl (P), and exit (E) sites of the ribosome in a process called translocation. Translocation is accompanied by the displacement of the tRNAs on the large ribosomal subunit toward the hybrid A/P and P/E states and by a rotational movement (ratchet) of the ribosomal subunits relative to one another. So far, the structure of the ratcheted state has been observed only when translation factors were bound to the ribosome. Using cryo-electron microscopy and classification, we show here that ribosomes can spontaneously adopt a ratcheted conformation with tRNAs in their hybrid states. The peptidyl-tRNA molecule in the A/P state, which is visualized here, is not distorted compared with the A/A state except for slight adjustments of its acceptor end, suggesting that the displacement of the A-site tRNA on the 50S subunit is passive and is induced by the 30S subunit rotation. Simultaneous subunit ratchet and formation of the tRNA hybrid states precede and may promote the subsequent rapid and coordinated tRNA translocation on the 30S subunit catalyzed by elongation factor G. PMID:18971332
Phosphorylation of Wheat Germ Initiation Factors and Ribosomal Proteins 1
Browning, Karen S.; Yan, Tyan Fuh J.; Lauer, Stephen J.; Aquino, Lu Ann; Tao, Mariano; Ravel, Joanne M.
1985-01-01
The ability of the wheat germ initiation factors and ribosomes to serve as substrates for a wheat germ protein kinase (Yan and Tao 1982 J Biol Chem 257: 7037-7043) has been investigated. The wheat germ kinase catalyzes the phosphorylation of the 42,000 dalton subunit of eukaryotic initiation factor (eIF)-2 and the 107,000 dalton subunit of eIF-3. Other initiation factors, eIF-4B and eIF-4A, and elongation factors, EF-1 and EF-2, are not phosphorylated by the kinase. Quantitative analysis indicates that the kinase catalyzes the incorporation of about 0.5 to 0.6 mole of phosphate per mole of the 42,000 dalton subunit of eIF-2 and about 6 moles of phosphate per mole of the 107,000 dalton subunit of eIF-3. Three proteins (Mr = 38,000, 14,800, and 12,600) of the 60S ribosomal subunit are phosphorylated by the kinase, but none of the 40S ribosomal proteins are substrates of the kinase. No effects of phosphorylation on the activities of eIF-2, eIF-3, or 60S ribosomal subunits could be demonstrated in vitro. Images Fig. 1 Fig. 3 Fig. 4 PMID:16664060
Grégoire, Patrick; Fardeau, Marie-Laure; Guasco, Sophie; Lagière, Joël; Cambar, Jean; Michotey, Valérie; Bonin, Patricia; Ollivier, Bernard
2012-03-01
A novel strictly anaerobic bacterium designated SPDX02-08(T) was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1-2 × 2-6 μm) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08(T) grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08(T) completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08(T) required yeast extract to oxidize formate and H(2) but did not grow autotrophically on H(2). Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08(T) were iso-C(15:0), C(15:0), and C(16:0). Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08(T) belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08(T) and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08(T) is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937(T) = JCM 16410(T)). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08(T) is HM056226.
Site-Specific S-Glutathiolation of Mitochondrial NADH Ubiquinone Reductase
Chen, Chwen-Lih; Zhang, Liwen; Yeh, Alexander; Chen, Chun-An; Green-Church, Kari B.; Zweier, Jay L.; Chen, Yeong-Renn
2008-01-01
The generation of reactive oxygen species in mitochondria acts as a redox signal in triggering cellular events such as apoptosis, proliferation, and senescence. Overproduction of superoxide (O2·-) and O2·--derived oxidants change the redox status of the mitochondrial GSH pool. An electron transport protein, Mitochondrial Complex I, is the major host of reactive/regulatory protein thiols. An important response of protein thiols to oxidative stress is to reversibly form protein mixed disulfide via S-glutathiolation. Exposure of Complex I to oxidized GSH, GSSG, resulted in specific S-glutathiolation at the 51 kDa and 75 kDa subunits. Here, to investigate the molecular mechanism of S-glutathiolation of Complex I, we prepared isolated bovine Complex I under non-reducing conditions and employed the techniques of mass spectrometry and EPR spin trapping for analysis. LC/MS/MS analysis of tryptic digests of the 51 kDa and 75 kDa polypeptides from glutathiolated Complex I (GS-NQR) revealed that two specific cysteines (C206 and C187) of the 51 kDa subunit and one specific cysteine (C367) of the 75 kDa subunit were involved in redox modifications with GS binding. The electron transfer activity (ETA) of GS-NQR in catalyzing NADH oxidation by Q1 was significantly enhanced. However, O2·- generation activity (SGA) mediated by GS-NQR suffered a mild loss as measured by EPR spin trapping, suggesting the protective role of S-glutathiolation in the intact Complex I. Exposure of NADH dehydrogenase (NDH), the flavin subcomplex of Complex I, to GSSG resulted in specific S-glutathiolation on the 51 kDa subunit. Both ETA and SGA of S-glutathiolated NDH (GS-NDH) decreased in parallel as the dosage of GSSG increased. LC/MS/MS analysis of a tryptic digest of the 51 kDa subunit from GS-NDH revealed that C206, C187, and C425 were glutathiolated. C425 of the 51 kDa subunit is a ligand residue of the 4Fe-4S N3 center, suggesting that destruction of 4Fe-4S is the major mechanism involved in the inhibiton of NDH. The result also implies that S-glutathiolation of the 75 kDa subunit may play a role in protecting the 4Fe-4S cluster of the 51 kDa subunit from redox modification when Complex I is exposed to redox change in the GSH pool. PMID:17444656
Three-dimensional crystals of ribosomes and their subunits from eu- and archaebacteria.
Glotz, C; Müssig, J; Gewitz, H S; Makowski, I; Arad, T; Yonath, A; Wittmann, H G
1987-11-01
Ordered three-dimensional crystals of 70S ribosomes as well as of 30S and 50S ribosomal subunits from various bacteria (E. coli, Bacillus stearothermophilus, Thermus thermophilus and Halobacterium marismortui) have been grown by vapour diffusion in hanging drops using mono- and polyalcohols. A new compact crystal form of 50S subunits has been obtained, and it is suitable for crystallographic studies at medium resolution. In addition, from one crystal form large crystals could be grown in X-ray capillaries. In all cases the crystals were obtained from functionally active ribosomal particles, and the particles from dissolved crystals retained their integrity and biological activity.
The Atlantic Ocean: An Impassable Barrier for the Common Octopus, Octopus vulgaris
NASA Astrophysics Data System (ADS)
Perez-Viscasillas, J.; Schizas, N. V.; Jassoud, A.
2016-02-01
Octopus vulgaris (Lamarck 1798) inhabits the Mediterranean, the temperate and tropical coastal waters of the Atlantic Ocean and is also present in the south Indian Ocean and Japan. We questioned the reported widespread distribution and especially the amphi-Atlantic distribution of O. vulgaris by comparing patterns of genetic variation in the Cytochrome Oxidase Subunit I (COI), the 17th intron of the Na(+)/K(+)-ATPase alpha subunit (Na/K-ATPase 17th intron), and 16S genes from several populations throughout the presumed distribution. Bayesian genealogies based on COI sequences resulted in three monophyletic lineages: a Caribbean, a Eurafrican and a Japanese one. The Eurafrican lineage is more closely related to the Japanese than to the Caribbean lineage. Within the Caribbean, the most common mitochondrial haplotype is shared by all sampled locations except for Curaçao. The most common COI haplotype in the Eurafrican group is shared by all populations. The Caribbean octopus exhibits a divergence of 11.5% compared to the Eurafrican and Japanese octopus, whereas the latter groups are 3.1% divergent. The Na/K-ATPase 17th intron data from Caribbean and Mediterranean/Atlantic Spain octopods is concordant with the mitochondrial data set, separating these two populations. The 16s data is still being analysed, but preliminary analysis supports the dual population hypothesis. The reciprocal monophyly observed with both COI and Na/K-ATPase 17th intron between the Caribbean and European O. vulgaris suggests the historical cessation of gene flow between the two sides of the Atlantic and highlights the presence of a highly differentiated Caribbean lineage.
Yan, Yong-Wei; Zou, Bin; Zhu, Ting; Hozzein, Wael N.
2017-01-01
RNA-seq-based SSU (small subunit) rRNA (ribosomal RNA) analysis has provided a better understanding of potentially active microbial community within environments. However, for RNA-seq library construction, high quantities of purified RNA are typically required. We propose a modified RNA-seq method for SSU rRNA-based microbial community analysis that depends on the direct ligation of a 5’ adaptor to RNA before reverse-transcription. The method requires only a low-input quantity of RNA (10–100 ng) and does not require a DNA removal step. The method was initially tested on three mock communities synthesized with enriched SSU rRNA of archaeal, bacterial and fungal isolates at different ratios, and was subsequently used for environmental samples of high or low biomass. For high-biomass salt-marsh sediments, enriched SSU rRNA and total nucleic acid-derived RNA-seq datasets revealed highly consistent community compositions for all of the SSU rRNA sequences, and as much as 46.4%-59.5% of 16S rRNA sequences were suitable for OTU (operational taxonomic unit)-based community and diversity analyses with complete coverage of V1-V2 regions. OTU-based community structures for the two datasets were also highly consistent with those determined by all of the 16S rRNA reads. For low-biomass samples, total nucleic acid-derived RNA-seq datasets were analyzed, and highly active bacterial taxa were also identified by the OTU-based method, notably including members of the previously underestimated genus Nitrospira and phylum Acidobacteria in tap water, members of the phylum Actinobacteria on a shower curtain, and members of the phylum Cyanobacteria on leaf surfaces. More than half of the bacterial 16S rRNA sequences covered the complete region of primer 8F, and non-coverage rates as high as 38.7% were obtained for phylum-unclassified sequences, providing many opportunities to identify novel bacterial taxa. This modified RNA-seq method will provide a better snapshot of diverse microbial communities, most notably by OTU-based analysis, even communities with low-biomass samples. PMID:29016661
Dash, Bhagirathi; Li, Ming D.; Lukas, Ronald J.
2014-01-01
Functional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where “*” indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼5–8-fold) or WT mα6mβ4mβ3-nAChRs (∼2-fold) yielded higher function than mα6mβ4-nAChRs. Function was not detected when mα6 and mβ2 subunits were expressed together or in the additional presence of hβ3 or mβ3 subunits. However, function emerged upon expression of mα6mβ2mβ3V9′S-nAChRs containing β3 subunits having gain-of-function V9′S (valine to serine at the 9′-position) mutations in transmembrane domain II and was further elevated 9-fold when hβ3V9′S subunits were substituted for mβ3V9′S subunits. Studies involving WT or gain-of-function chimeric mouse/human β3 subunits narrowed the search for domains that influence functional expression of mα6*-nAChRs. Using hβ3 subunits as templates for site-directed mutagenesis studies, substitution with mβ3 subunit residues in extracellular N-terminal domain loops “C” (Glu221 and Phe223), “E” (Ser144 and Ser148), and “β2-β3” (Gln94 and Glu101) increased function of mα6mβ2*- (∼2–3-fold) or mα6mβ4* (∼2–4-fold)-nAChRs. EC50 values for nicotine acting at mα6mβ4*-nAChR were unaffected by β3 subunit residue substitutions in loop C or E. Thus, amino acid residues located in primary (loop C) or complementary (loops β2-β3 and E) interfaces of β3 subunits are some of the molecular impediments for functional expression of mα6mβ2β3- or mα6mβ4β3-nAChRs. PMID:25028511
Lin, Amy Hui-Mei; Nichols, Buford L.; Quezada-Calvillo, Roberto; Avery, Stephen E.; Sim, Lyann; Rose, David R.; Naim, Hassan Y.; Hamaker, Bruce R.
2012-01-01
For starch digestion to glucose, two luminal α-amylases and four gut mucosal α-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal α-glucosidases on cooked (gelatinized) starch. Gelatinized normal maize starch was digested with N- and C-terminal subunits of recombinant mammalian maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) of varying amounts and digestion periods. Without the aid of α-amylase, Ct-MGAM demonstrated an unexpected rapid and high digestion degree near 80%, while other subunits showed 20 to 30% digestion. These findings suggest that Ct-MGAM assists α-amylase in digesting starch molecules and potentially may compensate for developmental or pathological amylase deficiencies. PMID:22563462
Lin, Amy Hui-Mei; Nichols, Buford L; Quezada-Calvillo, Roberto; Avery, Stephen E; Sim, Lyann; Rose, David R; Naim, Hassan Y; Hamaker, Bruce R
2012-01-01
For starch digestion to glucose, two luminal α-amylases and four gut mucosal α-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal α-glucosidases on cooked (gelatinized) starch. Gelatinized normal maize starch was digested with N- and C-terminal subunits of recombinant mammalian maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) of varying amounts and digestion periods. Without the aid of α-amylase, Ct-MGAM demonstrated an unexpected rapid and high digestion degree near 80%, while other subunits showed 20 to 30% digestion. These findings suggest that Ct-MGAM assists α-amylase in digesting starch molecules and potentially may compensate for developmental or pathological amylase deficiencies.
Synergistic Blockade of Mitotic Exit by Two Chemical Inhibitors of the APC/C
Sackton, Katharine L.; Dimova, Nevena; Zeng, Xing; Tian, Wei; Zhang, Mengmeng; Sackton, Timothy B.; Meaders, Johnathan; Pfaff, Kathleen L.; Sigoillot, Frederic; Yu, Hongtao; Luo, Xuelian; King, Randall W.
2014-01-01
Summary Protein machines are multi-subunit protein complexes that orchestrate highly regulated biochemical tasks. An example is the Anaphase-Promoting Complex/Cyclosome (APC/C), a thirteen-subunit ubiquitin ligase that initiates the metaphase-anaphase transition and mitotic exit by targeting proteins such as securin and cyclin B1 for ubiquitin-dependent destruction by the proteasome1,2. Because blocking mitotic exit is an effective approach for inducing tumor cell death3,4, the APC/C represents a potential novel target for cancer therapy. APC/C activation in mitosis requires binding of Cdc205, which forms a co-receptor with the APC/C to recognize substrates containing a Destruction box (D-box)6-14. Here we demonstrate that we can synergistically inhibit APC/C-dependent proteolysis and mitotic exit by simultaneously disrupting two protein-protein interactions within the APC/C-Cdc20-substrate ternary complex. We identified a small molecule, called apcin (APC inhibitor), which binds to Cdc20 and competitively inhibits the ubiquitylation of D-box-containing substrates. Analysis of the crystal structure of the apcin-Cdc20 complex suggests that apcin occupies the D-box-binding pocket on the side face of the WD40-domain. The ability of apcin to block mitotic exit is synergistically amplified by co-addition of tosyl-L-arginine methyl ester (TAME), a small molecule that blocks the APC/C-Cdc20 interaction15,16. This work suggests that simultaneous disruption of multiple, weak protein-protein interactions is an effective approach for inactivating a protein machine. PMID:25156254
The Functional Role of eL19 and eB12 Intersubunit Bridge in the Eukaryotic Ribosome.
Kisly, Ivan; Gulay, Suna P; Mäeorg, Uno; Dinman, Jonathan D; Remme, Jaanus; Tamm, Tiina
2016-05-22
During translation, the two eukaryotic ribosomal subunits remain associated through 17 intersubunit bridges, five of which are eukaryote specific. These are mainly localized to the peripheral regions and are believed to stabilize the structure of the ribosome. The functional importance of these bridges remains largely unknown. Here, the essentiality of the eukaryote-specific bridge eB12 has been investigated. The main component of this bridge is ribosomal protein eL19 that is composed of an N-terminal globular domain, a middle region, and a long C-terminal α-helix. The analysis of deletion mutants demonstrated that the globular domain and middle region of eL19 are essential for cell viability, most likely functioning in ribosome assembly. The eB12 bridge, formed by contacts between the C-terminal α-helix of eL19 and 18S rRNA in concert with additional stabilizing interactions involving either eS7 or uS17, is dispensable for viability. Nevertheless, eL19 mutants impaired in eB12 bridge formation displayed slow growth phenotypes, altered sensitivity/resistance to translational inhibitors, and enhanced hyperosmotic stress tolerance. Biochemical analyses determined that the eB12 bridge contributes to the stability of ribosome subunit interactions in vitro. 60S subunits containing eL19 variants defective in eB12 bridge formation failed to form 80S ribosomes regardless of Mg(2+) concentration. The reassociation of 40S and mutant 60S subunits was markedly improved in the presence of deacetylated tRNA, emphasizing the importance of tRNAs during the subunit association. We propose that the eB12 bridge plays an important role in subunit joining and in optimizing ribosome functionality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saito, Masanori; Shinozaki-Kuwahara, Noriko; Hirasawa, Masatomo; Takada, Kazuko
2014-09-01
Four Gram-stain-positive, catalase-negative, coccoid-shaped organisms were isolated from elephant oral cavities. The isolates were tentatively identified as streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus. Two isolates (NUM 6304(T) and NUM 6312) were related most closely to Streptococcus salivarius with 96.8 % and 93.1 % similarity based on the 16S rRNA gene and the RNA polymerase β subunit encoding gene (rpoB), respectively, and to Streptococcus vestibularis with 83.7 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates (NUM 6306(T) and NUM 6318) were related most closely to S. vestibularis with 97.0 % and 82.9 % similarity based on the 16S rRNA and groEL genes, respectively, and to S. salivarius with 93.5 % similarity based on the rpoB gene. Based on phylogenetic and phenotypic evidence, these isolates are suggested to represent novel species of the genus Streptococcus, for which the names Streptococcus loxodontisalivarius sp. nov. (type strain NUM 6304(T) = JCM 19287(T) = DSM 27382(T)) and Streptococcus saliviloxodontae sp. nov. (type strain NUM 6306(T) = JCM 19288(T) = DSM 27513(T)) are proposed. © 2014 IUMS.
Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M
1994-01-01
Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917
Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys
Dai, Huaxin; Cao, Fangbin; Chen, Xianhong; Zhang, Mian; Ahmed, Imrul Mosaddek; Chen, Zhong-Hua; Li, Chengdao; Zhang, Guoping; Wu, Feibo
2013-01-01
Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance. PMID:23691047
Neutron Scattering and the 30 S Ribosomal Subunit of E. Coli
DOE R&D Accomplishments Database
Moore, P. B.; Engelman, D. M.; Langer, J. A.; Ramakrishnan, V. R.; Schindler, D. G.; Schoenborn, B. P.; Sillers, I. Y.; Yabuki, S.
1982-06-01
This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today.
Co-generating synthetic parts toward a self-replicating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Haas, Wilhelm; Jackson, Kirsten
To build replicating systems with new functions, the engineering of existing biological machineries requires a sensible strategy. Protein synthesis Using Recombinant Elements (PURE) system consists of the desired components for transcription, translation, aminoacylation and energy regeneration. PURE, might be the basis for a radically alterable, lifelike system after optimization. Here, we regenerated 54 E. coli ribosomal (r-) proteins individually from DNA templates in the PURE system. We show that using stable isotope labeling with amino acids, mass spectrometry based quantitative proteomics could detect 26 of the 33 50S and 20 of the 21 30S subunit r-proteins when co-expressed in batchmore » format PURE system. By optimizing DNA template concentrations and adapting a miniaturized Fluid Array Device with optimized feeding solution, we were able to cogenerate and detect at least 29 of the 33 50S and all of the 21 30S subunit r-proteins in one pot. The boost on yield of a single r-protein in co-expression pool varied from ~1.5 to 5-fold compared to the batch mode, with up to ~ 2.4 µM yield for a single r-protein. Reconstituted ribosomes under physiological condition from PURE system synthesized 30S r-proteins and native 16S rRNA showed ~13% activity of native 70S ribosomes, which increased to 21% when supplemented with GroEL/ES. As a result, this work also points to what is still needed to obtain self-replicating synthetic ribosomes in-situ in the PURE system.« less
Co-generating synthetic parts toward a self-replicating system
Li, Jun; Haas, Wilhelm; Jackson, Kirsten; ...
2017-03-23
To build replicating systems with new functions, the engineering of existing biological machineries requires a sensible strategy. Protein synthesis Using Recombinant Elements (PURE) system consists of the desired components for transcription, translation, aminoacylation and energy regeneration. PURE, might be the basis for a radically alterable, lifelike system after optimization. Here, we regenerated 54 E. coli ribosomal (r-) proteins individually from DNA templates in the PURE system. We show that using stable isotope labeling with amino acids, mass spectrometry based quantitative proteomics could detect 26 of the 33 50S and 20 of the 21 30S subunit r-proteins when co-expressed in batchmore » format PURE system. By optimizing DNA template concentrations and adapting a miniaturized Fluid Array Device with optimized feeding solution, we were able to cogenerate and detect at least 29 of the 33 50S and all of the 21 30S subunit r-proteins in one pot. The boost on yield of a single r-protein in co-expression pool varied from ~1.5 to 5-fold compared to the batch mode, with up to ~ 2.4 µM yield for a single r-protein. Reconstituted ribosomes under physiological condition from PURE system synthesized 30S r-proteins and native 16S rRNA showed ~13% activity of native 70S ribosomes, which increased to 21% when supplemented with GroEL/ES. As a result, this work also points to what is still needed to obtain self-replicating synthetic ribosomes in-situ in the PURE system.« less
Biology of Symbioses between Marine Invertebrates and Intracellular Bacteria
1990-01-30
bisphosphate carboxylase We designed from published sequence information oligonucleotide primers which are complementary to conserved regions on RubisCO ...large and small subunit genes. These primers were used successfully to amplify using polymerase chain reaction (PCR) specific regions of RubisCO ...for the large subunit of ribulose bisphosphate carboxylase/oxygenase ( RubisCO ) to symbiont DNA shows that the symbionts from both deep-sea and shallow
Shpakovskiĭ, G V; Lebedenko, E N
1997-05-01
The full-length cDNA of the rpc10+ gene encoding mini-subunit Rpc10, which is common for all three nuclear RNA polymerases of the fission yeast Schizosaccharomyces pombe, was cloned and sequenced. The Rpc10 subunit of Sz. pombe and its homologs from S. cerevisiae and H. sapiens are positively charged proteins with a highly conserved C-terminal region and an invariant zinc-binding domain (Zn-finger) of a typical amino acid composition: YxCx2Cx12RCx2CGxR. Functional tests of heterospecific complementation, using tetrad analysis or plasmid shuffling, showed that the Rpc10 subunit of Sz. pombe can successfully replace the homologous ABC10 alpha subunit in nuclear RNA polymerases I-III of S. cerevisiae.
Clarkson, G H; Neagle, J; Lindsay, J G
1991-01-01
The arrangement of the large (70,000-Mr) and small (30,000-Mr) subunits of succinate dehydrogenase in the mitochondrial inner membrane was investigated by immunoblot analysis of bovine heart mitochondria (right-side-out, outer membrane disrupted) or submitochondrial particles (inside-out) that had been subjected to surface-specific proteolysis. Both subunits were resistant to proteinase treatment provided that the integrity of the inner membrane was preserved, suggesting that neither subunit is exposed at the cytoplasmic surface of the membrane. The bulk of the small subunit appears to protrude into the matrix compartment, since the 30,000-Mr polypeptide is degraded extensively during limited proteolysis of submitochondrial particles without the appearance of an immunologically reactive membrane-associated fragment: moreover, a soluble 27,000-Mr peptide derived from this subunit is observed transiently on incubation with trypsin. Similar data obtained from the large subunit suggest that this polypeptide interacts with the matrix side of the inner membrane via two distinct domains; these are detected as stable membrane-associated fragments of 32,000 Mr and 27,000 Mr after treatment of submitochondrial particles with papain or proteinase K, although the 27,000-Mr fragment can be degraded further to low-Mr peptides with trypsin or alpha-chymotrypsin. A stable 32,000-34,000-Mr fragment is generated by a variety of specific and non-specific proteinases, indicating that it may be embedded largely within the lipid bilayer, or is inaccessible to proteolytic attack owing to its proximity to the surface of the intact membrane, possibly interacting with the hydrophobic membrane anchoring polypeptides of the succinate: ubiquinone reductase complex. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1996968
Roles of the N- and C-terminal sequences in Hsp27 self-association and chaperone activity
Lelj-Garolla, Barbara; Mauk, A Grant
2012-01-01
The small heat shock protein 27 (Hsp27 or HSPB1) is an oligomeric molecular chaperone in vitro that is associated with several neuromuscular, neurological, and neoplastic diseases. Although aspects of Hsp27 biology are increasingly well known, understanding of the structural basis for these involvements or of the functional properties of the protein remains limited. As all 11 human small heat shock proteins (sHsps) possess an α-crystallin domain, their varied functional and physiological characteristics must arise from contributions of their nonconserved sequences. To evaluate the role of two such sequences in Hsp27, we have studied three Hsp27 truncation variants to assess the functional contributions of the nonconserved N- and C-terminal sequences. The N-terminal variants Δ1–14 and Δ1–24 exhibit little chaperone activity, somewhat slower but temperature-dependent subunit exchange kinetics, and temperature-independent self-association with formation of smaller oligomers than wild-type Hsp27. The C-terminal truncation variants exhibit chaperone activity at 40 °C but none at 20 °C, limited subunit exchange, and temperature-independent self-association with an oligomer distribution at 40 °C that is very similar to that of wild-type Hsp27. We conclude that more of the N-terminal sequence than simply the WPDF domain is essential in the formation of larger, native-like oligomers after binding of substrate and/or in binding of Hsp27 to unfolding peptides. On the other hand, the intrinsically flexible C-terminal region drives subunit exchange and thermally-induced unfolding, both of which are essential to chaperone activity at low temperature and are linked to the temperature dependence of Hsp27 self-association. PMID:22057845
Nath, B Surendra; Gupta, S K; Bajpai, A K
2012-12-01
The life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect.
Lu, Chungui; Koroleva, Olga A; Farrar, John F; Gallagher, Joe; Pollock, Chris J; Tomos, A Deri
2002-11-01
We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA. Actin could be used as an internal standard. The expression of message for Rubisco small subunit (RbcS), chlorophyll a/b-binding protein (Cab), sucrose (Suc):fructan-6-fructosyl transferase (6-SFT), and Actin were measured in individual photosynthetic cells of the barley (Hordeum vulgare) leaf. Only Actin was found in the non-photosynthetic epidermal cells. Cab, RbcS, and 6-SFT genes were expressed at a low level in mesophyll and parenchymatous bundle sheath (BS) cells when sampled from plants held in dark for 40 h. Expression increased considerably after illumination. The amount of 6-SFT, Cab, and RbcS transcript increased more in mesophyll cells than in the parenchymatous BS cells. The difference may be caused by different chloroplast structure and posttranscriptional control in mesophyll and BS cells. When similar single-cell samples were assayed for Suc, glucose, and fructan, there was high correlation between 6-SFT gene expression and Suc and glucose concentrations. This is consistent with Suc concentration being the trigger for transcription. Together with earlier demonstrations that the mesophyll cells have a higher sugar threshold for fructan polymerization, our data may indicate separate control of transcription and enzyme activity. Values for the sugar concentrations of the individual cell types are reported.
Bae, Y M; Holmgren, E; Crawford, I P
1989-01-01
We determined the DNA sequence of the Rhizobium meliloti gene encoding anthranilate synthase, the first enzyme of the tryptophan pathway. Sequences similar to those seen for the two subunits of the enzyme as found in all other procaryotic species studied are present in a single open reading frame of 729 codons. This apparent gene fusion joins the C terminus of the large subunit (TrpE) to the N terminus of the small subunit (TrpG) through a short connecting segment. We designate the fused gene trpE(G). The gene is flanked by a typical rho-independent terminator at the 3' end and a complex regulatory region at the 5' end resembling those of operons under transcriptional attenuation control. The location of the promoter was determined by S1 nuclease protection, using Rhizobium mRNA. Although this promoter was inactive in Escherichia coli, mutations eliciting activity were easily obtained. One of these was a C----T change at position -9 in the -10 region. The +1 position of the mRNA is the first base of the initiation codon of the leader peptide, implying that unlike trpE(G), which has a normal Shine-Dalgarno sequence, the leader peptide gene lacks a ribosome-binding site. Images PMID:2656657
Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H.; Mills, Jason A.; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M.; Podsakoff, Gregory M.; Gadue, Paul; French, Deborah L.; Mason, Philip J.; Bessler, Monica
2013-01-01
Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the “safe harbor” AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells. PMID:23744582
Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H; Mills, Jason A; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M; Podsakoff, Gregory M; Gadue, Paul; French, Deborah L; Mason, Philip J; Bessler, Monica; Weiss, Mitchell J
2013-08-08
Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.
Puchta, Olga; Lubas, Michal; Lipinski, Kamil A; Piatkowski, Jakub; Malecki, Michal; Golik, Pawel
2010-04-01
Pentatricopeptide repeat (PPR) proteins form the largest known RNA-binding protein family and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly in mitochondria and chloroplasts, where they modulate organellar genome expression on the post-transcriptional level. The Saccharomyces cerevisiae DMR1 (CCM1, YGR150C) encodes a PPR protein that localizes to mitochondria. Deletion of DMR1 results in a complete and irreversible loss of respiratory capacity and loss of wild-type mtDNA by conversion to rho(-)/rho(0) petites, regardless of the presence of introns in mtDNA. The phenotype of the dmr1Delta mitochondria is characterized by fragmentation of the small subunit mitochondrial rRNA (15S rRNA), that can be reversed by wild-type Dmr1p. Other mitochondrial transcripts, including the large subunit mitochondrial rRNA (21S rRNA), are not affected by the lack of Dmr1p. The purified Dmr1 protein specifically binds to different regions of 15S rRNA in vitro, consistent with the deletion phenotype. Dmr1p is therefore the first yeast PPR protein, which has an rRNA target and is probably involved in the biogenesis of mitochondrial ribosomes and translation.
HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove
Filbin, Megan E.; Kieft, Jeffrey S.
2011-01-01
Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem–loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit's decoding groove. This configuration depends on the sequence and structure of a different stem–loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis. PMID:21606179
HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove.
Filbin, Megan E; Kieft, Jeffrey S
2011-07-01
Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem-loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit's decoding groove. This configuration depends on the sequence and structure of a different stem-loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis.
Reengineering ribosome export.
Lo, Kai-Yin; Johnson, Arlen W
2009-03-01
Large cargoes require multiple receptors for efficient transport through the nuclear pore complex. The 60S ribosomal subunit is one of the bulkiest transport cargoes, and in yeast three different receptors, Crm1, Mex67/Mtr2, and Arx1, collaborate in its export. However, only Crm1, recruited by the adapter Nmd3, appears to be conserved for 60S export in higher eukaryotes. We asked if export of the large subunit requires specific receptors. We made protein fusions between mutant Nmd3 and various export receptors. Surprisingly, fusions of Mex67, the tRNA exportin Los1, Mtr2, Cse1, or Msn5 to Nmd3, lacking its Crm1-dependent nuclear export signal (NES), all functioned in export. Furthermore, these chimeric proteins supported 60S export even in the presence of the Crm1 inhibitor leptomycin B, indicating that export was now independent of Crm1. These results suggest that there is not a requirement for a specific export receptor for the large subunit, as recruitment of any receptor will suffice. Finally we show that the addition of an NES directly to the 60S ribosomal subunit protein Rpl3 promotes export. These results imply remarkable flexibility in the export pathway for the 60S subunit and help explain how different export receptors could have evolved in different eukaryotic lineages.