Surface coil proton MR imaging at 2 T.
Röschmann, P; Tischler, R
1986-10-01
We describe the design and application of surface coils for magnetic resonance (MR) imaging at high resonance frequencies (85 MHz). Circular, rectangular-frame, and reflector-type surface coils were used in the transmit-and-receive mode. With these coils, the required radio frequency power is reduced by factors of two up to 100 with respect to head and body coils. With the small, circular coils, high-resolution images of a small region of interest can be obtained that are free of foldback and motion artifacts originating outside the field of interest. With the rectangular-frame and reflector coils, large fields of view are also accessible. As examples of applications, single- and multiple-section images of the eye, knee, head and shoulder, and spinal cord are provided.
Radio frequency coil technology for small-animal MRI.
Doty, F David; Entzminger, George; Kulkarni, Jatin; Pamarthy, Kranti; Staab, John P
2007-05-01
A review of the theory, technology, and use of radio frequency (RF) coils for small-animal MRI is presented. It includes a brief overview of MR signal-to-noise (S/N) analysis and discussions of the various coils commonly used in small-animal MR: surface coils, linear volume coils, birdcages, and their derivatives. The scope is limited to mid-range coils, i.e. coils where the product (fd) of the frequency f and the coil diameter d is in the range 2-30 MHz-m. Common applications include mouse brain and body coils from 125 to 750 MHz, rat body coils up to 500 MHz, and small surface coils at all fields. In this regime, all the sources of loss (coil, capacitor, sample, shield, and transmission lines) are important. All such losses may be accurately captured in some modern full-wave 3D electromagnetics software, and new simulation results are presented for a selection of surface coils using Microwave Studio 2006 by Computer Simulation Technology, showing the dramatic importance of the "lift-off effect". Standard linear circuit simulators have been shown to be useful in optimization of complex coil tuning and matching circuits. There appears to be considerable potential for trading S/N for speed using phased arrays, especially for a larger field of view. Circuit simulators are shown to be useful for optimal mismatching of ultra-low-noise preamps based on the enhancement-mode pseudomorphic high-electron-mobility transistor for optimal coil decoupling in phased arrays. Cryogenically cooled RF coils are shown to offer considerable opportunity for future gains in S/N in smaller samples.
Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.
Erb-Eigner, K; Warmuth, C; Taupitz, M; Willerding, G; Bertelmann, E; Asbach, P
2013-09-01
Generally, high-resolution MRI of the eye is performed with small loop surface coils. The purpose of this phantom and patient study was to investigate the influence of magnetic field strength and receiver coils on image quality in ocular MRI. The eyeball and the complex geometry of the facial bone were simulated by a skull phantom with swine eyes. MR images were acquired with two small loop surface coils with diameters of 4 cm and 7 cm and with a multi-channel head coil at 1.5 and 3 Tesla, respectively. Furthermore, MRI of the eye was performed prospectively in 20 patients at 1.5 Tesla (7 cm loop surface coil) and 3 Tesla (head coil). These images were analysed qualitatively and quantitatively and statistical significance was tested using the Wilcoxon-signed-rank test (a p-value of less than 0.05 was considered to indicate statistical significance). The analysis of the phantom images yielded the highest mean signal-to-noise ratio (SNR) at 3 Tesla with the use of the 4 cm loop surface coil. In the phantom experiment as well as in the patient studies the SNR was higher at 1.5 Tesla by applying the 7 cm surface coil than at 3 Tesla by applying the head coil. Concerning the delineation of anatomic structures no statistically significant differences were found. Our results show that the influence of small loop surface coils on image quality (expressed in SNR) in ocular MRI is higher than the influence of the magnetic field strength. The similar visibility of detailed anatomy leads to the conclusion that the image quality of ocular MRI at 3 Tesla remains acceptable by applying the head coil as a receiver coil. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2017-05-01
In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.
A magnetic resonance (MR) microscopy system using a microfluidically cryo-cooled planar coil.
Koo, Chiwan; Godley, Richard F; Park, Jaewon; McDougall, Mary P; Wright, Steven M; Han, Arum
2011-07-07
We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (-196 °C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: (1) the small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. (2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0 °C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system resulted in an average image SNR enhancement of 1.47 ± 0.11 times relative to similar room-temperature coils. This journal is © The Royal Society of Chemistry 2011
A Magnetic Resonance (MR) Microscopy System using a Microfluidically Cryo-Cooled Planar Coil
Koo, Chiwan; Godley, Richard F.; Park, Jaewon; McDougall, Mary P.; Wright, Steven M.; Han, Arum
2011-01-01
We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (−196°C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: 1) The small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. 2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0°C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system resulted in an average image SNR enhancement of 1.47 ± 0.11 times relative to similar room-temperature coils. PMID:21603723
Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2016-01-01
All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367
Multiple focused EMAT designs for improved surface breaking defect characterization
NASA Astrophysics Data System (ADS)
Thring, C. B.; Fan, Y.; Edwards, R. S.
2017-02-01
Ultrasonic Rayleigh waves can be employed for the detection of surface breaking defects such as rolling contact fatigue and stress corrosion cracking. Electromagnetic Acoustic Transducers (EMATs) are well suited to this technique as they can directly generate Rayleigh waves within the sample without the requirement for wedges, and they are robust and inexpensive compared to laser ultrasonics. Three different EMAT coil types have been developed, and these are compared to assess their ability to detect and characterize small (down to 0.5 mm depth, 1 mm diameter) surface breaking defects in aluminium. These designs are: a pair of linear meander coils used in a pseudo-pulse-echo mode, a pair of focused meander coils also used in pseudo-pulse-echo mode, and a pair of focused racetrack coils used in pitch-catch mode. The linear meander coils are able to detect most of the defects tested, but have a much lower signal to noise ratio and give limited sizing information. The focused meander coils and the focused racetrack coils can detect all defects tested, but have the advantage that they can also characterize the defect sizes on the sample surface, and have a stronger sensitivity at their focal point. Measurements using all three EMAT designs are presented and compared for high resolution imaging of surface-breaking defects.
SU-E-J-239: Influence of RF Coil Materials On Surface and Buildup Dose From a 6MV Photon Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghila, A; Fallone, B; Rathee, S
2015-06-15
Purpose: In order to perform real time tumour tracking using an integrated Linac-MR, images have to be acquired during irradiation. MRI uses RF coils in close proximity to the imaged volume. Given current RF coil designs this means that the high energy photons will be passing through the coil before reaching the patient. This study experimentally investigates the dose modifications that occur due to the presence of various RF coil materials in the treatment beam. Methods: Polycarbonate, copper or aluminum tape, and Teflon were used to emulate the base, conductor and cover respectively of a surface RF coil. These materialsmore » were placed at various distances from the surface of polystyrene or solid water phantoms which were irradiated in the presence of no magnetic field, a transverse 0.2T magnetic field, and a parallel 0.2T magnetic field. Percent depth doses were measured using ion chambers. Results: A significant increase in surface and buildup dose is observed. The surface dose is seen to decrease with an increasing separation between the emulated coil and the phantom surface, when no magnetic field is present. When a transverse magnetic field is applied the surface dose decreases faster with increasing separation, as some of the electrons created in the coil are curved away from the phantom’s surface. When a parallel field is present the surface dose stays approximately constant for small separations, only slightly decreasing for separations greater than 5cm, since the magnetic field focuses the electrons produced in the coil materials not allowing them to scatter. Conclusion: Irradiating a patient through an RF coil leads to an increase in the surface and buildup doses. Mitigating this increase is important for the successful clinical use of either a transverse or a parallel configuration Linac-MR unit. This project is partially supported by an operating grant from the Canadian Institute of Health Research (CIHR MOP 93752)« less
Avdievich, Nikolai I.; Pan, Jullie W.; Hetherington, Hoby P.
2013-01-01
Transceiver surface coil arrays improve transmit performance (B1/√kW) and B1 homogeneity for head imaging up to 9.4 T. To further improve reception performance and parallel imaging the number of array elements has to be increased with correspondent decrease of their size. With a large number of small interacting antennas decoupling is one of the most challenging aspects in the design and construction of transceiver arrays. Previously described decoupling techniques using geometric overlap, inductive or capacitive decoupling have focused on eliminating only the reactance of the mutual impedance, which can limit the obtainable decoupling to −10 dB due to residual mutual resistance. A novel resonant inductive decoupling (RID) method, which allows compensation for both reactive and resistive components of the mutual impedance between the adjacent surface coils, has been developed and experimentally verified. This method provides an easy way to adjust the decoupling remotely by changing the resonance frequency of the RID circuit through adjustment of a variable capacitor. As an example a single row (1×16) 7T transceiver head array of n=16 small overlapped surface coils using RID decoupling between adjacent coils was built. In combination with overlapped coils the RID technique achieved better than −24 dB of decoupling for all adjacent coils. PMID:23775840
Polymer-based wireless implantable sensor and platform for systems biology study
NASA Astrophysics Data System (ADS)
Xue, Ning
Wireless implantable MEMS (microelectromechanical systems) devices have been developed over the past decade based on the combination of bio-MEMS and Radio frequency (RF) MEMS technology. These devices require the components of wireless telemetric antenna and the corresponding circuit. In the meanwhile, biocompatible material needs to be involved in the devices design. To supply maximum power upon the implantable device at given power supply from the external coil circuit, this dissertation theoretically analyzed the mutual inductance under the positions of variety of vertical distances, lateral displacements and angular misalignments between two coils in certain surgical coils misalignment situations. A planar spiral coil has been developed as the receiver coil of the coupling system. To get maximum induced voltage over the receiver circuit, different geometries of the power coil, system operation frequencies were investigated. An intraocular pressure (IOP) sensor has been developed consisting of only biocompatible matierials-SU-8 and gold. Its size is sufficiently small to be implanted in the eye. The measurement results showed that it has relatively linear pressure response, high resolution and relatively long working stability in saline environment. Finally, a simple and low cost micro-wells bio-chip has been developed with sole polydimethylsiloxane (PDMS) to be used for single cell or small group cells isolation. By performing atomic force microscopy (AFM), contact angle and x-ray photoelectron spectroscopy (XPS) measurements on the PDMS surfaces under various surface treatment conditions, the physical and chemical surface natures were thoroughly analyzed as the basis of study of cells attachment and isolation to the surfaces.
[Surface coils for magnetic-resonance images].
Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro
2005-01-01
Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.
A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.
Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming
2017-07-01
To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.
NASA Astrophysics Data System (ADS)
Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng
2018-05-01
The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.
The asymptotic structure of a slender coiling fluid thread
NASA Astrophysics Data System (ADS)
Blount, Maurice; Lister, John
2010-11-01
The buckling of a viscous fluid thread as it falls through air onto a stationary surface is a well-known breakfast-time phenomenon which exhibits a rich variety of dynamical regimes [1]. Since the bending resistance of a slender thread is small, bending motion is largely confined to a short region of coiling near the surface. If the height of fall is large enough, then the thread above the coiling region forms a `tail' that falls nearly vertically under gravity but is deflected slightly due to forces exerted on it by the coil. Although it is possible to use force balances in the coil to estimate scalings for the coiling frequency, we analyse the solution structure of the entire thread in the asymptotic limit of a very slender thread and thereby include the dynamic interaction between the coil and the tail. Quantitative predictions of the coiling frequency are obtained which demonstrate the existence of leading-order corrections to scalings previously derived. In particular, we show that in the regime where the deflection of the tail is governed by a balance between centrifugal acceleration, hoop stress and gravity, the tail behaves as a flexible circular pendulum that is forced by bending stress exerted by the coil. The amplitude of the response is calculated and the previously observed resonance when the coiling frequency coincides with one of the eigenfrequencies of a free flexible pendulum is thereby explained. [1] N.M. Ribe et al., J. Fluid Mech. 555, 275-297.
NMR of thin layers using a meanderline surface coil
Cowgill, Donald F.
2001-01-01
A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.
Fixing Stellarator Magnetic Surfaces
NASA Astrophysics Data System (ADS)
Hanson, James D.
1999-11-01
Magnetic surfaces are a perennial issue for stellarators. The design heuristic of finding a magnetic field with zero perpendicular component on a specified outer surface often yields inner magnetic surfaces with very small resonant islands. However, magnetic fields in the laboratory are not design fields. Island-causing errors can arise from coil placement errors, stray external fields, and design inadequacies such as ignoring coil leads and incomplete characterization of current distributions within the coil pack. The problem addressed is how to eliminate such error-caused islands. I take a perturbation approach, where the zero order field is assumed to have good magnetic surfaces, and comes from a VMEC equilibrium. The perturbation field consists of error and correction pieces. The error correction method is to determine the correction field so that the sum of the error and correction fields gives zero island size at specified rational surfaces. It is particularly important to correctly calculate the island size for a given perturbation field. The method works well with many correction knobs, and a Singular Value Decomposition (SVD) technique is used to determine minimal corrections necessary to eliminate islands.
First measurements of error fields on W7-X using flux surface mapping
Lazerson, Samuel A.; Otte, Matthias; Bozhenkov, Sergey; ...
2016-08-03
Error fields have been detected and quantified using the flux surface mapping diagnostic system on Wendelstein 7-X (W7-X). A low-field 'more » $${\\rlap{-}\\ \\iota} =1/2$$ ' magnetic configuration ($${\\rlap{-}\\ \\iota} =\\iota /2\\pi $$ ), sensitive to error fields, was developed in order to detect their presence using the flux surface mapping diagnostic. In this configuration, a vacuum flux surface with rotational transform of n/m = 1/2 is created at the mid-radius of the vacuum flux surfaces. If no error fields are present a vanishingly small n/m = 5/10 island chain should be present. Modeling indicates that if an n = 1 perturbing field is applied by the trim coils, a large n/m = 1/2 island chain will be opened. This island chain is used to create a perturbation large enough to be imaged by the diagnostic. Phase and amplitude scans of the applied field allow the measurement of a small $$\\sim 0.04$$ m intrinsic island chain with a $${{130}^{\\circ}}$$ phase relative to the first module of the W7-X experiment. Lastly, these error fields are determined to be small and easily correctable by the trim coil system.« less
The knee: Surface-coil MR imaging at 1. 5 T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran, J.; Noto, A.M.; Mosure, J.C.
1986-06-01
Seven normal knees (in five volunteers) and seven injured knees (in seven patients) were examined by high-resolution magnetic resonance (MR) imaging at 1.5 T with a surface coil. Seven medial meniscal tears, three anterior cruciate ligament tears, one posterior cruciate ligament avulsion, an old osteochondral fracture, femoral condylar chondro-malacia, and one case of semimembranous tendon reinsertion were identified. MR images correlated well with recent double-contrast arthrograms or results of surgery. All tears were identified in both the sagittal and coronal planes. Because of its ability to demonstrate small meniscal lesions and ligamentous injuries readily, MR imaging with a surface coilmore » may eventually replace the more invasive arthrography.« less
A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber
NASA Astrophysics Data System (ADS)
Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi
For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.
Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M
1990-11-01
We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm).
Apparatus for unilateral generation of a homogeneous magnetic field
Fukushima, Eiichi; Rath, Alan R.; Roeder, Stephen B. W.
1988-01-01
An apparatus for unilaterally producing a substantially homogeneous magnetic field. The apparatus includes two circular electromagnet coils, a small coil and a large coil, which are coaxial with one another and which are separated by a distance equal to one-half the difference in the radius of the two coils. By appropriate selection of electrical currents, which are passed through the coil in opposite directions, a region of homogeneous magnetic field is formed. This region is centered on the common axis of the two coils, at a point on the axis which is at a distance from the small coil equal to one-half the radius of the small coil, and which is on the opposite side of the small coil from the large coil. The apparatus has particular application in the field of diagnostic medical NMR and other NMR applications.
Apparatus for unilateral generation of a homogeneous magnetic field
Fukushima, E.; Rath, A.R.; Roeder, S.B.W.
1984-05-01
An apparatus for unilaterally producing a substantially homogeneous magnetic field. The apparatus includes two circular electromagnet coils, a small coil and a large coil, which are coaxial with one another and which are separated by a distance equal to one-half the difference in the radius of the two coils. By appropriate selection of electrical currents, which are passed through the coils in opposite directions, a region of homogeneous magnetic field is formed. This region is centered on the common axis of the two coils, at a point on the axis which is at a distance from the small coil equal to one-half the radius of the small coil, and which is on the opposite side of the small coil from the large coil. The apparatus has particular application in the field of diagnostic medical NMR and other NMR applications.
MRI surface-coil pair with strong inductive coupling.
Mett, Richard R; Sidabras, Jason W; Hyde, James S
2016-12-01
A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.
Error field measurement, correction and heat flux balancing on Wendelstein 7-X
Lazerson, Samuel A.; Otte, Matthias; Jakubowski, Marcin; ...
2017-03-10
The measurement and correction of error fields in Wendelstein 7-X (W7-X) is critical to long pulse high beta operation, as small error fields may cause overloading of divertor plates in some configurations. Accordingly, as part of a broad collaborative effort, the detection and correction of error fields on the W7-X experiment has been performed using the trim coil system in conjunction with the flux surface mapping diagnostic and high resolution infrared camera. In the early commissioning phase of the experiment, the trim coils were used to open an n/m = 1/2 island chain in a specially designed magnetic configuration. Themore » flux surfacing mapping diagnostic was then able to directly image the magnetic topology of the experiment, allowing the inference of a small similar to 4 cm intrinsic island chain. The suspected main sources of the error field, slight misalignment and deformations of the superconducting coils, are then confirmed through experimental modeling using the detailed measurements of the coil positions. Observations of the limiters temperatures in module 5 shows a clear dependence of the limiter heat flux pattern as the perturbing fields are rotated. Plasma experiments without applied correcting fields show a significant asymmetry in neutral pressure (centered in module 4) and light emission (visible, H-alpha, CII, and CIII). Such pressure asymmetry is associated with plasma-wall (limiter) interaction asymmetries between the modules. Application of trim coil fields with n = 1 waveform correct the imbalance. Confirmation of the error fields allows the assessment of magnetic fields which resonate with the n/m = 5/5 island chain.« less
High-Resolution and Frequency, Printed Miniature Magnetic Probes
NASA Astrophysics Data System (ADS)
Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian
2013-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a technique to significantly reduce the cost and development time of producing magnetic field diagnostics. EHT is designing probes that can be printed on flexible PCBs thereby allowing for extremely small coils to be produced while essentially eliminating the time to wind the coils. The coil size can be extremely small when coupled with the EHT Hybrid Integrator, which is capable of high bandwidth measurements over short and long pulse durations. This integrator is currently being commercialized with the support of a DOE SBIR. Additionally, the flexible PCBs allow probes to be attached to complex surface and/or probes that have a complex 3D structure to be designed and fabricated. During the Phase I, EHT will design and construct magnetic field probes on flexible PCBs, which will be tested at the University of Washington's HIT-SI experiment and in EHT's material science plasma reactor. Funding provided by DOE SBIR/STTR Program.
Qian, Chunqi; Duan, Qi; Dodd, Steve; Koretsky, Alan; Murphy-Boesch, Joe
2015-01-01
Purpose To improve the signal transmission efficiency and sensitivity of a local detection coil that is weakly inductively coupled to a larger receive coil. Methods The resonant detection coil is connected in parallel with the gate of a HEMT transistor without impedance matching. When the drain of the transistor is capacitively shunted to ground, current amplification occurs in the resonator by feedback that transforms a capacitive impedance on the transistor’s source to a negative resistance on its gate. Results High resolution images were obtained from a mouse brain using a small, 11 mm diameter surface coil that was inductively coupled to a commercial, phased array chest coil. Although the power consumption of the amplifier was only 88 µW, 14 dB gain was obtained with excellent noise performance. Conclusion An integrated current amplifier based on a High Electron Mobility Transistor (HEMT) can enhance the sensitivity of inductively coupled local detectors when weakly coupled. This amplifier enables efficient signal transmission between customized user coils and commercial clinical coils, without the need for a specialized signal interface. PMID:26192998
Iqbal, Shams I; Molgaard, Christopher; Williamson, Christina; Flacke, Sebastian
2014-07-01
To evaluate the feasibility and efficacy of pneumothorax creation and chest tube insertion before computed tomography (CT)-guided coil localization of small peripheral lung nodules for video-assisted thoracoscopic surgical (VATS) wedge resection. From May 2011 to October 2013, 21 consecutive patients (seven men; mean age, 62 y; range, 42-76 y) scheduled for VATS wedge resection required CT-guided coil localization for small, likely nonpalpable peripheral lung lesions at a single institution. Outcomes were evaluated retrospectively for technical success and complications. There were 12 nodules and nine ground-glass opacities. Mean lesion distance from the pleural surface was 15 mm (range, 5-35 mm), and average size was 13 mm (range, 7-30 mm). A pneumothorax was successfully created in all patients with a Veress needle, and a chest tube was inserted. All target lesions were marked successfully, leaving one end of the coil within/beyond the lesion and the other end of the coil in the pleural space. The inserted chest tube was used to insufflate air to widen the pleural space during coil positioning and to aspirate any residual air before transfer of the patient to the operating room holding area. Intraparenchymal hemorrhages smaller than 7 cm in diameter developed in two patients during coil placement. All lesions were successfully resected with VATS. Histologic examinaiton revealed 13 primary adenocarcinomas, four metastases, and four benign lesions. Pneumothorax creation and chest tube placement before CT-guided coil localization of peripheral lung nodules for VATS wedge resection facilitates the deployment of the peripheral end of the coil in the pleural space and provides effective management of procedure-related pneumothorax until surgery. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.
Four-channel surface coil array for sequential CW-EPR image acquisition
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi
2013-09-01
This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.
A multi-slot surface coil for MRI of dual-rat imaging at 4 T
NASA Astrophysics Data System (ADS)
Solis, S. E.; Wang, R.; Tomasi, D.; Rodriguez, A. O.
2011-06-01
A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.
Evaluation of a New 1H/31P Dual-Tuned Birdcage Coil for 31P Spectroscopy
Potter, WM; Wang, L; McCully, KK; Zhao, Q
2013-01-01
We introduce a new dual-tuned Hydrogen/Phosphorus (1H/31P) birdcage coil, referred to as split birdcage coil, and evaluate its performance using both simulations and magnetic resonance (MR) experiments on a 3 T MR scanner. The proposed coil simplifies the practical matters of tuning and matching, which makes the coil easily reproducible. Simulations were run with the Finite Difference in Time Domain (FDTD) method to evaluate the sensitivity and homogeneity of the magnetic field generated by the proposed 1H coils. Following simulations, MR experiments were conducted using both a phantom and human thigh to compare the proposed design with a currently available commercial dual-tuned flexible surface coil, referred to as flex surface coil, for signal to noise ratio (SNR) as well as homogeneity for the 31P coil. At regions deep within the human thigh, the split birdcage coil was able to acquire spectroscopic signal with a higher average SNR than the flex surface coil. For all regions except those close to the flex surface coil, the split birdcage coil matched or exceeded the performance of the flex surface coil. PMID:24039555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku LP, Garabedian PR
We have identified and developed new classes of quasi-axially symmetric configurations which have attractive properties from the standpoint of both near-term physics experiments and long-term power producing reactors. These new configurations were developed as a result of surveying the aspect ratio-rotational transform space to identify regions endowed with particularly interesting features. These include configurations with very small aspect ratios ({approx}2.5) having superior quasi-symmetry and energetic particle confinement characteristics, and configurations with strongly negative global magnetic shear from externally supplied rotational transforms so that the overall rotational transform, when combined with the transform from bootstrap currents at finite plasma pressures, willmore » yield a small but positive shear, making the avoidance of low order rational surfaces at a given operating beta possible. Additionally, we have found configurations with NCSX-like characteristics but with the biased components in the magnetic spectrum that allow us to improve the confinement of energetic particles. For each new class of configurations, we have designed coils as well to ensure that the new configurations are realizable and engineering-wise feasible. The coil designs typically have coil aspect ratios R/{Delta}{sub min}(C-P) {le} 6 and coil separation ratios R/{Delta}{sub min}(C-C) {le} 10, where R is the plasma major radius, {Delta}{sub min}(C-P) and {Delta}{sub min}(C-C) are the minimum coil to plasma and coil to coil separations, respectively. These coil properties allow power producing reactors be designed with major radii less than 9 meters for DT plasmas with a full breeding blanket. The good quasi-axisymmetry limits the energy loss of {alpha} particles to below 10%.« less
Budak, Matthew J; Weir-McCall, Jonathan R; Yeap, Phey M; White, Richard D; Waugh, Shelley A; Sudarshan, Thiru A P; Zealley, Ian A
2015-01-01
High-resolution magnetic resonance (MR) imaging performed with a microscopy coil is a robust radiologic tool for the evaluation of skin lesions. Microscopy-coil MR imaging uses a small surface coil and a 1.5-T or higher MR imaging system. Simple T1- and T2-weighted imaging protocols can be implemented to yield high-quality, high-spatial-resolution images that provide an excellent depiction of dermal anatomy. The primary application of microscopy-coil MR imaging is to delineate the deep margins of skin tumors, thereby providing a preoperative road map for dermatologic surgeons. This information is particularly useful for surgeons who perform Mohs micrographic surgery and in cases of nasofacial neoplasms, where the underlying anatomy is complex. Basal cell carcinoma is the most common nonmelanocytic skin tumor and has a predilection to manifest on the face, where it can be challenging to achieve complete surgical excision while preserving the cosmetic dignity of the patient. Microscopy-coil MR imaging provides dermatologic surgeons with valuable preoperative anatomic information that is not available at conventional clinical examination. ©RSNA, 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terawaki, Shin-ichi, E-mail: terawaki@gunma-u.ac.jp; SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148; Yoshikane, Asuka
Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicDmore » CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site.« less
An adjoint method for gradient-based optimization of stellarator coil shapes
NASA Astrophysics Data System (ADS)
Paul, E. J.; Landreman, M.; Bader, A.; Dorland, W.
2018-07-01
We present a method for stellarator coil design via gradient-based optimization of the coil-winding surface. The REGCOIL (Landreman 2017 Nucl. Fusion 57 046003) approach is used to obtain the coil shapes on the winding surface using a continuous current potential. We apply the adjoint method to calculate derivatives of the objective function, allowing for efficient computation of analytic gradients while eliminating the numerical noise of approximate derivatives. We are able to improve engineering properties of the coils by targeting the root-mean-squared current density in the objective function. We obtain winding surfaces for W7-X and HSX which simultaneously decrease the normal magnetic field on the plasma surface and increase the surface-averaged distance between the coils and the plasma in comparison with the actual winding surfaces. The coils computed on the optimized surfaces feature a smaller toroidal extent and curvature and increased inter-coil spacing. A technique for computation of the local sensitivity of figures of merit to normal displacements of the winding surface is presented, with potential applications for understanding engineering tolerances.
The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas.
Janssen, Arno M; Oostendorp, Thom F; Stegeman, Dick F
2015-05-17
The effectiveness of transcranial magnetic stimulation (TMS) depends highly on the coil orientation relative to the subject's head. This implies that the direction of the induced electric field has a large effect on the efficiency of TMS. To improve future protocols, knowledge about the relationship between the coil orientation and the direction of the induced electric field on the one hand, and the head and brain anatomy on the other hand, seems crucial. Therefore, the induced electric field in the cortex as a function of the coil orientation has been examined in this study. The effect of changing the coil orientation on the induced electric field was evaluated for fourteen cortical targets. We used a finite element model to calculate the induced electric fields for thirty-six coil orientations (10 degrees resolution) per target location. The effects on the electric field due to coil rotation, in combination with target site anatomy, have been quantified. The results confirm that the electric field perpendicular to the anterior sulcal wall of the central sulcus is highly susceptible to coil orientation changes and has to be maximized for an optimal stimulation effect of the motor cortex. In order to obtain maximum stimulation effect in areas other than the motor cortex, the electric field perpendicular to the cortical surface in those areas has to be maximized as well. Small orientation changes (10 degrees) do not alter the induced electric field drastically. The results suggest that for all cortical targets, maximizing the strength of the electric field perpendicular to the targeted cortical surface area (and inward directed) optimizes the effect of TMS. Orienting the TMS coil based on anatomical information (anatomical magnetic resonance imaging data) about the targeted brain area can improve future results. The standard coil orientations, used in cognitive and clinical neuroscience, induce (near) optimal electric fields in the subject-specific head model in most cases.
NASA Astrophysics Data System (ADS)
Im, Geun Ho; Seo, Jeong-Hoon; Kim, Kyoung-Nam; Heo, Phil; Chung, Julius Juhyun; Jang, Moon-Sun; Lee, Jung Hee; Kim, Jae-Hun; Kim, Sun I.
2014-09-01
This article presents an effective arrangement with shifted transmit (Tx)-only and receive (Rx)-only (TORO) radiofrequency (RF) coils in a single-channel surface coil for improving the magnetic flux ( B 1) homogeneity in an ultra-high field (UHF) magnetic resonance imaging (MRI) scanner. The proposed new methodology for the coil arrangement using the shifted TORO RF coils was demonstrated for coils with 50-mm, 100-mm, and 150-mm-square surfaces and the results were compared to those for general Tx/Rx surface coils with the same dimensions. The computational analysis indicated that a homogeneous B1 field was achieved when the Rx-only coil was shifted in the two-dimensional xy-plane away from the Tx-only coils. Because the proposed coil configuration provides a unique opportunity for increasing the B 1 homogeneity, this feature is likely to increase the feasibility via new coil arrangements of UHF surface design and fabrication.
NASA Astrophysics Data System (ADS)
Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.
2013-09-01
The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T.F.; Lee, A.Y.; Ruck, G.W.
A feasible compact poloidal divertor system has been designed as an impurity control and vacuum vessel first-wall protection option for the TNS tokamak. The divertor coils are inside the TF coil array and vacuum vessel. The poloidal divertor is formed by a pair of coil sets with zero net current. Each set consists of a number of coils forming a dish-shaped washer-like ring. The magnetic flux in the space between the coil sets is compressed vertically to limit the height and to expand the horizontal width of the particle and energy burial chamber which is located in the gap betweenmore » the coil sets. The intensity of the poloidal field is increased to make the pitch angle of the flux lines very large so that the diverted particles can be intercepted by a large number of panels oriented at a small angle with respect to the flux lines. They are carefully shaped and designed such that the entire surfaces are exposed to the incident particles and are not shadowed by each other. Large collecting surface areas can be obtained. Flowing liquid lithium film and solid metal panels have been considered as the particle collectors. The power density for the former is designed at 1 MW/m/sup 2/ and for the latter 0.5 MW/m/sup 2/. The major mechanical, thermal, and vacuum problems have been evaluated in sufficient detail so that the advantages and difficulties are identified. A complete functional picture is presented.« less
Wireless induction coils embedded in diamond for power transfer in medical implants.
Sikder, Md Kabir Uddin; Fallon, James; Shivdasani, Mohit N; Ganesan, Kumaravelu; Seligman, Peter; Garrett, David J
2017-08-26
Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.
Locating Materials with Nuclear Quadrupole Moments within Surface Coil Array Area
2015-08-11
location and dimension of the material can determined based on the nuclear quadrupole resonance ( NQR ) signal strength from the surface coil in the array...28.1MHz NQR frequency from potassium chlorate (PC) sample at room temperature. The PC sample will be in different locations parallel to the surface...using the experimental results from the dual surface coil array. 15. SUBJECT TERMS NQR , potassium chlorate, surface coil, surface probe, decoupling
Qian, Chunqi; Duan, Qi; Dodd, Steve; Koretsky, Alan; Murphy-Boesch, Joe
2016-06-01
To improve the signal transmission efficiency and sensitivity of a local detection coil that is weakly inductively coupled to a larger receive coil. The resonant detection coil is connected in parallel with the gate of a high electron mobility transistor (HEMT) transistor without impedance matching. When the drain of the transistor is capacitively shunted to ground, current amplification occurs in the resonator by feedback that transforms a capacitive impedance on the transistor's source to a negative resistance on its gate. High resolution images were obtained from a mouse brain using a small, 11 mm diameter surface coil that was inductively coupled to a commercial, phased array chest coil. Although the power consumption of the amplifier was only 88 μW, 14 dB gain was obtained with excellent noise performance. An integrated current amplifier based on a HEMT can enhance the sensitivity of inductively coupled local detectors when weakly coupled. This amplifier enables efficient signal transmission between customized user coils and commercial clinical coils, without the need for a specialized signal interface. Magn Reson Med 75:2573-2578, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015 This article is a U.S. Government work and is in the public domain in the USA.
The equivalent magnetizing method applied to the design of gradient coils for MRI.
Lopez, Hector Sanchez; Liu, Feng; Crozier, Stuart
2008-01-01
This paper presents a new method for the design of gradient coils for Magnetic Resonance Imaging systems. The method is based on the equivalence between a magnetized volume surrounded by a conducting surface and its equivalent representation in surface current/charge density. We demonstrate that the curl of the vertical magnetization induces a surface current density whose stream line defines the coil current pattern. This method can be applied for coils wounds on arbitrary surface shapes. A single layer unshielded transverse gradient coil is designed and compared, with the designs obtained using two conventional methods. Through the presented example we demonstrate that the generated unconventional current patterns obtained using the magnetizing current method produces a superior gradient coil performance than coils designed by applying conventional methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.R. Hudson; D.A. Monticello; A.H. Reiman
For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schluter currents, diamagnetic currents, and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to designmore » the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [Reiman and Greenside, Comp. Phys. Comm. 43 (1986) 157] which iterate s the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator Experiment [Reiman, et al., Phys. Plasmas 8 (May 2001) 2083].« less
NASA Astrophysics Data System (ADS)
Hudson, S. R.; Monticello, D. A.; Reiman, A. H.; Strickler, D. J.; Hirshman, S. P.; Ku, L.-P.; Lazarus, E.; Brooks, A.; Zarnstorff, M. C.; Boozer, A. H.; Fu, G.-Y.; Neilson, G. H.
2003-10-01
For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schlüter currents, diamagnetic currents and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver (Reiman and Greenside 1986 Comput. Phys. Commun. 43 157) which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment (Reiman et al 2001 Phys. Plasma 8 2083).
Cooling arrangement for a superconducting coil
Herd, K.G.; Laskaris, E.T.
1998-06-30
A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.
Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E
2010-09-01
Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.
Optimizing stellarator coil winding surfaces with Regcoil
NASA Astrophysics Data System (ADS)
Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris
2017-10-01
We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.
Electromagnetic acoustic transducer
Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.
1988-01-01
A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.
Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
NASA Astrophysics Data System (ADS)
Solis-Najera, S.; Vazquez, F.; Hernandez, R.; Marrufo, O.; Rodriguez, A. O.
2016-12-01
A surface radio frequency coil was developed for small animal image acquisition in a pre-clinical magnetic resonance imaging system at 7 T. A flexible coil composed of two circular loops was developed to closely cover the object to be imaged. Electromagnetic numerical simulations were performed to evaluate its performance before the coil construction. An analytical expression of the mutual inductance for the two circular loops as a function of the separation between them was derived and used to validate the simulations. The RF coil is composed of two circular loops with a 5 cm external diameter and was tuned to 300 MHz and 50 Ohms matched. The angle between the loops was varied and the Q factor was obtained from the S11 simulations for each angle. B1 homogeneity was also evaluated using the electromagnetic simulations. The coil prototype was designed and built considering the numerical simulation results. To show the feasibility of the coil and its performance, saline-solution phantom images were acquired. A correlation of the simulations and imaging experimental results was conducted showing a concordance of 0.88 for the B1 field. The best coil performance was obtained at the 90° aperture angle. A more realistic phantom was also built using a formaldehyde-fixed rat phantom for ex vivo imaging experiments. All images showed a good image quality revealing clearly defined anatomical details of an ex vivo rat.
New method to design stellarator coils without the winding surface
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-01-01
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.
NASA Astrophysics Data System (ADS)
Habu, K.; Kaminohara, S.; Kimoto, T.; Kawagoe, A.; Sumiyoshi, F.; Okamoto, H.
2010-11-01
We have developed a new monitoring system to detect an unusual event in the superconducting coils without direct contact on the coils, using Poynting's vector method. In this system, the potential leads and pickup coils are set around the superconducting coils to measure local electric and magnetic fields, respectively. By measuring the sets of magnetic and electric fields, the Poynting's vectors around the coil can be obtained. An unusual event in the coil can be detected as the result of the change of the Poynting's vector. This system has no risk of the voltage breakdown which may happen with the balance voltage method, because there is no need of direct contacts on the coil windings. In a previous paper, we have demonstrated that our system can detect the normal transitions in the Bi-2223 coil without direct contact on the coil windings by using a small test system. For our system to be applied to practical devices, it is necessary for the early detection of an unusual event in the coils to be able to detect local normal transitions in the coils. The signal voltages of the small sensors to measure local magnetic and electric fields are small. Although the increase in signals of the pickup coils is attained easily by an increase in the number of turns of the pickup coils, an increase in the signals of the potential lead is not easily attained. In this paper, a new method to amplify the signal of local electric fields around the coil is proposed. The validity of the method has been confirmed by measuring local electric fields around the Bi-2223 coil.
High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications.
Wiggins, Graham C; Brown, Ryan; Lakshmanan, Karthik
2016-02-01
(23)Na RF coil design for brain and MSK applications presents a number of challenges, including poor coil loading for arrays of small coils and SNR penalties associated with providing (1)H capability with the same coil. The basics of RF coil design are described, as well as a review of historical approaches to dual tuning. There follows a review of published high performance coil designs for MSK and brain imaging. Several coil designs have been demonstrated at 7T and 3T which incorporate close-fitting receive arrays and in some cases design features which provide (1)H imaging with little penalty to (23)Na sensitivity. The "nested coplanar loop" approach is examined, in which small transmit-receive (1)H elements are placed within each (23)Na loop, presenting only a small perturbation to (23)Na performance and minimizing RF shielding issues. Other designs incorporating transmit-receive arrays for (23)Na and (1)H are discussed including a 9.4 T (23)Na/(1)H brain coil. Great gains in (23)Na SNR have been made with many of these designs, but simultaneously achieving high performance for 1H remains elusive. Copyright © 2015 John Wiley & Sons, Ltd.
High frequency magnetostrictive transducers for waveguide applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, Joshua Earl; Taylor, Steven Cheney; Rempe, Joy Lynn
A high frequency magnetostrictive transducer includes a magnetostrictive rod or wire inserted co-axially into a driving coil, wherein the driving coil includes a coil arrangement with a plurality of small coil segments along the magnetostrictive rod or wire; wherein frequency operation of the high frequency magnetostrictive transducer is controlled by a length of the small coil segments and a material type of the magnetostrictive rod or wire. This design of the high frequency magnetostrictive transducer retains the beneficial aspects of the magnetostrictive design, while reducing its primary drawback, lower frequency operation.
Eddy current probe with foil sensor mounted on flexible probe tip and method of use
Viertl, John R. M.; Lee, Martin K.
2001-01-01
A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.
The NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory
NASA Technical Reports Server (NTRS)
Tung, L. S.; Post, R. F.; Cook, E.; Martinez-Frias, J.
2000-01-01
The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, is being studied for its possible use for launching rockets. Under NASA sponsorship, a small model system is being constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating carrier, moving above a "track" consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the carrier cart by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. In its completed form the model system that is under construction will have a track approximately 100 meters in length along which the carrier cart will be propelled up to peak speeds of Mach 0.4 to 0.5 before being decelerated. Preliminary studies of the parameters of a full-scale system have also been made. These studies address the problems of scale-up, including means to simplify the track construction and to reduce the cost of the pulsed-power systems needed for propulsion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.
Coiled-coil peptide-polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here in this paper, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide-polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formedmore » at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide-polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation.« less
Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.; ...
2016-10-26
Coiled-coil peptide-polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here in this paper, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide-polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formedmore » at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide-polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation.« less
A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.
Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F
2004-01-30
A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.
Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla
NASA Astrophysics Data System (ADS)
Solis-Najera, S. E.; Rodriguez, A. O.
2014-11-01
Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.
The Whole Elephant: A Synoptic View of Liquid Rope Coiling
NASA Astrophysics Data System (ADS)
Ribe, Neil
2016-11-01
Liquid rope coiling is the instability that occurs when e.g. a thin stream of honey is poured onto toast. While we now have a fine-grained understanding of each of the four principal coiling modes (viscous, gravitational, inertio-gravitational and inertial), we still lack a global view of how the modes cohere to form a larger whole. Using a numerical continuation procedure, I determine how the dimensionless coiling frequency depends on the dimensionless fall height and flow rate, for several values of the dimensionless nozzle diameter. Starting with the onset of coiling, I propose a purely geometrical definition of the critical surface between coiling and no coiling as the locus of points where the radius a1 of the rope at the contact point is just equal to the coil radius R. Coiling with a1 > R is impossible because the rope would intersect itself. I characterize the asymptotic limits of the critical surface as well as the structure of the supercritical volume inside that surface. The procedure reveals a new mode of coiling onset that has not yet been identified.
NASA Astrophysics Data System (ADS)
Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa
2017-03-01
This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.
Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa
2017-03-21
This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.
Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923
New method to design stellarator coils without the winding surface
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...
2017-11-06
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
New method to design stellarator coils without the winding surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
Directed surface attachment of nanomaterials via coiled-coil-driven self-assembly
NASA Astrophysics Data System (ADS)
White, Simon J.; Johnson, Steven; Szymonik, Michal; Wardingley, Richard A.; Pye, Douglas; Davies, A. Giles; Wälti, Christoph; Stockley, Peter G.
2012-12-01
Numerous nanoscale devices and materials have been fabricated in recent years using a variety of biological scaffolds. However, the interfacing of these devices and materials into existing circuits and ordered arrays has proved problematic. Here, we describe a simple solution to this problem using self-assembly of the peptide coiled-coil heterodimer ACID:BASE to immobilize M13 bacteriophage particles to specific locations on a patterned gold surface. Surface plasmon resonance demonstrated that free ACID peptides will assemble onto a surface derivatized with BASE. We then displayed the ACID peptide on the pIX coat protein of M13 and showed that these phage particles permit formation of the coiled-coil resulting in specific surface attachment. The ACID:immobilized BASE affinities appear to be similar for free peptide and phage-displayed ACID. Finally, we fabricated two gold electrodes, separated by a 200 nm gap, coated one of them with BASE and showed that this allows localization of the M13:ACID onto the functionalized electrode.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Metal Coil Surface Coating... electronic docket, go to www.regulations.gov . Title: NESHAP for Metal Coil Surface Coating Plants (Renewal... Standards for Hazardous Air Pollutants (NESHAP) for Metal Coil Surface Coating Plants were proposed on July...
PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera
NASA Astrophysics Data System (ADS)
Frohwein, Lynn J.; Heß, Mirco; Schlicher, Dominik; Bolwin, Konstantin; Büther, Florian; Jiang, Xiaoyi; Schäfers, Klaus P.
2018-01-01
PET attenuation correction for flexible MRI radio frequency surface coils in hybrid PET/MRI is still a challenging task, as position and shape of these coils conform to large inter-patient variabilities. The purpose of this feasibility study is to develop a novel method for the incorporation of attenuation information about flexible surface coils in PET reconstruction using the Microsoft Kinect V2 depth camera. The depth information is used to determine a dense point cloud of the coil’s surface representing the shape of the coil. From a CT template—acquired once in advance—surface information of the coil is extracted likewise and converted into a point cloud. The two point clouds are then registered using a combination of an iterative-closest-point (ICP) method and a partially rigid registration step. Using the transformation derived through the point clouds, the CT template is warped and thereby adapted to the PET/MRI scan setup. The transformed CT template is converted into an attenuation map from Hounsfield units into linear attenuation coefficients. The resulting fitted attenuation map is then integrated into the MRI-based patient-specific DIXON-based attenuation map of the actual PET/MRI scan. A reconstruction of phantom PET data acquired with the coil present in the field-of-view (FoV), but without the corresponding coil attenuation map, shows large artifacts in regions close to the coil. The overall count loss is determined to be around 13% compared to a PET scan without the coil present in the FoV. A reconstruction using the new μ-map resulted in strongly reduced artifacts as well as increased overall PET intensities with a remaining relative difference of about 1% to a PET scan without the coil in the FoV.
NASA Astrophysics Data System (ADS)
Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke
2012-07-01
A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz1/2 in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-μm diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries.
An improved current potential method for fast computation of stellarator coil shapes
NASA Astrophysics Data System (ADS)
Landreman, Matt
2017-04-01
Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed-boundary plasma optimization, or for scoping new stellarator geometries.
Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.
Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E
2014-07-01
The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein-protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These "anti-bZIP" peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design-target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. © 2014 The Protein Society.
NASA Astrophysics Data System (ADS)
Chen, Xiaowei; Wang, Wenping; Wan, Min
2013-12-01
It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.
Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-12-05
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.
Operating Characteristics in DIII-D ELM-Suppressed RMP H-modes with ITER Similar Shapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, T E; Fenstermacher, M E; Jakubowski, M
2008-10-13
Fast energy transients, incident on the DIII-D divertors due to Type-I edge localized modes (ELMs), are eliminated using small dc currents in a simple set of non-axisymmetric coils that produce edge resonant magnetic perturbations (RMP). In ITER similar shaped (ISS) plasmas, with electron pedestal collisionalities matched to those expected in ITER a sharp resonant window in the safety factor at the 95 percent normalized poloidal flux surface is observed for ELM suppression at q{sub 95}=3.57 with a minimum width {delta}q{sub 95} of {+-}0.05. The size of this resonant window has been increased by a factor of 4 in ISS plasmasmore » by increasing the magnitude of the current in an n=3 coil set along with the current in a separate n=1 coil set. The resonant ELM-suppression window is highly reproducible for a given plasma shape, coil configuration and coil current but can vary with other operating conditions such as {beta}{sub N}. Isolated resonant windows have also been found at other q95 values when using different RMP coil configurations. For example, when the I-coil is operated in an n=3 up-down asymmetric configuration rather than an up-down symmetric configuration a resonant window is found near q{sub 95}=7.4. A Fourier analysis of the applied vacuum magnetic field demonstrates a statistical correlation between the Chirikov island overlap parameter and ELM suppression. These results have been used as a guide for RMP coil design studies in various ITER operating scenarios.« less
Magnetic navigation of an untethered micro device using four stationary coils.
Ha, Yong H; Choi, Kyung M; Han, Byung H; Cho, Min H; Lee, Soo Y
2009-01-01
We introduce a magnetic navigation of a small magnet using four stationary coils. We used a Maxwell gradient coil to get magnetic propulsion force and three Helmholtz coils to control the moving direction of the magnet in the magnetic navigation. Using a three-channel coil driver with output capacity of 320A, we performed magnetic navigation of a small NdFeB magnet with the size of 10 mm x 10 mm x 12 mm on a horizontal plane. When navigated with a slow speed of about 1 mm/s, the magnet kept track of any arbitrary navigational path. We expect the proposed magnetic navigation method can be easily incorporated into the system for human applications since it does not use any moving coils.
Investigating a Quadrant Surface Coil Array for NQR Remote Sensing
2014-10-23
UNCLASSIFIED 1 Abstract—this paper is on the design and fabrication of a surface coil array in a quadrant layout for NQR (Nuclear Quadrupole...coupling and SNR (Signal-to-Noise Ratio) at standoff distances perpendicular from each coil. Index Terms— Nuclear Quadrupole Resonance, NQR ...Coil Array, probe, Nuclear Magnetic Resonance, tuning, decoupling, RLC, mutual coupling, RLC I. INTRODUCTION N Nuclear quadrupole resonance ( NQR
Discoloration of the wetted surface in the 6.1D dissolver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; Mickalonis, J.; Crapse, K.
During a camera inspection of a failed coil in the 6.1D dissolver, an orange discoloration was observed on a portion of the dissolver wall and coils. At the request of H-Canyon Engineering, the inspection video of the dissolver was reviewed by SRNL to assess if the observed condition (a non-uniform, orange-colored substance on internal surfaces) was a result of corrosion. Although the dissolver vessel and coil corrode during dissolution operations, the high acid conditions are not consistent with the formation of ferrous oxides (i.e., orange/rust-colored corrosion products). In a subsequent investigation, SRNL performed dissolution experiments to determine if residues frommore » the nylon bags used for Pu containment could have generated the orange discoloration following dissolution. When small pieces of a nylon bag were placed in boiling 8 M nitric acid solutions containing other components representative of the H-Canyon process, complete dissolution occurred almost immediately. No residues were obtained even when a nylon mass to volume ratio greater than 100 times the 6.1D dissolver value was used. Degradation products from the dissolution of nylon bags are not responsible for the discoloration observed in the dissolver.« less
A polyvalent harmonic coil testing method for small-aperture magnets
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis
2012-08-01
A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).
A comparison study of different RF shields for an 8-element transceive small animal array at 9.4T.
Jin, Jin; Li, Yu; Liu, Feng; Weber, Ewald; Crozier, Stuart
2011-01-01
In this study, three types of radio-frequency shields are studied and compared in the context of ultra-high field small-animal magnetic resonance imaging. It has been demonstrated that the coil penetration depth and mutual coupling between the coils depend heavily on the type of shield employed. The results were used to guide the design of a 9.4T 8-element transceive small animal array, which provides high overall coil penetration.
Gunasekar, Susheel K; Asnani, Mukta; Limbad, Chandani; Haghpanah, Jennifer S; Hom, Wendy; Barra, Hanna; Nanda, Soumya; Lu, Min; Montclare, Jin Kim
2009-09-15
The coiled-coil domain of cartilage oligomeric matrix protein (COMPcc) assembles into a homopentamer that naturally recognizes the small molecule 1,25-dihydroxyvitamin D(3) (vit D). To identify the residues critical for the structure, stability, oligomerization, and binding to vit D as well as two other small molecules, all-trans-retinol (ATR) and curcumin (CCM), here we perform an alanine scanning mutagenesis study. Ten residues lining the hydrophobic pocket of COMPcc were mutated into alanine; of the mutated residues, the N-terminal aliphatic residues L37, L44, V47, and L51 are responsible for maintaining the structure and function. Furthermore, two polar residues, T40 and Q54, within the N-terminal region when converted into alanine improve the alpha-helical structure, stability, and self-assembly behavior. Helical stability, oligomerization, and binding appear to be linked in a manner in which mutations that abolish helical structure and assembly bind poorly to vit D, ATR, and CCM. These results provide not only insight into COMPcc and its functional role but also useful guidelines for the design of stable, pentameric coiled-coils capable of selectively storing and delivering various small molecules.
The cdk7-cyclin H-MAT1 complex associated with TFIIH is localized in coiled bodies.
Jordan, P; Cunha, C; Carmo-Fonseca, M
1997-01-01
TFIIH is a general transcription factor for RNA polymerase II that in addition is involved in DNA excision repair. TFIIH is composed of eight or nine subunits and we show that at least four of them, namely cdk7, cyclin H, MAT1, and p62 are localized in the coiled body, a distinct subnuclear structure that is transcription dependent and highly enriched in small nuclear ribonucleoproteins. Although coiled bodies do not correspond to sites of transcription, in vivo incorporation of bromo-UTP shows that they are surrounded by transcription foci. Immunofluorescence analysis using antibodies directed against the essential repair factors proliferating cell nuclear antigen and XPG did not reveal labeling of the coiled body in either untreated cells or cells irradiated with UV light, arguing that coiled bodies are probably not involved in DNA repair mechanisms. The localization of cyclin H in the coiled body was predominantly detected during the G1 and S-phases of the cell cycle, whereas in G2 coiled bodies were very small or not detected. Finally, both cyclin H and cdk7 did not colocalize with P80 coilin after disruption of the coiled body, indicating that these proteins are specifically targeted to the small nuclear ribonucleoprotein-containing domain. Images PMID:9243502
Dental MRI using a dedicated RF-coil at 3 Tesla.
Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara
2015-12-01
To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Method for manufacturing a rotor having superconducting coils
Driscoll, David I.; Shoykhet, Boris A.
2001-01-01
A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.
Aneurysm permeability following coil embolization: packing density and coil distribution
Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J
2015-01-01
Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Methods Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. Results All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r2=0.73) than with packing density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. Conclusions A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. PMID:25031179
Structural and functional characterization of the PNKP–XRCC4–LigIV DNA repair complex
Aceytuno, R. Â Daniel; Piett, Cortt G.; Havali-Shahriari, Zahra; ...
2017-04-27
Non-homologous end joining (NHEJ) repairs DNA double strand breaks in non-cycling eukaryotic cells. NHEJ relies on polynucleotide kinase/phosphatase (PNKP), which generates 5'-phosphate/3'-hydroxyl DNA termini that are critical for ligation by the NHEJ DNA ligase, LigIV. PNKP and LigIV require the NHEJ scaffolding protein, XRCC4. The PNKP FHA domain binds to the CK2-phosphorylated XRCC4 C-terminal tail, while LigIV uses its tandem BRCT repeats to bind the XRCC4 coiled-coil. Yet, the assembled PNKP-XRCC4-LigIV complex remains uncharacterized. Here, we report purification and characterization of a recombinant PNKP-XRCC4-LigIV complex. We show that the stable binding of PNKP in this complex requires XRCC4 phosphorylation andmore » that only one PNKP protomer binds per XRCC4 dimer. Small angle X-ray scattering (SAXS) reveals a flexiblemultistate complex that suggests that both the PNKP FHA and catalytic domains contact the XRCC4 coiled-coil and LigIV BRCT repeats. Hydrogen-deuterium exchange indicates protection of a surface on the PNKP phosphatase domain that may contact XRCC4-LigIV. Amutation on this surface (E326K) causes the hereditary neuro-developmental disorder, MCSZ. This mutation impairs PNKP recruitment to damaged DNA in human cells and provides a possible disease mechanism. Together, this work unveils multipoint contacts between PNKP and XRCC4-LigIV that regulate PNKP recruitment and activity within NHEJ.« less
Structural and functional characterization of the PNKP–XRCC4–LigIV DNA repair complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceytuno, R. Â Daniel; Piett, Cortt G.; Havali-Shahriari, Zahra
Non-homologous end joining (NHEJ) repairs DNA double strand breaks in non-cycling eukaryotic cells. NHEJ relies on polynucleotide kinase/phosphatase (PNKP), which generates 5'-phosphate/3'-hydroxyl DNA termini that are critical for ligation by the NHEJ DNA ligase, LigIV. PNKP and LigIV require the NHEJ scaffolding protein, XRCC4. The PNKP FHA domain binds to the CK2-phosphorylated XRCC4 C-terminal tail, while LigIV uses its tandem BRCT repeats to bind the XRCC4 coiled-coil. Yet, the assembled PNKP-XRCC4-LigIV complex remains uncharacterized. Here, we report purification and characterization of a recombinant PNKP-XRCC4-LigIV complex. We show that the stable binding of PNKP in this complex requires XRCC4 phosphorylation andmore » that only one PNKP protomer binds per XRCC4 dimer. Small angle X-ray scattering (SAXS) reveals a flexiblemultistate complex that suggests that both the PNKP FHA and catalytic domains contact the XRCC4 coiled-coil and LigIV BRCT repeats. Hydrogen-deuterium exchange indicates protection of a surface on the PNKP phosphatase domain that may contact XRCC4-LigIV. Amutation on this surface (E326K) causes the hereditary neuro-developmental disorder, MCSZ. This mutation impairs PNKP recruitment to damaged DNA in human cells and provides a possible disease mechanism. Together, this work unveils multipoint contacts between PNKP and XRCC4-LigIV that regulate PNKP recruitment and activity within NHEJ.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, S. E.; Centro de Investigacion e Instrumentacion e Imagenologia Medica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340; Hernandez, J. A.
Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour ofmore » the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging.« less
A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System
Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.
2010-01-01
A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066
I-cored Coil Probe Located Above a Conductive Plate with a Surface Hole
NASA Astrophysics Data System (ADS)
Tytko, Grzegorz; Dziczkowski, Leszek
2018-02-01
This work presents an axially symmetric mathematical model of an I-cored coil placed over a two-layered conductive material with a cylindrical surface hole. The problem was divided into regions for which the magnetic vector potential of a filamentary coil was established applying the truncated region eigenfunction expansion method. Then the final formula was developed to calculate impedance changes for a cylindrical coil with reference to both the air and to a material with no hole. The influence of a surface flaw in the conductive material on the components of coil impedance was examined. Calculations were made in Matlab for a hole with various radii and the results thereof were verified with the finite element method in COMSOL Multiphysics package. Very good consistency was achieved in all cases.
Electromagnetic free suspension system for space manufacturing. Volume 1: Technology department
NASA Technical Reports Server (NTRS)
Buerger, E. H.; Frost, R. T.; Lambert, R. H.; Oconnor, M. F.; Odell, E. L. G.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.
1972-01-01
The technology developed in defining a facility to be used on the Skylab mission for electromagnetic suspension of small, molten spheres in the weightless space environment is described. The technologies discussed include: four-coil optimization, four-coil versus six-coil configuration comparison, four-coil position servocontrol, four-coil breadboard, position sensing and servosystem, two-color pyrometer, and specimen toration mode analysis.
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection
Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-01-01
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball’s outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified. PMID:29206154
Electromechanical modelling and design for phase control of locked modes in the DIII-D tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olofsson, K. E. J.; Choi, W.; Humphreys, D. A.
A basic nonlinear electromechanical model is developed for the interaction between a pre-existing near-saturated tearing-mode, a conducting wall, active coils internal to the wall, and active coils external to the wall. The tearing-mode is represented by a perturbed helical surface current and its island has a small but finite moment of inertia. The model is shown to have several properties that are qualitatively consistent with the experimental observations of mode-wall and mode-coil interactions. The main purpose of the model is to guide the design of a phase control system for locked modes (LMs) in tokamaks. Such a phase controller maymore » become an important component in integrated disruption avoidance systems. A realistic feedback controller for the LM phase is designed and tested for the electromechanical model. The results indicate that a simple fixed-gain controller can perform phase control of LMs with a range of sizes, and at arbitrary misalignment relative to a realistically dimensioned background error field. Finally, the basic model is expected to be a useful minimal dynamical system representation also for other aspects of mode-wall-coil interactions.« less
Electromechanical modelling and design for phase control of locked modes in the DIII-D tokamak
Olofsson, K. E. J.; Choi, W.; Humphreys, D. A.; ...
2016-02-05
A basic nonlinear electromechanical model is developed for the interaction between a pre-existing near-saturated tearing-mode, a conducting wall, active coils internal to the wall, and active coils external to the wall. The tearing-mode is represented by a perturbed helical surface current and its island has a small but finite moment of inertia. The model is shown to have several properties that are qualitatively consistent with the experimental observations of mode-wall and mode-coil interactions. The main purpose of the model is to guide the design of a phase control system for locked modes (LMs) in tokamaks. Such a phase controller maymore » become an important component in integrated disruption avoidance systems. A realistic feedback controller for the LM phase is designed and tested for the electromechanical model. The results indicate that a simple fixed-gain controller can perform phase control of LMs with a range of sizes, and at arbitrary misalignment relative to a realistically dimensioned background error field. Finally, the basic model is expected to be a useful minimal dynamical system representation also for other aspects of mode-wall-coil interactions.« less
High voltage isolation transformer
NASA Technical Reports Server (NTRS)
Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)
1985-01-01
A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.
High voltage isolation transformer
NASA Astrophysics Data System (ADS)
Clatterbuck, C. H.; Ruitberg, A. P.
1985-04-01
A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.
Arutiunian, A V; Ivanova, M A; Kurliand, D I; Kapshin, Iu S; Landa, S B; Poshekhonov, S T; Drobchenko, E A; Shevelev, I V
2011-01-01
Changes in the rigidity of the polymetric chain of phage lambda double-strand DNA have been studied by laser correlation spectroscopy. It was shown that, as the ionic strength increases, the effect of the screening of the hydrodynamic interaction of the links of the polymeric chain specific for polymeric coils arises in a DNA solution. It is assumed that the screening occurs when the threshold of the overlapping of DNA coils is achieved. The overlapping of coils is the result of a previously observed significant rise of DNA coil size from abnormally small DNA coils in low ionic strength buffers (about 10(-2) M Na+ or less) to maximum possible large coils in the 5SSC and 5SSC-like buffers. Further analysis of the far interlink interactions in linear lambda phage DNA coils in similar buffers at pH 7 and 4 confirms the earlier proposal about the role of H+ ions in the appearance of abnormally small DNA coils. The abnormal decrease in the DNA coil size in low ionic strength buffers is not a specific feature of lambda phage DNA only.
NASA Astrophysics Data System (ADS)
Ghosh, Pratik
1992-01-01
The investigations focussed on in vivo NMR imaging studies of magnetic particles with and within neural cells. NMR imaging methods, both Fourier transform and projection reconstruction, were implemented and new protocols were developed to perform "Neuronal Tracing with Magnetic Labels" on small animal brains. Having performed the preliminary experiments with neuronal tracing, new optimized coils and experimental set-up were devised. A novel gradient coil technology along with new rf-coils were implemented, and optimized for future use with small animals in them. A new magnetic labelling procedure was developed that allowed labelling of billions of cells with ultra -small magnetite particles in a short time. The relationships among the viability of such cells, the amount of label and the contrast in the images were studied as quantitatively as possible. Intracerebral grafting of magnetite labelled fetal rat brain cells made it possible for the first time to attempt monitoring in vivo the survival, differentiation, and possible migration of both host and grafted cells in the host rat brain. This constituted the early steps toward future experiments that may lead to the monitoring of human brain grafts of fetal brain cells. Preliminary experiments with direct injection of horse radish peroxidase-conjugated magnetite particles into neurons, followed by NMR imaging, revealed a possible non-invasive alternative, allowing serial study of the dynamic transport pattern of tracers in single living animals. New gradient coils were built by using parallel solid-conductor ribbon cables that could be wrapped easily and quickly. Rapid rise times provided by these coils allowed implementation of fast imaging methods. Optimized rf-coil circuit development made it possible to understand better the sample-coil properties and the associated trade -offs in cases of small but conducting samples.
van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J
2015-08-01
Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Hirata, Hiroshi
2014-02-01
This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.
Low loss pole configuration for multi-pole homopolar magnetic bearings
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)
2001-01-01
A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.
A nonintrusive method for measuring the operating temperature of a solenoid-operated valve
NASA Astrophysics Data System (ADS)
Kryter, Robert C.
Experimental data are presented to show that the in-service operating temperature of a solenoid operated valve (SOV) can be inferred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include: (1) there is no need for an add-on temperature sensor, (2) the true temperature of a critical and likely the hottest, part of the SOV (namely, the electrical coil) is measured directly, (3) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (4) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (5) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40 C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-07-01
A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.
In vivo field-cycling relaxometry using an insert coil for magnetic field offset.
Pine, Kerrin J; Goldie, Fred; Lurie, David J
2014-11-01
The T(1) of tissue has a strong dependence on the measurement magnetic field strength. T(1) -dispersion could be a useful contrast parameter, but is unavailable to clinical MR systems which operate at fixed magnetic field strength. The purpose of this work was to implement a removable insert magnet coil for field-cycling T(1) -dispersion measurements on a vertical-field MRI scanner, by offsetting the static field over a volume of interest. An insert magnet coil was constructed for use with a whole-body sized 59 milli-Tesla (mT) vertical-field, permanent-magnet based imager. The coil has diameter 38 cm and thickness 6.1 cm and a homogeneous region (± 5%) of 5 cm DSV, offset by 5 cm from the coil surface. Surface radiofrequency (RF) coils were also constructed. The insert coil was used in conjunction with a surface RF coil and a volume-localized inversion-recovery pulse sequence to plot T(1) -dispersion in a human volunteer's forearm over a range of field strengths from 1 mT to 70 mT. T(1) -dispersion measurements were demonstrated on a fixed-field MRI scanner, using an insert coil. This demonstrates the feasibility of relaxation dispersion measurements on an otherwise conventional MR imager, facilitating the exploitation of T(1) -dispersion contrast for enhanced diagnosis. Copyright © 2013 Wiley Periodicals, Inc.
Coil spring venting arrangement
McCugh, R.M.
1975-10-21
A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... Surface efficiency deviation interval technology unit % % ( ) % Large A Electric Coil... 1 69.79 1.59 1.97... Surface efficiency deviation interval technology unit % % ( ) % Large A Electric Coil... 1 64.52 0.87 1.08... technology unit % % ( ) % Large A Electric Coil... 1 79.81 1.66 2.06 B Electric........ 1 61.81 2.83 3.52...
Depletion-Mode GaN HEMT Q-Spoil Switches for MRI Coils
Lu, Jonathan Y.; Grafendorfer, Thomas; Zhang, Tao; Vasanawala, Shreyas; Robb, Fraser; Pauly, John M.; Scott, Greig C.
2017-01-01
Q-spoiling is the process of decoupling an MRI receive coil to protect the equipment and patient. Conventionally, Q-spoiling is performed using a PIN diode switch that draws significant current. In this work, a Q-spoiling technique using a depletion-mode Gallium Nitride HEMT device was developed for coil detuning at both 1.5 T and 3 T MRI. The circuits with conventional PIN diode Q-spoiling and the GaN HEMT device were implemented on surface coils. SNR was measured and compared for all surfaces coils. At both 1.5 T and 3 T, comparable SNR was achieved for all coils with the proposed technique and conventional Q-spoiling. The GaN HEMT device has significantly reduced the required power for Q-spoiling. The GaN HEMT device also provides useful safety features by detuning the coil when unpowered. PMID:27362895
Eddy Current Probe for Surface and Sub-Surface Inspection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2014-01-01
An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.
Damascene fabrication of nonplanar microcoils
Adams, David P.; Vasile, Michael J.
2003-06-17
A process for fabricating coils using a Damascene process uses a curved substrate having a surface extending along and about an axis made of a first material. A groove is formed in the curved surface along and around said axis, and the groove is filled with a second material that is different from the first material to form a coil of second material in said first material. Excess second material is then removed from the surface of the first material, leaving the coil of second material in the groove.
Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L
2014-06-01
To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.
Aneurysm permeability following coil embolization: packing density and coil distribution.
Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J
2015-09-01
Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r(2)=0.73) than with packing density alone (r(2)=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ha, Yong H; Han, Byung H; Lee, Soo Y
2010-02-01
We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.
Laistler, Elmar; Poirier-Quinot, Marie; Lambert, Simon A; Dubuisson, Rose-Marie; Girard, Olivier M; Moser, Ewald; Darrasse, Luc; Ginefri, Jean-Christophe
2015-02-01
To demonstrate the feasibility of a highly sensitive superconducting surface coil for microscopic MRI of the human skin in vivo in a clinical 1.5 Tesla (T) scanner. A 12.4-mm high-temperature superconducting coil was used at 1.5T for phantom and in vivo skin imaging. Images were inspected to identify fine anatomical skin structures. Signal-to-noise ratio (SNR) improvement by the high-temperature superconducting (HTS) coil, as compared to a commercial MR microscopy coil was quantified from phantom imaging; the gain over a geometrically identical coil made from copper (cooled or not) was theoretically deduced. Noise sources were identified to evaluate the potential of HTS coils for future studies. In vivo skin images with isotropic 80 μm resolution were demonstrated revealing fine anatomical structures. The HTS coil improved SNR by a factor 32 over the reference coil in a nonloading phantom. For calf imaging, SNR gains of 380% and 30% can be expected over an identical copper coil at room temperature and 77 K, respectively. The high sensitivity of HTS coils allows for microscopic imaging of the skin at 1.5T and could serve as a tool for dermatology in a clinical setting. © 2013 Wiley Periodicals, Inc.
Modular low-aspect-ratio high-beta torsatron
Sheffield, G.V.
1982-04-01
A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.
Agrawal, Vineet; Sharma, Ashwani; Wu, Guan
2014-11-01
Image-guided fiducial markers are being used in surgery, especially in spine and breast surgery, and radiotherapy, allowing localization of tumor sites precisely. We report a case of fiducial coil use in a man undergoing a robot-assisted laparoscopic resection of a metastatic nodule under the ipsilateral diaphragm after robot-assisted partial nephrectomy performed 2 years ago for a left upper pole renal tumor. The fiducial coil facilitated the localization of the lesion, which would otherwise have been challenging because of its small size and location. In addition, the fiducial coil was helpful to avoid cutting into the lesion directly. Copyright © 2014 Elsevier Inc. All rights reserved.
Rotor assembly including superconducting magnetic coil
Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.
2003-01-01
Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.
Lee, Jiho; Park, Dongkeun; Michael, Philip C; Noguchi, So; Bascuñán, Juan; Iwasa, Yukikazu
2018-04-01
In this paper, we present experimental results, of a small-model study, from which we plan to develop and apply a full-scale field-shaking system to reduce the screening current-induced field (SCF) in the 800-MHz HTS Insert (H800) of the MIT 1.3-GHz LTS/HTS NMR magnet (1.3G) currently under construction-the H800 is composed of 3 nested coils, each a stack of no-insulation (NI) REBCO double-pancakes. In 1.3G, H800 is the chief source of a large error field generated by its own SCF. To study the effectiveness of the field-shaking technique, we used two NI REBCO double-pancakes, one from Coil 2 (HCoil2) and one from Coil 3 (HCoil3) of the 3 H800 coils, and placed them in the bore of a 5-T/300-mm room-temperature bore low-temperature superconducting (LTS) background magnet. The background magnet is used not only to induce the SCF in the double-pancakes but also to reduce it by the field-shaking technique. For each run, we induced the SCF in the double-pancakes at an axial location where the external radial field Br > 0, then for the field-shaking, moved them to another location where the external axial field Bz ≫ B R . Due to the geometry of H800 and L500, top double-pancakes of 3 H800 coils will experience the considerable radial magnetic field perpendicular to the REBCO tape surface. To examine the effect of the field-shaking on the SCF, we tested each NI REBCO DP in the absence or presence of a radial field. In this paper, we report 77-K experimental results and analysis of the effect and a few significant remarks of the field-shaking.
Bonanos, Peter
1983-01-01
A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
Segmented rail linear induction motor
Cowan, Jr., Maynard; Marder, Barry M.
1996-01-01
A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.
INTERCOMPARISON OF PERFORMANCE OF RF COIL GEOMETRIES FOR HIGH FIELD MOUSE CARDIAC MRI
Constantinides, Christakis; Angeli, S.; Gkagkarellis, S.; Cofer, G.
2012-01-01
Multi-turn spiral surface coils are constructed in flat and cylindrical arrangements and used for high field (7.1 T) mouse cardiac MRI. Their electrical and imaging performances, based on experimental measurements, simulations, and MRI experiments in free space, and under phantom, and animal loading conditions, are compared with a commercially available birdcage coil. Results show that the four-turn cylindrical spiral coil exhibits improved relative SNR (rSNR) performance to the flat coil counterpart, and compares fairly well with a commercially available birdcage coil. Phantom experiments indicate a 50% improvement in the SNR for penetration depths ≤ 6.1 mm from the coil surface compared to the birdcage coil, and an increased penetration depth at the half-maximum field response of 8 mm in the 4-spiral cylindrical coil case, in contrast to 2.9 mm in the flat 4-turn spiral case. Quantitative comparison of the performance of the two spiral coil geometries in anterior, lateral, inferior, and septal regions of the murine heart yield maximum mean percentage rSNR increases of the order of 27–167% in vivo post-mortem (cylindrical compared to flat coil). The commercially available birdcage outperforms the cylindrical spiral coil in rSNR by a factor of 3–5 times. The comprehensive approach and methodology adopted to accurately design, simulate, implement, and test radiofrequency coils of any geometry and type, under any loading conditions, can be generalized for any application of high field mouse cardiac MRI. PMID:23204945
Avdievich, Nikolai I.; Oh, Suk-Hoon; Hetherington, Hoby P.; Collins, Christopher M.
2010-01-01
Purpose To improve the homogeneity of transmit volume coils at high magnetic fields (≥ 4 T). Due to RF field/ tissue interactions at high fields, 4–8 T, the transmit profile from head-sized volume coils shows a distinctive pattern with relatively strong RF magnetic field B1 in the center of the brain. Materials and Methods In contrast to conventional volume coils at high field strengths, surface coil phased arrays can provide increased RF field strength peripherally. In theory, simultaneous transmission from these two devices could produce a more homogeneous transmission field. To minimize interactions between the phased array and the volume coil, counter rotating current (CRC) surface coils consisting of two parallel rings carrying opposite currents were used for the phased array. Results Numerical simulations and experimental data demonstrate that substantial improvements in transmit field homogeneity can be obtained. Conclusion We have demonstrated the feasibility of using simultaneous transmission with human head-sized volume coils and CRC phased arrays to improve homogeneity of the transmit RF B1 field for high-field MRI systems. PMID:20677280
Modular low aspect ratio-high beta torsatron
Sheffield, George V.; Furth, Harold P.
1984-02-07
A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.
NASA Technical Reports Server (NTRS)
Henderson, Robert A.; Schrag, Robert L.
1987-01-01
A method of modelling a system consisting of a cylindrical coil with its axis perpendicular to a metal plate of finite thickness, and a simple electrical circuit for producing a transient current in the coil, is discussed in the context of using such a system for de-icing aircraft surfaces. A transmission line model of the coil and metal plate is developed as the heart of the system model. It is shown that this transmission model is central to calculation of the coil impedance, the coil current, the magnetic fields established on the surfaces of the metal plate, and the resultant total force between the coil and the plate. FORTRAN algorithms were developed for numerical calculation of each of these quantities, and the algorithms were applied to an experimental prototype system in which these quantities had been measured. Good agreement is seen to exist between the predicted and measured results.
Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro
2016-12-01
Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule.
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.
Critical current density and third-harmonic voltage in superconducting films
NASA Astrophysics Data System (ADS)
Mawatari, Yasunori; Yamasaki, Hirofumi; Nakagawa, Yoshihiko
2002-09-01
When a sinusoidal drive current I0cos ωt flows in a small coil close to the surface of a superconducting film, third-harmonic voltage V3 cos(3ωt+θ3) is induced in the coil if the film causes a nonlinear response. We have developed an approximate theoretical method yielding the relationships among I0, V3, and θ3, thus providing the scientific basis for a widely used inductive method for measuring the critical current density Jc in large-area superconducting films. Our results show that V3 is near zero when I0 is smaller than a threshold value Ic0∝Jcd, where d is the film thickness. When I0>Ic0, on the other hand, the third-harmonic voltage is expressed as V3 exp(-iθ3)=ωIc0G(I0/Ic0), where G(x) is a scaling function determined by the configuration of the coil. We demonstrate the scaling law of V3/Ic0 vs I0/Ic0 in a YBa2Cu3O7-δ film.
Segmented rail linear induction motor
Cowan, M. Jr.; Marder, B.M.
1996-09-03
A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.
Thread amplitudes and frequencies in a fluid mechanical `sewing machine'
NASA Astrophysics Data System (ADS)
Morris, Stephen W.; Dawes, J. H. P.; Lister, John; Dalziel, Stuart
2006-11-01
A viscous thread falling on a surface exhibits the famous rope- coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving at speed U, the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed (1). We experimentally studied this fluid mechanical `sewing machine' in a new, more precise apparatus. As U is reduced, the stretched thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitudes A and frequency φ of the meandering close to the bifurcation. For small U, single- frequency meandering bifurcates to a two-frequency `figure 8' state, which contains a significant 2φ component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at smaller U. More complex, highly hysteretic states with additional harmonics are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between three oscillatory modes with frequencies φ, 2φ and 3φ. The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.(1) Chiu-Webster and Lister, J. Fluid Mech., in press.
Petridou, N; Italiaander, M; van de Bank, B L; Siero, J C W; Luijten, P R; Klomp, D W J
2013-01-01
Recent studies have shown that functional MRI (fMRI) can be sensitive to the laminar and columnar organization of the cortex based on differences in the spatial and temporal characteristics of the blood oxygenation level-dependent (BOLD) signal originating from the macrovasculature and the neuronal-specific microvasculature. Human fMRI studies at this scale of the cortical architecture, however, are very rare because the high spatial/temporal resolution required to explore these properties of the BOLD signal are limited by the signal-to-noise ratio. Here, we show that it is possible to detect BOLD signal changes at an isotropic spatial resolution as high as 0.55 mm at 7 T using a high-density multi-element surface coil with minimal electronics, which allows close proximity to the head. The coil comprises of very small, 1 × 2-cm(2) , elements arranged in four flexible modules of four elements each (16-channel) that can be positioned within 1 mm from the head. As a result of this proximity, tissue losses were five-fold greater than coil losses and sufficient to exclude preamplifier decoupling. When compared with a standard 16-channel head coil, the BOLD sensitivity was approximately 2.2-fold higher for a high spatial/temporal resolution (1 mm isotropic/0.4 s), multi-slice, echo planar acquisition, and approximately three- and six-fold higher for three-dimensional echo planar images acquired with isotropic resolutions of 0.7 and 0.55 mm, respectively. Improvements in parallel imaging performance (geometry factor) were up to around 1.5-fold with increasing acceleration factor, and improvements in fMRI detectability (temporal signal-to-noise ratio) were up to around four-fold depending on the distance to the coil. Although deeper lying structures may not benefit from the design, most fMRI questions pertain to the neocortex which lies within approximately 4 cm from the surface. These results suggest that the resolution of fMRI (at 7 T) can approximate levels that are closer to the spatial/temporal scale of the fundamental functional organization of the human cortex using a simple high-density coil design for high sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.
McGee, Kiaran P; Stormont, Robert S; Lindsay, Scott A; Taracila, Victor; Savitskij, Dennis; Robb, Fraser; Witte, Robert J; Kaufmann, Timothy J; Huston, John; Riederer, Stephen J; Borisch, Eric A; Rossman, Phillip J
2018-04-13
The growth in the use of magnetic resonance imaging (MRI) data for radiation therapy (RT) treatment planning has been facilitated by scanner hardware and software advances that have enabled RT patients to be imaged in treatment position while providing morphologic and functional assessment of tumor volumes and surrounding normal tissues. Despite these advances, manufacturers have been slow to develop radiofrequency (RF) coils that closely follow the contour of a RT patient undergoing MR imaging. Instead, relatively large form surface coil arrays have been adapted from diagnostic imaging. These arrays can be challenging to place on, and in general do not conform to the patient's body habitus, resulting in sub optimal image quality. The purpose of this study is to report on the characterization of a new flexible and highly decoupled RF coil for use in MR imaging of RT patients. Coil performance was evaluated by performing signal-to-noise ratio (SNR) and noise correlation measurements using two coil (SNR) and four coil (noise correlation) element combinations as a function of coil overlap distance and comparing these values to those obtained using conventional coil elements. In vivo testing was performed in both normal volunteers and patients using a four and 16 element RF coil. Phantom experiments demonstrate the highly decoupled nature of the new coil elements when compared to conventional RF coils, while in vivo testing demonstrate that these coils can be integrated into extremely flexible and form fitting substrates that follow the exact contour of the patient. The new coil design addresses limitations imposed by traditional surface coil arrays and have the potential to significantly impact MR imaging for both diagnostic and RT applications.
NASA Astrophysics Data System (ADS)
McGee, Kiaran P.; Stormont, Robert S.; Lindsay, Scott A.; Taracila, Victor; Savitskij, Dennis; Robb, Fraser; Witte, Robert J.; Kaufmann, Timothy J.; Huston, John, III; Riederer, Stephen J.; Borisch, Eric A.; Rossman, Phillip J.
2018-04-01
The growth in the use of magnetic resonance imaging (MRI) data for radiation therapy (RT) treatment planning has been facilitated by scanner hardware and software advances that have enabled RT patients to be imaged in treatment position while providing morphologic and functional assessment of tumor volumes and surrounding normal tissues. Despite these advances, manufacturers have been slow to develop radiofrequency (RF) coils that closely follow the contour of a RT patient undergoing MR imaging. Instead, relatively large form surface coil arrays have been adapted from diagnostic imaging. These arrays can be challenging to place on, and in general do not conform to the patient’s body habitus, resulting in sub optimal image quality. The purpose of this study is to report on the characterization of a new flexible and highly decoupled RF coil for use in MR imaging of RT patients. Coil performance was evaluated by performing signal-to-noise ratio (SNR) and noise correlation measurements using two coil (SNR) and four coil (noise correlation) element combinations as a function of coil overlap distance and comparing these values to those obtained using conventional coil elements. In vivo testing was performed in both normal volunteers and patients using a four and 16 element RF coil. Phantom experiments demonstrate the highly decoupled nature of the new coil elements when compared to conventional RF coils, while in vivo testing demonstrate that these coils can be integrated into extremely flexible and form fitting substrates that follow the exact contour of the patient. The new coil design addresses limitations imposed by traditional surface coil arrays and have the potential to significantly impact MR imaging for both diagnostic and RT applications.
Coil Realizability Criteria for Stellarator Surface Currents
NASA Astrophysics Data System (ADS)
Boozer, A.; Hirshman, S.; Brooks, A.
1998-11-01
The method of automatic optimization(P. Merkel, Nucl. Fusion 27 (1987) 867.) for the design of stellarator coils (NESCOIL code) typically yields a two-dimensional surface current potential φ from which current filaments can be extracted, using the relation Ks = n × nabla φ. Until now, the realizability of coils obtained in this way has been largely decoupled from the physics optimization process which originally provided the matching surface on which B_normal = 0 (thus determining φ). For quasi-axisymmetric stellarators (QAS)(A. Reiman, et al., to be published.) or quasi- omnigeneous stellarators(S. P. Hirshman, D. A. Spong, et al., Phys. Rev. Lett. 80 (1998) 528.) with finite parallel plasma currents, it is often found that the current potential becomes too complicated to be consistent with realizable coils. We have developed analytic measures of the complexity of the current potential. These measures can be incorporated into the physics optimizer and can limit the plasma boundaries to those which are likely to produce realizable coils.
MLAA-based RF surface coil attenuation estimation in hybrid PET/MR imaging
NASA Astrophysics Data System (ADS)
Heußer, Thorsten; Rank, Christopher M.; Freitag, Martin T.; Kachelrieß, Marc
2017-03-01
Attenuation correction (AC) for both patient and hardware attenuation of the 511 keV annihilation photons is required for accurate PET quantification. In hybrid PET/MR imaging, AC for stationary hardware components such as patient table and MR head coil is performed using CT{derived attenuation templates. AC for flexible hardware components such as MR radiofrequency (RF) surface coils is more challenging. Registration{based approaches, aligning scaled CT{derived attenuation templates with the current patient position, have been proposed but are not used in clinical routine. Ignoring RF coil attenuation has been shown to result in regional activity underestimation values of up to 18 %. We propose to employ a modified version of the maximum{ likelihood reconstruction of attenuation and activity (MLAA) algorithm to obtain an estimate of the RF coil attenuation. Starting with an initial attenuation map not including the RF coil, the attenuation update of MLAA is applied outside the body outline only, allowing to estimate RF coil attenuation without changing the patient attenuation map. Hence, the proposed method is referred to as external MLAA (xMLAA). In this work, xMLAA for RF surface coil attenuation estimation is investigated using phantom and patient data acquired with a Siemens Biograph mMR. For the phantom data, average activity errors compared to the ground truth was reduced from -8:1% to +0:8% when using the proposed method. Patient data revealed an average activity underestimation of -6:1% for the abdominal region and -5:3% for the thoracic region when ignoring RF coil attenuation.
Crystal Structure of a Coiled-Coil Domain from Human ROCK I
Tu, Daqi; Li, Yiqun; Song, Hyun Kyu; Toms, Angela V.; Gould, Christopher J.; Ficarro, Scott B.; Marto, Jarrod A.; Goode, Bruce L.; Eck, Michael J.
2011-01-01
The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK), participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535–700). The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620) are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation. PMID:21445309
Kreplak, L; Doucet, J; Briki, F
2001-04-15
Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.
Development of a planar-type high sensitivity metallic contaminant detector
NASA Astrophysics Data System (ADS)
Okabe, Shunsuke; Sasada, Ichiro
2017-05-01
Metallic contaminant detectors based on the balanced coil system are widely used in the food industry. In the balanced coil system, an excitation coil and two identical pickup coils are used in a way that the magnetic coupling of pickup coils to the excitation coil is cancelled with each other when no metallic contaminants present. In a conventional system, the excitation coil and the pickup coil are planar and are parallel, therefore the magnetic coupling is strong even if there is no metallic contaminant. Such strong magnetic coupling makes balancing procedure tedious. In this paper, we introduce a new coil system in which pickup coils are set orthogonal to the excitation coil, making the magnetic coupling much small compared to conventional counterpart. Pickup coils are equipped with thin magnetic cores and placed inside the excitation coil being parallel to the excitation coil plane. The balancing method consists of two steps; the one is geometrical and the other is digital processing including down conversion. Experiments are carried out to show the detection capability of ferromagnetic contaminants and non-magnetic contaminants.
NASA Astrophysics Data System (ADS)
Hudson, S. R.; Monticello, D. A.; Reiman, A. H.; Strickler, D. J.; Hirshman, S. P.
2003-06-01
For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands are guaranteed to exist. Magnetic islands break the smooth topology of nested flux surfaces and chaotic field lines result when magnetic islands overlap. An analogous case occurs with 11/2-dimension Hamiltonian systems where resonant perturbations cause singularities in the transformation to action-angle coordinates and destroy integrability. The suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Techniques for `healing' vacuum fields and fixed-boundary plasma equilibria have been developed, but what is ultimately required is a procedure for designing stellarators such that the self-consistent plasma equilibrium currents and the coil currents combine to produce an integrable magnetic field, and such a procedure is presented here for the first time. Magnetic islands in free-boundary full-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [A.H.Reiman & H.S.Greenside, Comp. Phys. Comm., 43:157, 1986.] which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment [G.H.Neilson et.al., Phys. Plas., 7:1911, 2000.].
Buehler, Tania; Kreis, Roland; Boesch, Chris
2015-02-01
(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT. Copyright © 2014 John Wiley & Sons, Ltd.
An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T
Kim, Kyoung-Nam; Han, Sang-Doc; Seo, Jeung-Hoon; Heo, Phil; Yoo, Dongkyeom; Im, Geun Ho; Lee, Jung Hee
2017-01-01
The birdcage (BC) coil is currently being utilized for uniform radiofrequency (RF) transmit/receive (Tx/Rx) or Tx-only configuration in many magnetic resonance (MR) imaging applications, but insufficient magnetic flux (|B1|) density and their non-uniform distribution still exists in high-field (HF) environments. We demonstrate that the asymmetric birdcage (ABC) transmit/receive (Tx/Rx) volume coil, which is a modified standard birdcage (SBC) coil with the end ring split into two halves, is suitable for improving the |B1| sensitivity in 7T small-animal MR imaging. Cylindrical SBC and ABC coils with 35 mm diameter were constructed and bench tested for mouse body MR imaging at 300 MHz using a 7T scanner. To assess the ABC coil performance, computational electromagnetic (EM) simulation and 7T MR experiment were performed by using a cylindrical phantom and in vivo mouse body and quantitatively compared with the SBC coil in terms of |B1| distribution, RF transmit (|B1+|) field, and signal-to-noise ratio (SNR). The bench measurements of the two BC coils are similar, yielding a quality value (Q-value) of 74.42 for the SBC coil and 77.06 for the ABC coil. The computational calculation results clearly show that the proposed ABC coil offers superior |B1| field and |B1+| field sensitivity in the central axial slice compared with the SBC coil. There was also high SNR and uniformly distributed flip angle (FA) under the loaded condition of mouse body in the 7T experiment. Although ABC geometry allows a further increase in the |B1| field and |B1+| field sensitivity in only the central axial slice, the geometrical modification of the SBC coil can make a high performance RF coil feasible in the central axial slice and also make target imaging possible in the diagonal direction. PMID:27725573
Sosnovik, David E; Dai, Guangping; Nahrendorf, Matthias; Rosen, Bruce R; Seethamraju, Ravi
2007-08-01
To evaluate the use of a transmit-receive surface (TRS) coil and a cardiac-tailored intensity-correction algorithm for cardiac MRI in mice at 9.4 Tesla (9.4T). Fast low-angle shot (FLASH) cines, with and without delays alternating with nutations for tailored excitation (DANTE) tagging, were acquired in 13 mice. An intensity-correction algorithm was developed to compensate for the sensitivity profile of the surface coil, and was tailored to account for the unique distribution of noise and flow artifacts in cardiac MR images. Image quality was extremely high and allowed fine structures such as trabeculations, valve cusps, and coronary arteries to be clearly visualized. The tag lines created with the surface coil were also sharp and clearly visible. Application of the intensity-correction algorithm improved signal intensity, tissue contrast, and image quality even further. Importantly, the cardiac-tailored properties of the correction algorithm prevented noise and flow artifacts from being significantly amplified. The feasibility and value of cardiac MRI in mice with a TRS coil has been demonstrated. In addition, a cardiac-tailored intensity-correction algorithm has been developed and shown to improve image quality even further. The use of these techniques could produce significant potential benefits over a broad range of scanners, coil configurations, and field strengths. (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.
2018-06-01
Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.
HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.
2010-01-01
High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157
RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission
NASA Astrophysics Data System (ADS)
Garwood, Michael; Uğurbil, Kamil
2018-06-01
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato; Matsuoka, Yuichiro; Kuroda, Kagayaki; Gotanda, Masakazu; Sekino, Naomi; Kumamoto, Etsuko; Yoshida, Masaru; Inokuchi, Hideto; Azuma, Takeshi
2009-01-01
The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n = 4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study.
Helical axis stellarator with noninterlocking planar coils
Reiman, A.; Boozer, A.H.
1984-03-06
The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.
Multi-turn transmit coil to increase b1 efficiency in current source amplification.
Gudino, N; Griswold, M A
2013-04-01
A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. Three different coil designs driven by an on-coil current-mode class-D amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost 3-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated field-effect transistor to the multi-turn coil. In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of field-effect transistors with lower current ratings and lower port capacitances, which could improve the overall performance of the on-coil current source transmit system. Copyright © 2013 Wiley Periodicals, Inc.
Multi-turn transmit coil to increase B1 efficiency in current source amplification
Gudino, N.; Griswold, M.A.
2013-01-01
Purpose A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. Methods Three different coil designs driven by an on-coil current-mode class-D (CMCD) amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor (FET) at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. Results As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost three-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated FET to the multi-turn coil. Conclusion In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of FETs with lower current ratings and lower port capacitances which could improve the overall performance of the on-coil current source transmit system. PMID:23401060
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... Activities; Submission to OMB for Review and Approval; Comment Request; NSPS for Metal Coil Surface Coating... information about the electronic docket, go to http://www.regulations.gov . Title: NSPS for Metal Coil Surface... promulgated on November 1, 1982. These regulations apply to the following surface coating lines in the metal...
New Side-Looking Rogowski Coil Sensor for Measuring Large-Magnitude Fast Impulse Currents
NASA Astrophysics Data System (ADS)
Metwally, I. A.
2015-12-01
This paper presents a new design of a side-looking "flat spiral" self-integrating Rogowski coil that is wound by twin coaxial cable with individual sheath. The coil is tested with different impulse current waveforms up to 7 kA peak value to improve its performance. The coil design is optimized to achieve bandwidth and sensitivity up to 7.854 MHz and 3.623 V/kA, respectively. The coil is calibrated versus two commercial impulse-current measurement devices at different coil-to-wire separations, coil inclination angles, and impulse current waveforms. Distortion of the coil output voltage waveform is examined by using the lumped-element model to optimize the connections of the four cable winding sheaths and the coil termination resistance. Finally, the coil frequency response is investigated to optimize the coil design parameters and achieve the desired bandwidth (large low-frequency time constant), high rate of rise, no overshoot, very small droop, high rate of fall, and no backswing.
NASA Astrophysics Data System (ADS)
Ribe, Neil M.
2004-11-01
A stream of viscous fluid falling from a sufficient height onto a surface forms a series of regular coils. I use a numerical model for a deformable fluid thread to predict the coiling frequency as a function of the thread's radius, the flow rate, the fall height, and the fluid viscosity. Three distinct modes of coiling can occur: viscous (e.g. toothpaste), gravitational (honey falling from a moderate height) and inertial (honey falling from a great height). When inertia is significant, three states of steady coiling with different frequencies can exist over a range of fall heights. The numerically predicted coiling frequencies agree well with experimental measurements in the inertial coiling regime.
McKay Parry, Nicholas; Baker, Mark; Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina
2014-08-01
We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ~5 mm(-1) and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.
Zanjani, Keyhan Sayadpour; Sobhy, Rodina; El-Kaffas, Rania; El-Sisi, Amal
2017-04-01
We studied the safety and efficacy of closing patent ductus arteriosus by Nit-Occlud coils via retrograde approach. This is a retrospective study of 46 attempts to close ducts by this method in two hospitals in Egypt and Iran. Ductus arteriosus was crossed by left or right Judkins or endhole catheters. The coil was delivered via the same catheter or the provided endhole catheter after exchange. The procedure was successful in 42 out of 46 attempts. Fluoroscopy and procedural times were significantly shorter when the catheter was not exchanged. This method is effective and safe for the closure of small ducts. Crossing the duct and delivering the coil by a left Judkins catheter is the easiest and fastest way to perform this method.
Martin, Douglas S; Fathi, Reza; Mitchison, Timothy J; Gelles, Jeff
2010-03-23
As the smallest and simplest motor enzymes, kinesins have served as the prototype for understanding the relationship between protein structure and mechanochemical function of enzymes in this class. Conventional kinesin (kinesin-1) is a motor enzyme that transports cargo toward the plus end of microtubules by a processive, asymmetric hand-over-hand mechanism. The coiled-coil neck domain, which connects the two kinesin motor domains, contributes to kinesin processivity (the ability to take many steps in a row) and is proposed to be a key determinant of the asymmetry in the kinesin mechanism. While previous studies have defined the orientation and position of microtubule-bound kinesin motor domains, the disposition of the neck coiled-coil remains uncertain. We determined the neck coiled-coil orientation using a multidonor fluorescence resonance energy transfer (FRET) technique to measure distances between microtubules and bound kinesin molecules. Microtubules were labeled with a new fluorescent taxol donor, TAMRA-X-taxol, and kinesin derivatives with an acceptor fluorophore attached at positions on the motor and neck coiled-coil domains were used to reconstruct the positions and orientations of the domains. FRET measurements to positions on the motor domain were largely consistent with the domain orientation determined in previous studies, validating the technique. Measurements to positions on the neck coiled-coil were inconsistent with a radial orientation and instead demonstrated that the neck coiled-coil is parallel to the microtubule surface. The measured orientation provides a structural explanation for how neck surface residues enhance processivity and suggests a simple hypothesis for the origin of kinesin step asymmetry and "limping."
Alecci, M; Romanzetti, S; Kaffanke, J; Celik, A; Wegener, H P; Shah, N J
2006-08-01
MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides (1)H and (23)Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the (1)H frequency and a smaller co-planar loop tuned to the (23)Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned (23)Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the (23)Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent (1)H and (23)Na rat brain images showing good SNR ((23)Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ((23)Na: 1.25 x 1.25 x 5mm(3)) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.
NASA Astrophysics Data System (ADS)
Alecci, M.; Romanzetti, S.; Kaffanke, J.; Celik, A.; Wegener, H. P.; Shah, N. J.
2006-08-01
MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides 1H and 23Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the 1H frequency and a smaller co-planar loop tuned to the 23Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned 23Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the 23Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent 1H and 23Na rat brain images showing good SNR ( 23Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ( 23Na: 1.25 × 1.25 × 5 mm 3) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.
Code of Federal Regulations, 2010 CFR
2010-07-01
... coil. Coating application station means that portion of the metal coil surface coating operation where.... Finish coat operation means the coating application station, curing oven, and quench station used to... operation means the application system used to apply an organic coating to the surface of any continuous...
The interaction of pulsed eddy current with metal surface crack for various coils
NASA Astrophysics Data System (ADS)
Yang, Hung-Chi; Tai, Cheng-Chi
2002-05-01
We study the interaction of pulsed eddy current (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil currents will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection.
Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee; Badger, John
2017-01-01
The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecular envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery. PMID:27879387
Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging
NASA Astrophysics Data System (ADS)
Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.
2015-06-01
The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.
Eddy current testing probe with dual half-cylindrical coils
NASA Astrophysics Data System (ADS)
Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong
2000-02-01
We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.
NASA Technical Reports Server (NTRS)
Henderson, R. A.; Schrag, R. L.
1986-01-01
A summary of modeling the electrical system aspects of a coil and metal target configuration resembling a practical electro-impulse deicing (EIDI) installation, and a simple circuit for providing energy to the coil, was presented. The model was developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force between the coil and target, and the impulse delivered to the target. These algorithms were applied to a specific prototype EIDI test system for which the current, magnetic fields near the target surfaces, and impulse were previously measured.
Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro
2016-01-01
1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507
A 1 T, 0. 33 m bore superconducting magnet operating with cryocoolers at 12 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, M.T.G.; Tax, R.B.; ten Kate, H.H.J.
1992-01-01
The application of small cryocoolers for cooling a superconducting magnet at 12 K has important advantages especially for small and medium sized magnets. A simple construction and a helium free magnet system is obtained. The demonstration magnet developed is a six coil system with a volume of 75 L and can be regarded as a 1:3 scale MRI magnet. With a current of 100 A, a 1 T central field is generated with a maximum of 1.9 T in the windings. The magnet consists of six coil formers and five aluminum spacing rings, providing easy service and disassembly. The superconductor,more » a 0.6 mm diameter Nb{sub 3}Sn wire, is wound on the thin walled stainless steel coil formers after which the coil is heat treated and vacuum impregnated. Afterwards, the coil system is assembled and the electrical and thermal connections are made. This paper describes the development of the superconducting magnet.« less
Lemberger, Thomas R.; Loh, Yen Lee
2016-10-27
This article models the dynamics of vortices that are generated in the middle of a thin, large-area, superconducting film by a low-frequency magnetic field from a small coil, motivated by a desire to better understand measurements of the superconducting coherence length made with a two-coil apparatus. When the applied field exceeds a critical value, vortices and antivortices originate near the middle of the film at the radius where the Lorentz force of the screening supercurrent is largest. The Lorentz force from the screening supercurrent pushes vortices toward the center of the film and antivortices outward. In an experiment, vortices aremore » detected as an increase in mutual inductance between drive coil and a coaxial “pickup” coil on the opposite side of the film. Lastly, the model shows that the essential features of measurements are well described when vortex pinning and the attendant hysteresis are included.« less
Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei
2006-04-04
Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.
Miki, Kohei; Masamune, Ken
2015-10-01
Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.
Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A
2013-09-01
Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.
Reinhardt, Ulrike; Lotze, Jonathan; Mörl, Karin; Beck-Sickinger, Annette G; Seitz, Oliver
2015-10-21
Fluorescently labeled proteins enable the microscopic imaging of protein localization and function in live cells. In labeling reactions targeted against specific tag sequences, the size of the fluorophore-tag is of major concern. The tag should be small to prevent interference with protein function. Furthermore, rapid and covalent labeling methods are desired to enable the analysis of fast biological processes. Herein, we describe the development of a method in which the formation of a parallel coiled coil triggers the transfer of a fluorescence dye from a thioester-linked coil peptide conjugate onto a cysteine-modified coil peptide. This labeling method requires only small tag sequences (max 23 aa) and occurs with high tag specificity. We show that size matching of the coil peptides and a suitable thioester reactivity allow the acyl transfer reaction to proceed within minutes (rather than hours). We demonstrate the versatility of this method by applying it to the labeling of different G-protein coupled membrane receptors including the human neuropeptide Y receptors 1, 2, 4, 5, the neuropeptide FF receptors 1 and 2, and the dopamine receptor 1. The labeled receptors are fully functional and able to bind the respective ligand with high affinity. Activity is not impaired as demonstrated by activation, internalization, and recycling experiments.
Minimum maximum temperature gradient coil design.
While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart
2013-08-01
Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.
Kühn, Anna Luisa; Hou, Samuel Y; Puri, Ajit S; Silva, Christine F; Gounis, Matthew J; Wakhloo, Ajay K
2016-06-01
Stent-assisted coil embolization (SACE) is a viable therapeutic approach for wide-neck intracranial aneurysms. However, it can be technically challenging in small cerebral vessels (≤2 mm). To present our experience with stents approved for SACE in aneurysms with small parent arteries. All patients who underwent stent-assisted aneurysm treatment with either a Neuroform or an Enterprise stent device at our institution between June 2006 and October 2012 were identified. Additionally, we evaluated each patient's vascular risk factors, aneurysm characteristics (ruptured vs non-ruptured, incidental finding, recanalized) and follow-up angiography data. A total of 41 patients with 44 aneurysms met our criteria, including 31 women and 10 men. Most of the aneurysms were located in the anterior circulation (75%). Stent placement in vessels 1.2-2 mm in diameter was successful in 93.2%. Thromboembolic complications occurred in 6 cases and vessel straightening was seen in 1 case only. Initial nearly complete to complete aneurysm obliteration was achieved in 88.6%. Six-month follow-up angiography showed coil compaction in three cases, one asymptomatic in-stent stenosis and stent occlusion. Twelve to 20-months' follow-up showed stable coil compaction in two patients compared with previous follow-up, and aneurysm recanalization in two patients. Twenty-four to 36-months' follow-up showed further coil compaction in one of these patients and aneurysm recanalization in a previous case of stable coil compaction on mid-term follow-up. Our results suggest that SACE of aneurysms with small parent vessels is feasible in selected cases and shows good long-term patency rates of parent arteries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Dombrovski, Viatcheslav V.; Driscoll, David I.; Shovkhet, Boris A.
2001-01-01
A superconducting electromechanical rotating (SER) device, such as a synchronous AC motor, includes a superconducting field winding and a one-layer stator winding that may be water-cooled. The stator winding is potted to a support such as the inner radial surface of a support structure and, accordingly, lacks hangers or other mechanical fasteners that otherwise would complicate stator assembly and require the provision of an unnecessarily large gap between adjacent stator coil sections. The one-layer winding topology, resulting in the number of coils being equal to half the number of slots or other mounting locations on the support structure, allows one to minimize or eliminate the gap between the inner radial ends of adjacent straight sections of the stator coilswhile maintaining the gap between the coil knuckles equal to at least the coil width, providing sufficient room for electrical and cooling element configurations and connections. The stator winding may be potted to the support structure or other support, for example, by a one-step VPI process relying on saturation of an absorbent material to fill large gaps in the stator winding or by a two-step process in which small gaps are first filled via a VPI or similar operation and larger gaps are then filled via an operation that utilizes the stator as a portion of an on-site mold.
Ye, Liyang; Cruciani, Davide; Xu, Minfeng; Mine, Susumu; Amm, Kathleen; Schwartz, Justin
2015-01-01
Long lengths of metal/MgB2 composite conductors with high critical current density (Jc), fabricated by the power-in-tube (PIT) process, have recently become commercially available. Owing to its electromagnetic performance in the 20 K – 30 K range and relatively low cost, MgB2 may be attractive for a variety of applications. One of the key issues for magnet design is stability and quench protection, so the behavior of MgB2 wires and magnets must be understood before large systems can emerge. In this work, the stability and quench behavior of several conduction-cooled MgB2 wires are studied. Measurements of the minimum quench energy and normal zone propagation velocity are performed on short samples in a background magnetic field up to 3 T and on coils in self-field and the results are explained in terms of variations in the conductor architecture, electrical transport behavior, operating conditions (transport current and background magnetic field) and experimental setup (short sample vs small coil). Furthermore, one coil is quenched repeatedly with increasing hot-spot temperature until Jc is decreased. It is found that degradation during quenching correlates directly with temperature and not with peak voltage; a safe operating temperature limit of 260 K at the surface is identified. PMID:25883414
NASA Astrophysics Data System (ADS)
Kai, Chen; Sheng, Jin; Wang, Shun
2017-09-01
A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.
Magnetic field transfer device and method
Wipf, S.L.
1990-02-13
A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.
Magnetic field transfer device and method
Wipf, Stefan L.
1990-01-01
A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.
Transmit coil design for Wireless Power Transfer for medical implants.
Lemdiasov, Rosti; Venkatasubramanian, Arun
2017-07-01
A new design approach for the design of transmit coils for Wireless Power Transfer (WPT) is presented. The theoretical formulation involves a figure of merit that has to be maximized to solve for the surface current. Numerical predictions and comparisons with practical measurements for the coil parameters (inductance. resistance) underscore the success of this approach in terms of achieving strong coupling with a receive coil while maintaining low resistance.
Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof
Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.
2017-03-28
A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.
Devanagondi, Rajiv; Latson, Larry; Bradley-Skelton, Sharon; Prieto, Lourdes
2016-08-01
This article describes the efficacy and embolization rates of coil delivery via modified vertebral catheter (MVC) for patent ductus arteriosus (PDA) closure. Various techniques have been devised to enhance coil control and prevent embolization during PDA closure. Since 1995, they have delivered coils via tapered vertebral catheters for improved coil control. Catheterization reports, angiograms, and echocardiograms were reviewed for patients with PDA occlusion via MVC from 2001 to 2014. Residual shunting was determined by angiography and echocardiogram within 24 hr post-procedure. Procedural success was defined as ≤ trivial angiographic and echocardiographic shunt, and no aortic nor LPA obstruction, after final coil delivery. About 125 coil occlusions were attempted in 103 patients. Minimal PDA diameter was 2 (0.6-6) mm. Four coils were removed with a snare/bioptome due to aortic/LPA obstruction following release. Seven were malpositioned while still held by the MVC of which three embolized while attempting withdrawal. Five embolized after full release from the MVC. The embolization rate was 6.4%. Embolizations were more likely in PDAs ≥ 2.5 mm (P < 0.05). Ultimately, 98/103 PDAs were occluded using the MVC. No patient had greater trivial residual shunt or aortic/LPA obstruction for an overall success rate of 95%. For PDAs < 2.5 mm the success rate was 97%. Coil delivery via MVC was safe and effective for small PDAs. While fully controlled release and retrieval devices are now available for PDA closure with lower embolization rates, coil occlusion by MVC should still be considered for small PDAs, especially in resource limited regions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Coil planet centrifugation as a means for small particle separation
NASA Technical Reports Server (NTRS)
Herrmann, F. T.
1983-01-01
The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.
NASA Astrophysics Data System (ADS)
Arvin, T. A.; Cullen, J. L.; Oppo, D. W.; McManus, J. F.
2004-05-01
Many recent paleoceanographic studies have focused on using high sedimentation rate deep-sea sediment sections that have produced records of abrupt climate variability operating at sub-orbital time scales. This is particularly true in the North Atlantic where proxies of changing surface water conditions from high quality sediment records have repeatedly demonstrated that millennial-scale climate change has been the rule rather than the exception over the past 500 kyr, during both glacial and interglacial intervals. Abrupt climate change during warm interglacials is an area of special interest as it may relate more directly to an understanding of recent and future climate change. With this in mind we have focused our efforts on documenting millennial-scale climate change from sediments deposited at ODP Site 980, northeast Atlantic Ocean during Marine Isotope Stage (MIS) 11. We have used unsplit, whole sample >150 micron size fractions from over 200 sediment samples to record changes in the number lithic grains per gram sediment to measure changes in the input of Ice-Rafted Debris (IRD). We then compare our new IRD record to previously generated records of changing surface water conditions during MIS11: variations in oxygen isotopic composition of the surface dwelling planktic foraminifer species N. pachyderma, right coiling and changes in the relative abundance of the polar species N. pachyderma, left coiling. Our MIS11 results are then compared to compatible records from MIS5e and the Holocene. Our detailed IRD record from around 418 kya to 382 kya reveals a remarkable lack of even trace amounts IRD input into sediments at ODP Site 980. IRD concentration abruptly drops and remains 0 to trace amounts per gram as soon as benthic delta O-18 values fall to and remain at < 3.5 per mil at the onset of MIS11. Only three very small amplitude IRD events are observed over the entire 35 kyr interval. The earliest 8 kyr of MIS11 is completely devoid of any IRD, despite the fact that the relative abundance of the polar species N. pachyderma, left coiling, after dropping from near 90% to below 10% at 418 kya, rises to as high as 30% during this early MIS11 time interval. This seems to indicate the influx of non-ice bearing colder polar waters to the region above Site 980 that don't seem to be influencing he N. pachyderma, right coiling isotope record in a simple way. The MIS11 IRD record significantly differs from our records from MIS5e and the Holocene, particularly when we focus on the earliest 12 kyr of MIS11. Both the approximately 10 kyr long MIS5e interval and the last 11 kyr of the Holocene exhibit a series of between 6 and 9 discrete small amplitude increases in IRD against a background of little or no IRD. At the same time relative abundances of N. pachyderma, left coiling are considerably less during both MIS5e and the Holocene when compared to the first 10 kyr of MIS11. The evidence presented here suggests that MIS11 surface water conditions above Site 980 were somewhat different from conditions recorded in sediments from two other warm interglacial intervals, MIS5e and the Holocene and that its use as an ancient analog to modern and future climate may be less straightforward than previously thought.
Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase
Purohit, Rahul; Weichsel, Andrzej; Montfort, William R
2013-01-01
Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ∼150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme-Nitric Oxide Oxygen (H-NOX), Per-ARNT-Sim (PAS), coiled-coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H-NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction. PMID:23934793
Kaplan, Anne R; Brady, Megan R; Maciejewski, Mark W; Kammerer, Richard A; Alexandrescu, Andrei T
2017-03-21
To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1 H- 15 N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13 C rotating frame T 1 relaxation (T 1ρ ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.
Scheiding, Sebastian; Yi, Allen Y; Gebhardt, Andreas; Li, Lei; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas
2011-11-21
We report what is to our knowledge the first approach to diamond turn microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. In recent years ultraprecision machining has been employed to manufacture accurate optical components with 3D structure for beam shaping, imaging and nonimaging applications. As a result, geometries that are difficult or impossible to manufacture using lithographic techniques might be fabricated using small diamond tools with well defined cutting edges. These 3D structures show no rotational symmetry, but rather high frequency asymmetric features thus can be treated as freeform geometries. To transfer the 3D surface data with the high frequency freeform features into a numerical control code for machining, the commonly piecewise differentiable surfaces are represented as a cloud of individual points. Based on this numeric data, the tool radius correction is calculated to account for the cutting-edge geometry. Discontinuities of the cutting tool locations due to abrupt slope changes on the substrate surface are bridged using cubic spline interpolation.When superimposed with the trajectory of the rotationally symmetric substrate the complete microoptical geometry in 3D space is established. Details of the fabrication process and performance evaluation are described. © 2011 Optical Society of America
Signal acquisition module design for multi-channel surface magnetic resonance sounding system
NASA Astrophysics Data System (ADS)
Lin, Tingting; Chen, Wuqiang; Du, Wenyuan; Zhao, Jing
2015-11-01
To obtain a precise 2D/3D image of fissure or karst water, multi-channel magnetic resonance sounding (MRS) systems using edge-to-edge or overlapping receiving coils are needed. Thus, acquiring a nano-volt signal for a small amount of the aquifer and suppressing the mutual coupling between adjacent coils are two important issues for the design of the signal acquisition module in the system. In the present study, we propose to use a passive low pass filter, consisted of a resistance (R) and capacitance (C), to inhibit the mutual coupling effects of the coils. Four low-noise operational amplifiers LT1028, OPA124, AD745, and OP27 were compared with respect to achieving the lowest system noise. As a result, 3 pieces of LT1028 were chosen and connected in parallel to serve as preamplifier, with a sensitivity of 1.4 nV/√Hz at 2 kHz. Experimental results are presented for 2D MRS groundwater investigations conducted in the suburb of Changchun, China. The inversion result is consistent with the result of drilling log, suggesting that the signal acquisition module is well developed.
Numerical characterization of a flexible circular coil for magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.
2012-10-01
Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.
Nwafor, I A; Eze, J C; Aminu, M B
2011-01-01
Traumatic diaphragmatic rupture through the central tendon with herniation of the stomach and coils of small bowel into the pericardial cavity. Case note of a patient managed for traumatic diaphragmatic rupture through the central tendon with herniation of the stomach and coils of small bowel into the pericardial cavity was used with a review of relevant literature. A 49-year old civil engineer who presented with 2-year history of easy fatigability and palpitations as well as a 6-month history of hypertension and was initially managed as a case dilated cardiomyopathy to rule out incipient CCF secondary to hypertension, was evaluated and found to have chronic diaphragmatic hernia through the central tendon with evisceration of the stomach and coils of the small bowel into the pericardial cavity. Though there was history of motor vehicle crash preceding the development of the symptoms, but the long history of effort dyspnoea and palpitations added to enlarged cardiac silhouette on posterior anterior chest x-ray, a diagnostic challenge was posed which was resolved by thoracoabdominal CT scan. Patient had left sided posteriorlateral thoracotomy via 7h intercostal space followed with reduction of thq stomach and coils of small bowel after careful adhesiolysis and repair of the defect in double layers. High index of suspicion is very important in the diagnosis of diaphragmatic central tendon injury considering the rarity of the injury and diagnostic challenges it poses in chronic form. However, where the facilities are available, CT scan and 2-D echo will most of the time clinch the diagnosis; also is upper gastrointestinal series.
Flywheel induction motor-generator for magnet power supply in small fusion device.
Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S
2016-04-01
A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).
Flywheel induction motor-generator for magnet power supply in small fusion device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatakeyma, S., E-mail: hatakeyama.shoichi@torus.nr.titech.ac.jp; Yoshino, F.; Tsutsui, H.
2016-04-15
A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10–100 ms).
Improving MRI surface coil decoupling to reduce B1 distortion
NASA Astrophysics Data System (ADS)
Larson, Christian
As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.
NASA Astrophysics Data System (ADS)
Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu
When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.
Proton-decoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans.
Bottomley, P A; Hardy, C J; Roemer, P B; Mueller, O M
1989-12-01
Spatially localized, natural abundance, carbon (13C) NMR spectroscopy has been combined with proton (1H) decoupling and nuclear Overhauser enhancement to improve 13C sensitivity up to five-fold in the human leg, liver, and heart. Broadhand-decoupled 13C spectra were acquired in 1 s to 17 min with a conventional 1.5-T imaging/spectroscopy system, an auxiliary 1H decoupler, an air-cooled dual-coil coplanar surface probe, and both depth-resolved surface coil spectroscopy (DRESS) and one-dimensional phase-encoding gradient NMR pulse sequences. The surface coil probe comprised circular and figure-eight-shaped coils to eliminate problems with mutual coupling of coils at high decoupling power levels applied during 13C reception. Peak decoupler RF power deposition in tissue was computed numerically from electromagnetic theory assuming a semi-infinite plane of uniform biological conductor. Peak values at the surface were calculated at 4 to 6 W/kg in any gram of tissue for each watt of decoupler power input excluding all coil and cable losses, warning of potential local RF heating problems in these and related experiments. The average power deposition was about 9 mW/kg per watt input, which should present no systemic hazard. At 3 W input, human 13C spectra were decoupled to a depth of about 5 cm while some Overhauser enhancement was sustained up to about 3 cm depth, without ill effect. The observation of glycogen in localized natural abundance 13C spectra of heart and muscle suggests that metabolites in the citric acid cycle should be observable noninvasively using 13C-labeled substrates.
Measurement of a Conduction Cooled Nb3Sn Racetrack Coil
NASA Astrophysics Data System (ADS)
Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.
2017-12-01
Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.
Deep brain transcranial magnetic stimulation using variable "Halo coil" system
NASA Astrophysics Data System (ADS)
Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.
2015-05-01
Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.
Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B.; Merkle, Hellmut; Silva, Afonso C.
2014-01-01
Functional Magnetic Resonance Imaging (fMRI) has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a 4-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low input impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. PMID:23696219
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
1999-11-01
Modern stellarators are designed using J. Nuehrenberg’s method of varying Fourier coefficients in the shape of the plasma boundary to maximize a target function. The matrix of second derivatives of the target function at the optimum determines a quality matrix. This matrix gives the degradation in the quality of the configuration as the normal magnetic field is varied on a control surface, which lies on or outside the plasma surface. The task is finding saddle coils that produce the desired configuration in the presence of a given toroidal field. An eigenvector of the quality matrix can be important for two reasons: (1) the normal field that must be produced by the saddles is large or (2) the eigenvalue is large (an island-causing resonant perturbation). The rank of the important part of the quality matrix is the number of important eigenvectors. The current in each saddle coil produces a normal field on the control surface, which can be described by an inductance matrix. The relevant part of the inductance matrix has large eigenvalues. The coils can produce the configuration if the rank of the important part of the quality matrix and its product with the relevant part of the inductance matrix are the same. Existing coil design codes, pioneered by P. Merkel, approximate the quality matrix by the unit matrix. Stellarator flexibility could be enhanced by using a more realistic quality matrix and by using trim coils to balance large eigenvalues.
Ybe, Joel A; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-03-16
Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.
The effect of scleral search coil lens wear on the eye.
Murphy, P J; Duncan, A L; Glennie, A J; Knox, P C
2001-03-01
Scleral search coils are used to measure eye movements. A recent abstract suggests that the coil can affect the eye by decreasing visual acuity, increasing intraocular pressure, and damaging the corneal and conjunctival surface. Such findings, if repeated in all subjects, would cast doubt on the credibility of the search coil as a reliable investigative technique. The aim of this study was to reassess the effect of the scleral search coil on visual function. Six volunteer subjects were selected to undergo coil wear and baseline measurements were taken of logMAR visual acuity, non-contact tonometry, keratometry, and slit lamp examination. Four drops of 0.4% benoxinate hydrochloride were instilled before insertion of the lens by an experienced clinician. The lens then remained on the eye for 30 minutes. Measurements of the four ocular health parameters were repeated after 15 and 30 minutes of lens wear. The lens was then removed and the health of the eye reassessed. No obvious pattern of change was found in logMAR visual acuity, keratometry, or intraocular pressure. The lens did produce changes to the conjunctival and corneal surfaces, but this was not considered clinically significant. Search coils do not appear to cause any significant effects on visual function. However, thorough prescreening of subjects and post-wear checks should be carried out on all coil wearers to ensure no adverse effects have been caused.
MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES
Josephson, V.
1960-01-26
A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.
El-Saiedi, Sonia A; El Sisi, Amal M; Mandour, Rodina Sobhy; Abdel-Aziz, Doaa M; Attia, Wael A
2017-01-01
Aims: In this study, we examined the differences in cost and effectiveness of various devices used for the closure of small to medium sized patent ductus arteriosus (PDA). Setting and Design: We retrospectively studied 116 patients who underwent closure of small PDAs between January 2010 and January 2015. Subjects and Methods: Three types of devices were used: the Amplatzer duct occluder (ADO) II, the cook detachable coil and the Nit Occlud coil (NOC). Immediate and late complications were recorded and patients were followed up for 3 months after the procedure. Statistical Methods: All statistical calculations were performed using Statistical Package for the Social Science software. P <0.05 were considered significant. Results: We successfully deployed ADO II devices in 33 out of 35 cases, cook detachable coils in 36 out of 40 cases and NOCs in 38 out of 41 cases. In the remaining nine cases, the first device was unsuitable or embolized and required retrieval and replacement with another device. Eleven patients (9.5%) developed vascular complications and required anticoagulation therapy. Patients who had hemolysis or vascular complications remained longer in the intensive care unit, with consequently higher total cost (P = 0.016). Also, the need for a second device increased the cost per patient. Conclusions: The cook detachable coil is the most cost-effective device for closure of small-to medium-sized PDAs. Calculations of the incremental cost-effectiveness. (ICE) revealed that the Cook detachable coil had less ICE than the ADO II and NOC. The NOC was more effective with fewer complications. PMID:28566822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee
The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecularmore » envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery.« less
Magnetic reconnection launcher
Cowan, Maynard
1989-01-01
An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.
Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu
2014-10-01
In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.
Electric generator using a triangular diamagnetic levitating rotor system.
Ho, Joe Nhut; Wang, Wei-Chih
2009-02-01
This paper describes a feasibility study of creating a small low friction and low maintenance generator using a diamagnetically stabilized levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that generates emf by passing over coils placed below the rotor. Equations were developed to predict the generated emf from coils with two different coil geometries. Additionally, this paper provides a method for estimating optimal coil size and position for the planar rotor presented for both segmental arc and circular coils to obtain maximum power output. Experiments demonstrated that the emf generated in the coils matches well with the predicted wave forms for each case, and the optimization theory gives good prediction to outcome of induced waveforms. For the segmental arc coil design, the induced emf was 1.7 mV at a radial frequency of 21.8 rad/s. For the circular coil design, the emf was 1.25 mV at a radial frequency of 28.1 rad/s.
Analyses and tests for design of an electro-impulse de-icing system
NASA Technical Reports Server (NTRS)
Zumwalt, G. W.; Schrag, R. L.; Bernhart, W. D.; Friedberg, R. A.
1985-01-01
De-icing of aircraft by using the electro-magnetic impulse phenomenon was proposed and demonstrated in several European countries. However, it is not available as a developed system due to lack of research on the basic physical mechanisms and necessary design parameters. The de-icing is accomplished by rapidly discharging high voltage capacitors into a wire coil rigidly supported just inside the aircraft skin. Induced eddy currents in the skin create a repulsive force resulting in a hammer-like force which cracks, de-bonds, and expels ice on the skin surface. The promised advantages are very low energy, high reliability of de-icing, and low maintenance. Three years of Electo-Impulse De-icing (EIDI) research is summarized and the analytical studies and results of testing done in the laboratory, in the NASA Icing Research Tunnel, and in flight are presented. If properly designed, EIDI was demonstrated to be an effective and practical ice protection system for small aircraft, turbojet engine inlets, elements of transport aircraft, and shows promise for use on helicopter rotor blades. Included are practical techniques of fabrication of impulse coils and their mountings. The use of EIDI with nonmetallic surface materials is also described.
Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application
NASA Astrophysics Data System (ADS)
Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi
2015-11-01
The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.
Bidinosti, C P; Kravchuk, I S; Hayden, M E
2005-11-01
We provide an exact expression for the magnetic field produced by cylindrical saddle-shaped coils and their ideal shield currents in the low-frequency limit. The stream function associated with the shield surface current is also determined. The results of the analysis are useful for the design of actively shielded radio-frequency (RF) coils. Examples pertinent to very low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are presented and discussed.
Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin
2018-01-01
The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.
Chittiboina, Prashant; Talagala, S Lalith; Merkle, Hellmut; Sarlls, Joelle E; Montgomery, Blake K; Piazza, Martin G; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R; Oldfield, Edward H; Koretsky, Alan P; Butman, John A
2016-12-01
OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra-high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm 3 and 0.15 × 0.15 × 0.30 mm 3 , respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary adenomas and identify microscopic invasion of the dura or cavernous sinus.
Chittiboina, Prashant; Talagala, S. Lalith; Merkle, Hellmut; Sarlls, Joelle E.; Montgomery, Blake K.; Piazza, Martin G.; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R.; Oldfield, Edward H.; Koretsky, Alan P.; Butman, John A.
2016-01-01
OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing’s disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra–high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm3 and 0.15 × 0.15 × 0.30 mm3, respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary adenomas and identify microscopic invasion of the dura or cavernous sinus. PMID:26991390
West, Dava S.; Sheehan, Michael S.; Segeleon, Patrick K.; Dutch, Rebecca Ellis
2005-01-01
Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt α-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion. PMID:15650180
Segmented surface coil resonator for in vivo EPR applications at 1.1GHz.
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L
2009-05-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.
Segmented surface coil resonator for in vivo EPR applications at 1.1 GHz
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L.
2010-01-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18 mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20 mm. PMID:19268615
Serés Roig, Eulalia; Magill, Arthur W; Donati, Guillaume; Meyerspeer, Martin; Xin, Lijing; Ipek, Ozlem; Gruetter, Rolf
2015-02-01
Carbon-13 magnetic resonance spectroscopy ((13) C-MRS) is challenging because of the inherent low sensitivity of (13) C detection and the need for radiofrequency transmission at the (1) H frequency while receiving the (13) C signal, the latter requiring electrical decoupling of the (13) C and (1) H radiofrequency channels. In this study, we added traps to the (13) C coil to construct a quadrature-(13) C/quadrature-(1) H surface coil, with sufficient isolation between channels to allow simultaneous operation at both frequencies without compromise in coil performance. Isolation between channels was evaluated on the bench by measuring all coupling parameters. The quadrature mode of the quadrature-(13) C coil was assessed using in vitro (23) Na gradient echo images. The signal-to-noise ratio (SNR) was measured on the glycogen and glucose resonances by (13) C-MRS in vitro, compared with that obtained with a linear-(13) C/quadrature-(1) H coil, and validated by (13) C-MRS in vivo in the human calf at 7T. Isolation between channels was better than -30 dB. The (23) Na gradient echo images indicate a region where the field is strongly circularly polarized. The quadrature coil provided an SNR enhancement over a linear coil of 1.4, in vitro and in vivo. It is feasible to construct a double-quadrature (13) C-(1) H surface coil for proton decoupled sensitivity enhanced (13) C-NMR spectroscopy in humans at 7T. © 2014 Wiley Periodicals, Inc.
Small Intracranial Aneurysm Treatment Using Target (®) Ultrasoft (™) Coils.
Jindal, Gaurav; Miller, Timothy; Iyohe, Moronke; Shivashankar, Ravi; Prasad, Vikram; Gandhi, Dheeraj
2016-06-01
The introduction of small, soft, complex-shaped microcoils has helped facilitate the endovascular treatment of small intracranial aneurysms (IAs) over the last several years. Here, we evaluate the initial safety and efficacy of treating small IAs using only Target(®) Ultrasoft(™) coils. A retrospective review of a prospectively maintained clinical database at a single, high volume, teaching hospital was performed from September 2011 to May 2015. IAs smaller than or equal to 5.0 mm in maximal dimension treated with only Target(®) Ultrasoft(™) coils were included. A total of 50 patients with 50 intracranial aneurysms were included. Subarachnoid hemorrhage from index aneurysm rupture was the indication for treatment in 23 of 50 (46%) cases, and prior subarachnoid hemorrhage (SAH) from another aneurysm was the indication for treatment in eight of 50 (16%) cases. The complete aneurysm occlusion rate was 70% (35/50), the minimal residual aneurysm rate was 14% (7/50), and residual aneurysm rate was 16% (8/50). One intraoperative aneurysm rupture occurred. Three patients died during hospitalization from clinical sequelae of subarachnoid hemorrhage. Follow-up at a mean of 13.6 months demonstrated complete aneurysm occlusion in 75% (30/40) of cases, near complete occlusion in 15% (6/40) of cases, and residual aneurysm in 10% (4/40) of cases, all four of which were retreated. Our initial results using only Target(®) Ultrasoft(™) coils for the endovascular treatment of small intracranial aneurysms demonstrate initial excellent safety and efficacy profiles.
A high-precision miniaturized rotating coil transducer for magnetic measurements
Arpaia, P.; Buzio, M.; De Oliveira, R.; ...
2018-02-08
A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten timesmore » better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are also illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.« less
A high-precision miniaturized rotating coil transducer for magnetic measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P.; Buzio, M.; De Oliveira, R.
A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten timesmore » better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are also illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.« less
Thermoplastic welding apparatus and method
Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James
2017-03-07
A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.
Robust peptide bundles designed computationally
NASA Astrophysics Data System (ADS)
Haider, Michael; Zhang, Huixi Violet; Kiick, Kristi; Saven, Jeffery; Pochan, Darrin
Peptides are ideal candidates for the design and controlled assembly of nanoscale materials due to their potential to assemble with atomistic precision as in biological systems. Unlike other work utilizing natural proteins and structural motifs, this effort is completely de novo in order to build arbitrary structures with desired size for the specific placement and separation of functional groups. We have successfully computationally designed soluble, coiled coil, peptide, tetramer bundles which are robust and stable. Using circular dichroism we demonstrated the thermal stability of these bundles as well as confirmed their alpha helical and coiled coil nature. The stability of these bundles arises from the computational design of the coiled coil interior core residues. The coiled coil tetramer was confirmed to be the dominant species by analytical ultra-centrifugation sedimentation studies. We also established how these bundles behave in solution using small angle neutron scattering. The form factor of the bundles is well represented by a cylinder model and their behavior at high concentrations is modeled using a structure factor for aggregates of the cylinders. All of these experiments support our claim that the designed coiled coil bundles were achieved in solution. NSF DMREF 1234161.
Electromagnetic Meissner-Effect Launcher
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1990-01-01
Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.
Vision-based surface defect inspection for thick steel plates
NASA Astrophysics Data System (ADS)
Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo
2017-05-01
There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.
Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field
Takahashi, Hironori
2004-02-10
A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.
New head gradient coil design and construction techniques.
Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A
2014-05-01
To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods. The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. The ability to adapt an electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. Copyright © 2013 Wiley Periodicals, Inc.
Impedance of curved rectangular spiral coils around a conductive cylinder
NASA Astrophysics Data System (ADS)
Burke, S. K.; Ditchburn, R. J.; Theodoulidis, T. P.
2008-07-01
Eddy-current induction due to a thin conformable coil wrapped around a long conductive cylinder is examined using a second-order vector potential formalism. Compact closed-form expressions are derived for the self- and mutual impedances of curved rectangular spiral coils (i) in free space and (ii) when wrapped around the surface of the cylindrical rod. The validity of these expressions was tested against the results of a systematic series of experiments using a cylindrical Al-alloy rod and conformable coils manufactured using flexible printed-circuit-board technology. The theoretical expressions were in very good agreement with the experimental measurements. The significance of the results for eddy-current nondestructive inspection using flexible coils and flexible coil arrays is discussed.
Ybe, Joel A.; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-01-01
Summary Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here we report the X-ray structure of the coiled-coil domain of HIP1 from 482–586 that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel to S1 and S2. We present structural evidence supporting a role for S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast. PMID:17257618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, V.K.; Patel, A.S.; Sharma, A.
This paper presents the design of magnetic coil for relativistic magnetron (RM) for LIA (Linear Induction Accelerator)-400 systems. Vacuum improves the efficiency of RM for HPM generation. Magnetic field in RM is very critical parameter and should be nearly constant in the active region. Typical coils are helical in nature, which have multi turns of varying radius. Magnetic field calculation of such coils with basic equations of Helmholtz coils or solenoid with mean radius can only give estimation. Field computational softwares like CST require small mesh size and boundary at very far so consume large memory and take very muchmore » time. Helical coils are simplified such that the basic law of magnetic field calculation i.e. Bio-Savart law can be applied with less complexity. Pairs of spiral coils have been analyzed for magnetic field and Lorenz's force. The approach is field experimentally validated. (author)« less
Differential-Coil Eddy-Current Material Sorter
NASA Technical Reports Server (NTRS)
Nummelin, J.; Buckley, D.
1985-01-01
Small metal or other electrically conductive parts of same shape but different composition quickly sorted with differential-coil eddy-current sorter. Developed to distinguish between turbine blades of different alloys, hardnesses, and residual stress, sorter generally applicable to parts of simple and complex shape.
The effect of scleral search coil lens wear on the eye
Murphy, P.; Duncan, A.; Glennie, A.; Knox, P.
2001-01-01
BACKGROUND/AIM—Scleral search coils are used to measure eye movements. A recent abstract suggests that the coil can affect the eye by decreasing visual acuity, increasing intraocular pressure, and damaging the corneal and conjunctival surface. Such findings, if repeated in all subjects, would cast doubt on the credibility of the search coil as a reliable investigative technique. The aim of this study was to reassess the effect of the scleral search coil on visual function. METHODS—Six volunteer subjects were selected to undergo coil wear and baseline measurements were taken of logMAR visual acuity, non-contact tonometry, keratometry, and slit lamp examination. Four drops of 0.4% benoxinate hydrochloride were instilled before insertion of the lens by an experienced clinician. The lens then remained on the eye for 30 minutes. Measurements of the four ocular health parameters were repeated after 15 and 30 minutes of lens wear. The lens was then removed and the health of the eye reassessed. RESULTS—No obvious pattern of change was found in logMAR visual acuity, keratometry, or intraocular pressure. The lens did produce changes to the conjunctival and corneal surfaces, but this was not considered clinically significant. CONCLUSION—Search coils do not appear to cause any significant effects on visual function. However, thorough prescreening of subjects and post-wear checks should be carried out on all coil wearers to ensure no adverse effects have been caused. PMID:11222341
Quick, Harald H; Zenge, Michael O; Kuehl, Hilmar; Kaiser, Gernot; Aker, Stephanie; Massing, Sandra; Bosk, Silke; Ladd, Mark E
2005-02-01
Active instrument visualization strategies for interventional MR angiography (MRA) require vascular instruments to be equipped with some type of radiofrequency (RF) coil or dipole RF antenna for MR signal detection. Such visualization strategies traditionally necessitate a connection to the scanner with either coaxial cable or laser fibers. In order to eliminate any wire connection, RF resonators that inductively couple their signal to MR surface coils were implemented into catheters to enable wireless active instrument visualization. Instrument background to contrast-to-noise ratio was systematically investigated as a function of the excitation flip angle. Signal coupling between the catheter RF coil and surface RF coils was evaluated qualitatively and quantitatively as a function of the catheter position and orientation with regard to the static magnetic field B0 and to the surface coils. In vivo evaluation of the instruments was performed in interventional MRA procedures on five pigs under MR guidance. Cartesian and projection reconstruction TrueFISP imaging enabled simultaneous visualization of the instruments and vascular morphology in real time. The implementation of RF resonators enabled robust visualization of the catheter curvature to the very tip. Additionally, the active visualization strategy does not require any wire connection to the scanner and thus does not hamper the interventionalist during the course of an intervention.
Lim, Jeong Wook; Lee, Jeongjun; Cho, Young Dae
2017-08-08
Incompletely occluded aneurysms after coil embolization are subject to recanalization but occasionally progress to a totally occluded state. Deployed stents may actually promote thrombosis of coiled aneurysms. We evaluated outcomes of small aneurysms (<10 mm) wherein saccular filling with contrast medium was evident after stent-assisted coiling, assessing factors implicated in subsequent progressive occlusion. Between September 2012 and June 2016, a total of 463 intracranial aneurysms were treated by stent-assisted coil embolization. Of these, 132 small saccular aneurysms displayed saccular filling with contrast medium in the immediate aftermath of coiling. Progressive thrombosis was defined as complete aneurysmal occlusion at the 6‑month follow-up point. Rates of progressive occlusion and factors predisposing to this were analyzed via binary logistic regression. In 101 (76.5%) of the 132 intracranial aneurysms, complete occlusion was observed in follow-up imaging studies at 6 months. Binary logistic regression analysis indicated that progressive occlusion was linked to smaller neck diameter (odds ratio [OR] = 1.533; p = 0.003), hyperlipidemia (OR = 3.329; p = 0.036) and stent type (p = 0.031). The LVIS stent is especially susceptible to progressive thrombosis, more so than Neuroform (OR = 0.098; p = 0.008) or Enterprise (OR = 0.317; p = 0.098) stents. In 57 instances of progressive thrombosis, followed for ≥12 months (mean 25.0 ± 10.7 months), 56 (98.2%) were stable, with minor recanalization noted once (1.8%) and no major recanalization. Aneurysms associated with smaller diameter necks, hyperlipidemic states and LVIS stent deployment may be inclined to possible thrombosis, if occlusion immediately after stent-assisted coil embolization is incomplete. In such instances, excellent long-term durability is anticipated.
Increased dose near the skin due to electromagnetic surface beacon transponder.
Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent
2015-05-08
The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.
Optimized Geometry for Superconducting Sensing Coils
NASA Technical Reports Server (NTRS)
Eom, Byeong Ho; Pananen, Konstantin; Hahn, Inseob
2008-01-01
An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity.
NASA Astrophysics Data System (ADS)
Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori
In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.
Patterning of Spiral Structure on Optical Fiber by Focused-Ion-Beam Etching
NASA Astrophysics Data System (ADS)
Mekaru, Harutaka; Yano, Takayuki
2012-06-01
We produce patterns on minute and curved surfaces of optical fibers, and develop a processing technology for fabricating sensors, antennas, electrical circuits, and other devices on such patterned surfaces by metallization. A three-dimensional processing technology can be used to fabricate a spiral coil on the surface of cylindrical quartz materials, and then the microcoils can also be applied to capillaries of micro-fluid devices, as well as to receiver coils connected to a catheter and an endoscope of nuclear magnetic resonance imaging (MRI) systems used in imaging blood vessels. To create a spiral line pattern with a small linewidth on a full-circumference surface of an optical fiber, focused-ion-beam (FIB) etching was employed. Here, a simple rotation stage comprising a dc motor and an LR3 battery was built. However, during the development of a prototype rotation stage before finalizing a large-scale remodelling of our FIB etching system, a technical problem was encountered where a spiral line could not be processed without running into breaks and notches in the features. It turned out that the problem was caused by axis blur resulting from an eccentric spinning (or wobbling) of the axis of the fiber caused by its unrestrained free end. The problem was solved by installing a rotation guide and an axis suppression device onto the rotation stage. Using this improved rotation stage. we succeeded in the seamless patterning of 1-µm-wide features on the full-circumference surface of a 250-µm-diameter quartz optical fiber (QOF) by FIB etching.
Three Element Phased Array Coil for Imaging of Rat Spinal Cord at 7T
Mogatadakala, Kishore V.; Bankson, James A.; Narayana, Ponnada A.
2008-01-01
In order to overcome some of the limitations of an implantable coil, including its invasive nature and limited spatial coverage, a three element phased array coil is described for high resolution magnetic resonance imaging (MRI) of rat spinal cord. This coil allows imaging both thoracic and cervical segments of rat spinal cord. In the current design, coupling between the nearest neighbors was minimized by overlapping the coil elements. A simple capacitive network was used for decoupling the next neighbor elements. The dimensions of individual coils in the array were determined based on the signal-to-noise ratio (SNR) measurements performed on a phantom with three different surface coils. SNR measurements on a phantom demonstrated higher SNR of the phased array coil relative to two different volume coils. In-vivo images acquired on rat spinal cord with our coil demonstrated excellent gray and white matter contrast. To evaluate the performance of the phased array coil under parallel imaging, g-factor maps were obtained for two different acceleration factors of 2 and 3. These simulations indicate that parallel imaging with acceleration factor of 2 would be possible without significant image reconstruction related noise amplifications. PMID:19025892
Ultrasound generation with high power and coil only EMAT concepts.
Rueter, Dirk; Morgenstern, Tino
2014-12-01
Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Baker, W.R.; Hartwig, A.
1962-09-25
A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)
Superconductive imaging surface magnetometer
Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.
1991-01-01
An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.
Development of the design concepts for a medium-scale wind tunnel magnetic suspension system
NASA Technical Reports Server (NTRS)
Humphris, R. R.; Zapata, R. N.
1982-01-01
The magnitude of AC losses from a superconducting coil strongly indicates that the predicted scaling lawa are valid. The stainless steel bands around the test coil were the source of additional helium boiloff due to a transformer action and, hence, caused erroneously high AC loss measurements in the first run. However, removal of these bands for the second run produced data which are consistent with previous results on small scale multifilamentary superconducting coils.
Rugged, portable tungsten coil atomic emission spectrometer.
Gu, Jiyan; Oliveira, Silvana R; Donati, George L; Gomes Neto, José Anchieta; Jones, Bradley T
2011-04-01
Tungsten coil atomic emission spectrometry is an ideal technique for field applications because of its simplicity, low cost, low power requirement, and independence from cooling systems. A new, portable, compact design is reported here. The tungsten coil is extracted from an inexpensive 24 V, 250 W commercial light bulb. The coil is housed in a small, aluminum cell. The emission signal exits from a small aperture in the cell, while the bulk of the blackbody emission from the tungsten coil is blocked. The resulting spectra exhibit extremely low background signals. The atomization cell, a single lens, and a hand-held charge coupled device (CCD) spectrometer are fixed on a 1 × 6 × 30 cm ceramic base. The resulting system is robust and easily transported. A programmable, miniature 400 W solid-state constant current power supply controls the temperature of the coil. Fifteen elements are determined with the system (Ba, Cs, Li, Rb, Cr, Sr, Eu, Yb, Mn, Fe, Cu, Mg, V, Al, and Ga). The precision ranges from 4.3% to 8.4% relative standard deviation for repetitive measurements of the same solution. Detection limits are in the 0.04 to 1500 μg/L range. Accuracy is tested using standard reference materials for polluted water, peach leaves, and tomato leaves. For those elements present above the detection limit, recoveries range from 72% to 147%.
Lee, Mihwa; Sadowska, Agata; Bekere, Indra; Ho, Diwei; Gully, Benjamin S.; Lu, Yanling; Iyer, K. Swaminathan; Trewhella, Jill; Fox, Archa H.; Bond, Charles S.
2015-01-01
SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structure (over 265 Å long) formed by an unusual anti-parallel coiled-coil that results in an infinite linear polymer of SFPQ dimers within the crystals. Small-angle X-ray scattering and transmission electron microscopy experiments show that polymerization is reversible in solution and can be templated by DNA. We demonstrate that the ability to polymerize is essential for the cellular functions of SFPQ: disruptive mutation of the coiled-coil interaction motif results in SFPQ mislocalization, reduced formation of nuclear bodies, abrogated molecular interactions and deficient transcriptional regulation. The coiled-coil interaction motif thus provides a molecular explanation for the functional aggregation of SFPQ that directs its role in regulating many aspects of cellular nucleic acid metabolism. PMID:25765647
Hessian matrix approach for determining error field sensitivity to coil deviations
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.; Song, Yuntao; Wan, Yuanxi
2018-05-01
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code (Zhu et al 2018 Nucl. Fusion 58 016008) is utilized to provide fast and accurate calculations of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.
New head gradient coil design and construction techniques
Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A
2013-01-01
Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485
Torus CLAS12-Superconducting Magnet Quench Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashikhin, V. S.; Elouadhiri, L.; Ghoshal, P. K.
The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensionsmore » and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.« less
Gondim Teixeira, P A; Bravetti, M; Hossu, G; Lecocq, S; Petit, D; Loeuille, D; Blum, A
2017-12-01
To evaluate the impact of coil design and motion-resistant sequences on the quality of sacroiliac magnetic resonance imaging (MRI) examination in patients with spondyloarthropathy. One hundred and twenty-one patients with suspected sacroiliitis and referred for MRI of the sacroiliac joints were retrospectively evaluated with MRI at 3-Tesla. There were 78 women and 43 men with a mean age of 36.7±11.5 (SD) years (range: 15.8-78.4 years). Conventional and motion-resistant fat-saturated fast-spin echo T2-weighted sequences were performed with two different coils. Image quality was subjectively evaluated by two independent readers (R1 and R2) using a four-point scale. Confidence in the identification of bone marrow edema pattern (BMEP) was also evaluated subjectively using a three-point scale. Phased array body coil yielded improved image quality compared to surface coil (14.1 to 30.4% for R1 and 14.6 to 25.7% for R2; P<0.0001). The impact of the sequence type on quality was also statistically significant (P=0.0046). BMEP was identified in 40 patients and best inter-reader agreement was obtained using the combination of phased-array body coil with motion-resistant T2-weighted sequence (kappa 0.990). The smallest number of indeterminate BMEP zones was seen on MRI set acquired with the phased-array body coil and motion-resistant T2-weighted sequence. Phased array body coil and motion-resistant T2-weighted sequences perform better than surface coil and conventional T2-weighted sequences for the evaluation of sacroiliac joints, increasing confidence in the identification of BMEP. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Magnetic reconnection launcher
Cowan, M.
1987-04-06
An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevly, III, Alex J.; McConkey, Joshua S.
In a telemetry system (100) in a high-temperature environment of a combustion turbine engine (10), a wireless power-receiving coil assembly (116) may be affixed to a movable component (104) of the turbine engine. Power-receiving coil assembly (116) may include a radio-frequency transparent housing (130) having an opening (132). A lid (134) may be provided to close the opening of the housing. Lid (134) may be positioned to provide support against a surface (120) of the movable component. An induction coil (133) is disposed in the housing distally away from the lid and encased between a first layer (136) and amore » last layer (140) of a potting adhesive. Lid (134) is arranged to provide vibrational buffering between the surface (120) of the movable component (104) and the layers encasing the induction coil.« less
Novel transcranial magnetic stimulation coil for mice
NASA Astrophysics Data System (ADS)
March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David
2014-03-01
Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.
Optimization of Coil Element Configurations for a Matrix Gradient Coil.
Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim
2018-01-01
Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.
In vitro study of near-wall flow in a cerebral aneurysm model with and without coils.
Goubergrits, L; Thamsen, B; Berthe, A; Poethke, J; Kertzscher, U; Affeld, K; Petz, C; Hege, H-C; Hoch, H; Spuler, A
2010-09-01
Coil embolization procedures change the flow conditions in the cerebral aneurysm and, therefore, in the near-wall region. Knowledge of these flow changes may be helpful to optimize therapy. The goal of this study was to investigate the effect of the coil-packing attenuation on the near-wall flow and its variability due to differences in the coil structure. An enlarged transparent model of an ACA aneurysm was fabricated on the basis of CT angiography. The near-wall flow was visualized by using a recently proposed technique called Wall-PIV. Coil-packing attenuation of 10%, 15%, and 20% were investigated and compared with an aneurysmal flow without coils. Then the flow variability due to the coil introduction was analyzed in 10 experiments by using a packing attenuation of 15%. A small packing attenuation of 10% already alters the near-wall flow significantly in a large part of the aneurysmal sac. These flow changes are characterized by a slow flow with short (interrupted) path lines. An increased packing attenuation expands the wall area exposed to the altered flow conditions. This area, however, depends on the coil position and/or on the 3D coil structure in the aneurysm. To our knowledge, this is the first time the near-wall flow changes caused by coils in an aneurysm model have been visualized. It can be concluded that future hydrodynamic studies of coil therapy should include an investigation of the coil structure in addition to the coil-packing attenuation.
Karaman, Kutlay; Dokdok, A Murat; Karadeniz, Oktay; Ceylan, Cemile; Engin, Kayıhan
2015-01-01
To present our experience with placing endovascular coils in pulmonary arteries used as a fiducial marker for CyberKnife therapy and to describe the technical details and complications of the procedure. Between June 2005 and September 2013, 163 patients with primary or secondary lung malignancies, referred for fiducial placement for stereotactic radiosurgery, were retrospectively reviewed. Fourteen patients (9 men, 5 women; mean age, 70 years) with a history of pneumonectomy (n = 3), lobectomy (n = 3) or with severe cardiopulmonary co-morbidity (n = 8) underwent coil (fiducial marker) placement. Pushable or detachable platinum micro coils (n = 49) 2-3 mm in size were inserted through coaxial microcatheters into a small distal pulmonary artery in the vicinity of the tumor under biplane angiography/fluoroscopy guidance. Forty nine coils with a median number of 3 coils per tumor were placed with a mean tumor-coil distance of 2.7 cm. Forty three (87.7%) of 49 coils were successfully used as fiducial markers. Two coils could not be used due to a larger tumor-coil distance (> 50 mm). Four coils were in an acceptable position but their non-coiling shape precluded tumor tracking for CyberKnife treatment. No major complications needing further medication other than nominal therapy, hospitalization more than one night or permanent adverse sequale were observed. Endovascular placement of coil as a fiducial marker is safe and feasible during CyberKnife therapy, and might be an option for the patients in which percutaneous transthoracic fiducial placement might be risky.
Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi
2014-01-01
In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045
Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.
Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H
1997-07-01
As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements.
Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.
Pica, Andrea; Graziano, Giuseppe
2017-12-01
When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, Xiaobo; Liu, Bing; Zhu, Fan; Scannapieco, Frank A.; Haase, Elaine M.; Matthews, Steve; Wu, Hui
2016-01-01
Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase. PMID:27492581
RF surface receive array coils: the art of an LC circuit.
Fujita, Hiroyuki; Zheng, Tsinghua; Yang, Xiaoyu; Finnerty, Matthew J; Handa, Shinya
2013-07-01
The radiofrequency (RF) receive array coil is a complicated device with many inductors and capacitors and serves as one of the most critical magnetic resonance imaging (MRI) electronic devices. It directly determines the achievable level of signal-to-noise ratio (SNR). Simply put, however, the RF coil is nothing but an LC circuit. The receive array coil was first proposed more than 20 years ago, evolving from a simple arrangement with a few electronic channels to a complicated system of 128 channels, enabling highly sophisticated parallel imaging, at different field strengths. This article summarizes the basic concepts pertaining to RF receive coil arrays and their associated SNR and reviews the theories behind the major components of such arrays. This includes discussions of the intrinsic SNR of a receive coil, the matching circuits, low-noise preamplifiers, coupling/decoupling amongst coils, the coupling between receive and transmit coils, decoupling via preamplifiers, and baluns. An 8-channel receive array coil on a cylindrical former serves as a useful example for demonstrating various points in the review. Copyright © 2013 Wiley Periodicals, Inc.
Niu, Qian; Ybe, Joel A.
2008-01-01
Summary Huntington’s disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of htt permits HIP-protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits Procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain (DED). Our 2.8 Å crystal structure of the HIP1 371-481 sub-fragment that includes F432 and K474 important for HIPPI binding is not a DED, but is a partially opened coiled-coil. The HIP1 371-481 model reveals a basic surface we hypothesize is suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R from different organisms, but are not conserved in the yeast homolog of HIP1, sla2p. We have modeled ∼85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (PDB code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a “U” shaped HIP1 molecule. PMID:18155047
Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields
NASA Astrophysics Data System (ADS)
Podaru, George; Moore, John; Dani, Raj Kumar; Prakash, Punit; Chikan, Viktor
2015-03-01
Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.
Computational assessment of folding energy landscapes in heterodimeric coiled coils.
André, Ingemar; Bjelic, Sinisa
2018-07-01
The coiled coil structural motif consists of alpha helices supercoiling around each other to form staggered knobs-into-holes packing. Such structures are deceptively simple, especially as they often can be described with parametric equations, but are known to exist in various conformations. Even the simplest systems, consisting of 2 monomers, can assemble into a wide range of states. They can form canonical as well as noncanonical coiled coils, be parallel or antiparallel, where helices associate with different degrees of shift, tilt, and rotation. Here, we investigate the energy landscape of heterodimeric coiled coils by carrying out de novo folding simulations starting from amino acid sequence. We folded a diverse set of 22 heterodimers and demonstrate that the approach is capable of identifying the atomic details in the experimental structure in the majority of cases. Our methodology also enables exploration of alternative states that can be accessible in solution beyond the experimentally determined structure. For many systems, we observe folding energy landscapes with multiple energy minima and several isoenergetic states. By comparing coiled coils from single domains and those extracted from larger proteins, we find that standalone coiled coils have deeper energy wells at the experimentally determined conformation. By folding the competing homodimeric states in addition to the heterodimers, we observe that the structural specificity towards the heteromeric state is often small. Taken together, our results demonstrate that de novo folding simulations can be a powerful tool to characterize structural specificity of coiled coils when coupled to assessment of energy landscapes. © 2018 Wiley Periodicals, Inc.
Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla
NASA Astrophysics Data System (ADS)
Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.
2014-11-01
Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.
NASA Astrophysics Data System (ADS)
Cady, Ernest B.
The application of a double-tuned surface coil with strong coupling for both 31P and 1H to the in vivo measurement of metabolite concentrations by NMR spectroscopy is demonstrated. It is shown that sample loading, although important for a coil tuned to a single frequency, does not necessarily have a significant effect on absolute quantitation results if the coil is strongly coupled to the sample for both nuclei. For the coil used in the present study, the spectrometer calibration coefficient is almost independent of loading and the 1H and 31P flip angles at the coil center produced by fixed length pulses could be arranged to be nearly equal over a range of loading conditions. In seven normal infants, of gestational plus postnatal age 35 to 37 weeks, the cerebral cortex nucleotide triphosphate concentration was 3.7 ± 0.6 m M/liter wet (mean ± SD). Metabolite concentrations were low in the cerebral cortex of a severely birth asphyxiated infant. The adenosine triphosphate concentration in the resting, fresh forearm muscles of six young adults was 6.3 ± 0.8 m M/liter wet.
Superconductor coil geometry and ac losses
NASA Technical Reports Server (NTRS)
Pierce, T. V., Jr.; Zapata, R. N.
1976-01-01
An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreas, Michael P.; Ajay, Gautam; Gellings, Jaclyn A.
X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predictedmore » coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 – Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.« less
Synthesis, characterisation and applications of coiled carbon nanotubes.
Hanus, Monica J; Harris, Andrew T
2010-04-01
Coiled carbon nanotubes are helical carbon structures formed when heptagonal and pentagonal rings are inserted into the hexagonal backbone of a 'straight' nanotube. Coiled carbon nanotubes have been reported with both regular and irregular helical structures. In this work the structure, growth mechanism(s), synthesis, properties and potential applications of coiled carbon nanotubes are reviewed. Published data suggests that coiled carbon nanotube synthesis occurs due to nonuniform extrusion of carbon from a catalyst surface. To date, coiled carbon nanotubes have been synthesised using catalyst modification techniques including: (i) the addition of S or P containing compounds during synthesis; (ii) the use of binary or ternary metal catalysts; (iii) the use of microwaves to create a local temperature gradient around individual catalyst particles and; (iv) the use of pH control during catalyst preparation. In most instances coiled carbon nanotubes are produced as a by-product; high yield and/or large-scale synthesis of coiled carbon nanotubes remains problematic. The qualitative analysis of coiled carbon nanotubes is currently hindered by the absence of specific characterisation data in the literature, e.g., oxidation profiles measured by thermogravimetric analysis and Raman spectra of pure coiled carbon nanotube samples.
On the efficiency of small air coil motors
NASA Astrophysics Data System (ADS)
Horowitz, P.
1981-05-01
The efficiency of two types of small ironless motors in the output range of 5 to 500 mW was investigated for use in driving a miniature roller pump for a portable infusion system. One motor has a continuous rotating coil (commutator motor) and one has an oscillating coil. In this case a ratchet and ratchet wheel is needed to generate a rotating motion (ratchet wheel motor). The electromechanical transducer and a mechanical transformation and support system are discussed as well as frictional losses. The influence of the size of the motor is discussed. An expression for the total efficiency is obtained which enables the calculation of the speed of rotation of a certain motor at maximum efficiency for a certain required output. This optimal speed of rotation is hardly influenced by the required speed of rotation at the output shaft of the driving. The transmission, if required, has only a small effect on the optimum speed of rotation of the motor.
Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich
2014-03-01
Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi
2014-11-01
The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.
Cross-linking reveals laminin coiled-coil architecture
Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah
2016-01-01
Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530
Ferromagnetic resonance probe liftoff suppression apparatus
Davis, Thomas J.; Tomeraasen, Paul L.
1985-01-01
A liftoff suppression apparatus utilizing a liftoff sensing coil to sense the amount a ferromagnetic resonance probe lifts off the test surface during flaw detection and utilizing the liftoff signal to modulate the probe's field modulating coil to suppress the liftoff effects.
Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission.
Kiani, Mehdi; Jow, Uei-Ming; Ghovanloo, Maysam
2011-07-14
Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for 13.56 MHz carrier frequency and 12 cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.
Thielscher, Axel; Kammer, Thomas
2002-11-01
A fundamental problem of transcranial magnetic stimulation (TMS) is determining the site and size of the stimulated cortical area. In the motor system, the most common procedure for this is motor mapping. The obtained two-dimensional distribution of coil positions with associated muscle responses is used to calculate a center of gravity on the skull. However, even in motor mapping the exact stimulation site on the cortex is not known and only rough estimates of its size are possible. We report a new method which combines physiological measurements with a physical model used to predict the electric field induced by the TMS coil. In four subjects motor responses in a small hand muscle were mapped with 9-13 stimulation sites at the head perpendicular to the central sulcus in order to keep the induced current direction constant in a given cortical region of interest. Input-output functions from these head locations were used to determine stimulator intensities that elicit half-maximal muscle responses. Based on these stimulator intensities the field distribution on the individual cortical surface was calculated as rendered from anatomical MR data. The region on the cortical surface in which the different stimulation sites produced the same electric field strength (minimal variance, 4.2 +/- 0.8%.) was determined as the most likely stimulation site on the cortex. In all subjects, it was located at the lateral part of the hand knob in the motor cortex. Comparisons of model calculations with the solutions obtained in this manner reveal that the stimulated cortex area innervating the target muscle is substantially smaller than the size of the electric field induced by the coil. Our results help to resolve fundamental questions raised by motor mapping studies as well as motor threshold measurements.
Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris
2013-01-01
We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response. PMID:23451199
Low Frequency Radio-wave System for subsurface investigation
NASA Astrophysics Data System (ADS)
Soldovieri, Francesco; Gennarelli, Gianluca; Kudelya, Anatoliy; Denisov, Alexander
2015-04-01
Low frequency radio-wave methods (RWM) allow subsurface investigations in terms of lithological structure characterization, detection of filtration flows of ground water, anthropogenic and natural cavities. In this contribution, we present a RWM that exploits two coils working at frequencies of few MHz as transmitting and receiving antennas. The basic principle of this inductive method is as follows. The primary alternating electromagnetic field radiated by the transmitting coil induces eddy currents in the subsurface mainly due to the conductivity anomalies. These eddy currents generate a secondary (scattered) magnetic field which overlaps to the incident magnetic field and is detected by the receiving coil. Despite the simple operation of the system, the complexity of the electromagnetic scattering phenomenon at hand must be properly modeled to achieve adequate performance. Therefore, an advanced data processing technique, belonging to the class of the inverse scattering approaches, has been developed by the authors in a full 3D geometry. The proposed method allows to deal with data collected on a scanning surface under a dipole inductive profiling (DIP) modality, where the transmitting/receiving coils are moved simultaneously with fixed offset (multi-bistatic configuration). The hardware, called Dipole Inductive Radio-wave System (DIRS), is composed by an electronic unit and transmitting and receiving loop antennas radiating at frequencies of few MHz (2-4 MHz), which are installed on theodolite supports. The compactness of DIRS and its robustness to external electromagnetic interference offers the possibility to perform geophysical research up to the depth of some tens of meters and under several types of ground and water surfaces, vegetation, and weather conditions. The light weight and small size of system (the single antenna with support weights about 5 kg and has a diameter of 0.5m) allows two operators to perform geophysical research without disturbing the surface integrity of investigated ground massif. The value of base and the value of voltage induced on the digital voltmeter of the receiver are stored in memory on a SD-card for a subsequent visualization and processing. Realistic cases of application of the DIRS system enhanced by the inverse scattering approach will be presented at the conference with regard to the geological characterization of a mine shaft and an archaeological site.
Enhancing Induction Coil Reliability
NASA Astrophysics Data System (ADS)
Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.
2014-12-01
In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.
A flexible surface-coil-type resonator using triaxial cable
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Ono, Mitsuhiro
1997-09-01
This note describes a newly developed flexible surface-coil-type resonator (FSCR) used for electron paramagnetic resonance (EPR) measurements. A conventional FSCR has used a balanced transmission line made by coaxial lines. The new resonator uses triaxial cable in order to avoid anisotropy of flexure of the transmission line. Experimental results show that the EPR signal measured with the triaxial FSCR is 35% stronger than that measured with the conventional FSCR.
Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging
2016-02-13
switchable array, RF magnetic field, NQR , MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance ( NQR ) techniques. REF [1] and [6] explain the differences between NMR and NQR . What NMR and NQR ...of resonance NQR frequency of 28.1MHz. The matching and tuning is explain in detail in the next section of this paper. Rectangle Surface Coil
Heterotrophic bacteria in an air-handling system.
Hugenholtz, P; Fuerst, J A
1992-01-01
Heterotrophic bacteria from structural surfaces, drain pan water, and the airstream of a well-maintained air-handling system with no reported building-related illness were enumerated. Visually the system appeared clean, but large populations of bacteria were found on the fin surface of the supply-side cooling coils (10(5) to 10(6) CFU cm-2), in drain pan water (10(5) to 10(7) CFU ml-1), and in the sump water of the evaporative condenser (10(5) CFU ml-1). Representative bacterial colony types recovered from heterotrophic plate count cultures on R2A medium were identified to the genus level. Budding bacteria belonging to the genus Blastobacter dominated the supply surface of the coil fins, the drain pan water, and the postcoil air. These data and independent scanning electron microscopy indicated that a resident population of predominantly Blastobacter bacteria was present as a biofilm on the supply-side cooling coil fins. Images PMID:1476435
Investigating the road surface effect to the fatigue life of an automotive coil spring
NASA Astrophysics Data System (ADS)
Putra, T. E.; Husaini
2018-05-01
This work aims to estimate the life of a coil spring considering road surface profiles. Strain signals were measured by installing a strain gage at the highest stress location of the coil spring and then driving the vehicle on country and village roads. The village road gave high amplitudes containing spikes when the tire touched a curb, bump or pothole. These conditions contributed to a higher loading rate to the car component, contributing to shorter useful fatigue life, which was only 140 reversals of blocks. Driving on the village road resulted in a 6-times decrease in the useful fatigue life of the component in comparison to the country road. In conclusion, the village road caused stronger vibrations to the component because it has a rough surface; meanwhile, the country road provided lower vibrations because the road was smooth.
Heterotrophic bacteria in an air-handling system.
Hugenholtz, P; Fuerst, J A
1992-12-01
Heterotrophic bacteria from structural surfaces, drain pan water, and the airstream of a well-maintained air-handling system with no reported building-related illness were enumerated. Visually the system appeared clean, but large populations of bacteria were found on the fin surface of the supply-side cooling coils (10(5) to 10(6) CFU cm-2), in drain pan water (10(5) to 10(7) CFU ml-1), and in the sump water of the evaporative condenser (10(5) CFU ml-1). Representative bacterial colony types recovered from heterotrophic plate count cultures on R2A medium were identified to the genus level. Budding bacteria belonging to the genus Blastobacter dominated the supply surface of the coil fins, the drain pan water, and the postcoil air. These data and independent scanning electron microscopy indicated that a resident population of predominantly Blastobacter bacteria was present as a biofilm on the supply-side cooling coil fins.
Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace
Mathur, Mahendra P.; Ekmann, James M.
1989-01-01
The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.
Graf, Hansjörg; Martirosian, Petros; Schick, Fritz; Grieser, Marco; Bellemann, Matthias E
2003-06-01
Inductively coupled solenoid coils fitting to objects in the size of mice or rats were developed to adapt modem whole-body MR scanners featuring sufficient gradient strength for animal examinations with high spatial resolution. Homogenous receiver characteristics is achievable over almost the whole inner region of the solenoid coils. The SNR can be increased by a factor 2 to 6 with the adapting coils for examinations using the head coil as connected receiver. Standard sequences on clinical 1.5 T scanners can be applied with adapted transmitter voltages. For example, a SNR value of about 30 is achievable in a mouse liver after 10 minutes measuring time using a 2-D spin echo imaging sequence and a size of 0.3 x 0.3 x 0.8 mm3 for the picture elements.
A pilot study of planar coil based magnetic stimulation using acute hippocampal slice in mice.
Park, H J; Kang, H K; Wang, M; Jo, J; Chung, E; Kim, S
2017-07-01
Micromagnetic stimulation using small-sized implantable coils has recently been studied. The main advantage of this method is that it can provide sustainable stimulation performance even if a fibrotic encapsulation layer is formed around the implanted coil by inflammation response, because indirectly induced currents are used to induce neural responses. In previous research, we optimized the geometrical and control parameters used in implantable magnetic stimulation. Based on those results, we fabricated the planar coil and studied the LTP effect in the hippocampal slice by two different magnetic stimulation protocols using the quadripulse stimulation (QPS) pattern. We found that direct magnetic stimulation (DMS) induced insignificant LTP effect and priming magnetic stimulation (PMS) occluded LTP effect after tetanic stimulation, when QPS patterned magnetic stimulation with 1 A current pulse was applied to the planar coil.
A superconducting large-angle magnetic suspension
NASA Technical Reports Server (NTRS)
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-01-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
A superconducting large-angle magnetic suspension
NASA Astrophysics Data System (ADS)
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-12-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
Tool Removes Coil-Spring Thread Inserts
NASA Technical Reports Server (NTRS)
Collins, Gerald J., Jr.; Swenson, Gary J.; Mcclellan, J. Scott
1991-01-01
Tool removes coil-spring thread inserts from threaded holes. Threads into hole, pries insert loose, grips insert, then pulls insert to thread it out of hole. Effects essentially reverse of insertion process to ease removal and avoid further damage to threaded inner surface of hole.
NASA Astrophysics Data System (ADS)
McCray, A.; Punjabi, A.; Ali, H.
2004-11-01
Unperturbed magnetic topology of DIII-D shot 115467 is described by the symmetric simple map (SSM) with map parameter k=0.2623 [1], then last good surface passes through x=0 and y=0.9995, q_edge=6.48 (same as in shot 115467) if six iterations of SSM are taken to be equivalent to single toroidal circuit of DIII-D. The dipole map (DM) calculates the effects of localized, external high mode numbers magnetic perturbations on motion of field lines. We use dipole map to describe effects of C-coils on field line trajectories in DIII-D. We apply DM after each iteration of SSM, with s=1.0021, x_dipole=1.5617, y_dipole= 0 [1] for shot 115467. We study the changes in the last good surface and its destruction as a function of I_C-coil. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, presented at the 31st European Physical Society Plasma Physics Meeting, London, UK, June 29, 2004, paper P2-172.
Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H
2011-10-01
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.
Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...
2011-10-06
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less
Niu, Qian; Ybe, Joel A
2008-02-01
Huntington's disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of the huntingtin protein permits HIP1 protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain. Our 2.8-A crystal structure of the HIP1 371-481 subfragment that includes F432 and K474, which is important for HIPPI binding, is not a death-effector domain but is a partially opened coiled coil. The HIP1 371-481 model reveals a basic surface that we hypothesize to be suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R, from different organisms but are not conserved in the yeast homologue of HIP1, sla2p. We have modeled approximately 85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (Protein Data Bank code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a U-shaped HIP1 molecule.
Specific coil design for SENSE: a six-element cardiac array.
Weiger, M; Pruessmann, K P; Leussler, C; Röschmann, P; Boesiger, P
2001-03-01
In sensitivity encoding (SENSE), the effects of inhomogeneous spatial sensitivity of surface coils are utilized for signal localization in addition to common Fourier encoding using magnetic field gradients. Unlike standard Fourier MRI, SENSE images exhibit an inhomogeneous noise distribution, which crucially depends on the geometrical sensitivity relations of the coils used. Thus, for optimum signal-to-noise-ratio (SNR) and noise homogeneity, specialized coil configurations are called for. In this article we study the implications of SENSE imaging for coil layout by means of simulations and imaging experiments in a phantom and in vivo. New, specific design principles are identified. For SENSE imaging, the elements of a coil array should be smaller than for common phased-array imaging. Furthermore, adjacent coil elements should not overlap. Based on the findings of initial investigations, a configuration of six coils was designed and built specifically for cardiac applications. The in vivo evaluation of this array showed a considerable SNR increase in SENSE images, as compared with a conventional array. Magn Reson Med 45:495-504, 2001. Copyright 2001 Wiley-Liss, Inc.
BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla
NASA Astrophysics Data System (ADS)
Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.
2012-10-01
At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.
Hessian matrix approach for determining error field sensitivity to coil deviations.
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.; ...
2018-03-15
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code [Zhu et al., Nucl. Fusion 58(1):016008 (2018)] is utilized to provide fast and accurate calculationsmore » of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.« less
Hessian matrix approach for determining error field sensitivity to coil deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code [Zhu et al., Nucl. Fusion 58(1):016008 (2018)] is utilized to provide fast and accurate calculationsmore » of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.« less
Innovations in compact stellarator coil design
NASA Astrophysics Data System (ADS)
Pomphrey, N.; Berry, L.; Boozer, A.; Brooks, A.; Hatcher, R. E.; Hirshman, S. P.; Ku, L.-P.; Miner, W. H.; Mynick, H. E.; Reiersen, W.; Strickler, D. J.; Valanju, P. M.
2001-03-01
Experimental devices for the study of the physics of high beta (β gtrsim 4%), low aspect ratio (A lesssim 4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, several innovations have been made that may be useful in future stellarator design efforts. These include: the use of singular value decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a control matrix method for identifying which few of the many detailed elements of a stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of a genetic algorithm for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the trade-off between physics objectives and engineering constraints; the development of a new coil optimization code for designing modular coils and the identification of a `natural' basis for describing current sheet distributions.
Yang, Guang; Tang, Ping; Yang, Yuliang; Wang, Qiang
2010-11-25
We employ the self-consistent field theory (SCFT) incorporating Maier-Saupe orientational interactions between rods to investigate the self-assembly of rod-coil diblock copolymers (RC DBC) in bulk and especially confined into two flat surfaces in 2D space. A unit vector defined on a spherical surface for describing the orientation of rigid blocks in 3D Euclidean space is discretized with an icosahedron triangular mesh to numerically integrate over rod orientation, which is confirmed to have numerical accuracy and stability higher than that of the normal Gaussian quadrature. For the hockey puck-shaped phases in bulk, geometrical confinement, i.e., the film thickness, plays an important role in the self-assembled structures' transitions for the neutral walls. However, for the lamellar phase (monolayer smectic-C) in bulk, the perpendicular lamellae are always stable, less dependent on the film thicknesses because they can relax to the bulk spacing with less-paid coil-stretching in thin films. In particular, a very thin rod layer near the surfaces is formed even in a very thin film. When the walls prefer rods, parallel lamellae are obtained, strongly dependent on the competition between the degree of the surface fields and film geometrical confinement, and the effect of surface field on lamellar structure as a function of film thickness is investigated. Our simulation results provide a guide to understanding the self-assembly of the rod-coil films with desirable application prospects in the fabrication of organic light emitting devices.
Röschmann, P
1991-10-01
The threshold conditions for an auditory perception of pulsed radiofrequency (RF) energy absorption in the human head have been studied on six volunteers with RF coils for magnetic resonance (MR) imaging. For homogeneous RF exposure with MR head coils in the 2.4- to 170-MHz range and pulse widths 3 microseconds less than or equal to Tp less than 100 microseconds, the auditory thresholds were observed at 16 +/- 4 mJ pulse energy. Localized RF exposure with optimized surface coils positioned flush with the ear lowers the auditory threshold to only 3 +/- 0.6 mJ. The hearing threshold of RF pulses with Tp greater than 200 microseconds occurs at more or less constant peak power levels of typically 150 +/- 50 W for head coils and as low as 20 W for surface coils. The results from this study confirm theoretical predictions from a thermoelastic expansion model and compare well with reported thresholds from near field antenna measurements at 425 to 3000 MHz. Details of the threshold dependence on RF pulse length reveal primary sites of RF to acoustic energy conversion at the mastoid and temporal bone region and the outer layer of the brain from where thermoelastically generated pressure transients excite audible pressure waves at the resonance modes of the skull around 1.7 kHz and of the brain around 11 kHz. If not masked by usually dominating noise from switched gradients, the conditions for hearing RF pulses, as applied to head coils in MR studies with flip angle alpha at main field B0, is given by Tp/ms less than or equal to 0.4 (alpha/pi)B0/[T]. At peak power levels up to 15 kW presently available in clinical MR systems, there is no evidence known for detrimental health effects arising from the RF auditory phenomenon which is a secondary cause associated with primary RF to thermal energy conversion in body tissues. To avoid the RF-evoked sound pressure levels in the head rising above the discomfort threshold at 110 dB SPL, an upper limit of 30 kW applied peak pulse power is suggested for head coils and 6 kW for surface coils.
Invited review the coiled coil silk of bees, ants, and hornets.
Sutherland, Tara D; Weisman, Sarah; Walker, Andrew A; Mudie, Stephen T
2012-06-01
In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks. Copyright © 2011 Wiley Periodicals, Inc.
The dynamics of coiled bodies in the nucleus of adenovirus-infected cells.
Rebelo, L; Almeida, F; Ramos, C; Bohmann, K; Lamond, A I; Carmo-Fonseca, M
1996-01-01
The coiled body is a specific intranuclear structure of unknown function that is enriched in splicing small nuclear ribonucleoproteins (snRNPs). Because adenoviruses make use of the host cell-splicing machinery and subvert the normal subnuclear organization, we initially decided to investigate the effect of adenovirus infection on the coiled body. The results indicate that adenovirus infection induces the disassembly of coiled bodies and that this effect is probably secondary to the block of host protein synthesis induced by the virus. Furthermore, coiled bodies are shown to be very labile structures, with a half-life of approximately 2 h after treatment of HeLa cells with protein synthesis inhibitors. After blocking of protein synthesis, p80 coilin was detected in numerous microfoci that do not concentrate snRNP. These structures may represent precursor forms of the coiled body, which goes through a rapid cycle of assembly/disassembly in the nucleus and requires ongoing protein synthesis to reassemble. Images PMID:8862526
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Coil optimisation for transcranial magnetic stimulation in realistic head geometry.
Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J
Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla
Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.
2014-01-01
The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal scanners. PMID:24839167
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1 H frequency, and chemical shift imaging at 13 C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1 H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45-59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1 H/ 13 C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23-30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Chen, Y.; Jiang, D-Y.; Tan, H-Q.; Wang, L-H.; Chen, X-Y.; Sun, J-H.
2009-01-01
Summary We describe a case of a post-traumatic posterior communicating artery (PCoA) aneurysmcavernous sinus fistula, which is an extremely rare complication of craniocerebral trauma, successfully treated with endosaccular coil embolization via transarterial route. Endosaccular embolization with Guglielmi detachable coils via transarterial route appears to be a feasible, effective and minimally invasive option for the treatment of post-traumatic fistula between the PCoA aneurysm with a small ostia and the cavernous sinus in the subacute phase. PMID:20465883
Method and apparatus for maintaining equilibrium in a helical axis stellarator
Reiman, Allan; Boozer, Allen
1987-01-01
Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellerator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.
Method and apparatus for maintaining equilibrium in a helical axis stellarator
Reiman, A.; Boozer, A.
1984-10-31
Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.
Dragonu, Iulius; Almujayyaz, Salam; Batzakis, Alex; Young, Liam A. J.; Purvis, Lucian A. B.; Clarke, William T.; Wichmann, Tobias; Lanz, Titus; Neubauer, Stefan; Robson, Matthew D.; Klomp, Dennis W. J.; Rodgers, Christopher T.
2017-01-01
Purpose Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. Materials and methods A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. Results The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. Conclusion This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T. PMID:29073228
The Denaturation Transition of DNA in Mixed Solvents
Hammouda, Boualem; Worcester, David
2006-01-01
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The “melting” transition temperature was found to be 94°C for 4% mass fraction DNA/d-water and 38°C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 Å across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains. PMID:16815902
A quantitative experimental phantom study on MRI image uniformity.
Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei
2018-05-23
Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method. Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.
Radio-frequency coil selection for MR imaging of the carotid vessel wall
NASA Astrophysics Data System (ADS)
Mat Isa, S.; Shuaib, I. L.; Bauk, S.
2014-11-01
This aim of this study was to identify the radiofrequency coil that will produce optimum image quality for scanning the carotid vessel wall using magnetic resonance imaging. A comparative cross-sectional study was conducted using 10 volunteers. Each volunteer was scanned three times using a 1.5T Signa HDxt machine equipped with one of three different coils: a neurovascular array (NV) coil, an 8-channel CTL spine array coil, and a 3-inch surface coil. A qualitative image quality rating was assigned to each image. The images were also evaluated by measuring the signal to noise ratio (SNR) using Osirix 4.2.3 software. The noise was estimated from the mean intensities of the region of interest in the background of the images and the signal was measured in the muscle adjacent to the vessel wall. The SNRs of the three coils were compared using one-way ANOVA, with 104 images used for the data analysis. The mean image quality scores for the NV head coil, CTL coil, and 3-inch coil were 3.4, 3.33, and 1.67, respectively. In addition, the SNRs differed significantly (p < 0.05). The mean SNR for the 3-inch coil was significantly higher (56.21 ± 25.06) than those for the NV head coil (27.34 ± 15.47) and CTL coil (21.77 ± 13.14). The Bonferroni post-hoc test revealed that there was no significant difference between the NV head coil and the CTL coil (p = 0.21). The optimum SNR value was 20-27. These results indicate that the NV head coil and CTL coil can be used to evaluate the carotid arterial wall with optimum image quality and higher resolution. These coil can deliver fast and robust data to image the carotid vessel wall in vivo.
Residual aneurysm after metal coils treatment detected by spectral CT
Wang, Yang; Gao, Xiaolei; Lu, Aixun; Zhou, Zhengyang; Li, Baoxin
2012-01-01
Digital subtraction angiography (DSA) is currently the gold standard for diagnosing the residue or recurrence of aneurysm after treatment, especially in the presence of metal coils. However, DSA is an invasive procedure which may cause additional trauma and economic burden to patients. Spectral CT imaging, as a newly introduced CT imaging mode, produces monochromatic image sets that is able to reduce beam-hardening and other metal-related artifacts, and has found its use in several clinical applications including brain imaging to reduce beam-hardening artifacts. In this study, we describe a case of spectral CT imaging in follow-up of the metal coils treatment and detection of a small leaf of residual aneurysm after metal coils treatment. PMID:23256074
Rho-associated coiled-coil containing kinases (ROCK)
Julian, Linda; Olson, Michael F
2014-01-01
Rho-associated coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase.1–5 They belong to the AGC family of serine/threonine kinases6 and play vital roles in facilitating actomyosin cytoskeleton contractility downstream of RhoA and RhoC activation. Since their discovery, ROCK kinases have been extensively studied, unveiling their manifold functions in processes including cell contraction, migration, apoptosis, survival, and proliferation. Two mammalian ROCK homologs have been identified, ROCK1 (also called ROCK I, ROKβ, Rho-kinase β, or p160ROCK) and ROCK2 (also known as ROCK II, ROKα, or Rho kinase), hereafter collectively referred to as ROCK. In this review, we will focus on the structure, regulation, and functions of ROCK. PMID:25010901
Tao, Y; Strelkov, S V; Mesyanzhinov, V V; Rossmann, M G
1997-06-15
Oligomeric coiled-coil motifs are found in numerous protein structures; among them is fibritin, a structural protein of bacteriophage T4, which belongs to a class of chaperones that catalyze a specific phage-assembly process. Fibritin promotes the assembly of the long tail fibers and their subsequent attachment to the tail baseplate; it is also a sensing device that controls the retraction of the long tail fibers in adverse environments and, thus, prevents infection. The structure of fibritin had been predicted from sequence and biochemical analyses to be mainly a triple-helical coiled coil. The determination of its structure at atomic resolution was expected to give insights into the assembly process and biological function of fibritin, and the properties of modified coiled-coil structures in general. The three-dimensional structure of fibritin E, a deletion mutant of wild-type fibritin, was determined to 2.2 A resolution by X-ray crystallography. Three identical subunits of 119 amino acid residues form a trimeric parallel coiled-coil domain and a small globular C-terminal domain about a crystallographic threefold axis. The coiled-coil domain is divided into three segments that are separated by insertion loops. The C-terminal domain, which consists of 30 residues from each subunit, contains a beta-propeller-like structure with a hydrophobic interior. The residues within the C-terminal domain make extensive hydrophobic and some polar intersubunit interactions. This is consistent with the C-terminal domain being important for the correct assembly of fibritin, as shown earlier by mutational studies. Tight interactions between the C-terminal residues of adjacent subunits counteract the latent instability that is suggested by the structural properties of the coiled-coil segments. Trimerization is likely to begin with the formation of the C-terminal domain which subsequently initiates the assembly of the coiled coil. The interplay between the stabilizing effect of the C-terminal domain and the labile coiled-coil domain may be essential for the fibritin function and for the correct functioning of many other alpha-fibrous proteins.
Krieger, Robert I; Dinoff, Travis M; Zhang, Xiaofei
2003-01-01
Children and their parents in residences are often protected by insecticides from nuisance and disease-bearing mosquitoes. The annual worldwide consumption of the four major types of residential insecticide products--aerosols, mosquito coils, liquid vaporizers, and vaporizing mats--is in the billions of units. Mosquito coils are burned indoors and outdoors in East Asia and to a limited extent in other parts of the world, including the United States. Coils consist of an insecticide/repellant, organic fillers capable of burning with smoldering, binder, and additives such as synergists, dyes, and fungicide. The number of coil users in China is in the millions. In Indonesia alone, an estimated seven billion coils are purchased annually. Coils containing pyrethroid insecticides, particularly d-allethrin, may contain octachlorodipropyl ether (S-2, S-421) as a synergist or active ingredient. Use of those coils likely exposes children and adults to some level of bis(chloromethyl)ether (BCME). BCME is formed from formaldehyde and hydrogen chloride, combustion products formed from the slow smoldering (about 8 hr/coil) of the mosquito coils. Because BCME is an extremely potent lung carcinogen, the nature and extent of prolonged exposures that recur in homes during the mosquito season in tropical regions must be evaluated with respect to health. In a small analytical study, coils purchased in Indonesia and in the United States contained highly variable amounts of S-2. Some coils that contained S-2 were not labeled, making it impossible for consumers to make an informed decision about coil contents. Mosquito coils containing S-2 are unregistered, and their use is illegal in the United States. Indoor air monitoring under conditions that represent conditions of use in tropical settings and epidemiology to assess health impacts of coil use are essential to permit responsible regulatory decisions regarding continuing S-2 use. PMID:12948880
VAPOR SHIELD FOR INDUCTION FURNACE
Reese, S.L.; Samoriga, S.A.
1958-03-11
This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.
Conceptual design of a cryogen-free μMRI device
NASA Astrophysics Data System (ADS)
Authelet, G.; Poirier-Quinot, M.; Ginefri, J.-C.; Bonelli, A.; Baudouy, B.
2017-12-01
To perform Micro Magnetic Resonance Imaging (mMRI) analysis on small regions such as skins, articulations or small animals, the required spatial resolution implies to dramatically improve the sensitivity of the detection. One way to go is to use small radio-frequency superconducting coil that allow, among others, increasing significantly the signal-to-noise ratio. The RF probe, constituted of an optimized YBaCuO film coil cooled below nitrogen temperature, must be located no further than few millimeters from the biological region to be imaged in a clinical MRI magnet. To fulfill the medical environment and constraints, a cryogen-free cooling scheme has been developed to maintain the superconducting coil at the working temperature. The cryogenic design is based on a pulse tube cryocooler and solid thermal links inserted in a non-magnetic cryostat to avoid creating any electromagnetic perturbations to the MRI magnet and the measurements. We report here the conceptual design of the cryogenic system with the required thermal performances, the corresponding layout and architecture of the system as well as the main technical challenges met for the construction.
Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A
2014-02-01
Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in regions of interest close to the coil. Various registration methods were tested, and the volume spline was deemed to be the most accurate, as measured by the Dice similarity metric. The results of our phantom experiments showed that the bias in the 18F-FDG quantification introduced by the presence of the coil could be reduced by using our registration method. An overestimation of only 1.9% of the overall activity for the phantom scan with the coil attenuation map was measured when compared with the baseline phantom scan without coil. A local overestimation of less than 3% was observed in the ROI analysis when using the proposed method to correct for the attenuation of the flexible cardiac coil. Quantitative results from the patient study agreed well with the phantom findings. We presented and validated an accurate method to localize and register a CT-based attenuation map to correct for the attenuation and scatter of flexible MR coils. This method may be translated to clinical use to produce quantitatively accurate measurements with the use of flexible MR coils during MR/PET imaging.
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.
2015-01-01
Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310
NASA Astrophysics Data System (ADS)
Frakes, David H.; Indahlastari, Aprinda; Ryan, Justin; Babiker, M. Haithem; Nair, Priya; Parthas, Varsha
2013-11-01
Intracranial aneurysms (ICAs) are dilated cerebral blood vessels. Treating ICAs effectively prior rupture is crucial since their association with 45% mortality rate. Embolic coiling is the most effective ICA treatment. Series of embolic coils are deployed into the aneurysm with the intent of reaching a sufficient packing density (PD) to help seal off the ICA from circulation. While coiling is effective, treatment failures have been associated with basilar tip aneurysms (BTAs), perhaps because of their geometry. The aim of this study was to examine the effect of dome size, parent vessel (PV) angle, and PD on intraaneurysmal (IA) velocity, crossneck (CN) flow and low wall shear stress (WSS) area using simulations and experiments in idealized BTA models. IA velocity and CN flow decreased after coiling, while low WSS area increased. With increasing PD, IA velocity and CN flow were further reduced, but low WSS area had a minimal change. Coil PD had the greatest impact on post-treatment flow while dome size had a greater impact than PV angle. Overall, the role of aneurysmal geometries may vary depending on treatment goal and timing e.g., high coil PD may reduce IA velocity more effectively during early aneurysmal growth when the dome size is small. Funded by the American Heart Association.
Zhou, Zhi-Dong; Saw, Wuan-Ting; Tan, Eng-King
2017-09-01
The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.
Gomez, Luis J; Goetz, Stefan M; Peterchev, Angel V
2018-08-01
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique used for research and clinical applications. Existent TMS coils are limited in their precision of spatial targeting (focality), especially for deeper targets. This paper presents a methodology for designing TMS coils to achieve optimal trade-off between the depth and focality of the induced electric field (E-field), as well as the energy required by the coil. A multi-objective optimization technique is used for computationally designing TMS coils that achieve optimal trade-offs between E-field focality, depth, and energy (fdTMS coils). The fdTMS coil winding(s) maximize focality (minimize the volume of the brain region with E-field above a given threshold) while reaching a target at a specified depth and not exceeding predefined peak E-field strength and required coil energy. Spherical and MRI-derived head models are used to compute the fundamental depth-focality trade-off as well as focality-energy trade-offs for specific target depths. Across stimulation target depths of 1.0-3.4 cm from the brain surface, the suprathreshold volume can be theoretically decreased by 42%-55% compared to existing TMS coil designs. The suprathreshold volume of a figure-8 coil can be decreased by 36%, 44%, or 46%, for matched, doubled, or quadrupled energy. For matched focality and energy, the depth of a figure-8 coil can be increased by 22%. Computational design of TMS coils could enable more selective targeting of the induced E-field. The presented results appear to be the first significant advancement in the depth-focality trade-off of TMS coils since the introduction of the figure-8 coil three decades ago, and likely represent the fundamental physical limit.
A geometrically adjustable receive array for imaging marmoset cohorts.
Gilbert, Kyle M; Gati, Joseph S; Klassen, L Martyn; Zeman, Peter; Schaeffer, David J; Everling, Stefan; Menon, Ravi S
2017-08-01
The common marmoset (Callithrix jacchus) is an increasingly popular animal model for translational neuroscience studies, during which anatomical and functional MRI can be useful investigative tools. To attain the requisite SNR for high-resolution acquisitions, the radiofrequency coil must be optimized for the marmoset; however, relatively few custom coils have been developed that maximize SNR and are compatible with accelerated acquisitions. For the study of large populations of animals, the heterogeneity in animal size reduces the effectiveness of a "one size fits all" approach to coil sizing and makes coils tailored to individual animals cost and time prohibitive. The approach taken in this study was to create an 8-channel phased-array receive coil that was adjustable to the width of the marmoset head, thereby negating the need for tailored coils while still maintaining high SNR. Two marmosets of different size were imaged on a 9.4-T small-animal scanner. Consistent SNR was achieved in the periphery of the brain between head sizes. When compared to a 15-channel, "one size fits all" receive coil, the adjustable coil achieved 57% higher SNR in the superior frontal and parietal cortices and 29% higher SNR in the centre of the brain. The mean geometry factor of the adjustable coil was less than 1.2 for a 2-fold reduction factor in the left-right and anterior-posterior directions. Geometry factors were compared to the 15-channel coil to guide future designs. The adjustable coil was shown to be a practical means for anatomical and echo-planar imaging of marmoset cohorts. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Torii, S.; Yuasa, K.
2004-10-01
Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.
Chang, Gregory; Wiggins, Graham C.; Xia, Ding; Lattanzi, Riccardo; Madelin, Guillaume; Raya, Jose G.; Finnerty, Matthew; Fujita, Hiroyuki; Recht, Michael P.; Regatte, Ravinder R.
2011-01-01
Purpose To compare a new birdcage-transmit, 28 channel-receive array (28 Ch) coil and a quadrature volume coil for 7 Tesla morphologic MRI and T2 mapping of knee cartilage. Methods The right knees of ten healthy subjects were imaged on a 7 Tesla whole body MR scanner using both coils. 3-dimensional fast low-angle shot (3D-FLASH) and multi-echo spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. Results SNR/CNR was 17–400% greater for the 28 Ch compared to the quadrature coil (p≤0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (−0.002±0.009 cm/0.003±0.011 cm) and large (−6.8±6.7 ms/−8.2±9.7 ms), respectively. For the 28 Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed, SNR retained was: 62–69%, 51–55%, and 39–45%. Conclusion A 28 Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28 Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil. PMID:22095723
Automated de novo phasing and model building of coiled-coil proteins.
Rämisch, Sebastian; Lizatović, Robert; André, Ingemar
2015-03-01
Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.
Fang, Jiancheng; Wen, Tong
2012-01-01
The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.
NASA Astrophysics Data System (ADS)
Sun, Phillip Z.; Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Xiao, Gang; Wu, Renhua
2015-03-01
Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute exchangeable protons and local properties such as pH and temperate, yet its susceptibility to field inhomogeneity limits its in vivo applications. Particularly, CEST measurement varies with RF irradiation power, the dependence of which is complex due to concomitant direct RF saturation (RF spillover) effect. Because the volume transmitters provide relatively homogeneous RF field, they have been conventionally used for CEST imaging despite of their elevated specific absorption rate (SAR) and relatively low sensitivity than surface coils. To address this limitation, we developed an efficient B1 inhomogeneity correction algorithm that enables CEST MRI using surface transceiver coils. This is built on recent work that showed the inverse CEST asymmetry analysis (CESTRind) is not susceptible to confounding RF spillover effect. We here postulated that the linear relationship between RF power level and CESTRind can be extended for correcting B1 inhomogeneity induced CEST MRI artifacts. Briefly, we prepared a tissue-like Creatine gel pH phantom and collected multiparametric MRI including relaxation, field map and CEST MRI under multiple RF power levels, using a conventional surface transceiver coil. The raw CEST images showed substantial heterogeneity due to B1 inhomogeneity, with pH contrast to noise ratio (CNR) being 8.8. In comparison, pH MRI CNR of the fieldinhomogeneity corrected CEST MRI was found to be 17.2, substantially higher than that without correction. To summarize, our study validated an efficient field inhomogeneity correction that enables sensitive CEST MRI with surface transceiver, promising for in vivo translation.
Cable testing for Fermilab's high field magnets using small racetrack coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feher, S.; Ambrosio, G.; Andreev, N.
As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.
NASA Astrophysics Data System (ADS)
Sherrow, K.; Punjabi, A.; Ali, H.
2004-11-01
Unperturbed magnetic topology of DIII-D shot 115467 is described by the symmetric simple map (SSM) with parameter k=0.2623, then q_edge=6.48 (as in shot 115467) if six iterations of SSM are taken to be equivalent to single toroidal circuit of DIII-D [1]. Low mn map (LM) calculates effects of m=1, n=+1,-1 modes on trajectories of field lines. We use LM with amplitude ɛ=6X10-4 (value expected in modern divertor tokamaks) to describe effects of ELMs. With ELMs, last good surface passes through x=0, y=0.98375. We use dipole map (DM) to represent effects of C-coils. We apply DM after each iteration of SSM. We use s=1.0021, x_dipole=1.5617, y_dipole= 0 for DIII-D shot 115467 [1]. We study changes in the last good surface and its destruction as function of I_C-coil with fixed ɛ = 6X10-4. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, 31st EPS Plasma Phys Mtg, London, UK, June 29, 2004, paper P2-172.
High magnetic field ohmically decoupled non-contact technology
Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN
2009-05-19
Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.
Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils
NASA Astrophysics Data System (ADS)
Behzadnezhad, Bahareh; Collick, Bruce D.; Behdad, Nader; McMillan, Alan B.
2018-04-01
Additive manufacturing provides a low-cost and rapid means to translate 3D designs into the construction of a prototype. For MRI, this type of manufacturing can be used to construct various components including the structure of RF coils. In this paper, we characterize the material properties (dielectric constant and loss tangent) of several common 3D-printed polymers in the MRI frequency range of 63-300 MHz (for MRI magnetic field strengths of 1.5-7 T), and utilize these material properties in full-wave electromagnetic simulations to design and construct a very low-cost subject/anatomy-specific 3D-printed receive-only RF coil that fits close to the body. We show that the anatomy-specific coil exhibits higher signal-to-noise ratio compared to a conventional flat surface coil.
Rapid mixing of viscous liquids by electrical coiling
Kong, Tiantian; Li, Jingmei; Liu, Zhou; Zhou, Zhuolong; Ng, Peter Hon Yu; Wang, Liqiu; Shum, Ho Cheung
2016-01-01
The control for the processing of precursor liquids determines whether the properties and functions of the final material product can be engineered. An inherent challenge of processing viscous liquids arises from their large resistance to deform. Here, we report on the discovery of an electric approach that can significantly contribute to address this challenge. The applied electric force can induce a straight viscous jet to coil, and the resulting coiling characteristics are governed by the electric stress. We demonstrate the promising use of electrical coiling in the rapid and efficient mixing of viscous liquids. Remarkably, the degree of mixing can be precisely adjusted by tuning the applied electric stress. Our approach of controlling the coiling electrically has important implications on applications such as dispensing and printing of resins, printing patterned surfaces and scaffolds, processing of food and generating non-woven fabrics. PMID:26860660
Concealed wire tracing apparatus
Kronberg, J.W.
1994-05-31
An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.
Sweeping Arches and Loops [video
2014-07-10
Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: NASA/Solar Dynamics Observatory Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: Solar Dynamics Observatory/NASA.
NASA Astrophysics Data System (ADS)
Basemore, Alphonso; Ali, Halima; Watson, Michael; Punjabi, Alkesh
1996-11-01
We calculate the variation in area of the stochastic scrape-off layer of a single-null divertor tokamak resulting from the effects of an externally placed dipole coil using the Method of Maps (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994). The unperturbed magnetic topology is represented by the Symmetric Simple Map (Ali H, Watson M, Mayer C, Punjabi A and Boozer A, Bull Am Phys Soc), 40, 1855 (1995). The effects of the dipole coil are repesented by the Dipole Map (Ali H, Watson M, Punjabi A and Boozer A, Sherwood Mtg), paper 1C20 (1996). A single dipole coil is placed across from the X-point below the last good surface. The strength of the dipole perturbation and the distance of the coil from last good surface are varied. The area of the stochastic layer is calculated using the method of fractal dimension. This work is supported by US DOE OFES. Alphonso Basemore is a HU CFRT Summer Fusion High School Workshop scholar from Mount Tabor High School in North Carolina. He is supported by NASA under its NASA SharpPlus Program.
Measurement of AC Losses in a Racetrack Superconducting Coil Made from YBCO Coated Conductor
NASA Astrophysics Data System (ADS)
Seiler, Eugen; Abrahamsen, Asger B.; Kováč, Ján; Wichmann, Mike; Træholt, Chresten
We present the results of transport measurements of AC losses in a racetrack shaped superconducting coil made from coated conductor tape. The outer dimensions of the coil are approximately 24 cm × 12 cm and it has 57 turns. The coil is impregnated with epoxy resin and fiberglass tape is used to insulate the individual turns and to improve the mechanical properties of the epoxy when exposed to thermal cycling. The coil is manufactured as a part of the field winding of a small synchronous generator; therefore stainless steel frames are installed on the inner and outer side of the winding to reinforce it. The AC loss is measured versus the transport current Ia with the coil immersed in liquid nitrogen. Measurements at frequencies 21 Hz, 36 Hz and 72 Hz are compared. The AC losses follow Ia2 dependence at low current amplitudes and Ia3 at high amplitudes. After cutting the inner steel frame the low amplitude losses are decreased, their frequency dependence is reduced but their dependence on the current remains unchanged.
Self-assembled nanocages based on the coiled coil bundle motif
NASA Astrophysics Data System (ADS)
Sinha, Nairiti; Villegas, Jose; Saven, Jeffery; Kiick, Kristi; Pochan, Darrin
Computational design of coiled coil peptide bundles that undergo solution phase self-assembly presents a diverse toolbox for engineering new materials with tunable and pre-determined nanostructures that can have various end applications such as in drug delivery, biomineralization and electronics. Self-assembled cages are especially advantageous as the cage geometry provides three distinct functional sites: the interior, the exterior and the solvent-cage interface. In this poster, syntheses and characterization of a peptide cage based on computationally designed homotetrameric coiled coil bundles as building blocks is discussed. Techniques such as Transmission Electron Microscopy (TEM), Small-Angle Neutron Scattering (SANS) and Analytical Ultracentrifugation (AUC) are employed to characterize the size, shape and molecular weight of the self-assembled peptide cages under different pH and temperature conditions. Various self-assembly pathways such as dialysis and thermal quenching are shown to have a significant impact on the final structure of these peptides in solution. Comparison of results with the target cage design can be used to iteratively improve the peptide design and provide greater understanding of its interactions and folding.
A miniature implantable coil that can be wrapped around a tubular organ within the human body
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.
Three-axis force actuator for a magnetic bearing
NASA Technical Reports Server (NTRS)
Gondhalekar, Vijay (Inventor)
1998-01-01
This invention features a three-axis force actuator that axially, radially and rotatably supports a bearing member for frictionless rotation about an axis of rotation generally coincident with a Z-axis. Also featured is a magnetic bearing having such an actuator. The actuator includes an inner member, a magnetic member and a pole assembly having a ring member and four pole extending therefrom. The poles are equi-angular spaced from each other and radially spaced about the Z-axis. The inner member extends along the Z-axis and is a highly magnetic permeable material. The magnetic member is formed about the inner member outer surface, extends along the Z-axis and is configured so one magnetic pole polarity is located at its outer surface and the other polarity pole is located at its inner surface. Preferably, the magnetic member is a radially magnetized permanent magnet. The inner surface of the ring member is magnetically coupled to the magnetic member and a face of each pole is coupled to the bearing member. The magnetic member, the pole assembly, the inner member and the bearing member cooperate to generate a magnetic field that radially and rotatably supports a rotating member secured to the bearing member. The actuator further includes a plurality of electromagnetic coils. Preferably, a coil is formed about each pole and at least 2 coils are formed about the inner member. When energized, the electromagnetic coils generate a modulated magnetic field that stabilizes the rotating member in the desired operational position.
Microhole Coiled Tubing Bottom Hole Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Macune
2008-06-30
The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. Themore » equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.« less
Tiberi, Gianluigi; Fontana, Nunzia; Costagli, Mauro; Stara, Riccardo; Biagi, Laura; Symms, Mark Roger; Monorchio, Agostino; Retico, Alessandra; Cosottini, Mirco; Tosetti, Michela
2015-07-01
Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults. © 2015 Wiley Periodicals, Inc.
Crystal Structure of the Heterotrimeric Integrin-Binding Region of Laminin-111.
Pulido, David; Hussain, Sadaf-Ahmahni; Hohenester, Erhard
2017-03-07
Laminins are cell-adhesive glycoproteins that are essential for basement membrane assembly and function. Integrins are important laminin receptors, but their binding site on the heterotrimeric laminins is poorly defined structurally. We report the crystal structure at 2.13 Å resolution of a minimal integrin-binding fragment of mouse laminin-111, consisting of ∼50 residues of α1β1γ1 coiled coil and the first three laminin G-like (LG) domains of the α1 chain. The LG domains adopt a triangular arrangement, with the C terminus of the coiled coil situated between LG1 and LG2. The critical integrin-binding glutamic acid residue in the γ1 chain tail is surface exposed and predicted to bind to the metal ion-dependent adhesion site in the integrin β1 subunit. Additional contacts to the integrin are likely to be made by the LG1 and LG2 surfaces adjacent to the γ1 chain tail, which are notably conserved and free of obstructing glycans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis.
Zhao, Yu; Nandra, Mandheerej; Yu, Chia-Chen; Tai, Yu-chong
2012-01-01
The next-generation retinal prostheses feature high image resolution and chronic implantation. These features demand the delivery of power as high as 100 mW to be wireless and efficient. A common solution is the 2-coil inductive power link, used by current retinal prostheses. This power link tends to include a larger-size extraocular receiver coil coupled to the external transmitter coil, and the receiver coil is connected to the intraocular electrodes through a trans-sclera trans-choroid cable. In the long-term implantation of the device, the cable may cause hypotony (low intraocular pressure) and infection. However, when a 2-coil system is constructed from a small-size intraocular receiver coil, the efficiency drops drastically which may induce over heat dissipation and electromagnetic field exposure. Our previous 2-coil system achieved only 7% power transfer. This paper presents a fully intraocular and highly efficient wireless power transfer system, by introducing another inductive coupling link to bypass the trans-sclera trans-choroid cable. With the specific equivalent load of our customized 512-electrode stimulator, the current 3-coil inductive link was measured to have the overall power transfer efficiency around 36%, with 1-inch separation in saline. The high efficiency will favorably reduce the heat dissipation and electromagnetic field exposure to surrounding human tissues. The effect of the eyeball rotation on the power transfer efficiency was investigated as well. The efficiency can still maintain 14.7% with left and right deflection of 30 degree during normal use. The surgical procedure for the coils' implantation into the porcine eye was also demonstrated.
Hu, Lingzhi; Hockett, Frank D; Chen, Junjie; Zhang, Lei; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A
2011-07-01
To propose and test a universal strategy for building (19) F/(1) H dual-frequency RF coil that permits multiple coil geometries. The feasibility to design (19) F/(1) H dual-frequency RF coil based on coupled resonator model was investigated. A series capacitive matching network enables robust impedance matching for both harmonic oscillating modes of the coupled resonator. Two typical designs of (19) F/(1) H volume coils (birdcage and saddle) at 4.7T were implemented and evaluated with electrical bench test and in vivo (19) F/(1) H dual-nuclei imaging. For various combinations of internal resistances of the sample coil and secondary resonator, numerical solutions for the tunable capacitors to optimize impedance matching were obtained using a root-seeking program. Identical and homogeneous B1 field distribution at (19) F and (1) H frequencies were observed in bench test and phantom image. Finally, in vivo mouse imaging confirmed the sensitivity and homogeneity of the (19) F/(1) H dual-frequency coil design. A generalized strategy for designing (19) F/(1) H dual-frequency coils based on the coupled resonator approach was developed and validated. A unique feature of this design is that it preserves the B1 field homogeneity of the RF coil at both resonant frequencies. Thus it minimizes the susceptibility effect on image co-registration. Copyright © 2011 Wiley-Liss, Inc.
Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T.
Muftuler, L Tugan; Gulsen, Gultekin; Sezen, Kumsal D; Nalcioglu, Orhan
2002-03-01
We have developed an MRI RF coil whose tuning can be adjusted automatically between 120 and 128 MHz for sequential spectroscopic imaging of hydrogen and fluorine nuclei at field strength 3 T. Variable capacitance (varactor) diodes were placed on each rung of an eight-leg low-pass birdcage coil to change the tuning frequency of the coil. The diode junction capacitance can be controlled by the amount of applied reverse bias voltage. Impedance matching was also done automatically by another pair of varactor diodes to obtain the maximum SNR at each frequency. The same bias voltage was applied to the tuning varactors on all rungs to avoid perturbations in the coil. A network analyzer was used to monitor matching and tuning of the coil. A Pentium PC controlled the analyzer through the GPIB bus. A code written in LABVIEW was used to communicate with the network analyzer and adjust the bias voltages of the varactors via D/A converters. Serially programmed D/A converter devices were used to apply the bias voltages to the varactors. Isolation amplifiers were used together with RF choke inductors to provide isolation between the RF coil and the DC bias lines. We acquired proton and fluorine images sequentially from a multicompartment phantom using the designed coil. Good matching and tuning were obtained at both resonance frequencies. The tuning and matching of the coil were changed from one resonance frequency to the other within 60 s. (c) 2002 Elsevier Science (USA).
Cooper, T M; Stone, M O; Natarajan, L V; Crane, R L
1995-08-01
To determine the maximum range of coupling between side-chain photochromism and polypeptide conformation change, we modified the carboxylate side chains of succinylated poly(L-lysine) with a spiropyran to form polypeptide I. The extent of modification was determined to be 35.5%. The spacer group length between the polypeptide alpha-carbon and the dye was 12 atoms, providing minimum polypeptide-dye interaction. Conformation changes were monitored by circular dichroism as a function of light adaptation and solvent composition (hexafluoroisopropanol [HFIP] vs trifluoroethanol [TFE]). Under all solvent compositions, the dark-adapted dye was in the merocyanine form. Light adaptation by visible light converted the dye to the spiropyran form. When dissolved in TFE, I adopted a helical conformation insensitive to light adaptation. With increasing percentage HFIP, a solvent-induced helix-to-coil transition was observed around 80% (vol/vol) HFIP. At 100% HFIP, both light- and dark-adapted forms of I were in the coil state. Near the midpoint of the solvent-induced helix-to-coil transition, light adaptation caused conformation changes. Applying helix-to-coil transition theory, we measured a statistically significant difference in coil segment-HFIP binding constant for light- vs dark-adapted solutions (6.38 +/- 0.03 M-1 vs 6.56 +/- 0.03 M-1), but not for the nucleation parameter sigma (1.2 +/- 0.4 10(-3) vs 1.3 +/- 0.3 x 10(-3). The small binding constant difference translated to a light-induced binding energy difference of 17 cal/mol/monomer. Near the midpoint of the helix-to-coil transition, collective interactions between monomer units made possible the translation of a small energy difference (less than RT) into large macromolecular conformation changes.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Tengming; Ye, Liyang; Turrioni, Daniele
Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltagemore » shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.« less
Milleron, N.
1963-03-12
An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)
Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru; Fujii, Hirofumi
2011-01-01
Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8×4 one-cm(2) grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195×0.195×1 mm(3)). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm(3), and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm(3) by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research.
Spaced-based search coil magnetometers
NASA Astrophysics Data System (ADS)
Hospodarsky, George B.
2016-12-01
Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.
LDRD final report on confinement of cluster fusion plasmas with magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio
2011-11-01
Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must bemore » brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.« less
Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.
Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald
2011-11-01
MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a reliable, compact, flexible, and relatively safe marker for clinical use.
Earth's field NMR; a surface moisture detector?
NASA Astrophysics Data System (ADS)
Fukushima, Eiichi; Altobelli, Stephen; McDowell, Andrew; Zhang, Tongsheng
2012-10-01
Earth's field NMR (EFNMR), being free of magnets, would be an ideal teaching medium as well as a mobile NMR technique except for its weak S/N. The common EFNMR apparatus uses a powerful prepolarization field to enhance the spin magnetization before the experiment. We introduce a coil design geared to larger but manageable samples with sufficient sensitivity without prepolarization to move EFNMR closer to routine use and to provide an inexpensive teaching tool. Our coil consists of parallel wires spread out on a plywood to form a current sheet with the current return wires separated so they will not influence the main part of the coil assembly. The sensitive region is a relatively thin region parallel to the coil and close to it. A single turn of the coil is wound to be topologically equivalent to a figure-8. The two crossing segments in the center of a figure-8 form two of the parallel wires of the flat coil. Thus, a two-turn figure-8 has four crossing wires so its topologically equivalent coil will have four parallel wires with currents in phase. Together with the excellent sensitivity, this coil offers outstanding interference rejection because of the figure-8 geometry. An example of such a coil has 328 parallel wires covering a ˜1 meter square plywood which yields a good NMR signal from 26 liters of water spread out roughly over the area of the coil in less than one minute in a nearby park.
Design and Testing of a Small Inductive Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.
2015-01-01
The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.
Fang, Yi-Bin; Li, Qiang; Yang, Peng-Fei; Zhang, Qi; Wu, Yi-Na; Feng, Zheng-Zhe; Huang, Qing-Hai; Xu, Yi; Liu, Jian-Min
2014-08-01
Small anterior communicating artery aneurysms with recurrent bleeding and adjacent hematoma may have a high risk of post-operative rebleeding. This clinical study summarizes our preliminary experience with this subset of aneurysms, which were treated with endovascular coiling and subsequent Onyx 34 embolization. We retrospectively reviewed the data of 9 patients suffering from small anterior communicating artery aneurysms treated with the combination of coils and Onyx. The clinical characteristics, angiographic outcomes, and follow-up results are reviewed. Endovascular coiling and Onyx embolization were successfully accomplished in all 9 cases. The Raymond scale ratings of the treatments are all class I with the parent arteries kept patent. One patient died of severe brain edema on the 5th post-operative day. The modified Rankin scale (mRS) score for the other 8 patients at follow-ups (6m to 26m, 15.8m on average) was 0 in 5 cases, 1 in 2 cases, and 3 in 1 case. Seven of 8 patients (87.5%) underwent angiographic follow-up that demonstrated persistent durable occlusion with no recanalization. Endovascular coiling and subsequent Onyx 34 embolization may be effective in treating anterior communicating artery aneurysms with adjacent hematoma. Further studies with larger sample size and adequate follow-up are required to verify its safety and efficacy as well as to evaluate the long-term outcome. Copyright © 2014 Elsevier B.V. All rights reserved.
Decomposed direct matrix inversion for fast non-cartesian SENSE reconstructions.
Qian, Yongxian; Zhang, Zhenghui; Wang, Yi; Boada, Fernando E
2006-08-01
A new k-space direct matrix inversion (DMI) method is proposed here to accelerate non-Cartesian SENSE reconstructions. In this method a global k-space matrix equation is established on basic MRI principles, and the inverse of the global encoding matrix is found from a set of local matrix equations by taking advantage of the small extension of k-space coil maps. The DMI algorithm's efficiency is achieved by reloading the precalculated global inverse when the coil maps and trajectories remain unchanged, such as in dynamic studies. Phantom and human subject experiments were performed on a 1.5T scanner with a standard four-channel phased-array cardiac coil. Interleaved spiral trajectories were used to collect fully sampled and undersampled 3D raw data. The equivalence of the global k-space matrix equation to its image-space version, was verified via conjugate gradient (CG) iterative algorithms on a 2x undersampled phantom and numerical-model data sets. When applied to the 2x undersampled phantom and human-subject raw data, the decomposed DMI method produced images with small errors (< or = 3.9%) relative to the reference images obtained from the fully-sampled data, at a rate of 2 s per slice (excluding 4 min for precalculating the global inverse at an image size of 256 x 256). The DMI method may be useful for noise evaluations in parallel coil designs, dynamic MRI, and 3D sodium MRI with fixed coils and trajectories. Copyright 2006 Wiley-Liss, Inc.
Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2015-11-28
We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.
Development of Mini-pole Superconducting Undulator
NASA Astrophysics Data System (ADS)
Jan, J. C.; Hwang, C. S.; Lin, P. H.; Chang, C. H.; Lin, F. Y.
2007-01-01
A mini-pole superconducting undulator with a 15mm period length (SU15) was developed at the National Synchrotron Radiation Research Center (NSRRC). The coil was wound by a superconducting (SC) NbTi wire with small dimensions and low Cu/SC ratio. The design field strength of SU15 with 158turns/pole was 1.4T at 215A, and the magnet gap was 5.6 mm. Extra trim coils and poles are mounted on the main iron pole. The trim coils directly compensate for the strength error of the peak field. The prototype racetrack iron pole was fabricated via electric discharge machining to produce a complete set of 40-poles. The coil was impregnated by epoxy and wrapped in Kapton to maintain insulation between coil and iron pole. A substitution beam duct was built and assembled with the magnet array and tested in the test Dewar. The conceptual design of bath liquid helium (LHe) cryostat has to tolerate more image current and radiation heating on the beam duct.
Echo planar imaging at 4 Tesla with minimum acoustic noise.
Tomasi, Dardo G; Ernst, Thomas
2003-07-01
To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.
Stewart, Chelsea M; Buffalo, Cosmo Z; Valderrama, J Andrés; Henningham, Anna; Cole, Jason N; Nizet, Victor; Ghosh, Partho
2016-08-23
The sequences of M proteins, the major surface-associated virulence factors of the widespread bacterial pathogen group A Streptococcus, are antigenically variable but have in common a strong propensity to form coiled coils. Paradoxically, these sequences are also replete with coiled-coil destabilizing residues. These features are evident in the irregular coiled-coil structure and thermal instability of M proteins. We present an explanation for this paradox through studies of the B repeats of the medically important M1 protein. The B repeats are required for interaction of M1 with fibrinogen (Fg) and consequent proinflammatory activation. The B repeats sample multiple conformations, including intrinsically disordered, dissociated, as well as two alternate coiled-coil conformations: a Fg-nonbinding register 1 and a Fg-binding register 2. Stabilization of M1 in the Fg-nonbinding register 1 resulted in attenuation of Fg binding as expected, but counterintuitively, so did stabilization in the Fg-binding register 2. Strikingly, these register-stabilized M1 proteins gained the ability to bind Fg when they were destabilized by a chaotrope. These results indicate that M1 stability is antithetical to Fg interaction and that M1 conformational dynamics, as specified by destabilizing residues, are essential for interaction. A "capture-and-collapse" model of association accounts for these observations, in which M1 captures Fg through a dynamic conformation and then collapses into a register 2-coiled coil as a result of stabilization provided by binding energy. Our results support the general conclusion that destabilizing residues are evolutionarily conserved in M proteins to enable functional interactions necessary for pathogenesis.
Fabrication of an electromagnetic actuator with the planar coil
NASA Astrophysics Data System (ADS)
Jeong, HyunKu; Jeong, OkChan; Yang, Sang S.
2000-06-01
This paper first presents the fabrication of an electromagnetic microactuator using an electroplated spiral copper coil on a parylene C diaphragm. The parylene is a bio-compatible material and has a very low Young's modulus less than 2.8 Gpa, which makes the large deflection for the low power consumption. The actuator consists of an electroplated coil on the parylene C diaphragm, a small-size permanent magnet and a core. The diaphragm is actuated by the Lorenz force generated by the current through the coil in the magnetic field of the magnet. The size of the actuator diaphragm is 4 by 4 mm2 and 5 micrometers thick. The resistance and inductance of the copper spiral coil are 2 (Omega) and 11 (mu) H at 100 Hz, respectively. The center deflection of the actuator diaphragm is measured with the laser vibrometer. Whenthe current through the coil is 380 mA, the peak-to-peak deflection of the actuator is 143 micrometers below the resonant frequency of 35 Hz. The mechanical sensitivity of the actuator diaphragm is 900 micrometers /A at 10 Hz and 35 Hz, respectively. An electromagnetic microactuator using the electroplated copper coil on the parylene diaphragm is expected to be useful in making a micropump for the bio-medical use.
Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira
2015-02-01
Momentum, i.e., force, exerted from a small helicon plasma thruster to a target plate is measured simultaneously with a direct thrust measurement using a thrust balance. The calibration coefficient relating a target displacement to a steady-state force is obtained by supplying a dc to a calibration coil mounted on the target, where a force acting to a small permanent magnet located near the coil is directly measured by using a load cell. As the force exerted by the plasma flow to the target plate is in good agreement with the directly measured thrust, the validity of the target technique is demonstrated under the present operating conditions, where the thruster is operated in steady-state. Furthermore, a calibration coefficient relating a swing amplitude of the target to an impulse bit is also obtained by pulsing the calibration coil current. The force exerted by the pulsed plasma, which is estimated from the measured impulse bit and the pulse width, is also in good agreement with that obtained for the steady-state operation; hence, the thrust assessment of the helicon plasma thruster by the target is validated for both the steady-state and pulsed operations.
NASA Astrophysics Data System (ADS)
Barbour, Michael; Levitt, Michael; Geindreau, Christian; Rolland Du Roscoat, Sabine; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto
2016-11-01
The hemodynamic environment in cerebral aneurysms undergoing flow-diverting stent (FDS) or coil embolization treatment plays a critical role in long-term outcomes. Standard modeling approaches to endovascular coils and FDS simplify the complex geometry into a homogenous porous volume or surface through the addition of a Darcy-Brinkman pressure loss term in the momentum equation. The inertial and viscous loss coefficients are typically derived from published in vitro studies of pressure loss across FDS and coils placed in a straight tube, where the only fluid path is across the treatment - an unrealistic representation of treatment apposition in vivo. The pressure drop across FDS and coils in side branch aneurysms located on curved parent vessels is measured. Using PIV, the velocity at the aneurysm neck plane is reconstructed and used to determine loss coefficients for better models of endovascular coils or FDS that account for physiological placement and vessel curvature. These improved models are incorporated into CFD simulations and validated against in vitro model PIV velocity, as well as compared to microCT-based coil/stent-resolving CFD simulations of patient-specific treated aneurysm flow.
40 CFR 63.5110 - What special definitions are used in this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... equipment used to apply an organic coating to the surface of metal coil. A coil coating line includes a web... emission limitation (including any operating limit) or work practice standard; (2) Fails to meet any term... before July 18, 2000, and it has not subsequently undergone reconstruction as defined in § 63.2. Facility...
Design of a toroidal device with a high temperature superconductor coil for non-neutral plasma trap
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi; Morikawa, Junji; Nihei, Hitoshi; Ozawa, Daisaku; Yoshida, Zensho; Mito, Toshiyuki; Yanagi, Nagato; Iwakuma, Masataka
2002-01-01
The non-neutral plasma confinement device with a floating internal coil is under construction, where the high temperature superconductor (HTS) Ag-sheathed BSCCO-2223 is employed as the floating coil. We have two topics with this device: one is a trap of a non-neutral plasma consisting of one species, and another is an exploration of a high beta plasma based on two-fluid MHD relaxation theory. In the latter case the plasma should be non-neutralized in order to drive the plasma flow in the toroidal direction. The expected plasma parameters are discussed. Key elements of engineering issues have already developed. In addition, we have fabricated a small HTS coil and succeeded in levitating it within an accuracy of 25˜30 μm for 4 min or more.
Cooling a solar telescope enclosure: plate coil thermal analysis
NASA Astrophysics Data System (ADS)
Gorman, Michael; Galapon, Chriselle; Montijo, Guillermo; Phelps, LeEllen; Murga, Gaizka
2016-08-01
The climate of Haleakalā requires the observatories to actively adapt to changing conditions in order to produce the best possible images. Observatories need to be maintained at a temperature closely matching ambient or the images become blurred and unusable. The Daniel K. Inouye Solar Telescope is a unique telescope as it will be active during the day as opposed to the other night-time stellar observatories. This means that it will not only need to constantly match the ever-changing temperature during the day, but also during the night so as not to sub-cool and affect the view field of other telescopes while they are in use. To accomplish this task, plate coil heat exchanger panels will be installed on the DKIST enclosure that are designed to keep the temperature at ambient temperature +0°C/-4°C. To verify the feasibility of this and to validate the design models, a test rig has been installed at the summit of Haleakalā. The project's purpose is to confirm that the plate coil panels are capable of maintaining this temperature throughout all seasons and involved collecting data sets of various variables including pressures, temperatures, coolant flows, solar radiations and wind velocities during typical operating hours. Using MATLAB, a script was written to observe the plate coil's thermal performance. The plate coil did not perform as expected, achieving a surface temperature that was generally 2ºC above ambient temperature. This isn't to say that the plate coil does not work, but the small chiller used for the experiment was undersized resulting in coolant pumped through the plate coil that was not supplied at a low enough temperature. Calculated heat depositions were about 23% lower than that used as the basis of the design for the hillers to be used on the full system, a reasonable agreement given the fact that many simplifying assumptions were used in the models. These were not carried over into the testing. The test rig performance showing a 23% margin provides a high degree of confidence for the performance of the full system when it is installed. If time allows, additional testing could be done that includes additional incident angles and times of day. This would allow a more complete analysis. If additional testing were to be performed, it's recommended to use a larger chiller capable of reaching lower temperatures. The test rig design could also be optimized in order to bring the plate coil up to its maximum efficiency. In the future, the script could be rewritten in a different computer language, so that the data could be solved for quicker. Further analysis could also include different types of coolants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reft, C; Lu, Z; Noonan, J
2015-06-15
Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beammore » shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.« less
Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook
2007-03-01
To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.
Magnetic field homogeneity of a conical coaxial coil pair.
Salazar, F J; Nieves, F J; Bayón, A; Gascón, F
2017-09-01
An analytical study of the magnetic field created by a double-conical conducting sheet is presented. The analysis is based on the expansion of the magnetic field in terms of Legendre polynomials. It is demonstrated analytically that the angle of the conical surface that produces a nearly homogeneous magnetic field coincides with that of a pair of loops that fulfills the Helmholtz condition. From the results obtained, we propose an electric circuit formed by pairs of isolated conducting loops tightly wound around a pair of conical surfaces, calculating numerically the magnetic field produced by this system and its heterogeneity. An experimental setup of the proposed circuit was constructed and its magnetic field was measured. The results were compared with those obtained by numerical calculation, finding a good agreement. The numerical results demonstrate a significant improvement in homogeneity in the field of the proposed pair of conical coils compared with that achieved with a simple pair of Helmholtz loops or with a double solenoid. Moreover, a new design of a double pair of conical coils based on Braunbek's four loops is also proposed to achieve greater homogeneity. Regarding homogeneity, the rating of the analyzed configurations from best to worst is as follows: (1) double pair of conical coils, (2) pair of conical coils, (3) Braunbek's four loops, (4) Helmholtz pair, and (5) solenoid pair.
Magnetic field homogeneity of a conical coaxial coil pair
NASA Astrophysics Data System (ADS)
Salazar, F. J.; Nieves, F. J.; Bayón, A.; Gascón, F.
2017-09-01
An analytical study of the magnetic field created by a double-conical conducting sheet is presented. The analysis is based on the expansion of the magnetic field in terms of Legendre polynomials. It is demonstrated analytically that the angle of the conical surface that produces a nearly homogeneous magnetic field coincides with that of a pair of loops that fulfills the Helmholtz condition. From the results obtained, we propose an electric circuit formed by pairs of isolated conducting loops tightly wound around a pair of conical surfaces, calculating numerically the magnetic field produced by this system and its heterogeneity. An experimental setup of the proposed circuit was constructed and its magnetic field was measured. The results were compared with those obtained by numerical calculation, finding a good agreement. The numerical results demonstrate a significant improvement in homogeneity in the field of the proposed pair of conical coils compared with that achieved with a simple pair of Helmholtz loops or with a double solenoid. Moreover, a new design of a double pair of conical coils based on Braunbek's four loops is also proposed to achieve greater homogeneity. Regarding homogeneity, the rating of the analyzed configurations from best to worst is as follows: (1) double pair of conical coils, (2) pair of conical coils, (3) Braunbek's four loops, (4) Helmholtz pair, and (5) solenoid pair.
Concerning neutral flux shielding in the U-3M torsatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreval, N. B., E-mail: mdreval@kipt.kharkov.ua
2015-03-15
The volume of the torsatron U-3M vacuum chamber is about 70 m{sup 3}, whereas the plasma volume is about 0.3 m{sup 3}. The large buffer volume of the chamber serves as a source of a substantial neutral flux into the U-3M plasma. A fraction of this flux falls onto the torsatron helical coils located in front of the plasma, due to which the dynamics of neutral influx into the plasma modifies. The shielding of the molecular flux from the buffer volume into the plasma is estimated using numerical calculations. Only about 10% of the incident flux reaches the plasma volume.more » Estimates show that about 20% of atoms escape beyond the helical coils without colliding with them. Under these conditions, the helical coils substantially affect the neutral flux. A discharge regime with a hot low-density plasma produced by a frame antenna is considered. The spatial distribution of the molecular density produced in this regime by the molecular flux from the chamber buffer volume after it has passed between the helical coils is calculated. The contributions of the fluxes emerging from the side and inner surfaces of the helical coils are considered. The calculations show that the shape of the spatial distribution of the molecular density differs substantially from the shape of the magnetic surfaces.« less
Bias-field equalizer for bubble memories
NASA Technical Reports Server (NTRS)
Keefe, G. E.
1977-01-01
Magnetoresistive Perm-alloy sensor monitors bias field required to maintain bubble memory. Sensor provides error signal that, in turn, corrects magnitude of bias field. Error signal from sensor can be used to control magnitude of bias field in either auxiliary set of bias-field coils around permanent magnet field, or current in small coils used to remagnetize permanent magnet by infrequent, short, high-current pulse or short sequence of pulses.
Method and apparatus for deflection measurements using eddy current effects
NASA Astrophysics Data System (ADS)
Chern, Engmin J.
1993-05-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
Urbahn, John Arthur; Laskaris, Evangelos Trifon
2009-06-16
A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.
Method and apparatus for deflection measurements using eddy current effects
NASA Technical Reports Server (NTRS)
Chern, Engmin J. (Inventor)
1993-01-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
Control system for a small fission reactor
Burelbach, James P.; Kann, William J.; Saiveau, James G.
1986-01-01
A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.
Ex vivo mouse brain microscopy at 15T with loop-gap RF coil.
Cohen, Ouri; Ackerman, Jerome L
2018-04-18
The design of a loop-gap-resonator RF coil optimized for ex vivo mouse brain microscopy at ultra high fields is described and its properties characterized using simulations, phantoms and experimental scans of mouse brains fixed in 10% formalin containing 4 mM Magnevist™. The RF (B 1 ) and magnetic field (B 0 ) homogeneities are experimentally quantified and compared to electromagnetic simulations of the coil. The coil's performance is also compared to a similarly sized surface coil and found to yield double the sensitivity. A three-dimensional gradient-echo (GRE) sequence is used to acquire high resolution mouse brain scans at (47 μm) 3 resolution in 1.8 h and a 20 × 20 × 19 μm 3 resolution in 27 h. The high resolution obtained permitted clear visualization and identification of multiple structures in the ex vivo mouse brain and represents, to our knowledge, the highest resolution ever achieved for a whole mouse brain. Importantly, the coil design is simple and easy to construct. Copyright © 2018 Elsevier Inc. All rights reserved.
Novel TMS coils designed using an inverse boundary element method
NASA Astrophysics Data System (ADS)
Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David
2017-01-01
In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.
Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine.
Tang, Y; Ghirlanda, G; Vaidehi, N; Kua, J; Mainz, D T; Goddard III, W A; DeGrado, W F; Tirrell, D A
2001-03-06
Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.
3D model of a matrix source of negative ions: RF driving by a large area planar coil
NASA Astrophysics Data System (ADS)
Demerdzhiev, A.; Lishev, St.; Tarnev, Kh.; Shivarova, A.
2015-04-01
Based on three-dimensional (3D) modeling, different manners of a planar-coil inductive discharge driving of a plasma source completed as a matrix of small-radius hydrogen discharges are studied regarding a proper choice of an efficient and alike rf power deposition into the separate discharges of the matrix. Driving the whole matrix by a single coil and splitting it to blocks of discharge tubes, with single coil driving of each block, are the two cases considered. The results from the self-consistent model presented for a block of discharge tubes show its reliability in ensuring the same spatial distribution of the plasma parameters in the discharges completing the block. Since regarding the construction of the matrix, its driving as a whole by a single coil is the most reasonable decision, three modifications of the coil design have been tested: two zigzag coils with straight conductors passing, respectively, between and through the bottoms of the discharge tubes and a coil with an "omega" shaped conductor on the bottom of each tube. Among these three configurations, the latter ‒ a coil with an Ω-shaped conductor on the bottom of each tube ‒ shows up with the highest rf efficiency of an inductive discharge driving, shown by results for the rf current induced in the discharges obtained from an electrodynamical description. In all the cases considered the spatial distribution of the induced current density is analysed based on the manner of the penetration into the plasma of the wave field sustaining the inductive discharges.
Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro
2010-01-01
Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859
Xiao, Meng; Wang, Lei; Ji, Fanqin; Shi, Feng
2016-05-11
Energy conversion from a mechanical form to electricity is one of the most important research advancements to come from the horizontal locomotion of small objects. Until now, the Marangoni effect has been the only propulsion method to produce the horizontal locomotion to induce an electromotive force, which is limited to a short duration because of the specific property of surfactants. To solve this issue, in this article we utilized the decomposition of hydrogen peroxide to provide the propulsion for a sustainable energy conversion from a mechanical form to electricity. We fabricated a mini-generator consisting of three parts: a superhydrophobic rotator with three jaws, three motors to produce a jet of oxygen bubbles to propel the rotation of the rotator, and three magnets integrated into the upper surface of the rotator to produce the magnet flux. Once the mini-generator was placed on the solution surface, the motor catalyzed the decomposition of hydrogen peroxide. This generated a large amount of oxygen bubbles that caused the generator and integrated magnets to rotate at the air/water interface. Thus, the magnets passed under the coil area and induced a change in the magnet flux, thus generating electromotive forces. We also investigated experimental factors, that is, the concentration of hydrogen peroxide and the turns of the solenoid coil, and found that the mini-generator gave the highest output in a hydrogen peroxide solution with a concentration of 10 wt % and under a coil with 9000 turns. Through combining the stable superhydrophobicity and catalyst, we realized electricity generation for a long duration, which could last for 26 000 s after adding H2O2 only once. We believe this work provides a simple process for the development of horizontal motion and provides a new path for energy reutilization.
NASA Astrophysics Data System (ADS)
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1H frequency, and chemical shift imaging at 13C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45–59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1H/13C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23–30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Eddy current gauge for monitoring displacement using printed circuit coil
Visioli, Jr., Armando J.
1977-01-01
A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.
Novel Techniques for Pulsed Field Gradient NMR Measurements
NASA Astrophysics Data System (ADS)
Brey, William Wallace
Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find application in research areas ranging from functional imaging to NMR microscopy.
NASA Astrophysics Data System (ADS)
Seo, Jeung-Hoon; Han, Sang-Doc; Kim, Kyoung-Nam
2015-06-01
The proper design of birdcage (BC) coils plays a very important role in the acquisition of highresolution magnetic resonance imaging (MRI) of small animals such as rodents. In this context, we investigate multiple-leg (8-, 16-, 32-, 64-, and 128-leg) BC coils operating at ultra-high fields (UHF) of 7.0 T and 11.7 T and a high-field (HF) of 4.7 T for rodent magnetic resonance imaging (MRI). Primarily, Our study comparatively examines the parameters of the radiofrequency (RF) transmission (|B1 +|)-field, the magnetic flux (|B1|)-field, and RF power deposition (RF-PD) as functions of the number of BC-coil legs via finite-difference time-domain (FDTD) calculations under realistic loading conditions with a biological phantom. In particular, the specific ratio |E/B1 +| is defined for predicting RF-PD values in different coil structures. Our results indicate that the optimal number of legs of the BC coil can be chosen for different resonance frequencies of 200 MHz, 300 MHz, and 500 MHz and that this choice can be lead to superior |B1 +|-field intensity and |B1|-field homogeneity and decreased RF-PD. We believe that our approach to determining the optimal number of legs for a BC coil can contribute to rodent MR imaging.
Experimental implementation of array-compressed parallel transmission at 7 tesla.
Yan, Xinqiang; Cao, Zhipeng; Grissom, William A
2016-06-01
To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
McCamy, Michael B.; Otero-Millan, Jorge; Leigh, R. John; King, Susan A.; Schneider, Rosalyn M.; Macknik, Stephen L.; Martinez-Conde, Susana
2015-01-01
Human eyes move continuously, even during visual fixation. These “fixational eye movements” (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift) and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs. PMID:26035820
Development of a bio-magnetic measurement system and sensor configuration analysis for rats
NASA Astrophysics Data System (ADS)
Kim, Ji-Eun; Kim, In-Seon; Kim, Kiwoong; Lim, Sanghyun; Kwon, Hyukchan; Kang, Chan Seok; Ahn, San; Yu, Kwon Kyu; Lee, Yong-Ho
2017-04-01
Magnetoencephalography (MEG) based on superconducting quantum interference devices enables the measurement of very weak magnetic fields (10-1000 fT) generated from the human or animal brain. In this article, we introduce a small MEG system that we developed specifically for use with rats. Our system has the following characteristics: (1) variable distance between the pick-up coil and outer Dewar bottom (˜5 mm), (2) small pick-up coil (4 mm) for high spatial resolution, (3) good field sensitivity (45 ˜ 80 fT /cm/√{Hz} ) , (4) the sensor interval satisfies the Nyquist spatial sampling theorem, and (5) small source localization error for the region to be investigated. To reduce source localization error, it is necessary to establish an optimal sensor layout. To this end, we simulated confidence volumes at each point on a grid on the surface of a virtual rat head. In this simulation, we used locally fitted spheres as model rat heads. This enabled us to consider more realistic volume currents. We constrained the model such that the dipoles could have only four possible orientations: the x- and y-axes from the original coordinates, and two tangentially layered dipoles (local x- and y-axes) in the locally fitted spheres. We considered the confidence volumes according to the sensor layout and dipole orientation and positions. We then conducted a preliminary test with a 4-channel MEG system prior to manufacturing the multi-channel system. Using the 4-channel MEG system, we measured rat magnetocardiograms. We obtained well defined P-, QRS-, and T-waves in rats with a maximum value of 15 pT/cm. Finally, we measured auditory evoked fields and steady state auditory evoked fields with maximum values 400 fT/cm and 250 fT/cm, respectively.
NASA Astrophysics Data System (ADS)
Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck
2014-12-01
Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.
A fluid-mechanical sewing machine
NASA Astrophysics Data System (ADS)
Lister, John; Chiu-Webster, Sunny
2004-11-01
It is a breakfast-table experience that when a viscous fluid thread falls a sufficient height onto a stationary horizontal surface the thread is undergoes a coiling instability. We describe experimental observations of a viscous thread falling onto a steadily moving horizontal belt. Low (or zero) belt speeds produce coiling as expected. High belt speeds produce a steady thread, whose shape is well-predicted by theory for a stretching catenary with surface tension and inertia. Intermediate belt speeds show various modes of oscillation, which produce a variety of `stitching' patterns on the belt. The onset of oscillations is predicted theoretically.
A 0.6 T/650 mm RT Bore Solid Nitrogen Cooled MgB2 Demonstration Coil for MRI—a Status Report
Bascuñán, Juan; Lee, Haigunan; Bobrov, Emmanuel S.; Hahn, Seungyong; Iwasa, Yukikazu; Tomsic, Mike; Rindfleisch, Matt
2014-01-01
Aiming to demonstrate feasibility and practicality of a low cost superconducting MRI magnet system targeted for use in small hospitals, rural communities and underdeveloped countries, MIT-Francis Bitter Magnet Laboratory has developed a 0.6 T/650 mm room temperature bore demonstration coil wound with multifilament MgB2 conductor and cooled via an innovative cryogenic design/operation. The coil is to be maintained cold by solid nitrogen kept in the solid state by a cryocooler. In the event of a power failure the cryocooler is automatically thermally decoupled from the system. In this paper we present details of the MgB2 conductor, winding process, and preliminary theoretical analysis of the current-carrying performance of the conductively cooled coils in zero background field and over the 10–30 K temperature range. PMID:25580068
Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study
NASA Astrophysics Data System (ADS)
Makida, Y.; Shintomi, T.; Hamajima, T.; Ota, N.; Katsura, M.; Ando, K.; Takao, T.; Tsuda, M.; Miyagi, D.; Tsujigami, H.; Fujikawa, S.; Hirose, J.; Iwaki, K.; Komagome, T.
2015-12-01
We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured.
Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft
NASA Astrophysics Data System (ADS)
Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki
2015-02-01
This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.
Applications of the chemical oxygen-iodine laser
NASA Astrophysics Data System (ADS)
Latham, W. Pete; Kendrick, Kip R.; Quillen, Brian
2000-01-01
The Chemical Oxygen-Iodine Laser (COIL) has been developed at the Air Force Research Laboratory for military applications. For example, the COIL is to be use as the laser device for the ABL. A high power laser is useful for applications that require the delivery of a substantial amount of energy to a very small focused laser spot. The COIL is a member of the class of high power lasers that are also useful for industrial applications, including the materials processing task of high speed cutting and drilling. COIL technology has received considerable interest over the last several years due to its short, fiber- deliverable wavelength, scalability to very high powers, and demonstrated nearly diffraction-limited optical quality. These unique abilities make it an ideal candidate for nuclear reactor decommissioning and nuclear warhead dismantlement. Japanese researchers envision using a COIL for disaster cleanup and survivor rescue. It is also being studied by the oil and gas industry for well drilling. Any commercial or industrial application that requires very rapid, precise, and noninvasive cutting or drilling, could be readily accomplished with a COIL. Because of the substantial power levels available with a COIL, the laser could also be used for broad area applications such as paint stripping. This paper includes a collection of experiments accomplished at the Air Force Research Laboratory Chemical Laser Facility, including metal cutting, hole drilling, high power fiber optic transmission, and rock crushing.
Small Layer-wound ReBCO Solenoids
NASA Astrophysics Data System (ADS)
Polyakov, A. V.; Shcherbakov, V. I.; Shevchenko, S. A.; Surin, M. I.
The development of the next generation of high field superconducting magnet systems demands studies of new technological approach for its internal sections. Several small HTS solenoids (21 mm inner diameter, 32 layers) were fabricated by layer-winding technique from SuperPower type SCS-4050 ReBCO wire insulated by polyimide wrapping. Different designs of external and internal joints also were also tested. The highest field generated by HTS coil was 2.4 T in a 10 T background field (total field was 12.4 T) at 4.2 K and achieved current density in the coil was 498 A/mm2. The results will be used in development of HTS inner sections for 25 T superconducting magnet.
NASA Astrophysics Data System (ADS)
Liu, Yi; Chen, Dong-Feng; Wang, Hong-Li; Chen, Na; Li, Dan; Han, Bu-Xing; Rong, Li-Xia; Zhao, Hui; Wang, Jun; Dong, Bao-Zhong
2002-10-01
The conformation of polystyrene in the anti-solvent process of supercritical fluids (compressed CO2 + polystyrene + toluene) has been studied by small angle x-ray scattering with synchrotron radiation as an x-ray source. Coil-to-globule transformation of the polystyrene chain was observed with the increase of the anti-solvent CO2 pressure; i.e. polystyrene coiled at a pressure lower than the cloud point pressure (Pc) and turned into a globule with a uniform density at pressures higher than Pc. Fractal behaviour was also found in the chain contraction and the mass fractal dimension increased with increasing CO2 pressure.
Han, Yang; Cai, Chunhua; Lin, Jiaping; Gong, Shuting; Xu, Wenheng; Hu, Rui
2018-04-14
In this work, it is reported that poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) rod-coil block copolymers (BCPs) can disperse carbon nanotubes (CNTs) in solution and form various surface nanostructures on the CNTs via solution self-assembly. In an organic solvent that dissolves the BCPs, the PBLG rod blocks adsorb on CNT surfaces, and the BCPs form conformal coatings. Then, by the introduction of water, a selective solvent for PEG blocks, the BCPs in the coatings further self-assemble into diverse surface nanostructures, such as helices (left-handed or right-handed), gyros, spheres, and rings. The morphology of the surface nanostructure can be tailored by initial organic solvent composition, preparation temperature, feeding ratio of BCPs to CNTs, degree of polymerization of PBLG blocks, and diameter of the CNTs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thin film eddy current impulse deicer
NASA Technical Reports Server (NTRS)
Smith, Samuel O.; Zieve, Peter B.
1990-01-01
Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.
Magnetostatic simulation on a novel design of axially multi-coiled magnetorheological brakes
NASA Astrophysics Data System (ADS)
Ubaidillah, Permata, A. N. S.; Wibowo, A.; Budiana, E. P.; Yahya, I.; Mazlan, S. A.
2016-03-01
This paper describes the 3D magnetostatic simulation of a novel design axially multi-coiled magnetorheological (MRB). The proposed model is expected to produce a concentrated magnetic flux on the surface of the rotor disk brake. Thus, the braking torque enhancement is expected to be higher than that of conventional big size single-coil-equipped disk-type MRB. The axially multi-coiled MRB design features multiple electromagnetic poles from by several coils placed in the axial direction outside the MRB body. The magnetostatic analysis was developed utilizing finite element software namely ANSOFT-MAXWELL in 3D environment. The distribution of magnetic flux was investigated in a pair of the coil that represents the other pairs of electromagnetic parts. The simulation was done in 0.5 mm gap filled by magnetorheological fluids (MRFs) (MRF-132DG). The simulation was performed in various applied currents i.e. 0.25, 0.5, 0.75, 1, 1.5, and 2 Amperes. The results showed that the axially multi-coiled MRB provides a considerable magnetic flux (maximum of 337 mT/area). The active energizing areas of the MRB are proven to be more intensive than the conventional MRB. The proposed MRB exhibited a compact and robust design for achieving high torque MRB.
Noninvasive liver iron measurements with a room-temperature susceptometer
Avrin, W F; Kumar, S
2011-01-01
Magnetic susceptibility measurements on the liver can quantify iron overload accurately and noninvasively. However, established susceptometer designs, using Superconducting QUantum Interference Devices (SQUIDs) that work in liquid helium, have been too expensive for widespread use. This paper presents a less expensive liver susceptometer that works at room temperature. This system uses oscillating magnetic fields, which are produced and detected by copper coils. The coil design cancels the signal from the applied field, eliminating noise from fluctuations of the source-coil current and sensor gain. The coil unit moves toward and away from the patient at 1 Hz, cancelling drifts due to thermal expansion of the coils. Measurements on a water phantom indicated instrumental errors less than 30 μg of iron per gram of wet liver tissue, which is small compared with other errors due to the response of the patient’s body. Liver iron measurements on eight thalassemia patients yielded a correlation coefficient r=0.98 between the room-temperature susceptometer and an existing SQUID. These results indicate that the fundamental accuracy limits of the room-temperature susceptometer are similar to those of the SQUID. PMID:17395991
NASA Technical Reports Server (NTRS)
Tang, Dingding; Rose, A. H.; Day, G. W.; Etzel, Shelley M.
1991-01-01
Annealing procedures that greatly reduce linear birefringence in single-mode fiber coils are described. These procedures have been successfully applied to coils ranging from 5 mm to 10 cm in diameter and up to 200 or more turns. They involve temperature cycles that last 3-4 days and reach maximum temperatures of about 850 C. The residual birefringence and induced loss are minimized by proper selection of fiber. The primary application of these coils is optical fiber current sensors, where they yield small sensors that are more stable than those achieved by other techniques. A current sensor with a temperature stability of 8.4 x 10 to the -5th/K over the range from -75 to 145 C has been demonstrated. This is approximately 20 percent greater than the temperature dependence of the Verdet constant. Packaging degrades the stability, but a packaged sensor coil with a temperature stability of about 1.6 + 10 to the -4th/K over the range from -20 to 120 C has also been demonstrated.
High rate fabrication of compression molded components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.
2016-04-19
A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; andmore » applying molding pressure to the pre-form to form the composite component.« less
An Implantable RF Solenoid for Magnetic Resonance Microscopy and Microspectroscopy
Cohen, Mark S.; Clark, W. Gilbert; Chu, Allen C.; Nunnally, Ray L.; Smith, Jolinda; Mills, Dixie; Judy, Jack W.
2014-01-01
Miniature solenoids routinely enhance small volume nuclear magnetic resonance imaging and spectroscopy; however, no such techniques exist for patients. We present an implantable microcoil for diverse clinical applications, with a microliter coil volume. The design is loosely based on implantable depth electrodes, in which a flexible tube serves as the substrate, and a metal stylet is inserted into the tube during implantation. The goal is to provide enhanced signal-to-noise ratio (SNR) of structures that are not easily accessed by surface coils. The first-generation prototype was designed for implantation up to 2 cm, and provided initial proof-of-concept for microscopy. Subsequently, we optimized the design to minimize the influence of lead inductances, and to thereby double the length of the implantable depth (4 cm). The second-generation design represents an estimated SNR improvement of over 30% as compared to the original design when extended to 4 cm. Impedance measurements indicate that the device is stable for up to 24 h in body temperature saline. We evaluated the SNR and MR-related heating of the device at 3T. The implantable microcoil can differentiate fat and water peaks, and resolve submillimeter features. PMID:22156945
Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Gosselin, Benoit
2016-04-01
This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).
NASA Technical Reports Server (NTRS)
Brown, G. V.; Dirusso, E.; Provenza, A. J.
1995-01-01
A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.
Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M.; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia
2015-01-01
Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed. PMID:26617515
MR coil sensitivity inhomogeneity correction for plaque characterization in carotid arteries
NASA Astrophysics Data System (ADS)
Salvado, Olivier; Hillenbrand, Claudia; Suri, Jasjit; Wilson, David L.
2004-05-01
We are involved in a comprehensive program to characterize atherosclerotic disease using multiple MR images having different contrast mechanisms (T1W, T2W, PDW, magnetization transfer, etc.) of human carotid and animal model arteries. We use specially designed intravascular and surface array coils that give high signal-to-noise but suffer from sensitivity inhomogeneity. With carotid surface coils, challenges include: (1) a steep bias field with an 80% change; (2) presence of nearby muscular structures lacking high frequency information to distinguish bias from anatomical features; (3) many confounding zero-valued voxels subject to fat suppression, blood flow cancellation, or air, which are not subject to coil sensitivity; and (4) substantial noise. Bias was corrected using a modification of the adaptive fuzzy c-mean method reported by Pham et al. (IEEE TMI, 18:738-752), whereby a bias field modeled as a mechanical membrane was iteratively improved until cluster means no longer changed. Because our images were noisy, we added a noise reduction filtering step between iterations and used about 5 classes. In a digital phantom having a bias field measured from our MR system, variations across an area comparable to a carotid artery were reduced from 50% to <5% with processing. Human carotid images were qualitatively improved and large regions of skeletal muscle were relatively flat. Other commonly applied techniques failed to segment the images or introduced strong edge artifacts. Current evaluations include comparisons to bias as measured by a body coil in human MR images.
2016-07-18
One broad active region sported a wonderful example of coiled magnetic field lines over almost a four-day period (July 15-18, 2016). The magnetic lines are easily visible in this 171 Angstrom wavelength of extreme ultraviolet light be cause charged particles are spiraling along the lines. The active region is a hotbed of struggling magnetic forces that were pushing out above the sun's surface. http://photojournal.jpl.nasa.gov/catalog/PIA17911
NASA Astrophysics Data System (ADS)
Ip, Flora S.
Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons, the MR counter-rotating current coil is sufficient and demonstrated its simplicity over a phased array in this application.
Soltani, Nima; Aliroteh, Miaad S; Salam, M Tariqus; Perez Velazquez, Jose Luis; Genov, Roman
2016-08-01
This paper presents a general methodology of inductive power delivery in wireless chronic rodent electrophysiology applications. The focus is on such systems design considerations under the following key constraints: maximum power delivery under the allowable specific absorption rate (SAR), low cost and spatial scalability. The methodology includes inductive coil design considerations within a low-frequency ferrite-core-free power transfer link which includes a scalable coil-array power transmitter floor and a single-coil implanted or worn power receiver. A specific design example is presented that includes the concept of low-SAR cellular single-transmitter-coil powering through dynamic tracking of a magnet-less receiver spatial location. The transmitter coil instantaneous supply current is monitored using a small number of low-cost electronic components. A drop in its value indicates the proximity of the receiver due to the reflected impedance of the latter. Only the transmitter coil nearest to the receiver is activated. Operating at the low frequency of 1.5 MHz, the inductive powering floor delivers a maximum of 15.9 W below the IEEE C95 SAR limit, which is over three times greater than that in other recently reported designs. The power transfer efficiency of 39% and 13% at the nominal and maximum distances of 8 cm and 11 cm, respectively, is maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosley, C.A.; Taupenot, L.; Biswas, N.
2009-06-03
The secretory pro-hormone chromogranin A (CHGA) is densely packed into storage granules along with catecholamines, playing a catalytic role in granule biogenesis. 3-Dimensional structural data on CHGA are lacking. We found a superfamily structural homology for CHGA in the tropomyosin family of alpha-helical coiled-coils, even in mid-molecule regions where primary sequence identity is only modest. The assignment was confirmed by an independent algorithm, suggesting approximately 6-7 such domains spanning CHGA. We provide additional physiochemical evidence (chromatographic, spectral, microscopic) consistent with this unusual structure. Alpha-helical secondary structure (at up to approximately 45%) was confirmed by circular dichroism. CHGA molecular mass wasmore » estimated by MALDI-TOF mass spectrometry at approximately 50 kDa and by denaturing gel filtration at approximately 50-61 kDa, while its native Stokes radius was approximately 84.8 A, as compared to an expected approximately 30 A; the increase gave rise to an apparent native molecular weight of approximately 578 kDa, also consistent with the extended conformation of a coiled-coil. Small-angle X-ray scattering (SAXS) on CHGA in solution best fit an elongated cylindrical conformation in the monodisperse region with a radius of gyration of the rod cross-section (Rt) of approximately 52 A, compatible with a coiled-coil in the hydrated, aqueous state, or a multimeric coiled-coil. Electron microscopy with negative staining revealed an extended, filamentous CHGA structure with a diameter of approximately 94 +/- 4.5 A. Extended, coiled-coil conformation is likely to permit protein 'packing' in the secretory granule at approximately 50% higher density than a globular/spherical conformation. Natural allelic variation in the catestatin region was predicted to disrupt the coiled-coil. Chromaffin granule ultrastructure revealed a approximately 108 +/- 6.3 A periodicity of electron density, suggesting nucleation of a binding complex by the CHGA core. Inhibition of CHGA expression, by siRNA, disrupted regulated secretory protein traffic by approximately 65%, while targeted ablation of the CHGA gene in the mouse reduced chromaffin granule cotransmitter concentrations by approximately 40-80%. These results suggest new roles for secretory protein tertiary structure in hormone and transmitter storage, with implications for secretory cargo condensation (or dense core 'packing' structure) within the regulated pathway.« less
Improved Design of Stellarator Coils for Current Carrying Plasmas
NASA Astrophysics Data System (ADS)
Drevlak, M.; Strumberger, E.; Hirshman, S.; Boozer, A.; Brooks, A.; Valanju, P.
1998-11-01
The method of automatic optimization (P. Merkel, Nucl. Fus. 27), (1987) 867; P. Merkel, M. Drevlak, Proc 25th EPS Conf. on Cont. Fus. and Plas. Phys., Prague, in print. for the design of stellarator coils consists essentially of determining filaments such that the average relative field error int dS [ (B_coil + B_j) \\cdot n]^2/B^2_coil is minimized on the prescribed plasma boundary. Bj is the magnetic field produced by the plasma currents of the given finite β fixed boundary equilibrium. For equilibria of the W7-X type, Bj can be neglected, because of the reduced parallel plasma currents. This is not true for quasi-axisymmetric stellarator (QAS) configurations (A. Reiman, et al., to be published.) with large equilibrium and net plasma (bootstrap) currents. Although the coils for QAS exhibit low values of the field error, free boundary calculations indicate that the shape of the plasma is usually not accurately reproduced , particularly when saddle coils are used. We investigate if the surface reconstruction can be improved by introducing a modified measure of the field error based on a measure of the resonant components of the normal field.
Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway
NASA Astrophysics Data System (ADS)
Kim, Kyunghee; Pochan, Darrin
Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.
High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tingting; Zhao, Jing, E-mail: zhaojing-8239@jlu.edu.cn; Peter Grünberg Institute
2014-11-15
In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2more » fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.« less
Suppression of radiating harmonics Electro-Impulse Deicing (EIDI) systems
NASA Astrophysics Data System (ADS)
Zieve, Peter; Ng, James; Fiedberg, Robert
1991-10-01
The electromagnetic compatibility (EMC) of two different configurations of electromagnetic deicing systems is discussed. Both Electro-Impulse Deicing (EIDI) and Eddy Current Repulsion Deicing Strip (EDS) are investigated. With EIDI, rigid coils are mounted behind the wing; while with EDS, the impulse coils are built thin and flexible with printed circuit board technology. An important consideration in the certification of electromagnetic impulse deicing systems is electromagnetic compatibility (EMC). When the capacitor bank discharges, a large current pulse travels down a transmission line to the coil. The coil is one source of radiation. Another source is the cabling and connections to the coil. In work conducted for the FAA in 1988, it was found that excessive electromagnetic emissions resulted from the operation of a Low Voltage Electro-Impulse Deicer (LVEID) in conjunction with a composite wing. The goal of this project was to investigate and develop techniques for controlling emissions without the benefit of shielding. In this study it was determined that both EIDI and EDS could be brought within the RTCA/DO-160B standards through proper shielding and termination of the pulse power cable. An alternative topology of EDS with the impulse coil on the wing exterior surface did not meet the standard.
Interpreting Results from the Standardized UXO Test Sites
2007-01-01
Detector Focusing Lens Cs Cell Split Polarizer Filter Collimating Lens Cs Lamp RF Coil Tiffany Mount H1 Coil Light rays Figure II-1. G-858 Cesium...conductive earth typically decay at a more rapid rate than the currents in metallic objects. Measurements are made in discrete “time gates,” or...time intervals, following the turnoff of the current pulse generated by the transmitter. The early time gates will detect both small and large metallic
MRI and (31)P magnetic resonance spectroscopy hardware for axillary lymph node investigation at 7T.
Rivera, Debra S; Wijnen, Jannie P; van der Kemp, Wybe J M; Raaijmakers, Alexander J; Luijten, Peter R; Klomp, Dennis W J
2015-05-01
Neoadjuvant treatment response in lymph nodes predicts patient outcome, but existing methods do not track response during therapy accurately. In this study, specialized hardware was used to adapt high-field (7T) (31) P magnetic resonance spectroscopy (MRS), which has been shown to track treatment response in small breast tumors, to monitor axillary lymph nodes. A dual-tuned quadrature coil that is a (31) P (120 MHz) transceiver and a (1) H (300 MHz) receiver was designed using a novel detune circuit. The transceiver/receiver coil in the axilla is used with a fractionated dipole antenna on the back of the subject and the conventional breast coil for transmit. The novel circuit detuned the (1) H resonance without disturbing the (31) P resonance. In vivo demonstrations included: >80% homogeneous B1 (+) for (1) H over the axilla, identification of a small (3-mm diameter) lymph node, and (31) P MR spectra from a single healthy lymph node. The setup can detect <2 millimolar concentrations of metabolites from a 2-mL voxel. The first (31) P MR spectrum from an in vivo lymph node indicates that the presented design may be sufficiently sensitive to detect metabolic response to neoadjuvant therapy. Multinuclei MRS of the lymph nodes at 7T is possible through combining lightweight antenna elements with dual-tuned transceiver/receive-only coils. © 2014 Wiley Periodicals, Inc.
Jiang, Gui-Yang; Zhang, Xiu-Peng; Zhang, Yong; Xu, Hong-Tao; Wang, Liang; Li, Qing-Chang; Wang, En-Hua
2016-10-01
Lung cancer has always been the leading cause of death among patients with malignant tumors, and the majority of these patients die because of cancer cell invasion and metastasis. Previous studies have implicated coiled-coil domain-containing protein 8 (CCDC8) as a tumor suppressor in several types of cancer, such as breast and prostate cancers. However, the expression levels or functions of CCDC8 in lung cancer have not been elucidated. Here, we used immunohistochemical staining to measure CCDC8 expression in 147 samples from tumors and 30 samples from the adjacent normal lung tissues of patients with non-small cell lung cancer. CCDC8 was shown to be located predominantly in the cytoplasm and partially on the cell membrane, and its expression level was significantly lower in lung cancer samples than that in the adjacent normal lung tissues (P=.001). CCDC8 expression was closely related to tumor differentiation (P=.039), tumor-node-metastasis stage (P=.009), lymph node metastasis (P=.038), and prognosis (P=.043) of lung cancer. Transfection of A549 cells with CCDC8 significantly reduced cell invasion and migration (P<.05), whereas the invasiveness and migration capacity in CCDC8-knockdown A549 cells were significantly increased in comparison with the control cells (P<.05). Furthermore, we demonstrated that CCDC8 can downregulate the expression of Snail and upregulate the expression of E-cadherin by inhibiting p-P38 and p-IκBα. Collectively, CCDC8 may suppress the invasion and metastasis of lung cancer cells, and it may represent a promising therapeutic target for non-small cell lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Transcatheter closure of patent ductus arteriosus with Nit-Occlud coils.
Celiker, Alpay; Aypar, Ebru; Karagöz, Tevfik; Dilber, Embiya; Ceviz, Naci
2005-08-01
The detachable coils have been successfully used for transcatheter occlusion of small- to moderate-sized patent ductus arteriosus (PDA). We report our experience regarding the use of the Nit-Occlud coils (NOCs) for transcatheter PDA and major aortopulmonary collateral (MAPCA) occlusion. Single NOCs were used to close PDA in 26 patients, and one small and two large MAPCAs in two patients. Mean age and weight of the patients were 7.7 +/- 5.4 years and 20.6 +/- 11.6 kg. Mean minimum duct diameter was 2.8 +/- 0.8 mm; ampulla, 8.7 +/- 2.4 mm; and PDA length, 9.3 +/- 4.4 mm. Mean pulmonary artery pressure ranged from 9 to 51 mm Hg and pulmonary/systemic flow ratio from 1.1 to 5.8. Ductal shape was conical in 24 patients. Route of approach was venous in 23 and arterial in 3. Successful coil implantation was achieved in 24/26 (92.3%). Mean procedure and fluoroscopy time were 67.2 +/- 22.1 and 14.9 +/- 6.5 min. The three MAPCAs were also successfully occluded using NOC Medium and Flex. Postimplantation angiograms revealed no leak in 3, a trace or small leak in 17, and a medium leak in 4 patients. Mean follow-up was 7 +/- 5 months. Complete occlusion was achieved in 17/24 (71%) at 24 hr, 19/24 (79%) by 1 month, 13/15 (87%) by 3 months, 14/15 (93%) by 6 months, and 10/11 (90%) by 12 months postprocedure. Hemolysis, late embolization, duct recanalization, and flow disturbances were not observed. Transcatheter occlusion of moderate-sized PDAs and MAPCAs using NOCs seems to offer a safe, simple, and controlled method in pediatric patients.
NASA Astrophysics Data System (ADS)
Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald
2017-02-01
This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p < 0.001), corresponding staging-related items were only higher for reader B (p < 0.001). With an endorectal coil, the rate of correctly detecting cancer per patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior.
Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald
2017-01-01
This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p < 0.001), corresponding staging-related items were only higher for reader B (p < 0.001). With an endorectal coil, the rate of correctly detecting cancer per patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior. PMID:28145525
Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald
2017-02-01
This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p < 0.001), corresponding staging-related items were only higher for reader B (p < 0.001). With an endorectal coil, the rate of correctly detecting cancer per patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior.
Vector sensor for scanning SQUID microscopy
NASA Astrophysics Data System (ADS)
Dang, Vu The; Toji, Masaki; Thanh Huy, Ho; Miyajima, Shigeyuki; Shishido, Hiroaki; Hidaka, Mutsuo; Hayashi, Masahiko; Ishida, Takekazu
2017-07-01
We plan to build a novel 3-dimensional (3D) scanning SQUID microscope with high sensitivity and high spatial resolution. In the system, a vector sensor consists of three SQUID sensors and three pick-up coils realized on a single chip. Three pick-up coils are configured in orthogonal with each other to measure the magnetic field vector of X, Y, Z components. We fabricated some SQUID chips with one uniaxial pick-up coil or three vector pick-up coils and carried out fundamental measurements to reveal the basic characteristics. Josephson junctions (JJs) of sensors are designed to have the critical current density J c of 320 A/cm2, and the critical current I c becomes 12.5 μA for the 2.2μm × 2.2μm JJ. We carefully positioned the three pickup coils so as to keep them at the same height at the centers of all three X, Y and Z coils. This can be done by arranging them along single line parallel to a sample surface. With the aid of multilayer technology of Nb-based fabrication, we attempted to reduce an inner diameter of the pickup coils to enhance both sensitivity and spatial resolution. The method for improving a spatial resolution of a local magnetic field image is to employ an XYZ piezo-driven scanner for controlling the positions of the pick-up coils. The fundamental characteristics of our SQUID sensors confirmed the proper operation of our SQUID sensors and found a good agreement with our design parameters.
Impedance-matching system for a flexible surface-coil-type resonator
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Ono, Mitsuhiro
1997-09-01
This article describes an impedance-matching system for a flexible surface-coil-type resonator (FSCR) used in electron paramagnetic resonance (EPR) experiments. To design the matching system, the input impedance of the FSCR was formulated using transmission line theory, and then the parameters of a matching circuit using varicap diodes were calculated. Experimental measurements of input impedance showed the validity of the formulation and the usefulness of the matching system. The matching circuit made by the varicap diodes 1SV186 offered the tunable bandwidth of 50 MHz for the prototype FSCR. Such a matching system also offers the possibility of remotely tuning EPR resonators electronically.
New design concept of monopole antenna array for UHF 7T MRI.
Hong, Suk-Min; Park, Joshua Haekyun; Woo, Myung-Kyun; Kim, Young-Bo; Cho, Zang-Hee
2014-05-01
We have developed and evaluated a monopole antenna array that can increase sensitivity at the center of the brain for 7T MRI applications. We have developed a monopole antenna array that has half the length of a conventional dipole antenna with eight channels for brain imaging with a 7T MRI. The eight-channel monopole antenna array and conventional eight-channel transceiver surface coil array were evaluated and compared in terms of transmit properties, specific absorption ratio (SAR), and sensitivity. The sensitivity maps were generated by dividing the SNR map by the flip angle distribution. A single surface coil provides asymmetric sensitivity resulting in reduced sensitivity at the center of the brain. In contrast, a single monopole antenna provides higher sensitivity at the center of the brain. Moreover, the monopole antenna array provides uniform sensitivity over the entire brain, and the sensitivity gain was 1.5 times higher at the center of the brain compared with the surface coil array. The monopole antenna array is a promising candidate for MRI applications, especially for brain imaging in a 7T MRI because it provides increased sensitivity at the center of the brain. Copyright © 2013 Wiley Periodicals, Inc.
CCBuilder 2.0: Powerful and accessible coiled-coil modeling.
Wood, Christopher W; Woolfson, Derek N
2018-01-01
The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Flexible helical-axis stellarator
Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.
1988-01-01
An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.
Jow, Uei-Ming; Ghovanloo, Maysam
2012-12-21
We present a design methodology for an overlapping hexagonal planar spiral coil (hex-PSC) array, optimized for creation of a homogenous magnetic field for wireless power transmission to randomly moving objects. The modular hex-PSC array has been implemented in the form of three parallel conductive layers, for which an iterative optimization procedure defines the PSC geometries. Since the overlapping hex-PSCs in different layers have different characteristics, the worst case coil-coupling condition should be designed to provide the maximum power transfer efficiency (PTE) in order to minimize the spatial received power fluctuations. In the worst case, the transmitter (Tx) hex-PSC is overlapped by six PSCs and surrounded by six other adjacent PSCs. Using a receiver (Rx) coil, 20 mm in radius, at the coupling distance of 78 mm and maximum lateral misalignment of 49.1 mm (1/√3 of the PSC radius) we can receive power at a PTE of 19.6% from the worst case PSC. Furthermore, we have studied the effects of Rx coil tilting and concluded that the PTE degrades significantly when θ > 60°. Solutions are: 1) activating two adjacent overlapping hex-PSCs simultaneously with out-of-phase excitations to create horizontal magnetic flux and 2) inclusion of a small energy storage element in the Rx module to maintain power in the worst case scenarios. In order to verify the proposed design methodology, we have developed the EnerCage system, which aims to power up biological instruments attached to or implanted in freely behaving small animal subjects' bodies in long-term electrophysiology experiments within large experimental arenas.
Ultra high spatial and temporal resolution breast imaging at 7T.
van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J
2013-04-01
There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.
Spool piece aperture: warm to cold temperature position changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInturff, A.D.
1982-12-01
In an effort to determine the position of the correction coil system contained in the spool piece in operation, a series of experiments were done in Lab 2 during the cryogenic testing of the spools. A special turn-around box was constructed which had a window through which a sighting could be made of the aperture of the coil packages. A set of four survey monuments were constructed with three point suspension, which were back-lighted by placing a small bulb behind each target which could be turned on individually external to the spool string while under vacuum and at any temperature.more » The targets were located at the ends of each correction coil package in their beam tube.« less
Incorporating electron-transfer functionality into synthetic metalloproteins from the bottom-up.
Hong, Jing; Kharenko, Olesya A; Ogawa, Michael Y
2006-12-11
The alpha-helical coiled-coil motif serves as a robust scaffold for incorporating electron-transfer (ET) functionality into synthetic metalloproteins. These structures consist of a supercoiling of two or more aplha helices that are formed by the self-assembly of individual polypeptide chains whose sequences contain a repeating pattern of hydrophobic and hydrophilic residues. Early work from our group attached abiotic Ru-based redox sites to the most surface-exposed positions of two stranded coiled-coils and used electron-pulse radiolysis to study both intra- and intermolecular ET reactions in these systems. Later work used smaller metallopeptides to investigate the effects of conformational gating within electrostatic peptide-protein complexes. We have recently designed the C16C19-GGY peptide, which contains Cys residues located at both the "a" and "d" positions of its third heptad repeat in order to construct a nativelike metal-binding domain within its hydrophobic core. It was shown that the binding of both Cd(II) and Cu(I) ions induces the peptide to undergo a conformational change from a disordered random coil to a metal-bridged coiled-coil. However, whereas the Cd(II)-protein exists as a two-stranded coiled-coil, the Cu(I) derivative exists as a four-stranded coiled-coil. Upon the incorporation of other metal ions, metal-bridged peptide dimers, tetramers, and hexamers are formed. The Cu(I)-protein is of particular interest because it exhibits a long-lived (microsecond) room-temperature luminescence at 600 nm. The luminophore in this protein is thought to be a multinuclear CuI4Cys4(N/O)4 cage complex, which can be quenched by exogenous electron acceptors in solution, as shown by emission-lifetime and transient-absorption experiments. It is anticipated that further investigation into these systems will contribute to the expanding effort of bioinorganic chemists to prepare new kinds of functionally active synthetic metalloproteins.
Control system for a small fission reactor
Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.
1985-02-08
A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.
2012-07-01
developed a microscope- based , offset Helmholtz coil system with a custom-designed microcontroller. We have developed a microfabrication approach for...implemented an experimental model system using ferromagnetic beads. We have applied direct and frequency based magnetic fields for controlling magnetotactic...fields. Expanded Accomplishments We have developed a microscope- based , offset Helmholtz coil system with a custom- designed microcontroller. To be
Development of a simple MR-compatible vibrotactile stimulator using a planar-coil-type actuator.
Kim, Hyung-Sik; Choi, Mi-Hyun; Chung, Yoon-Gi; Kim, Sung-Phil; Jun, Jae-Hoon; Park, Jang-Yeon; Yi, Jeong-Han; Park, Jong-Rak; Lim, Dae-Woon; Chung, Soon-Cheol
2013-06-01
For this study, we developed a magnetic resonance (MR)-compatible vibrotactile stimulator using a planar-coil-type actuator. The newly developed vibrotactile stimulator consists of three units: control unit, drive unit, and planar-coil-type actuator. The control unit controls frequency, intensity, time, and channel, and transfers the stimulation signals to the drive unit. The drive unit operates the planar-coil-type actuator in response to commands from the control unit. The planar-coil-type actuator, which uses a planar coil instead of conventional electric wire, generates vibrating stimulation through interaction of the current of the planar coil with the static magnetic field of the MR scanner. Even though the developed tactile stimulating system is small, simple, and inexpensive, it has a wide range of stimulation frequencies (20 ~ 400 Hz, at 40 levels) and stimulation intensities (0 ~ 7 V, at 256 levels). The stimulation intensity does not change due to frequency changes. Since the transient response time is a few microseconds, the stimulation time can be controlled on a scale of microseconds. In addition, this actuator has the advantages of providing highly repeatable stimulation, being durable, being able to assume various shapes, and having an adjustable contact area with the skin. The new stimulator operated stably in an MR environment without affecting the MR images. Using functional magnetic resonance imaging, we observed the brain activation changes resulting from stimulation frequency and intensity changes.
NASA Astrophysics Data System (ADS)
Andrzejczyk, Rafał; Muszyński, Tomasz
2016-12-01
The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.
Symmetric Simple Map with Dipole Map for a Single-Null Divertor Tokamak
NASA Astrophysics Data System (ADS)
Ali, Halima; Watson, Michael; Punjabi, Alkesh; Boozer, Allen
1996-11-01
This investigation focuses on the effects of an externally placed dipole coil on the magnetic topology of a single-null divertor tokamak with a stochastic scrape-off layer using the Method of Maps (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994). The unperturbed magnetic topology is represented by the Symmetric Simple Map (Ali H, Watson M, Mayer C, Punjabi A and Boozer A, Bull Am Phys Soc), 40, 1855 (1995). The effect of dipole perturbation is repesented by the Dipole Map (Ali H, Watson M, Punjabi A and Boozer A, Sherwood Mtg), paper 1C20 (1996). A single dipole coil is placed across from the X-point below the last good surface. The strength of the dipole perturbation and the distance of the coil from the last good surface are varied. We observe that the dipole perturbation causes spatially intermittent chaos. This has significant implications for radiative divertor concepts as well for impurity control. We also present the detailed results on the effects of the dipole coil on the properties of the stochastic layer and the footprint of the field lines on the divertor plate. This work is supported by the US DOE OFES.
NASA Astrophysics Data System (ADS)
Ubaidillah; Permata, A. N. S.; Mazlan, S. A.; Tjahjana, D. D. D. P.; Widodo, P. J.
2017-10-01
This research delivers a finite element magnetic simulation of a novel disk type multi-coil magnetorheological brake (MR brake). The MR brake axial design had more than one coil located outside of the casing. This design could simplify the maintenance process of brakes. One pair of coils was used as the representative of the entire coil in the simulation process, and it could distribute magnetic flux in all parts of the electromagnetic. The objective of this simulation was to produce magnetic flux on the surface of the disc brake rotor. The value of the MR brake magnetic flux was higher than that of the current MR brake having one coil with a larger size. The result of the simulation would be used to identify the effect of different fluids on each variation. The Magneto-rheological fluid MRF-132DG and MRF-140CG were injected in each gap as much as 0.50, 1.00, and 1.50 mm, respectively. On the simulation process, the coils were energized at 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 A, respectively. The magnetic flux produced by MRF-140CG was 336 m Tesla on the gap of 0.5 mm. The result of the simulation shows that the smaller the gap variation was, the higher the magnetic value was.
DNA molecules on periodically microstructured lipid membranes: Localization and coil stretching
NASA Astrophysics Data System (ADS)
Hochrein, Marion B.; Leierseder, Judith A.; Golubović, Leonardo; Rädler, Joachim O.
2007-02-01
We explore large scale conformations of DNA molecules adsorbed on curved surfaces. For that purpose, we investigate the behavior of DNA adsorbed on periodically shaped cationic lipid membranes. These unique membrane morphologies are supported on grooved, one-dimensionally periodic microstructured surfaces. Strikingly, we find that these periodically structured membranes are capable to stretch DNA coils. We elucidate this phenomenon in terms of surface curvature dependent potential energy attained by the adsorbed DNA molecules. Due to it, DNA molecules undergo a localization transition causing them to stretch by binding to highly curved sections (edges) of the supported membranes. This effect provides a new venue for controlling conformations of semiflexible polymers such as DNA by employing their interactions with specially designed biocompatible surfaces. We report the first experimental observation of semiflexible polymers unbinding transition in which DNA molecules unbind from one-dimensional manifolds (edges) while remaining bound to two-dimensional manifolds (cationic membranes).
NASA Astrophysics Data System (ADS)
Kilic, V. T.; Unal, E.; Demir, H. V.
2017-07-01
We propose and demonstrate a highly effective method of enhancing coupling and power transfer efficiency in inductive heating systems composed of planar coils. The proposed method is based on locating ring-shaped ferrites in the inner side of the coils in the same plane. Measurement results of simple inductive heating systems constructed with either a single or a pair of conventional circular coils show that, with the in-plane inner ferrites, the total dissipated power of the system is increased by over 65%. Also, with three-dimensional full electromagnetic solutions, it is found that power transfer efficiency of the system is increased up to 92% with the inner ferrite placement. The proposed method is promising to be used for efficiency enhancement in inductive heating applications, especially in all-surface induction hobs.
Nonferromagnetic linear variable differential transformer
Ellis, James F.; Walstrom, Peter L.
1977-06-14
A nonferromagnetic linear variable differential transformer for accurately measuring mechanical displacements in the presence of high magnetic fields is provided. The device utilizes a movable primary coil inside a fixed secondary coil that consists of two series-opposed windings. Operation is such that the secondary output voltage is maintained in phase (depending on polarity) with the primary voltage. The transducer is well-suited to long cable runs and is useful for measuring small displacements in the presence of high or alternating magnetic fields.
Crystal Structure of the Nipah Virus Phosphoprotein Tetramerization Domain
Bruhn, Jessica F.; Barnett, Katherine C.; Bibby, Jaclyn; Thomas, Jens M. H.; Keegan, Ronan M.; Rigden, Daniel J.; Bornholdt, Zachary A.
2014-01-01
The Nipah virus phosphoprotein (P) is multimeric and tethers the viral polymerase to the nucleocapsid. We present the crystal structure of the multimerization domain of Nipah virus P: a long, parallel, tetrameric, coiled coil with a small, α-helical cap structure. Across the paramyxoviruses, these domains share little sequence identity yet are similar in length and structural organization, suggesting a common requirement for scaffolding or spatial organization of the functions of P in the virus life cycle. PMID:24155387
NASA Astrophysics Data System (ADS)
Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.
2009-11-01
We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.
Developing Test Apparatus and Measurements of AC Loss of High Temperature Superconductors
2012-11-01
temperature of the coil is not raised significantly. The second system, a larger machine, designed with a long term prospective to serve a test bed for...four sample chambers inside the vacuum gap, LN2 – cooled sample holder (currently only one is in use), the laminated back iron, and the outer shell...machine. accommodate a variety of different small coils and linear tapes. This assembly is surrounded by the laminated back iron and the outer shell
Schaller, Benoit; Clarke, William T; Neubauer, Stefan; Robson, Matthew D; Rodgers, Christopher T
2016-03-01
The translation of sophisticated phosphorus MR spectroscopy ((31)P-MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac (31)P spectra at 7T. We introduce the first surface-spoiling crusher coil for human cardiac (31)P-MRS at 7T. A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac (31)P-MRS at 7T. In a phantom, residual signals were 50 ± 10% with BISTRO (B1 -insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). A crusher coil is an SAR-efficient alternative for selectively suppressing skeletal muscle during cardiac (31)P-MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR-prohibitive, without compromising skeletal muscle suppression. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
NASA Astrophysics Data System (ADS)
Chevalier, A.; Rejiba, F.; Schamper, C.; Thiesson, J.; Hovhannissian, G.
2016-12-01
From airborne applications to field scale measurements of Transient Electromagnetic Methods(TEM), an accurate knowledge of the sensitivity of the inductive coil sensors (system response) is aprerequisite to interpret the measured transient magnetic flux density into a subsurface distributionof conductivity. The system response is a term that refers to the cumulative effect of inductive andcapacitive couplings (cross-talks) between each component constituting a TEM apparatus and thenearby conductive structures. As a result, the frequency sensitivity of the voltage coil sensor (Rx)along with the emitted current waveform in the current emitting coil (Tx) are controlled by thegeometry and electronic characteristic of the set-up as well as the near surface electromagneticproperties. During the early development of an innovative airborne TEM solutions (French nationalTEMas project), determining the coil geometries and the impedance matching between all parts ofthe transmission link (electronic parts and coils) for various environmental set-ups, has been a majorissue. In this study, we review the required theoretical framework and propose a versatile numericalmethodology to ease the coil design and impedance matching process while extending ourunderstanding of short-time transient that operates from DC to moderately high frequencies (0 to 20Mhz). We used a full Maxwell equations FDTD model along with a semi-analytical 1D modeler to infercoils emitting and receiving properties, for various coil geometries and site-dependent conditions.Results highlight the influence of the environment on the emitting and sensing properties. Theincreasing effects of cross-talks between the Tx and the Rx coils depending on their size is shown.Strategies regarding the impedance adaptation between the electronical components and the coilsensors are then discussed for different geophysical specifications.
Scherer, G F E; Pietrzyk, P
2014-01-01
Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Characterization and optimization of spiral eddy current coils for in-situ crack detection
NASA Astrophysics Data System (ADS)
Mandache, Catalin
2018-03-01
In-situ condition-based maintenance is making strides in the aerospace industry and it is seen as an alternative to scheduled, time-based maintenance. With fatigue cracks originating from fastener holes as the main reason for structural failures, embedded eddy current coils are a viable non-invasive solution for their timely detection. The development and potential broad use of these coils are motivated by a few consistent arguments: (i) inspection of structures of complicated geometries and hard to access areas, that often require disassembly, (ii) alternative to regular inspection actions that could introduce inadvertent damage, (iii) for structures that have short inspection intervals, and (iv) for repaired structures where fastener holes contain bushings and prevent further bolt-hole inspections. Since the spiral coils are aiming at detecting radial cracks emanating from the fastener holes, their design parameters should allow for high inductance, low ohmic losses and power requirements, as well as optimal size and high sensitivity to discontinuities. In this study, flexible, surface conformable, spiral eddy current coils are empirically investigated on mock-up specimens, while numerical analysis is performed for their optimization and design improvement.
Macarini, L; Rizzo, A; Martino, F; Zaccheo, N; Angelelli, G; Rotondo, A
1998-06-01
Juvenile patellar chondromalacia is a common orthopedic disorder which can mimic other conditions; early diagnosis is mandatory to prevent its evolution into osteoarthrosis. In the early stages of patellar chondromalacia (I and II), the lesions originate in the deep cartilage layer and the joint surface is not affected. Arthroscopy can demonstrate joint surface changes only and give indirect information about deeper lesions. We investigated the yield of 2D FLASH MRI with 30 degrees flip angle and a dedicated coil in the diagnosis of patellar chondromalacia, especially in its early stages. Eighteen patients (mean age: 21 years) with clinically suspected patellar chondromalacia were examined with MRI; 13 of them were also submitted to arthroscopy. A 1.5 T unit with a transmit-and-receive extremity coil was used. We acquired T1 SE sequences (TR/TE: 500-700/15/20) and 2D T2* FLASH sequence (TR/TE/FA: 500-800/18/30 degrees). The field of view was 160-180 mm and the matrix 192 x 256, with 2-3 NEX. The images were obtained on the axial plane. The lesions were classified in 4 stages according to Shahriaree classification. Agreement between MR and arthroscopic findings was good in both early and advanced lesions in 12/13 cases. Early lesions appeared as hyperintense focal thickening of the hyaline cartilage (stage I) or as small cystic lesions within the cartilage and no articular surface involvement (stage II). The medial patellar facet was the most frequent site. Advanced lesions appeared as articular surface ulcerations, thinning and cartilage hypointensity (stage III); stage IV lesions presented as complete erosions of the hyaline cartilage and hypointense underlying bone. 2D FLASH MRI with 30 degrees flip angle can show the differences in water content in the cartilage and thus permit to detect early chondromalacia lesions in the deep cartilage.
NASA Astrophysics Data System (ADS)
Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte S.; Thomsen, Rasmus P.; Midtgaard, Søren Roi; Christensen, Niels Johan; Kjems, Jørgen; Thulstrup, Peter W.; Wengel, Jesper; Jensen, Knud J.
2016-07-01
Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design.
Model of vortex dynamics in superconducting films in two-coil measurements of the coherence length
NASA Astrophysics Data System (ADS)
Lemberger, Thomas; Loh, Yen Lee
In two-coil measurements on superconducting films, a magnetic field from a small coil is applied to the center of the film. When the amplitude of the ac field is increased, the film undergoes a transition from the ``Meissner'' state to a state with vortices and antivortices. Ultimately, the vortex density matches the applied magnetic field and field screening is negligible. Experimentally, the field at the transition is related to the superconducting coherence length, although a full theory of the relationship is lacking. We show that the mutual inductance between drive and pickup coils, on opposite sides of the film, as a function of ac field amplitude is well-described by a phenomenological model in which vortices and antivortices appear together in the film at the radius where the induced supercurrent is strongest, and then they move through a landscape of moderately strong vortex pinning sites. Work at OSU supported by DOE-Basic Energy Sciences through Grant No. FG02-08ER46533.
Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes
2011-01-01
Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance. PMID:21711901
Structural Plasticity of Helical Nanotubes Based on Coiled-Coil Assemblies
Egelman, Edward H.; Xu, C.; DiMaio, F.; ...
2015-01-22
Numerous instances can be seen in evolution in which protein quaternary structures have diverged while the sequences of the building blocks have remained fairly conserved. However, the path through which such divergence has taken place is usually not known. We have designed two synthetic 29-residue α-helical peptides, based on the coiled-coil structural motif, that spontaneously self-assemble into helical nanotubes in vitro. Using electron cryomicroscopy with a newly available direct electron detection capability, we can achieve near-atomic resolution of these thin structures. We show how conservative changes of only one or two amino acids result in dramatic changes in quaternary structure,more » in which the assemblies can be switched between two very different forms. This system provides a framework for understanding how small sequence changes in evolution can translate into very large changes in supramolecular structure, a phenomenon that may have significant implications for the de novo design of synthetic peptide assemblies.« less
Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI
NASA Astrophysics Data System (ADS)
Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki
2016-06-01
The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were utilized for visualizing small vessels. Appropriately combining MA coils and TONE pulses could help advance micro-vessel visualization.
Multi-Coil Shimming of the Mouse Brain
Juchem, Christoph; Brown, Peter B.; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.
2011-01-01
MR imaging and spectroscopy allow the non-invasive measurement of brain function and physiology, but excellent magnetic field homogeneity is required for meaningful results. The homogenization of the magnetic field distribution in the mouse brain (i.e. shimming) is a difficult task due to complex susceptibility-induced field distortions combined with the small size of the object. To date, the achievement of satisfactory whole brain shimming in the mouse remains a major challenge. The magnetic fields generated by a set of 48 circular coils (diameter 13 mm) that were arranged in a cylinder-shaped pattern of 32 mm diameter and driven with individual dynamic current ranges of ±1 A are shown to be capable of substantially reducing the field distortions encountered in the mouse brain at 9.4 Tesla. Static multi-coil shim fields allowed the reduction of the standard deviation of Larmor frequencies by 31% compared to second order spherical harmonics shimming and a 66% narrowing was achieved with the slice-specific application of the multi-coil shimming with a dynamic approach. For gradient echo imaging, multi-coil shimming minimized shim-related signal voids in the brain periphery and allowed overall signal gains of up to 51% compared to spherical harmonics shimming. PMID:21442653
NASA Astrophysics Data System (ADS)
Moreton, Gregory; Meydan, Turgut; Williams, Paul
2018-04-01
The usage of planar sensors is widespread due to their non-contact nature and small size profiles, however only a few basic design types are generally considered. In order to develop planar coil designs we have performed extensive finite element modelling (FEM) and experimentation to understand the performance of different planar sensor topologies when used in inductive sensing. We have applied this approach to develop a novel displacement sensor. Models of different topologies with varying pitch values have been analysed using the ANSYS Maxwell FEM package, furthermore the models incorporated a movable soft magnetic amorphous ribbon element. The different models used in the FEM were then constructed and experimentally tested with topologies that included mesh, meander, square coil, and circular coil configurations. The sensors were used to detect the displacement of the amorphous ribbon. A LabView program controlled both the displacement stage and the impedance analyser, the latter capturing the varying inductance values with ribbon displacement. There was good correlation between the FEM models and the experimental data confirming that the methodology described here offers an effective way for developing planar coil based sensors with improved performance.
A numerically optimized active shield for improved TMS targeting
Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric
2010-01-01
Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region (“sharpness”), while simultaneously increase the induced electric field deep in the target region relative to the surface (“penetration”). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1 % and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9 %) PMID:20965451
A numerically optimized active shield for improved transcranial magnetic stimulation targeting.
Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric
2010-10-01
Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region ("sharpness"), whereas, simultaneously increase the induced electric field deep in the target region relative to the surface ("penetration"). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1% and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9%). Copyright © 2010 Elsevier Inc. All rights reserved.
Naganawa, S; Ito, T; Fukatsu, H; Ishigaki, T; Nakashima, T; Ichinose, N; Kassai, Y; Miyazaki, M
1998-09-01
To prospectively evaluate the sensitivity and specificity of magnetic resonance (MR) imaging in the inner ear with a long echo train, three-dimensional (3D), asymmetric Fourier-transform, fast spin-echo (SE) sequence with use of a dedicated quadrature-surface phased-array coil to detect vestibular schwannoma in the cerebellopontine angle and the internal auditory canal. In 205 patients (410 ears) with ear symptoms, 1.5-T MR imaging was performed with unenhanced 3D asymmetric fast SE and gadolinium-enhanced 3D gradient-recalled (SPGR) sequences with use of a quadrature surface phased-array coil. The 3D asymmetric fast SE images were reviewed by two radiologists, with the gadolinium-enhanced 3D SPGR images used as the standard of reference. Nineteen lesions were detected in the 410 ears (diameter range, 2-30 mm; mean, 10.5 mm +/- 6.4 [standard deviation]; five lesions were smaller than 5 mm). With 3D asymmetric fast SE, sensitivity, specificity, and accuracy, respectively, were 100%, 99.5%, and 99.5% for observer 1 and 100%, 99.7%, and 99.8% for observer 2. The unenhanced 3D asymmetric fast SE sequence with a quadrature-surface phased-array coli allows the reliable detection of vestibular schwannoma in the cerebellopontine angle and internal auditory canal.
Vos, Eline K; Sambandamurthy, Sriram; Kamel, Maged; McKenney, Robert; van Uden, Mark J; Hoeks, Caroline M A; Yakar, Derya; Scheenen, Tom W J; Fütterer, Jurgen J
2014-01-01
The objectives of this study were to test the feasibility of an investigational dual-channel next-generation endorectal coil (NG-ERC) in vivo, to quantitatively assess signal-to-noise ratio (SNR), and to get an impression of image quality compared with the current clinically available single-loop endorectal coil (ERC) for prostate magnetic resonance imaging at both 1.5 and 3 T. The study was approved by the institutional review board, and written informed consent was obtained from all patients. In total, 8 consecutive patients with prostate cancer underwent a local staging magnetic resonance examination with the successive use of both coils in 1 session (4 patients at 1.5 T and 4 other patients at 3 T). Quantitative comparison of both coils was performed for the apex, mid-gland and base levels at both field strengths by calculating SNR profiles in the axial plane on an imaginary line in the anteroposterior direction perpendicular to the coil surface. Two radiologists independently assessed the image quality of the T2-weighted and apparent diffusion coefficient maps calculated from diffusion-weighted imaging using a 5-point scale. Improvement of geometric distortion on diffusion-weighted imaging with the use of parallel imaging was explored. Statistical analysis included a paired Wilcoxon signed rank test for SNR and image quality evaluation as well as κ statistics for interobserver agreement. No adverse events were reported. The SNR was higher for the NG-ERC compared with the ERC up to a distance of approximately 40 mm from the surface of the coil at 1.5 T (P < 0.0001 for the apex, the mid-gland, and the base) and approximately 17 mm (P = 0.015 at the apex level) and 30 mm at 3 T (P < 0.0001 for the mid-gland and base). Beyond this distance, the SNR profiles of both coils were comparable. Overall, T2-weighted image quality was considered better for NG-ERC at both field strengths. Quality of apparent diffusion coefficient maps with the use of parallel imaging was rated superior with the NG-ERC at 3 T. The investigational NG-ERC for prostate imaging outperforms the current clinically available ERC in terms of SNR and is feasible for continued development for future use as the next generation endorectal coil for prostate imaging in clinical practice.
Towards improved hardware component attenuation correction in PET/MR hybrid imaging
NASA Astrophysics Data System (ADS)
Paulus, D. H.; Tellmann, L.; Quick, H. H.
2013-11-01
In positron emission tomography/computed tomography (PET/CT) hybrid imaging attenuation correction (AC) of the patient tissue and patient table is performed by converting the CT-based Hounsfield units (HU) to linear attenuation coefficients (LAC) of PET. When applied to the new field of hardware component AC in PET/magnetic resonance (MR) hybrid imaging, this conversion method may result in local overcorrection of PET activity values. The aim of this study thus was to optimize the conversion parameters for CT-based AC of hardware components in PET/MR. Systematic evaluation and optimization of the HU to LAC conversion parameters has been performed for the hardware component attenuation map (µ-map) of a flexible radiofrequency (RF) coil used in PET/MR imaging. Furthermore, spatial misregistration of this RF coil to its µ-map was simulated by shifting the µ-map in different directions and the effect on PET quantification was evaluated. Measurements of a PET NEMA standard emission phantom were performed on an integrated hybrid PET/MR system. Various CT parameters were used to calculate different µ-maps for the flexible RF coil and to evaluate the impact on the PET activity concentration. A 511 keV transmission scan of the local RF coil was used as standard of reference to adapt the slope of the conversion from HUs to LACs at 511 keV. The average underestimation of the PET activity concentration due to the non-attenuation corrected RF coil in place was calculated to be 5.0% in the overall phantom. When considering attenuation only in the upper volume of the phantom, the average difference to the reference scan without RF coil is 11.0%. When the PET/CT conversion is applied, an average overestimation of 3.1% (without extended CT scale) and 4.2% (with extended CT scale) is observed in the top volume of the NEMA phantom. Using the adapted conversion resulting from this study, the deviation in the top volume of the phantom is reduced to -0.5% and shows the lowest standard deviation inside the phantom in comparison to all other conversions. Simulation of a µ-map misregistration shows acceptable results for shifts below 5 mm for the flexible surface RF coil. The adapted conversion from HUs to LAC at 511 keV within this study can improve hardware component AC in PET/MR hybrid imaging as shown for a flexible RF surface coil. Furthermore, these results have a direct impact on the improvement of the hardware component AC of the examined flexible RF coil in conjunction with position determination.
Synthesis and functionalization of coiled carbon filaments
NASA Astrophysics Data System (ADS)
Hikita, Muneaki
Coiled carbon filaments have one of the most attractive three-dimensional forms in carbon materials due to their helical morphologies. Because of their shape and carbon structure, they exhibit excellent mechanical and electrical properties such as superelasticity, low Young's modulus, relatively high electrical conductivity, and good electromagnetic (EM) wave absorption. Therefore, they are good candidates as fillers in composite materials for tactile sensor and electromagnetic interference shielding. In medical areas of interests, coiled carbon filaments can be used as micro and nano heaters or trigger for thermotherapy and biosensors using EM wave exposure because absorbed EM waves by coiled carbon filaments are converted into heat. Although various shapes of coiled carbon filaments have been discovered, optimum synthesis conditions and growth mechanisms of coiled carbon filaments are poorly understood. The study of growth kinetics is significant not only to analyze catalyst activity but also to establish the growth mechanisms of coiled carbon filaments. The establishment of growth mechanisms would be useful for determining optimum synthesis conditions and maximizing the quantity of carbon filaments synthesized for a given application. In the first study, tip grown single helical carbon filaments or carbon nanocoils (CNCs) were synthesized by a chemical vapor deposition method using tin-iron-oxide (Sn-Fe-O) xerogel film catalyst. The Sn-Fe-O catalyst was prepared by a low-cost sol-gel method using stannous acetate and ferric acetate as precursors. The growth kinetics of CNCs were monitored by a thermogravimetric analyzer, and the experimental result was correlated using a one-dimensional kinetic model, corresponding to one-dimensional tip growth. In the second study, bidirectionally grown double helical filaments or carbon microcoils (CMCs) were synthesized using a chemical vapor deposition method. CMCs obtained at two reaction temperatures were compared. CMCs grown at the higher temperature had smaller fiber size and coil diameter, and longer lifetime of catalyst. For in-depth analysis, growth kinetics of CMCs were studied using an exponential decay model for catalyst poisoning. In the third study, CMCs were functionalized for improvement of water dispersion, optical properties and self-assembly. As-grown CMCs were hydrophobic. To improve water dispersion for biological applications, the surface of as-grown CMCs were oxidized by concentrated nitric acid at room temperature. After the oxidation, the acid-treated CMCs were well dispersed in water. For optical property, CMCs were functionalized with octadecylamine (ODA). Upon photoexcitation, the functionalized CMCs exhibited photoluminescence in the visible region. Similar to carbon based nanoparticles, the photoluminescence of CMCs was attributed to electron-hole radiative recombination after surface passivation. The results suggest that these functionalized CMCs might be used as a new class of optical agents for biological applications. As a primary experiment to study Au-S bonding, aminoethanethiol (HSCH2CH2NH2) was attached to the surface of gold-coated CMCs. Energy dispersive X-ray (EDX) mapping shows gold, sulfur and nitrogen on the surface of CMCs. Then, a thiol-modified ssDNA attachment experiment was performed using a similar functionalization procedure as aminoethanethiol. The existence of phosphorus, nitrogen, oxygen and sulfur on surface of Au-coated CMCs immersed in thiol-modified ssDNA solution was confirmed by the EDX spectrum. The result indicates that ssDNA was fixed on their surface. In the fourth study, the effect of oxidized CMCs on mouse embryonic stem (MES) cells was examined to determine their toxicity. Mouse embryonic stem cells represent a unique cell population with the ability to undergo both self-renewal and differentiation. Results indicate that oxidized CMCs had very little toxicity on stem cell viability. There was no observed loss of alkaline phosphatase (AP) as a stem cell marker and mitochondrial membrane potential (MMP) of oxidized CMC-treated MES cells was unaffected. Oxidized CMCs did not show toxicity to MES cells at the cellular level.
MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil
NASA Astrophysics Data System (ADS)
Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin
2015-07-01
Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.
Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.
Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C
2010-08-01
The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Woo, Sun Young; Lee, Hwankyu
2016-03-01
Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.
Woo, Sun Young; Lee, Hwankyu
2016-03-01
Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.
NASA Astrophysics Data System (ADS)
Lambert, Simon; Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Darrasse, Luc
2013-05-01
The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (THTS). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency ( f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing THTS, except for the orthogonal orientation above 1 T. The improvement of Q by lowering THTS was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either with or without the presence of the sample. Notably, the additional cooling in the presence of conductive samples appears more beneficial at higher field strengths and with an orthogonal incidence than with parallel. The temperature range accessible here, involving a relatively straightforward cryogenic design, brings a gain in RF sensitivity that is of great significance to cutting-edge applications with very weakly conducting samples, small biological specimens, or small animals in vivo. This work also demonstrates a better tolerance to thin-film orientation misalignments relative to the magnetic field, and this could eventually play a role in designing effective non-planar HTS coils or coil arrays which include elements of various orientations. Finally, the data provided in this work may help understand some critical aspects in the design of HTS coils for NMR and MRI applications and accounts for the presence of the static magnetic field, particularly regarding the SNR loss due to a decreased quality factor and detuning issues.
Karch, Christopher P; Doll, Tais A P F; Paulillo, Sara M; Nebie, Issa; Lanar, David E; Corradin, Giampietro; Burkhard, Peter
2017-09-06
The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed. New antigens such as P27A and P27 have emerged as potential new vaccine candidates. Multiple studies have demonstrated that antigens are more immunogenic and are better correlated with protection when presented on particulate delivery systems. One such particulate delivery system is the self-assembling protein nanoparticle (SAPN) that relies on coiled-coil domains of proteins to form stable nanoparticles. In the past we have used de novo designed amino acid domains to drive the formation of the coiled-coil scaffolds which present the antigenic epitopes on the particle surface. Here we use naturally occurring domains found in the tex1 protein to form the coiled-coil scaffolding of the nanoparticle. Thus, by engineering P27A and a new extended form of the coiled-coil domain P27 onto the N and C terminus of the SAPN protein monomer we have developed a particulate delivery system that effectively displays both antigens on a single particle that uses malaria tex1 sequences to form the nanoparticle scaffold. These particles are immunogenic in a murine model and induce immune responses similar to the ones observed in seropositive individuals in malaria endemic regions. We demonstrate that our P27/P27A-SAPNs induce an immune response akin to the one in seropositive individuals in Burkina Faso. Since P27 is highly conserved among different Plasmodium species, these novel SAPNs may even provide cross-protection between Plasmodium falciparum and Plasmodium vivax the two major human malaria pathogens. As the SAPNs are also easy to manufacture and store they can be delivered to the population in need without complication thus providing a low cost malaria vaccine.
Lahrech, H; Briguet, A
1990-11-01
It is shown that the modified stimulated echo sequence, [theta](+/- x +/- y)-t1-[theta](+ x)-t2/2-[2 theta](+ x)-t2/2- [theta](+ x)-t1-Acq(+/- x +/- y), denoted as MSTE[2 theta]x according to the exciter phase of the 2 theta pulse, is able to perform proton spectral editing without difference spectra. On the other hand, this sequence appears to be suitable for spatial localization. Sensitivity and spatial selectivity of MSTE and conventional stimulated echo sequence (STE) are briefly compared. MSTE is applied to editing lactate in the rat brain using the locally restricted excitation of a surface coil.
Role of the Box C/D Motif in Localization of Small Nucleolar RNAs to Coiled Bodies and Nucleoli
Narayanan, Aarthi; Speckmann, Wayne; Terns, Rebecca; Terns, Michael P.
1999-01-01
Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C′, box D, and the 3′ terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs. PMID:10397754
''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marston, P.G.; Iwasa, Y.; Thome, R.J.
Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test ofmore » that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs.« less
Vacuum Magnetic Field Mapping of the Compact Toroidal Hybrid (CTH)
NASA Astrophysics Data System (ADS)
Peterson, J. T.; Hanson, J.; Hartwell, G. J.; Knowlton, S. F.; Montgomery, C.; Munoz, J.
2007-11-01
Vacuum magnetic field mapping experiments are performed on the CTH torsatron with a movable electron gun and phosphor-coated screen or movable wand at two different toroidal locations. These experiments compare the experimentally measured magnetic configuration produced by the as-built coil set, to the magnetic configuration simulated with the IFT Biot-Savart code using the measured coil set parameters. Efforts to minimize differences between the experimentally measured location of the magnetic axis and its predicted value utilizing a Singular Value Decomposition (SVD) process result in small modifications of the helical coil winding law used to model the vacuum magnetic field geometry of CTH. Because these studies are performed at relatively low fields B = 0.01 - 0.05 T, a uniform ambient magnetic field is included in the minimization procedure.
Modular coils and finite-β operation of a quasi-axially symmetric tokamak
NASA Astrophysics Data System (ADS)
Drevlak, M.
1998-09-01
Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nührenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (Merkel, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (Hirshman, S.P., Van Rij, W.I., Merkel, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak.
CCBuilder 2.0: Powerful and accessible coiled‐coil modeling
Wood, Christopher W.
2017-01-01
Abstract The increased availability of user‐friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α‐helical coiled coil provides one such example, which represents ≈ 3–5% of all known protein‐encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy‐to‐use web application, called CCBuilder 2.0, for modeling and optimizing both α‐helical coiled coils and polyproline‐based collagen triple helices. This has many applications from providing models to aid molecular replacement for X‐ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo “dark matter” protein structures. CCBuilder 2.0 is available as a web‐based application, the code for which is open‐source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. Lay Summary We have created CCBuilder 2.0, an easy to use web‐based application that can model structures for a whole class of proteins, the α‐helical coiled coil, which is estimated to account for 3–5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more‐applied research including designing and engineering novel proteins that have potential applications in biotechnology. PMID:28836317
Code of Federal Regulations, 2012 CFR
2012-07-01
... production 21. Vegetable Oil 22. Industrial Surface Coating: Metal Coil 23. Petroleum Transportation and... Coating: Automobiles 28. Industrial Surface Coating: Large Appliances 29. Crude Oil and Natural Gas... 53. Starch 54. Perlite 55. Phosphoric Acid: Thermal Process (Deleted) 56. Uranium Refining 57. Animal...
Code of Federal Regulations, 2011 CFR
2011-07-01
... production 21. Vegetable Oil 22. Industrial Surface Coating: Metal Coil 23. Petroleum Transportation and... Coating: Automobiles 28. Industrial Surface Coating: Large Appliances 29. Crude Oil and Natural Gas... 53. Starch 54. Perlite 55. Phosphoric Acid: Thermal Process (Deleted) 56. Uranium Refining 57. Animal...
Code of Federal Regulations, 2013 CFR
2013-07-01
... production 21. Vegetable Oil 22. Industrial Surface Coating: Metal Coil 23. Petroleum Transportation and... Coating: Automobiles 28. Industrial Surface Coating: Large Appliances 29. Crude Oil and Natural Gas... 53. Starch 54. Perlite 55. Phosphoric Acid: Thermal Process (Deleted) 56. Uranium Refining 57. Animal...
Code of Federal Regulations, 2014 CFR
2014-07-01
... production 21. Vegetable Oil 22. Industrial Surface Coating: Metal Coil 23. Petroleum Transportation and... Coating: Automobiles 28. Industrial Surface Coating: Large Appliances 29. Crude Oil and Natural Gas... 53. Starch 54. Perlite 55. Phosphoric Acid: Thermal Process (Deleted) 56. Uranium Refining 57. Animal...
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck..., Utility Boilers, Cement Manufacturing Plants, Glass Manufacturing Plants, and Iron and Steel Manufacturing..., Asphalt Batch Plants, Iron and Steel Manufacturing Plants, and Driers were submitted on October 17, 1994...
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck..., Glass Manufacturing Plants, and Iron and Steel Manufacturing Plants were submitted on March 4, 1996, and... Adipic Acid Manufacturing Plants, Cement Manufacturing Plants, Asphalt Batch Plants, Iron and Steel...
Crank angle detecting system for engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzawa, H.; Nishiyama, M.; Nakamura, K.
1988-05-31
An ignition system for a multi-cylinder internal combustion engine is described comprising: (a) engine cylinders in which spark plugs are installed respectively, (b) indicating means disposed so as to synchronize with an engine crankshaft and formed with a large number of slits and a small number of slits, the large number of slits being provided for indicating crankshaft angular positions and the small number of slits being provided for indicating predetermined piston strokes and wherein the small number of slits have mutually different widths from each other to distinguish between piston strokes of at least the groups of cylinders; (c)more » sensing means for sensing crankshaft angular positions in cooperation with the large number of slits of the indicating means and outputting a crank angle signal representing the crankshaft angular position and for sensing the predetermined piston strokes in cooperation with the small number of slits and outputting different width piston stroke signals corresponding to the different width slits; (d) discriminating means for identifying each cylinder group and outputting cylinder group identification signals on the basis of the different width stroke signals derived from the sensing means; (e) ignition timing determining means for generating an ignition timing signal on the basis of the crank angle signal; (f) ignition coil controlling means for generating ignition coil current signals corresponding to the cylinder group identification signals; and (g) ignition timing controlling means for generating cylinder group ignition signals in response to the ignition coil current signals and ignition timing signal so that the spark plugs of each cylinder group are ignited at a proper time.« less
30 CFR 250.1500 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... well that are intended to establish or restore production to a well. It includes small tubing operations but does not include well servicing. Well servicing means snubbing, coil tubing, and wireline...
Digital control system for space structure dampers
NASA Technical Reports Server (NTRS)
Haviland, J. K.
1985-01-01
A digital controller was developed using an SKD-51 System Design Kit, which incorporates an 8031 microcontroller. The necessary interfaces were installed in the wire wrap area of the SKD-51 and a pulse width modulator was developed to drive the coil of the actuator. Also, control equations were developed, using floating-point arithmetic. The design of the digital control system is emphasized, and it is shown that, provided certain rules are followed, an adequate design can be achieved. It is recommended that the so-called w-plane design method be used, and that the time elapsed before output of the up-dated coil-force signal be kept as small as possible. However, the cycle time for the controller should be watched carefully, because very small values for this time can lead to digital noise.
Characteristics of chiral plasma plumes generated in the absence of external magnetic field
NASA Astrophysics Data System (ADS)
Nie, LanLan; Liu, FengWu; Zhou, XinCai; Lu, XinPei; Xian, YuBin
2018-05-01
A chiral plasma plume has recently been generated inside a dielectric tube without the use of an external magnetic field. In this paper, we seek to further study the key properties of such a chiral plume to improve our understanding of how this interesting structure is generated and controlled. The chiral plume is generated by externally mounting a stainless steel helical coil or a ring onto the dielectric tube. By changing the pitch of the helical coil, the pitch of the plasma plume can be controlled, with the shape of the plume following the shape of the helical coil. The addition of the helical coil significantly expands the range of parameters under which the chiral plasma plume appears. When the frequency of the applied voltage increases, additional stable discharge channels appear between the adjacent helices. The addition of two helical coils results in the formation of two chiral plasma plumes, which follow the shape of the helical coils. When a metal ring is placed on the outside of the tube, there is no chiral plasma plume between the high voltage electrode and the ring; however, a chiral plasma plume appears on the right side of the ring if the distance between the ring and the high voltage electrode is small. These findings suggest that the chiral plasma can be effectively modulated and guided using an externally mounted helical coil, which acts as the floating/actual ground to reduce the impedance of the discharge and as such contributes to the emergence of the chiral plasma plume behavior.
Magnetic resonance for laryngeal cancer.
Maroldi, Roberto; Ravanelli, Marco; Farina, Davide
2014-04-01
This review summarizes the most recent experiences on the integration of magnetic resonance in assessing the local extent of laryngeal cancer and detecting submucosal recurrences. Advances in magnetic resonance have been characterized by the development of technical solutions that shorten the acquisition time, thereby reducing motion artifacts, and increase the spatial resolution. Phased-array surface coils, directly applied to the neck, enable the use of parallel-imaging techniques, which greatly reduce the acquisition time, and amplify the signal intensity, being closer to the larynx. One of the most important drawbacks of this technique is the small field-of-view, restricting the imaged area to the larynx. Furthermore, diffusion-weighted imaging (DWI) has increased the set of magnetic resonance sequences. Differently from computed tomography (CT), which has only two variables (precontrast/postcontrast), magnetic resonance is based on a multiparameter analysis (T2-weighting and T1-weighting, DWI, and postcontrast acquisition). This multiparameter approach amplifies the contrast resolution. It has, also, permitted to differentiate scar tissue (after laser resection) from submucosal recurrent disease. In addition, DWI sequences have the potential of a more precise discrimination of peritumoral edema from neoplastic tissue, which may lead to improve the assessment of paraglottic space invasion. Magnetic resonance of the larynx is technically challenging. The use of surface coils and motion-reducing techniques is critical to achieve adequate image quality. The intrinsic high-contrast resolution is further increased by the integration of information from different sequences. When CT has not been conclusive, magnetic resonance is indicated in the pretreatment local assessment and in the suspicion of submucosal recurrence.
Hydroglyphics: Demonstration of Selective Wetting on Hydrophilic and Hydrophobic Surfaces
ERIC Educational Resources Information Center
Kim, Philseok; Alvarenga, Jack; Aizenberg, Joanna; Sleeper, Raymond S.
2013-01-01
A visual demonstration of the difference between hydrophilic and hydrophobic surfaces has been developed. It involves placing a shadow mask on an optically clear hydrophobic plastic dish, corona treating the surface with a modified Tesla coil, removing the shadow mask, and visualizing the otherwise invisible message or pattern by applying water,…
Inyang, Hilary I; Bae, Sunyoung
2005-01-01
Physico-chemical interactions among polymer molecules in aqueous solution and clay mineralogical/textural characteristics influence the sorption of polymer molecules on clay barrier minerals. Amendment of potentially unstable barrier clays with aqueous polymers can improve barrier material resistance to environmental stresses during service. In this research, the ability of molecular coils of polyacrylamide (PAM) to overlap in solution and to enter interlayer space in Na-montmorillonite (specific surface=31.82+/-0.22 m2 g(-1)) and kaolinite (specific surface=18+/-2 m2 g(-1)) were analyzed theoretically and experimentally, using solution viscosity measurements, and X-ray diffractometry. Experimental data on two theoretical indices: relative size ratio (RSR); and molecular availability (Ma) that are formulated to scale polymer molecular sorption on clay interlayer, indicate that the sorption of PAM A (Mw=4000000) and PAM B (Mw=7000000) does not produce any significant change in the d-spacing of both clay minerals. Although the negative Ma values of -3.51 g l(-1) for PAM A and -3.88 g l(-1) for PAM B indicate high levels of entanglement of polymer molecular coils in solution, sorption data confirm that the entangled coils are still able to sorb onto Na-montmorillonite highly and kaolinite to a lesser extent.
Isabet, Tatiana; Montagnac, Guillaume; Regazzoni, Karine; Raynal, Bertrand; El Khadali, Fatima; England, Patrick; Franco, Michel; Chavrier, Philippe; Houdusse, Anne; Ménétrey, Julie
2009-09-16
The JNK-interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP-binding protein ARF6. The interaction of ARF6-GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin-1 and dynactin. Here, we report the crystal structure of ARF6-GTP bound to the JIP4-LZII at 1.9 A resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6-(JIP4)(2)-ARF6 configuration. Comparison of the ARF6-JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site-directed mutagenesis and surface plasmon resonance, we further show that non-conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure-derived model of the association of the ARF6-JIP3/JIP4 complex with membranes shows that the JIP4-LZII coiled-coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6-mediated motor switch regulatory function.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig
1986-02-04
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig
1986-01-01
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Modeling and Evaluation of Canted Coil Springs as High Temperature Seal Preloading Devices
NASA Technical Reports Server (NTRS)
Oswald, Jay J.; Mullen, Robert L.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.
2004-01-01
Future reusable launch vehicles will require advanced structural seals. This includes propulsion seals along edges and hinge lines in hypersonic engines, and control surface seals for movable flaps and elevons on proposed reentry vehicles. Seals must remain in sealing engagement with opposing surfaces, for multiple missions, even though the seal gap may be opening and closing due to thermal and structural loads. To meet this requirement either the seals themselves must be resilient or there must be a resilient structural element behind the seals. Case Western Reserve University is working with NASA s Glenn Research Center to develop more resilient high temperature seal components and preloading devices. Results are presented for a finite element analysis of a canted coil spring that is being considered as a high temperature seal preloading device. This type of spring is a leading candidate due to its ability to provide nearly constant force over a large deflection. The finite element analyses were verified by comparing them to experimental results of canted coil springs of three different stiffnesses, measured at Glenn Research Center. Once validated the parameterized model was combined with a scripting algorithm to assess the effects of key spring design variables (wire diameter, coils per inch, cant amplitude, eccentricity, and spring width) on spring stiffness and maximum Von Mises stress to aid in subsequent design.
Olilo, Casianes Owino; Muia, Anastasia Wairimu; Moturi, Wilkister Nyaora; Onyando, Japhet Ogalo; Amber, Ford Roegner
2016-01-01
Agro-pastoral operations have the potential to threaten public health with loading of diverse pathogens into surface waters through overland flow; increasing awareness of the limitations of fecal indicators has led to development of a number of advancements in detection, source tracking and predictive modeling of public health risk. These tools and techniques are beginning to be integrated into management strategies. The objective of this review was to determine the status of current knowledge and challenges of the fate and transport of Escherichia coli in overland flow and their interaction within vegetative filter strip (VFS) as one of these implemented best management practices and to critically evaluate its use in that setting as an indicator organism. With few studies directly focusing on VFS removal of E. coli from overland flow, we critically evaluated the available data on movement of E. coil from fecal source loading to retention and decay or re-release for potential contamination of water ways and pointed out potential limitations in both pathogen-specific removal and its use as an indicator organisms within overland flow and VFS. Critical areas of focus for future studies to reduce gaps in knowledge were identified, and the integration of newer approaches in source tracking, alternative indicators and the use of non-pathogenic surrogates for field testing of existing VFS models was encouraged. With VFS as a growing field of interest as an economical conservation practice and as an avenue for conservation of resources for small-scale agro-pastoral operations, management strategies to reduce initial fecal load from either applied manure constituents or shedding from free-range animals will continue to test the limits in the applications of models to overland flow and VFS management strategies. Further studies at the microscale in understanding discrepancies between low and high pathogenicity strains of E. coil and between E. coil and other fecal pathogens in the context of VFS will be critical. However, nuanced studies are needed to understand either biological or environmental differences in the fate and transport of the diverse types of fecal pathogens within these settings PMID:28042601
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck... Plants, Glass Manufacturing Plants, and Iron and Steel Manufacturing Plants were submitted on March 4... Steel Manufacturing Plants, and Driers were submitted on October 17, 1994 and adopted on September 14...
NASA Technical Reports Server (NTRS)
Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory
2012-01-01
Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.
Development of a superconducting position sensor for the Satellite Test of the Equivalence Principle
NASA Astrophysics Data System (ADS)
Clavier, Odile Helene
The Satellite Test of the Equivalence Principle (STEP) is a joint NASA/ESA mission that proposes to measure the differential acceleration of two cylindrical test masses orbiting the earth in a drag-free satellite to a precision of 10-18 g. Such an experiment would conceptually reproduce Galileo's tower of Pisa experiment with a much longer time of fall and greatly reduced disturbances. The superconducting test masses are constrained in all degrees of freedom except their axial direction (the sensitive axis) using superconducting bearings. The STEP accelerometer measures the differential position of the masses in their sensitive direction using superconducting inductive pickup coils coupled to an extremely sensitive magnetometer called a DC-SQUID (Superconducting Quantum Interference Device). Position sensor development involves the design, manufacture and calibration of pickup coils that will meet the acceleration sensitivity requirement. Acceleration sensitivity depends on both the displacement sensitivity and stiffness of the position sensor. The stiffness must kept small while maintaining stability of the accelerometer. Using a model for the inductance of the pickup coils versus displacement of the test masses, a computer simulation calculates the sensitivity and stiffness of the accelerometer in its axial direction. This simulation produced a design of pickup coils for the four STEP accelerometers. Manufacture of the pickup coils involves standard photolithography techniques modified for superconducting thin-films. A single-turn pickup coil was manufactured and produced a successful superconducting coil using thin-film Niobium. A low-temperature apparatus was developed with a precision position sensor to measure the displacement of a superconducting plate (acting as a mock test mass) facing the coil. The position sensor was designed to detect five degrees of freedom so that coupling could be taken into account when measuring the translation of the plate relative to the coil. The inductance was measured using a DC-SQUID coupled to the pickup coil. The experimental results agree with the model used in the simulation thereby validating the concept used for the design. The STEP program now has the confidence necessary to design and manufacture a position sensor for the flight accelerometer.
Helically coiled carbon nanotube forests for use as electrodes in supercapacitors
NASA Astrophysics Data System (ADS)
Childress, Anthony; Ferri, Kevin; Podila, Ramakrishna; Rao, Apparao
Supercapacitors are a class of devices which combine the high energy density of batteries with the power delivery of capacitors, and have benefitted greatly from the incorporation of carbon nanomaterials. In an effort to improve the specific capacitance of these devices, we have produced binder-free electrodes composed of helically coiled carbon nanotube forests grown on stainless steel current collectors with a performance superior to traditional carbon nanomaterials. By virtue of their helicity, the coiled nanotubes provide a greater surface area for energy storage than their straight counterparts, thus improving the specific capacitance. Furthermore, we used an Ar plasma treatment to increase the electronic density of states, and thereby the quantum capacitance, through the introduction of defects.
Wireless Seismometer for Venus
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.
2014-01-01
Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.
NASA Astrophysics Data System (ADS)
Nakamoto, Teagan; Parrack, Kristina; Smith, Dalton; Trujillo, Chris; Wilde, Zak; Gibson, John; Lodes, Rylie; Malcolm, Hayden
2017-06-01
Researchers experimented with a novel diagnostic to study the effects of porosity on detonator performance. The new diagnostic takes advantage of the detonation electric effect observed by Hayes (1966). Detonation-produced electrical charges induce a current in the detonator wire that may be detected by use of a Rogowski coil developed and tailored for the purpose. Data collected by the Rogowski coil were then used to characterize detonations. Researchers tested PETN charges of various porosity levels (as characterized by measured particle size and surface area) to study the effect of porosity on detonation characteristics. This novel method was compared with and verified by the well-established technique of using PVDF gauges for detonator response characterization.
Coil Embolization for Intracranial Aneurysms
2006-01-01
Executive Summary Objective To determine the effectiveness and cost-effectiveness of coil embolization compared with surgical clipping to treat intracranial aneurysms. The Technology Endovascular coil embolization is a percutaneous approach to treat an intracranial aneurysm from within the blood vessel without the need of a craniotomy. In this procedure, a microcatheter is inserted into the femoral artery near the groin and navigated to the site of the aneurysm. Small helical platinum coils are deployed through the microcatheter to fill the aneurysm, and prevent it from further expansion and rupture. Health Canada has approved numerous types of coils and coil delivery systems to treat intracranial aneurysms. The most favoured are controlled detachable coils. Coil embolization may be used with other adjunct endovascular devices such as stents and balloons. Background Intracranial Aneurysms Intracranial aneurysms are the dilation or ballooning of part of a blood vessel in the brain. Intracranial aneurysms range in size from small (<12 mm in diameter) to large (12–25 mm), and to giant (>25 mm). There are 3 main types of aneurysms. Fusiform aneurysms involve the entire circumference of the artery; saccular aneurysms have outpouchings; and dissecting aneurysms have tears in the arterial wall. Berry aneurysms are saccular aneurysms with well-defined necks. Intracranial aneurysms may occur in any blood vessel of the brain; however, they are most commonly found at the branch points of large arteries that form the circle of Willis at the base of the brain. In 85% to 95% of patients, they are found in the anterior circulation. Aneurysms in the posterior circulation are less frequent, and are more difficult to treat surgically due to inaccessibility. Most intracranial aneurysms are small and asymptomatic. Large aneurysms may have a mass effect, causing compression on the brain and cranial nerves and neurological deficits. When an intracranial aneurysm ruptures and bleeds, resulting in a subarachnoid hemorrhage (SAH), the mortality rate can be 40% to 50%, with severe morbidity of 10% to 20%. The reported overall risk of rupture is 1.9% per year and is higher for women, cigarette smokers, and cocaine users, and in aneurysms that are symptomatic, greater than 10 mm in diameter, or located in the posterior circulation. If left untreated, there is a considerable risk of repeat hemorrhage in a ruptured aneurysm that results in increased mortality. In Ontario, intracranial aneurysms occur in about 1% to 4% of the population, and the annual incidence of SAH is about 10 cases per 100,000 people. In 2004-2005, about 660 intracranial aneurysm repairs were performed in Ontario. Treatment of Intracranial Aneurysms Treatment of an unruptured aneurysm attempts to prevent the aneurysm from rupturing. The treatment of a ruptured intracranial aneurysm aims to prevent further hemorrhage. There are 3 approaches to treating an intracranial aneurysm. Small, asymptomatic aneurysms less than 10 mm in diameter may be monitored without any intervention other than treatment for underlying risk factors such as hypertension. Open surgical clipping, involves craniotomy, brain retraction, and placement of a silver clip across the neck of the aneurysm while a patient is under general anesthesia. This procedure is associated with surgical risks and neurological deficits. Endovascular coil embolization, introduced in the 1990s, is the health technology under review. Literature Review Methods The Medical Advisory Secretariat searched the International Health Technology Assessment (INAHTA) Database and the Cochrane Database of Systematic Reviews to identify relevant systematic reviews. OVID Medline, Medline In-Process and Other Non-Indexed Citations, and Embase were searched for English-language journal articles that reported primary data on the effectiveness or cost-effectiveness of treatments for intracranial aneurysms, obtained in a clinical setting or analyses of primary data maintained in registers or institutional databases. Internet searches of Medscape and manufacturers’ databases were conducted to identify product information and recent reports on trials that were unpublished but that were presented at international conferences. Four systematic reviews, 3 reports on 2 randomized controlled trials comparing coil embolization with surgical clipping of ruptured aneurysms, 30 observational studies, and 3 economic analysis reports were included in this review. Results Safety and Effectiveness Coil embolization appears to be a safe procedure. Complications associated with coil embolization ranged from 8.6% to 18.6% with a median of about 10.6%. Observational studies showed that coil embolization is associated with lower complication rates than surgical clipping (permanent complication 3-7% versus 10.9%; overall 23% versus 46% respectively, p=0.009). Common complications of coil embolization are thrombo-embolic events (2.5%–14.5%), perforation of aneurysm (2.3%–4.7%), parent artery obstruction (2%–3%), collapsed coils (8%), coil malposition (14.6%), and coil migration (0.5%–3%). Randomized controlled trials showed that for ruptured intracranial aneurysms with SAH, suitable for both coil embolization and surgical clipping (mostly saccular aneurysms <10 mm in diameter located in the anterior circulation) in people with good clinical condition:Coil embolization resulted in a statistically significant 23.9% relative risk reduction and 7% absolute risk reduction in the composite rate of death and dependency compared to surgical clipping (modified Rankin score 3–6) at 1-year. The advantage of coil embolization over surgical clipping varies widely with aneurysm location, but endovascular treatment seems beneficial for all sites. There were less deaths in the first 7 years following coil embolization compared to surgical clipping (10.8% vs 13.7%). This survival benefit seemed to be consistent over time, and was statistically significant (log-rank p= 0.03). Coil embolization is associated with less frequent MRI-detected superficial brain deficits and ischemic lesions at 1-year. The 1- year rebleeding rate was 2.4% after coil embolization and 1% for surgical clipping. Confirmed rebleeding from the repaired aneurysm after the first year and up to year eight was low and not significantly different between coil embolization and surgical clipping (7 patients for coil embolization vs 2 patients for surgical clipping, log-rank p=0.22). Observational studies showed that patients with SAH and good clinical grade had better 6-month outcomes and lower risk of symptomatic cerebral vasospasm after coil embolization compared to surgical clipping. For unruptured intracranial aneurysms, there were no randomized controlled trials that compared coil embolization to surgical clipping. Large observational studies showed that: The risk of rupture in unruptured aneurysms less than 10 mm in diameter is about 0.05% per year for patients with no pervious history of SAH from another aneurysm. The risk of rupture increases with history of SAH and as the diameter of the aneurysm reaches 10 mm or more. Coil embolization reduced the composite rate of in hospital deaths and discharge to long-term or short-term care facilities compared to surgical clipping (Odds Ratio 2.2, 95% CI 1.6–3.1, p<0.001). The improvement in discharge disposition was highest in people older than 65 years. In-hospital mortality rate following treatment of intracranial aneurysm ranged from 0.5% to 1.7% for coil embolization and from 2.1% to 3.5% for surgical clipping. The overall 1-year mortality rate was 3.1% for coil embolization and 2.3% for surgical clipping. One-year morbidity rate was 6.4% for coil embolization and 9.8% for surgical clipping. It is not clear whether these differences were statistically significant. Coil embolization is associated with shorter hospital stay compared to surgical clipping. For both ruptured and unruptured aneurysms, the outcome of coil embolization does not appear to be dependent on age, whereas surgical clipping has been shown to yield worse outcome for patients older than 64 years. Angiographic Efficiency and Recurrences The main drawback of coil embolization is its low angiographic efficiency. The percentage of complete aneurysm occlusion after coil embolization (27%–79%, median 55%) remains lower than that achieved with surgical clipping (82%–100%). However, about 90% of coiled aneurysms achieve near total occlusion or better. Incompletely coiled aneurysms have been shown to have higher aneurysm recurrence rates ranging from 7% to 39% for coil embolization compared to 2.9% for surgical clipping. Recurrence is defined as refilling of the neck, sac, or dome of a successfully treated aneurysm as shown on an angiogram. The long-term clinical significance of incomplete occlusion following coil embolization is unknown, but in one case series, 20% of patients had major recurrences, and 50% of these required further treatment. Long-Term Outcomes A large international randomized trial reported that the survival benefit from coil embolization was sustained for at least 7 years. The rebleeding rate between year 2 and year 8 following coil embolization was low and not significantly different from that of surgical clipping. However, high quality long-term angiographic evidence is lacking. Accordingly, there is uncertainty about long-term occlusion status, coil durability, and recurrence rates. While surgical clipping is associated with higher immediate procedural risks, its long-term effectiveness has been established. Indications and Contraindications Coil embolization offers treatment for people at increased risk for craniotomy, such as those over 65 years of age, with poor clinical status, or with comorbid conditions. The technology also makes it possible to treat surgical high-risk aneurysms. Not all aneurysms are suitable for coil embolization. Suitability depends on the size, anatomy, and location of the aneurysm. Aneurysms more than 10 mm in diameter or with an aneurysm neck greater than or equal to 4 mm are less likely to achieve total occlusion. They are also more prone to aneurysm recurrences and to complications such as coil compaction or parent vessel occlusion. Aneurysms with a dome to neck ratio of less than 1 have been shown to have lower obliteration rates and poorer outcome following coil embolization. Furthermore, aneurysms in the middle cerebral artery bifurcation are less suitable for coil embolization. For some aneurysms, treatment may require the use of both coil embolization and surgical clipping or adjunctive technologies, such as stents and balloons, to obtain optimal results. Diffusion Information from 3 countries indicates that coil embolization is a rapidly diffusing technology. For example, it accounted for about 40% of aneurysm treatments in the United Kingdom. In Ontario, coil embolization is an insured health service, with the same fee code and fee schedule as open surgical repair requiring craniotomy. Other costs associated with coil embolization are covered under hospitals’ global budgets. Utilization data showed that in 2004-2005, coil embolization accounted for about 38% (251 cases) of all intracranial aneurysm repairs in the province. With the 2005 publication of the positive long-term survival data from the International Subarachnoid Aneursym Trial, the pressure for diffusion will likely increase. Economic Analysis Recent economic studies show that treatment of unruptured intracranial aneurysms smaller than 10 mm in diameter in people with no previous history of SAH, either by coil embolization or surgical clipping, would not be effective or cost-effective. However, in patients with aneurysms that are greater than or equal to 10 mm or symptomatic, or in patients with a history of SAH, treatment appears to be cost-effective. In Ontario, the average device cost of coil embolization per case was estimated to be about $7,500 higher than surgical clipping. Assuming that the total number of intracranial aneurysm repairs in Ontario increases to 750 in the fiscal year of 2007, and assuming that up to 60% (450 cases) of these will be repaired by coil embolization, the difference in device costs for the 450 cases (including a 15% recurrence rate) would be approximately $3.8 million. This figure does not include capital costs (e.g. $3 million for an angiosuite), additional human resources required, or costs of follow-up. The increase in expenditures associated with coil embolization may be offset partially, by shorter operating room times and hospitalization stays for endovascular repair of unruptured aneurysms; however, the impact of these cost savings is probably not likely to be greater than 25% of the total outlay since the majority of cases involve ruptured aneurysms. Furthermore, the recent growth in aneurysm repair has predominantly been in the area of coil embolization presumably for patients for whom surgical clipping would not be advised; therefore, no offset of surgical clipping costs could be applied in such cases. For ruptured aneurysms, downstream cost savings from endovascular repair are likely to be minimal even though the savings for individual cases may be substantial due to lower perioperative complications for endovascular aneurysm repair. Guidelines The two Guidance documents issued by the National Institute of Clinical Excellence (UK) in 2005 support the use of coil embolization for both unruptured and ruptured (SAH) intracranial aneurysms, provided that procedures are in place for informed consent, audit, and clinical governance, and that the procedure is performed in specialist units with expertise in the endovascular treatment of intracranial aneurysms. Conclusion For people in good clinical condition following subarachnoid hemorrhage from an acute ruptured intracranial aneurysm suitable for either surgical clipping or endovascular repair, coil embolization results in improved independent survival in the first year and improved survival for up to seven years compared to surgical clipping. The rebleeding rate is low and not significantly different between the two procedures after the first year. However, there is uncertainty regarding the long-term occlusion status, durability of the stent graft, and long-term complications. For people with unruptured aneurysms, level 4 evidence suggests that coil embolization may be associated with comparable or less mortality and morbidity, shorter hospital stay, and less need for discharge to short-term rehabilitation facilities. The greatest benefit was observed in people over 65 years of age. In these patients, the decision regarding treatment needs to be based on the assessment of the risk of rupture against the risk of the procedure, as well as the morphology of the aneurysm. In people who require treatment for intracranial aneurysm, but for whom surgical clipping is too risky or not feasible, coil embolization provides survival benefits over surgical clipping, even though the outcomes may not be as favourable as in people in good clinical condition and with small aneurysms. The procedure may be considered under the following circumstances provided that the aneurysm is suitable for coil embolization: Patients in poor/unstable clinical or neurological state Patients at high risk for surgical repair (e.g. people>age 65 or with comorbidity), or Aneurysm(s) with poor accessibility or visibility for surgical treatment due to their location (e.g. ophthalmic or basilar tip aneurysms) Compared to small aneurysms with a narrow neck in the anterior circulation, large aneurysms (> 10 mm in diameter), aneurysms with a wide neck (>4mm in diameter), and aneurysms in the posterior circulation have lower occlusion rates and higher rate of hemorrhage when treated with coil embolization. The extent of aneurysm obliteration after coil embolization remains lower than that achieved with surgical clipping. Aneurysm recurrences after successful coiling may require repeat treatment with endovascular or surgical procedures. Experts caution that long-term angiographic outcomes of coil embolization are unknown at this time. Informed consent for and long-term follow-up after coil embolization are recommended. The decision to treat an intracranial aneurysm with surgical clipping or coil embolization needs to be made jointly by the neurosurgeon and neuro-intervention specialist, based on the clinical status of the patient, the size and morphology of the aneurysm, and the preference of the patient. The performance of endovascular coil embolization should take place in centres with expertise in both neurosurgery and endovascular neuro-interventions, with adequate treatment volumes to maintain good outcomes. Distribution of the technology should also take into account that patients with SAH should be treated as soon as possible with minimal disruption. PMID:23074479
A new model for the surface arrangement of myosin molecules in tarantula thick filaments.
Offer, G; Knight, P J; Burgess, S A; Alamo, L; Padrón, R
2000-04-28
Three-dimensional reconstructions of the negatively stained thick filaments of tarantula muscle with a resolution of 50 A have previously suggested that the helical tracks of myosin heads are zigzagged, short diagonal ridges being connected by nearly axial links. However, surface views of lower contour levels reveal an additional J-shaped feature approximately the size and shape of a myosin head. We have modelled the surface array of myosin heads on the filaments using as a building block a model of a two-headed regulated myosin molecule in which the regulatory light chains of the two heads together form a compact head-tail junction. Four parameters defining the radius, orientation and rotation of each myosin molecule were varied. In addition, the heads were allowed independently to bend in a plane perpendicular to the coiled-coil tail at three sites, and to tilt with respect to the tail and to twist at one of these sites. After low-pass filtering, models were aligned with the reconstruction, scored by cross-correlation and refined by simulated annealing. Comparison of the geometry of the reconstruction and the distance between domains in the myosin molecule narrowed the choice of models to two main classes. A good match to the reconstruction was obtained with a model in which each ridge is formed from the motor domain of a head pointing to the bare zone together with the head-tail junction of a neighbouring molecule. The heads pointing to the Z-disc intermittently occupy the J-position. Each motor domain interacts with the essential and regulatory light chains of the neighbouring heads. A near-radial spoke in the reconstruction connecting the backbone to one end of the ridge can be identified as the start of the coiled-coil tail. Copyright 2000 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan
2014-02-18
Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath andmore » slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.« less