COLLECTION EFFICIENCY OF THE HIGH VOLUME SMALL SURFACE SAMPLER ON WORN CARPETS
Collection Efficiency of the High Volume Small Surface Sampler on Worn Carpets
Erik R. Svendsen*?, Peter S. Thorne*, Stephen J. Reynolds*?, Patrick T. O'Shaughnessy*, Alba Quinones*, Dale Zimmerman*, and Nervana Metwali*
*University of Iowa College of Public Health<...
Touch and Go Surface Sampler (TGSS)
NASA Technical Reports Server (NTRS)
Gorevan, S. P.; Rafeek, S.
2001-01-01
The Touch and Go Surface Sampler (TGSS) is a new class of planetary and small body sample acquisition tool that can be used for the surface exploration of Europa, Titan and comets. TGSS in its basic configuration consists of a high speed sampling head attached to the end of a flexible shaft. The sampling head consists of counter rotating cutters that rotates at speeds of 3000 to 15000 RPM. The attractive feature of this if touch and go type sampler is that there are no requirements for a lander type spacecraft. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leishear, R.; Thaxton, D.; Minichan, R.
A sampling tool was required to evaluate residual activity ({mu}Curies per square foot) on the inner wall surfaces of underground nuclear waste storage tanks. The tool was required to collect a small sample from the 3/8 inch thick tank walls. This paper documents the design, testing, and deployment of the remotely operated sampling device. The sampler provides material from a known surface area to estimate the overall surface contamination in the tank prior to closure. The sampler consisted of a sampler and mast assembly mast assembly, control system, and the sampler, or end effector, which is defined as the operatingmore » component of a robotic arm. The mast assembly consisted of a vertical 30 feet long, 3 inch by 3 inch, vertical steel mast and a cantilevered arm hinged at the bottom of the mast and lowered by cable to align the attached sampler to the wall. The sampler and mast assembly were raised and lowered through an opening in the tank tops, called a riser. The sampler is constructed of a mounting plate, a drill, springs to provide a drive force to the drill, a removable sampler head to collect the sample, a vacuum pump to draw the sample from the drill to a filter, and controls to operate the system. Once the sampler was positioned near the wall, electromagnets attached it to the wall, and the control system was operated to turn on the drill and vacuum to remove and collect a sample from the wall. Samples were collected on filters in removable sampler heads, which were readily transported for further laboratory testing.« less
Pham, Anh Le-Tuan; Johnson, Carol; Manley, Devon; Hsu-Kim, Heileen
2015-11-03
Diffusive gradient in thin-film (DGT) passive samplers are frequently used to monitor the concentrations of metals such as mercury and zinc in sediments and other aquatic environments. The application of these samplers generally presumes that they quantify only the dissolved fraction and not particle-bound metal species that are too large to migrate into the sampler. However, metals associated with very small nanoparticles (smaller than the pore size of DGT samplers) can be abundant in certain environments, yet the implications of these nanoparticles for DGT measurements are unclear. The objective of this study was to determine how the performance of the DGT sampler is affected by the presence of nanoparticulate species of Hg and Zn. DGT samplers were exposed to solutions containing known amounts of dissolved Hg(II) and nanoparticulate HgS (or dissolved Zn(II) and nanoparticulate ZnS). The amounts of Hg and Zn accumulated onto the DGT samplers were quantified over hours to days, and the rates of diffusion of the dissolved metal (i.e., the effective diffusion coefficient D) into the sampler's diffusion layer were calculated and compared for solutions containing varying concentrations of nanoparticles. The results suggested that the nanoparticles deposited on the surface of the samplers might have acted as sorbents, slowing the migration of the dissolved species into the samplers. The consequence was that the DGT sampler data underestimated the dissolved metal concentration in the solution. In addition, X-ray absorption spectroscopy was employed to determine the speciation of the Hg accumulated on the sampler binding layer, and the results indicated that HgS nanoparticles did not appear to directly contribute to the DGT measurement. Overall, our findings suggest that the deployment of DGT samplers in settings where nanoparticles are relevant (e.g., sediments) may result in DGT data that incorrectly estimated the dissolved metal concentrations. Models for metal uptake into the sampler may need to be reconsidered.
Ensminger, Michael P; Vasquez, Martice; Tsai, Hsing-Ju; Mohammed, Sarah; Van Scoy, A; Goodell, Korena; Cho, Gail; Goh, Kean S
2017-10-01
Monitoring of surface waters for organic contaminants is costly. Grab water sampling often results in non-detects for organic contaminants due to missing a pulse event or analytical instrumentation limitations with a small sample size. Continuous Low-Level Aquatic Monitoring (CLAM) samplers (C.I.Agent ® Solutions) continually extract and concentrate organic contaminants in surface water onto a solid phase extraction disk. Utilizing CLAM samplers, we developed a broad spectrum analytical screen for monitoring organic contaminants in urban runoff. An intermediate polarity solid phase, hydrophobic/lipophilic balance (HLB), was chosen as the sorbent for the CLAM to target a broad range of compounds. Eighteen urban-use pesticides and pesticide degradates were targeted for analysis by LC/MS/MS, with recoveries between 59 and 135% in laboratory studies. In field studies, CLAM samplers were deployed at discrete time points from February 2015 to March 2016. Half of the targeted chemicals were detected with reporting limits up to 90 times lower than routine 1-L grab samples with good precision between field replicates. In a final deployment, CLAM samplers were compared to 1-L water samples. In this side-by-side comparison, imidacloprid, fipronil, and three fipronil degradates were detected by the CLAM sampler but only imidacloprid and fipronil sulfone were detected in the water samples. However, concentrations of fipronil sulfone and imidacloprid were significantly lower with the CLAM and a transient spike of diuron was not detected. Although the CLAM sampler has limitations, it can be a powerful tool for development of more focused and informed monitoring efforts based on pre-identified targets in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Apparatus and techniques for measuring bedload
Hubbell, David Wellington
1964-01-01
The need for accurate determinations of the total sediment discharge of particles of bedload size has prompted this investigation of available and possible measuring apparatus and procedures. The accuracy of measurements of sediment discharge made with trap-type samplers is affected by the variability of sampler efficiency, by the oscillatory variation of bedload discharge, and by sampler placement. Equations that were developed for determining total discharge from measured bedioad discharge and measured suspended-sediment discharge are simplest if the bedload apparatus measures only the true bedload. Early bedload samplers are generally unsatisfactory. Recently developed or suggested apparatus include various improved samplers of the pressure-difference type, a pumping sampler, a magnetic sampler, acoustical instruments that measure the magnitude of the sound of particle collisions, an ultrasonic bedload sampler designed to measure and integrate electronically the concentration and velocity, and a tiltmeter designed to measure the total sediment discharge from the ground tilt that results from the passage of flow. All the pressure-difference samplers are improvements over early samplers, but none are void of the inherent shortcomings of trap-type apparatus; probably the Sphinx (Dutch) and VUV (Hungarian) samplers are the most satisfactory. The acoustical instruments are capable of measuring only the relative discharge. The ultrasonic sampler and the tiltmeter are not adequate without further development. Some new possible apparatus and means for measuring or aiding in measuring bedload discharge are small pit samplers, ultrasonic sounders, pressure transducers, and photography. A small pit sampler for measuring bedload discharge was designed to provide self-placement and portability ; however, its practicability and efficiency are undetermined. Exploratory films show that by using slowmotion photography the discharge of particles larger than about pea size can be determined provided the flow is clear; however, photography generally is not practical. Ultrasonic sounders provide continuous and accurate data on bed configuration and dune movement for use in equations that were developed for computing the bedload discharge. Computations with the equations indicate that the interpretation of the sounding data needs further study. Pressure transducers placed beneath the bed surface possibly can be used to provide information on dune movement; however, their installation would be difficult. The time required for collecting data on bed configuration and dune movement throughout a cross section could be substantially reduced by using several transducers simultaneously in conjunction with an ultrasonic sounder. A modified ultrasonic sounder that provides information on the shape and velocity of large particles and a method for determining the discharge of such particles were proposed; the method seems most feasible for particles of high sphericity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addleman, Raymond S; Atkinson, David A; Bays, John T
An enhanced swipe sampler and method of making are described. The swipe sampler is made of a fabric containing selected glass, metal oxide, and/or oxide-coated glass or metal fibers. Fibers are modified with silane ligands that are directly attached to the surface of the fibers to functionalize the sampling surface of the fabric. The swipe sampler collects various target analytes including explosives and other threat agents on the surface of the sampler.
Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.
Sajjadi, H; Tavakoli, B; Ahmadi, G; Dhaniyala, S; Harner, T; Holsen, T M
2016-07-01
In this work a series of computational fluid dynamics (CFD) simulations were performed to predict the deposition of particles on a newly designed passive dry deposition (Pas-DD) sampler. The sampler uses a parallel plate design and a conventional polyurethane foam (PUF) disk as the deposition surface. The deposition of particles with sizes between 0.5 and 10 μm was investigated for two different geometries of the Pas-DD sampler for different wind speeds and various angles of attack. To evaluate the mean flow field, the k-ɛ turbulence model was used and turbulent fluctuating velocities were generated using the discrete random walk (DRW) model. The CFD software ANSYS-FLUENT was used for performing the numerical simulations. It was found that the deposition velocity increased with particle size or wind speed. The modeled deposition velocities were in general agreement with the experimental measurements and they increased when flow entered the sampler with a non-zero angle of attack. The particle-size dependent deposition velocity was also dependent on the geometry of the leading edge of the sampler; deposition velocities were more dependent on particle size and wind speeds for the sampler without the bend in the leading edge of the deposition plate, compared to a flat plate design. Foam roughness was also found to have a small impact on particle deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Small-Noise Analysis and Symmetrization of Implicit Monte Carlo Samplers
Goodman, Jonathan; Lin, Kevin K.; Morzfeld, Matthias
2015-07-06
Implicit samplers are algorithms for producing independent, weighted samples from multivariate probability distributions. These are often applied in Bayesian data assimilation algorithms. We use Laplace asymptotic expansions to analyze two implicit samplers in the small noise regime. Our analysis suggests a symmetrization of the algorithms that leads to improved implicit sampling schemes at a relatively small additional cost. Here, computational experiments confirm the theory and show that symmetrization is effective for small noise sampling problems.
A passive ozone sampler based on a reaction with iodide.
Yanagisawa, Y
1994-02-01
A new passive sampler for ozone and its simple analytical system have been developed. Because it is small and sensitive, the sampler can be used for determining personal exposures to ozone and oxidants and for multilocation measurements. The sampler consists of an electrode, a spacer, and several layers of membrane filters and Teflon meshes. The electrode is a carbon paper disk coated with nylon-6 polymer and potassium iodide. The membrane filters are used to remove interferences. A sampling rate of ozone is controlled by the spacer and Teflon meshes. Iodine is liberated by an oxidation reaction of potassium iodide with ozone. The iodine is stabilized by forming a charge transfer complex with nylon-6 and is accumulated in the nylon-6 layer. The amount of iodine, which is proportional to the level of ozone exposure, is quantified by constant current coulometry. The discharge time of a galvanic battery is measured using the electrode as a positive electrode and a zinc plate as a counter electrode. A time-weighted average concentration of ozone is derived from the discharge time after exposing the electrode to ozone. The effects of various environmental conditions on the sampler's performance were investigated. The results indicated that the sampler showed a linear response to ozone exposure up to 1,450 parts per billion for every hour of use (ppb.hour). The minimum detectable exposure was about 400 ppb.hour. The effects of surface wind velocity, temperature, and humidity were small. However, a relative humidity below 20% resulted in an underestimation of the ozone concentration. Because the electrode requires no pretreatment and the analytical method is very simple, this method is suitable for large-scale studies of personal exposures to ozone and oxidants using multilocation measurements.
Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.
2005-01-01
During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a pushpoint sampler as a highly effective tool for mapping the extent of contaminated subsurface plumes, determining their constituents and loadings, and performing technical studies that may be relevant to bioremediation and other activities.
Mess, Aylin; Enthaler, Bernd; Fischer, Markus; Rapp, Claudius; Pruns, Julia K; Vietzke, Jens-Peter
2013-01-15
Identification of endogenous skin surface compounds is an intriguing challenge in comparative skin investigations. Notably, this short communication is focused on the analysis of small molecules, e.g. natural moisturizing factor (NMF) components and lipids, using a novel sampling method with DIP-it samplers for non-invasive examination of the human skin surface. As a result, extraction of analytes directly from the skin surface by use of various solvents can be replaced with the mentioned procedure. Screening of measureable compounds is achieved by direct analysis in real time mass spectrometry (DART-MS) without further sample preparation. Results are supplemented by dissolving analytes from the DIP-it samplers by use of different solvents, and subsequent matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements. An interesting comparison of the mentioned MS techniques for determination of skin surface compounds in the mass range of 50-1000 Da is presented. Copyright © 2012 Elsevier B.V. All rights reserved.
Secondary aspiration of aerosol particles into thin-walled nozzles facing the wind
NASA Astrophysics Data System (ADS)
Lipatov, G. N.; Grinshpun, S. A.; Semenyuk, T. I.; Sutugin, A. G.
Problems of sampling aerosols from the turbulent atmosphere have been studied experimentally. The research was carried out with such particle sizes, type of samplers and sampling conditions that relate to those encountered in practical occupational hygiene and environmental monitoring. Distortion of the aerosol initial concentration was measured in a wind tunnel by a comparison method. Such distortions were caused by the external aspiration from a turbulent down flow using a vertical thin-walled cylindrical sampler. In addition, inertial errors themselves were determined by the limiting trajectory method. The difference between the results obtained with the help of the above methods showed the presence of secondary aspiration after the particles rebound from the outer nozzle surface for anisokinetical sampling. This fact was established by means of a set of special experiments with nozzles of various properties of the outer surface. Values of the rebound coefficient for Lycopodium particles aspirated into copper samplers over a range of diameters of 0.5-1 cm and anisokinetical coefficients (velocity ratio) of 1-40 were obtained. The conditions under which the efficiency of secondary aspiration is small were also defined.
40 CFR 53.61 - Test conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test conditions. 53.61 Section 53.61... Equivalent Methods for PM2.5 § 53.61 Test conditions. (a) Sampler surface preparation. Internal surfaces of the candidate sampler shall be cleaned and dried prior to performing any Class II sampler test in this...
40 CFR 53.61 - Test conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test conditions. 53.61 Section 53.61... Equivalent Methods for PM2.5 § 53.61 Test conditions. (a) Sampler surface preparation. Internal surfaces of the candidate sampler shall be cleaned and dried prior to performing any Class II sampler test in this...
Arvidsson, Tommy; Bergström, Lars; Kreuger, Jenny
2011-06-01
In this study, the collecting efficiency of different samplers of airborne drift was compared both in wind tunnel and in field experiments. The aim was to select an appropriate sampler for collecting airborne spray drift under field conditions. The wind tunnel study examined three static samplers and one dynamic sampler. The dynamic sampler had the highest overall collecting efficiency. Among the static samplers, the pipe cleaner collector had the highest efficiency. These two samplers were selected for evaluation in the subsequent field study. Results from 29 individual field experiments showed that the pipe cleaner collector on average had a 10% lower collecting efficiency than the dynamic sampler. However, the deposits on the pipe cleaners generally were highest at the 0.5 m level, and for the dynamic sampler at the 1 m level. It was concluded from the wind tunnel part of the study that the amount of drift collected on the static collectors had a more strongly positive correlation with increasing wind speed compared with the dynamic sampler. In the field study, the difference in efficiency between the two types of collector was fairly small. As the difference in collecting efficiency between the different types of sampler was small, the dynamic sampler was selected for further measurements of airborne drift under field conditions owing to its more well-defined collecting area. This study of collecting efficiency of airborne spray drift of static and dynamic samplers under field conditions contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry.
Development of a new portable air sampler based on electrostatic precipitation.
Roux, J M; Sarda-Estève, R; Delapierre, G; Nadal, M H; Bossuet, C; Olmedo, L
2016-05-01
Airborne particles are known to cause illness and to influence meteorological phenomena. It is therefore important to monitor their concentrations and to identify them. A challenge is to collect micro and nanoparticles, microorganisms as well as toxic molecules with a device as simple and small as possible to be used easily and everywhere. Electrostatic precipitation is an efficient method to collect all kinds of airborne particles. Furthermore, this method can be miniaturized. A portable, silent, and autonomous air sampler based on this technology is therefore being developed with the final objective to collect very efficiently airborne pathogens such as supermicron bacteria but also submicron viruses. Particles are collected on a dry surface so they may be concentrated afterwards in a small amount of liquid medium to be analyzed. It is shown that nearly 98 % of airborne particles from 10 nm to 3 μm are collected.
Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M
2015-12-01
Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.
Improvement of core drill methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatz, J.L.
1975-07-01
This report documents results of a program to evaluate effectiveness of more or less conventional subsurface samplers in obtaining representative and undisturbed samples of noncohesive alluvial materials containing large quantities of gravels and cobbles. This is the first phase of a research program to improve core drill methods. Samplers evaluated consisted of the Lawrence Livermore Laboratory membrane sampler, 4-in. Denison sampler, 6-in. Dension sampler, 5-in. Modified Denison sampler, and 3-in. thinwall drive tube. Small representative samples were obtained with the Dension samplers; no undisturbed samples were obtained. The field work was accomplished in the Rhodes Canyon area, White Sands Misslemore » Range, New Mexico.« less
Laboratory evaluation of the CIP 10 personal dust sampler.
Gero, A; Tomb, T
1988-06-01
The "capteur individuel de poussiere" CIP 10 personal dust sampler--developed by the Centre d'Etudes et Recherches de Charbonnages de France (CERCHAR) research organization--is a small, quiet, lightweight unit which samples at a flow rate of 10 L/min. It is a three-stage sampler, using two stages to remove nonrespirable dust particles and one stage to collect the respirable fraction. Airflow through the sampler is induced by the third stage, which is a rotating collector cup that contains a fine grade sponge. Laboratory tests were conducted in a dust chamber using aerosols of Arizona road dust, coal dust and silica dust. Aerosol concentrations measured with the CIP 10 were compared to those measured with the coal mine dust personal sampler unit used in the United States. The results of this study showed that aerosol concentrations measured with the CIP 10 were linearly related to those obtained with the coal mine dust personal sampler. The relationship, however, was dependent on preselector configuration and aerosol characteristics. The collection medium allows some small particles (less than 3 microns) to pass through the sampler without being collected. As much as 13% (by weight) of the aerosol that penetrated through the preseparating stages was exhausted from the sampler.
Pesticide monitoring in surface water and groundwater using passive samplers
NASA Astrophysics Data System (ADS)
Kodes, V.; Grabic, R.
2009-04-01
Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.
A new device for collecting time-integrated water samples from springs and surface water bodies
Panno, S.V.; Krapac, I.G.; Keefer, D.A.
1998-01-01
A new device termed the 'seepage sampler' was developed to collect representative water samples from springs, streams, and other surface-water bodies. The sampler collects composite, time-integrated water samples over short (hours) or extended (weeks) periods without causing significant changes to the chemical composition of the samples. The water sample within the sampler remains at the ambient temperature of the water body and does not need to be cooled. Seepage samplers are inexpensive to construct and easy to use. A sampling program of numerous springs and/or streams can be designed at a relatively low cost through the use of these samplers. Transient solutes migrating through such flow systems, potentially unnoticed by periodic sampling, may be detected. In addition, the mass loading of solutes (e.g., agrichemicals) may be determined when seepage samplers are used in conjunction with discharge measurements.
This SOP describes the method for collecting a floor dust sample from carpet. Dust samples will be collected in the room that the child uses most at home and/or at day care using a High Volume Small Surface Sampler (HVS3). In addition, participants will also be asked to donate a ...
Analysis of the Touch-And-Go Surface Sampling Concept for Comet Sample Return Missions
NASA Technical Reports Server (NTRS)
Mandic, Milan; Acikmese, Behcet; Bayard, David S.; Blackmore, Lars
2012-01-01
This paper studies the Touch-and-Go (TAG) concept for enabling a spacecraft to take a sample from the surface of a small primitive body, such as an asteroid or comet. The idea behind the TAG concept is to let the spacecraft descend to the surface, make contact with the surface for several seconds, and then ascend to a safe location. Sampling would be accomplished by an end-effector that is active during the few seconds of surface contact. The TAG event is one of the most critical events in a primitive body sample-return mission. The purpose of this study is to evaluate the dynamic behavior of a representative spacecraft during the TAG event, i.e., immediately prior, during, and after surface contact of the sampler. The study evaluates the sample-collection performance of the proposed sampling end-effector, in this case a brushwheel sampler, while acquiring material from the surface during the contact. A main result of the study is a guidance and control (G&C) validation of the overall TAG concept, in addition to specific contributions to demonstrating the effectiveness of using nonlinear clutch mechanisms in the sampling arm joints, and increasing the length of the sampling arms to improve robustness.
A small and relatively lightweight (3.35 kg) whole-air (canister) sampler that can be worn to monitor personal exposures to volatile organic compounds was developed and evaluated. The prototype personal whole air sampler (PWAS) consists of a 1-L canister, a mass flow controller, ...
Aerosol Sampling with Low Wind Sensitivity.
NASA Astrophysics Data System (ADS)
Kalatoor, Suresh
Occupational exposure to airborne particles is generally evaluated by wearing a personal sampler that collects aerosol particles from the worker's breathing zone during the work cycle. The overall sampling efficiency of most currently available samplers is sensitive to wind velocity and direction. In addition, most samplers have internal losses due to gravitational settling, electrostatic interactions, and internal turbulence. A new sampling technique has been developed, theoretically and experimentally evaluated, and compared to existing techniques. The overall sampling efficiency of the protoype sampler was compared to that of a commonly used sampler, 25 mm closed-face cassette. Uranine was used as the challange aerosol with particle physical diameters 13.5, 20 and 30 mum. The wind velocity ranged from 100 to 300 cm s^ {-1}. It was found to have less internal losses and less dependence on wind velocity and direction. It also yielded better uniformity in the distribution of large particles on the filter surface, an advantage for several types of analysis. A new general equation for sharp-edged inlets was developed that predicts the sampling efficiency of sharp-edged (or thin-walled) inlets in most occupational environments that are weakly disturbed with air motions that cannot be strictly classified as calm-air or fast -moving air. Computational analysis was carried out using the new general equation and was applied to situations when the wind velocity vector is not steady, but fluctuates around predominant average values of its magnitude and orientation. Two sampling environments, horizontal aerosol flow (ambient atmosphere) and vertical aerosol flow (industrial stacks) have been considered. It was found, that even for small fluctuations in wind direction the sampling efficiency may be significantly less than that obtained for the mean wind direction. Time variations in wind magnitude at a fixed wind direction were found to affect the sampling efficiency to a lesser degree. This led to the development of a new sampling technique that significantly improved the sampling characteristics of the inlet. The newly-developed inlet has a curved surface with evenly spaced sampling orifices. Visualization of the streamlines over the sampler and limiting-streamline quantitative analysis showed negligible turbulence effects due to the sampler inlet's geometry. The overall sampling efficiency was found to be superior over the commonly used 25-mm closed-face cassette.
Comparison of daily and weekly precipitation sampling efficiencies using automatic collectors
Schroder, L.J.; Linthurst, R.A.; Ellson, J.E.; Vozzo, S.F.
1985-01-01
Precipitation samples were collected for approximately 90 daily and 50 weekly sampling periods at Finley Farm, near Raleigh, North Carolina from August 1981 through October 1982. Ten wet-deposition samplers (AEROCHEM METRICS MODEL 301) were used; 4 samplers were operated for daily sampling, and 6 samplers were operated for weekly-sampling periods. This design was used to determine if: (1) collection efficiences of precipitation are affected by small distances between the Universal (Belfort) precipitation gage and collector; (2) measurable evaporation loss occurs and (3) pH and specific conductance of precipitation vary significantly within small distances. Average collection efficiencies were 97% for weekly sampling periods compared with the rain gage. Collection efficiencies were examined by seasons and precipitation volume. Neither factor significantly affected collection efficiency. No evaporation loss was found by comparing daily sampling to weekly sampling at the collection site, which was classified as a subtropical climate. Correlation coefficients for pH and specific conductance of daily samples and weekly samples ranged from 0.83 to 0.99.Precipitation samples were collected for approximately 90 daily and 50 weekly sampling periods at Finley farm, near Raleigh, North Carolina from August 1981 through October 1982. Ten wet-deposition samplers were used; 4 samplers were operated for daily sampling, and 6 samplers were operated for weekly-sampling periods. This design was used to determine if: (1) collection efficiencies of precipitation are affected by small distances between the University (Belfort) precipitation gage and collector; (2) measurable evaporation loss occurs and (3) pH and specific conductance of precipitation vary significantly within small distances.
An assessment of the variability in performance of wet atmospheric deposition samplers
Graham, R.C.; Robertson, J.K.; Obal, John
1987-01-01
The variability in performance of two brands of wet/dry atmospheric deposition samplers were compared for 1 year at a sincle site. A total of nine samplers were used. Samples were collected weekly and analyzed for pH, specific conductance, common chemical constituents, and sample volume. Additionally, data on the duration of each sampler opening were recorded using a microdatalogger. These data disprove the common perception that samplers remain open throughout a precipitation event. The sensitivity of sampler sensors within the range tested did not have a defineable impact on sample collection. The nonnormal distribution within the data set necessitated application of the nonparametric Friedman Test to assess comparability of sample chemical composition and volume between and within sampler brands. Statistically significant differences existed for most comparisons, however the test did not permit quantification of their magnitudes. Differences in analyte concentrations between samplers were small. (USGS)
INNOVATIVE TECHNOLOGY EVALUATION REPORT ...
The Split Core Sampler for Submerged Sediments (Split Core Sampler) designed and fabricated by Arts Manufacturing & Supply, Inc., was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the samplers ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Split Core Sampler and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Split Core Sampler performed as well as or better than the reference samplers. Based on visual observations, both the Split Core Sampler and reference samplers collected partially compressed samples of consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved for both consolidated and unconsolidated sediment samples collected by the Split Core Sampler and reference samplers. No sampler was able to collect samples
USE OF A RHODE ISLAND SALT POND BY JUVENILE WINTER FLOUNDER, PSEUDOPLEURONECTES AMERICANUS
We used a 1.75 m2 drop ring sampler in June and July of 2000 to quantify populations of juvenile flatfishes and other small nekton in Ninigret Pond, Rhode Island. The drop sampler was deployed in approximately 1 m of water from a boom mounted on the bow of a small boat. Abundance...
Heavy metals in atmospheric surrogate dry deposition
Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri
1999-02-01
This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.
Liao, Chunyang; Richards, Jaben; Taylor, Allison R; Gan, Jay
2017-12-01
Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.
Chaemfa, Chakra; Barber, Jonathan L; Gocht, Tilman; Harner, Tom; Holoubek, Ivan; Klanova, Jana; Jones, Kevin C
2008-12-01
Different passive air sampler (PAS) strategies have been developed for sampling in remote areas and for cost-effective simultaneous spatial mapping of POPs (persistent organic pollutants) over differing geographical scales. The polyurethane foam (PUF) disk-based PAS is probably the most widely used. In a PUF-based PAS, the PUF disk is generally mounted inside two stainless steel bowls to buffer the air flow to the disk and to shield it from precipitation and light. The field study described in this manuscript was conducted to: compare performance of 3 different designs of sampler; to further calibrate the sampler against the conventional active sampler; to derive more information on field-based uptake rates and equilibrium times of the samplers. Samplers were also deployed at different locations across the field site, and at different heights up a meteorological tower, to investigate the possible influence of sampler location. Samplers deployed <5m above ground, and not directly sheltered from the wind gave similar uptake rates. Small differences in dimensions between the 3 designs of passive sampler chamber had no discernable effect on accumulation rates, allowing comparison with previously published data.
Comparison of flume and towing methods for verifying the calibration of a suspended-sediment sampler
Beverage, J.P.; Futrell, J.C.
1986-01-01
Suspended-sediment samplers must sample isokinetically (at stream velocity) in order to collect representative water samples of rivers. Each sampler solo by the Federal Interagency Sedimentation Project or by the U.S. Geological Survey Hydrologic Instrumentation Facility has been adjusted to sample isokinetically and tested in a flume to verify the calibration. The test program for a modified U.S. P-61 sampler provided an opportunity to compare flume and towing tank tests. Although the two tests yielded statistically distinct results, the difference between them was quite small. The conclusion is that verifying the calibration of any suspended-sediment sampler by either the flume or towing method should give acceptable results.
INNOVATIVE TECHNOLOGY EVALUATION REPORT ...
The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the sampler?s ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Russian Peat Borer and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Russian Peat Borer was the only sampler that collected samples in the deep depth interval (4 to 11 feet below sediment surface). It collected representative and relatively uncompressed core samples of consolidated sediment in discrete depth intervals. The reference samplers collected relatively compressed samples of both consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved only for consolidated sediment samples collected by the Russian Peat Borer but for bo
Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments
NASA Astrophysics Data System (ADS)
Phillips, J. M.; Russell, M. A.; Walling, D. E.
2000-10-01
Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.
Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers
Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.
2008-01-01
Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Passive air sampling theory for semivolatile organic compounds.
Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W
2005-07-01
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.
Integrated Modeling of Spacecraft Touch-and-Go Sampling
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2009-01-01
An integrated modeling tool has been developed to include multi-body dynamics, orbital dynamics, and touch-and-go dynamics for spacecraft covering three types of end-effectors: a sticky pad, a brush-wheel sampler, and a pellet gun. Several multi-body models of a free-flying spacecraft with a multi-link manipulator driving these end-effectors have been tested with typical contact conditions arising when the manipulator arm is to sample the surface of an asteroidal body. The test data have been infused directly into the dynamics formulation including such information as the mass collected as a function of end-effector longitudinal speed for the brush-wheel and sticky-pad samplers, and the mass collected as a function of projectile speed for the pellet gun sampler. These data represent the realistic behavior of the end effector while in contact with a surface, and represent a low-order model of more complex contact conditions that otherwise would have to be simulated. Numerical results demonstrate the adequacy of these multibody models for spacecraft and manipulator- arm control design. The work contributes to the development of a touch-and-go testbed for small body exploration, denoted as the GREX Testbed (GN&C for Rendezvous-based EXploration). The GREX testbed addresses the key issues involved in landing on an asteroidal body or comet; namely, a complex, low-gravity field; partially known terrain properties; possible comet outgassing; dust ejection; and navigating to a safe and scientifically desirable zone.
Sampler collection gadget for epilithic diatoms.
Salomoni, S E; Torgan, L C; Rocha, O
2007-11-01
This work present a new gadget for sampling epilithic diatoms from both lentic and lotic enviroments. The sampler consists of a polystyrene cylinder, left to float on the surface of the water, to which stone substrates are attached. This epilithic diatom sampler (EDS) can be used to detect spatial and temporal richness and density variation in the study of the diatom community, as well as in water quality monitoring.
Numerical determination of personal aerosol sampler aspiration efficiency.
Lo Savio, Simone; Paradisi, Paolo; Tampieri, Francesco; Belosi, Franco; Morigi, Maria Pia; Agostini, Sergio
2003-04-01
In this work the determination of the aspiration efficiency of personal aerosol samplers, commonly used in occupational exposure assessment, is investigated by means of CFD techniques. Specifically, it will be described a code to calculate the particle trajectories in a given flow field. At the present state the code considers only the effects of the mean flow field on the particle motion, whereas the turbulent diffusion effects are neglected. Comparisons with experimental measurements are also given in the framework of a research contract, supported by the European Community, with several experimental contributions from the participants. The main objective of the European research is to develop a new approach to experimentation with airborne particle flows, working on a reduced scale. This methodology has the advantage of allowing real-time aerosol determination and use of small wind tunnels, with a better experimental control. In this article we describe how the methodology has been verified using computational fluid dynamics. Experimental and numerical aspiration efficiencies have been compared and the influence of gravity and turbulence intensity in full and reduced scale has been investigated. The numerical techniques described here are in agreement with previous similar research and allow at least qualitative predictions of aspiration efficiency for real samplers, taking care of orientation from the incoming air flow. The major discrepancies among predicted and experimental results may be a consequence of bounce effects, which are very difficult to eliminate also by greasing the sampler surface.
Passive sampler for PM10-2.5 aerosol.
Leith, David; Sommerlatt, Darrell; Boundy, Maryanne G
2007-03-01
This study investigates the use of a small passive sampler for aerosol particles to determine particulate matter (PM)10-2.5 concentrations in outdoor air. The passive sampler collects particles by gravity, diffusion, and convective diffusion onto a glass coverslip that is then examined with an optical microscope; digital images are processed with free software and the resultant PM10-2.5 concentrations determined. Both the samplers and the analyses are relatively inexpensive. Passive samplers were collocated with Federal Reference Method (FRM) samplers in Chapel Hill, NC; Phoenix, AZ; and Birmingham, AL; for periods from 5 to 15 days. Particles consisted primarily of inorganic dusts at some sites and a mix of industrial and inorganic materials at other sites. Measured concentrations ranged from < 10 microg/m3 to approximately 40 microg/m3. Overall, PM10-2.5 concentrations measured with the passive samplers were within approximately 1 standard deviation of concentrations measured with the FRM samplers. Concentrations determined with passive samplers depend on assumptions about particle density and shape factors and may also depend somewhat on local wind speed and turbulence; accurate values for these parameters may not be known. The degree of agreement between passive and FRM concentrations measured here suggests that passive measurements may not be overly dependent on accurate knowledge of these parameters.
Development and evaluation of a water level proportional water sampler
NASA Astrophysics Data System (ADS)
Schneider, P.; Lange, A.; Doppler, T.
2013-12-01
We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.
Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu
2011-03-01
Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Estimation of particulate matter from simulation and measurements
NASA Astrophysics Data System (ADS)
Nakata, Makiko; Nakano, Tomio; Okuhara, Takaaki; Sano, Itaru; Mukai, Sonoyo
2011-11-01
The particulate matter is a typical indicator of small particles in the atmosphere. In addition to providing impacts on climate and environment, these small particles can bring adverse effects on human health. Then an accurate estimation of particulate matter is an urgent subject. We set up SPM sampler attached to our AERONET (Aerosol Robotics Network) station in urban city of Higashi-Osaka in Japan. The SPM sampler provides particle information about the concentrations of various SPMs (e.g., PM10 and PM2.5) separately. The AEROENT program is world wide ground based sunphotometric observation networks by NASA and provides the spectral information about aerosol optical thickness (AOT) and Angstrom exponent (α). Simultaneous measurements show that a linear correlation definitely exists between AOT and PM2.5. These results indicate that particulate matter can be estimated from AOT. However AOT represents integrated values of column aerosol amount retrieved from optical property, while particulate matter concentration presents in-situ aerosol loading on the surface. Then simple way using linear correlation brings the discrepancy between observed and estimated particulate matter. In this work, we use cluster information about aerosol type to reduce the discrepancy. Our improved method will be useful for retrieving particulate matter from satellite measurements.
2010-09-01
Regulatory Council LRL Laboratory reporting level LDPE Low-density polyethylene MDL Minimum detection limit MNA Monitored natural attenuation...consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end...be constructed from small- diameter LDPE tubing that fits into small-diameter wells. These polyethylene diffusion bag (PDB) samplers have been
2011-10-01
Regulatory Council LDPE low-density polyethylene MDL minimum detection limit NAVFAC ESC Naval Facilities Engineering Command Engineering Service...membrane sampler design consists of a tubular-shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is...requirements, and can be constructed from small-diameter LDPE tubing that fits into small- 4 diameter wells. These polyethylene diffusion bag
2010-04-01
LDPE low-density polyethylene LF low-flow purging LRL laboratory reporting level MDL minimum detection limit MNA monitored natural attenuation...shaped bag made of flexible low-density polyethylene ( LDPE ) (Vroblesky, 2001a, 2001b). The LDPE tube is heat-sealed on one end, filled with high...from small- diameter LDPE tubing that fits into small-diameter wells. These PDB samplers have been shown to be useful only for collection of VOCs
Megchelenbrink, Wout; Huynen, Martijn; Marchiori, Elena
2014-01-01
Constraint-based models of metabolic networks are typically underdetermined, because they contain more reactions than metabolites. Therefore the solutions to this system do not consist of unique flux rates for each reaction, but rather a space of possible flux rates. By uniformly sampling this space, an estimated probability distribution for each reaction's flux in the network can be obtained. However, sampling a high dimensional network is time-consuming. Furthermore, the constraints imposed on the network give rise to an irregularly shaped solution space. Therefore more tailored, efficient sampling methods are needed. We propose an efficient sampling algorithm (called optGpSampler), which implements the Artificial Centering Hit-and-Run algorithm in a different manner than the sampling algorithm implemented in the COBRA Toolbox for metabolic network analysis, here called gpSampler. Results of extensive experiments on different genome-scale metabolic networks show that optGpSampler is up to 40 times faster than gpSampler. Application of existing convergence diagnostics on small network reconstructions indicate that optGpSampler converges roughly ten times faster than gpSampler towards similar sampling distributions. For networks of higher dimension (i.e. containing more than 500 reactions), we observed significantly better convergence of optGpSampler and a large deviation between the samples generated by the two algorithms. optGpSampler for Matlab and Python is available for non-commercial use at: http://cs.ru.nl/~wmegchel/optGpSampler/.
Laboratory data on coarse-sediment transport for bedload-sampler calibrations
Hubbell, David Wellington; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.
1987-01-01
A unique facility capable of recirculating and continuously measuring the transport rates of sediment particles ranging in size from about 1 to 75 millimeters in diameter was designed and used in an extensive program involving the calibration of bedload samplers. The facility consisted of a 9-footwide by 6-foot-deep by 272-foot-long rectangular channel that incorporated seven automated collection pans and a sedimentreturn system. The collection pans accumulated, weighed, and periodically dumped bedload falling through a slot in the channel floor. Variations of the Helley-Smith bedload sampler, an Arnhem sampler, and two VUV-type samplers were used to obtain transport rates for comparison with rates measured at the bedload slot (trap). Tests were conducted under 20 different hydraulic and sedimentologic conditions (runs) with 3 uniform-size bed materials and a bed-material mixture. Hydraulic and sedimentologic data collected concurrently with the calibration measurements are described and, in part, summarized in tabular and graphic form. Tables indicate the extent of the data, which are available on magnetic media. The information includes sediment-transport rates; particle-size distributions; water discharges, depths, and slopes; longitudinal profiles of streambed-surface elevations; and temporal records of streambed-surface elevations at fixed locations.
NASA Technical Reports Server (NTRS)
Zahlava, B. A. (Inventor)
1973-01-01
A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.
Thin layer chromatography residue applicator sampler
Nunes, Peter J [Danville, CA; Kelly, Fredrick R [Modesto, CA; Haas, Jeffrey S [San Ramon, CA; Andresen, Brian D [Livermore, CA
2007-07-24
A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.
Hayabusa2 Sampler: Collection of Asteroidal Surface Material
NASA Astrophysics Data System (ADS)
Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki
2017-07-01
Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.
A new airborne sampler for interstitial particles in ice and liquid clouds
NASA Astrophysics Data System (ADS)
Moharreri, A.; Craig, L.; Rogers, D. C.; Brown, M.; Dhaniyala, S.
2011-12-01
In-situ measurements of cloud droplets and aerosols using aircraft platforms are required for understanding aerosol-cloud processes and aiding development of improved aerosol-cloud models. A variety of clouds with different temperature ranges and cloud particle sizes/phases must be studied for comprehensive knowledge about the role of aerosols in the formation and evolution of cloud systems under different atmospheric conditions. While representative aerosol measurements are regularly made from aircrafts under clear air conditions, aerosol measurements in clouds are often contaminated by the generation of secondary particles from the high speed impaction of ice particles and liquid droplets on the surfaces of the aircraft probes/inlets. A new interstitial particle sampler, called the blunt-body aerosol sampler (BASE) has been designed and used for aerosol sampling during two recent airborne campaigns using NCAR/NSF C-130 aircraft: PLOWS (2009-2010) and ICE-T (2011). Central to the design of the new interstitial inlet is an upstream blunt body housing that acts to shield/deflect large cloud droplets and ice particles from an aft sampling region. The blunt-body design also ensures that small shatter particles created from the impaction of cloud-droplets on the blunt-body are not present in the aft region where the interstitial inlet is located. Computational fluid dynamics (CFD) simulations along with particle transport modeling and wind tunnel studies have been utilized in different stages of design and development of this inlet. The initial flights tests during the PLOWS campaign showed that the inlet had satisfactory performance only in warm clouds and when large precipitation droplets were absent. In the presence of large droplets and ice, the inlet samples were contaminated with significant shatter artifacts. These initial results were reanalyzed in conjunction with a computational droplet shatter model and the numerical results were used to arrive at an improved sampler design. Analysis of the data from the recent ICE-T campaign with the improved sampler design shows that the modified version of BASE can provide shatter-artifact free sampling of aerosol particles in the presence of ice particles and significantly reduced shatter artifacts in warm clouds. Detailed design and modeling aspects of the sampler will be discussed and the sampler performance in warm and cold clouds will be presented and compared with measurements made using other aerosol inlets flown on the NCAR/NSF C-130 aircraft.
Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T
2010-02-01
The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests.
Compact cryocooling system for HTS sampler
NASA Astrophysics Data System (ADS)
Suzuki, H.; Maruyama, M.; Hato, T.; Wakana, H.; Tanabe, K.; Konno, T.; Uekusa, K.; Sato, N.; Kawabata, M.
2007-10-01
This paper describes a compact cooling system using a single-stage stirling-type cryocooler for a practical HTS sampler. The system was designed to cool down an HTS sampler module below 50 K, enabling a bandwidth of the chip more than 100 GHz. The system measures 150 mm in width, 140 mm in height and 310 mm in depth, and weighs 5 kg. Semi-rigid coaxial cables made of brass with a silver coated inner conductor were adopted for a signal to be measured and a trigger pulse. The loss for the signal line was less than 1.5 dB at 50 GHz with relatively small thermal inflow. Thermal inflows from low frequency lines, IF signal lines for control/output of the sampler and dc bias lines, were minimized by choosing proper wires. A new sampler module with reduced weight was placed on the cold stage, which was surrounded by double magnetic shields. The module was successfully cooled down to less than 50 K with cooling time of 1 h in the system. We have also succeeded in observing sinusoidal waveforms with the HTS sampler cooled by the compact cooling system.
The influences of artifact formations and losses on Particulate Matter (PM) sampler collection surfaces are well documented, especially for nitrates (Hering and Cass, 1999), and SVOC's (McDow, 1999), and more recently for speciated carbon (Turpin and Lim, 2001). These artifact...
Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.
2010-01-01
The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. ??Springer Science+Business Media, LLC 2009.
Energy storage considerations for a robotic Mars surface sampler
NASA Technical Reports Server (NTRS)
O'Donnell, P. M.; Cataldo, R. L.; Gonzalez-Sanabria, O. D.
1988-01-01
The characteristics of various energy storage systems (including Ni-Cd, Ni-H2, Ag-Zn, Li-XS, Na-S, PbSO4, and regenerative fuel cell systems) considered for a robotic Mars surface sampler are reviewed. It is concluded that the bipolar nickel-hydrogen battery and the sodium-sulfur battery are both viable candidates as storage systems for the rover's Radioisotope Thermoelectric Generator. For a photovoltaic storage system, the regenerative fuel cell and the bipolar nickel-hydrogen battery are the primary candidates.
Gibs, Jacob; Brown, G. Allan; Turner, Kenneth S.; MacLeod, Cecilia L.; Jelinski, James; Koehnlein, Susan A.
1993-01-01
Because a water sample collected from a well is an integration of water from different depths along the well screen, measured concentrations can be biased if analyte concentrations are not uniform along the length of the well screen. The resulting concentration in the sample, therefore, is a function of variations in well-screen inflow rate and analyte concentration with depth. A multiport sampler with seven short screened intervals was designed and used to investigate small-scale vertical variations in water chemistry and aquifer hydraulic conductivity in ground water contaminated by leaded gasoline at Galloway Township, Atlantic County, New Jersey. The multiport samplers were used to collect independent samples from seven intervals within the screened zone that were flow-rate weighted and integrated to simulate a 5-foot-long, 2.375-inch- outside-diameter conventional wire-wound screen. The integration of the results of analyses of samples collected from two multiport samplers showed that a conventional 5-foot-long well screen would integrate contaminant concentrations over its length and resulted in an apparent contaminant concentration that was a little as 28 percent of the maximum concentration observed in the multiport sampler.
A new sampler for stratified lagoon chemical and microbiological assessments.
McLaughlin, M R; Brooks, J P; Adeli, A
2014-07-01
A sampler was needed for a spatial and temporal study of microbial and chemical stratification in a large swine manure lagoon that was known to contain zoonotic bacteria. Conventional samplers were limited to collections of surface water samples near the bank or required a manned boat. A new sampler was developed to allow simultaneous collection of multiple samples at different depths, up to 2.3 m, without a manned boat. The sampler was tethered for stability, used remote control (RC) for sample collection, and accommodated rapid replacement of sterile tubing modules and sample containers. The sampler comprised a PVC pontoon with acrylic deck and watertight enclosures, for a 12 VDC gearmotor, to operate the collection module, and vacuum system, to draw samples into reusable autoclavable tubing and 250-mL bottles. Although designed primarily for water samples, the sampler was easily modified to collect sludge. The sampler held a stable position during deployment, created minimal disturbance in the water column, and was readily cleaned and sanitized for transport. The sampler was field tested initially in a shallow fresh water lake and subsequently in a swine manure treatment lagoon. Analyses of water samples from the lagoon tests showed that chemical and bacterial levels, pH, and EC did not differ between 0.04, 0.47, and 1.0 m depths, but some chemical and bacterial levels differed between winter and spring collections. These results demonstrated the utility of the sampler and suggested that future manure lagoon studies employ fewer or different depths and more sampling dates.
Witt, Emitt C; Wronkiewicz, David J; Shi, Honglan
2013-01-01
Fugitive road dust collection for chemical analysis and interpretation has been limited by the quantity and representativeness of samples. Traditional methods of fugitive dust collection generally focus on point-collections that limit data interpretation to a small area or require the investigator to make gross assumptions about the origin of the sample collected. These collection methods often produce a limited quantity of sample that may hinder efforts to characterize the samples by multiple geochemical techniques, preserve a reference archive, and provide a spatially integrated characterization of the road dust health hazard. To achieve a "better sampling" for fugitive road dust studies, a cyclonic fugitive dust (CFD) sampler was constructed and tested. Through repeated and identical sample collection routes at two collection heights (50.8 and 88.9 cm above the road surface), the products of the CFD sampler were characterized using particle size and chemical analysis. The average particle size collected by the cyclone was 17.9 μm, whereas particles collected by a secondary filter were 0.625 μm. No significant difference was observed between the two sample heights tested and duplicates collected at the same height; however, greater sample quantity was achieved at 50.8 cm above the road surface than at 88.9 cm. The cyclone effectively removed 94% of the particles >1 μm, which substantially reduced the loading on the secondary filter used to collect the finer particles; therefore, suction is maintained for longer periods of time, allowing for an average sample collection rate of about 2 g mi. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Efficacy of passive capillary samplers for estimating soil water drainage in the vadose zone
USDA-ARS?s Scientific Manuscript database
The efficacy and accuracy of PCAP samplers were evaluated for continuous estimating of soil water drainage and fluxes below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with outside sampling surface dimensions of 91 cm length x 31 cm wid...
NASA Astrophysics Data System (ADS)
Carey, Elizabeth M.; Peters, Gregory H.; Choukroun, Mathieu; Chu, Lauren; Carpenter, Emma; Cohen, Brooklin; Panossian, Lara; Zhou, Yu Meng; Sarkissian, Ani; Moreland, Scott; Shiraishi, Lori R.; Backes, Paul; Zacny, Kris; Green, Jacklyn R.; Raymond, Carol
2017-11-01
Comets are icy remnants of the Solar System formation, and as such contain some of the most primitive volatiles and organic materials. Sampling the surface of a comet is a high priority for the New Frontiers program. Planetary simulants are crucial to the development of adequate in situ instruments and sample acquisition systems. A high-fidelity comet surface simulant has been developed to support hardware design and development for one Comet Surface Sample Return tool, the BiBlade Comet Sampler. Mechanical Porous Ambient Comet Simulants (MPACS) can be manufactured to cover a wide range of desired physical properties, such as density and cone penetration resistance, and exhibit a brittle fracture mode. The structure of the MPACS materials is an aggregated composite structure of weakly-bonded grains of very small size (diameter ≤ 40 μm) that are most relevant to the structure of the surface of a comet nucleus.
The environs of viking 2 lander.
Shorthill, R W; Moore, H J; Hutton, R E; Scott, R F; Spitzer, C R
1976-12-11
Forty-six days after Viking 1 landed, Viking 2 landed in Utopia Planitia, about 6500 kilometers away from the landing site of Viking 1. Images show that in the immediate vicinity of the Viking 2 landing site the surface is covered with rocks, some of which are partially buried, and fine-grained materials. The surface sampler, the lander cameras, engineering sensors, and some data from the other lander experiments were used to investigate the properties of the surface. Lander 2 has a more homogeneous surface, more coarse-grained material, an extensive crust, small rocks or clods which seem to be difficult to collect, and more extensive erosion by the retro-engine exhaust gases than lander 1. A report on the physical properties of the martian surface based on data obtained through sol 58 on Viking 2 and a brief description of activities on Viking 1 after sol 36 are given.
Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina
2017-12-01
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
Hazrati, Sadegh; Harrad, Stuart
2007-03-01
PUF disk passive air samplers are increasingly employed for monitoring of POPs in ambient air. In order to utilize them as quantitative sampling devices, a calibration experiment was conducted. Time integrated indoor air concentrations of PCBs and PBDEs were obtained from a low volume air sampler operated over a 50 d period alongside the PUF disk samplers in the same office microenvironment. Passive sampling rates for the fully-sheltered sampler design employed in our research were determined for the 51 PCB and 7 PBDE congeners detected in all calibration samples. These values varied from 0.57 to 1.55 m3 d(-1) for individual PCBs and from 1.1 to 1.9 m3 d(-1) for PBDEs. These values are appreciably lower than those reported elsewhere for different PUF disk sampler designs (e.g. partially sheltered) employed under different conditions (e.g. in outdoor air), and derived using different calibration experiment configurations. This suggests that sampling rates derived for a specific sampler configuration deployed under specific environmental conditions, should not be extrapolated to different sampler configurations. Furthermore, our observation of variable congener-specific sampling rates (consistent with other studies), implies that more research is required in order to understand fully the factors that influence sampling rates. Analysis of wipe samples taken from the inside of the sampler housing, revealed evidence that the housing surface scavenges particle bound PBDEs.
Mocho, Pierre; Desauziers, Valérie
2011-05-01
Solid-phase microextraction (SPME) is a powerful technique, easy to implement for on-site static sampling of indoor VOCs emitted by building materials. However, a major constraint lies in the establishment of calibration curves which requires complex generation of standard atmospheres. Thus, the purpose of this paper is to propose a model to predict adsorption kinetics (i.e., calibration curves) of four model VOCs. The model is based on Fick's laws for the gas phase and on the equilibrium or the solid diffusion model for the adsorptive phase. Two samplers (the FLEC® and a home-made cylindrical emission cell), coupled to SPME for static sampling of material emissions, were studied. A good agreement between modeling and experimental data is observed and results show the influence of sampling rate on mass transfer mode in function of sample volume. The equilibrium model is adapted to quite large volume sampler (cylindrical cell) while the solid diffusion model is dedicated to small volume sampler (FLEC®). The limiting steps of mass transfer are the diffusion in gas phase for the cylindrical cell and the pore surface diffusion for the FLEC®. In the future, this modeling approach could be a useful tool for time-saving development of SPME to study building material emission in static mode sampling.
Lahti, Marja; Brozinski, Jenny-Maria; Segner, Helmut; Kronberg, Leif; Oikari, Aimo
2012-08-01
Pharmaceuticals are ubiquitous in surface waters as a consequence of discharges from municipal wastewater treatment plants. However, few studies have assessed the bioavailability of pharmaceuticals to fish in natural waters. In the present study, passive samplers and rainbow trout were experimentally deployed next to three municipal wastewater treatment plants in Finland to evaluate the degree of animal exposure. Pharmaceuticals from several therapeutic classes (in total 15) were analyzed by liquid chromatography-tandem mass spectrometry in extracts of passive samplers and in bile and blood plasma of rainbow trout held at polluted sites for 10 d. Each approach indicated the highest exposure near wastewater treatment plant A and the lowest near that of plant C. Diclofenac, naproxen, and ibuprofen were found in rainbow trout, and their concentrations in bile were 10 to 400 times higher than in plasma. The phase I metabolite hydroxydiclofenac was also detected in bile. Hence, bile proved to be an excellent sample matrix for the exposure assessment of fish. Most of the monitored pharmaceuticals were found in passive samplers, implying that they may overestimate the actual exposure of fish in receiving waters. Two biomarkers, hepatic vitellogenin and cytochrome P4501A, did not reveal clear effects on fish, although a small induction of vitellogenin mRNA was observed in trout caged near wastewater treatment plants B and C. Copyright © 2012 SETAC.
Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E
2018-03-12
In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS's particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind.
Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E
2018-01-01
Abstract Objectives In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Methods Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Results Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. Conclusions High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS’s particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind. PMID:29300818
Dust: a metric for use in residential and building exposure assessment and source characterization.
Lioy, Paul J; Freeman, Natalie C G; Millette, James R
2002-01-01
In this review, we examine house dust and residential soil and their use for identifying sources and the quantifying levels of toxicants for the estimation of exposure. We answer critical questions that focus on the selection of samples or sampling strategies for collection and discuss areas of uncertainty and gaps in knowledge. We discuss the evolution of dust sampling with a special emphasis on work conducted after the publication of the 1992 review by McArthur [Appl Occup Environ Hyg 7(9):599-606 (1992)]. The approaches to sampling dust examined include surface wipe sampling, vacuum sampling, and other sampling approaches, including attic sampling. The metrics of presentation of results for toxicants in dust surface loading (micrograms per square centimeter) or surface concentration (micrograms per gram) are discussed. We evaluate these metrics in terms of how the information can be used in source characterization and in exposure characterization. We discuss the types of companion information on source use and household or personal activity patterns required to assess the significance of the dust exposure. The status and needs for wipe samplers, surface samplers, and vacuum samplers are summarized with some discussion on the strengths and weaknesses of each type of sampler. We also discuss needs for research and development and the current status of standardization. Case studies are provided to illustrate the use of house dust and residential soil in source characterization, forensic analyses, or human exposure assessment. PMID:12361921
Dust: a metric for use in residential and building exposure assessment and source characterization.
Lioy, Paul J; Freeman, Natalie C G; Millette, James R
2002-10-01
In this review, we examine house dust and residential soil and their use for identifying sources and the quantifying levels of toxicants for the estimation of exposure. We answer critical questions that focus on the selection of samples or sampling strategies for collection and discuss areas of uncertainty and gaps in knowledge. We discuss the evolution of dust sampling with a special emphasis on work conducted after the publication of the 1992 review by McArthur [Appl Occup Environ Hyg 7(9):599-606 (1992)]. The approaches to sampling dust examined include surface wipe sampling, vacuum sampling, and other sampling approaches, including attic sampling. The metrics of presentation of results for toxicants in dust surface loading (micrograms per square centimeter) or surface concentration (micrograms per gram) are discussed. We evaluate these metrics in terms of how the information can be used in source characterization and in exposure characterization. We discuss the types of companion information on source use and household or personal activity patterns required to assess the significance of the dust exposure. The status and needs for wipe samplers, surface samplers, and vacuum samplers are summarized with some discussion on the strengths and weaknesses of each type of sampler. We also discuss needs for research and development and the current status of standardization. Case studies are provided to illustrate the use of house dust and residential soil in source characterization, forensic analyses, or human exposure assessment.
Photodegradation of PAHs in passive water samplers.
Allan, Ian J; Christensen, Guttorm; Bæk, Kine; Evenset, Anita
2016-04-15
Losses of deuterated polycyclic aromatic hydrocarbons (PAHs) used as performance reference compounds (PRCs) in semipermeable membrane devices deployed at fifteen coastal sampling sites near Harstad harbour in Northern Norway were used to investigate photodegradation of these photosensitive compounds. Unusual PRC dissipation profiles, especially for samplers exposed <5m below the water surface are indicative of photodegradation. A strong correlation between loss rates for d12-chrysene and d12-benzo[e]pyrene with consistently higher losses of the latter was found. The observed photodegradation rates may be sufficiently high to impact PAH masses absorbed by a factor of two. This study demonstrates that photodegradation during exposure of passive water samplers needs to be taken into account, particularly with deployments close to the water surface, when using SPMD canisters, or when sampling in the Arctic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transport of europium colloids in vadose zone lysimeters at the semiarid Hanford site.
Liu, Ziru; Flury, Markus; Zhang, Z Fred; Harsh, James B; Gee, Glendon W; Strickland, Chris E; Clayton, Ray E
2013-03-05
The objective of this study was to quantify transport of Eu colloids in the vadose zone at the semiarid Hanford site. Eu-hydroxy-carbonate colloids, Eu(OH)(CO3), were applied to the surface of field lysimeters, and migration of the colloids through the sediments was monitored using wick samplers. The lysimeters were exposed to natural precipitation (145-231 mm/year) or artificial irrigation (124-348 mm/year). Wick outflow was analyzed for Eu concentrations, supplemented by electron microscopy and energy-dispersive X-ray analysis. Small amounts of Eu colloids (<1%) were detected in the deepest wick sampler (2.14 m depth) 2.5 months after application and cumulative precipitation of only 20 mm. We observed rapid transport of Eu colloids under both natural precipitation and artificial irrigation; that is, the leading edge of the Eu colloids moved at a velocity of 3 cm/day within the first 2 months after application. Episodic infiltration (e.g., Chinook snowmelt events) caused peaks of Eu in the wick outflow. While a fraction of Eu moved consistent with long-term recharge estimates at the site, the main mass of Eu remained in the top 30 cm of the sediments. This study illustrates that, under field conditions, near-surface colloid mobilization and transport occurred in Hanford sediments.
Microparticle sampling by electrowetting-actuated droplet sweeping.
Zhao, Yuejun; Cho, Sung Kwon
2006-01-01
This paper describes a new microparticle sampler where particles can be efficiently swept from a solid surface and sampled into a liquid medium using moving droplets actuated by the electrowetting principle. We successfully demonstrate that super hydrophilic (2 microm and 7.9 microm diameter glass beads of about 14 degrees contact angle), intermediate hydrophilic (7.5 microm diameter polystyrene beads of about 70 degrees contact angle), and super hydrophobic (7.9 microm diameter Teflon-coated glass beads and 3 microm size PTFE particles of over 110 degrees contact angles) particles on a solid surface are picked up by electrowetting-actuated moving droplets. For the glass beads as well as the polystyrene beads, the sampling efficiencies are over 93%, in particular over 98% for the 7.9 microm glass beads. For the PTFE particles, however, the sampling efficiency is measured at around 70%, relatively lower than that of the glass and polystyrene beads. This is due mainly to the non-uniformity in particle size and the particle hydrophobicity. In this case, the collected particles staying (adsorbing) on the air-to-water interface hinder the droplet from advancing. This particle sampler requires an extremely small amount of liquid volume (about 500 nanoliters) and will thus be highly compatible and easily integrated with lab-on-a-chip systems for follow-up biological/chemical analyses.
Field intercomparison of ammonia passive samplers: results and lessons learned.
NASA Astrophysics Data System (ADS)
Stephens, Amy; Leeson, Sarah; Jones, Matthew; van Dijk, Netty; Kentisbeer, John; Twigg, Marsailidh; Simmons, Ivan; Braban, Christine; Martin, Nick; Poskitt, Janet; Ferm, Martin; Seitler, Eva; Sacco, Paolo; Gates, Linda; Stolk, Ariën; Stoll, Jean-Marc; Tang, Sim
2017-04-01
Ammonia pollution contributes significantly to eutrophication and acidification of ecosystems with resultant losses of biodiversity and ecosystem changes. Monitoring of ambient ammonia over a wide spatial and long temporal scales is primarily done with low-cost diffusive samplers. Less frequently, surface flux measurements of ammonia can be made using passive samplers at plot scale. This paper will present a field intercomparison conducted within the MetNH3 project to assess the performance of passive samplers for ambient measurements of ammonia. Eight different designs of commercial passive samplers housed in shelters provided by the manufacturer/laboratory were exposed over an 8-week period at the Whim experimental field site in Scotland between August and October 2016. Whim Bog has a facility in place for controlled releases of ammonia (http://www.whimbog.ceh.ac.uk/). Automated conditional release from the line source occurs when the wind direction in the preceding minute is from the northeast (wind sector 180-215°) and wind speed is > 5 m s-1. The passive samplers were exposed at different distances from the release source (16, 32 and 60 m) and also at a background location. Most were exposed for 2 x 4-week long periods and some for 4 x 2-week long periods. At the 32 m position, an active denuder method, the CEH DELTA sampler and a continuous high temporal resolution wet chemistry ammonia instrument (AiRRmonia, Mechatronics, NL.) were also deployed alongside the passive samplers to provide reference measurements of ammonia. Results are presented within the context of the MetNH3 CATFAC controlled laboratory exposure assessments. The results are discussed in terms of typical deployments of passive samplers and quality control. Measurement for policy evidence for both local and regional studies using passive samplers are discussed.
Review of atrazine sampling by polar organic chemical integrative samplers and Chemcatcher.
Booij, Kees; Chen, Sunmao
2018-04-24
A key success factor for the performance of passive samplers is the proper calibration of sampling rates. Sampling rates for a wide range of polar organic compounds are available for Chemcatchers and polar organic chemical integrative samplers (POCIS), but the mechanistic models that are needed to understand the effects of exposure conditions on sampling rates need improvement. Literature data on atrazine sampling rates by these samplers were reviewed with the aim of assessing what can be learned from literature reports of this well-studied compound and identifying knowledge gaps related to the effects of flow and temperature. The flow dependency of sampling rates could be described by a mass transfer resistance model with 1 (POCIS) or 2 (Chemcatcher) adjustable parameters. Literature data were insufficient to evaluate the temperature effect on the sampling rates. An evaluation of reported sampler configurations showed that standardization of sampler design can be improved: for POCIS with respect to surface area and sorbent mass, and for Chemcatcher with respect to housing design. Several reports on atrazine sampling could not be used because the experimental setups were insufficiently described with respect to flow conditions. Recommendations are made for standardization of sampler layout and documentation of flow conditions in calibration studies. Environ Toxicol Chem 2018;9999:1-13. © 2018 SETAC. © 2018 SETAC.
Passive samplers were used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water of a marine Superfund site on the Palos Verdes Shelf, California, USA. Measured concentrations in the porewater and water column at...
Buttner, M P; Stetzenbach, L D
1993-01-01
Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was censored and, therefore, only 7 of the 71 samplers were reported as detecting TPH. In addition, benzene, toluene, ethylbenzene, and total xylene were detected above the method detection level in 22 samplers. Other compounds detected above the method detection level included naphthalene, octane, undecane, tridecane, 1,2,4-trimethylbenzene, trichloroethylene, perchloroethylene, chloroform, and 1,4-dichlorobenzene. Subsequent to the soil-gas survey, five locations with elevated contaminant mass were selected and a passive sampler was deployed at those locations to detect the presence of organic compounds classified as explosives or chemical agents. No explosives or chemical agents were detected above the method detection level, but some compounds were detected below the method detection level but above the nondetection level. Dimethyl disulfide, benzothiazole, chloroacetophenones, and para-chlorophenyl methyl sulfide were all detected below the method detection level but above the nondetection level. The compounds 2,4-dinitrotoluene, and para-chlorophenyl methyl sulfone were detected in samplers but also were detected in trip blanks and are not considered as present in the MCTA. The same five locations that were selected for sampling of explosives and chemical agents were selected for soil sampling. Metal concentrations in composite soil samples collected at five locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for Industrial Soil. Concentrations in some compounds were higher than the South Carolina Department of Health and Environmental Control background levels for nearby South Carolina, including aluminum, arsenic, barium, beryllium, chromium, copper, iron, lead, manganese, nickel, and potassium. A surface-water sample was collected from McCoys Creek and analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). No volatile organic compounds and (or) semivolatile organic compounds were detected at levels above the maximum contaminant level of the U.S. Environmental Protection Agency (USEPA) National Primary Drinking Water Standard, and no inorganic compounds exceeded the maximum contaminant level of the USEPA National Primary Drinking Water Standard or the Georgia In-Stream Water-Quality Standard. Iron was the only inorganic compound detected in the surface-water sample (578 micrograms per liter) that exceeded the USEPA National Secondary Drinking Water Standard of 300 micrograms per liter.
NASA Astrophysics Data System (ADS)
Okeme, Joseph O.; Saini, Amandeep; Yang, Congqiao; Zhu, Jiping; Smedes, Foppe; Klánová, Jana; Diamond, Miriam L.
2016-10-01
Polydimethylsiloxane (PDMS) has seen wide use as the stationary phase of gas chromatographic columns, a passive sampler in water, and recently as a personal exposure sampler, while styrene divinyl-benzene copolymer (XAD) has been used extensively as a passive air sampler outdoors and indoors. We have introduced PDMS and XAD-Pocket as new indoor passive air samplers (PASs). The XAD-Pocket was designed to maximize the surface area-to-volume ratio of XAD and to minimize obstruction of air flow by the sampler housing. Methods were developed to expedite the use of these PASs for measuring phthalates, novel brominated flame-retardants (NFRs) and polybrominated diphenyl ethers (PBDEs) indoors. Sampling rates, Rs, (m3 day-1), were measured during a 7-week calibration study. Variability within and between analyte groups was not statistically significant. As a result, generic values of 0.8 ± 0.4 and 0.5 ± 0.3 m3 day-1 dm-2 are recommended for PDMS and XAD-Pocket for a 50-day deployment time, respectively. PDMS has a higher uptake rate and is easier to use than XAD-Pocket.
Joyce, Abigail S; Pirogovsky, Mallory S; Adams, Rachel G; Lao, Wenjian; Tsukada, David; Cash, Curtis L; Haw, James F; Maruya, Keith A
2015-05-01
Low-density polyethylene (PE) passive samplers containing performance reference compounds (PRCs) were deployed at multiple depths in two urban coastal marine locations to estimate dissolved concentrations of hydrophobic organic contaminants (HOCs), including dichlorodiphenyltrichloroethane (DDT) and its metabolites, polychlorinated biphenyl (PCB) congeners, and polybrominated flame retardants. PE samplers pre-loaded with PRCs were deployed at the surface, mid-column, and near bottom at sites representing the nearshore continental shelf off southern California (Santa Monica Bay, USA) and a mega commercial port (Los Angeles Harbor). After correcting for fractional equilibration using PRCs, concentrations ranged up to 100 pg L(-1) for PCBs and polybrominated diphenyl ethers (PBDEs), 500 pg L(-1) for DDMU and 300 pg L(-1) for DDNU, and to 1000 pg L(-1) for p,p'-DDE. Seawater concentrations of DDTs and PCBs increased with depth, suggesting that bed sediments serve as the source of water column HOCs in Santa Monica Bay. In contrast, no discernable pattern between surface and near-bottom concentrations in Los Angeles Harbor was observed, which were also several-fold lower (DDTs: 45-300 pg L(-1), PCBs: 5-50 pg L(-1)) than those in Santa Monica Bay (DDTs: 2-1100 pg L(-1), PCBs: 2-250 pg L(-1)). Accumulation by mussels co-deployed with the PE samplers at select sites was strongly correlated with PE-estimated seawater concentrations, providing further evidence that these samplers are a viable alternative for monitoring of HOC exposure. Fractional equilibration observed with the PRCs increased with decreasing PRC molar volume indicating the importance of target compound physicochemical properties when estimating water column concentrations using passive samplers in situ. Copyright © 2015 Elsevier Ltd. All rights reserved.
McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P
2018-04-11
A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.
Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (μg) in all 48 samplers and exceeded 0.9 μg in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 μg, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study area. All samplers in the survey had detections of TPH, but only eight of the samplers had detections of TPH greater than 0.9 mg. Four samplers had TPH detections greater than 9 mg; the only other fuel-related compounds detected in these four samplers included toluene in three of the samplers and undecane in the fourth sampler. Three samplers deployed along the western margin of the northern landfill had detections of both diesel-and gasoline-related compounds; however, the diesel-related compounds were detected at or below method detection levels. Seven samplers in the northern study area had detections of chlorinated compounds, including three perchloroethene detections, three chloroform detections, and one 1,4-dichloro-benzene detection. One sampler on the western margin of the landfill had detections of 1,2,4-trimethylbenzene and 1,3,5-tr-methylbenene below method detection levels.
A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.
Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu
2018-03-06
A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.
Evaluation of a diffusive sampler for measurement of carbonyl compounds in air
NASA Astrophysics Data System (ADS)
Uchiyama, Shigehisa; Aoyagi, Shohei; Ando, Masanori
A diffusive sampling device (DSD-DNPH) has been developed for collection of ppb levels of 21 carbonyl compounds in indoor air. It is comprised of silica gel coated with 2,4-dinitrophenylhydrazine (DNPH) as the absorbent, a porous sintered polyethylene tube (PSP-diffusion filter) which acts as a diffusive membrane, and a small polypropylene syringe (PP-reservoir) which is used for the elution of the analytes from the absorbent. As the diffusive membrane comprises the entire cylindrical surface of the tube, it allows 'radial' exposure from all sides. A side-by-side comparison was made with active samplers, demonstrating good correlation (formaldehyde r2=0.992). The sampling rate (71.9 ml min -1) of formaldehyde was determined from comparison with an active sampling method and the sampling rates of other carbonyl compounds were calculated from their diffusion coefficients. These calculated sampling rates agreed with the experimental values. Little influence of wind velocity on the sampler was observed. The relative standard deviations for formaldehyde and acetaldehyde concentrations were 5.5% and 8.6%, respectively, with face velocity from 0 to 5.0 m/s. The DSD-DNPH enables the estimation of time-weighted average concentration of carbonyl compounds. Concentrations of formaldehyde estimated by the 7-day sampling method were nearly equal to the mean value calculated from the 24-hour sampling method measured over 7 days. This confirmed that the concentration of formaldehyde could be precisely monitored by 7-day continuous sampling.
Acoustically enriching, large-depth aquatic sampler.
Jonsson, Jonas; Ogden, Sam; Johansson, Linda; Hjort, Klas; Thornell, Greger
2012-05-07
In marine biology, it is useful to collect water samples when exploring the distribution and diversity of microbial communities in underwater environments. In order to provide, e.g., a miniaturized submersible explorer with the capability of collecting microorganisms, a compact sample enrichment system has been developed. The sampler is 30 mm long, 15 mm wide, and just a few millimetres thick. Integrated in a multilayer steel, polyimide and glass construction is a microfluidic channel with piezoelectric transducers, where microorganism and particle samples are collected and enriched, using acoustic radiation forces for gentle and labelless trapping. High-pressure, latchable valves, using paraffin as the actuation material, at each end of the microfluidic channel keep the collected sample pristine. A funnel structure raised above the surface of the device directs water into the microfluidic channel as the vehicle propels itself or when there is a flow across its hull. The valves proved leak proof to a pressure of 2.1 MPa for 19 hours and momentary pressures of 12.5 MPa, corresponding to an ocean depth of more than 1200 metres. By reactivating the latching mechanism, small leakages through the valves could be remedied, which could thus increase the leak-less operational time. Fluorescent particles, 1.9 μm in diameter, were successfully trapped in the microfluidic channel at flow rates up to 15 μl min(-1), corresponding to an 18.5 cm s(-1) external flow rate of the sampler. In addition, liquid-suspended GFP-marked yeast cells were successfully trapped.
Vroblesky, Don A.; Petkewich, Matthew D.; Campbell, Ted R.
2002-01-01
Field tests were performed on two types of diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. Nylon-screen samplers and dialysis samplers were tested for the collection of arsenic, calcium, chloride, iron, manganese, sulfate, and dissolved oxygen. The investigations were conducted at the Naval Industrial Reserve Ordnance Plant (NIROP), Fridley, Minnesota, and at the Naval Air Station Fort Worth Joint Reserve Base (NAS Fort Worth JRB), Texas. Data indicate that, in general, nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water that correspond to concentrations obtained by low-flow sampling. Diffusion samplers offer a potentially time-saving approach to well sampling. Particular care must be taken, however, when sampling for iron and other metals, because of the potential for iron precipitation by oxygenation and when dealing with chemically stratified sampling intervals. Simple nylon-screen jar samplers buried beneath creekbed sediment appear to be effective tools for locating discharge zones of arsenic contaminated ground water. Although the LDPE samplers have proven to be inexpensive and simple to use in wells, they are limited by their inability to provide a representative sample of ionic solutes. The success of nylon-screen samplers in sediment studies suggests that these simple samplers may be useful for collecting water samples for inorganic constituents in wells. Results using dialysis bags deployed in wells suggest that these types of samplers have the potential to provide a representative sample of both VOCs and ionic solutes from ground water (Kaplan and others, 1991; Theodore A. Ehlke, U.S. Geological Survey, written commun., 2001). The purpose of this report is to provide results of field tests investigating the potential to use diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. The investigations were performed at NIROP, Fridley, Minn. (fig. 1) and at NAS Fort Worth JRB, Texas (fig. 2). Two types of samplers were tested. One type was a nylon-screen sampler, which consisted of a 30-mL jar filled with deionized water, with its opening covered by a nylon screen. The second type was a dialysis sampler that consisted of a tube of dialysis membrane filled with deionized water. The nylon-screen samplers were deployed in wells at NIROP Fridley and NAS Fort Worth JRB and beneath the ground-water/surface water interface of a stream at NAS Fort Worth JRB. The dialysis samplers were deployed only in wells at NAS Fort Worth JRB.
An overland flow sampler for use in vegetative filters
D. Eisenhauer; M. Helmers; J. Brothers; M. Dosskey; T. Franti; A. Boldt; B. Strahm
2002-01-01
Vegetative filters (VF) are used to remove contaminants from agricultural runoff and improve surface water quality. Techniques are needed to quantify the performance of VF in realistic field settings. The goal of this project was to develop and test a relatively simple and low cost method for sampling overland flow in a VF. The 0.3 m wide sampler has the capacity to...
Physical properties of the martian surface from the viking 1 lander: preliminary results.
Shorthill, R W; Hutton, R E; Moore, H J; Scott, R F; Spitzer, C R
1976-08-27
The purpose of the physical properties experiment is to determine the characteristics of the martian "soil" based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of "soil" properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.
Physical properties of the martian surface from the Viking 1 lander: preliminary results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II
1976-08-27
The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of twomore » of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.« less
Description and field test of an in situ coliform monitoring system
NASA Technical Reports Server (NTRS)
Grana, D. C.; Wilkins, J. R.
1979-01-01
A prototype in situ system for monitoring the levels of fecal coliforms in shallow water bodies was developed and evaluated. This system was based on the known relationship between the concentration of the coliform bacteria and the amount of hydrogen they produce during growth in a complex organic media. The prototype system consists of a sampler platform, which sits on the bottom; a surface buoy, which transmits sampler-generated data; and a shore station, which receives, displays the data, and controls the sampler. The concept of remote monitoring of fecal coliform concentrations by utilizing a system based on the electrochemical method was verified during the evaluation of the prototype.
Adaption of G-TAG Software for Validating Touch and Go Asteroid Sample Return Design Methodology
NASA Technical Reports Server (NTRS)
Blackmore, Lars James C.; Acikmese, Behcet; Mandic, Milan
2012-01-01
A software tool is used to demonstrate the feasibility of Touch and Go (TAG) sampling for Asteroid Sample Return missions. TAG is a concept whereby a spacecraft is in contact with the surface of a small body, such as a comet or asteroid, for a few seconds or less before ascending to a safe location away from the small body. Previous work at JPL developed the G-TAG simulation tool, which provides a software environment for fast, multi-body simulations of the TAG event. G-TAG is described in Multibody Simulation Software Testbed for Small-Body Exploration and Sampling, (NPO-47196) NASA Tech Briefs, Vol. 35, No. 11 (November 2011), p.54. This current innovation adapts this tool to a mission that intends to return a sample from the surface of an asteroid. In order to demonstrate the feasibility of the TAG concept, the new software tool was used to generate extensive simulations that demonstrate the designed spacecraft meets key requirements. These requirements state that contact force and duration must be sufficient to ensure that enough material from the surface is collected in the brushwheel sampler (BWS), and that the spacecraft must survive the contact and must be able to recover and ascend to a safe position, and maintain velocity and orientation after the contact.
Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; White, Carmen; Burgess, Robert M
2012-11-06
Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Precalibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were preloaded with performance reference compounds (PRCs) were codeployed for 32 d along an 11-station gradient at bottom, surface, and midwater depths. Retrieved samplers were analyzed for DDT congeners and their breakdown products (DDE, DDD, DDMU, and DDNU) and 43 PCB congeners using GC-EI- and NCI-MS. PRCs were used to calculate compound-specific fractional equilibration achieved in situ for the PE samplers, using both an exponential approach to equilibrium (EAE) and numerical integration of Fickian diffusion (NI) models. The highest observed concentrations were for p,p'-DDE, with 2200 and 990 pg/L deduced from PE and SPME, respectively. The difference in these estimates could be largely attributed to uncertainty in equilibrium partition coefficients, unaccounted for disequilibrium between samplers and water, or different time scales over which the samplers average. The concordance between PE and SPME estimated concentrations for DDE was high (R(2) = 0.95). PCBs were only detected in PE samplers, due to their much larger size. Near-bottom waters adjacent to and down current from sediments with the highest bulk concentrations exhibited aqueous concentrations of DDTs and PCBs that exceeded Ambient Water Quality Criteria (AWQC) for human and aquatic health, indicating the need for future monitoring to determine the effectiveness of remedial activities taken to reduce adverse effects of contaminated surface sediments.
Tommasino, L; Tokonami, S
2011-05-01
Four passive sampling elements (quatrefoil) have been recently developed, which transform airborne radionuclides into surface-bound radionuclides. These samplers, once exposed, result in thin radiation sources that can be detected by any real-time or passive detector. In particular, by using a large collecting-area sampler with a low surface density (g cm(-2)), it is possible to measure radon and its decay products by beta surface-contamination monitors, which are rarely used for these applications. The results obtained to date prove that it is finally possible to carry out the measurements of radon (and its decay products) indoors, in soil and in water simply by a Pancake Geiger-Muller counter. Emphasis will be given to those measurements, which are difficult, if not impossible, to carry out with existing technologies.
PESTICIDE SURFACE RESIDUE MEASUREMENTS BY A PRESS SAMPLER
Pesticides on household surfaces are a source of exposure to children. Accurate measurements of residues on surfaces are needed to determine amounts available for transfer to foods and other objects handled or eaten by a child. Wiping the surface with a solvent has been the acc...
Nordin, Carl F.; Meade, R.H.; Mahoney, H.A.; Delany, B.M.
1977-01-01
Sixty-five samples of bed material were collected from the Amazon River and its major tributaries between Belem, Brazil, and Iquitos, Peru. Samples were taken with a standard BM-54 sampler, a pipe dredge, or a Helley-Smith bedload sampler. Most of the samples have median diameters in the size range of fine to medium sand and contain small percentages of fine gravel. Complete size distributions are tabulated.
Wooding, Madelien; Rohwer, Egmont R; Naudé, Yvette
2017-05-05
Many rural dwellers and inhabitants of informal settlements in South Africa are without access to treated water and collect untreated water from rivers and dams for personal use. Endocrine disrupting chemicals (EDCs) have been detected in surface water and wildlife of South Africa. EDCs are often present in complex environmental matrices at ultra-trace levels complicating detection thereof. We report a simplified multi-residue approach for the detection and quantification of EDCs, emerging EDCs, and antiretroviral drugs in surface water. A low cost (less than one US dollar), disposable, sorptive extraction sampler was prepared in-house. The disposable samplers consisted of polydimethylsiloxane (PDMS) tubing fashioned into a loop which was then placed in water samples to concentrate EDCs and emerging pollutants. The PDMS samplers were thermally desorbed directly in the inlet of a GC, thereby eliminating the need for expensive consumable cryogenics. Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for compound separation and identification. Linear retention indices of EDCs and emerging pollutants were determined on a proprietary Crossbond ® phase Rtx ® -CLPesticides II GC capillary column. In addition, large volume injection of surface water into an ultra-performance liquid chromatograph tandem mass spectrometer (UPLC-MS/MS) was used as complementary methodology for the detection of less volatile compounds. Large volume injection reduced tedious and costly sample preparation steps. Limits of detection for the GC method ranged from 1 to 98pg/l and for the LC method from 2 to 135ng/l. Known and emerging EDCs such as pharmaceuticals, personal care products and pesticides, as well as the antiretroviral compounds, efavirenz and nevirapine, were detected in surface water from South Africa at concentration levels ranging from 0.16ng/l to 227ng/l. Copyright © 2017 Elsevier B.V. All rights reserved.
This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more...
Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin
Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.
2000-01-01
In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.
Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.
Bian, Xiaojun; Lan, Ying; Wang, Bing; Zhang, Yu Shrike; Liu, Baohong; Yang, Pengyuan; Zhang, Weijia; Qiao, Liang
2016-12-06
The early warning capability of the presence of biological aerosol threats is an urgent demand in ensuing civilian and military safety. Efficient and rapid air sample collection in relevant indoor or outdoor environment is a key step for subsequent analysis of airborne microorganisms. Herein, we report a portable battery-powered sampler that is capable of highly efficient bioaerosol collection. The essential module of the sampler is a polydimethylsiloxane (PDMS) microfluidic chip, which consisted of a 3-loop double-spiral microchannel featuring embedded herringbone and sawtooth wave-shaped structures. Vibrio parahemolyticus (V. parahemolyticus) as a model microorganism, was initially employed to validate the bioaerosol collection performance of the device. Results showed that the sampling efficacy reached as high as >99.9%. The microfluidic sampler showed greatly improved capturing efficiency compared with traditional plate sedimentation methods. The high performance of our device was attributed to the horizontal inertial centrifugal force and the vertical turbulence applied to airflow during sampling. The centrifugation field and turbulence were generated by the specially designed herringbone structures when air circulated in the double-spiral microchannel. The sawtooth wave-shaped microstructure created larger specific surface area for accommodating more aerosols. Furthermore, a mixture of bacterial aerosols formed by V. parahemolyticus, Listeria monocytogenes, and Escherichia coli was extracted by the microfluidic sampler. Subsequent integration with mass spectrometry conveniently identified the multiple bacterial species captured by the sampler. Our developed stand-alone and cable-free sampler shows clear advantages comparing with conventional strategies, including portability, easy-to-use, and low cost, indicating great potential in future field applications.
Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan
2017-10-01
Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of IOM personal sampler at different flow rates.
Zhou, Yue; Cheng, Yung-Sung
2010-02-01
The Institute of Occupational Medicine (IOM) personal sampler is usually operated at a flow rate of 2.0 L/min, the rate at which it was designed and calibrated, for sampling the inhalable mass fraction of airborne particles in occupational environments. In an environment of low aerosol concentrations only small amounts of material are collected, and that may not be sufficient for analysis. Recently, a new sampling pump with a flow rate up to 15 L/min became available for personal samplers, with the potential of operating at higher flow rates. The flow rate of a Leland Legacy sampling pump, which operates at high flow rates, was evaluated and calibrated, and its maximum flow was found to be 10.6 L/min. IOM samplers were placed on a mannequin, and sampling was conducted in a large aerosol wind tunnel at wind speeds of 0.56 and 2.22 m/s. Monodisperse aerosols of oleic acid tagged with sodium fluorescein in the size range of 2 to 100 microm were used in the test. The IOM samplers were operated at flow rates of 2.0 and 10.6 L/min. Results showed that the IOM samplers mounted in the front of the mannequin had a higher sampling efficiency than those mounted at the side and back, regardless of the wind speed and flow rate. For the wind speed of 0.56 m/s, the direction-averaged (the average value of all orientations facing the wind direction) sampling efficiency of the samplers operated at 2.0 L/min was slightly higher than that of 10.6 L/min. For the wind speed of 2.22 m/s, the sampling efficiencies at both flow rates were similar for particles < 60 microm. The results also show that the IOM's sampling efficiency at these two different flow rates follows the inhalable mass curve for particles in the size range of 2 to 20 microm. The test results indicate that the IOM sampler can be used at higher flow rates.
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas, soil, and water were assessed for organic and inorganic constituents at the former 19th Street landfill at Fort Gordon, Georgia, from February to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone and flood plain of a creek and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The passive soil-gas samplers deployed in the water-saturated hyporheic zone and flood plain of the creek adjacent to the former landfill indicated the presence of total petroleum hydrocarbon (TPH) and octane above method detection levels in groundwater beneath the creek bed and flood plain at all 12 soil-gas sampler locations. The TPH concentrations ranged from 51.4 to 81.4 micrograms per liter. Octane concentrations ranged from 1.78 to 2.63 micrograms per liter. These detections do not clearly identify specific source areas in the former landfill; moreover, detections of TPH and octane in a soil-gas sampler installed at a seep on the western bank of the creek indicated the potential for these constituents to be derived from source areas outside the estimated boundaries of the former landfill. A passive soil-gas sampler survey was conducted in the former landfill from June 30 to July 5, 2010, and involved 56 soil-gas samplers that were analyzed for petroleum and halogenated compounds not classified as chemical agents or explosives. The TPH soil-gas mass exceeded 2.0 micrograms in 21 samplers. Most noticeable are the two sites with TPH detections which are located in and near the hyporheic zone and are likely to affect the creek. However, most TPH detections were located in and immediately adjacent to a debris field located within the former landfill and in areas where debris was not visible, including the northwestern and southeastern parts of the study area. Two of the four soil-gas samplers installed within a former military training area adjacent to the landfill also had TPH detections above the method detection level. Benzene, toluene, ethylbenzene, and xylene (as combined BTEX mass) were detected at 0.02 microgram or greater in three soil-gas samplers installed at the northwestern boundary and in five samplers installed in the southeastern part of the study area. There was no BTEX mass detected above the method detection level in samplers installed in the debris field. Toluene was the most frequently detected BTEX compound. Compounds indicative of diesel-range organics were detected above 0.04 microgram in 12 soil-gas samplers and had a distribution similar to that of TPH, including being detected in the debris field. Undecane was the most frequently detected diesel compound. Chloroform and naphthalene were detected in eight and two soil-gas samplers, respectively. Five soil-gas samplers deployed during September 2010 were analyzed for organic compounds classified as chemical agents and explosives, but none exceeded the method detection levels. Five composite soil samples collected from within the estimated boundaries of the former landfill were analyzed for 35 inorganic constituents, but none of the constituents detected exceeded regional screening levels for industrial soils. The sample collected in the debris field exceeded background levels for aluminum, barium, calcium, chromium, lead, nickel, potassium, sodium, and zinc. Three surface-water samples were collected in September 2010 from a stormwater outfall culvert that drains to the creek and from the open channel of the creek at upstream and downstream locations relative to the outfall. Toluene was detected at 0.661 mi
Composite Sampling of a Bacillus anthracis Surrogate with ...
Journal Article A series of experiments were conducted to explore the utility of composite-based collection of surface samples for the detection of a Bacillus anthracis surrogate using cellulose sponge samplers on a stainless steel surface.
Chaemfa, Chakra; Wild, Edward; Davison, Brian; Barber, Jonathan L; Jones, Kevin C
2009-06-01
Polyurethane foam disks are a cheap and versatile tool for sampling persistent organic pollutants (POPs) from the air in ambient, occupational and indoor settings. This study provides important background information on the ways in which the performance of these commonly used passive air samplers may be influenced by the key environmental variables of wind speed and aerosol entrapment. Studies were performed in the field, a wind tunnel and with microscopy techniques, to investigate deployment conditions and foam density influence on gas phase sampling rates (not obtained in this study) and aerosol trapping. The study showed: wind speed inside the sampler is greater on the upper side of the sampling disk than the lower side and tethered samplers have higher wind speeds across the upper and lower surfaces of the foam disk at a wind speed > or = 4 m/s; particles are trapped on the foam surface and within the body of the foam disk; fine (<1 um) particles can form clusters of larger size inside the foam matrix. Whilst primarily designed to sample gas phase POPs, entrapment of particles ensures some 'sampling' of particle bound POPs species, such as higher molecular weight PAHs and PCDD/Fs. Further work is required to investigate how quantitative such entrapment or 'sampling' is under different ambient conditions, and with different aerosol sizes and types.
Water Sampling While Under Way , Proceedings of a Symposium and Workshops, February 11-12, 1980.
1980-01-01
W, and consequently W/R, will be small. To illustrate these points, values of kl, kA , and W are comparedin Table 1 for a typical, round, galvanized...7 TABLE I COMPARISON OF SAMPLER CABLE AND TYPICAL ELECTROMECHANICAL CABLE Characteristic k1 kA k W Electromechanical 0.40 1 0.40 1.5 t 2 Sampler...configurations obviously do not suffer in static (i.e., constant speed) performance since the factors k1 and kA are the same with or without the voids, assuming
ERIC Educational Resources Information Center
Leshnoff, Susan K.
1990-01-01
Describes how third grade students learned about fresco paintings in Pompeii and made their own frescoes by pouring plaster into styrofoam trays and painting the surface. Students discovered they could control the paint better because of the porous surface of the plaster. (KM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Steven R.; Baja, Emmanuel; Flaherty, Julia E.
2008-01-30
A simple urban dispersion model is tested that is based on the Gaussian plume model and the Briggs’ urban dispersion curves. A key aspect of the model is that an initial dispersion coefficient (sigma) of 40 m is assumed to apply in the x, y, and z directions in built-up downtown areas. This initial sigma accounts for mixing in the local street canyon and/or building wakes. At short distances (i.e., when the release is in the same street canyon as the receptor and there are no obstructions in between), the initial lateral sigma is assumed to be less, 10 m.more » Observations from tracer experiments during the Madison Square Garden 2005 (MSG05) field study are used for model testing. MSG05 took place in a 1 km by 1 km area in Manhattan surrounding Madison Square Garden. Six different perfluorocarbon tracer (PFT) gases were released concurrently from five different locations around MSG, and concentrations in the air were observed by 20 samplers near the surface and seven samplers on building tops. There were two separate continuous 60 minute tracer release periods on each day, beginning at 9 am and at 11:30 am. Releases took place on two separate days (March 10 and 14). The samplers provided 30 minute averaged PFT concentrations from 9 am through 2 pm. This analysis focuses on the maximum 60-minute averaged PFT gas concentration at each sampler location for each PFT for each release period. Stability was assumed to be nearly neutral, because of the moderate winds and the mechanical mixing generated by the buildings. Input wind direction was the average observed building-top wind direction (285° on March 10 and 315° on March 14). Input wind speed was the average street-level observed wind speed (1.5 m/s for both days). To be considered in the evaluation, both the observed and predicted concentration had to exceed the threshold. Concentrations normalized by source release rate, C/Q, were tested. For all PFTs, samplers, and release times, the median observed and predicted C/Q are within 40% of each other, and 43 % of the time the concentration predictions are within a factor of two of the observations. The scatter plots show that the typical error is about the same magnitude as the mean concentration. When only the surface observations are considered, the performance is better, with the median observed and predicted C/Qs within 10 % of each other. The overall 60 minute-averaged maximum C/Q is underpredicted by about 40 % for the surface samplers and is overpredicted by about 25 % for the building-top samplers.« less
Horizontal ichthyoplankton tow-net system with unobstructed net opening
Nester, Robert T.
1987-01-01
The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.
Alvarez, David A.
2010-01-01
The success of an environmental monitoring study using passive samplers, or any sampling method, begins in the office or laboratory. Regardless of the specific methods used, the general steps include the formulation of a sampling plan, training of personnel, performing the field (sampling) work, processing the collected samples to recover chemicals of interest, analysis of the enriched extracts, and interpretation of the data. Each of these areas will be discussed in the following sections with emphasis on specific considerations with the use of passive samplers. Water is an extremely heterogeneous matrix both spatially and temporally (Keith, 1991). The mixing and distribution of dissolved organic chemicals in a water body are controlled by the hydrodynamics of the water, the sorption partition coefficients of the chemicals, and the amount of organic matter (suspended sediments, colloids, and dissolved organic carbon) present. In lakes and oceans, stratification because of changes in temperature, water movement, and water composition can occur resulting in dramatic changes in chemical concentrations with depth (Keith, 1991). Additional complications related to episodic events, such as surface runoff, spills, and other point source contamination, can result in isolated or short-lived pulses of contaminants in the water. The application of passive sampling technologies for the monitoring of legacy and emerging organic chemicals in the environment is becoming widely accepted worldwide. The primary use of passive sampling methods for environmental studies is in the area of surface-water monitoring; however, these techniques have been applied to air and groundwater monitoring studies. Although these samplers have no mechanical or moving parts, electrical or fuel needs which require regular monitoring, there are still considerations that need to be understood in order to have a successful study. Two of the most commonly used passive samplers for organic contaminants are the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS). The tips given in this document focus on these two samplers but are applicable to most types of passive sampling devices. The information in this guide is heavily weighted towards the sampling of water; however, information specific to the use of SPMDs for air sampling will also be covered.
Fog Characteristics at Otis AFB, Massachusetts.
1980-10-01
AFGL-owned EG&G Forward Scatter Meters at heights of S, 30, 45 and 60 m above the surface. The scope of Calspan’s contract did not permit more than...characteristics, and supporting meteorological variables. For fog microphysics, a Calspan drop sampler, a hi-vol LWC sampler, AFGL’s Forward Scatter Meters and a...Eq. (i), was measured as "scattering" coefficient in fog at Otis with EG&G Forward Scatter Meters . The measured extinction can be related to visual
Wallops waveform analysis of SEASAT-1 radar altimeter data
NASA Technical Reports Server (NTRS)
Hayne, G. S.
1980-01-01
Fitting a six parameter model waveform to over ocean experimental data from the waveform samplers in the SEASAT-1 radar altimeter is described. The fitted parameters include a waveform risetime, skewness, and track point; from these can be obtained estimates of the ocean surface significant waveheight, the surface skewness, and a correction to the altimeter's on board altitude measurement, respectively. Among the difficulties encountered are waveform sampler gains differing from calibration mode data, and incorporating the actual SEASAT-1 sampled point target response in the fitted wave form. There are problems in using the spacecraft derived attitude angle estimates, and a different attitude estimator is developed. Points raised in this report have consequences for the SEASAT-1 radar altimeter's ocean surface measurements are for the design and calibration of radar altimeters in future oceanographic satellites.
NEA Multi-Chamber Sample Return Container with Hermetic Sealing
NASA Technical Reports Server (NTRS)
Rafeek, Shaheed; Kong, Kin Yuen; Sadick, Shazad; Porter, Christopher C.
2000-01-01
A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers such as the 'Touch and Go' Surface Sampler (TGSS), and then hermetically seal the samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the rotation axis of the TGSS sampler for interfacing, transferring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses multiple isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The TGSS based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. This sample return container is being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program. A breadboard system of the sample return container has been recently completed and tested. Additional information is contained in the original extended abstract.
Field and laboratory comparison of PM10 instruments in high winds
NASA Astrophysics Data System (ADS)
Sharratt, Brenton; Pi, Huawei
2018-06-01
Instruments capable of measuring PM10 (particulate matter ≤10 μm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentrations above eroding soil surfaces was tested during high wind events at field sites in the Columbia Plateau and inside a wind tunnel. Comparisons among the Big Spring Number Eight (BSNE) sampler, DustTrak monitor, E-sampler, High-Volume sampler, and Tapered Element Oscillating Microbalance (TEOM) monitor were made at field sites during nine wind erosion events and inside a wind tunnel at two wind speeds (7 and 12 m s-1) and two ambient PM10 concentrations (2 and 50 mg m-3). PM10 concentrations were similar for the High-Volume sampler and TEOM monitor as well as for the BSNE samplers and DustTrak monitors but higher for the High-Volume sampler and TEOM monitor than the E-sampler during field erosion events. Based upon wind tunnel experiments, the TEOM monitor measured the highest PM10 concentration while the DustTrak monitor typically measured the lowest PM10 concentration as compared with other instruments. In addition, PM10 concentration appeared to lower for all instruments at a wind speed of 12 as compared with 7 m s-1 inside the wind tunnel. Differences in the performance of instruments in measuring PM10 concentration poses risks in comparing PM10 concentration among different instrument types or using multiple instrument types to jointly measure concentrations in the field or laboratory or even the same instrument type subject to different wind speeds.
NASA Astrophysics Data System (ADS)
Wright, G.; Gustin, M. S.; Weiss-Penzias, P. S.
2012-12-01
The Western Airborne Contaminants Assessment Project (WACAP) showed that fish in eight National Parks of the western U.S. had mercury(Hg) concentrations that exceeded the threshold for fish eating wildlife (www.nature.nps.gov/air/Studies/air_toxics/wacap.cfm). These observations led to the development of this study focused on investigating air gaseous oxidized mercury (GOM) concentrations and potential dry deposition using developed passive samplers and surrogate surfaces. The primary question was whether local, regional or global sources are responsible for the mercury measured in fish in these Western parks. To investigate this, passive samplers and surrogate surface samplers were deployed from the coast of California to the eastern edge of Nevada. Sampling sites were located from west to east at Point Reyes National Seashore, CA; Elkhorn Slough, CA, Lick Observatory, CA; Chews Ridge, CA; Chalk Mountain, CA; Yosemite National Park, CA; Sequoia & Kings Canyon National Park, CA; and Great Basin National Park, NV. Ancillary data (meteorology and ozone concentrations) collected by the parks will be applied to better understand potential sources. Air mercury concentrations were also measured at select locations using a Tekran® 2537a/1130mercury air measurement system for 4-6 weeks. Air GOM concentrations and potential deposition were measured simultaneously as a function of elevation at Yosemite and Great Basin National Park, using the passive samplers and surrogate surfaces during sampling intensives, allowing us to better understand potential sources of mercury to park ecosystems. Data collection began in August of 2010 and was completed in June 2012. Analyses of the data thus far has shown the lowest relative concentrations and potential GOM deposition were observed at the low elevation coastal sites, Elkhorn Slough and Point Reyes National Seashore. Highest values of potential deposition were recorded at Lick Observatory, a high elevation coastal site, while highest relative concentrations were measured at Great Basin National Park. Mean elemental mercury and GOM concentrations, collected using a Tekran® 2537A/1130 system, were 1.5 ± 0.6 ng/ m3 and 70 ± 50 pg/m3 respectively at Great Basin NP, 1.5 ng/m3 ¬± 0.3 and 6 pg/m3 ± 7 at Sequoia National Park, and 1.5 ng/m3 ± 1 and 14 pg/m3 ± 11 at Yosemite National Park.
Sampling errors in blunt dust samplers arising from external wall loss effects
NASA Astrophysics Data System (ADS)
Vincent, J. H.; Gibson, H.
Evidence is given that, with some forms of blunt dust sampler under conditions relating to those encountered in practical occupational hygiene and environmental monitoring, particles which impact onto the outer surface of the sampler body may not adhere permanently, and may eventually enter the sampling orifice. The effect of such external wall loss is to bring about excess sampling, where errors as high as 100% could arise. The problem is particularly important in the sampling of dry airborne particulates of the type commonly found in practical situations. For a given sampler configuration, the effect becomes more marked as the particle size increases or as the ratio of sampling velocity to ambient wind speed increases. We would expect it be greater for gritty, crystalline material than for smoother, amorphous material. Possible mechanisms controlling external wall losses were examined, and it was concluded that particle 'blow-off' (as opposed to particle 'bounce') is the most plausible. On the basis of simple experiments, it might be possible to make corrections for the sampling errors in question, but caution is recommended in doing so because of the unpredictable effects of environmental factors such as temperature and relative humidity. Of the possible practical solutions to the problem, it is felt that the best approach lies in the correct choice of sampler inlet design.
LITERATURE REVIEW AND REPORT: SURFACE-SEDIMENT SAMPLER DATABASE
A literature review was conducted to identify available surface sediment sampling technologies with an ability to collect undisturbed sediments to depths of up to 1 meter below the water sediment interface. This survey was conducted using published literature and references, Envi...
A rate-based transcutaneous CO2 sensor for noninvasive respiration monitoring.
Chatterjee, M; Ge, X; Kostov, Y; Luu, P; Tolosa, L; Woo, H; Viscardi, R; Falk, S; Potts, R; Rao, G
2015-05-01
The pain and risk of infection associated with invasive blood sampling for blood gas measurements necessitate the search for reliable noninvasive techniques. In this work we developed a novel rate-based noninvasive method for a safe and fast assessment of respiratory status. A small sampler was built to collect the gases diffusing out of the skin. It was connected to a CO2 sensor through gas-impermeable tubing. During a measurement, the CO2 initially present in the sampler was first removed by purging it with nitrogen. The gases in the system were then recirculated between the sampler and the CO2 sensor, and the CO2 diffusion rate into the sampler was measured. Because the measurement is based on the initial transcutaneous diffusion rate, reaching mass transfer equilibrium and heating the skin is no longer required, thus, making it much faster and safer than traditional method. A series of designed experiments were performed to analyze the effect of the measurement parameters such as sampler size, measurement location, subject positions, and movement. After the factor analysis tests, the prototype was sent to a level IV NICU for clinical trial. The results show that the measured initial rate of increase in CO2 partial pressure is linearly correlated with the corresponding arterial blood gas measurements. The new approach can be used as a trending tool, making frequent blood sampling unnecessary for respiratory status monitoring.
Modular, multi-level groundwater sampler
Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.
1994-01-01
Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.
Development of a passive sampler for gaseous mercury
NASA Astrophysics Data System (ADS)
Gustin, M. S.; Lyman, S. N.; Kilner, P.; Prestbo, E.
2011-10-01
Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed.
Sakata, Masahiro; Marumoto, Kohji
2004-04-01
Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.
Sampling scheme for pyrethroids on multiple surfaces on commercial aircrafts.
Mohan, Krishnan R; Weisel, Clifford P
2010-06-01
A wipe sampler for the collection of permethrin from soft and hard surfaces has been developed for use in aircraft. "Disinsection" or application of pesticides, predominantly pyrethrods, inside commercial aircraft is routinely required by some countries and is done on an as-needed basis by airlines resulting in potential pesticide dermal and inhalation exposures to the crew and passengers. A wipe method using filter paper and water was evaluated for both soft and hard aircraft surfaces. Permethrin was analyzed by GC/MS after its ultrasonication extraction from the sampling medium into hexane and volume reduction. Recoveries, based on spraying known levels of permethrin, were 80-100% from table trays, seat handles and rugs; and 40-50% from seat cushions. The wipe sampler is easy to use, requires minimum training, is compatible with the regulations on what can be brought through security for use on commercial aircraft, and readily adaptable for use in residential and other settings.
Assessment the impact of samplers change on the uncertainty related to geothermalwater sampling
NASA Astrophysics Data System (ADS)
Wątor, Katarzyna; Mika, Anna; Sekuła, Klaudia; Kmiecik, Ewa
2018-02-01
The aim of this study is to assess the impact of samplers change on the uncertainty associated with the process of the geothermal water sampling. The study was carried out on geothermal water exploited in Podhale region, southern Poland (Małopolska province). To estimate the uncertainty associated with sampling the results of determinations of metasilicic acid (H2SiO3) in normal and duplicate samples collected in two series were used (in each series the samples were collected by qualified sampler). Chemical analyses were performed using ICP-OES method in the certified Hydrogeochemical Laboratory of the Hydrogeology and Engineering Geology Department at the AGH University of Science and Technology in Krakow (Certificate of Polish Centre for Accreditation No. AB 1050). To evaluate the uncertainty arising from sampling the empirical approach was implemented, based on double analysis of normal and duplicate samples taken from the same well in the series of testing. The analyses of the results were done using ROBAN software based on technique of robust statistics analysis of variance (rANOVA). Conducted research proved that in the case of qualified and experienced samplers uncertainty connected with the sampling can be reduced what results in small measurement uncertainty.
A comparison of two gears for quantifying abundance of lotic-dwelling crayfish
Williams, Kristi; Brewer, Shannon K.; Ellersieck, Mark R.
2014-01-01
Crayfish (saddlebacked crayfish, Orconectes medius) catch was compared using a kick seine applied two different ways with a 1-m2 quadrat sampler (with known efficiency and bias in riffles) from three small streams in the Missouri Ozarks. Triplicate samples (one of each technique) were taken from two creeks and one headwater stream (n=69 sites) over a two-year period. General linear mixed models showed the number of crayfish collected using the quadrat sampler was greater than the number collected using either of the two seine techniques. However, there was no significant interaction with gear suggesting year, stream size, and channel unit type did not relate to different catches of crayfish by gear type. Variation in catch among gears was similar, as was the proportion of young-of-year individuals across samples taken with different gears or techniques. Negative binomial linear regression provided the appropriate relation between the gears which allows correction factors to be applied, if necessary, to relate catches by the kick seine to those of the quadrat sampler. The kick seine appears to be a reasonable substitute to the quadrat sampler in these shallow streams, with the advantage of ease of use and shorter time required per sample.
NASA Technical Reports Server (NTRS)
Phillips, G. B.; Pace, V. A., Jr.
1972-01-01
The sampler utilizes permanent magnets and soft metal pole pieces to connect the cone/filter assembly to the sampling head and vacuum supply. The cone/filter assembly is packaged in a plastic container and presterilized so that the need for any human contact during the sampling procedure is completely eliminated. Microbiological tests have demonstrated that the sampling efficiency is not affected by the magnetic coupling apparatus and that the probe appears to function as efficiently as the conventional plastic and Sandia vacuum probes.
NASA Astrophysics Data System (ADS)
Bilonick, Richard A.; Connell, Daniel P.; Talbott, Evelyn O.; Rager, Judith R.; Xue, Tao
2015-02-01
The objective of this study was to remove systematic bias among fine particulate matter (PM2.5) mass concentration measurements made by different types of samplers used in the Pittsburgh Aerosol Research and Inhalation Epidemiology Study (PARIES). PARIES is a retrospective epidemiology study that aims to provide a comprehensive analysis of the associations between air quality and human health effects in the Pittsburgh, Pennsylvania, region from 1999 to 2008. Calibration was needed in order to minimize the amount of systematic error in PM2.5 exposure estimation as a result of including data from 97 different PM2.5 samplers at 47 monitoring sites. Ordinary regression often has been used for calibrating air quality measurements from pairs of measurement devices; however, this is only appropriate when one of the two devices (the "independent" variable) is free from random error, which is rarely the case. A group of methods known as "errors-in-variables" (e.g., Deming regression, reduced major axis regression) has been developed to handle calibration between two devices when both are subject to random error, but these methods require information on the relative sizes of the random errors for each device, which typically cannot be obtained from the observed data. When data from more than two devices (or repeats of the same device) are available, the additional information is not used to inform the calibration. A more general approach that often has been overlooked is the use of a measurement error structural equation model (SEM) that allows the simultaneous comparison of three or more devices (or repeats). The theoretical underpinnings of all of these approaches to calibration are described, and the pros and cons of each are discussed. In particular, it is shown that both ordinary regression (when used for calibration) and Deming regression are particular examples of SEMs but with substantial deficiencies. To illustrate the use of SEMs, the 7865 daily average PM2.5 mass concentration measurements made by seven collocated samplers at an urban monitoring site in Pittsburgh, Pennsylvania, were used. These samplers, which included three federal reference method (FRM) samplers, three speciation samplers, and a tapered element oscillating microbalance (TEOM), operated at various times during the 10-year PARIES study period. Because TEOM measurements are known to depend on temperature, the constructed SEM provided calibration equations relating the TEOM to the FRM and speciation samplers as a function of ambient temperature. It was shown that TEOM imprecision and TEOM bias (relative to the FRM) both decreased as temperature increased. It also was shown that the temperature dependency for bias was non-linear and followed a sigmoidal (logistic) pattern. The speciation samplers exhibited only small bias relative to the FRM samplers, although the FRM samplers were shown to be substantially more precise than both the TEOM and the speciation samplers. Comparison of the SEM results to pairwise simple linear regression results showed that the regression results can differ substantially from the correctly-derived calibration equations, especially if the less-precise device is used as the independent variable in the regression.
Field Studies Measuring the aerosolization of Endotoxin ...
Endotoxin is a component of the cell walls of Gram-negative bacteria and is known to be present in biosolids. Endotoxins have been shown to be a potent stimulator of the innate immune response causing airway irritation and shortness of breath. Class B biosolids are routinely applied to agricultural lands in the US to enhance soil properties and can be used as an alternative to chemical fertilizers. This study investigated the aerosolized endotoxin produced during the land application of Class B biosolids from various wastewater treatment plants on agricultural land and a concrete surface at two sites in Colorado, USA. Aerosolized endotoxin was captured using HiVol sampler fitted with glass fiber filter, polycarbonate filter cassette (both open and closed), and BioSampler impinger air samplers. Endotoxins were also measured in the bulk biosolids to allow for correlating bulk biosolids concentrations with aerosol emission rates. Endotoxin concentrations in biosolids, impinger solutions, and filter extracts were determined using the kinetic Limulus amebocyte lysate assay. Aerosolized endotoxin concentration was detected from all sites with levels ranging from 0.5 to 642 EU/m3. The four types of sampling apparatus were compared and the HiVol and open-faced cassette samplers used produced higher TWA measurements (EU/m3) than the impinger and closed cassette samplers. Ambient wind speed at the sites was found to be the variable best describing the results wit
The use of an air filtration system in podiatry clinics.
McLarnon, Nichola; Burrow, Gordon; Maclaren, William; Aidoo, Kofi; Hepher, Mike
2003-06-01
A small-scale study was conducted to ascertain the efficiency and effectiveness of an air filtration system for use in podiatry/chiropody clinics (Electromedia Model 35F (A), Clean Air Ltd, Scotland, UK). Three clinics were identified, enabling comparison of data between podiatry clinics in the West of Scotland. The sampling was conducted using a portable Surface Air Sampler (Cherwell Laboratories, Bicester, UK). Samples were taken on two days at three different times before and after installation of the filtration units. The global results of the study indicate the filter has a statistically significant effect on microbial counts, with an average percentage decrease of 65%. This study is the first time, to the authors' knowledge, such a system has been tested within podiatric practice.
Bloem, E; Hogervorst, F A N; de Rooij, G H
2009-04-01
Solutes spread out in time and space as they move downwards from the soil surface with infiltrating water. Solute monitoring in the field is often limited to observations of resident concentrations, while flux concentrations govern the movement of solutes in soils. A recently developed multi-compartment sampler is capable of measuring fluxes at a high spatial resolution with minimal disturbance of the local pressure head field. The objective of this paper is to use this sampler to quantify the spatial and temporal variation of solute leaching below the root zone in an agricultural field under natural rainfall in winter and spring. We placed two samplers at 31 and 25 cm depth in an agricultural field, leaving the soil above undisturbed. Each sampler contained 100 separate cells of 31x31 mm. Water fluxes were measured every 5 min for each cell. We monitored leaching of a chloride pulse under natural rainfall by frequently extracting the collected leachate while leaving the samplers buried in situ. This experiment was followed by a dye tracer experiment. This setting yielded information that widely surpassed the information that can be provided by separate anionic and dye tracer trials, and solute transport monitoring by coring or suction cups. The detailed information provided by the samplers showed that percolation at the sampling depth started much faster (approximately 3 h after the start of rainfall) in initially wet soil (pressure head above -65 cm) than in drier soil (more than 14 h at pressure heads below -80 cm). At any time, 25% of the drainage passed through 5-6% of the sampled area, reflecting the effect of heterogeneity on the flow paths. The amount of solute carried by individual cells varied over four orders of magnitude. The lateral concentration differences were limited though. This suggests a convective-dispersive regime despite the short vertical travel distance. On the other hand, the dilution index indicates a slight tendency towards stochastic-convective transport at this depth. There was no evidence in the observed drainage patterns and dye stained profiles of significant disturbance of the flow field by the samplers.
Campbell, J.P.; Lyford, F.P.; Willey, Richard E.
2002-01-01
A mixed plume of contaminants in ground water, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals, near the former Nyanza property in Ashland, Massachusetts, discharges to the Sudbury River upstream and downstream of Mill Pond and a former mill raceway. Polyethylene-membrane vapor-diffusion (PVD) samplers were installed in river-bottom sediments to determine if PVD samplers provide an alternative to ground-water sampling from well points for identifying areas of detectable concentrations of contaminants in sediment pore water near the ground-water and surface-water interface. In August and September 2000, the PVD samplers were installed near well points at depths of 8 to 12 inches in both fine and coarse sediments, whereas the well points were installed at depths of 1 to 5 feet in coarse sediments only. Comparison between vapor and water samples at 29 locations upstream from Mill Pond show that VOC vapor concentrations from PVD samplers in coarse river-bottom sediments are more likely to correspond to ground-water concentrations from well points than PVD samplers installed in fine sediments. Significant correlations based on Kendall's Tau were shown between vapor and ground-water concentrations for trichloroethylene and chlorobenzene for PVD samplers installed in coarse sediments where the fine organic layer that separated the two sampling depths was 1 foot or less in thickness. VOC concentrations from vapor samples also were compared to VOC, SVOC, and metals concentrations from ground-water samples at 10 well points installed upstream and downstream from Mill Pond, and in the former mill raceway. Chlorobenzene vapor concentrations correlated significantly with ground-water concentrations for 5 VOCs, 2 SVOCs, and 10 metals. Trichloroethylene vapor concentrations did not correlate with any of the other ground-water constituents analyzed at the 10 well points. Chlorobenzene detected by use of PVD samplers appears to be a strong indicator of the presence of VOCs, SVOCs, and metals in ground water sampled from well points at this site. Results from PVD samplers indicate that contaminant concentrations in water from well points installed 1 to 5 ft below fine sediments may not reflect concentrations in pore water less than 1 foot below the river bottom. There is insufficient information available to determine if VOC concentrations detected in PVD samplers are useful for identifying detectable aqueous concentrations of SVOCs and metals in sediment pore water at this site. Samples of pore water from a similar depth as PVD samplers are needed for confirmation of this objective.
DRY DEPOSITION OF REDUCED AND REACTIVE NITROGEN: A SURROGATE SURFACES APPROACH. (R826647)
Nitrogen dry deposition causes pH modification of ecosystems, promotes
eutrophication in some water bodies, interferes with the nutrient geochemical
cycle on land, and has a deteriorating effect on buildings. In this study, a
water surface sampler (WSS) and knife-l...
Automated position control of a surface array relative to a liquid microjunction surface sampler
Van Berkel, Gary J.; Kertesz, Vilmos; Ford, Michael James
2007-11-13
A system and method utilizes an image analysis approach for controlling the probe-to-surface distance of a liquid junction-based surface sampling system for use with mass spectrometric detection. Such an approach enables a hands-free formation of the liquid microjunction used to sample solution composition from the surface and for re-optimization, as necessary, of the microjunction thickness during a surface scan to achieve a fully automated surface sampling system.
A new sampler for collecting separate dry and wet atmospheric depositions of trace organic chemicals
NASA Astrophysics Data System (ADS)
Waite, Don T.; Cessna, Allan J.; Gurprasad, Narine P.; Banner, James
Studies conducted in Saskatchewan and elsewhere have demonstrated the atmospheric transport of agricultural pesticides and other organic contaminants and their deposition into aquatic ecosystems. To date these studies have focused on ambient concentrations in the atmosphere and in wet precipitation. To measure the dry deposition of organic chemicals, a new sampler was designed which uses a moving sheet of water to passively trap dry particles and gasses. The moving sheet of water drains into a reservoir and, during recirculation through the sampler, is passed through an XAD-2 resin column which adsorbs the trapped organic contaminants. All surfaces which contact the process water are stainless steel or Teflon. Chemicals collected can be related to airborne materials depositing into aquatic ecosystems. The sampler has received a United States patent (number 5,413,003 - 9 May 1996) with the Canadian patent pending. XAD-2 resin adsorption efficiencies for 10 or 50 μg fortifications of ten pesticides ranged from 76% for atrazine (2-chloro-4-ethylamino-6-isopropylamino- S-triazine) to 110% for triallate [ S-(2,3,3-trichloro-2-phenyl)bis(1-methylethyl)carbamothioate], dicamba (2-methoxy-3,6-dichlorobenzoic acid) and toxaphene (chlorinated camphene mixture). Field testing using duplicate samplers showed good reproducibility and amounts trapped were consistent with those from high volume and bulk pan samplers located on the same site. Average atmospheric dry deposition rates of three chemicals, collected for 5 weeks in May and June, were: dicamba, 69 ng m -2 da -1; 2,4-D (2,4-dichlorophenoxyacetic acid), 276 ng m -2 da -1: and, γ-HCH ( γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane), 327 ng m -2 da -1.
Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.
Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy
2016-01-01
Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Aerosol Sampling Experiment on the International Space Station
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2017-01-01
The International Space Station (ISS) is a unique indoor environment which serves as both home and workplace to the astronaut crew. There is currently no particulate monitoring, although particulate matter requirements exist. An experiment to collect particles in the ISS cabin was conducted recently. Two different aerosol samplers were used for redundancy and to collect particles in two size ranges spanning from 10 nm to hundreds of micrometers. The Active Sampler is a battery operated thermophoretic sampler with an internal pump which draws in air and collects particles directly on a transmission electron microscope grid. This commercial-off-the-shelf device was modified for operation in low gravity. The Passive Sampler has five sampling surfaces which were exposed to air for different durations in order to collect at least one sample with an optimal quantity of particles for microscopy. These samples were returned to Earth for analysis with a variety of techniques to obtain long-term average concentrations and identify particle emission sources. Results are compared with the inventory of ISS aerosols which was created based on sparse data and the literature. The goal of the experiment is to obtain data on indoor aerosols on ISS for future particulate monitor design and development.
Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.
1974-01-01
The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.
Multispectral Resource Sampler Workshop
NASA Technical Reports Server (NTRS)
1979-01-01
The utility of the multispectral resource sampler (MRS) was examined by users in the following disciplines: agriculture, atmospheric studies, engineering, forestry, geology, hydrology/oceanography, land use, and rangelands/soils. Modifications to the sensor design were recommended and the desired types of products and number of scenes required per month were indicated. The history, design, capabilities, and limitations of the MRS are discussed as well as the multilinear spectral array technology which it uses. Designed for small area inventory, the MRS can provide increased temporal, spectral, and spatial resolution, facilitate polarization measurement and atmospheric correction, and test onboard data compression techniques. The advantages of using it along with the thematic mapper are considered.
Design and testing of a shrouded probe for airborne aerosol sampling in a high velocity airstream
NASA Astrophysics Data System (ADS)
Cain, Stuart Arthur
1997-07-01
Tropospheric aerosols play an important role in many phenomena related to global climate and climate change and two important parameters, aerosol size distribution and concentration, have been the focus of a great deal of attention. To study these parameters it is necessary to obtain a representative sample of the ambient aerosol using an airborne aerosol sampling probe mounted on a suitably equipped aircraft. Recently, however, serious questions have been raised (Huebert et al., 1990; Baumgardner et al., 1991) concerning the current procedures and techniques used in airborne aerosol sampling. We believe that these questions can be answered by: (1) use of a shrouded aerosol sampling probe, (2) proper aerodynamic sampler design using numerical simulation techniques, (3) calculation of the sampler calibration curve to be used in determining free-stream aerosol properties from measurements made with the sampler and (4) wind tunnel tests to verify the design and investigate the performance of the sampler at small angles of attack (typical in airborne sampling applications due to wind gusts and aircraft fuel consumption). Our analysis is limited to the collection of insoluble particles representative of the global tropospheric 'background aerosol' (0.1-2.6 μm diameter) whose characteristics are least likely to be affected by the collection process. We begin with a survey of the most relevant problems associated with current airborne aerosol samplers and define the physical quantity that we wish to measure. This includes the derivation of a unique mathematical expression relating the free-stream aerosol size distribution to aerosol data obtained from the airborne measurements with the sampler. We follow with the presentation of the results of our application of Computational Fluid Dynamics (CFD) and Computational Particle Dynamics (CPD) to the design of a shrouded probe for airborne aerosol sampling of insoluble tropospheric particles in the size range 0.1 to 15 μm diameter at an altitude of 6069 m (20,000 ft) above sea level (asl). Our aircraft of choice is the National Center for Atmospheric Research (NCAR) EC-130 Geoscience Research aircraft whose cruising speed at a sampling altitude of 6069 m asl is 100 m/s. We calculate the aspiration efficiency of the sampler and estimate the transmission efficiency of the diffuser probe based on particle trajectory simulations. We conclude by presenting the results of a series of qualitative and quantitative wind tunnel tests of the airflow through a plexiglass prototype of the sampler to verify our numerical simulations and predict the performance of the sampler at angles of attack from 0o to 15o.
A personal sampler for aircraft engine cold start particles: laboratory development and testing.
Armendariz, Alfredo; Leith, David
2003-01-01
Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine.
Herkert, Nicholas J; Hornbuckle, Keri C
2018-05-23
Accurate and precise interpretation of concentrations from polyurethane passive samplers (PUF-PAS) is important as more studies show elevated concentrations of PCBs and other semivolatile air toxics in indoor air of schools and homes. If sufficiently reliable, these samplers may be used to identify local sources and human health risks. Here we report indoor air sampling rates (Rs) for polychlorinated biphenyl congeners (PCBs) predicted for a frequently used double-dome and a half-dome PUF-PAS design. Both our experimentally calibrated (1.10 ± 0.23 m3 d-1) and modeled (1.08 ± 0.04 m3 d-1) Rs for the double-dome samplers compare well with literature reports for similar rooms. We determined that variability of wind speeds throughout the room significantly (P < 0.001) effected uptake rates. We examined this effect using computational fluid dynamics modeling and 3-D sonic anemometer measurements and found the airflow dynamics to have a significant but small impact on the precision of calculated airborne concentrations. The PUF-PAS concentration measurements were within 27% and 10% of the active sampling concentration measurements for the double-dome and half-dome designs, respectively. While the half-dome samplers produced more consistent concentration measurements, we find both designs to perform well indoors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amidan, Brett G.; Hutchison, Janine R.
There are many sources of variability that exist in the sample collection and analysis process. This paper addresses many, but not all, sources of variability. The main focus of this paper was to better understand and estimate variability due to differences between samplers. Variability between days was also studied, as well as random variability within each sampler. Experiments were performed using multiple surface materials (ceramic and stainless steel), multiple contaminant concentrations (10 spores and 100 spores), and with and without the presence of interfering material. All testing was done with sponge sticks using 10-inch by 10-inch coupons. Bacillus atrophaeus wasmore » used as the BA surrogate. Spores were deposited using wet deposition. Grime was coated on the coupons which were planned to include the interfering material (Section 3.3). Samples were prepared and analyzed at PNNL using CDC protocol (Section 3.4) and then cultured and counted. Five samplers were trained so that samples were taken using the same protocol. Each sampler randomly sampled eight coupons each day, four coupons with 10 spores deposited and four coupons with 100 spores deposited. Each day consisted of one material being tested. The clean samples (no interfering materials) were run first, followed by the dirty samples (coated with interfering material). There was a significant difference in recovery efficiency between the coupons with 10 spores deposited (mean of 48.9%) and those with 100 spores deposited (mean of 59.8%). There was no general significant difference between the clean and dirty (containing interfering material) coupons or between the two surface materials; however, there was a significant interaction between concentration amount and presence of interfering material. The recovery efficiency was close to the same for coupons with 10 spores deposited, but for the coupons with 100 spores deposited, the recovery efficiency for the dirty samples was significantly larger (65.9% - dirty vs. 53.6% - clean) (see Figure 4.1). Variance component analysis was used to estimate the amount of variability for each source of variability. There wasn’t much difference in variability for dirty and clean samples, as well as between materials, so these results were pooled together. There was a significant difference in amount of concentration deposited, so results were separated for the 10 spore and 100 spore deposited tests. In each case the within sampler variability was the largest with variances of 426.2 for 10 spores and 173.1 for 100 spores. The within sampler variability constitutes the variability between the four samples of similar material, interfering material, and concentration taken by each sampler. The between sampler variance was estimated to be 0 for 10 spores and 1.2 for 100 spores. The between day variance was estimated to be 42.1 for 10 spores and 78.9 for 100 spores. Standard deviations can be calculated in each case by taking the square root of the variance.« less
Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Andrew, Michael E
2006-03-01
Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass, which encompassed the permissible exposure limit of 150 mg m(-3) enforced in the USA by the Mine Safety and Health Administration (MSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects from the presence of iron and zinc in the samples. An approximately 10% negative bias was found for the slope of the Button sampler regression, in line with other studies, but it did not significantly affect the accuracy as all XRF results from this sampler were within 20% of the corresponding ICP values. As in previous studies, the best results were obtained with the GSP sampler using the average of three readings, with all XRF results within 20% of the corresponding ICP values and a slope close to 1 (0.99). Greater than 95% of XRF results were within 20% of the corresponding ICP values for the closed-face 37 mm cassette using the OSHA algorithm, and the IOM sampler using a sample area of 3.46 cm2. As in previous studies, considerable material was found on the interior walls of all samplers that possess an internal surface for deposition, at approximately the same proportion for all samplers. At the lead-acid battery recycler all five samplers in their optimal configurations gave good correlations (r2 > 0.92) between the two analytical methods over the entire range of found lead mass, which included the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations (except for the Button sampler), indicating an absence of matrix effects from the presence of the smaller quantities of the other metals in the samples. A negative bias was found for the slope of the button sampler regression, in line with other studies. Even though very high concentrations of lead were encountered (up to almost 6 mg m(-3)) no saturation of the detector was observed. Most samplers performed well, with >90% of XRF results within +/- 25% of the corresponding ICP results for the optimum configurations. The OSHA algorithm for the CFC worked best without including the back-up pad with the filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, Michael G.
Two devices, an occupational carbon monoxide (CO) dosimeter (LOCD), and an indoor air quality (IAQ) passive sampler were developed for use in population-based CO exposure assessment studies. CO exposure is a serious public health problem in the U.S., causing both morbidity and mortality (lifetime mortality risk approximately 10{sup -4}). Sparse data from population-based CO exposure assessments indicate that approximately 10% of the U.S. population is exposed to CO above the national ambient air quality standard. No CO exposure measurement technology is presently available for affordable population-based CO exposure assessment studies. The LOCD and IAQ Passive Sampler were tested in themore » laboratory and field. The palladium-molybdenum based CO sensor was designed into a compact diffusion tube sampler that can be worn. Time-weighted-average (TWA) CO exposure of the device is quantified by a simple spectrophotometric measurement. The LOCD and IAQ Passive Sampler were tested over an exposure range of 40 to 700 ppm-hours and 200 to 4200 ppm-hours, respectively. Both devices were capable of measuring precisely (relative standard deviation <20%), with low bias (<10%). The LOCD was screened for interferences by temperature, humidity, and organic and inorganic gases. Temperature effects were small in the range of 10°C to 30°C. Humidity effects were low between 20% and 90% RH. Ethylene (200 ppm) caused a positive interference and nitric oxide (50 ppm) caused a negative response without the presence of CO but not with CO.« less
Sampling scheme for pyrethroids on multiple surfaces on commercial aircrafts
MOHAN, KRISHNAN R.; WEISEL, CLIFFORD P.
2015-01-01
A wipe sampler for the collection of permethrin from soft and hard surfaces has been developed for use in aircraft. “Disinsection” or application of pesticides, predominantly pyrethrods, inside commercial aircraft is routinely required by some countries and is done on an as-needed basis by airlines resulting in potential pesticide dermal and inhalation exposures to the crew and passengers. A wipe method using filter paper and water was evaluated for both soft and hard aircraft surfaces. Permethrin was analyzed by GC/MS after its ultrasonication extraction from the sampling medium into hexane and volume reduction. Recoveries, based on spraying known levels of permethrin, were 80–100% from table trays, seat handles and rugs; and 40–50% from seat cushions. The wipe sampler is easy to use, requires minimum training, is compatible with the regulations on what can be brought through security for use on commercial aircraft, and readily adaptable for use in residential and other settings. PMID:19756041
Rendigs, Richard R.; Bothner, Michael H.
2004-01-01
This manual describes the operation and testing procedures for two models of a multi-port suspended sediment sampler that are moored in the coastal ocean and that collect samples on a programmable time schedule that can be interrupted to collect during a storm. The ability to sense and collect samples before, during, and after the height of a storm is a unique feature of these instruments because it provides samples during conditions when it is difficult or impossible to sample from a surface ship. The sensors used to trigger storm sampling are a transmissometer or a pressure sensor. The purpose of such samples is to assess composition and concentration of sediment resuspended from the seafloor during storms and subsequently transported within the coastal system. Both light transmission and the standard deviation of pressure from surface waves correlate with the passage of major storms. The instruments successfully identified the onset of storms and collected samples before, during, and after the storm maximum as programmed. The accuracy of determining suspended matter concentrations collected by the sediment sampler has not been fully evaluated. Preliminary laboratory tests using a suspension of muddy sediment collected in a near-bottom sediment trap yielded excellent results. However in laboratory tests with different sediment types, the suspended matter concentrations determined with these samplers became less accurate with increasing average grain size. Future calibration work is necessary and should be conducted in a facility that ideally has a water depth of at least 30 feet to prevent cavitation of the pump that draws sea water through the filters. The test facility should also have the capability for adding suspended matter of known composition and concentration to a fixed volume of seawater that is well mixed.
Pacholski, Andreas
2016-03-21
Agricultural ammonia (NH3) emissions (90% of total EU emissions) are responsible for about 45% airborne eutrophication, 31% soil acidification and 12% fine dust formation within the EU15. But NH3 emissions also mean a considerable loss of nutrients. Many studies on NH3 emission from organic and mineral fertilizer application have been performed in recent decades. Nevertheless, research related to NH3 emissions after application fertilizers is still limited in particular with respect to relationships to emissions, fertilizer type, site conditions and crop growth. Due to the variable response of crops to treatments, effects can only be validated in experimental designs including field replication for statistical testing. The dominating ammonia loss methods yielding quantitative emissions require large field areas, expensive equipment or current supply, which restricts their application in replicated field trials. This protocol describes a new methodology for the measurement of NH3 emissions on many plots linking a simple semi-quantitative measuring method used in all plots, with a quantitative method by simultaneous measurements using both methods on selected plots. As a semi-quantitative measurement method passive samplers are used. The second method is a dynamic chamber method (Dynamic Tube Method) to obtain a transfer quotient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg nitrogen ha(-1)). The principle underlying this approach is that passive samplers placed in a homogeneous experimental field have the same NH3 absorption behavior under identical environmental conditions. Therefore, a transfer co-efficient obtained from single passive samplers can be used to scale the values of all passive samplers used in the same field trial. The method proved valid under a wide range of experimental conditions and is recommended to be used under conditions with bare soil or small canopies (<0.3 m). Results obtained from experiments with taller plants should be treated more carefully.
Pacholski, Andreas
2016-01-01
Agricultural ammonia (NH3) emissions (90% of total EU emissions) are responsible for about 45% airborne eutrophication, 31% soil acidification and 12% fine dust formation within the EU15. But NH3 emissions also mean a considerable loss of nutrients. Many studies on NH3 emission from organic and mineral fertilizer application have been performed in recent decades. Nevertheless, research related to NH3 emissions after application fertilizers is still limited in particular with respect to relationships to emissions, fertilizer type, site conditions and crop growth. Due to the variable response of crops to treatments, effects can only be validated in experimental designs including field replication for statistical testing. The dominating ammonia loss methods yielding quantitative emissions require large field areas, expensive equipment or current supply, which restricts their application in replicated field trials. This protocol describes a new methodology for the measurement of NH3 emissions on many plots linking a simple semi-quantitative measuring method used in all plots, with a quantitative method by simultaneous measurements using both methods on selected plots. As a semi-quantitative measurement method passive samplers are used. The second method is a dynamic chamber method (Dynamic Tube Method) to obtain a transfer quotient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg nitrogen ha-1). The principle underlying this approach is that passive samplers placed in a homogeneous experimental field have the same NH3 absorption behavior under identical environmental conditions. Therefore, a transfer co-efficient obtained from single passive samplers can be used to scale the values of all passive samplers used in the same field trial. The method proved valid under a wide range of experimental conditions and is recommended to be used under conditions with bare soil or small canopies (<0.3 m). Results obtained from experiments with taller plants should be treated more carefully. PMID:27023010
Carlson, Jules C; Challis, Jonathan K; Hanson, Mark L; Wong, Charles S
2013-02-01
The stability of 24 chemicals, including pharmaceuticals and personal care products, and some agrochemicals on extraction media was evaluated by preloading them onto Oasis hydrophilic lipophilic balanced solid-phase extraction (SPE) cartridges and polar organic chemical integrative samplers (POCIS) followed by storage at -20°C over time. After 20 months, the average loss was 11% on POCIS, with only 2,4-dichlorophenoxyacetic acid, atrazine, chlorpyrifos, and gemfibrozil showing a statistically significant decline compared with initial concentrations. Losses on SPE cartridges were below 19%, with an average loss of 9%. In addition to laboratory spiked samples, multiple POCIS deployed in wastewater-impacted surface waters and SPE extracts of these waters were stored in their original coextracted matrix for nearly two years with minimal observed losses. Errors from typical sampling, handling, and concentration estimates from POCIS sampling rates were typically ± 15 to 30% relative standard deviation, so observed storage losses are minimal for most POCIS applications. While losses during storage on SPE cartridges for 20 months were small but statistically significant for many compounds, addition of labeled internal standards prior to freezing should correct for such losses. Thus, storage of processed water samples for analysis of polar organic pollutants is viable for archival purposes or studies for which samples cannot be analyzed in the short term. Copyright © 2012 SETAC.
Modular, multi-level groundwater sampler
Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.
1994-03-15
An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.
Church, Peter E.; Lyford, Forest P.; Clifford, Scott
2000-01-01
Volatile organic compounds are present in soils and ground water at the Centredale Manor Superfund Site in North Providence, Rhode Island. In September 1999, water-to-vapor diffusion samplers were placed in the bottom sediments of waterways adjacent to the site to identify possible contaminated ground-water discharge areas. The approximate12-acre site is a narrow stretch of land between the eastern bank of the Woonasquatucket River, downstream from the U.S. Route 44 bridge and a former mill raceway. The samplers were placed along a 2,250-foot reach of the Woonasquatucket River, in the former mill raceway several hundred feet to the east and parallel to the river, and in a cross channel between the river and former mill raceway. Volatile organic compounds were detected in 84 of the 104 water-to-vapor diffusion samplers retrieved. Trichloroethylene and tetrachloro-ethylene were the principal volatile organic compounds detected. The highest vapor concentrations measured for these two chemicals were from diffusion samplers located along an approximate 100-foot reach of the Woonasquatucket River about 500 feet downstream of the bridge; here trichloroethylene and tetrachloroethylene vapor concentrations ranged from about 2,000 to 180,000 and 1,600 to 1,400,000 parts per billion by volume, respectively. Upstream and downstream from this reach and along the former mill raceway, trichloroethylene and tetrachloroethylene vapor concentrations from the diffusion samples were generally less than 100 parts per billion by volume. Along the lower reaches of the river and mill raceway, however, and in the cross channel, vapor concentrations of trichloroethylene exceeded 100 parts per billion by volume and tetrachloroethylene exceeded 1,000 parts per billion by volume in several diffusion samples. Although diffusion sample vapor concentrations are higher than water concentrations in surface waters and in ground water, and they should only be interpreted qualitatively as relative values, these values provide important information as to potential discharge areas of contaminants.
Masten Space Systems’ Completes Test of Surface Sampling Technology
2018-06-13
Honeybee Robotics in Pasadena, California, flight tested its pneumatic sampler collection system, PlanetVac, on Masten Space Systems’ Xodiac rocket on May 24, launching from Mojave, California, and landing to collect a sample of more than 320 grams of top soil from the surface of the desert floor. NASA Flight Opportunities program funded the test flight.
Surface ozone in the Lake Tahoe Basin
Joel D. Burley; Sandra Theiss; Andrzej Bytnerowicz; Alan Gertler; Susan Schilling; Barbara Zielinska
2015-01-01
Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50â55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of...
NASA Technical Reports Server (NTRS)
Hayne, G. S.; Hancock, D. W., III
1990-01-01
Range estimates from a radar altimeter have biases which are a function of the significant wave height (SWH) and the satellite attitude angle (AA). Based on results of prelaunch Geosat modeling and simulation, a correction for SWH and AA was already applied to the sea-surface height estimates from Geosat's production data processing. By fitting a detailed model radar return waveform to Geosat waveform sampler data, it is possible to provide independent estimates of the height bias, the SWH, and the AA. The waveform fitting has been carried out for 10-sec averages of Geosat waveform sampler data over a wide range of SWH and AA values. The results confirm that Geosat sea-surface-height correction is good to well within the original dm-level specification, but that an additional height correction can be made at the level of several cm.
Detection of the urban release of a bacillus anthracis simulant by air sampling.
Garza, Alexander G; Van Cuyk, Sheila M; Brown, Michael J; Omberg, Kristin M
2014-01-01
In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques.
Ging, Patricia B.
1999-01-01
Surface-water sampling protocols of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program specify samples for most properties and constituents to be collected manually in equal-width increments across a stream channel and composited for analysis. Single-point sampling with an automated sampler (autosampler) during storms was proposed in the upper part of the South-Central Texas NAWQA study unit, raising the question of whether property and constituent concentrations from automatically collected samples differ significantly from those in samples collected manually. Statistical (Wilcoxon signed-rank test) analyses of 3 to 16 paired concentrations for each of 26 properties and constituents from water samples collected using both methods at eight sites in the upper part of the study unit indicated that there were no significant differences in concentrations for dissolved constituents, other than calcium and organic carbon.
Influence of In-Well Convection on Well Sampling
Vroblesky, Don A.; Casey, Clifton C.; Lowery, Mark A.
2006-01-01
Convective transport of dissolved oxygen (DO) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of DO to maintain oxygenated conditions in a well was diminished as ground-water exchange through the well screen increased and as oxygen demand increased. Convective flow did not transport oxygen to the screened interval when the screened interval was deeper than the range of the convective cell. The convective movement of water in wells has potential implications for passive, or no-purge, and low-flow sampling approaches. Transport of DO to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes, such as iron. Other potential consequences include mixing the screened-interval water with casing water and potentially allowing volatilization loss at the water surface. A field test of diffusion samplers in a convecting well during the winter, however, showed good agreement of chlorinated solvent concentrations with pumped samples, indicating that there was no negative impact of the convection on the utility of the samplers to collect volatile organic compound concentrations in that well. In the cases of low-flow sampling, convective circulation can cause the pumped sample to be a mixture of casing water and aquifer water. This can substantially increase the equilibration time of oxygen as an indicator parameter and can give false indications of the redox state. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple baffle systems.
2015-09-30
ocean surface. It is ideal for studying fronts, river plumes, near-‐surface phenomena like ice-‐ melt or rain puddles, air...regions too dangerous for manned craft (like near glacier faces), and for interpreting the undersea structure of satellite
McEwan, T.E.
1995-11-28
A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.
McEwan, Thomas E.
1995-01-01
A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.
Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and integrated sampler system for use on mobile applications including tethered balloons ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Christopher A.; Martinez, Alonzo; McNamara, Bruce K.
International Atom Energy Agency (IAEA) safeguard verification measures in gaseous centrifuge enrichment plants (GCEPs) rely on environmental sampling, non-destructive assay (NDA), and destructive assay (DA) sampling and analysis to determine uranium enrichment. UF6 bias defect measurements are made by DA sampling and analysis to assure that enrichment is consistent with declarations. DA samples are collected from a limited number of cylinders for high precision, offsite mass spectrometer analysis. Samples are typically drawn from a sampling tap into a UF6 sample bottle, then packaged, sealed, and shipped under IAEA chain of custody to an offsite analytical laboratory. Future DA safeguard measuresmore » may require improvements in efficiency and effectiveness as GCEP capacities increase and UF6 shipping regulations become increasingly more restrictive. The Pacific Northwest National Laboratory (PNNL) DA sampler concept and Laser Ablation Absorption Ratio Spectrometry (LAARS) assay method are under development to potentially provide DA safeguard tools that increase inspection effectiveness and reduce sample shipping constraints. The PNNL DA sampler concept uses a handheld sampler to collect DA samples for either onsite LAARS assay or offsite laboratory analysis. The DA sampler design will use a small sampling planchet that is coated with an adsorptive film to collect controlled quantities of UF6 gas directly from a cylinder or process sampling tap. Development efforts are currently underway at PNNL to enhance LAARS assay performance to allow high-precision onsite bias defect measurements. In this paper, we report on the experimental investigation to develop adsorptive films for the PNNL DA sampler concept. These films are intended to efficiently capture UF6 and then stabilize the collected DA sample prior to onsite LAARS or offsite laboratory analysis. Several porous material composite films were investigated, including a film designed to maximize the chemical adsorption and binding of gaseous UF6 onto the sampling planchet.« less
Dynamic Event Tree advancements and control logic improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego
The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been donemore » in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the input space characterized by epistemic uncertainties. The consequent Dynamic Event Tree performs the exploration of the aleatory space. In the RAVEN code, a more general approach has been developed, not limiting the exploration of the epistemic space through a Monte Carlo method but using all the forward sampling strategies RAVEN currently employs. The user can combine a Latin Hyper Cube, Grid, Stratified and Monte Carlo sampling in order to explore the epistemic space, without any limitation. From this pre-sampling, the Dynamic Event Tree sampler starts its aleatory space exploration. As reported by the authors, the Dynamic Event Tree is a good fit to develop a goal-oriented sampling strategy. The DET is used to drive a Limit Surface search. The methodology that has been developed by the authors last year, performs a Limit Surface search in the aleatory space only. This report documents how this approach has been extended in order to consider the epistemic space interacting with the Hybrid Dynamic Event Tree methodology.« less
Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.
2011-01-01
Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio
Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.
Patts, Justin R; Barone, Teresa L
2017-05-01
Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over "off-the-shelf" sampling cassettes.
Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section
Patts, Justin R.; Barone, Teresa L.
2017-01-01
Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over “off-the-shelf” sampling cassettes. PMID:27792474
Services provided in support of the planetary quarantine requirements
NASA Technical Reports Server (NTRS)
Favero, M. S.
1972-01-01
Results are presented of laboratory experiments conducted on the thermal resistance of naturally occurring airborne spores and microbiological examinations of space hardware using long-term slit samplers and rodac plate and swab-rinse methods of sampling environmental surfaces.
Wakata prepares for Surface Sample Kit (SSK) Collection/Incubation
2009-04-29
ISS019-E-012393 (29 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, is pictured near a Microbial Air Sampler floating freely in the Kibo laboratory of the International Space Station.
PASSIVE/DIFFUSIVE SAMPLERS FOR PESTICIDES IN RESIDENTIAL INDOOR AIR
Pesticides applied indoors vaporize from treated surfaces (e.g., carpets and baseboards) resulting in elevated air concentrations that may persist for long periods after applications. Estimating long-term respiratory exposures to pesticide vapors in residential indoor environme...
NASA Astrophysics Data System (ADS)
Markovic, Milos Z.; Prokop, Sebastian; Staebler, Ralf M.; Liggio, John; Harner, Tom
2015-07-01
The particle infiltration efficiencies (PIE) of three passive and one active air samplers were evaluated under field conditions. A wide-range particle spectrometer operating in the 250-4140 nm range was used to acquire highly temporally resolved particle-number and size distributions for the different samplers compared to ambient air. Overall, three of the four evaluated samplers were able to acquire a representative sample of ambient particles with PIEs of 91.5 ± 13.7% for the GAPS Network sampler, 103 ± 15.5% for the Lancaster University sampler, and 89.6 ± 13.4% for a conventional PS-1 high-volume active air sampler (Hi-Vol). Significantly (p = 0.05) lower PIE of 54 ± 8.0% was acquired for the passive sampler used under the MONET program. These findings inform the comparability and use of passive and active samplers for measuring particle-associated priority chemicals in air.
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above their method detection levels, but those that were detected were above the nondetection level. The same six locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. No metals that exceeded the Regional Screening Levels for Industrial Soils as classified by the U.S. Environmental Protection Agency were detected at any of the six Old Incinerator Area locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina. Because South Carolina is adjacent to Georgia and the soils in the coastal plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The only metal detected above the ambient background levels for South Carolina was barium. A surface-water sample collected from a tributary west and north of the Old Incinerator Area was analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). The only volatile organic and (or) semivolatile organic compound that was detected above the laboratory reporting level was toluene. The compounds 4-isopropyl-1-methylbenzene and isophorone were detected above the nondetection level but below the laboratory reporting level and were estimated. These compounds were detected at levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency National Primary Drinking Water Standard. Iron was the only inorganic compound detected in the surface-water sample that exceeded the maximum contaminant level set by the U.S. Environmental Protection Agency National Secondary Drinking Water Standard. No other inorganic compounds exceeded the maximum contaminant levels for the U.S. Environmental Protection Agency National Primary Drinking Water Standard, National Secondary Drinking Water Standard, or the Georgia In-Stream Water Quality Standard.
Incremental soil sampling root water uptake, or be great through others
USDA-ARS?s Scientific Manuscript database
Ray Allmaras pursued several research topics in relation to residue and tillage research. He looked for new tools to help explain soil responses to tillage, including disk permeameters and image analysis. The incremental sampler developed by Pikul and Allmaras allowed small-depth increment, volumetr...
Wang, Yan; Luo, Chunling; Wang, Shaorui; Liu, Junwen; Pan, Suhong; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong
2015-01-06
Rice, one of the most widely cultivated crops, has received great attention in contaminant uptake from soil and air, especially for the special approaches used for its cultivation. The dry-wet alternation method can influence the air-soil partitioning of semivolatile organic compounds (SVOCs) in the paddy ecosystem. Here, we modified a fugacity sampler to investigate the air-surface in situ partitioning of ubiquitous polycyclic aromatic hydrocarbons (PAHs) at different growth stages in a suburban paddy field in South China. The canopy of rice can form a closed space, which acts like a chamber that can force the air under the canopy to equilibrate with the field surface. When we compared the fugacities calculated using a fugacity model of the partition coefficients to the measured fugacities, we observed similar trends in the variation, but significantly different values between different growing stages, especially during the flooding stages. However, the measured and calculated fugacity fractions were comparable when uncertainties in our calculations were considered, with the exception of the high molecular weight (HMW) PAHs. The measured fugacity fractions suggested that the HMW PAHs were also closed to equilibrium between the paddy field and atmosphere. The modified fugacity sampler provided a novel way of accurately determining the in situ air-soil partitioning of SVOCs in a wet paddy field.
Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Stephanie J.; Sams, Terry L.
Full text - Long Abstract. A routine video inspection of the annulus region of double-shell tank 241-A Y-102 in August of 2012 indicated the presence material in the annulus space between the primary and secondary liners. A comparison was made to previous inspections performed in 2006 and 2007. which indicated that a change had occurred. The material was observed at two locations on the floor of the annulus and one location at the top of the annulus region where the primary and secondary top knuckles meet (RPP-ASMT-53793). Subsequent inspections were performed. leading to additional material observed on the floor ofmore » the annulus space in a region that had not previously been inspected (WRPS-PER-2012-1363). The annulus Continuous Air Monitor (CAM) was still operational and was not indicating elevated radiation levels in the annulus region. When the camera from the inspections was recovered. it also did not indicate increased radiation above minimum contamination levels (WRPS-PER-2012-1363). A formal leak assessment team was established August 10, 2012 to review tank 241-AY-102 construction and operating histories and to determine whether the material observed in the annulus had resulted from a leak in the primary tank. The team consisted of individuals from Engineering. Base Operations and Environmental Protection. As this was a first-of-its-kind task. a method for obtaining a sample of the material in the annulus was needed. The consistency of the material was unknown.and the location of a majority of the material was not conducive to using the sampling devices that were currently available at Hanford. A subcontractor was tasked with the development fabrication.and testing of a sampling device that would be able to obtain multiple samples from the material on the annulus floor. as well as the material originating from a refractory air-slot near the floor of the annulus space. This sampler would need to be able to collect and dispense the material it collected into a sample jar retrieval device for transportation of the material to the 222-S laboratory on the Hanford site for analysis. The subcontractor agency fabricated a remote underground sampler by modifying off-the-shelf robotics and parts. Limited testing of the sampler was conducted using a mock-up of the tank annulus and one simulated material type -a salt block. The mock-up testing indicated that the sampler would be able to maneuver within the confined space and that the device worked with full functionality. A total of six weeks had passed from initiation to implementation of the new sampler in the 241-AY-102 tank annulus. Initial sample material was obtained from the annulus floor using the Off-Riser Sampler System that has been used at Hanford tor years to obtain material from the primary tanks. This could be used at the location near Riser 83 since the material was collected directly from the annulus floor and not from a location on the wall or behind a pipe, as was needed from the two locations near Riser 90. After obtaining a small sample of the material on the annulus floor.this sampler sustained terminal damage due to conduit pipes it had to transverse in order to collect and recover material from this location. Several issues were also encountered during deployment of the new sampler into the annulus near Riser 90. These included: Difficulty fitting the sampler down the 12-inch riser into the annulus due to a small tolerance in the size of the sampler; Failure of sampler components and functions during deployment including the camera. pneumatics.and bearing seals; Delays in the field due to supporting equipment issues including cables. cameras. and scaffolding; and, Low recovery of sample material obtained for analysis. The complications that occurred during deployment and use of the new sampler during the sampling event ultimately resulted in lower recovery of material from these locations in the annulus than was obtained using the Off-Riser Sampler System and limited the analyses that could be performed for determining the origin of the material. Following completion of the sample analyses and the assessment of its construction history and use. there was a consensus among the leak assessment team members that two of the three materials sampled from the annulus floor region were the result of waste leaking from a breach in the primary tank. The probable leak cause was identified as corrosion at high temperatures in a tank whose containment margins had been reduced due to construction difficulties (RPP-ASMT-53793). A formal Lessons Learned was created concerning designing equipment tor unique purposes under time constraints. This document was published in OPEXShare on May 20. 2013. It highlighted some of the issues that arose with the subcontractor sampler development and provided recommendations to prevent a recurrence should this task need to be performed again in the future. The document can be found at http://msa.hanford.gov/opex/lesson.cfm/2013/5/20/3481/AY-102-Annulus-Sampler-Designing-Equipment-for-Unique-Purposes-under-Time-Constraints/.« less
Rock pushing and sampling under rocks on Mars
Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.
1978-01-01
Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil from under a rock to the aqueous nutrient in the Gas Exchange instrument indicates that adsorbed water and hydrates play an important role in the oxidation potential of the soil. The rock surfaces are strong, because they did not scratch, chip or spall when the sampler pushed them. Fresh surfaces of soil and the undersides of rocks were exposed so that they could be imaged in color. A ledge of soil adhered to one rock that tilted, showing that a crust forms near the surface of Mars. The reason for low amounts of iron in the sampIes from under the rocks is not known at this time.
Installation Restoration Program. Phase II. Confirmation McClellan AFB, California. Volume 2.
1983-06-01
ARM SYSTE . Hazard Assesment Rating Methodology. HEAD. Height of the free surface of fluid above any point in a hydrau- lic...pest/herb/metals) previous sample was insuf- 1 gallon bottle ficient. Hydrocarbons were (GC/NS) on top of water surface , I VDA bottle about 1/2 inch... surface . Water became 1 quart polyeth- silty during bailing. Samples ylene bottle waere obtained using the glass/ (cyanide) Teflon sampler. Both the
U.S. Geological Survey Combined Well-Bore Flow and Depth-Dependent Water Sampler
Izbicki, John A.; Christensen, Allen H.; Hanson, Randall T.; Martin, Peter; Crawford, Steven M.; Smith, Gregory A.
1999-01-01
The U.S. Geological Survey has developed a combined well-bore flow and depth-dependent sample collection tool. It is suitable for use in existing production wells having limited access and clearances as small as 1 inch. The combination of well-bore flow and depth-dependent water-quality data is especially effective in assessing changes in aquifer properties and water quality with depth. These are direct measures of changes in well yield and ground-water quality with depth under actual operating conditions. Combinations of other geophysical tools capable of making these measurements, such as vertical-axis current meters used with wire-line samplers, are commercially available but these tools are large and can not easily enter existing production wells.
Releasable Asbestos Field Sampler
Asbestos aerosolization (or releasability) is the potential for fibrous asbestos structures that are present in a material or on a solid surface to become airborne when the source is disturbed by human activities or natural forces. In turn, the magnitude of the airborne concentra...
Savoie, Jennifer G.; LeBlanc, Denis R.
2012-01-01
Field tests were conducted near the Impact Area at Camp Edwards on the Massachusetts Military Reservation, Cape Cod, Massachusetts, to determine the utility of no-purge groundwater sampling for monitoring concentrations of ordnance-related explosive compounds and perchlorate in the sand and gravel aquifer. The no-purge methods included (1) a diffusion sampler constructed of rigid porous polyethylene, (2) a diffusion sampler constructed of regenerated-cellulose membrane, and (3) a tubular grab sampler (bailer) constructed of polyethylene film. In samples from 36 monitoring wells, concentrations of perchlorate (ClO4-), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the major contaminants of concern in the Impact Area, in the no-purge samples were compared to concentrations of these compounds in samples collected by low-flow pumped sampling with dedicated bladder pumps. The monitoring wells are constructed of 2- and 2.5-inch-diameter polyvinyl chloride pipe and have approximately 5- to 10-foot-long slotted screens. The no-purge samplers were left in place for 13-64 days to ensure that ambient groundwater flow had flushed the well screen and concentrations in the screen represented water in the adjacent formation. The sampling methods were compared first in six monitoring wells. Concentrations of ClO4-, RDX, and HMX in water samples collected by the three no-purge sampling methods and low-flow pumped sampling were in close agreement for all six monitoring wells. There is no evidence of a systematic bias in the concentration differences among the methods on the basis of type of sampling device, type of contaminant, or order in which the no-purge samplers were tested. A subsequent examination of vertical variations in concentrations of ClO4- in the 10-foot-long screens of six wells by using rigid porous polyethylene diffusion samplers indicated that concentrations in a given well varied by less than 15 percent and the small variations were unlikely to affect the utility of the various sampling methods. The grab sampler was selected for additional tests in 29 of the 36 monitoring wells used during the study. Concentrations of ClO4-, RDX, HMX, and other minor explosive compounds in water samples collected by using a 1-liter grab sampler and low-flow pumped sampling were in close agreement in field tests in the 29 wells. A statistical analysis based on the sign test indicated that there was no bias in the concentration differences between the methods. There also was no evidence for a systematic bias in concentration differences between the methods related to location of the monitoring wells laterally or vertically in the groundwater-flow system. Field tests in five wells also demonstrated that sample collection by using a 2-liter grab sampler and sequential bailing with the 1-liter grab sampler were options for obtaining sufficient sample volume for replicate and spiked quality assurance and control samples. The evidence from the field tests supports the conclusion that diffusion sampling with the rigid porous polyethylene and regenerated-cellulose membranes and grab sampling with the polyethylene-film samplers provide comparable data on the concentrations of ordnance-related compounds in groundwater at the MMR to that obtained by low-flow pumped sampling. These sampling methods are useful methods for monitoring these compounds at the MMR and in similar hydrogeologic environments.
Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.
2003-01-01
During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.
The influence of geometry and draught shields on the performance of passive samplers.
Hofschreuder, P; van der Meulen, W; Heeres, P; Slanina, S
1999-04-01
Passive samplers provide an excellent opportunity to perform indicative measurements or establish a dense network of measuring sites. A drawback compared with conventional active measuring methods is the larger spread of results. This variation can, to a large extent, be attributed to the influence of temperature, sampler geometry and wind on sampling results. A proper design of sampler geometry and optimum choice of draught shield can reduce the influence of wind velocity on a badge type sampler to less than 10%. Wire mesh screens prove to be inadequate in damping turbulence. Filters give good results. Attention should be paid to the size and isolation value of the walls of the sampler to prevent thermal updrafts occurring within the sampler. Tube type samplers are less influenced by wind, provided that turbulence is prevented from influencing diffusion within the sampler.
A simple pore water hydrogen diffusion syringe sampler
Vroblesky, D.A.; Chapelle, F.H.; Bradley, P.M.
2007-01-01
Molecular hydrogen (H2) is an important intermediate product and electron donor in microbial metabolism. Concentrations of dissolved H 2 are often diagnostic of the predominant terminal electron-accepting processes in ground water systems or aquatic sediments. H2 concentrations are routinely measured in ground water monitoring wells but are rarely measured in saturated aquatic sediments due to a lack of simple and practical sampling methods. This report describes the design and development (including laboratory and field testing) of a simple, syringe-based H 2 sampler in (1) saturated, riparian sediments, (2) surface water bed sediments, and (3) packed intervals of a fractured bedrock borehole that are inaccessible by standard pumped methods. ?? 2007 National Ground Water Association.
Attitude Surveys Document Sampler.
ERIC Educational Resources Information Center
Walker, Albert, Comp.
This packet presents results of a series of attitude surveys representing a variety of purposes, methods and defined publics. They range from a simple questionnaire prepared and mailed to a small group of key individuals by a public relations staff to scientifically derived surveys purchased from Louis Harris and Associates and other research…
ANNULAR IMPACTOR SAMPLING DEVICE
Tait, G.W.C.
1959-03-31
A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
Soil gas was assessed for contaminants in the building 310 underground storage tank area adjacent to the Dwight D. Eisenhower Army Medical Center at Ft. Gordon, Georgia, from October 2010 to September 2011. The assessment, which also included the detection of organic compounds in soil gas, provides environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon. Soil-gas samplers were deployed below land surface at 37 locations in the building 310 underground storage tank area. Soil-gas samplers were deployed in a grid pattern near the storage tank area as well as downslope of the tank area in the direction of groundwater flow toward an unnamed tributary to Butler Creek. Total petroleum hydrocarbons were detected in 35 of the 37 soil-gas samplers at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylenes were detected above their detection levels in 8 of the 37 samplers. In addition, the combined masses of undecane, tridecane, and pentadecane were detected at or above their method detection levels in 9 of the 37 samplers. Other volatile organic compounds detected above their respective method detection levels were chloroform, 1,2,4-trimethylbenzene, and perchloroethylene. In addition, naphthalene, 2-methyl naphthalene, and 1,2,4-trimethylbenzene were detected below the method detection levels, but above the nondetection level.
Wang, Yan; Luo, Chunling; Wang, Shaorui; Cheng, Zhineng; Li, Jun; Zhang, Gan
2016-08-16
The recycling of e-waste has attracted significant attention due to emissions of polychlorinated biphenyls (PCBs) and other contaminants into the environment. We measured PCB concentrations in surface soils, air equilibrated with the soil, and air at 1.5-m height using a fugacity sampler in an abandoned electronic waste (e-waste) recycling site in South China. The total concentrations of PCBs in the soils were 39.8-940 ng/g, whereas the concentrations in air equilibrated with the soil and air at 1.5 m height were 487-8280 pg/m(3) and 287-7380 pg/m(3), respectively. The PCB concentrations displayed seasonal variation; they were higher in winter in the soils and higher in summer in the air, indicating that the emission of PCBs from the soil was enhanced during hot seasons for the relatively high temperature or additional sources, especially for low-chlorinated PCBs. We compared two methods (traditional fugacity model and fugacity sampler) for assessing the soil-air partition coefficients (Ksa) and the fugacity fractions of PCBs. The results suggested that the fugacity sampler provided more instructive and practical estimation on Ksa values and trends in air-soil exchange, especially for low-chlorinated PCBs. The abandoned e-waste burning site still acted as a significant source of PCBs many years after the prohibition on open burning.
Amdany, Robert; Chimuka, Luke; Cukrowska, Ewa; Kukučka, Petr; Kohoutek, Jiří; Tölgyessy, Peter; Vrana, Branislav
2014-09-01
In this study, the semipermeable membrane device (SPMD) passive samplers were used to determine freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in selected water bodies situated in and around Johannesburg City, South Africa. The devices were deployed for 14 days at each sampling site in spring and summer of 2011. Time weighted average (TWA) concentrations of the water-borne contaminants were calculated from the amounts of analytes accumulated in the passive samplers. In the area of interest, concentrations of analytes in water ranged from 33.5 to 126.8 ng l(-1) for PAHs, from 20.9 to 120.9 pg l(-1) for PCBs and from 0.2 to 36.9 ng l(-1) for OCPs. Chlorinated pesticides were mainly composed of hexachlorocyclohexanes (HCHs) (0.15-36.9 ng l(-1)) and dichlorodiphenyltrichloromethane (DDT) with its metabolites (0.03-0.55 ng l(-1)). By applying diagnostic ratios of certain PAHs, identification of possible sources of the contaminants in the various sampling sites was performed. These ratios were generally inclined towards pyrogenic sources of pollution by PAHs in all study sites except in the Centurion River (CR), Centurion Lake (CL) and Airport River (AUP) that indicated petrogenic origins. This study highlights further need to map up the temporal and spatial variations of these POPs using passive samplers.
A modified siphon sampler for shallow water
Diehl, Timothy H.
2008-01-01
A modified siphon sampler (or 'single-stage sampler') was developed to sample shallow water at closely spaced vertical intervals. The modified design uses horizontal rather than vertical sample bottles. Previous siphon samplers are limited to water about 20 centimeters (cm) or more in depth; the modified design can sample water 10 cm deep. Several mounting options were used to deploy the modified siphon sampler in shallow bedrock streams of Middle Tennessee, while minimizing alteration of the stream bed. Sampling characteristics and limitations of the modified design are similar to those of the original design. Testing showed that the modified sampler collects unbiased samples of suspended silt and clay. Similarity of the intake to the original siphon sampler suggests that the modified sampler would probably take downward-biased samples of suspended sand. Like other siphon samplers, it does not sample isokinetically, and the efficiency of sand sampling can be expected to change with flow velocity. The sampler needs to be located in the main flow of the stream, and is subject to damage from rapid flow and floating debris. Water traps were added to the air vents to detect the flow of water through the sampler, which can cause a strong upward bias in sampled suspended-sediment concentration. Water did flow through the sampler, in some cases even when the top of the air vent remained above water. Air vents need to be extended well above maximum water level to prevent flow through the sampler.
43 CFR 3430.4-4 - Environmental costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and analyzing baseline data on surface water quality and quantity (collecting and analyzing samples...). (2) Groundwater—costs of collecting and analyzing baseline data on groundwater quality and quantity... analyzing baseline air quality data (purchasing rain, air direction, and wind guages and air samplers and...
43 CFR 3430.4-4 - Environmental costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and analyzing baseline data on surface water quality and quantity (collecting and analyzing samples...). (2) Groundwater—costs of collecting and analyzing baseline data on groundwater quality and quantity... analyzing baseline air quality data (purchasing rain, air direction, and wind guages and air samplers and...
43 CFR 3430.4-4 - Environmental costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and analyzing baseline data on surface water quality and quantity (collecting and analyzing samples...). (2) Groundwater—costs of collecting and analyzing baseline data on groundwater quality and quantity... analyzing baseline air quality data (purchasing rain, air direction, and wind guages and air samplers and...
43 CFR 3430.4-4 - Environmental costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and analyzing baseline data on surface water quality and quantity (collecting and analyzing samples...). (2) Groundwater—costs of collecting and analyzing baseline data on groundwater quality and quantity... analyzing baseline air quality data (purchasing rain, air direction, and wind guages and air samplers and...
Martian dust storms witnessed by Viking Lander 1
NASA Technical Reports Server (NTRS)
Moore, H. J.; Guinness, R. E. A.
1984-01-01
Viking Lander 1 observations on Mars were punctuated by a strong local dust storm after two martian years of mild wind conditions. Tens of micrometers of dust settled to the surface during global dust storms of the first two falls and winters; some of this dust was locally removed during the second year. A late winter local dust storm of the first year caused little or no erosion of the surface materials despite wind speeds of 25 to 30 m/s. The strong local dust storm occurred during late winter of the third martian year. Winds of this storm altered and demolished small conical piles of surface materials constructed at the onset the first winter, removed 4 to 5 mm size fragments, displaced centimeter size fragments, destroyed clouds in areas disrupted by the sampler and footpad, eroded impact pits, and darkened the sky. Movement of erosional products and tiny wind tails indicate easterly to northeasterly winds. If the 4 to 5 mm size fragments were entrained and removd by the wind, threshold friction speeds near 3 to 5 m/s would have been required for the atmospheric temperatures and pressures that prevailed during the late winter of the third year.
50 CFR 697.12 - At-sea sea sampler/observer coverage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false At-sea sea sampler/observer coverage. 697... MANAGEMENT General Provisions § 697.12 At-sea sea sampler/observer coverage. (a) The Regional Administrator...-approved sea sampler/observer. If requested by the Regional Administrator to carry a sea sampler/observer...
50 CFR 697.12 - At-sea sea sampler/observer coverage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false At-sea sea sampler/observer coverage. 697... MANAGEMENT General Provisions § 697.12 At-sea sea sampler/observer coverage. (a) The Regional Administrator...-approved sea sampler/observer. If requested by the Regional Administrator to carry a sea sampler/observer...
50 CFR 697.12 - At-sea sea sampler/observer coverage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false At-sea sea sampler/observer coverage. 697... MANAGEMENT General Provisions § 697.12 At-sea sea sampler/observer coverage. (a) The Regional Administrator...-approved sea sampler/observer. If requested by the Regional Administrator to carry a sea sampler/observer...
7 CFR 61.30 - Examination of sampler.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Examination of sampler. 61.30 Section 61.30... Cottonseed Samplers § 61.30 Examination of sampler. Each applicant for a license as a sampler and each... examination or test to show his ability properly to perform the duties for which he is applying for a license...
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Wu, Wenze; Uhde, Erik; Waag, Andreas; Peiner, Erwin
2015-05-01
Low-cost and low-power piezoresistive cantilever resonators with integrated electrothermal heaters are developed to support the sensing module enhancement of the second generation of handheld cantilever-based airborne nanoparticle (NP) detector (CANTOR-2). These sensors are used for direct-reading of exposure to carbon engineered nanoparticles (ENPs) at indoor workplaces. The cantilever structures having various shapes of free ends are created using silicon bulk micromachining technologies (i.e, rectangular, hammer-head, triangular, and U-shaped cantilevers). For a complete wearable CANTOR-2, all components of the proposed detector can be grouped into two main units depending on their packaging placements (i.e., the NP sampler head and the electronics mounted in a handy-format housing). In the NP sampler head, a miniaturized electrophoretic aerosol sampler and a resonant silicon cantilever mass sensor are employed to collect the ENPs from the air stream to the cantilever surfaces and measuring their mass concentration, respectively. After calibration, the detected ENP mass concentrations of CANTOR-2 show a standard deviation from fast mobility particle sizer (FMPS, TSI 3091) of 8-14%.
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
Soil-gas and groundwater assessments were conducted at the Gibson Road landfill in 201 to provide screening-level environmental contamination data to supplement the data collected during previous environmental studies at the landfill. Passive samplers were used in both assessments to detect volatile and semivolatile organic compounds and polycyclic aromatic hydrocarbons in soil gas and groundwater. A total of 56 passive samplers were deployed in the soil in late July and early August for the soil-gas assessment. Total petroleum hydrocarbons (TPH) were detected at masses greater than the method detection level of 0.02 microgram in all samplers and masses greater than 2.0 micrograms in 13 samplers. Three samplers located between the landfill and a nearby wetland had TPH masses greater than 20 micrograms. Diesel was detected in 28 of the 56 soil-gas samplers. Undecane, tridecane, and pentadecane were detected, but undecane was the most common diesel compound with 23 detections. Only five detections exceeded a combined diesel mass of 0.10 microgram, including the highest mass of 0.27 microgram near the wetland. Toluene was detected in only five passive samplers, including masses of 0.65 microgram near the wetland and 0.85 microgram on the southwestern side of the landfill. The only other gasoline-related compound detected was octane in two samplers. Naphthalene was detected in two samplers in the gully near the landfill and two samplers along the southwestern side of the landfill, but had masses less than or equal to 0.02 microgram. Six samplers located southeast of the landfill had detections of chlorinated compounds, including one perchloroethene detections (0.04 microgram) and five chloroform detections (0.05 to0.08 microgram). Passive samplers were deployed and recovered on August 8, 2011, in nine monitoring wells along the southwestern, southeastern and northeastern sides of the landfill and down gradient from the eastern corner of the landfill. Six of the nine samplers had TPH concentrations greater than 100 micrograms per liter. TPH concentrations declined from 320 micrograms per liter in a sampler near the landfill to 18 micrograms in a sampler near the wetland. Five of the samplers had detections of one or more diesel compounds but detections of individual diesel compounds had concentrations below a method detection level of 0.01 microgram per liter. Benzene was detected in three samplers and exceeded the national primary drinking-water standard of 5 micrograms per liter set by the U.S. Environmental Protection Agency. The concentrations of benzene, and therefore BTEX, were 6.1 micrograms per liter in the sampler near the eastern corner of the landfill, 27 micrograms per liter in the sampler near the wetland, and 37 micrograms per liter in the sampler at the southern corner of the landfill. Nonfuel-related compounds were detected in the four wells that are aligned between the eastern corner of the landfill and the wetland. The sampler deployed nearest the eastern corner of the landfill had the greatest number of detected organic compounds and had the only detections of two trimethylbenzene compounds, naphthalene, 2-methyl naphthalene, and 1,4-dichlorobenzene. The two up gradient samplers had the greatest number of chlorinated compounds with five compounds each, compared to detections of four compounds and one compound in the two down gradient samplers. All four samplers had detections of 1,1-dichloroethane which ranged from 42 to 1,300 micrograms per liter. Other detections of chlorinated compounds included trichloroethene, perchloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane and chloroform.
1975-02-01
Hayward orange- peel sampler and with a sampler developed by Mr. Robert E. Louden, formerly of the Corps of Engineers. The sampler developed by Mr. Louden...Experimental sampler. The other samples were taken with an orange peel sampler. TESTS 4. Tests were performed as follows: a. Volatile solids, chemical oxygen...diver using an orange peel sampler. It was taken with twelve other samples, all in glass Jars, anO. was received on 20 December 1971. TESTS 4. Tests
Vroblesky, D.A.; Robertson, J.F.
1996-01-01
Analysis of the vapor in passive vapor samplers retrieved from a streambed in fractured rock terrain implied that volatile organic carbon (VOC) discharge from ground water to surface water substantially increased following installation of a contaminant recovery well using air rotary drilling. The air rotary technique forced air into the aquifer near the stream. The injection produced an upward hydraulic gradient that appears to have transported water and contaminants from deeper parts of the aquifer through fractures into shallow parts of the aquifer. Once in the shallow flow regime, the contamination was transported to the stream, where it discharged during the next several weeks following well installation. After the recovery well was activated and began continuously pumping contaminated ground water to a treatment facility, the VOC concentrations in the stream bottom passive vapor samplers decreased to below detectable concentrations, suggesting that the withdrawal had captured the contaminated ground water that previously had discharged to the stream.
NASA Astrophysics Data System (ADS)
Bent, J. D.; Keeling, R. F.; Stephens, B. B.; Wofsy, S. C.; Daube, B. C.; Kort, E. A.; Pittman, J. V.; Jimenez-Pizarro, R.; Santoni, G.
2014-12-01
The atmospheric Ar/N2 ratio varies on a seasonal basis due to temperature-dependent solubility changes in the surface ocean. Low signal:noise ratios, limited vertical coverage, and sampler-sampler offsets have historically hampered characterization of vertical and inter-hemispheric gradients. We present data from the HIPPO Global campaign (2009-11) showing that Ar/N2 and interannually-detrended N2O correlate well in the lower stratosphere, suggesting that, as stratospheric air ages and loses N2O to photolysis and photo-oxidation, it also gradually loses argon to gravity as the heavier atom preferentially "rains out" of the air parcel. The HIPPO Ar/N2 data from the lower troposphere also resolve seasonal cycles in each hemisphere, as well as a gradient in the annual mean between hemispheres, with higher values in the southern hemisphere. The HIPPO cycles and inter-hemispheric gradient are in good agreement with data from surface stations.
Bergknut, Magnus; Laudon, Hjalmar; Jansson, Stina; Larsson, Anna; Gocht, Tilman; Wiberg, Karin
2011-06-01
The mass-balance between diffuse atmospheric deposition of organic pollutants, amount of pollutants retained by the terrestrial environment, and levels of pollutants released to surface stream waters was studied in a pristine northern boreal catchment. This was done by comparing the input of atmospheric deposition of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs with the amounts exported to surface waters. Two types of deposition samplers were used, equipped with a glass fibre thimble and an Amberlite sampler respectively. The measured fluxes showed clear seasonality, with most of the input and export occurring during winter and spring flood, respectively. The mass balance calculations indicates that the boreal landscape is an effective sink for PCDD/Fs and PCBs, as 96.0-99.9 % of received bulk deposition was retained, suggesting that organic pollutants will continue to impact stream water in the region for an extended period of time. Copyright © 2011 Elsevier Ltd. All rights reserved.
Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods
Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2010-01-01
Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.
NASA Astrophysics Data System (ADS)
Goossens, Dirk; Nolet, Corjan; Etyemezian, Vicken; Duarte-Campos, Leonardo; Bakker, Gerben; Riksen, Michel
2018-06-01
Five types of sediment samplers designed to measure aeolian sand transport were tested during a wind erosion event on the Sand Motor, an area on the west coast of the Netherlands prone to severe wind erosion. Each of the samplers operates on a different principle. The MWAC (Modified Wilson And Cooke) is a passive segmented trap. The modified Leatherman sampler is a passive vertically integrating trap. The Saltiphone is an acoustic sampler that registers grain impacts on a microphone. The Wenglor sampler is an optical sensor that detects particles as they pass through a laser beam. The SANTRI (Standalone AeoliaN Transport Real-time Instrument) detects particles travelling through an infrared beam, but in different channels each associated with a particular grain size spectrum. A procedure is presented to transform the data output, which is different for each sampler, to a common standard so that the samplers can be objectively compared and their relative efficiency calculated. Results show that the efficiency of the samplers is comparable despite the differences in operating principle and the instrumental and environmental uncertainties associated to working with particle samplers in field conditions. The ability of the samplers to register the temporal evolution of a wind erosion event is investigated. The strengths and weaknesses of the samplers are discussed. Some problems inherent to optical sensors are looked at in more detail. Finally, suggestions are made for further improvement of the samplers.
US EPA WINTER FLOUNDER PROJECTS AND OTHER WORK IN RHODE ISLAND SALT PONDS
We will briefly summarize selected EPA research in Rhode Island's salt ponds from 2000 through 2003. In one project, during the summer of 2000, we used a 1.75 m2 drop sampler to quantify populations of juvenile flatfishes and other small nekton in Ninigret Pond. Mean abundance ...
High-throughput liquid-absorption air-sampling apparatus and methods
Zaromb, Solomon
2000-01-01
A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.
Silicone wristbands as personal passive samplers.
O'Connell, Steven G; Kincl, Laurel D; Anderson, Kim A
2014-03-18
Active-sampling approaches are commonly used for personal monitoring, but are limited by energy usage and data that may not represent an individual's exposure or bioavailable concentrations. Current passive techniques often involve extensive preparation, or are developed for only a small number of targeted compounds. In this work, we present a novel application for measuring bioavailable exposure with silicone wristbands as personal passive samplers. Laboratory methodology affecting precleaning, infusion, and extraction were developed from commercially available silicone, and chromatographic background interference was reduced after solvent cleanup with good extraction efficiency (>96%). After finalizing laboratory methods, 49 compounds were sequestered during an ambient deployment which encompassed a diverse set of compounds including polycyclic aromatic hydrocarbons (PAHs), consumer products, personal care products, pesticides, phthalates, and other industrial compounds ranging in log K(ow) from -0.07 (caffeine) to 9.49 (tris(2-ethylhexyl) phosphate). In two hot asphalt occupational settings, silicone personal samplers sequestered 25 PAHs during 8- and 40-h exposures, as well as 2 oxygenated-PAHs (benzofluorenone and fluorenone) suggesting temporal sensitivity over a single work day or week (p < 0.05, power =0.85). Additionally, the amount of PAH sequestered differed between worksites (p < 0.05, power = 0.99), suggesting spatial sensitivity using this novel application.
Reevaluation of pollen quantitation by an automatic pollen counter.
Muradil, Mutarifu; Okamoto, Yoshitaka; Yonekura, Syuji; Chazono, Hideaki; Hisamitsu, Minako; Horiguchi, Shigetoshi; Hanazawa, Toyoyuki; Takahashi, Yukie; Yokota, Kunihiko; Okumura, Satoshi
2010-01-01
Accurate and detailed pollen monitoring is useful for selection of medication and for allergen avoidance in patients with allergic rhinitis. Burkard and Durham pollen samplers are commonly used, but are labor and time intensive. In contrast, automatic pollen counters allow simple real-time pollen counting; however, these instruments have difficulty in distinguishing pollen from small nonpollen airborne particles. Misidentification and underestimation rates for an automatic pollen counter were examined to improve the accuracy of the pollen count. The characteristics of the automatic pollen counter were determined in a chamber study with exposure to cedar pollens or soil grains. The cedar pollen counts were monitored in 2006 and 2007, and compared with those from a Durham sampler. The pollen counts from the automatic counter showed a good correlation (r > 0.7) with those from the Durham sampler when pollen dispersal was high, but a poor correlation (r < 0.5) when pollen dispersal was low. The new correction method, which took into account the misidentification and underestimation, improved this correlation to r > 0.7 during the pollen season. The accuracy of automatic pollen counting can be improved using a correction to include rates of underestimation and misidentification in a particular geographical area.
Airborne microorganisms associated with waste management and recovery: biomonitoring methodologies.
Coccia, Anna Maria; Gucci, Paola Margherita Bianca; Lacchetti, Ines; Paradiso, Rosa; Scaini, Federica
2010-01-01
This paper presents preliminary results from a year-long indoor bioaerosol monitoring performed in three working environments of a municipal composting facility treating green and organic waste. Composting, whereby organic matter is stabilized through aerobic decomposition, requires aeration, causing the dispersion of microbial particles (microorganisms and associated toxins). Waste can, therefore, become a potential source of biological hazard. Bioaerosol samples were collected on a monthly basis. Through a comparison of results obtained using two samplers - the Surface Air System DUO SAS 360 and the BioSampler - the study aimed at assessing the presence of biological pollutants, and at contributing to the definition of standard sampling methods for bioaerosols leading, eventually, to the establishment of exposure limits for these occupational pollutants.
Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.
Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun
2013-01-01
Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.
Evaluation of various soil water samplers for virological sampling.
Wang, D S; Lance, J C; Gerba, C P
1980-01-01
Two commercially available soil water samplers and a ceramic sampler constructed in our laboratories were evaluated for their ability to recover viruses from both tap water and secondary sewage effluent. The ceramic sampler consistently gave the best recoveries of viruses from water samples. Soil columns containing ceramic samplers at various depths provide a simple method for studying virus transport through sewage-contaminated soils. Images PMID:6247976
Miyajima, Kumiko; Suzuki, Yurika; Miki, Daisuke; Arai, Moeka; Arakawa, Takahiro; Shimomura, Hiroji; Shiba, Kiyoko; Mitsubayashi, Kohji
2014-06-01
Dermatophagoides farinae allergen (Der f1) is one of the most important indoor allergens associated with allergic diseases in humans. Mite allergen Der f1 is usually associated with particles of high molecular weight; thus, Der f1 is generally present in settled dust. However, a small quantity of Der f1 can be aerosolized and become an airborne component. Until now, a reliable method of detecting airborne Der f1 has not been developed. The aim of this study was to develop a fiber-optic chemifluorescent immunoassay for the detection of airborne Der f1. In this method, the Der f1 concentration measured on the basis of the intensity of fluorescence amplified by an enzymatic reaction between the labeled enzyme by a detection antibody and a fluorescent substrate. The measured Der f1 concentration was in the range from 0.49 to 250 ng/ml and a similar range was found by enzyme-linked immunosorbent assay (ELISA). This method was proved to be highly sensitive to Der f1 compared with other airborne allergens. For the implementation of airborne allergen measurement in a residential environment, a bioaerosol sampler was constructed. The airborne allergen generated by a nebulizer was conveyed to a newly sampler we developed for collecting airborne Der f1. The sampler was composed of polymethyl methacrylate (PMMA) cells for gas/liquid phases and some porous membranes which were sandwiched in between the two phases. Der f1 in air was collected by the sampler and measured using the fiber-optic immunoassay system. The concentration of Der f1 in aerosolized standards was in the range from 0.125 to 2.0 mg/m(3) and the collection rate of the device was approximately 0.2%. © 2013 Elsevier B.V. All rights reserved.
Neuraminidase as an enzymatic marker for detecting airborne Influenza virus and other viruses.
Turgeon, Nathalie; Toulouse, Marie-Josée; Ho, Jim; Li, Dongqing; Duchaine, Caroline
2017-02-01
Little information is available regarding the effectiveness of air samplers to collect viruses and regarding the effects of sampling processes on viral integrity. The neuraminidase enzyme is present on the surface of viruses that are of agricultural and medical importance. It has been demonstrated that viruses carrying this enzyme can be detected using commercial substrates without having to process the sample by methods such as RNA extraction. This project aims at evaluating the effects of 3 aerosol-sampling devices on the neuraminidase enzyme activity of airborne viruses. The purified neuraminidase enzymes from Clostridium perfringens, a strain of Influenza A (H1N1) virus, the FluMist influenza vaccine, and the Newcastle disease virus were used as models. The neuraminidase models were aerosolized in aerosol chambers and sampled with 3 different air samplers (SKC BioSampler, 3-piece cassettes with polycarbonate filters, and Coriolis μ) to assess the effect on neuraminidase enzyme activity. Our results demonstrated that Influenza virus and Newcastle disease virus neuraminidase enzymes are resistant to aerosolization and sampling with all air samplers tested. Moreover, we demonstrated that the enzymatic neuraminidase assay is as sensitive as RT-qPCR for detecting low concentrations of Influenza virus and Newcastle disease virus. Therefore, given the sensitivity of the assay and its compatibility with air sampling methods, viruses carrying the neuraminidase enzyme can be rapidly detected from air samples using neuraminidase activity assay without having to preprocess the samples.
Janssen, E.M.; Oen, A.M.; Luoma, S.N.; Luthy, R.G.
2011-01-01
Field-related influences on polychlorinated biphenyl (PCB) exposure were evaluated by employing caged deposit-feeders, Neanthes arenaceodentata, along with polyoxymethylene (POM) samplers using parallel in situ and ex situ bioassays with homogenized untreated or activated carbon (AC) amended sediment. The AC amendment achieved a remedial efficiency in reducing bioaccumulation by 90% in the laboratory and by 44% in the field transplants. In situ measurements showed that PCB uptake by POM samplers was greater for POM placed in the surface sediment compared with the underlying AC amendment, suggesting that tidal exchange of surrounding material with similar PCB availability as untreated sediment was redeposited in the cages. Polychlorinated biphenyls bioaccumulation with caged polychaetes from untreated sediment was half as large under field conditions compared with laboratory conditions. A biodynamic model was used to confirm and quantify the different processes that could have influenced these results. Three factors appeared most influential in the bioassays: AC amendment significantly reduces bioavailability under laboratory and field conditions; sediment deposition within test cages in the field partially masks the remedial benefit of underlying AC-amended sediment; and deposit-feeders exhibit less PCB uptake from untreated sediment when feeding is reduced. Ex situ and in situ experiments inevitably show some differences that are associated with measurement methods and effects of the environment. Parallel ex situ and in situ bioassays, passive sampler measurements, and quantifying important processes with a model can tease apart these field influences. ?? 2010 SETAC.
Forero, Luis Gabriel; Limay-Rios, Victor; Xue, Yingen; Schaafsma, Arthur
2017-12-01
Atmospheric emissions of neonicotinoid seed treatment insecticides as particulate matter in field crops occur mainly for two reasons: 1) due to abraded dust of treated seed generated during planting using vacuum planters, and 2) as a result of disturbances (tillage or wind events) in the surface of parental soils which release wind erodible soil-bound residues. In the present study, concentration and movement of neonicotinoids as particulate matter were quantified under real conditions using passive and active air samplers. Average neonicotinoid concentrations in Total Suspended Particulate (TSP) using passive samplers were 0.48 ng/cm 2 , trace, trace (LOD 0.80 and 0.04 ng/cm 2 for clothianidin and thiamethoxam, respectively), and using active samplers 16.22, 1.91 and 0.61 ng/m 3 during planting, tillage and wind events, respectively. There was a difference between events on total neonicotinoid concentration collected in particulate matter using either passive or active sampling. Distance of sampling from the source field during planting of treated seed had an effect on total neonicotinoid air concentration. However, during tillage distance did not present an effect on measured concentrations. Using hypothetical scenarios, values of contact exposure for a honey bee were estimated to be in the range from 1.1% to 36.4% of the reference contact LD 50 value of clothianidin of 44 ng/bee. Copyright © 2017 Elsevier Ltd. All rights reserved.
A wind tunnel test of newly developed personal bioaerosol samplers.
Su, Wei-Chung; Tolchinsky, Alexander D; Sigaev, Vladimir I; Cheng, Yung Sung
2012-07-01
In this study the performance of two newly developed personal bioaerosol samplers was evaluated. The two test samplers are cyclone-based personal samplers that incorporate a recirculating liquid film. The performance evaluations focused on the physical efficiencies that a personal bioaerosol sampler could provide, including aspiration, collection, and capture efficiencies. The evaluation tests were carried out in a wind tunnel, and the test personal samplers were mounted on the chest of a full-size manikin placed in the test chamber of the wind tunnel. Monodisperse fluorescent aerosols ranging from 0.5 to 20 microm were used to challenge the samplers. Two wind speeds of 0.5 and 2.0 m/sec were employed as the test wind speeds in this study. The test results indicated that the aspiration efficiency of the two test samplers closely agreed with the ACGIH inhalable convention within the size range of the test aerosols. The aspiration efficiency was found to be independent of the sampling orientation. The collection efficiency acquired from these two samplers showed that the 50% cutoff diameters were both around 0.6 microm. However the wall loss of these two test samplers increased as the aerosol size increased, and the wall loss of PAS-4 was considerably higher than that of PAS-5, especially in the aerosol size larger than 5 microm, which resulted in PAS-4 having a relatively lower capture efficiency than PAS-5. Overall, the PAS-5 is considered a better personal bioaerosol sampler than the PAS-4.
Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.
Li, Kejun
2011-11-15
In the present study, indoor and outdoor air samples were collected using four types of air samplers often used for airborne bacterial sampling. These air samplers included two solid impactors (BioStage and RCS), one liquid impinger (BioSampler), and one filter sampler with two kinds of filters (a gelatin and a cellulose acetate filter). The collected air samples were further processed to analyze the diversity and abundance of culturable bacteria and total bacteria through standard culture techniques, denaturing gradient gel electrophoresis (DGGE) fingerprinting and quantitative polymerase chain reaction (qPCR) analysis. The DGGE analysis indicated that the air samples collected using the BioStage and RCS samplers have higher culturable bacterial diversity, whereas the samples collected using the BioSampler and the cellulose acetate filter sampler have higher total bacterial diversity. To obtain more information on the sampled bacteria, some gel bands were excised and sequenced. In terms of sampling efficiency, results from the qPCR tests indicated that the collected total bacterial concentration was higher in samples collected using the BioSampler and the cellulose acetate filter sampler. In conclusion, the sampling bias and efficiency of four kinds of air sampling systems were compared in the present study and the two solid impactors were concluded to be comparatively efficient for culturable bacterial sampling, whereas the liquid impactor and the cellulose acetate filter sampler were efficient for total bacterial sampling. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluation of three portable samplers for monitoring airborne fungi
NASA Technical Reports Server (NTRS)
Mehta, S. K.; Mishra, S. K.; Pierson, D. L.
1996-01-01
Airborne fungi were monitored at five sample sites with the Burkard portable, the RCS Plus, and the SAS Super 90 air samplers; the Andersen 2-stage impactor was used for comparison. All samplers were calibrated before being used simultaneously to collect 100-liter samples at each site. The Andersen and Burkard samplers retrieved equivalent volumes of airborne fungi; the SAS Super 90 and RCS Plus measurements did not differ from each other but were significantly lower than those obtained with the Andersen or Burkard samplers. Total fungal counts correlated linearly with Cladosporium and Penicillium counts. Alternaria species, although present at all sites, did not correlate with total count or with amounts of any other fungal genera. Sampler and location significantly influenced fungal counts, but no interactions between samplers and locations were found.
Gaseous oxidized mercury (GOM) dry deposition measurements using aerodynamic surrogate surface passive samplers were collected in central and eastern Texas and eastern Oklahoma, from September 2011 to September 2012.The purpose of this study was to provide an initial characteriza...
Performance evaluation of a tailor-made passive sampler for monitoring of tropospheric ozone.
Ozden, Ozlem; Döğeroğlu, Tuncay
2012-09-01
This study presents the performance evaluation of a tailor-made passive sampler developed for the monitoring of tropospheric ozone. The performance of the passive sampler was tested in the field conditions in terms of accuracy, precision, blank values, detection limit, effects of some parameters such as sampling site characteristics and sampling period on the field blanks, self-consistency, experimental and theoretical uptake rates, shelf life and comparison with commercial passive samplers. There was an agreement (R (2) = 0.84) between the responses of passive sampler and the continuous automatic analyser. The accuracy of the sampler, expressed as percent relative error, was obtained lower than 15%. Method precision in terms of coefficient of variance for three simultaneously applied passive samplers was 12%. Sampler detection limit was 2.42 μg m(-3) for an exposure period of 1 week, and the sampler can be stored safely for a period of up to 8 weeks before exposure. Satisfactory self-consistency results showed that extended periods gave the same integrated response as a series of short-term samplers run side by side. The uptake rate of ozone was found to be 10.21 mL min(-1) in a very good agreement with the theoretical uptake rate (10.32 mL min(-1)). The results of the comparison study conducted against a commercially available diffusion tube (Gradko diffusion tube) showed a good linear relationship (R (2) = 0.93) between two passive samplers. The sampler seems suitable to be used in large-scale measurements of ozone where no data are available or the number of existing automated monitors is not sufficient.
Development Of An In Situ Passive Sampler For The Detection And Remediation of Explosive Compounds
2016-06-07
FINAL REPORT Development of an In Situ Passive Sampler for the Detection and Remediation of Explosive Compounds SERDP Project ER-2539 MAY 2016...DATES COVERED (From - To) 4/24/15 – 12/1/2016 4. TITLE AND SUBTITLE Development of an In Situ Passive Sampler for the Detection and Remediation of...SUBJECT TERMS Passive samplers, Ethylene vinyl acetate, EVA sampler, Munitions, Monitoring, Remediation , Marine, Sediments 16. SECURITY
Considerations for sampling inorganic constituents in ground water using diffusion samplers
Vroblesky, D.A.; Petkewich, M.D.; Campbell, T.R.; ,
2002-01-01
Data indicate that nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water from wells that closely correspond to concentrations obtained by low-flow sampling. Conservative solutes, such as chloride, can be sampled by filling the diffusion samplers with oxygenated water. The samplers should be filled with anaerobic water for sampling redoxsensitive solutes. Oxidation of iron within the samplers, either by using aerobic fill water or by in-well oxygenation events, can lead to erroneous iron concentrations. Lithologic and chemical heterogeneity and sampler placement depth can lead to differences between concentrations from diffusion samples and low-flow samples because of mixing during pumping. A disadvantage of regenerated cellulose dialysis samplers is that they can begin to biodegrade within the two weeks of deployment. Nylon-screen samplers buried beneath streambed sediment along the unnamed tributary in a discharge zone of arseniccontaminated ground water were useful in locating the specific discharge zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... proposed location and purpose of the activities, including: (1) Gravity and magneto-metric measurements; (2...) Sediment sampling of a limited nature using either core or grab samplers, and the specified diameter and...) Hydrographic and oceanographic measurements, including the setting of instruments; and (7) Small diameter core...
Code of Federal Regulations, 2011 CFR
2011-07-01
... proposed location and purpose of the activities, including: (1) Gravity and magneto-metric measurements; (2...) Sediment sampling of a limited nature using either core or grab samplers, and the specified diameter and...) Hydrographic and oceanographic measurements, including the setting of instruments; and (7) Small diameter core...
Energy storage considerations for a robotic Mars surface sampler
NASA Technical Reports Server (NTRS)
Odonnell, Patricia M.; Cataldo, Robert L.; Gonzalez-Sanabria, Olga D.
1988-01-01
A Mars Rover capable of obtaining surface samples will need a power system for motive power and to power scientific instrumentation. Several different power systems are considered along with a discussion of the location options. The weight and volume advantages of the different systems are described for a particular power profile. The conclusions are that a Mars Rover Sample Return Mission and Extended Mission can be accomplished utilizing photovoltaics and electrochemical storage.
7 CFR 801.5 - Tolerance for diverter-type mechanical samplers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerance for diverter-type mechanical samplers. 801.5 Section 801.5 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... mechanical samplers. The maintenance tolerance for diverter-type mechanical samplers (primary, or primary and...
2009-01-01
the rotating impactors were measured via spectroscopy and microscopy. The rotary impactors were colocated with an isokinetic air sampler for a total...diameter, and the 90% diameter (DV10 and DV90; ASTM 2004). For each replication, an isokinetic air sampler and rotary sampler operated simultaneously in the...working area of the dispersion tunnel. The isokinetic sampler (StaplexH Model TFIA High Volume Air Sampler, The Staplex Company, Brooklyn, NY) was
Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus.
Uhrbrand, K; Koponen, I K; Schultz, A C; Madsen, A M
2018-04-01
The aim of this study was to identify the most efficient sampling method for quantitative PCR-based detection of airborne human norovirus (NoV). A comparative experiment was conducted in an aerosol chamber using aerosolized murine norovirus (MNV) as a surrogate for NoV. Sampling was performed using a nylon (NY) filter in conjunction with four kinds of personal samplers: Gesamtstaubprobenahme sampler (GSP), Triplex-cyclone sampler (TC), 3-piece closed-faced Millipore cassette (3P) and a 2-stage NIOSH cyclone sampler (NIO). In addition, sampling was performed using the GSP sampler with four different filter types: NY, polycarbonate (PC), polytetrafluoroethylene (PTFE) and gelatine (GEL). The sampling efficiency of MNV was significantly influenced by both sampler and filter type. The GSP sampler was found to give significantly (P < 0·05) higher recovery of aerosolized MNV than 3P and NIO. A higher recovery was also found for GSP compared with TC, albeit not significantly. Finally, recovery of aerosolized MNV was significantly (P < 0·05) higher using NY than PC, PTFE and GEL filters. The GSP sampler combined with a nylon filter was found to be the best method for personal filter-based sampling of airborne NoV. The identification of a suitable NoV air sampler is an important step towards studying the association between exposure to airborne NoV and infection. © 2017 The Society for Applied Microbiology.
Witschger, O; Grinshpun, S A; Fauvel, S; Basso, G
2004-06-01
While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 micro m in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger than 10 micro m; its efficiency did not exceed 7% for particles of 40-100 micro m. The IOM Sampler facing the source was found to over-sample compared with the data obtained previously with a slowly rotating, freely suspended sampler in a low air movement environment. It was also found that the particle wall deposition in the IOM metallic cartridge was rather significant and particle size-dependent. For each sampler (IOM, Button and C25) the precision was characterized through the relative standard deviation (RSD) of the aerosol concentration obtained with identical samplers in a specific experiment. The average RSD was 14% for the IOM Sampler, 11% for the Button Sampler and 35% for the 25 mm filter cassette. A separate set of experiments, performed with the Simplified Torso showed that in very slowly moving air a personal sampler can be adequately evaluated even when it is not attached to a body but freely suspended (confirming the data reported previously).
NASA Astrophysics Data System (ADS)
Sabol, T. A.; Topping, D. J.; Griffiths, R. E.
2011-12-01
Accurate measurements of suspended-sediment concentration require suspended-sediment samplers to operate isokinetically with an intake-efficiency of 1.0 ± 0.10. Results from 1940s Federal Interagency Sedimentation Project (FISP) laboratory experiments show that when the intake efficiency does not equal 1.0, suspended-sediment samplers either under- or oversample sediment relative to water, leading to biases in suspended-sediment concentration. The majority of recent FISP sampler development and testing has been conducted under uniform flow conditions using flume and slack-water tow tests, with little testing in actual turbulent rivers. Recent work has focused on the hydraulic characteristics and intake efficiencies of these samplers, without field investigations of the accuracy of the suspended-sediment data collected with these samplers. When depth-integrating suspended-sediment samplers are deployed under the non-uniform and turbulent conditions that exist in rivers, multiple factors may contribute to departures from isokinetic sampling. This introduces errors into the suspended-sediment data that may not be predictable on the basis of flume and tow tests alone. This study (1) evaluates the intake efficiencies of the older US D-77 bag-type and newer, FISP-approved US D-96 samplers at multiple river cross sections under a range of flow conditions; (2) examines if water temperature and sampling duration explain measured differences in intake efficiency between samplers and between laboratory and field tests; (3) models and predicts the directions and magnitudes of errors in measured suspended-sand concentration; and (4) determines if the relative differences in suspended-sediment concentration in a variety of size classes are consistent with the differences expected on the basis of the 1940s FISP-laboratory experiments. Results indicate that under river conditions, the intake efficiency of the US D-96 sampler is superior to that of the US D-77 bag-type sampler and the overall performance of the US D-96 sampler is closer to the FISP-acceptable range of isokinetic operation. These results are in contrast with FISP-conducted flume tests that show that both the US D-77 bag-type and US D-96 samplers operate isokinetically in the laboratory. Our results show that a major problem with both samplers is the large time-dependent decrease in intake efficiency that likely arises from an inability of the filling bag to displace water in the flooded sampler cavity at the rate required for isokinetic sampling. Predicted errors in suspended-sand concentration measurements made with the US D-96 sampler are much smaller than those made with the US D-77 bag-type sampler, especially when the effects of water temperature and sampling duration are taken into account. Biases in the concentrations in each size class measured using the US D-77 bag-type relative to the US D-96 samplers are as expected and consistent with the results from the 1940s FISP laboratory experiments.
Cox, S.E.
2002-01-01
Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous-waste disposal. In addition, the results from the passive-diffusion samples may show that TCE concentrations are stratified across some screened intervals. The overall results of the limited test of passive-diffusion samplers at site SS-34N were similar to more detailed tests conducted at other contaminated sites across the country and indicate that further evaluation of the use of passive-diffusion samplers at McChord site SS-34N is warranted.
A Homemade Instrument for Collecting Soil Water From Porous Ceramic Cups
M. Dean Knighton; Dwight E. Streblow
1981-01-01
An efficient Ceramic-Cup Water Collection Instrument (CCWCI, "quickie") is described. Soil water collection from ceramic-cup samplers may require compositing by equal volume from distantly spaced samplers, or simultaneous water collection spaced samplers, or simultaneous water collection from closely spaced samplers without compositing. All collection must...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
40 CFR 86.519-90 - Constant volume sampler calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Constant volume sampler calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.519-90 Constant volume sampler calibration. (a) The CVS (Constant Volume Sampler) is calibrated using an accurate flowmeter and restrictor...
Residual indicator bacteria in autosampler tubing: a field and laboratory assessment.
Hathaway, J M; Hunt, W F; Guest, R M; McCarthy, D T
2014-01-01
Microbial contamination in surface waters has become a worldwide cause for concern. As efforts are made to reduce this contamination, monitoring is integral to documenting and evaluating water quality improvements. Autosamplers are beneficial in such monitoring efforts, as large data sets can be generated with minimized effort. The extent to which autosamplers can be utilized for microbial monitoring is largely unknown due to concerns over contamination. Strict sterilization regimes for components contacting the water being sampled are difficult, and sometimes logistically implausible, when utilizing autosamplers. Field experimentation showed contamination of fecal coliform in autosamplers to be more of a concern than that of Escherichia coli. Further study in a controlled laboratory environment suggested that tubing configuration has a significant effect on residual E. coli concentrations in sampler tubing. The amount of time that passed since the last sample was collected from a given sampler (antecedent dry weather period - DWP) tubing was also a significant factor. At a DWP of 7 days, little to no contamination was found. Thus, simple protocols such as providing positive drainage of tubing between sample events and programming samplers to include rinses will reduce concerns of contamination in autosamplers.
Sabol, Thomas A.; Topping, David J.
2013-01-01
Accurate measurements of suspended-sediment concentration require suspended-sediment samplers to operate isokinetically, within an intake-efficiency range of 1.0 ± 0.10, where intake efficiency is defined as the ratio of the velocity of the water through the sampler intake to the local ambient stream velocity. Local ambient stream velocity is defined as the velocity of the water in the river at the location of the nozzle, unaffected by the presence of the sampler. Results from Federal Interagency Sedimentation Project (FISP) laboratory experiments published in the early 1940s show that when the intake efficiency is less than 1.0, suspended-sediment samplers tend to oversample sediment relative to water, leading to potentially large positive biases in suspended-sediment concentration that are positively correlated with grain size. Conversely, these experiments show that, when the intake efficiency is greater than 1.0, suspended‑sediment samplers tend to undersample sediment relative to water, leading to smaller negative biases in suspended-sediment concentration that become slightly more negative as grain size increases. The majority of FISP sampler development and testing since the early 1990s has been conducted under highly uniform flow conditions via flume and slack-water tow tests, with relatively little work conducted under the greater levels of turbulence that exist in actual rivers. Additionally, all of this recent work has been focused on the hydraulic characteristics and intake efficiencies of these samplers, with no field investigations conducted on the accuracy of the suspended-sediment data collected with these samplers. When depth-integrating suspended-sediment samplers are deployed under the more nonuniform and turbulent conditions that exist in rivers, multiple factors may contribute to departures from isokinetic sampling, thus introducing errors into the suspended-sediment data collected by these samplers that may not be predictable on the basis of flume and tow tests alone. This study has three interrelated goals. First, the intake efficiencies of the older US D-77 bag-type and newer, FISP-approved US D-96-type1 depth-integrating suspended‑sediment samplers are evaluated at multiple cross‑sections under a range of actual-river conditions. The intake efficiencies measured in these actual-river tests are then compared to those previously measured in flume and tow tests. Second, other physical effects, mainly water temperature and the duration of sampling at a vertical, are examined to determine whether these effects can help explain observed differences in intake efficiency both between the two types of samplers and between the laboratory and field tests. Third, the signs and magnitudes of the likely errors in suspendedsand concentration in measurements made with both types of samplers are predicted based the intake efficiencies of these two types of depth-integrating samplers. Using the relative difference in isokinetic sampling observed between the US D-77 bag-type and D-96-type samplers during river tests, measured differences in suspended-sediment concentration in a variety of size classes were evaluated between paired equal-discharge-increment (EDI) and equal-width-increment (EWI) measurements made with these two types of samplers to determine whether these differences in concentration are consistent with the differences in concentrations expected on the basis of the 1940s FISP laboratory experiments. In addition, sequential single-vertical depth-integrated samples were collected (concurrent with velocity measurements) with the US D-96-type bag sampler and two different rigidcontainer samplers to evaluate whether the predicted errors in suspended-sand concentrations measured with the US D-96- type sampler are consistent with those expected on the basis of the 1940s FISP laboratory experiments. Results from our study indicate that the intake efficiency of the US D-96-type sampler is superior to that of the US D-77 bag-type sampler under actual-river conditions, with overall performance of the US D-96-type sampler being closer to, yet still typically below, the FISP-acceptable range of isokinetic operation. These results are in contrast to the results from FISP-conducted flume tests that showed that both the US D-77 bag-type and US D-96-type samplers sampled isokinetically in the laboratory. Results from our study indicate that the single largest problem with the behavior of both the US D-77 bag-type and the US D-96-type samplers under actual‑river conditions is that both samplers are prone to large time‑dependent decreases in intake efficiency as sampling duration increases. In the case of the US D-96-type sampler, this problem may be at least partially overcome by shortening the duration of sampling (or, instead, perhaps by a simple design improvement); in the case of the US D-77 bag-type sampler, although shortening the sampling duration improves the intake efficiency, it does not bring it into agreement with the FISP‑accepted range of isokinetic operation. The predicted errors in suspended-sand concentration in EDI or EWI measurements made with the US-96-type sampler are much smaller than those associated with EDI or EWI measurements made with the US D-77 bag-type sampler, especially when the results are corrected for the effects of water temperature and sampling duration. The bias in the concentration in each size class measured using the US D-77 bag-type relative to the concentration measured using the US D-96-type sampler behaves in a manner consistent with that expected on the basis of the observed differences in intake efficiency between the two samplers in conjunction with the results from the 1940s FISP laboratory experiments. In addition, the bias in the concentration in each size class measured using the US D-96‑type sampler relative to the concentration measured using the truly isokinetic rigid-container samplers is in excellent agreement with that predicted on the basis of the 1940s FISP laboratory experiments. Because suspended-sediment samplers can respond differently between laboratory and field conditions, actual-river tests such as those in this study should be conducted when models of suspended-sediment samplers are changed from one type to another during the course of long-term monitoring programs. Otherwise, potential large differences in the suspended-sediment data collected by different types of samplers would lead to large step changes in sediment loads that may be misinterpreted as real, when, in fact, they are associated with the change in suspended‑sediment sampling equipment.
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
Soil gas was assessed for contaminants at three former fuel-dispensing sites at Fort Gordon, Georgia, from October 2010 to September 2011. The assessment included delineation of organic contaminants using soil-gas samplers collected from the former fuel-dispensing sites at 8th Street, Chamberlain Avenue, and 12th Street. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers installed and retrieved during June and August 2011 at the 8th Street site had detections above the method detection level (MDL) for the mass of total petroleum hydrocarbons (TPH), benzene, toluene, ortho-xylene, undecane, tridecane, pentadecane, and chloroform. Total petroleum hydrocarbons soil-gas mass exceeded the MDL of 0.02 microgram in 54 of the 55 soil-gas samplers. The highest detection of TPH soil-gas mass was 146.10 micrograms, located in the central part of the site. Benzene mass exceeded the MDL of 0.01 microgram in 23 soil-gas samplers, whereas toluene was detected in only 10 soil-gas samplers. Ortho-xylene was detected above the MDL in only one soil-gas sampler. The highest soil-gas mass detected for undecane, tridecane, and pentadecane was located in the northeastern corner of the 8th Street site. Chloroform mass greater than the MDL of 0.01 microgram was detected in less than one-third of the soil-gas samplers. Soil-gas masses above the MDL were identified for TPH, gasoline-related compounds, diesel-range alkanes, trimethylbenzenes, naphthalene, 2-methyl-napthalene, octane, and tetrachloroethylene for the July 2011 soil-gas survey at the Chamberlain Avenue site. All 30 of the soil-gas samplers contained TPH mass above the MDL. The highest detection of TPH mass, 426.36 micrograms, was for a soil-gas sampler located near the northern boundary of the site. Gasoline-related compounds and diesel-range alkanes were detected in multiple soil-gas samplers, and the highest detections of these compounds were located near the central part of the site near existing, nonoperational, fuel-dispensing pumps. Trimethylbenzenes were detected in less than half of the soil-gas samplers. Naphthalene soil-gas mass was detected above the MDL in 10 soil-gas samplers, whereas 2-methyl-napthalene was detected above the MDL in half of the soil-gas samplers. Octane mass was detected above the MDL in one soil-gas sampler located near the central part of the site. Tetrachloroethylene soil-gas mass was detected above the MDL in more than half of the soil-gas samplers, and the highest tetrachloroethylene soil-gas mass of 0.90 microgram was located in the northeastern part of the site. Soil-gas samplers collected at the 12th Street site during July 2011 contained soil-gas mass above the MDL for TPH, toluene, undecane, tridecane, and pentadecane (diesel-range alkanes), trichloroethylene, 1,4-dichlorobenzene, chloroform, and 1,2,4-trimethylbenzene. The highest detected TPH mass was 24.37 micrograms in a soil-gas sampler located in the northern part of the site. The highest detection of toluene soil-gas mass was from a soil-gas sampler located near the southern boundary of the site. The diesel-range alkanes were detected above the MDL in five soil-gas samplers; the highest detection of soil-gas diesel mass, 0.65 microgram, was located in the southern part of the site. Trichloroethylene and 1,4-dichlorobenzene were detected above the MDL in the northern part of the site in one soil-gas sampler that also had one of the highest detections of TPH. Chloroform was detected above the MDL in three soil-gas samplers, whereas 1,2,4-trimethylbenzene soil-gas mass was detected above the MDL in two soil-gas samplers.
NASA Astrophysics Data System (ADS)
Gilhooly, W. P.; Macko, S. A.; Flemings, P. B.
2005-12-01
Pleistocene and Recent sediments within the Brazos-Trinity and Ursa Basins (northwestern Gulf of Mexico) were largely deposited by turbidity currents and have been deformed by a number of mass transport events. The geochemical composition of interstitial waters was determined in order to assess fluid flow within these sediments. Typical porewater sampling resolution, using advanced piston coring and the traditional Manheim squeezer technique, is approximately one sample every other core (20m) with the highest working resolution at one sample every 1.5m. In this study, Rhizon soil moisture samplers were used to attain high-resolution porewater profiles within sea floor surface sediments and for permeable sediments at depth. The small dimensions (2mm x 30mm) and pore-size (1μm) of the devices enable high-frequency placement within a core, specific targeting of the sequence of interest, and do not require sediment removal from the core, or filtering of extracted porewaters. Initial shipboard analyses derived from sediments at the Ursa Basin (Site 1322) indicate a linear decrease in salinity with depth at U1322 where the overpressure gradient is thought to be greatest. The less saline waters with depth lends evidence for potential mixing between deep-seated fluids and low salinity ones derived from the Blue Unit and seawater. Isotopic composition and concentrations of sulfur species (SO4 and H2S) dissolved in porewaters, as well as, ionic compositions (Cl, Na, K, Ca, Mg) and chemical composition of associated sediments (%C, %N, 13C, and 15N) are compared with chemical results obtained with squeezers.
21 CFR 884.1560 - Fetal blood sampler.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade and...
21 CFR 884.1560 - Fetal blood sampler.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade and...
21 CFR 884.1560 - Fetal blood sampler.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade and...
21 CFR 884.1560 - Fetal blood sampler.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade and...
21 CFR 884.1560 - Fetal blood sampler.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal blood sampler. 884.1560 Section 884.1560... § 884.1560 Fetal blood sampler. (a) Identification. A fetal blood sampler is a device used to obtain fetal blood transcervically through an endoscope by puncturing the fetal skin with a short blade and...
Student Sampler: Facts in Brief on North Carolina.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh.
This information sampler was compiled to assist students in their study of North Carolina. Every year North Carolina students must complete a special project on their state. The sampler was designed to introduce students to the people, places, and events that have shaped North Carolina's history. Topics in the sampler include state symbols,…
Evaluation of portable air samplers for monitoring airborne culturable bacteria
NASA Technical Reports Server (NTRS)
Mehta, S. K.; Bell-Robinson, D. M.; Groves, T. O.; Stetzenbach, L. D.; Pierson, D. L.
2000-01-01
Airborne culturable bacteria were monitored at five locations (three in an office/laboratory building and two in a private residence) in a series of experiments designed to compare the efficiency of four air samplers: the Andersen two-stage, Burkard portable, RCS Plus, and SAS Super 90 samplers. A total of 280 samples was collected. The four samplers were operated simultaneously, each sampling 100 L of air with collection on trypticase soy agar. The data were corrected by applying positive hole conversion factors for the Burkard portable, Andersen two-stage, and SAS Super 90 air samplers, and were expressed as log10 values prior to statistical analysis by analysis of variance. The Burkard portable air sampler retrieved the highest number of airborne culturable bacteria at four of the five sampling sites, followed by the SAS Super 90 and the Andersen two-stage impactor. The number of bacteria retrieved by the RCS Plus was significantly less than those retrieved by the other samplers. Among the predominant bacterial genera retrieved by all samplers were Staphylococcus, Bacillus, Corynebacterium, Micrococcus, and Streptococcus.
Evaluation of Bio-VOC Sampler for Analysis of Volatile Organic Compounds in Exhaled Breath
Kwak, Jae; Fan, Maomian; Harshman, Sean W.; Garrison, Catherine E.; Dershem, Victoria L.; Phillips, Jeffrey B.; Grigsby, Claude C.; Ott, Darrin K.
2014-01-01
Monitoring volatile organic compounds (VOCs) from exhaled breath has been used to determine exposures of humans to chemicals. Prior to analysis of VOCs, breath samples are often collected with canisters or bags and concentrated. The Bio-VOC breath sampler, a commercial sampling device, has been recently introduced to the market with growing use. The main advantage for this sampler is to collect the last portion of exhaled breath, which is more likely to represent the air deep in the lungs. However, information about the Bio-VOC sampler is somewhat limited. Therefore, we have thoroughly evaluated the sampler here. We determined the volume of the breath air collected in the sampler was approximately 88 mL. When sampling was repeated multiple times, with the succeeding exhalations applied to a single sorbent tube, we observed linear relationships between the normalized peak intensity and the number of repeated collections with the sampler in many of the breath VOCs detected. No moisture effect was observed on the Tenax sorbent tubes used. However, due to the limitation in the collection volume, the use of the Bio-VOC sampler is recommended only for detection of VOCs present at high concentrations unless repeated collections of breath samples on the sampler are conducted. PMID:25532709
A rotating bluff-body disc for reduced variability in wind tunnel aerosol studies.
Koehler, Kirsten A; Anthony, T Renee; van Dyke, Michael; Volckens, John
2011-01-01
A rotating bluff-body disc (RBD) was developed to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. The RBD is designed to rotate eight personal aerosol samplers around a circular path in a forward-facing plane aligned with the wind tunnel cross section. Rotation of the RBD allows each sampler to traverse an identical path about the wind tunnel cross section, which reduces the effects of spatial heterogeneity associated with dispersing supermicron aerosol in low-velocity wind tunnels. Samplers are positioned on the face of the RBD via sampling ports, which connect to an air manifold on the back of the disc. Flow through each sampler was controlled with a critical orifice or needle valve, allowing air to be drawn through the manifold with a single pump. A metal tube, attached to this manifold, serves as both the axis of rotation and the flow conduction path (between the samplers and the vacuum source). Validation of the RBD was performed with isokinetic samplers and 37-mm cassettes. For facing-the-wind tests, the rotation of the RBD significantly decreased intra-sampler variability when challenged with particle diameters from 1 to 100 μm. The RBD was then employed to determine the aspiration efficiency of Institute of Occupational Medicine (IOM) personal samplers under a facing-the-wind condition. Operation of IOM samplers on the RBD reduced the between-sampler variability for all particle sizes tested.
Field evaluation of personal sampling methods for multiple bioaerosols.
Wang, Chi-Hsun; Chen, Bean T; Han, Bor-Cheng; Liu, Andrew Chi-Yeu; Hung, Po-Chen; Chen, Chih-Yong; Chao, Hsing Jasmine
2015-01-01
Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.
Influence of item distribution pattern and abundance on efficiency of benthic core sampling
Behney, Adam C.; O'Shaughnessy, Ryan; Eichholz, Michael W.; Stafford, Joshua D.
2014-01-01
ore sampling is a commonly used method to estimate benthic item density, but little information exists about factors influencing the accuracy and time-efficiency of this method. We simulated core sampling in a Geographic Information System framework by generating points (benthic items) and polygons (core samplers) to assess how sample size (number of core samples), core sampler size (cm2), distribution of benthic items, and item density affected the bias and precision of estimates of density, the detection probability of items, and the time-costs. When items were distributed randomly versus clumped, bias decreased and precision increased with increasing sample size and increased slightly with increasing core sampler size. Bias and precision were only affected by benthic item density at very low values (500–1,000 items/m2). Detection probability (the probability of capturing ≥ 1 item in a core sample if it is available for sampling) was substantially greater when items were distributed randomly as opposed to clumped. Taking more small diameter core samples was always more time-efficient than taking fewer large diameter samples. We are unable to present a single, optimal sample size, but provide information for researchers and managers to derive optimal sample sizes dependent on their research goals and environmental conditions.
Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation.
Ding, Xinqiang; Vilseck, Jonah Z; Hayes, Ryan L; Brooks, Charles L
2017-06-13
λ-dynamics is a generalized ensemble method for alchemical free energy calculations. In traditional λ-dynamics, the alchemical switch variable λ is treated as a continuous variable ranging from 0 to 1 and an empirical estimator is utilized to approximate the free energy. In the present article, we describe an alternative formulation of λ-dynamics that utilizes the Gibbs sampler framework, which we call Gibbs sampler-based λ-dynamics (GSLD). GSLD, like traditional λ-dynamics, can be readily extended to calculate free energy differences between multiple ligands in one simulation. We also introduce a new free energy estimator, the Rao-Blackwell estimator (RBE), for use in conjunction with GSLD. Compared with the current empirical estimator, the advantage of RBE is that RBE is an unbiased estimator and its variance is usually smaller than the current empirical estimator. We also show that the multistate Bennett acceptance ratio equation or the unbinned weighted histogram analysis method equation can be derived using the RBE. We illustrate the use and performance of this new free energy computational framework by application to a simple harmonic system as well as relevant calculations of small molecule relative free energies of solvation and binding to a protein receptor. Our findings demonstrate consistent and improved performance compared with conventional alchemical free energy methods.
Silicone Wristbands as Personal Passive Samplers
2014-01-01
Active-sampling approaches are commonly used for personal monitoring, but are limited by energy usage and data that may not represent an individual’s exposure or bioavailable concentrations. Current passive techniques often involve extensive preparation, or are developed for only a small number of targeted compounds. In this work, we present a novel application for measuring bioavailable exposure with silicone wristbands as personal passive samplers. Laboratory methodology affecting precleaning, infusion, and extraction were developed from commercially available silicone, and chromatographic background interference was reduced after solvent cleanup with good extraction efficiency (>96%). After finalizing laboratory methods, 49 compounds were sequestered during an ambient deployment which encompassed a diverse set of compounds including polycyclic aromatic hydrocarbons (PAHs), consumer products, personal care products, pesticides, phthalates, and other industrial compounds ranging in log Kow from −0.07 (caffeine) to 9.49 (tris(2-ethylhexyl) phosphate). In two hot asphalt occupational settings, silicone personal samplers sequestered 25 PAHs during 8- and 40-h exposures, as well as 2 oxygenated-PAHs (benzofluorenone and fluorenone) suggesting temporal sensitivity over a single work day or week (p < 0.05, power =0.85). Additionally, the amount of PAH sequestered differed between worksites (p < 0.05, power = 0.99), suggesting spatial sensitivity using this novel application. PMID:24548134
Field comparison of air sampling methods for monomeric and polymeric 1,6-hexamethylene diisocyanate.
Thomasen, Jennifer M; Fent, Kenneth W; Reeb-Whitaker, Carolyn; Whittaker, Stephen G; Nylander-French, Leena A
2011-03-01
This study was to critically compared 13 different air samplers for their ability to monitor air exposures to monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI) in the automotive refinishing industry. Using both fast- and slow-drying clearcoat, we tested the following types of samplers: single- and dual-stage 37-mm polypropylene (PP) and polystyrene (PS) samplers (open- and closed-face), IOM (with plastic and stainless steel inserts), OSHA42, IsoChek, and WA-DOSH samplers. Midget impingers with frit were used as reference samplers. We observed the PP, PS, and IOM samplers to measure greater levels of HDI monomer and biuret when a fast-drying clearcoat was applied compared with a slow-drying clearcoat. When a slow-drying clearcoat was applied, the open-face PP and PS samplers measured significantly more monomeric and polymeric HDI (2-fold; p < 0.003) than the closed-face PP and PS samplers. We determined that significantly more monomeric and polymeric HDI were measured by impingers (1.3-1.9-fold) compared with single-stage PP/PS (N = 59), dual-stage PP/PS (N = 59), or IOM (N = 24) samplers. However, when stratified by cassette characteristics, the open-face single-stage PP and PS samplers performed equally to the impingers for HDI monomer when a fast-drying clearcoat was applied, and for all analytes when a slow-drying clearcoat was applied. Significantly higher HDI monomer concentrations (1.2-3.1-fold; p = 0.001) were measured with OSHA42 compared with the impinger. The IsoChek did not detect HDI monomer, and of the three samplers analyzed by laboratories other than UNC (i.e., OSHA42, IsoChek, and WA-DOSH), the WA-DOSH was in the best agreement with the impingers. The influence of clearcoat drying time on the sampler's ability to measure monomeric and polymeric HDI emphasizes the importance of the speciation of diisocyanates in chemical analysis and the careful consideration for the selection of the air sampler to be used when measuring exposures during automotive spray painting.
Field application of passive SBSE for the monitoring of pesticides in surface waters.
Assoumani, A; Coquery, M; Liger, L; Mazzella, N; Margoum, C
2015-03-01
Spot sampling lacks representativeness for monitoring organic contaminants in most surface waters. Passive sampling has emerged as a cost-effective complementary sampling technique. We recently developed passive stir bar sorptive extraction (passive SBSE), with Twister from Gerstel, for monitoring moderately hydrophilic to hydrophobic pesticides (2.18 < log K ow < 5.11) in surface water. The aims of the present study were to assess this new passive sampler for the determination of representative average concentrations and to evaluate the contamination levels of two French rivers. Passive SBSE was evaluated for the monitoring of 16 pesticides in two rivers located in a small vineyard watershed during two 1-month field campaigns in spring 2010 and spring 2011. Passive SBSE was applied for periods of 1 or 2 weeks during the field campaigns and compared with spot sampling and weekly average automated sampling. The results showed that passive SBSE could achieve better time-representativeness than spot sampling and lower limits of quantification than automated sampling coupled with analytical SBSE for the pesticides studied. Finally, passive SBSE proved useful for revealing spatial and temporal variations in pesticide contamination of both rivers and the impact of rainfall and runoff on the river water quality.
Gaseous oxidized mercury (GOM) dry deposition measurements using surrogate surface passive samplers were collected in the Four Corners area and eastern Oklahoma from August, 2009–August, 2011. Using data from a six site area network, a characterization of the magnitude and spatia...
USDA-ARS?s Scientific Manuscript database
The objective of this simulation study is to determine which sampling method (Cozzini core sampler, core drill shaving, and N-60 surface excision) will better detect Shiga Toxin-producing Escherichia coli (STEC) at varying levels of contamination when present in the meat. 1000 simulated experiments...
Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site
2013-01-01
Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473
Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun
2018-04-01
The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.
The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...
Development of a Novel Method for Temporal Analysis of Airborne Microbial Communities
NASA Astrophysics Data System (ADS)
Spring, A.; Domingue, K. D.; Mooney, M. M.; Kerber, T. V.; Lemmer, K. M.; Docherty, K. M.
2017-12-01
Microorganisms are ubiquitous in the atmosphere, which serves as an important vector for microbial dispersal to all terrestrial habitats. Very little is known about the mechanisms that control microbial dispersal, because sampling of airborne microbial communities beyond 2 m above the ground is limited. The goal of this study was to construct and test an airborne microbial sampling system to collect sufficient DNA for conducting next generation sequencing and microbial community analyses. The system we designed employs helium-filled helikites as a mechanism for launching samplers to various altitudes. The samplers use a passive collection dish system, weigh under 6 lbs and are operated by remote control from the ground. We conducted several troubleshooting experiments to test sampler functionality. We extracted DNA from sterile collection dish surfaces and examined communities using amplicons of the V4 region of 16S rRNA in bacteria using Illumina Mi-Seq. The results of these experiments demonstrate that the samplers we designed 1) remain decontaminated when closed and collect sufficient microbial biomass for DNA-based analyses when open for 6 hours; 2) are optimally decontaminated with 15 minutes of UV exposure; 3) require 8 collection dish surfaces to collect sufficient biomass. We also determined that DNA extraction conducted within 24 hours of collection has less of an impact on community composition than extraction after frozen storage. Using this sampling system, we collected samples from multiple altitudes in December 2016 and May 2017 at 3 sites in Kalamazoo and Pellston, Michigan. In Kalamazoo, areas sampled were primarily developed or agricultural, while in Pellston they were primarily forested. We observed significant differences between airborne bacterial communities collected at each location and time point. Additionally, bacterial communities did not differ with altitude, suggesting that terrestrial land use has an important influence on the upward distribution of bacteria. Proteobacteria were predominant in air samples from Kalamazoo, while Firmicutes were more prevalent in Pellston. Our results demonstrate that the sampling platform we designed is a useful tool for exploring ecological questions related to distribution of airborne microbial communities across a vertical transect.
A comparison of solids collected in sediment traps and automated water samplers
Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.
1996-01-01
Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.
Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.
1998-01-01
A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.
NASA Astrophysics Data System (ADS)
Bent, J. D.; Sweeney, C.; Tans, P. P.; Newberger, T.; Higgs, J. A.; Wolter, S.
2017-12-01
Accurate estimates of point source gas emissions are essential for reconciling top-down and bottom-up greenhouse gas measurements, but sampling such sources is challenging. Remote sensing methods are limited by resolution and cloud cover; aircraft methods are limited by air traffic control clearances, and the need to properly determine boundary layer height. A new sampling approach leverages the ability of unmanned aerial systems (UAS) to measure all the way to the surface near the source of emissions, improving sample resolution, and reducing the need to characterize a wide downstream swath, or measure to the full height of the planetary boundary layer (PBL). The "Active-AirCore" sampler, currently under development, will fly on a fixed wing UAS in Class G airspace, spiraling from the surface to 1200 ft AGL around point sources such as leaking oil wells to measure methane, carbon dioxide and carbon monoxide. The sampler collects a 100-meter long sample "core" of air in an 1/8" passivated stainless steel tube. This "core" is run on a high-precision instrument shortly after the UAS is recovered. Sample values are mapped to a specific geographic location by cross-referencing GPS and flow/pressure metadata, and fluxes are quantified by applying Gauss's theorem to the data, mapped onto the spatial "cylinder" circumscribed by the UAS. The AirCore-Active builds off the sampling ability and analytical approach of the related AirCore sampler, which profiles the atmosphere passively using a balloon launch platform, but will add an active pumping capability needed for near-surface horizontal sampling applications. Here, we show design elements, laboratory and field test results for methane, describe the overall goals of the mission, and discuss how the platform can be adapted, with minimal effort, to measure other gas species.
NASA Astrophysics Data System (ADS)
Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana
2017-10-01
Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.
Vroblesky, Don A.; Pravecek, Tasha
2002-01-01
Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.
Radiation dependence of inverter propagation delay from timing sampler measurements
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Blaes, B. R.; Lin, Y.-S.
1989-01-01
A timing sampler consisting of 14 four-stage inverter-pair chains with different load capacitances was fabricated in 1.6-micron n-well CMOS and irradiated with cobalt-60 at 10 rad(Si)/s. For this CMOS process the measured results indicate that the rising delay increases by about 2.2 ns/Mrad(Si) and the falling delay increase is very small, i.e., less than 300 ps/Mrad(Si). The amount of radiation-induced delay depends on the size of the load capacitance. The maximum value observed for this effect was 5.65 ns/pF-Mrad(Si). Using a sensitivity analysis, the sensitivity of the rising delay to radiation can be explained by a simple timing model and the radiation sensitivity of dc MOSFET parameters. This same approach could not explain the insensitivity of the falling delay to radiation. This may be due to a failure of the timing model and/or trapping effects.
Design and validation of a passive deposition sampler.
Einstein, Stephanie A; Yu, Chang-Ho; Mainelis, Gediminas; Chen, Lung Chi; Weisel, Clifford P; Lioy, Paul J
2012-09-01
A new, passive particle deposition air sampler, called the Einstein-Lioy Deposition Sampler (ELDS), has been developed to fill a gap in passive sampling for near-field particle emissions. The sampler can be configured in several ways: with a protective hood for outdoor sampling, without a protective hood, and as a dust plate. In addition, there is an XRF-ready option that allows for direct sampling onto a filter-mounted XRF cartridge which can be used in conjunction with all configurations. A wind tunnel was designed and constructed to test the performance of different sampler configurations using a test dust with a known particle size distribution. The sampler configurations were also tested versus each other to evaluate whether or not the protective hood would affect the collected particle size distribution. A field study was conducted to test the sampler under actual environmental conditions and to evaluate its ability to collect samples for chemical analysis. Individual experiments for each configuration demonstrated precision of the sampler. The field experiment demonstrated the ability of the sampler to both collect mass and allow for the measurement of an environmental contaminant i.e. Cr(6+). The ELDS was demonstrated to be statistically not different for Hooded and Non-Hooded models, compared to each other and the test dust; thus, it can be used indoors and outdoors in a variety of configurations to suit the user's needs.
Design of dry sand soil stratified sampler
NASA Astrophysics Data System (ADS)
Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong
2018-04-01
This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.
Huffman, Raegan L.
2002-01-01
Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.
Zimmerman, Marc J.; Vroblesky, Don A.; Campo, Kimberly W.; Massey, Andrew J.; Scheible, Walter
2005-01-01
Efficient and economical screening methods are needed to detect and to determine the approximate concentrations of potentially toxic trace-element metals in shallow groundwater- discharge areas (pore water) where the metals may pose threats to aquatic organisms; such areas are likely to be near hazardous-waste sites. Pushpoint and nylon-screen diffusion samplers are two complementary options for use in such environments. The pushpoint sampler, a simple well point, is easy to insert manually and to use. Only 1 day is required to collect samples. The nylon-screen diffusion sampler is well suited for use in sediments that do not allow a pump to draw water into a pushpoint sampler. In this study, both types of devices were used in sediments suitable for the use of the pushpoint sampler. Sampling with the nylon-screen diffusion sampler requires at least two site visits: one to deploy the samplers in the sediment, and a second to retrieve the samplers and collect the samples after a predetermined equilibration period. Extensive laboratory quality-control studies, field testing, and laboratory analysis of samples collected at the Nyanza Chemical Waste Dump Superfund site along the Sudbury River in Ashland, Massachusetts, and at a Superfund site-assessment location on Rigby Brook in Clinton, Massachusetts, indicate that these two devices yield comparable results for most metals and should be effective tools for pore-water studies. The nylon-screen diffusion samplers equilibrated within 1-2 days in homogeneous, controlled conditions in the laboratory. Nylon-screen diffusion samplers that were not purged of dissolved oxygen prior to deployment yielded results similar to those that were purged. Further testing of the nylon-screen diffusion samplers in homogeneous media would help to resolve any ambiguities about the data variability from the field studies. Comparison of data from replicate samples taken in both study areas shows that even samples taken from sites within a half-meter radius of one another have distinct differences in pore-water trace-element concentrations. Sequential replicate samples collected with the pushpoint sampler yield consistent results; moving the pushpoint sampler even 5 to 10 centimeters, however, generally produces a second set of data that differs enough from the first set of data to indicate a heterogeneous environment. High concentration biases for barium and zinc in laboratory and field samples collected with nylon-screen diffusion samplers, however, may make their use inappropriate for studies of these metals. Analyzing samples with high iron concentrations required sample dilution by factors of 2 or 10. Because these dilutions caused increases in the reporting levels by the same proportion, a substantial fraction of the data was censored. The results from undiluted samples, however, indicate that both devices should be useful for sampling ground water with metal concentrations close to reporting limits.
NASA Technical Reports Server (NTRS)
Galen, T. J. (Inventor)
1986-01-01
A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.
Coggins, Marie A; Healy, Catherine B; Lee, Taekhee; Harper, Martin
2014-01-01
Restoration stone work regularly involves work with high-silica-content materials (e.g., sandstone), but low-silica-content materials (<2 % quartz) such as limestone and lime mortar are also used. A combination of short sample duration and low silica content makes the quantification of worker exposure to respirable crystalline silica (RCS) difficult. This problem will be further compounded by the introduction of lower occupational exposure standards for RCS. The objective of this work was to determine whether higher-flow samplers might be an effective tool in characterizing lower RCS concentrations. A short study was performed to evaluate the performance of three high-flow samplers (FSP10, CIP10-R, and GK2.69) using side-by-side sampling with low-flow samplers (SIMPEDS and 10-mm nylon cyclones) for RCS exposure measurement at a restoration stonemasonry field site. A total of 19 side-by-side sample replicates for each high-flow and low-flow sampler pair were collected from work tasks involving limestone and sandstone. Most of the RCS (quartz) masses collected with the high-flow-rate samplers were above the limit of detection (62 % to 84 %) relative to the low-flow-rate samplers (58 % to 78 %). The average of the respirable mass concentration ratios for CIP10-R/SIMPEDS, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs and the range of the quartz concentration ratios for the CIP10-R/SIMPEDS, CIP10-R/10-mm nylon, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs included unity with an average close to unity, indicating no likely difference between the reported values for each sampler. Workers reported problems related to the weight of the sampling pumps for the high-flow-rate samplers. Respirable mass concentration data suggest that the high-flow-rate samplers evaluated would be appropriate for sampling respirable dust concentrations during restoration stone work. Results from the comparison of average quartz concentration ratios between high-and low-flow samplers suggest that the higher mass collected by the high-flow-rate samplers did not interfere with the quartz measurement. A sig-nificant portion of the data collected with the high-flow-rate samplers (>82 %) were greater than the limit of detection, which indicates that these samplers are suitable for quantifying exposures, even with low-quartz materials.
Multispectral Resource Sampler - An experimental satellite sensor for the mid-1980s
NASA Technical Reports Server (NTRS)
Schnetzler, C. C.; Thompson, L. L.
1979-01-01
An experimental pushbroom scan sensor, the Multispectral Resource Sampler (MRS), being developed by NASA for a future earth orbiting flight is presented. This sensor will provide new earth survey capabilities beyond those of current sensor systems, with a ground resolution of 15 m over a swath width of 15 km in four bands. The four arrays are aligned on a common focal surface requiring no beamsplitters, thus causing a spatial separation on the ground which requires computer processing to register the bands. Along track pointing permits stereo coverage at variable base/height ratios and atmospheric correction experiments, while across track pointing will provide repeat coverage, from a Landsat-type orbit, of every 1 to 3 days. The MRS can be used for experiments in crop discrimination and status, rock discrimination, land use classification, and forestry.
Individual Passive Chemical Sampler Testing Continued Chemical Agent and TIC Performance Validation
2002-04-01
period of high temperature, although the atmosphere was wet. 4.3 Post-Deployment Activities The deployment of the samplers did not go as...4.4 Day 0 Adsorption and Recovery Comparison Between Gore Low-Level and Gore High -Level Samplers at Varying Temperatures...43 Figure 4.5 Day 0 Adsorption and Recovery Comparison Between SKC High Level and Gore High -Level Samplers
Chen, Wen; Hambleton, Sarah; Seifert, Keith A; Carisse, Odile; Diarra, Moussa S; Peters, Rick D; Lowe, Christine; Chapados, Julie T; Lévesque, C André
2018-05-01
Spore samplers are widely used in pathogen surveillance but not so much for monitoring the composition of aeromycobiota. In Canada, a nationwide spore-sampling network (AeroNet) was established as a pilot project to assess fungal community composition in air and rain samples collected using three different spore samplers in the summers of 2010 and 2011. Metabarcodes of the internal transcribed spacer (ITS) were exhaustively characterized for three of the network sites, in British Columbia (BC), Québec (QC), and Prince Edward Island (PEI), to compare performance of the samplers. Sampler type accounted for ca. 20% of the total explainable variance in aeromycobiota compositional heterogeneity, with air samplers recovering more Ascomycota and rain samplers recovering more Basidiomycota. Spore samplers showed different abilities to collect 27 fungal genera that are plant pathogens. For instance, Cladosporium spp., Drechslera spp., and Entyloma spp. were collected mainly by air samplers, while Fusarium spp., Microdochium spp., and Ustilago spp. were recovered more frequently with rain samplers. The diversity and abundance of some fungi were significantly affected by sampling location and time (e.g., Alternaria and Bipolaris ) and weather conditions (e.g., Mycocentrospora and Leptosphaeria ), and depended on using ITS1 or ITS2 as the barcoding region (e.g., Epicoccum and Botrytis ). The observation that Canada's aeromycobiota diversity correlates with cooler, wetter conditions and northward wind requires support from more long-term data sets. Our vision of the AeroNet network, combined with high-throughput sequencing (HTS) and well-designed sampling strategies, may contribute significantly to a national biovigilance network for protecting plants of agricultural and economic importance in Canada. IMPORTANCE The current study compared the performance of spore samplers for collecting broad-spectrum air- and rain-borne fungal pathogens using a metabarcoding approach. The results provided a thorough characterization of the aeromycobiota in the coastal regions of Canada in relation to the influence of climatic factors. This study lays the methodological basis to eventually develop knowledge-based guidance on pest surveillance by assisting in the selection of appropriate spore samplers. © Crown copyright 2018.
Grooved impactor and inertial trap for sampling inhalable particulate matter
Loo, Billy W.
1984-01-01
An inertial trap and grooved impactor for providing a sharp cutoff for particles over 15 microns from entering an inhalable particulate sampler. The impactor head has a tapered surface and is provided with V-shaped grooves. The tapered surface functions for reducing particle blow-off or reentrainment while the grooves prevent particle bounce. Water droplets and any resuspended material over the 15 micron size are collected by the inertial trap and deposited in a reservoir associated with the impactor.
Performance of Prototype High-Flow Inhalable Dust Sampler in a Livestock Production Facility
Anthony, T. Renée; Cai, Changjie; Mehaffy, John; Sleeth, Darrah; Volckens, John
2017-01-01
A high-flow inhalable sampler, designed for operational flow rates up to 10 L/min using computer simulations and examined in wind tunnel experiments, was evaluated in the field. This prototype sampler was deployed in collocation with an IOM (the benchmark standard sampler) in a swine farrowing building to examine the sampling performance for assessing concentrations of inhalable particulate mass and endotoxin. Paired samplers were deployed for 24-hours on 19 days over a three-month period. On each sampling day, the paired samplers were deployed at three fixed locations and data were analyzed to identify agreement and to examine systematic biases between concentrations measured by these samplers. Thirty-six paired gravimetric samples were analyzed; insignificant, unsubstantial differences between concentrations were identified between the two samplers (p=0.16; mean difference 0.03 mg/m3). Forty-four paired samples were available for endotoxin analysis, and a significant (p=0.001) difference in endotoxin concentration was identified: the prototype sampler, on average, had 120 EU/m3 more endotoxin than did the IOM samples. Since the same gravimetric samples were analyzed for endotoxin content, the endotoxin difference is likely attributable to differences in endotoxin extraction. The prototype’s disposable thin-film polycarbonate capsule was included with the filter in the 1-hour extraction procedure while the internal plastic cassette of the IOM required a rinse procedure that is susceptible to dust losses. Endotoxin concentrations measured with standard plastic IOM inserts that follow this rinsing procedure may underestimate the true endotoxin exposure concentrations. The maximum concentrations in the study (1.55 mg/m3 gravimetric, 2328 EU/m3 endotoxin) were lower than other agricultural or industrial environments. Future work should explore the performance of the prototype sampler in dustier environments, where concentrations approach particulates not otherwise specified (PNOS) limits of 10 mg/m3, including using the prototype as a personal sampler. PMID:27792469
Performance of prototype high-flow inhalable dust sampler in a livestock production facility.
Anthony, T Renée; Cai, Changjie; Mehaffy, John; Sleeth, Darrah; Volckens, John
2017-05-01
A high-flow inhalable sampler, designed for operational flow rates up to 10 L/min using computer simulations and examined in wind tunnel experiments, was evaluated in the field. This prototype sampler was deployed in collocation with an IOM (the benchmark standard sampler) in a swine farrowing building to examine the sampling performance for assessing concentrations of inhalable particulate mass and endotoxin. Paired samplers were deployed for 24 hr on 19 days over a 3-month period. On each sampling day, the paired samplers were deployed at three fixed locations and data were analyzed to identify agreement and to examine systematic biases between concentrations measured by these samplers. Thirty-six paired gravimetric samples were analyzed; insignificant, unsubstantial differences between concentrations were identified between the two samplers (p = 0.16; mean difference 0.03 mg/m 3 ). Forty-four paired samples were available for endotoxin analysis, and a significant (p = 0.001) difference in endotoxin concentration was identified: the prototype sampler, on average, had 120 EU/m 3 more endotoxin than did the IOM samples. Since the same gravimetric samples were analyzed for endotoxin content, the endotoxin difference is likely attributable to differences in endotoxin extraction. The prototype's disposable thin-film polycarbonate capsule was included with the filter in the 1-hr extraction procedure while the internal plastic cassette of the IOM required a rinse procedure that is susceptible to dust losses. Endotoxin concentrations measured with standard plastic IOM inserts that follow this rinsing procedure may underestimate the true endotoxin exposure concentrations. The maximum concentrations in the study (1.55 mg/m 3 gravimetric, 2328 EU/m 3 endotoxin) were lower than other agricultural or industrial environments. Future work should explore the performance of the prototype sampler in dustier environments, where concentrations approach particulates not otherwise specified (PNOS) limits of 10 mg/m 3 , including using the prototype as a personal sampler.
NASA Astrophysics Data System (ADS)
Masey, Nicola; Gillespie, Jonathan; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.
2017-07-01
We assessed the precision and accuracy of nitrogen dioxide (NO2) concentrations over 2-day, 3-day and 7-day exposure periods measured with the following types of passive diffusion samplers: standard (open) Palmes tubes; standard Ogawa samplers with commercially-prepared Ogawa absorbent pads (Ogawa[S]); and modified Ogawa samplers with absorbent-impregnated stainless steel meshes normally used in Palmes tubes (Ogawa[P]). We deployed these passive samplers close to the inlet of a chemiluminescence NO2 analyser at an urban background site in Glasgow, UK over 32 discrete measurement periods. Duplicate relative standard deviation was <7% for all passive samplers. The Ogawa[P], Ogawa[S] and Palmes samplers explained 93%, 87% and 58% of temporal variation in analyser concentrations respectively. Uptake rates for Palmes and Ogawa[S] samplers were positively and linearly associated with wind-speed (P < 0.01 and P < 0.05 respectively). Computation of adjusted uptake rates using average wind-speed observed during each sampling period increased the variation in analyser concentrations explained by Palmes and Ogawa[S] estimates to 90% and 92% respectively, suggesting that measurements can be corrected for shortening of diffusion path lengths due to wind-speed to improve the accuracy of estimates of short-term NO2 exposure. Monitoring situations where it is difficult to reliably estimate wind-speed variations, e.g. across multiple sites with different unknown exposures to local winds, and personal exposure monitoring, are likely to benefit from protection of these sampling devices from the effects of wind, for example by use of a mesh or membrane across the open end. The uptake rate of Ogawa[P] samplers was not associated with wind-speed resulting in a high correlation between estimated concentrations and observed analyser concentrations. The use of Palmes meshes in Ogawa[P] samplers reduced the cost of sampler preparation and removed uncertainty associated with the unknown manufacturing process for the commercially-prepared collection pads.
Jeong, Yoonah; Schäffer, Andreas; Smith, Kilian
2018-06-15
In this work, Oasis HLB® beads were embedded in a silicone matrix to make a single phase passive sampler with a higher affinity for polar and ionisable compounds than silicone alone. The applicability of this mixed polymer sampler (MPS) was investigated for 34 aquatic contaminants (log K OW -0.03 to 6.26) in batch experiments. The influence of flow was investigated by comparing uptake under static and stirred conditions. The sampler characteristics of the MPS was assessed in terms of sampling rates (R S ) and sampler-water partition coefficients (K SW ), and these were compared to those of the polar organic chemical integrative sampler (POCIS) as a reference kinetic passive sampler. The MPS was characterized as an equilibrium sampler for both polar and non-polar compounds, with faster uptake rates and a shorter time to reach equilibrium than the POCIS. Water flow rate impacted sampling rates by up to a factor of 12 when comparing static and stirred conditions. In addition, the relative accumulation of compounds in the polyethersulfone (PES) membranes versus the inner Oasis HLB sorbent was compared for the POCIS, and ranged from <1% to 83% depending on the analyte properties. This is indicative of a potentially significant lag-phase for less polar compounds within POCIS. The findings of this study can be used to quantitatively describe the partitioning and kinetic behaviour of MPS and POCIS for a range of aquatic organic contaminants for application in field sampling. Copyright © 2018 Elsevier B.V. All rights reserved.
Unintentional and avoidable human exposure is a consequence of pesticide use indoors. Pesticides on household surfaces are a source of exposure to children. Therefore, concern has been raised regarding the potential for contamination of foods in homes where pesticides have been...
Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler.
Stewart, Justin; Sleeth, Darrah K; Handy, Rod G; Pahler, Leon F; Anthony, T Renee; Volckens, John
2017-03-01
A newly designed, low-cost, disposable inhalable aerosol sampler was developed to assess workers personal exposure to inhalable particles. This sampler was originally designed to operate at 10 L/min to increase sample mass and, therefore, improve analytical detection limits for filter-based methods. Computational fluid dynamics modeling revealed that sampler performance (relative to aerosol inhalability criteria) would not differ substantially at sampler flows of 2 and 10 L/min. With this in mind, the newly designed inhalable aerosol sampler was tested in a wind tunnel, simultaneously, at flows of 2 and 10 L/min flow. A mannequin was equipped with 6 sampler/pump assemblies (three pumps operated at 2 L/min and three pumps at 10 L/min) inside a wind tunnel, operated at 0.2 m/s, which has been shown to be a typical indoor workplace wind speed. In separate tests, four different particle sizes were injected to determine if the sampler's performance with the new 10 L/min flow rate significantly differed to that at 2 L/min. A comparison between inhalable mass concentrations using a Wilcoxon signed rank test found no significant difference in the concentration of particles sampled at 10 and 2 L/min for all particle sizes tested. Our results suggest that this new aerosol sampler is a versatile tool that can improve exposure assessment capabilities for the practicing industrial hygienist by improving the limit of detection and allowing for shorting sampling times.
High speed sampler and demultiplexer
McEwan, Thomas E.
1995-01-01
A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as "strobe kickout". The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition.
WHATS-3: An improved flow-through multi-bottle fluid sampler for deep-sea geofluid research
NASA Astrophysics Data System (ADS)
Miyazaki, Junichi; Makabe, Akiko; Matsui, Yohei; Ebina, Naoya; Tsutsumi, Saki; Ishibashi, Jun-ichiro; Chen, Chong; Kaneko, Sho; Takai, Ken; Kawagucci, Shinsuke
2017-06-01
Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information towards elucidating the physical, chemical and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each) is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean and three in Okinawa Trough (max. depth 3,300 m). Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high-quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.
Passive sampler for dissolved organic matter in freshwater environments.
Lam, Buuan; Simpson, André J
2006-12-15
A passive sampler for the isolation of dissolved organic matter (DOM) from freshwater environments is described. The sampler consists of a molecular weight selective membrane (1000 kDa) and an anion exchange resin (diethylaminoethylcellulose (DEAE-cellulose)). NMR indicates the samplers isolate DOM that is nearly indistinguishable from that isolated using the batch DEAE-cellulose procedure. In a comparative study DOM isolated from Lake Ontario cost approximately 0.30 dollars/mg to isolate using the passive samplers while DOM isolated using the traditional batch procedure cost approximately 8-10 dollars/mg. The samplers have been shown to be effective in a range of freshwater environments including a large inland lake (Lake Ontario), fast flowing tributary, and wetland. Large amounts (gram quantities of DOM) can be easily isolated by increasing the size or number of samplers deployed. Samplers are easy to construct, negate the need for pressure filtering, and also permit a range of temporal and spatial experiments that would be very difficult or impossible to perform using conventional approaches. For example, DOM can be monitored on a regular basis at numerous different locations, or samplers could be set at different depths in large lakes. Furthermore, they could potentially be deployed into hard to reach environments such as wells, groundwater aquifers, etc., and as they are easy to use, they can be mailed to colleagues or included with expeditions going to difficult to reach places such as the Arctic and Antarctic.
Deposition measurement of particulate matter in connection with corrosion studies.
Ferm, Martin; Watt, John; O'Hanlon, Samantha; De Santis, Franco; Varotsos, Costas
2006-03-01
A new passive particle collector (inert surrogate surface) that collects particles from all directions has been developed. It was used to measure particle deposition at 35 test sites as part of a project that examined corrosion of materials in order that variation in particulate material could be used in development of dose-response functions in a modern multi-pollutant environment. The project, MULTI-ASSESS, was funded by the EU to examine the effects of air pollution on cultural heritage. Passive samplers were mounted rain-protected, and both in wind-protected and wind-exposed positions, to match the exposure of the samples for corrosion studies. The particle mass and its chemical content (nitrate, ammonium, sulfate, calcium, sodium, chloride, magnesium and potassium) were analysed. The loss of light reflectance on the surrogate surface was also measured. Very little ammonium and potassium was found, and one or more anions are missing in the ion balance. There were many strong correlations between the analysed species. The mass of analysed water-soluble ions was fairly constant at 24% of the total mass. The particle mass deposited to the samplers in the wind-protected position was about 25% of the particles deposited to an openly exposed sampler. The Cl-/Na+ ratios indicate a reaction between HNO(3) and NaCl. The deposited nitrate flux corresponds to the missing chloride. The Ca2+ deposition equals the SO4(2-) deposition and the anion deficiency. The SO4(2-) deposition most likely originates from SO2 that has reacted with basic calcium-containing particles either before or after they were deposited. The particle depositions at the urban sites were much higher than in nearby rural sites. The deposited mass correlated surprisingly well with the PM(10) concentration, except at sites very close to traffic.
A sample-freezing drive shoe for a wire line piston core sampler
Murphy, F.; Herkelrath, W.N.
1996-01-01
Loss of fluids and samples during retrieval of cores of saturated, noncohesive sediments results in incorrect measures of fluid distributions and an inaccurate measure of the stratigraphic position of the sample. To reduce these errors, we developed a hollow drive shoe that freezes in place the lowest 3 inches (75 mm) of a 1.88-inch-diameter (48 mm), 5-foot-long (1.5 m) sediment sample taken using a commercial wire line piston core sampler. The end of the core is frozen by piping liquid carbon dioxide at ambient temperature through a steel tube from a bottle at the land surface to the drive shoe where it evaporates and expands, cooling the interior surface of the shoe to about -109??F (-78??C). Freezing a core end takes about 10 minutes. The device was used to collect samples for a study of oil-water-air distributions, and for studies of water chemistry and microbial activity in unconsolidated sediments at the site of an oil spill near Bemidji, Minnesota. Before freezing was employed, samples of sandy sediments from near the water table sometimes flowed out of the core barrel as the sampler was withdrawn. Freezing the bottom of the core allowed for the retention of all material that entered the core barrel and lessened the redistribution of fluids within the core. The device is useful in the unsaturated and shallow saturated zones, but does not freeze cores well at depths greater than about 20 feet (6 m) below water, possibly because the feed tube plugs with dry ice with increased exhaust back-pressure, or because sediment enters the annulus between the core barrel and the core barrel liner and blocks the exhaust.
Łukaszuk, Cecylia; Krajewska-Kułak, Elżbieta; Guzowski, Andrzej; Kułak, Wojciech; Kraszyńska, Bogumiła
2017-07-20
Although several air sampling devices for identifying and enumerating airborne microorganisms are commercially available, each poses some limitations. The aim of this study was to evaluate air pollution fungi using three such samplers: SAS Super 100, Microbiological Air Sampler (MAS) 100, and Air IDEAL. Mycological air was taken from the cellars of a 17th-century church in Siemiatycze, Poland, and the nearby outdoor environment. With samplers placed 1.5 m above the floor, microbial flora in air samples collected inside and outside the cellar were detected. The number of colony-forming units (CFU) of fungi obtained with the three samplers from the cellars and outdoor environment differed; the most CFU were obtained with the Air IDEAL and the least with the SAS Super 100. Significant differences emerged in CFUs collected from air samples with the MAS 100 and SAS Super 100, on the one hand, and the SAS Super 100 and Air IDEAL, on the other. Otherwise, results among the samplers were different. More Cladosporium species were collected with the MAS 100 sampler, whereas more Fusarium and Aspergillus species were collected with the Air IDEAL sampler. Significant differences among CFU/m³ values among the tested sites depended on the sampler used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elder, J.C.; Littlefield, L.G.; Tillery, M.I.
1978-06-01
A preliminary design of a prototype particulate stack sampler (PPSS) has been prepared, and development of several components is under way. The objective of this Environmental Protection Agency (EPA)-sponsored program is to develop and demonstrate a prototype sampler with capabilities similar to EPA Method 5 apparatus but without some of the more troublesome aspects. Features of the new design include higher sampling flow; display (on demand) of all variables and periodic calculation of percent isokinetic, sample volume, and stack velocity; automatic control of probe and filter heaters; stainless steel surfaces in contact with the sample stream; single-point particle size separationmore » in the probe nozzle; null-probe capability in the nozzle; and lower weight in the components of the sampling train. Design considerations will limit use of the PPSS to stack gas temperatures under approximately 300/sup 0/C, which will exclude sampling some high-temperature stacks such as incinerators. Although need for filter weighing has not been eliminated in the new design, introduction of a variable-slit virtual impactor nozzle may eliminate the need for mass analysis of particles washed from the probe. Component development has shown some promise for continuous humidity measurement by an in-line wet-bulb, dry-bulb psychrometer.« less
Viking magnetic properties investigation: preliminary results.
Hargraves, R B; Collinson, D W; Spitzer, C R
1976-10-01
Three permanent magnet arrays are aboard the Viking lander. By sol 35, one array, fixed on a photometric reference test chart on top of the lander, has clearly attracted magnetic particles from airborne dust; two other magnet arrays, one strong and one weak, incorporated in the backhoe of the surface sampler, have both extracted considerable magnetic mineral from the surface as a result of nine insertions associated with sample acquisition. The loose martian surface material around the landing site is judged to contain 3 to 7 percent highly magnetic mineral which, pending spectrophotometric study, is thought to be mainly magnetite.
Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water
Harte, Philip T.; Brayton, Michael J.; Ives, Wayne
2000-01-01
Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krochmal, D.; Gorski, L.
1991-03-01
The effects of temperature, humidity, and storage on a diffusive sampler were tested by use of the Amaya-Sugiura method, modified previously. Several materials were used as carriers for triethanolamine in the sampler. The mass of NO{sub 2} absorbed in the sampler was determined spectrophotometrically as nitrite by using Saltzman solution. The collection efficiency of the sampler was lower than that calculated from Fick's law of diffusion due to significant contribution of liquid phase in the overall sampler diffusive resistance. This resulted in an increase of the mass of NO{sub 2} absorbed in the sampler by ca. 20% per 10{degree}C ofmore » temperature growth and by ca. 25% when the relative humidity rose from 0 to 100%. Dependence of concentration of TEA solution in the sampler on the relative humidity of the air was noted. The relative precision of the method characterized by RSD was 10%; the detection limit of NO{sub 2} was 10 {mu}g/m{sup 3} for a 24-h exposure.« less
Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2010-01-01
A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.
O'Brien, Dominique; Bartkow, Michael; Mueller, Jochen F
2011-05-01
The use of the adsorbent styrenedivinylbenzene-reverse phase sulfonated (SDB-RPD) Empore disk in a chemcatcher type passive sampler is routinely applied in Australia when monitoring herbicides in aquatic environments. One key challenge in the use of passive samplers is mitigating the potentially confounding effects of varying flow conditions on chemical uptake by the passive sampler. Performance reference compounds (PRCs) may be applied to correct sampling rates (R(s)) for site specific changed in flow and temperature however evidence suggests the use of PRCs is unreliable when applied to adsorbent passive samplers. The use of the passive flow monitor (PFM) has been introduced for the assessment of site-specific changes in water flow. In the presented study we have demonstrated that the R(s) at which both atrazine and prometryn are accumulated within the SDB-RPD-Empore disk is dependent on the flow conditions. Further, the calibration of the measured R(s) for chemical uptake by the SDB-RPD-Empore disk to the mass lost from the PFM has shown that the PFM provides an accurate measure of R(s) for flow velocities from 0 to 16cms(-1). Notably, for flow rates >16cms(-1), a non linear increase in the R(s) of both herbicides was observed which indicates that the key resistance to uptake into the SDB-RPD Empore disk is associated with the diffusion through the overlying diffusion limiting membrane. Overall the greatest uncertainty remains at very low flow conditions, which are unlikely to often occur in surface waters. Validation of the PFM use has also been undertaken in a limited field study. Copyright © 2011 Elsevier Ltd. All rights reserved.
Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Bartley, David L; Slaven, James E; Andrew, Michael E
2007-11-01
This paper concludes a five-year program on research into the use of a portable X-ray fluorescence (XRF) analyzer for analyzing lead in air sampling filters from different industrial environments, including mining, manufacturing and recycling. The results from four of these environments have already been reported. The results from two additional metal processes are presented here. At both of these sites, lead was a minor component of the total airborne metals and interferences from other elements were minimal. Nevertheless, only results from the three sites where lead was the most abundant metal were used in the overall calculation of method accuracy. The XRF analyzer was used to interrogate the filters, which were then subjected to acid digestion and analysis by inductively-coupled plasma optical-emission spectroscopy (ICP-OES). The filter samples were collected using different filter-holders or "samplers" where the size (diameter), depth and homogeneity of aerosol deposit varied from sampler to sampler. The aerosol collection efficiencies of the samplers were expected to differ, especially for larger particles. The distribution of particles once having entered the sampler was also expected to differ between samplers. Samplers were paired to allow the between-sampler variability to be addressed, and, in some cases, internal sampler wall deposits were evaluated and compared to the filter catch. It was found, rather surprisingly, that analysis of the filter deposits (by ICP-OES) of all the samplers gave equivalent results. It was also found that deposits on some of the sampler walls, which in some protocols are considered part of the sample, could be significant in comparison to the filter deposit. If it is concluded that wall-deposits should be analyzed, then XRF analysis of the filter can only give a minimum estimate of the concentration. Techniques for the statistical analysis of field data were also developed as part of this program and have been reported elsewhere. The results, based on data from the three workplaces where lead was the major element present in the samples, are summarized here. A limit of detection and a limit of quantitation are provided. Analysis of some samples using a second analyzer with a different X-ray source technology indicated reasonable agreement for some metals (but this was not evaluated for lead). Provided it is only necessary to analyze the filters, most personal samplers will provide acceptable results when used with portable XRF analysis for lead around applicable limit values.
Marrero, Julieta; Rebagliati, Raúl Jiménez; Gómez, Darío; Smichowski, Patricia
2005-12-15
A study was conducted to evaluate the homogeneity of the distribution of metals and metalloids deposited on glass fiber filters collected using a high-volume sampler equipped with a PM-10 sampling head. The airborne particulate matter (APM)-loaded glass fiber filters (with an active surface of about 500cm(2)) were weighed and then each filter was cut in five small discs of 6.5cm of diameter. Each disk was mineralized by acid-assisted microwave (MW) digestion using a mixture of nitric, perchloric and hydrofluoric acids. Analysis was performed by axial view inductively coupled plasma optical emission spectrometry (ICP OES) and the elements considered were: Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Ti and V. The validation of the procedure was performed by the analysis of the standard reference material NIST 1648, urban particulate matter. As a way of comparing the possible variability in trace elements distribution in a particular filter, the mean concentration for each element over the five positions (discs) was calculated and each element concentration was normalized to this mean value. Scatter plots of the normalized concentrations were examined for all elements and all sub-samples. We considered that an element was homogeneously distributed if its normalized concentrations in the 45 sub-samples were within +/-15% of the mean value ranging between 0.85 and 1.15. The study demonstrated that the 12 elements tested showed different distribution pattern. Aluminium, Cu and V showed the most homogeneous pattern while Cd and Ni exhibited the largest departures from the mean value in 13 out of the 45 discs analyzed. No preferential deposition was noticed in any sub-sample.
High speed sampler and demultiplexer
McEwan, T.E.
1995-12-26
A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as ``strobe kickout``. The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition. 16 figs.
Vroblesky, Don A.; Peters, Brian C.
2000-01-01
Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.
Characterization and Application of Passive Samplers for Monitoring of Pesticides in Water.
Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny
2016-08-03
Five different water passive samplers were calibrated under laboratory conditions for measurement of 124 legacy and current used pesticides. This study provides a protocol for the passive sampler preparation, calibration, extraction method and instrumental analysis. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for silicone rubber, polar organic chemical integrative sampler POCIS-A, POCIS-B, SDB-RPS and C18 disk. The uptake of the selected compounds depended on their physicochemical properties, i.e., silicone rubber showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW) > 5.3), whereas POCIS-A, POCIS-B and SDB-RPS disk were more suitable for hydrophilic compounds (log KOW < 0.70).
Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy I.; McKone, Thomas E.
2008-10-01
The objective of this project was to provide initial estimates of the relationship between insecticide use on passenger aircraft and exposure levels present in the cabin environment. The work was initially divided into three tasks including 1) a review of insecticide application practices in commercial aircraft, 2) exploratory measurements of insecticide concentrations in treated aircraft and 3) screening level exposure modeling. Task 1 gathered information that is needed to assess the time-concentration history of insecticides in the airline cabin. The literature review focused on application practices, information about the cabin environment and existing measurements of exposure concentrations following treatment. Informationmore » from the airlines was not available for estimating insecticide application rates in the U.S. domestic fleet or for understanding how frequently equipment rotate into domestic routes following insecticide treatment. However, the World Health Organization (WHO) recommends several methods for treating aircraft with insecticide. Although there is evidence that these WHO guidelines may not always be followed, and that practices vary by airline, destination, and/or applicator company, the guidelines in combination with information related to other indoor environments provides a plausible basis for estimating insecticide loading rates on aircraft. The review also found that while measurements of exposure concentrations following simulated aerosol applications are available, measurements following residual treatment of aircraft or applications in domestic aircraft are lacking. Task 2 focused on developing an approach to monitor exposure concentrations in aircraft using a combination of active and passive sampling methods. An existing active sampling approach was intended to provide data immediately following treatment while a passive sampler was developed to provide wider coverage of the fleet over longer sampling periods. The passive sampler, based on a thin-film polymer-coated glass design, was developed specifically for deployment in the airliner ventilation system for long-term unattended monitoring of insecticide loading in the aircraft. Because access was not available for either treated aircraft or treatment records during the course of this study, the development and calibration of the passive samplers was halted prior to completion. Continued development of a field ready passive sampler for insecticides in aircraft would require collaboration with the airline industry to finalize the method for deployment and calibration conditions for the sampler. The Task 3 screening level modeling assessment used a dynamic two-box mass balance model that includes treated surfaces and air to explore the time-concentration history of insecticides in the cabin. The model was parameterized using information gathered during the literature review and run for several different insecticide use scenarios. Chemical degradation or sequestration in the surface compartment and mass transfer from the surface to the air limit the rate at which insecticides are removed from the system. This rate limiting process can result in an accumulation of insecticide in the airliner cabin following repeated applications. The extent of accumulation is a function of the overall persistence of the chemical in the system and the amount of chemical applied during each treatment.« less
Metcalfe, Chris D; Beddows, Patricia A; Bouchot, Gerardo Gold; Metcalfe, Tracy L; Li, Hongxia; Van Lavieren, Hanneke
2011-04-01
Intensive land development as a result of the rapidly growing tourism industry in the "Riviera Maya" region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region. Copyright © 2010 Elsevier Ltd. All rights reserved.
Development and Calibration of an Oil Spill Behavior Model.
1982-09-01
7675A purge-and-trap sampler. The GC column was a wide bore 50 meter long glass capillary column coated with SE-30 (WCOT from Alltech Associates, Inc...commonly used CGS unit of 1 dyne/cm is 10- 9 N/m or 1 milli-Newtons/meter (mN/m). An advantage of the technique is that there is no solid surface in
COMPARISON OF INTEGRATED SAMPLERS FOR MASS AND COMPOSITION
The primary objective of EPA's Atlanta Supersites Project was to compare and evaluate a wide variety of samplers from time-integrated mass only monitors, to integrated and semi-continuous chemical speciation samplers, to single particle mass spectrometers. This paper will desc...
Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...
Selecting Performance Reference Compounds (PRCS) for Low Density Polyethylene Passive Samplers
Use of equilibrium passive samplers for performing aquatic environmental monitoring at contaminated sites is becoming more common. However, a current challenge in passive sampling is determining when equilibrium is achieved between the sampler, target contaminants, and environm...
A new device to estimate abundance of moist-soil plant seeds
Penny, E.J.; Kaminski, R.M.; Reinecke, K.J.
2006-01-01
Methods to sample the abundance of moist-soil seeds efficiently and accurately are critical for evaluating management practices and determining food availability. We adapted a portable, gasoline-powered vacuum to estimate abundance of seeds on the surface of a moist-soil wetland in east-central Mississippi and evaluated the sampler by simulating conditions that researchers and managers may experience when sampling moist-soil areas for seeds. We measured the percent recovery of known masses of seeds by the vacuum sampler in relation to 4 experimentally controlled factors (i.e., seed-size class, sample mass, soil moisture class, and vacuum time) with 2-4 levels per factor. We also measured processing time of samples in the laboratory. Across all experimental factors, seed recovery averaged 88.4% and varied little (CV = 0.68%, n = 474). Overall, mean time to process a sample was 30.3 ? 2.5 min (SE, n = 417). Our estimate of seed recovery rate (88%) may be used to adjust estimates for incomplete seed recovery, or project-specific correction factors may be developed by investigators. Our device was effective for estimating surface abundance of moist-soil plant seeds after dehiscence and before habitats were flooded.
NASA Astrophysics Data System (ADS)
Aisha, Al Ashi; Hneine, Wael; Mokh, Samia; Devier, Marie-Hélène; Budzinski, Hélèn; Jaber, Farouk
2017-09-01
The aim of this study is to assess the dissolved concentration of 45 pesticides in the surface waters of the Lebanese Republic using Polar Organic Chemical Integrative Sampler "POCIS". All of the sampling sites are located in the major agricultural land areas in Lebanon. POCIS (n = 3) were deployed at Ibrahim River, Qaraoun Lake and Hasbani River for a duration of 14 days. The total concentration of pesticides ranged from not detected (nd) to 137.66 ng.L-1. Chlorpyrifos, DDE-pp, diazinon and Fenpropathrin were the most abundant compounds. Qaraoun Lake and Hasbani River were found to be more polluted than Ibrahim River, since they receive large amounts of waste water derived from nearby agricultural lands and they had the lowest dilution factor. The aqueous average concentration of the target compounds were estimated using sampling rates obtained from the literature. Comparison between Time Weighed Average concentrations "TWA" using POCIS and spot sampling is presented. Results showed that POCIS TWA concentrations are in agreement with spot sampling concentrations for Ibrahim and Hasbani Rivers. The toxicity of the major detected pesticides on three representative aquatic species ( Daphnia magna, Scenedesmus quadricauda and Oncorhynchus mykiss) is also reported.
Wang, Lei; Gong, Xinying; Wang, Ruonan; Gan, Zhiwei; Lu, Yuan; Sun, Hongwen
2017-09-15
Ionic liquids have been used to efficiently extract a wide range of polar and nonpolar organic contaminants from water. In this study, imidazole ionic liquids immobilized on silica gel were synthesized through a chemical bonding method, and the immobilized dodecylimidazolium ionic liquid was selected as the receiving phase material in a POCIS (polar organic chemical integrative sampler) like passive sampler to monitor five perfluoroalkyl substances (PFASs) in water. Twenty-one days of integrative accumulation was conducted in laboratory scale experiments, and the accumulated PFASs in the samplers were eluted and analyzed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The partitioning coefficients of most PFASs between sampler sorbents and water in the immobilized ionic liquid (IIL)-sampler were higher than those in the HLB-sampler, especially for compounds with shorter alkyl chains. The effects of flow velocity, temperature, dissolved organic matter (DOM) and pH on the uptake of these analytes were also evaluated. Under the experimental conditions, the uptake of PFASs in the IIL-sampler slightly increased with the flow velocity and temperature, while different influences of DOM and pH on the uptake of PFAS homologues with short or long chains were observed. The designed IIL-samplers were applied in the influent and effluent of a wastewater treatment plant. All five PFASs could be accumulated in the samplers, with concentrations ranging from 6.5×10 -3 -3.6×10 -1 nmol/L in the influent and from 1.3×10 -2 -2.2×10 -1 nmol/L in the effluent. The calculated time-weighted average concentrations of most PFASs fit well with the detected concentrations of the active sampling, indicating the applicability of the IIL-sampler in monitoring these compounds in water. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical Evaluation of Lateral Diffusion Inside Diffusive Gradients in Thin Films Samplers
2015-01-01
Using numerical simulation of diffusion inside diffusive gradients in thin films (DGT) samplers, we show that the effect of lateral diffusion inside the sampler on the solute flux into the sampler is a nonlinear function of the diffusion layer thickness and the physical sampling window size. In contrast, earlier work concluded that this effect was constant irrespective of parameters of the sampler geometry. The flux increase caused by lateral diffusion inside the sampler was determined to be ∼8.8% for standard samplers, which is considerably lower than the previous estimate of ∼20%. Lateral diffusion is also propagated to the diffusive boundary layer (DBL), where it leads to a slightly stronger decrease in the mass uptake than suggested by the common 1D diffusion model that is applied for evaluating DGT results. We introduce a simple correction procedure for lateral diffusion and demonstrate how the effect of lateral diffusion on diffusion in the DBL can be accounted for. These corrections often result in better estimates of the DBL thickness (δ) and the DGT-measured concentration than earlier approaches and will contribute to more accurate concentration measurements in solute monitoring in waters. PMID:25877251
NASA Astrophysics Data System (ADS)
van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap
2018-04-01
In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.
Passive samplers are used to measure dissolved nonionic organic contaminants (NOCs) in environmental media. More recently, reverse polyethylene samplers (RePES) have been used with spiked sediments to recreate interstitial water exposure concentrations and observed toxicity. In...
This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-four studies were found where both passive sampler uptake and organism bioaccumulation wer...
Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants
Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...
This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Steve E.
The accuracy and precision of a new Isolok sampler configuration was evaluated using a recirculation flow loop. The evaluation was performed using two slurry simulants of Hanford high-level tank waste. Through testing, the capability of the Isolok sampler was evaluated. Sample concentrations were compared to reference samples that were simultaneously collected by a two-stage Vezin sampler. The capability of the Isolok sampler to collect samples that accurately reflect the contents in the test loop improved – biases between the Isolok and Vezin samples were greatly reduce for fast settling particles.
Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for Inorganic Analytes
2008-12-01
08-25 3 Accumulation samplers rely on both diffusion through a membrane and then sorption by some type of sorbent material that is contained in the...the materials in the sampler to equilibrate with the analytes in the well water thereby prevent- ing losses of analytes due to sorption by the sampler...The spring in the bottles is coated with perfluoroalkoxy ( PFA ) (Teflon) and is connected to PFA end caps at both ends of the bottle. Currently
McEwan, Thomas E.
1994-01-01
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.
McEwan, Thomas E.
1996-01-01
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.
Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer
2015-12-01
Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.
Lyford, F.P.; Kliever, J.D.; Scott, Clifford
1999-01-01
Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.
Evaluation of a novel personal nanoparticle sampler.
Zhou, Yue; Irshad, Hammad; Tsai, Chuen-Jinn; Hung, Shao-Ming; Cheng, Yung-Sung
2014-02-01
This work investigated the performance in terms of collection efficiency and aspiration efficiency of a personal sampler capable of collecting ultrafine particles (nanoparticles) in the occupational environment. This sampler consists of a cyclone for respirable particle classification, micro-orifice impactor stages with an acceleration nozzle to achieve nanoparticle classification and a backup filter to collect nanoparticles. Collection efficiencies of the cyclone and impactor stages were determined using monodisperse polystyrene latex and silver particles, respectively. Calibration of the cyclone and impactor stages showed 50% cut-off diameters of 3.95 μm and 94.7 nm meeting the design requirements. Aspiration efficiencies of the sampler were tested in a wind tunnel with wind speeds of 0.5, 1.0, and 1.5 m s(-1). The test samplers were mounted on a full size mannequin with three orientations toward the wind direction (0°, 90°, and 180°). Monodisperse oleic acid aerosols tagged with sodium fluorescein in the size range of 2 to 10 μm were used in the test. For particles smaller than 2 μm, the fluorescent polystyrene latex particles were generated by using nebulizers. For comparison of the aspiration efficiency, a NIOSH two-stage personal bioaerosol sampler was also tested. Results showed that the orientation-averaged aspiration efficiency for both samplers was close to the inhalable fraction curve. However, the direction of wind strongly affected the aspiration efficiency. The results also showed that the aspiration efficiency was not affected by the ratio of free-stream velocity to the velocity through the sampler orifice. Our evaluation showed that the current design of the personal sampler met the designed criteria for collecting nanoparticles ≤100 nm in occupational environments.
NASA Astrophysics Data System (ADS)
Trakumas, S.; Salter, E.
2009-02-01
Adverse health effects due to exposure to airborne particles are associated with particle deposition within the human respiratory tract. Particle size, shape, chemical composition, and the individual physiological characteristics of each person determine to what depth inhaled particles may penetrate and deposit within the respiratory tract. Various particle inertial classification devices are available to fractionate airborne particles according to their aerodynamic size to approximate particle penetration through the human respiratory tract. Cyclones are most often used to sample thoracic or respirable fractions of inhaled particles. Extensive studies of different cyclonic samplers have shown, however, that the sampling characteristics of cyclones do not follow the entire selected convention accurately. In the search for a more accurate way to assess worker exposure to different fractions of inhaled dust, a novel sampler comprising several inertial impactors arranged in parallel was designed and tested. The new design includes a number of separated impactors arranged in parallel. Prototypes of respirable and thoracic samplers each comprising four impactors arranged in parallel were manufactured and tested. Results indicated that the prototype samplers followed closely the penetration characteristics for which they were designed. The new samplers were found to perform similarly for liquid and solid test particles; penetration characteristics remained unchanged even after prolonged exposure to coal mine dust at high concentration. The new parallel impactor design can be applied to approximate any monotonically decreasing penetration curve at a selected flow rate. Personal-size samplers that operate at a few L/min as well as area samplers that operate at higher flow rates can be made based on the suggested design. Performance of such samplers can be predicted with high accuracy employing well-established impaction theory.
Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.
Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José
2012-02-01
Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.
NASA Technical Reports Server (NTRS)
Myint, S. W.; Walker, N. D.
2002-01-01
The ability to quantify suspended sediment concentrations accurately over both time and space using satellite data has been a goal of many environmental researchers over the past few decades This study utilizes data acquired by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the Orbview-2 Sea-viewing wide field-of-view (SeaWiFS) ocean colour sensor, coupled with field measurements to develop statistical models for the estimation of near-surface suspended sediment and suspended solids "Ground truth" water samples were obtained via helicopter, small boat and automatic water sampler within a few hours of satellite overpasses The NOAA AVHRR atmospheric correction was modified for the high levels of turbidity along the Louisiana coast. Models were developed based on the field measurements and reflectance/radiance measurements in the visible and near infrared Channels of NOAA-14 and Orbview-2 SeaWiFS. The best models for predicting surface suspended sediment concentrations were obtained with a NOAA AVHRR Channel 1 (580-680nm) cubic model, Channel 2 (725-1100 nm) linear mod$ and SeaWiFs Channel 6 (660-68Onm) power modeL The suspended sediment models developed using SeaWiFS Channel 5 (545-565 nm) were inferior, a result that we attribute mainly to the atmospheric correction technique, the shallow depth of the water samples and absorption effects from non-sediment water constituents.
Guidelines for Using Passive Samplers to Monitor Organic Contaminants at Superfund Sediment Sites
Passive samplers are monitoring tools that can provide faster, cheaper, and scientifically-sound information about the water column and interstitial water concentrations of contaminants of concern (COC) at Superfund sites. Often, the use of passive samplers is more effective tha...
This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measur...
Construction and testing of a simple and economical soil greenhouse gas automatic sampler
Ginting, D.; Arnold, S.L.; Arnold, N.S.; Tubbs, R.S.
2007-01-01
Quantification of soil greenhouse gas emissions requires considerable sampling to account for spatial and/or temporal variation. With manual sampling, additional personnel are often not available to sample multiple sites within a narrow time interval. The objectives were to construct an automatic gas sampler and to compare the accuracy and precision of automatic versus manual sampling. The automatic sampler was tested with carbon dioxide (CO2) fluxes that mimicked the range of CO2 fluxes during a typical corn-growing season in eastern Nebraska. Gas samples were drawn from the chamber at 0, 5, and 10 min manually and with the automatic sampler. The three samples drawn with the automatic sampler were transferred to pre-vacuumed vials after 1 h; thus the samples in syringe barrels stayed connected with the increasing CO2 concentration in the chamber. The automatic sampler sustains accuracy and precision in greenhouse gas sampling while improving time efficiency and reducing labor stress. Copyright ?? Taylor & Francis Group, LLC.
Apell, Jennifer N; Tcaciuc, A Patricia; Gschwend, Philip M
2016-07-01
Polymeric passive samplers have become a common method for estimating freely dissolved concentrations in environmental media. However, this approach has not yet been adopted by investigators conducting remedial investigations of contaminated environmental sites. Successful adoption of this sampling methodology relies on an understanding of how passive samplers accumulate chemical mass as well as developing guidance for the design and deployment of passive samplers. Herein, we outline the development of a simple mathematical relationship of the environmental, polymer, and chemical properties that control the uptake rate. This relationship, called a timescale, is then used to illustrate how each property controls the rate of equilibration in samplers deployed in the water or in the sediment. Guidance is also given on how to use the timescales to select an appropriate polymer, deployment time, and suite of performance reference compounds. Integr Environ Assess Manag 2016;12:486-492. © 2015 SETAC. © 2015 SETAC.
Evaluation of passive samplers for the collection of dissolved organic matter in streams.
Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V
2015-01-01
Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.
NASA Astrophysics Data System (ADS)
Sow, Mamadou; Goossens, Dirk; Rajot, Jean Louis
2006-12-01
Wind tunnel experiments were conducted to determine the efficiency of sediment samplers designed to measure the deposition of aeolian dust. Efficiency was ascertained relative to a water surface, which was considered the best alternative for simulating a perfectly absorbent surface. Two types of samplers were studied: the Marble Dust Collector (MDCO) and the inverted frisbee sampler. Four versions of the latter catcher were tested: an empty frisbee, an empty frisbee surrounded by an aerodynamic flow deflector ring, a frisbee filled with glass marbles, and a frisbee filled with glass marbles and surrounded by a flow deflector ring. Efficiency was ascertained for five wind velocities (range: 1-5 m s - 1 ) and eight grain size classes (range: 10-89 μm). The efficiency of dust deposition catchers diminishes rapidly as the wind speed increases. It also diminishes as the particles caught become coarser. Adding a flow deflector ring to a catcher substantially improves the catcher's efficiency, by up to 100% in some cases. The addition of glass marbles to a catcher, on the other hand, does not seem to increase the efficiency, at least not at wind velocities inferior to the deflation threshold. For higher velocities the marbles protect the settled particles from resuspension, keeping them in the catcher. The following five parameters determine the accumulation of aeolian dust in a catcher: the horizontal dust flux, the weight of the particles, atmospheric turbulence, resuspension, and the dust shadow effect created by the catcher. The final accumulation flux depends on the combination of these parameters. The catchers tested in this study belong to the best catchers currently in use in earth science and have been the subject of various aerodynamic studies to improve their efficiency. Nevertheless the catching efficiency remains low, in the order of 20-40% for wind speeds above 2 m s - 1 . Other catchers suffer from the same low efficiencies. There is, thus, evidence to believe that dust deposition rates published in the aeolian literature and obtained by collecting the sediment in a catcher largely underestimate the true deposition. The errors are considerable, of the order of 100% and more. A reconsideration of the literature data on aeolian dust deposition measured by catchers is, therefore, required.
Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler
Stewart, Justin; Sleeth, Darrah K.; Handy, Rod G.; Pahler, Leon F.; Anthony, T. Renee; Volckens, John
2017-01-01
A newly designed, low-cost, disposable inhalable aerosol sampler was developed to assess workers personal exposure to inhalable particles. This sampler was originally designed to operate at 10 L/min to increase sample mass and, therefore, improve analytical detection limits for filter-based methods. Computational fluid dynamics modeling revealed that sampler performance (relative to aerosol inhalability criteria) would not differ substantially at sampler flows of 2 and 10 L/min. With this in mind, the newly designed inhalable aerosol sampler was tested in a wind tunnel, simultaneously, at flows of 2 and 10 L/min flow. A mannequin was equipped with 6 sampler/pump assemblies (three pumps operated at 2 L/min and three pumps at 10 L/min) inside a wind tunnel, operated at 0.2 m/s, which has been shown to be a typical indoor workplace wind speed. In separate tests, four different particle sizes were injected to determine if the sampler’s performance with the new 10 L/min flow rate significantly differed to that at 2 L/min. A comparison between inhalable mass concentrations using a Wilcoxon signed rank test found no significant difference in the concentration of particles sampled at 10 and 2 L/min for all particle sizes tested. Our results suggest that this new aerosol sampler is a versatile tool that can improve exposure assessment capabilities for the practicing industrial hygienist by improving the limit of detection and allowing for shorting sampling times. PMID:27676440
NASA Astrophysics Data System (ADS)
May, Andrew A.; Ashman, Paul; Huang, Jiaoyan; Dhaniyala, Suresh; Holsen, Thomas M.
2011-08-01
Computational fluid dynamics (CFD) simulations coupled with wind tunnel-experiments were used to determine the sampling rate (SR) of the widely used polyurethane foam (PUF) disk passive sampler. In the wind-tunnel experiments, water evaporation rates from a water saturated PUF disk installed in the sampler housing were determined by measuring weight loss over time. In addition, a modified passive sampler designed to collect elemental mercury (Hg 0) with gold-coated filters was used. Experiments were carried out at different wind speeds and various sampler angles. The SRs obtained from wind-tunnel experiments were compared to those obtained from the field by scaling the values by the ratios of air diffusivities. Three-dimensional (3D) CFD simulations were also used to generate SRs for both polychlorinated biphenyls (PCBs) and Hg 0. Overall, the modeled and measured SRs agree well and are consistent with the values obtained from field studies. As previously observed, the SRs increased linearly with increasing wind speed. In addition, it was determined that the SR was strongly dependent on the angle of the ambient wind. The SRs increased when the base was tilted up pointing into the wind and when the base was tilted down (i.e., such that the top of the sampler was facing the wind) the SR decreased initially and then increased. The results suggest that there may be significant uncertainty in concentrations obtained from passive sampler measurements without knowledge of wind speed and wind angle relative to the sampler.
Samplers for evaluation and quantification of ultra-low volume space sprays
USDA-ARS?s Scientific Manuscript database
A field study was conducted to investigate the suitability of sampling devices for quantification of spray deposition from ULV space sprays. Five different samplers were included in an experiment conducted in an open grassy field. Samplers included horizontally stretched stationary cotton ribbon at ...
This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensu...
The Split Core Sampler for Submerged Sediments (Split Core Sampler) designed and fabricated by Arts Manufacturing & Supply, Inc., was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at ...
7 CFR 61.41 - Unlicensed persons must not represent themselves as licensed samplers.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS... represent themselves as licensed samplers. No person shall in any way represent himself to be a sampler...
Time-Based Measurement of Personal Mite Allergen Bioaerosol Exposure over 24 Hour Periods
Tovey, Euan R.; Liu-Brennan, Damien; Garden, Frances L.; Oliver, Brian G.; Perzanowski, Matthew S.; Marks, Guy B.
2016-01-01
Allergic diseases such as asthma and rhinitis are common in many countries. Globally the most common allergen associated with symptoms is produced by house dust mites. Although the bed has often been cited as the main site of exposure to mite allergens, surprisingly this has not yet been directly established by measurement due to a lack of suitable methods. Here we report on the development of novel methods to determine the pattern of personal exposure to mite allergen bioaerosols over 24-hour periods and applied this in a small field study using 10 normal adults. Air was sampled using a miniature time-based air-sampler of in-house design located close to the breathing zone of the participants, co-located with a miniature time-lapse camera. Airborne particles, drawn into the sampler at 2L/min via a narrow slot, were impacted onto the peripheral surface of a disk mounted on the hour-hand of either a 12 or 24 hour clock motor. The impaction surface was either an electret cloth, or an adhesive film; both novel for these purposes. Following a review of the time-lapse images, disks were post-hoc cut into subsamples corresponding to eight predetermined categories of indoor or outdoor location, extracted and analysed for mite allergen Der p 1 by an amplified ELISA. Allergen was detected in 57.2% of the total of 353 subsamples collected during 20 days of sampling. Exposure patterns varied over time. Higher concentrations of airborne mite allergen were typically measured in samples collected from domestic locations in the day and evening. Indoor domestic Der p 1 exposures accounted for 59.5% of total exposure, whereas total in-bed-asleep exposure, which varied 80 fold between individuals, accounted overall for 9.85% of total exposure, suggesting beds are not often the main site of exposure. This study establishes the feasibility of novel methods for determining the time-geography of personal exposure to many bioaerosols and identifies new areas for future technical development and clinical applications. PMID:27192200
Time-Based Measurement of Personal Mite Allergen Bioaerosol Exposure over 24 Hour Periods.
Tovey, Euan R; Liu-Brennan, Damien; Garden, Frances L; Oliver, Brian G; Perzanowski, Matthew S; Marks, Guy B
2016-01-01
Allergic diseases such as asthma and rhinitis are common in many countries. Globally the most common allergen associated with symptoms is produced by house dust mites. Although the bed has often been cited as the main site of exposure to mite allergens, surprisingly this has not yet been directly established by measurement due to a lack of suitable methods. Here we report on the development of novel methods to determine the pattern of personal exposure to mite allergen bioaerosols over 24-hour periods and applied this in a small field study using 10 normal adults. Air was sampled using a miniature time-based air-sampler of in-house design located close to the breathing zone of the participants, co-located with a miniature time-lapse camera. Airborne particles, drawn into the sampler at 2L/min via a narrow slot, were impacted onto the peripheral surface of a disk mounted on the hour-hand of either a 12 or 24 hour clock motor. The impaction surface was either an electret cloth, or an adhesive film; both novel for these purposes. Following a review of the time-lapse images, disks were post-hoc cut into subsamples corresponding to eight predetermined categories of indoor or outdoor location, extracted and analysed for mite allergen Der p 1 by an amplified ELISA. Allergen was detected in 57.2% of the total of 353 subsamples collected during 20 days of sampling. Exposure patterns varied over time. Higher concentrations of airborne mite allergen were typically measured in samples collected from domestic locations in the day and evening. Indoor domestic Der p 1 exposures accounted for 59.5% of total exposure, whereas total in-bed-asleep exposure, which varied 80 fold between individuals, accounted overall for 9.85% of total exposure, suggesting beds are not often the main site of exposure. This study establishes the feasibility of novel methods for determining the time-geography of personal exposure to many bioaerosols and identifies new areas for future technical development and clinical applications.
Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei
2011-08-01
A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.
The report describes the development of a sampler for particulate-associated and low volatility organic pollutants in residential air. The performance of the sampler inlet, which is compatible with the proposed PM-10 regulations for particulate sampling, is documented under a var...
USDA-ARS?s Scientific Manuscript database
Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...
An improved tri-tube cryogenic gravel sampler.
Fred H. Everest; Carl E. McLemore; John F. Ward
1980-01-01
The tri-tube cryogenic gravel sampler has been improved, and accessories have been developed that increase its reliability and safety of operation, reduce core extraction time, and allow accurate partitioning of cores into subsamples. The improved tri-tube sampler is one of the most versatile and efficient substrate sampling tools yet developed.
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
Passive samplers are increasingly being considered for analyses of waters for screening applications, to monitor for the presence of unwanted chemical compounds. Passive samplers typically work by accumulating and concentrating chemicals from the surrounding water over time, all...
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the "Border" study. Keywords: lab; equipmen...
Quantitative organic vapor-particle sampler
Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.
1998-01-01
A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.
7 CFR 800.171 - Who may be licensed or authorized.
Code of Federal Regulations, 2010 CFR
2010-01-01
... individual is to be licensed. (d) Competency determinations—(1) Agency samplers and technicians. The competency of an applicant for a license as a sampler, inspection technician, or weighing technician shall be..., contract samplers, and technicians. The competency of an applicant for a license as an inspector or weigher...
Two modified passive samplers were evaluated at multiple field locations. The sampling rate (SR) of the modified polyurethane foam (PUF)-disk passive sampler for total gaseous mercury (TGM) using gold-coated quartz fiber filters (GcQFF) and gaseous oxidized mercury (GOM) using io...
Efficiency tests of samplers for microbiological aerosols, a review
NASA Technical Reports Server (NTRS)
Henningson, E.; Faengmark, I.
1984-01-01
To obtain comparable results from studies using a variety of samplers of microbiological aerosols with different collection performances for various particle sizes, methods reported in the literature were surveyed, evaluated, and tabulated for testing the efficiency of the samplers. It is concluded that these samplers were not thoroughly tested, using reliable methods. Tests were conducted in static air chambers and in various outdoor and work environments. Results are not reliable as it is difficult to achieve stable and reproducible conditions in these test systems. Testing in a wind tunnel is recommended.
McEwan, T.E.
1994-09-06
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.
McEwan, T.E.
1996-06-04
An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.
Evaluation of particulate air samplers for airborne aflatoxin B1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silas, J.C.; Harrison, M.A.; Carpenter, J.A.
Five air samplers (Millipore, all-glass impinger, centrifugal, Andersen, and absorbent cotton) were evaluated for their ability to collect airborne grain particles contaminated with aflatoxin B1. Corn dust containing 100 micrograms aflatoxin B1/g was aerosolized within a containment system. Each device sampled 100 I air, thus exchanging the air in the chamber two times. Aflatoxin B1 was extracted from all sampling matrices and was detected and quantitated with thin-layer chromatography and scanning fluorodensitometry. The highest efficiency was obtained with the Millipore sampler, while the efficiencies of the centrifugal and the cotton samplers were almost identical. Efficiency of an Andersen was less,more » with no toxin recovered from an all-glass impinger. Measurement of particle size was accomplished with the Andersen sampler.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou Fengji; Hogg, David W.; Goodman, Jonathan
Markov chain Monte Carlo (MCMC) proves to be powerful for Bayesian inference and in particular for exoplanet radial velocity fitting because MCMC provides more statistical information and makes better use of data than common approaches like chi-square fitting. However, the nonlinear density functions encountered in these problems can make MCMC time-consuming. In this paper, we apply an ensemble sampler respecting affine invariance to orbital parameter extraction from radial velocity data. This new sampler has only one free parameter, and does not require much tuning for good performance, which is important for automatization. The autocorrelation time of this sampler is approximatelymore » the same for all parameters and far smaller than Metropolis-Hastings, which means it requires many fewer function calls to produce the same number of independent samples. The affine-invariant sampler speeds up MCMC by hundreds of times compared with Metropolis-Hastings in the same computing situation. This novel sampler would be ideal for projects involving large data sets such as statistical investigations of planet distribution. The biggest obstacle to ensemble samplers is the existence of multiple local optima; we present a clustering technique to deal with local optima by clustering based on the likelihood of the walkers in the ensemble. We demonstrate the effectiveness of the sampler on real radial velocity data.« less
Performance study of personal inhalable aerosol samplers at ultra-low wind speeds.
Sleeth, Darrah K; Vincent, James H
2012-03-01
The assessment of personal inhalable aerosol samplers in a controlled laboratory setting has not previously been carried out at the ultra-low wind speed conditions that represent most modern workplaces. There is currently some concern about whether the existing inhalable aerosol convention is appropriate at these low wind speeds and an alternative has been suggested. It was therefore important to assess the performance of the most common personal samplers used to collect the inhalable aerosol fraction, especially those that were designed to match the original curve. The experimental set-up involved use of a hybrid ultra-low speed wind tunnel/calm air chamber and a rotating, heating breathing mannequin to measure the inhalable fraction of aerosol exposure. The samplers that were tested included the Institute of Occupational Medicine (IOM), Button, and GSP inhalable samplers as well as the closed-face cassette sampler that has been (and still is) widely used by occupational hygienists in many countries. The results showed that, down to ∼0.2 m s(-1), the samplers matched the current inhalability criterion relatively well but were significantly greater than this at the lowest wind speed tested. Overall, there was a significant effect of wind speed on sampling efficiency, with lower wind speeds clearly associated with an increase in sampling efficiency.
NASA Astrophysics Data System (ADS)
Zhu, Gaofeng; Li, Xin; Ma, Jinzhu; Wang, Yunquan; Liu, Shaomin; Huang, Chunlin; Zhang, Kun; Hu, Xiaoli
2018-04-01
Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior parameter distribution with the non-linear dependency structures and multiple modes often present in hydrological models. However, the explorative capabilities and efficiency of the sampler depends strongly on the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which is well suited to handle unknown static parameters of hydrologic model. The PEM-SMC sampler is inspired by the works of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differential evolution algorithm and Metropolis-Hasting algorithm into the framework of SMC. We also prove that the sampler admits the target distribution to be a stationary distribution. Two case studies including a multi-dimensional bimodal normal distribution and a conceptual rainfall-runoff hydrologic model by only considering parameter uncertainty and simultaneously considering parameter and input uncertainty show that PEM-SMC sampler is generally superior to other popular SMC algorithms in handling the high dimensional problems. The study also indicated that it may be important to account for model structural uncertainty by using multiplier different hydrological models in the SMC framework in future study.
Wood Dust Sampling: Field Evaluation of Personal Samplers When Large Particles Are Present
Lee, Taekhee; Harper, Martin; Slaven, James E.; Lee, Kiyoung; Rando, Roy J.; Maples, Elizabeth H.
2011-01-01
Recent recommendations for wood dust sampling include sampling according to the inhalable convention of International Organization for Standardization (ISO) 7708 (1995) Air quality—particle size fraction definitions for health-related sampling. However, a specific sampling device is not mandated, and while several samplers have laboratory performance approaching theoretical for an ‘inhalable’ sampler, the best choice of sampler for wood dust is not clear. A side-by-side field study was considered the most practical test of samplers as laboratory performance tests consider overall performance based on a wider range of particle sizes than are commonly encountered in the wood products industry. Seven companies in the wood products industry of the Southeast USA (MS, KY, AL, and WV) participated in this study. The products included hardwood flooring, engineered hardwood flooring, door skins, shutter blinds, kitchen cabinets, plywood, and veneer. The samplers selected were 37-mm closed-face cassette with ACCU-CAP™, Button, CIP10-I, GSP, and Institute of Occupational Medicine. Approximately 30 of each possible pairwise combination of samplers were collected as personal sample sets. Paired samplers of the same type were used to calculate environmental variance that was then used to determine the number of pairs of samples necessary to detect any difference at a specified level of confidence. Total valid sample number was 888 (444 valid pairs). The mass concentration of wood dust ranged from 0.02 to 195 mg m−3. Geometric mean (geometric standard deviation) and arithmetic mean (standard deviation) of wood dust were 0.98 mg m−3 (3.06) and 2.12 mg m−3 (7.74), respectively. One percent of the samples exceeded 15 mg m−3, 6% exceeded 5 mg m−3, and 48% exceeded 1 mg m−3. The number of collected pairs is generally appropriate to detect a 35% difference when outliers (negative mass loadings) are removed. Statistical evaluation of the nonsimilar sampler pair results produced a finding of no significant difference between any pairing of sampler type. A practical consideration for sampling in the USA is that the ACCU-CAP™ is similar to the sampler currently used by the Occupational Safety and Health Administration for purposes of demonstrating compliance with its permissible exposure limit for wood dust, which is the same as for Particles Not Otherwise Regulated, also known as inert dust or nuisance dust (Method PV2121). PMID:21036895
A study on emission of phthalate esters from plastic materials using a passive flux sampler
NASA Astrophysics Data System (ADS)
Fujii, M.; Shinohara, N.; Lim, A.; Otake, T.; Kumagai, K.; Yanagisawa, Y.
Phthalate esters are used as plasticizer in many plastics, and several studies have shown their toxicity. Phthalate esters are gradually emitted over time, and so it is conceivable that they pose a significant health risk. This study aims to investigate the temperature dependence of the emissions of various phthalate esters and to estimate the health risks of these emissions at various temperatures. A passive-type sampler was developed to measure the flux of phthalate esters from the surface of plastic materials. With this sampler, we examined three widely used plastic materials: synthetic leather, wallpaper and vinyl flooring. The observed maximum emissions of diethyl phthalate, dibutyl phthalate, and diethylhexyl phthalate (DEHP) from these materials at 20°C were 0.89, 0.77, and 14 μg m -2 h -1, respectively. Emissions at 80°C were 2.8, 4.5×10 2, and 1.5×10 3 μg m -2 h -1, respectively. The results showed this temperature dependence is determined primarily by the type of phthalate ester and less so by the type of material. The estimation from the results of temperature dependence indicated the concentration of DEHP in a vehicle left out in the sunshine during the day can exceed the recommended levels of Japan Ministry of Health, Labour and Welfare.
Benami, Maya; Busgang, Allison; Gillor, Osnat; Gross, Amit
2016-08-15
Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) - a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0-9.7×10(4)CFUm(-2)h(-1)) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1m away from the GW systems. At the 5m distance amounts of these bacteria were not statistically different (p>0.05) from background concentrations tested over 50m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques to provide more accurate quantification of small amounts of viable, aerosolized bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
Chapin, Thomas P.; Todd, Andrew S.
2012-01-01
Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7–8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R2 > 0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed.
Chapin, Thomas P; Todd, Andrew S
2012-11-15
Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7-8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R(2)>0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed. Published by Elsevier B.V.
2007-06-04
LCDR Greg Cook , PhD Date...Science Research Unit • Dr. Robert Mustacich of RVM Scientific • My thesis advisory committee: LtCol Peter LaPuma, LCDR Greg Cook , and Dr. Brian...which constitutes a mass spectrum. A computer compares the mass spectrum to a mass spectral library like a fingerprint. (McMaster and McMaster, 1997
NASA Astrophysics Data System (ADS)
Docherty, K. M.; Lemmer, K. M.; Domingue, K. D.; Spring, A.; Kerber, T. V.; Mooney, M. M.
2017-12-01
Airborne transport of microbial communities is a key component of the global ecosystem because it serves as a mechanism for dispersing microbial life between all surface habitats on the planet. However, most of our understanding of airborne microbial distribution is derived from samples collected near the ground. Little is understood about how the vertical layers of the air may act as a habitat filter or how local terrestrial ecosystems contribute to a vast airborne microbial seedbank. Specifically, urbanization may fundamentally alter the terrestrial sources of airborne microbial biodiversity. To address this question, we conducted airborne sampling at minimally disturbed natural sites and paired urban sites in 4 different North American ecosystems: shortgrass steppe, desert scrub, eastern deciduous forest, and northern mesic forest. All natural area sites were co-located with NEON/Ameriflux tower sites collecting atmospheric data. We developed an airborne sampling platform that uses tethered helikites at 3 replicate locations within each ecosystem to launch remote-controlled sampler payloads. We designed sampler payloads to collect airborne bacteria and fungi from 150, 30 and 2 m above the ground. Payload requirements included: ability to be disinfected and remain contaminant-free during transport, remote open/close functionality, payload weight under 6 lbs and automated collection of weather data. After sampling for 6 hours at each location, we extracted DNA collected by the samplers. We also extracted DNA from soil and plant samples collected from each location, and characterized ground vegetation. We conducted bacterial 16S amplicon-based sequencing using Mi-Seq and sequence analysis using QIIME. We used ArcGIS to determine percent land use coverage. Our results demonstrate that terrestrial ecosystem type is the most important factor contributing to differences in airborne bacterial community composition, and that communities differed by ecosystem. The signature of the specific ecosystem, and whether it was located in a natural or urban area, was evident in both near-surface and higher altitude samples. This suggests that continued urbanization and increases in impervious surface area can fundamentally change sources of atmospheric biodiversity and distribution patterns.
Sensing Shallow Seafloor and Sediment Properties, Recent History
2008-09-01
instances, larger samplers, i.e. box corers, can be further subsampled with small push-in tubes , yielding relatively undisturbed specimens. Corers...sediment within the sampling tube 3 during retrieval. Generally, common gravity corers can retrieve up to 5m (in softer sediments) of soil, whereas... tube that can be generated. Vibro-corers are similar to the gravity corers but have a motorized unit added to the top of the assembly, generating an
Improved Atmospheric Sampling of Hexavalent Chromium
Torkmahalleh, Mehdi Amouei; Yu, Chang-Ho; Lin, Lin; Fan, Zhihua (Tina); Swift, Julie L.; Bonanno, Linda; Rasmussen, Don H.; Holsen, Thomas M.; Hopke, Philip K.
2015-01-01
Hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) are the primary chromium oxidation states found in ambient atmospheric particulate matter. While Cr(III) is relatively nontoxic, Cr(VI) is toxic and exposure to Cr(VI) may lead to cancer, nasal damage, asthma, bronchitis, and pneumonitis. Accurate measurement of the ambient Cr(VI) concentrations is an environmental challenge since Cr(VI) can be reduced to Cr(III) and vice versa during sampling. In the present study, a new Cr(VI) sampler (Clarkson sampler) was designed, constructed, and field tested to improve the sampling of Cr(VI) in ambient air. The new Clarkson Cr(VI) sampler was based on the concept that deliquescence during sampling leads to aqueous phase reactions. Thus, the relative humidity of the sampled air was reduced below the deliquescence relative humidity (DRH) of the ambient particles. The new sampler was operated to collect Total Suspended Particles (TSP), and compared side-by-side with the current National Air Toxics Trends Stations (NATTS) Cr(VI) sampler that is utilized in the United States Environmental Protection Agency (USEPA) air toxics monitoring program. Side-by-side field testing of the samplers occurred in Elizabeth, NJ during the winter and summer of 2012. The average recovery values of Cr(VI) spikes after 24 hour sampling intervals during summer and winter sampling were 57 and 72%, respectively, for the Clarkson sampler, while the corresponding average values for NATTS samplers were 46% for both summer and winter sampling, respectively. Preventing the ambient aerosol collected on the filters from deliquescing is a key to improving the sampling of Cr(VI). PMID:24344574
NASA Astrophysics Data System (ADS)
Gassmann, Matthias; Farlin, Julien; Gallé, Tom
2017-04-01
Agricultural application of herbicides often leads to significant herbicide losses to receiving rivers. The impact of agricultural practices on water pollution can be assessed by process-based reactive transport modelling using catchment scale models. Prior to investigations of management practices, these models have to be calibrated using sampling data. However, most previous studies only used concentrations at the catchment outlet for model calibration and validation. Thus, even if the applied model is spatially distributed, predicted spatial differences of pesticide loss cannot be directly compared to observations. In this study, we applied the spatially distributed reactive transport model Zin-AgriTra in the mesoscale (78 km2) catchment of the Wark River in Luxembourg in order to simulate concentrations of terbuthylazine in river water. In contrast to former studies, we used six sampling points, equipped with passive samplers, for pesticide model validation. Three samplers were located in the main channel of the river and three in smaller tributaries. At each sampling point, event mean concentration of six events from May to July 2011 were calculated by subtraction of baseflow-mass from total collected mass assuming time-proportional uptake by passive samplers. Continuous discharge measurements and high-resolution autosampling during events allowed for accurate load calculations at the outlet. Detailed information about maize cultivation in the catchment and nation-wide terbuthylazine application statistics (341 g/ha in the 3rd week of May) were used for a definition of the pesticide input function of the model. The hydrological model was manually calibrated to fit baseflow and spring/summer events. Substance fluxes were calibrated using a Latin Hypercube of physico-chemical substance characteristics as provided by the literature: surface soil half-lives of 10-35 d, Freundlich KOC of 150-330 ml/g, Freundlich n of 0.9 - 1 and adsorption/desorption kinetics of 20 - 80 1/d. Daily discharge simulations resulted in high Kling-Gupta efficiencies (KGE) for the calibration and the validation period (KGE > 0.70). Overall, terbuthylazine concentrations could be successfully reproduced with maximum KGE > 0.90 for all concentrations in the catchment and loads at the outlet. The generally lower concentrations in the tributaries that were measured by the passive samplers and the declining concentrations towards the outlet in the main channel could be reproduced by the model. The model simulated overland flow to be the major source of terbuthylazine in the main channel and soil water fluxes to be the most important pathways in the tributaries. Simulation results suggest that less than 0.01 % of applied terbuthylazine mass was exported to the river in the Wark catchment and less than 5 % of the exported mass was originating from the sampled tributaries. In addition to calibration of substance characteristics, passive sampler data was helpful in model setup of application field connectivity. Since the spatial resolution of the model was 50m, input maps sometimes showed a field to be directly connected to a river, whereas it was in reality separated from it by a 30m wide field or forest strip. Such misconfigurations leading to high concentrations in tributaries could easily be identified by comparing model results to passive sampler data. In conclusion, assigning different transport pathways of terbuthylazine to the rivers by model simulations was helped by using the additional spatial information on pesticide concentrations gained from passive samplers.
Fan, Lin; Sun, Geng; Qiu, Jiangbing; Ma, Qimin; Hess, Philipp; Li, Aifeng
2014-12-19
In the present study, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were spiked into artificial seawater at low, medium and high estuarine salinities (9‰, 13.5‰ and 27‰). Passive samplers (HP20 resin) used for solid phase adsorption toxin tracking (SPATT) technology were exposed in these seawaters for 12-h periods. Adsorption curves well fitted a pseudo-secondary kinetics model. The highest initial sorption rates of both toxins occurred in the seawater of medium salinity, followed by seawater of low and high estuarine salinity. Pore volumes of micropores (<2 nm) and small mesopores (2 nm
40 CFR 1065.1109 - Post-test sampler disassembly and sample extraction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Post-test sampler disassembly and... Semi-Volatile Organic Compounds § 1065.1109 Post-test sampler disassembly and sample extraction. This... environment as follows after the test: (1) Remove the PM filter, PUF plugs, and all the XAD-2 from the...
In April 2014, U.S. Environmental Protection Agency (EPA) environmental monitoring and assessment team members reviewed DOE's air sampling plan, visited DOE's air samplers and placed air samplers onsite near existing DOE samplers to corroborate results.
Performance characteristics of a low-volume PM10 sampler
USDA-ARS?s Scientific Manuscript database
Four identical PM10 pre-separators, along with four identical low-volume (1m3 hr-1) total suspended particulate (TSP) samplers were tested side-by-side in a controlled laboratory particulate matter (PM) chamber. The four PM10 and four TSP samplers were also tested in an oil pipe-cleaning field to ev...
40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the sampler inlet opening centered in the sampling zone. To meet the maximum blockage limit of § 53.62(c)(1) or for convenience, part of the test sampler may be positioned external to the wind tunnel... = reference method sampler volumetric flow rate; and t = sampling time. (iii) Remove the reference method...
Discipline-Based Art Education: A Curriculum Sampler.
ERIC Educational Resources Information Center
Alexander, Kay, Ed.; Day, Michael, Ed.
This sampler was designed for art specialists and art museum educators with a basic understanding of teaching discipline-based art education content. The introduction offers a brief history of the Sampler and explains its intended purpose and use. Then 8 unit models with differing methodologies for relating art objectives to the four disciplines:…
50 CFR 648.11 - At-sea sea sampler/observer coverage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false At-sea sea sampler/observer coverage. 648... Provisions § 648.11 At-sea sea sampler/observer coverage. (a) The Regional Administrator may request any vessel holding a permit for Atlantic sea scallops, NE multispecies, monkfish, skates, Atlantic mackerel...
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the Border study. Keywords: lab; equipment;...
The Ogawa passive sampler (Ogawa USA, Pompano Beach, Florida) is a useful tool for monitoring atmospheric ammonia (NH3(g)) concentrations and assessing the effects of agricultural waste management practices on NH3(g) emissions. The Ogawa sampler, with fil...
USGS GeoData Digital Raster Graphics
,
2001-01-01
Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC?s) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC?s in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: ? Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. ? Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. ? Reduction in sampling time by as much as 80 percent of that required for ?purge type? sampling methods. ? An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.
Distinguishing between debris flows and floods from field evidence in small watersheds
Pierson, Thomas C.
2005-01-01
Post-flood indirect measurement techniques to back-calculate flood magnitude are not valid for debris flows, which commonly occur in small steep watersheds during intense rainstorms. This is because debris flows can move much faster than floods in steep channel reaches and much slower than floods in low-gradient reaches. In addition, debris-flow deposition may drastically alter channel geometry in reaches where slope-area surveys are applied. Because high-discharge flows are seldom witnessed and automated samplers are commonly plugged or destroyed, determination of flow type often must be made on the basis of field evidence preserved at the site.
The CE-Way of Thinking: "All Is Relative!".
Schmitt-Kopplin, Philippe; Fekete, Agnes
2016-01-01
Over the last two decades the development of capillary electrophoresis instruments lead to systems with programmable sampler, separation column, separation buffer, and detection devices comparable visually in many aspects to the setup of classical chromatography.Two processes make capillary electrophoresis essentially different from chromatography and are the basis of the CE-way of thinking, namely, the injection type and the liquid flow within the capillary. (1) When the injection is made hydrodynamically (such as in most of the found applications in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. (2) The buffer velocity is not pressure driven as in liquid chromatography but electrokinetically governed by the quality of the capillary surface (separation buffer dependant surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is an apparent nonreproducible migration time of the analytes, even though the own velocity of the ions is the same.The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired timescale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size-see chapter on semiempirical modelization).
NASA Astrophysics Data System (ADS)
Cotel, Solenn; Viville, Daniel; Pierret, Marie Claire; Benarioumlil, Sylvain; Chabaux, François
2016-04-01
Transport of suspended matters (SM) and bedload in river controls the erosion process and elements export of a catchment. Furthermore, the SM are heavily involved in the migration of organic matter, metals and pollutants. The knowledge of the dynamics of the SM export is also essential to better understand the hydrogeochemical functioning of natural ecosystem. We investigated this question at the scale of a catchment; the Strengbach basin (site of OHGE - Observatoire Hydro-Géochimique de l'Environnement) where meteorological and hydrological data are monitored since 30 years. This small granitic basin (0,8km²) is located in the Vosges massif at altitudes between 883m and 1146m with 1400mm mean annual precipitations. A first evaluation of the solid fluxes exported at the Strengbach catchment was carried out on the basis of fortnightly sampling and measurement (Viville et al., 2012). Two automatic water samplers have been set up at the outlet of the basin in december 2012, in order to 1) evaluate the potential bias generated by the sampling frequency and 2) improve the SM flux calculation accuracy especially by taking into account the high flow events. These two samplers allowed regular sampling at 16h time step as well as high flow events sampling. At the same time, the bedload flux was estimated fortnightly by measuring the volume of sediments accumulated in a flume. However, the characteristics of the small Strengbach catchment (low water level, low SM concentration and mountainous winter climatic conditions) required to adapt the conventionally used systems. In this way, the SM annual flux estimated with the data from the two samplers varied between 7,5T and 8,8T during the three years of the study. By comparison, the SM annual flux obtained with previous method (only fortnightly sampling) was significantly different with values ranging from 2,8T to 16,6T. The contribution from each sampler and thus each sampling strategy to the improvement of the SM flux estimation has been calculated and is discussed below. When the SM flux due to high flow events is added to the SM flux based on 16h time step samples, the annual SM flux was improved of only 3% to 12% depending on the year, which can be surprising. During the three years of the study, the annual bedload flux was estimated between 1,3T and 5,0T, indicating that the solid export is dominated by SM transport in this catchment. Between 2004 and 2010, the mean weathering net flux (exports at the outlet corrected by atmospheric inputs) was of 1,6T/yr for the basic cations and of 2,3T/yr for the silica (Viville et al., 2012). Thus, in the Strengbach catchment, the SM and bedload exports represent a significant portion of the global chemical elements export. In such catchments, theses solid fluxes can not be neglected.
Design of a small personal air monitor and its application in aircraft.
van Netten, Chris
2009-01-15
A small air sampling system using standard air filter sampling technology has been used to monitor the air in aircraft. The device is a small ABS constructed cylinder 5 cm in diameter and 9 cm tall and can be operated by non technical individuals at an instant notice. It is completely self contained with a 4 AAA cell power supply, DC motor, a centrifugal fan, and accommodates standard 37 mm filters and backup pads. The monitor is totally enclosed and pre assembled in the laboratory. A 45 degrees twist of the cap switches on the motor and simultaneously opens up the intake ports and exhaust ports allowing air to pass through the filter. A reverse 45 degrees twist of the cap switches off the motor and closes all intake and exhaust ports, completely enclosing the filter. The whole monitor is returned to the laboratory by standard mail for analysis and reassembly for future use. The sampler has been tested for electromagnetic interference and has been approved for use in aircraft during all phases of flight. A set of samples taken by a BAe-146-300 crew member during two flights in the same aircraft and analyzed by GC-MS, indicated exposure to tricresyl phosphate (TCP) levels ranging from 31 to 83 nanograms/m(3) (detection limit <4.5 nanograms/m(3)). The latter elevated level was associated with the use of the auxiliary power unit (APU) in the aircraft. It was concluded that the air sampler was capable of monitoring air concentrations of TCP isomers in aircraft above 4.5 nanogram/m(3).
A field evaluation of a SO 2 passive sampler in tropical industrial and urban air
NASA Astrophysics Data System (ADS)
Cruz, Lícia P. S.; Campos, Vânia P.; Silva, Adriana M. C.; Tavares, Tania M.
Passive samplers have been widely used for over 30 years in the measurement of personal exposure to vapours and gases in the workplace. These samplers have just recently been applied in the monitoring of ambient air, which presents concentrations that are normally much smaller than those found in occupational environments. The locally constructed passive sampler was based on gas molecular diffusion through static air layer. The design used minimizes particle interference and turbulent diffusion. After exposure, the SO 2 trapped in impregnated filters with Na 2CO 3 was extracted by means of an ultrasonic bath, for 15 min, using 1.0×10 -2 mol L -1 H 2O 2. It was determined as SO 4-2 by ion chromatography. The performance of the passive sampler was evaluated at different exposure periods, being applied in industrial and urban areas. Method precision as relative standard deviation for three simultaneously applied passive samplers was within 10%. Passive sampling, when compared to active monitoring methods under real conditions, used in urban and industrial areas, showed an overall accuracy of 15%. A statistical comparison with an active method was performed to demonstrate the validity of the passive method. Sampler capacity varied between 98 and 421 μg SO 2 m -3 for exposure periods of one month and one week, respectively, which allows its use in highly polluted areas.
NASA Astrophysics Data System (ADS)
Slanina, J.; Möls, J. J.; Baard, J. H.
The results of a wet deposition monitoring experiment, carried out by eight identical wet-only precipitation samplers operating on the basis of 24 h samples, have been used to investigate the accuracy and uncertainties in wet deposition measurements. The experiment was conducted near Lelystad, The Netherlands over the period 1 March 1983-31 December 1985. By rearranging the data for one to eight samplers and sampling periods of 1 day to 1 month both systematic and random errors were investigated as a function of measuring strategy. A Gaussian distribution of the results was observed. Outliers, detected by a Dixon test ( a = 0.05) influenced strongly both the yearly averaged results and the standard deviation of this average as a function of the number of samplers and the length of the sampling period. The systematic bias in bulk elements, using one sampler, varies typically from 2 to 20% and for trace elements from 10 to 500%, respectively. Severe problems are encountered in the case of Zn, Cu, Cr, Ni and especially Cd. For the sensitive detection of trends generally more than one sampler per measuring station is necessary as the standard deviation in the yearly averaged wet deposition is typically 10-20% relative for one sampler. Using three identical samplers, trends of, e.g. 3% per year will be generally detected in 6 years.
Characterization of five passive sampling devices for monitoring of pesticides in water.
Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny
2015-07-31
Five different passive sampler devices were characterized under laboratory conditions for measurement of 124 legacy and current used pesticides in water. In addition, passive sampler derived time-weighted average (TWA) concentrations were compared to time-integrated active sampling in the field. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for individual pesticides using silicone rubber (SR), polar organic chemical integrative sampler (POCIS)-A, POCIS-B, Chemcatcher(®) SDB-RPS and Chemcatcher(®) C18. The median RS (Lday(-1)) decreased as follows: SR (0.86)>POCIS-B (0.22)>POCIS-A (0.18)>Chemcatcher(®) SDB-RPS (0.05)>Chemcatcher(®) C18 (0.02), while the median logKPW (Lkg(-1)) decreased as follows: POCIS-B (4.78)>POCIS-A (4.56)>Chemcatcher(®) SDB-RPS (3.17)>SR (3.14)>Chemcatcher(®)C18 (2.71). The uptake of the selected compounds depended on their physicochemical properties, i.e. SR showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW)>5.3), whereas POCIS-A, POCIS-B and Chemcatcher(®) SDB-RPS were more suitable for hydrophilic compounds (logKOW<0.70). Overall, the comparison between passive sampler and time-integrated active sampler concentrations showed a good agreement and the tested passive samplers were suitable for capturing compounds with a wide range of KOW's in water. Copyright © 2015 Elsevier B.V. All rights reserved.
Lunar surface: Changes in 31 months and micrometeoroid flux
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1972-01-01
A preliminary comparison of Surveyor 3 and Apollo 12 photographs of areas disturbed by the Surveyor is described. About 60 Surveyor pictures taken in April and May 1967 and 20 Apollo photographs including stereo pairs were examined in detail. Only one definite change in the surface, other than those produced by astronauts, was noted. This is a particle about 2 mm in diameter which appears in the Apollo photographs of a Surveyor footpad imprint but which does not appear in the Surveyor photographs. The walls made by Surveyor footpads and surface sampler were still in place, and surface areas darkened by ejected fines during the Surveyor landing still appeared dark. The absence of detectable craters in the footpad imprint implies a very low micrometeorite flux on the lunar surface.
Thio, C L; Smith, D; Merz, W G; Streifel, A J; Bova, G; Gay, L; Miller, C B; Perl, T M
2000-01-01
To investigate an outbreak of aspergillosis in a leukemia and bone marrow transplant (BMT) unit and to improve environmental assessment strategies to detect Aspergillus. Epidemiological investigation and detailed environmental assessment. A tertiary-care university hospital with a 37-bed leukemia and BMT unit Leukemic or BMT patients with invasive aspergillosis identified through prospective surveillance and confirmed by chart review. We verified the diagnosis of invasive fungal infection by reviewing medical charts of at-risk patients, performing a case-control study to determine risk factors for infection, instituting wet mopping to clean all floors, providing N95 masks to protect patients outside high-efficiency particulate air (HEPA)-filtered areas, altering traffic patterns into the unit, and performing molecular typing of selected Aspergillus flavus isolates. To assess the environment, we verified pressure relationships between the rooms and hallway and between buildings, and we compared the ability of large-volume (1,200 L) and small-volume (160 L) air samplers to detect Aspergillus spores. Of 29 potential invasive aspergillosis cases, 21 were confirmed by medical chart review. Risk factors for developing invasive aspergillosis included the length of time since malignancy was diagnosed (odds ratio [OR], 1.0; P=.05) and hospitalization in a patient room located near a stairwell door (OR, 3.7; P=.05). Two of five A. flavus patient isolates were identical to one of the environmental isolates. The pressure in most of the rooms was higher than in the corridors, but the pressure in the oncology unit was negative with respect to the physically adjacent hospital; consequently, the unit acted essentially as a vacuum that siphoned non-HEPA-filtered air from the main hospital. Of the 78 samples obtained with a small-volume air sampler, none grew an Aspergillus species, whereas 10 of 40 cultures obtained with a large-volume air sampler did. During active construction, Aspergillus spores may have entered the oncology unit from the physically adjacent hospital because the air pressure differed. Guidelines that establish the minimum acceptable pressures and specify which pressure relationships to test in healthcare settings are needed. Our data show that large-volume air samples are superior to small-volume samples to assess for Aspergillus in the healthcare environment.
A new model for bed load sampler calibration to replace the probability-matching method
Robert B. Thomas; Jack Lewis
1993-01-01
In 1977 extensive data were collected to calibrate six Helley-Smith bed load samplers with four sediment particle sizes in a flume at the St. Anthony Falls Hydraulic Laboratory at the University of Minnesota. Because sampler data cannot be collected at the same time and place as ""true"" trap measurements, the ""probability-matching...
50 CFR 260.57 - How samples are drawn by inspectors or licensed samplers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false How samples are drawn by inspectors or... drawn by inspectors or licensed samplers. An inspector or a licensed sampler shall select samples, upon... representative sample of the lot. Samples drawn for inspection shall be furnished by the applicant at no cost to...
This paper describes the development and field evaluation of a compact high-volume dichotomous sampler (HVDS) that collects coarse (PM10-2.5) and fine (PM2.5) particulate matter. In its primary configuration as tested, the sampler size-fractionates PM10 into...
The San Dimas Soil Core Sampler
L. A. Andrews; W. M. Broadfoot
1958-01-01
The search for satisfactory methods of sampling soils for various purposes under a wide variety of conditions has led to the development of the equally wide variety of soil samplers described by Hoover, Olson, and Metz (5), Lull and Reinhart (8), and the U. S. Dept. Agr. Soil Survey staff (11). Although many of these samplers proved successful for the particular...
Comet Odyssey: Comet Surface Sample Return
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.
2010-10-01
Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Wu, S.; Ding, K.; Yang, C.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.
2014-12-01
A 6-bottle serial gas-tight sampler (so-called "six-shooter") was developed for application with deep-sea vent fluids. The new device is composed of a custom-made 6-channel valve manifold and six sampling bottles which are circularly distributed around the valve manifold. Each valve channel consists of a high-pressure titanium cartridge valve and a motor-driven actuator. A sampling snorkel is connected to the inlet of the manifold that delivers the incoming fluid to different bottles. Each sampling bottle has a 160 ml-volume chamber and an accumulator chamber inside where compressed nitrogen is used to maintain the sample at near in-situ pressure. An electronics chamber that is located at the center of the sampler is used to carry out all sampling operations, autonomously, if desired. The sampler is of a compact circular configuration with a diameter of 26 cm and a length of 54 cm. During the SVC cruise AT 26-12, the sampler was deployed by DSV2 Alvin at a cold seep site MC036 with a depth of 1090 m in the Gulf of Mexico. The sampler collected fluid samples automatically following the tidal cycle to monitor the potential impact of the tide cycle on the fluid chemistry of cold seep in a period of two day. During the cruise AT 26-17, the sampler was used with newly upgraded DSV2 Alvin three times at the hydrothermal vent sites along Axial Seamount and Main Endeavor Field on Juan de Fuca Ridge. During a 4-day deployment at Anemone diffuse site (Axial Caldera), the sampler was set to work in an autonomous mode to collect fluid samples according to the preset interval. During other dives, the sampler was manually controlled via ICL (Inductively Coupled Link) communication through the hull. Gas-tight fluid samples were collected from different hydrothermal vents with temperatures between 267 ℃ and 335 ℃ at the depth up to 2200 m. The field results indicate unique advantages of the design. It can be deployed in extended time period with remote operation or working autonomously taking gas-tight fluid samples. If used with HOV or ROV, it will reduce basket space occupation and ICL communication cables compared to traditional single-bottle gas-tight samplers. This time serial gas-tight fluid sampler will be further developed into a 36 bottle system for remote operation with seafloor cabled observatory.
Pesticide leaching via subsurface drains in different hydrologic situations
NASA Astrophysics Data System (ADS)
Zajíček, Antonín; Fučík, Petr; Liška, Marek; Dobiáš, Jakub
2017-04-01
esticides and their degradates in tile drainage waters were studied in two small, predominantly agricultural, tile-drained subcatchments in the Bohemian-Moravian Highlands, Czech Republic. The goal was to evaluate their occurence and the dymamics of their concentrations in drainage waters in different hydrologic situations using discharge and concentration monitoring together with 18O and 2H isotope analysis for Mean Residence Time (MRT) estimation and hydrograph separations during rainfall - runoff (R-R) events. The drainage and stream discharges were measured continuously at the closing outlets of three drainage groups and one small stream. During periods of prevailing base and interflow, samples were collected manually in two-week intervals for isotope analysis and during the spraying period (March to October) also for pesticide analysis. During R-R events, samples were taken by automatic samplers in intervals varying from 20 min (summer) to 1 hour (winter). To enable isotopic analysis, precipitation was sampled both manually at two-week intervals and also using an automatic rainfall sampler which collected samples of precipitation during the R-R events at 20-min. intervals. The isotopic analysis showed, that MRT of drainage base flow and interflow varies from 2,2 to 3,3 years, while MRT of base flow and interflow in surface stream is several months. During R-R events, the proportion of event water varied from 0 to 60 % in both drainage and surface runoff. The occurrence of pesticides and their degradates in drainage waters is strongly dependent on the hydrologic situation. While degradates were permanently present in drainage waters in high but varying concentrations according to instantaneous runoff composition, parent matters were detected almost exclusively during R-R events. In periods with prevailing base flow and interflow (grab samples), especially ESA forms of chloracetanilide degradates occured in high concentrations in all samples. Average sum of degradates varried between 1 730 - 5 760 ng/l. During R-R events, pesticide concentration varried according to runoff composition and time between sprayng and event. Event with no protortiom of event water in drainage runoff were typical by incereas in degradates concentrations (up to 20 000ng/l) and none or low occurence of parent matters. Events with significant event water proportion in drainage runoff were characterised by decrease in degradates concentrations and (when event happened soon affter spraying) by presence of paternal pesticides in drinage runoff. Instanteous concentrations of paren matters can be extremely high in that causes, up to 23 000 ng/l in drainage waters and up to 40 000 ng/l in small stream. Above results suggest that drainage systems could act as significant source of pesticide leaching. When parent compounds leaches via tile drainage systems, there are some border conditions that must exist together such as the occurence of R-R event soon after the pests application and the presence of event water (or water with short residence time in the catchment) in the drainage runoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Etsu; Kimura, Mitsuo; Tomozawa, Kenichi
1999-12-01
A simple analysis of atmospheric NO{sub 2}, SO{sub 2}, and O{sub 3} in mountains by passive samplers was investigated and applied to the spatial analysis of air pollutants at Mt. Hiei in Kyoto City, Passive samplers were exposed for 30 days. Yanagisawa-type samplers were used for NO{sub 2} determination. The absorbed NO{sub 2} was measured as nitrite ion spectro-photometrically by the Saltzman method. On the other hand, SO{sub 2} samplers comprising an absorbent filter containing sodium carbonate solution were made. The absorbed SO{sub 2} was oxidized to SO{sub 4}{sup 2{minus}} with an H{sub 2}O{sub 2} solution and determined by ionmore » chromatography. For O{sub 3} determination, Ogawa ozone samplers were used. The O{sub 3} reacted with nitrite ion to produce nitrate ion, which was measured by ion chromatography. The relative standard deviations for NO{sub 2}, SO{sub 2}, and O{sub 3} samplers were 1.4%, 3--10%, and 2--5%, respectively. Samplers were set up in 13 locations at Mt. Hiei. The NO{sub 2} concentration and its distribution along the slope of Mt. Hiei changed considerably both daily and seasonally. The seasonal variation of atmospheric NO{sub 2} showed a winter maximum and a summer minimum. The concentration of atmospheric SO{sub 2} at Mt. Hiei was lower than that of NO{sub 2} and scarcely changed. Atmospheric O{sub 3} increased gradually with an increase of the altitude, exhibiting a regular pattern with a maximum in spring and a minimum in winter.« less
NASA Astrophysics Data System (ADS)
Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie
2014-03-01
Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were unavailable.
Improved Large-Volume Sampler for the Collection of Bacterial Cells from Aerosol
White, L. A.; Hadley, D. J.; Davids, D. E.; Naylor, R.
1975-01-01
A modified large-volume sampler was demonstrated to be an efficient device for the collection of mono-disperse aerosols of rhodamine B and poly-disperse aerosols of bacterial cells. Absolute efficiency for collection of rhodamine B varied from 100% with 5-μm particles to about 70% with 0.5-μm particles. The sampler concentrated the particles from 950 liters of air into a flow of between 1 and 2 ml of collecting fluid per min. Spores of Bacillus subtilis var. niger were collected at an efficiency of about 82% compared to the collection in the standard AGI-30 sampler. In the most desirable collecting fluids tested, aerosolized cells of Serratia marcescens, Escherichia coli, and Aerobacter aerogenes were collected at comparative efficiencies of approximately 90, 80, and 90%, respectively. The modified sampler has practical application in the study of aerosol transmission of respiratory pathogens. Images PMID:803820
A source of PCB contamination in modified high-volume air samplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, I.; O'Dell, J.M.; Arnold, K.
2000-02-01
Modified Anderson High Volume (Hi-Vol) air samplers are widely used for the collection of semi-volatile organic compounds (such as PCBs) from air. The foam gasket near the main air flow path in these samplers can become contaminated with PCBs if the sampler or the gasket is stored at a location with high indoor air PCB levels. Once the gasket is contaminated, it releases PCBs back into the air stream during sampling, and as a result, incorrectly high air PCB concentrations are measured. This paper presents data demonstrating this contamination problem using measurements from two Integrated Atmospheric Deposition Network sites: onemore » at Sleeping Bear Dunes on Lake Michigan and the other at Point Petre on Lake Ontario. The authors recommend that these gaskets be replaced by Teflon tape and that the storage history of each sampler be carefully tracked.« less
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Hapke, Whitney B; Morace, Jennifer L; Nilsen, Elena B; Alvarez, David A; Masterson, Kevin
2016-01-01
Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011-Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin's streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July-Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.
Temple, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David; Masterson, Kevin
2016-01-01
Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.
Hapke, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David A.; Masterson, Kevin
2016-01-01
Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown. PMID:27348521
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the groundwater, soil gas, and soil for contaminants at the Vietnam Armor Training Facility (VATF) at Fort Gordon, from October 2009 to September 2011. The assessment included the detection of organic compounds in the groundwater and soil gas, and inorganic compounds in the soil. In addition, organic contaminant assessment included organic compounds classified as explosives and chemical agents in selected areas. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. This report is a revision of "Assessment of soil-gas, surface-water, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2010," Open-File Report 2011-1200, and supersedes that report to include results of additional samples collected in July 2011. Four passive samplers were deployed in groundwater wells at the VATF in Fort Gordon. Total petroleum hydrocarbons and benzene and octane were detected above the method detection level at all four wells. The only other volatile organic compounds detected above their method detection level were undecane and pentadecane, which were detected in two of the four wells. Soil-gas samplers were deployed at 72 locations in a grid pattern across the VATF on June 3, 2010, and then later retrieved on June 9, 2010. Total petroleum hydrocarbons were detected in 71 of the 72 samplers (one sampler was destroyed in the field and not analyzed) at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylene (BTEX) was detected above the detection level in 31 of the 71 samplers that were analyzed. Other volatile organic compounds detected above their respective method detection levels were naphthalene, 2-methyl-naphthalene, tridecane, 1,2,4-trimethylbenzene, and perchloroethylene. After the results of the 71 soil-gas samplers were received, 31 additional passive soil-gas samplers were deployed on July 14, 2011, and retrieved on July 18, 2011. These 31 samplers were deployed on a larger areal scale to better define the extent of the contamination. Total petroleum hydrocarbons were detected above their method detection level at all 31 samplers, whereas BTEX was detected above its method detection level at 17 of the 31 samplers. Other organic compounds detected above their method detection levels were naphthalene, 2-methyl-naphthalene, octane, undecane, tridecane, pentadecane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, chloroform, and perchloroethylene. Subsequent to the 2010 soil-gas survey, four areas determined to have elevated contaminant mass were selected and sampled for explosives and chemical agents. No detections of explosives or chemical agents above their respective method detection levels were found at any of the sampling locations. The same four locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. A fifth location also was selected on the basis of the elevated contaminant mass of the soil-gas survey. No metals that exceeded the Regional Screening Levels for Industrial Soils, as classified by the U.S. Environmental Protection Agency, were detected at any of the five VATF locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina, as classified by the South Carolina Department of Health and Environmental Control. Because South Carolina is adjacent to Georgia and the soils in the Coastal Plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The metals that were detected above the ambient background levels for South Carolina, as classified by the South Carolina Department of Health and Environmental Control, include aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, and zinc.
Lutz, J K; Crawford, J; Hoet, A E; Wilkins, J R; Lee, J
2013-07-01
To evaluate the performance of four sampling methods [contact plates, electrostatic wipes (wipe), swabs and a novel roller sampler] for recovery of Staphylococcus aureus from a stainless steel surface. Stainless steel test plates were inoculated with Staph. aureus, dried for 24 h and sampled using each of the four methods. Samples were either incubated directly (roller, contact plate) or processed using elution and membrane filtration (swab, wipe). Performance was assessed by calculating the apparent sampling efficiency (ASE), analytical sensitivity (Sn) and percentage of replications with positive growth. The wipe demonstrated the best performance across all inoculating concentrations (ASE(48 h) = 18%; Sn(48 h) = 7 CFU per 100 cm(2)). The swab performed well when corrected for area actually sampled (ASE(48 h) = 24%; Sn(48 h) = 76 CFU per 100 cm(2)). Of the contact-based methods, the newly developed roller sampler outperformed the contact plate (roller: ASE(48 h) = 10%; Sn(48 h) = 17 CFU per 100 cm(2); contact plate: ASE(48 h) = 0·04%; Sn(48 h) = 1412 CFU per 100 cm(2)); both contact samplers performed better at higher inoculating concentrations (6E3 CFU per 100 cm(2) for the roller and 6E6 CFU per 100 cm(2) for the contact plate). Overall, the electrostatic wipe produced the highest number of replications resulting in positive growth (74%(24 h), 91%(48 h)). This study demonstrates that selection of the sampling method must be carefully considered, given that different methods have varying performance. This is the first study assessing static wipes for sampling and one that uses a more real-world-relevant 24-h drying time. The results help with infection control, and environmental health professionals choose better sampling methodologies. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.
Mars Surface near Viking Lander 1 Footpad
NASA Technical Reports Server (NTRS)
2008-01-01
This image, which has been flipped horizontally, was taken by Viking Lander 1 on August 1, 1976, 12 sols after landing. Much like images that have returned from Phoenix, the soil beneath Viking 1 has been exposed due to exhaust from thruster engines during descent. This is visible to the right of the struts of Viking's surface-sampler arm housing, seen on the left. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Optimization of Integrative Passive Sampling Approaches for Use in the Epibenthic Environment
2016-12-23
Passive sampler, POCIS, Integrative, Sediment , Benthic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...Unexploded ordnance, Passive sampler, POCIS, Integrative, Sediment , Benthic v Acknowledgements Dr. Shane Morrison and Ms. Ingrid...flow and turbulence near the sampler. In complex environments at the sediment – water interface, this may limit the utility of passive sampling
40 CFR 53.34 - Test procedure for methods for PM10 and Class I methods for PM2.5.
Code of Federal Regulations, 2010 CFR
2010-07-01
... simultaneous PM10 or PM2.5 measurements as necessary (see table C-4 of this subpart), each set consisting of...) in appendix A to this subpart). (f) Sequential samplers. For sequential samplers, the sampler shall be configured for the maximum number of sequential samples and shall be set for automatic collection...
Evaluating the Relationship between Equilibrium Passive ...
This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measured water quality. Of these investigations, 19 provided direct comparisons relating passive sampler concentrations and organism bioaccumulation. Passive sampling polymers included in the review were: low density polyethylene (LDPE); polyoxymethylene (POM); and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Log-linear regressions correlating bioaccumulation (CL) and passive sampler concentration (CPS) were used to assess the strength of observed relationships. In general, the passive sampler concentrations resulted in statistically-significant, logarithmic, predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Overall, bioaccumulation values were greater than passive sampler concentrations. A mean ratio of CL to CPS was 10.8 ± 18.4 (n = 609) for available data. Given that all studies presented resulted in a strong CL versus CPS relationship suggests that using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based measurements can provide useful information for ma
Practical considerations for measuring hydrogen concentrations in groundwater
Chapelle, F.H.; Vroblesky, D.A.; Woodward, J.C.; Lovley, D.R.
1997-01-01
Several practical considerations for measuring concentrations of dissolved molecular hydrogen (H2) in groundwater including 1 sampling methods 2 pumping methods and (3) effects of well casing materials were evaluated. Three different sampling methodologies (a downhole sampler, a gas- stripping method, and a diffusion sampler) were compared. The downhole sampler and gas-stripping methods gave similar results when applied to the same wells, the other hand, appeared to The diffusion sampler, on overestimate H2 concentrations relative to the downhole sampler. Of these methods, the gas-stripping method is better suited to field conditions because it is faster (~ 30 min for a single analysis as opposed to 2 h for the downhole sampler or 8 h for the diffusion sampler), the analysis is easier (less sample manipulation is required), and the data computations are more straightforward (H2 concentrations need not be corrected for water sample volume). Measurement of H2 using the gas-stripping method can be affected by different pumping equipment. Peristaltic, piston, and bladder pumps all gave similar results when applied to water produced from the same well. It was observed, however, that peristaltic-pumped water (which draws water under a negative pressure) enhanced the gas-stripping process and equilibrated slightly faster than either piston or bladder pumps (which push water under a positive pressure). A direct current(dc) electrically driven submersible pump was observed to produce H2 and was not suitable for measuring H2 in groundwater. Measurements from two field sites indicate that iron or steel well casings, produce H2, which masks H2 concentrations in groundwater. PVC-cased wells or wells cased with other materials that do not produce H2 are necessary for measuring H2 concentrations in groundwater.Several practical considerations for measuring concentrations of dissolved molecular hydrogen in groundwater including sampling methods, pumping methods, and effects of well casing materials were evaluated. The downhole sampler and gas-stripping methods gave similar results when applied to the same wells. The diffusional sampler appears to overestimate H2 concentrations relative to the downhole sampler. Gas-stripping method is better for a single analysis and the data computations are more straightforward. Measurement of H2 using the gas-stripping method can be affected by different pumping equipment.
'Mister Badger' Pushing Mars Rock
NASA Technical Reports Server (NTRS)
1976-01-01
Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.
Brockmeyer, Berit; Kraus, Uta R; Theobald, Norbert
2015-12-01
Silicone passive samplers have gained an increasing attention as single-phased, practical and robust samplers for monitoring of organic contaminants in the aquatic environment in recent years. However, analytical challenges arise in routine application during the extraction of analytes as silicone oligomers are co-extracted and interfere severely during chemical analyses (e.g. gas chromatographic techniques). In this study, we present a fast, practical pre-cleaning method for silicone passive samplers applying accelerated solvent extraction (ASE) for the removal of silicone oligomers prior to the water deployment (hexane/dichloromethane, 100 °C, 70 min). ASE was also shown to be a very fast (10 min) and efficient extraction method for non-polar contaminants (non-exposed PRC recoveries 66-101 %) sampled by the silicone membrane. For both applications, temperature, extraction time and the solvent used for ASE have been optimized. Purification of the ASE extract was carried out by silica gel and high-pressure liquid size exclusion chromatography (HPLC-SEC). The silicone oligomer content was checked by total reflection X-ray fluorescence spectroscopy (TXRF) in order to confirm the absence of the silicone oligomers prior to analysis of passive sampler extracts. The established method was applied on real silicone samplers from the North- and Baltic Sea and showed no matrix effects during analysis of organic pollutants. Internal laboratory standard recoveries were in the same range for laboratory, transport and exposed samplers (85-126 %).
Experimentally validated mathematical model of analyte uptake by permeation passive samplers.
Salim, F; Ioannidis, M; Górecki, T
2017-11-15
A mathematical model describing the sampling process in a permeation-based passive sampler was developed and evaluated numerically. The model was applied to the Waterloo Membrane Sampler (WMS), which employs a polydimethylsiloxane (PDMS) membrane as a permeation barrier, and an adsorbent as a receiving phase. Samplers of this kind are used for sampling volatile organic compounds (VOC) from air and soil gas. The model predicts the spatio-temporal variation of sorbed and free analyte concentrations within the sampler components (membrane, sorbent bed and dead volume), from which the uptake rate throughout the sampling process can be determined. A gradual decline in the uptake rate during the sampling process is predicted, which is more pronounced when sampling higher concentrations. Decline of the uptake rate can be attributed to diminishing analyte concentration gradient within the membrane, which results from resistance to mass transfer and the development of analyte concentration gradients within the sorbent bed. The effects of changing the sampler component dimensions on the rate of this decline in the uptake rate can be predicted from the model. Performance of the model was evaluated experimentally for sampling of toluene vapors under controlled conditions. The model predictions proved close to the experimental values. The model provides a valuable tool to predict changes in the uptake rate during sampling, to assign suitable exposure times at different analyte concentration levels, and to optimize the dimensions of the sampler in a manner that minimizes these changes during the sampling period.
ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.; Hera, K.; Coleman, C.
2011-12-05
Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1).more » This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from the two locations were compared to determine if the contents of the tank were well mixed. The Coliwasa sampler is a tube with a stopper at the bottom and is designed to obtain grab samples from specific locations within the drum contents. A position paper (4) was issued to address the prototypic flow loop issues and simulant selections. A statistically designed plan (5) was issued to address the total number of samples each sampler needed to pull, to provide the random order in which samples were pulled and to group samples for elemental analysis. The TTR required that the Isolok sampler perform as well as the Hydragard sampler during these tests to ensure the acceptability of the Isolok sampler for use in the DWPF sampling cells. Procedure No.L9.4-5015 was used to document the sample parameters and process steps. Completed procedures are located in R&D Engineering job folder 23269.« less
Persistent Organic Pollutants in Dust From Older Homes: Learning From Lead
Metayer, Catherine; Ward, Mary H.; Colt, Joanne S.; Gunier, Robert B.; Deziel, Nicole C.; Rappaport, Stephen M.; Buffler, Patricia A.
2014-01-01
Objectives. We aimed to (1) evaluate the relation between home age and concentrations of multiple chemical contaminants in settled dust and (2) discuss the feasibility of using lead hazard controls to reduce children’s exposure to persistent organic pollutants. Methods. As part of the California Childhood Leukemia Study, from 2001 to 2007, we used a high-volume small surface sampler and household vacuum cleaners to collect dust samples from 583 homes and analyzed the samples for 94 chemicals with gas chromatography–mass spectrometry and inductively coupled plasma mass spectrometry. We evaluated relations between chemical concentrations in dust and home age with Spearman rank correlation coefficients. Results. Dust concentrations of lead, polychlorinated biphenyls, organochlorine insecticides, and polycyclic aromatic hydrocarbons were correlated with home age (ρ > 0.2; P < .001), whereas concentrations of pyrethroid insecticides and polybrominated diphenyl ethers were not. Conclusions. Dust in older homes contains higher levels of multiple, persistent chemicals than does dust in newer homes. Further development of strategies to reduce chemical exposures for children living in older homes is warranted. PMID:24832145
Berton, André; Brugnera, Michelle F; Dores, Eliana F G C
2018-04-03
In this study, the quality of surface water in the headwaters of São Lourenço River in Mato Grosso, Brazil, was evaluated in relation to contamination by pesticides. For this purpose, samples were collected between December 2015 and June 2016 by grab sampling and by passive sampling using an integrative polar organic compound sampler installed in the field during four 14-day cycles between March and June 2016. The analyses were performed by gas chromatography (CG/MS) and by liquid chromatography (UPLC-MS/MS). The results showed the detection of two pesticides (atrazine and pyraclostrobin) of the five analyzed by passive sampling and eight active principles among the 20 analyzed (malathion, diuron, carbofuran, carbendazim, trifluralin, imidacloprid, metolachlor, and acetamiprid) by grab sampling. The detection of 10 pesticides, even almost a decade after the beginning of a recovery process of the ciliary forest, confirms the headwaters' vulnerability to these contaminants and passive sampling proved to be an important tool in capturing small concentrations of pesticides constituting an interesting complement to grab sampling.
Dougherty, Jennifer A.; Swarzenski, Peter W.; Dinicola, Richard S.; Reinhard, Martin
2010-01-01
Organic contaminants, such as pharmaceuticals and personal care products (PPCPs), pose a risk to water quality and the health of ecosystems. This study was designed to determine if a coastal community lacking point sources, such as waste water treatment plant effluent, could release PPCPs, herbicides, and plasticizers at detectable levels to their surface water and groundwater. Research was conducted in Liberty Bay, an embayment within Puget Sound, where 70% of the population (∼10,000) uses septic systems. Sampling included collection of groundwater and surface water with grab samples and the use of polar organic chemical integrative samplers (POCIS). We analyzed for a broad spectrum of 25 commonly used compounds, including PPCPs, herbicides, and a flame retardant. Twelve contaminants were detected at least once; only N,N-diethyl-meta-toluamide, caffeine, and mecoprop, a herbicide not attributed to septic systems, were detected in more than one grab sample. The use of POCIS was essential because contaminants were present at very low levels (nanograms), which is common for PPCPs in general, but particularly so in such a small community. The use of POCIS allowed the detection of five compounds that were not present in grab samples. Data suggest that the community is contaminating local water with PPCPs; this effect is likely to increase as the population and product usage increase. The results presented here are a first step toward assessing the transport of herbicides and PPCPs into this coastal system.
Dougherty, Jennifer A; Swarzenski, Peter W; Dinicola, Richard S; Reinhard, Martin
2010-01-01
Organic contaminants, such as pharmaceuticals and personal care products (PPCPs), pose a risk to water quality and the health of ecosystems. This study was designed to determine if a coastal community lacking point sources, such as waste water treatment plant effluent, could release PPCPs, herbicides, and plasticizers at detectable levels to their surface water and groundwater. Research was conducted in Liberty Bay, an embayment within Puget Sound, where 70% of the population (-10,000) uses septic systems. Sampling included collection of groundwater and surface water with grab samples and the use of polar organic chemical integrative samplers (POCIS). We analyzed for a broad spectrum of 25 commonly used compounds, including PPCPs, herbicides, and a flame retardant. Twelve contaminants were detected at least once; only N,N-diethyl-meta-toluamide, caffeine, and mecoprop, a herbicide not attributed to septic systems, were detected in more than one grab sample. The use of POCIS was essential because contaminants were present at very low levels (nanograms), which is common for PPCPs in general, but particularly so in such a small community. The use of POCIS allowed the detection of five compounds that were not present in grab samples. Data suggest that the community is contaminating local water with PPCPs; this effect is likely to increase as the population and product usage increase. The results presented here are a first step toward assessing the transport of herbicides and PPCPs into this coastal system.
Dioxin analysis in water by using a passive sampler and CALUX bioassay.
Addeck, Amr; Croes, Kim; Van Langenhove, Kersten; Denison, Michael; Elskens, Marc; Baeyens, Willy
2012-01-15
Passive sampling of organic pollutants is a new trend in environmental monitoring and analysis. Passive samplers are being developed to overcome the drawbacks of the conventional snapshot sampling approach. The ceramic toximeter is a promising passive sampler for monitoring dioxin-contaminated surface and ground waters. It consists of an alumina cylinder lined with a thin coating of titania and a pore diameter of 0.05 μm. The cylinder serves as a diffusion barrier limiting the analyte transport to molecular diffusion only, as well as a container for a selective trapping material of a high capacity and affinity towards the chemical(s) of concern. The cylinder is closed from both sides with PTFE caps. The ceramic toximeter was filled with activated carbon as the trapping material and has been tested in vitro for the sampling of dioxin-contaminated water. In addition, the utilization of the CALUX bioassay technique for analyzing the trapped dioxin has greatly reduced the time and costs for dioxin scanning in aqueous media. Exposure times varied between 1 and 7 days in a solution of 1.35 ng-TCDDL(-1) (TCDD is 2,3,7,8-tetrachlorodibenzodioxin). The mean effective molecular diffusion coefficient of TCDD in the toximeter amounts to 11.9×10(-6)m(2)d(-1) while the minimum concentration detectable in an aquatic system after 30 days of exposure amounts to 0.89 pg-TCDDL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... II Equivalent Samplers Performance test Specifications Acceptance criteria § 53.62 Full Wind Tunnel... Results: 95% ≤ Rc ≤ 105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2 km... Class II Equivalent Samplers F Table F-1 to Subpart F of Part 53 Protection of Environment ENVIRONMENTAL...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Equivalent Samplers Performance test Specifications Acceptance criteria § 53.62 Full Wind Tunnel Evaluation...% ≤ Rc ≤ 105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2 km/hr and 24... Class II Equivalent Samplers F Table F-1 to Subpart F of Part 53 Protection of Environment ENVIRONMENTAL...
Code of Federal Regulations, 2014 CFR
2014-07-01
... II Equivalent Samplers Performance test Specifications Acceptance criteria § 53.62 Full Wind Tunnel... Results: 95% ≤Rc ≤105%. § 53.63 Wind Tunnel Inlet Aspiration Test Liquid VOAG produced aerosol at 2 km/hr... Class II Equivalent Samplers F Table F-1 to Subpart F of Part 53 Protection of Environment ENVIRONMENTAL...
Tarte, Stephen R.; Schmidt, A.R.; Sullivan, Daniel J.
1992-01-01
A floating sample-collection platform is described for stream sites where the vertical or horizontal distance between the stream-sampling point and a safe location for the sampler exceed the suction head of the sampler. The platform allows continuous water sampling over the entire storm-runoff hydrogrpah. The platform was developed for a site in southern Illinois.
Miller, Jr., William H.
1976-01-01
A remotely operable sampler is provided for obtaining variable percentage samples of nuclear fuel particles and the like for analyses. The sampler has a rotating cup for a sample collection chamber designed so that the effective size of the sample inlet opening to the cup varies with rotational speed. Samples of a desired size are withdrawn from a flowing stream of particles without a deterrent to the flow of remaining particles.
NASA Astrophysics Data System (ADS)
Martin, Nicholas A.; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Stoll, Jean-Marc; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.
2017-04-01
Intensive animal farming, the increased use of fertilizers, and certain industrial processes are believed to be responsible for the observed increases in the amount fraction of ammonia (NH3) found in Europe. NH3 contributes to eutrophication and acidification of land and freshwater, potentially leading to a loss of biodiversity and undesirable changes to the ecosystem. It also contributes to the formation of secondary particulate matter (PM) formation, which is associated with poor air quality and adverse health outcomes. Measurements of ambient ammonia are principally carried out with low-cost diffusive samplers or by active sampling with denuders, with each method delivering time-integrated values over the monitoring period. However, such techniques have not yet been extensively validated. The goal of this work was to provide improvements in the metrological traceability through the determination of NH3 diffusive sampling rates. Five different designs of commercial diffusive samplers (FSM Radiello radial sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler, and CEH ALPHA sampler) were employed, together with a pumped denuder sampler (CEH DELTA denuder) for comparison. All devices were simultaneously exposed for either 28 days or 14 days (dependent on sampler type) in a controlled atmosphere test facility (CATFAC) containing traceable amount fractions of humidified ammonia using new stable ammonia Primary Standard Gas Mixtures developed by gravimetry at NPL, under a wide range of conditions that are relevant to ambient monitoring. Online continuous monitoring of the ammonia test atmospheres was carried out by extractive sampling, employing a calibrated cavity ring-down spectrometer, which had been modified to account for cross interference by water vapour. Each manufacturer extracted the captured ammonia on the exposed samplers in the form of ammonium (NH4+) using their own accredited traceable wet chemical techniques, and then reported data based on their historical diffusive sampling rates. There was considerable variation in the results, which demonstrated the need for such validation work to be carried out. We report new measurements of the NH3 sampling rates determined in the CATFAC, which can be applied to improve the reliability of measurements in the field.
Luoma, James A.; Severson, Todd J.
2016-01-01
The efficacy of whole water column and subsurface applications of the biopesticide Zequanox®, a commercially prepared spray-dried powder formulation of Pseudomonas fluorescens (strain CL145A), were evaluated for controlling zebra mussels (Dreissena polymorpha) within 27-m2 enclosures in Lake Minnetonka (Deephaven, Minnesota). Five treatments consisting of (1) two whole water column Zequanox applications, (2) two subsurface Zequanox applications, and (3) an untreated control were completed on each of three independent treatment days during September 2014. The two types of samplers used in the study were (1) type 1 samplers, which were custom built multi-plate samplers (wood, perforated aluminum, and tile substrates) that were placed into Robinson’s Bay in June of 2013 to allow for natural colonization by zebra mussels, and (2) type 2 samplers, which consisted of zebra mussels adhering to perforated aluminum trays that were placed into mesh containment bags. One day prior to treatment, three individual samplers of each type were distributed to test enclosures and exposed to a randomly assigned treatment. Sampling to determine the zebra mussel biomass adhering to type 1 samplers and the survival assessments for zebra mussels contained in type 2 samplers were completed ~40 days after exposure. The zebra mussel biomass adhering to type 1 samplers and the survival of zebra mussels contained in type 2 samplers were significantly less in groups treated with the highest Zequanox concentrations and in groups that received whole water column applications than comparable groups treated with lower Zequanox concentrations and subsurface applications. However, standardization of biomass and survival results to the amount of Zequanox applied showed that the lower concentrations and subsurface applications were more cost efficient, with respect to product used, at reducing zebra mussel biomass and for inducing zebra mussel mortality. Although the subsurface application methods and lower treatment concentrations were more cost efficient, biological significance and management goals should be evaluated prior to selecting the application method. Development and refinement of additional application techniques may improve the utility of the subsurface Zequanox applications.
Field testing of three bedload samplers' efficiency in a gravel-bed river, Spitsbergen
NASA Astrophysics Data System (ADS)
Rachlewicz, Grzegorz; Zwoliński, Zbigniew; Kociuba, Waldemar; Stawska, Monika
2017-06-01
A comparative study of the three bedload traps was accomplished to determine the effectiveness differences between the devices. The research was carried out in two transverse sections of the proglacial, gravel-bedded Scott River (SW Svalbard) using three devices to perform direct measurements of bedload transport in the river channels. Several samplers are used for field measurements, but none of them has gained widespread acceptance as a standard so far. The paper compares transport rates collected in three bedload samplers that differ in structure and functionality: i) a portable Helley-Smith, pressure-difference bedload sampler (H-S), ii) an anchored River Bedload Trap (RBT), and iii) the portable sampler used by the Polish Hydrological Services (PIHM type C). All three samplers are constructed using the same components: a frame made of thin stainless steel sheet and a nylon bag with the same (2 mm) mesh size (except PIHM). Measurements were conducted within three consecutive days in two cross sections, in the same vertical profiles and at the same time (at intervals of 30 and 60 min). Measurements of bedload transport and water velocity were performed simultaneously. In order to determine the effectiveness and representativeness of short-term measurements using particular devices, the masses of the samples were converted into a specific rate of bedload transport and compared to the results of long-term continuous measurement (24 h measurement cycle). The results confirm that both specific transport indicators and the mass of the samples collected by the tested devices show a significant variation. Generally, the highest mass and specific transport indicators were obtained using the H-S sampler. The RBT produced moderate transport rates, while the PIHM sampler gave the lowest rates. The bedload transport rate in a profile estimated on the short-term measurements was compared to results of the continuous measurements conducted in the same cross sections. In the 7 cases we obtained underestimation (to max. 10 times) and in the next 7 cases - overestimation (to max. 114 times). Only in four cases were the results of short-term measurements similar to the continuous ones. The results obtained from the RBT sampler show the smallest variability among all tested devices.
NASA Astrophysics Data System (ADS)
Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao
2010-05-01
The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual nitrate concentrations (measured from samples collected in the field) then allows patches of biogeochemical activity to be identified. The depth of the groundwater-surface water mixing zone was not uniform along the study reach or over the three sampling periods, varying from <10 to 50 cm in depth. The influence of factors such as the strength of groundwater upwelling, channel geomorphology, substrate composition (permeability) and river discharge on the extent of groundwater-surface mixing have been investigated. During the three field campaigns conducted, groundwater nitrate concentrations (100 cm) were higher than surface water nitrate concentrations (3.7 ± 0.4 mg N/L versus 2.0 ± 0.03 mg N/L; p < 0.001; n = 27), indicating that throughout the reach investigated groundwater will supply nitrate to the overlying water column unless nitrate attenuation occurs along the upwelling flow path. Actual (measured) pore water nitrate concentrations often differed from concentrations predicted using the mixing model, which suggests that biogeochemical transformations also affected nitrate concentrations in the hyporheic zone. The initial field data suggested that there were regions of both nitrate production and nitrate consumption in the subsurface sediments, and that these zones may extend beyond the depths commonly associated with the hyporheic zone. This research demonstrates that a multi-component mixing model can be used to identify possible hotspots of nitrate production or consumption in the bed of a groundwater-fed river. Käser, DH, Binley, A, Heathwaite, AL and Krause, S (2009) Spatio-temporal variations of hyporheic flow in a riffle-pool sequence. Hydrological Processes 23: 2138 - 2149. Rivett, MO, Ellis, PA, Greswell, RB, Ward, RS, Roche, RS, Cleverly, MG, Walker, C, Conran, D, Fitzgerald, PJ, Willcox, T and Dowle, J (2008) Cost-effective mini drive-point piezometers and multilevel samplers for monitoring the hyporheic zone. Quarterly Journal of Engineering Geology and Hydrogeology 41: 49 - 60.
Coalescent genealogy samplers: windows into population history
Kuhner, Mary K.
2016-01-01
Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, growth rate, patterns of gene flow or time of divergence from another population, based on samples of molecular data. Genealogy samplers are increasingly popular because of their potential to disentangle complex population histories. In the last decade they have been widely applied to systems ranging from humans to viruses. Findings include detection of unexpected reproductive inequality in fish, new estimates of historical whale abundance, exoneration of humans for the prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This review summarizes available genealogy-sampler software, including data requirements and limitations on the use of each program. PMID:19101058
Coalescent genealogy samplers: windows into population history.
Kuhner, Mary K
2009-02-01
Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, growth rate, patterns of gene flow or time of divergence from another population, based on samples of molecular data. Genealogy samplers are increasingly popular because of their potential to disentangle complex population histories. In the last decade they have been widely applied to systems ranging from humans to viruses. Findings include detection of unexpected reproductive inequality in fish, new estimates of historical whale abundance, exoneration of humans for the prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This review summarizes available genealogy-sampler software, including data requirements and limitations on the use of each program.
Evaluation of Porcelain Cup Soil Water Samplers for Bacteriological Sampling1
Dazzo, Frank B.; Rothwell, Donald F.
1974-01-01
The validity of obtaining soil water for fecal coliform analyses by porcelain cup soil water samplers was examined. Numbers from samples of manure slurry drawn through porcelain cups were reduced 100- to 10,000,000-fold compared to numbers obtained from the external manure slurry, and 65% of the cups yielded coliform-free samples. Fecal coliforms adsorbed to cups apparently were released, thus influencing the counts of subsequent samples. Fecal coliforms persisted in soil water samplers buried in soil and thus could significantly influence the coliform counts of water samples obtained a month later. These studies indicate that porcelain cup soil water samplers do not yield valid water samples for fecal coliform analyses. Images PMID:16349998
Chemistry and Materials Science, 1990--1991. [Second annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugihara, T.T.; Bruner, J.M.; McElroy, L.A.
1991-12-31
This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)
Nordin, Carl F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Delaney, B.M.
1979-01-01
One-hundred-eight samples of bed material were collected from the Amazon River and its major tributaries between Belem, Brazil , and Iquitos, Peru. Samples were taken with a standard BM-54 sampler or with pipe dredges from May 18 to June 5, 1977. Most of the samples have median diameters in the size range of fine to medium sand and contain small percentages of fine gravel. Complete size distributions are tabulated. (Woodard-USGS)
Prokeš, Roman; Vrana, Branislav; Klánová, Jana
2012-07-01
Dissolved waterborne polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed over a period of one year at five sampling sites in a model industrial region in the Czech Republic using silicone rubber passive samplers. The spatial variability of POPs in the studied region in water was small and diffusive pollution sources predominate. Concentrations of the most volatile PAHs decreased with increasing water temperature in the whole region, which reflects the seasonality in atmospheric deposition. The dissolved concentrations of more hydrophobic PAHs, PCBs and OCPs in and downstream the industrial zone are related to desorption from suspended particles. Upstream the industrial area, a positive correlation of dissolved and particle-bound contamination was observed only for DDT metabolites and hexachlorobenzene. Calculated fugacities in water and bottom sediment indicated a fair degree of equilibrium between these compartments for OCPs and PCBs, whereas sediment represented a potential source of PAHs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Study of the dispersal of radioactive aerosols over California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainey, C.T.; Heslep, J.M.; Washburn, C.L.
Air samplers were set up in nineteen localities throughout the state during the period of the Nevada tests. Cooperation in operating the samplers was secured from local Health Departments, and Stations of the US Weather Bureau, the Civil Aeronautics Administration, and the Plant Quarantine Service. The samplers were operated continuously from October 6 to December 5, 1951, except for a short period between the two test series in November.
Frey, Paul J.
1963-01-01
While studying the effects of pesticides on fish and their environment for the Bureau of Sport Fisheries and Wildlife, I have developed a soil sampler that will collect a thin uniform layer of sediment from pond and stream bottoms. As it is becoming increasingly important to analyze the residual deposits of pesticides in this shallow layer of soil in aquatic environments, it seems useful to describe the apparatus and compare it with other samplers.
A Sample Return Container with Hermetic Seal
NASA Technical Reports Server (NTRS)
Kong, Kin Yuen; Rafeek, Shaheed; Sadick, Shazad; Porter, Christopher C.
2000-01-01
A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers and then hermetically seal samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the sampler's featured drill tip for interfacing, transfer-ring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses a few isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The drill based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. Again, the sampler provides all sealing actuation. This sample return container and co-engineered sample acquisition system are being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program.
Wille, Klaas; Claessens, Michiel; Rappé, Karen; Monteyne, Els; Janssen, Colin R; De Brabander, Hubert F; Vanhaecke, Lynn
2011-12-23
The presence of both pharmaceuticals and pesticides in the aquatic environment has become a well-known environmental issue during the last decade. An increasing demand however still exists for sensitive and reliable monitoring tools for these rather polar contaminants in the marine environment. In recent years, the great potential of passive samplers or equilibrium based sampling techniques for evaluation of the fate of these contaminants has been shown in literature. Therefore, we developed a new analytical method for the quantification of a high number of pharmaceuticals and pesticides in passive sampling devices. The analytical procedure consisted of extraction using 1:1 methanol/acetonitrile followed by detection with ultra-high performance liquid chromatography coupled to high resolution and high mass accuracy Orbitrap mass spectrometry. Validation of the analytical method resulted in limits of quantification and recoveries ranging between 0.2 and 20 ng per sampler sheet and between 87.9 and 105.2%, respectively. Determination of the sampler-water partition coefficients of all compounds demonstrated that several pharmaceuticals and most pesticides exert a high affinity for the polydimethylsiloxane passive samplers. Finally, the developed analytical methods were used to measure the time-weighted average (TWA) concentrations of the targeted pollutants in passive samplers, deployed at eight stations in the Belgian coastal zone. Propranolol, carbamazepine and seven pesticides were found to be very abundant in the passive samplers. These obtained long-term and large-scale TWA concentrations will contribute in assessing the environmental and human health risk of these emerging pollutants. Copyright © 2011 Elsevier B.V. All rights reserved.
Passive sampling - a tool for targeted screening of emerging pollutants in rivers
NASA Astrophysics Data System (ADS)
Kodes, Vit; Grabic, Roman
2016-04-01
A screening of more than 300 pollutants such as pharmaceuticals (analgesics, psycholeptics, antidepressants, antibiotics, beta blockers), PCPs (UV blockers, musk's, repellents), illicit drugs, pesticides, perfluorinated compounds and their metabolites at 22 monitoring sites throughout the Czech Republic was conducted in 2013. POCIS samplers were used in this study. Two types of passive samplers (pesticide and pharmaceutical POCIS) were deployed for 14 days in May and in October, 88 samples were collected in total. In total 265 and 310 target compounds were analyzed in pharmaceutical and pesticide samplers respectively. The chemicals of interest were extracted from the passive samplers according to standardized procedures. LC -MS/MS and LC-MS/HRMS methods were applied for analyses of extracts. 150 of 310 (48%) and 127 of 265 (48%) analyzed substances had been found in pesticide and pharmaceutical samplers respectively. 27 substances (pharmaceuticals, PCPs, pesticides, caffeine, nicotine metabolite cotinine) occurred at all sampled sites, additional 39 substances (pharmaceuticals, PCPs, pesticides) occurred at more than 17 (75%) sites. One of perfluorinated compounds (PFOA) occurred at 68% of sites, whilst one of illicit drugs (Methamphetamine) was found at 61% of sites. The highest number of contaminants found in one POCIS at a single monitoring site was 111. The concentrations varied from nanograms to thousands of nanograms per sampler. Emerging contaminants occurring in highest concentrations (> 1000 ng/sampler) were BP-4 and PBSA (UV blockers), caffeine, DEET (insect repellent), imidacloprid (insecticide), telmisartan (hypertension drug) and tramadol (analgesic). Monitoring in the Czech Republic has demonstrated that many target compounds enter river waters and a number of these compounds reach high concentrations.
Assessment of SRS ambient air monitoring network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, K.; Jannik, T.
Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, ifmore » any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned« less
Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.
McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz
2014-05-01
This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.
Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C
2011-03-01
A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.
NASA Astrophysics Data System (ADS)
Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-08-01
Silicone membrane tubes were functionalised by filling them with synthesised γ-Fe2O3 nanoparticles and used as a passive sampling device for monitoring microcystins and cylindrospermopsin in aquatic environments. This novel device was calibrated for the measurement of microcystin and cylindrospermopsin concentrations in water. The effect of temperature and hydrodynamics on the sampler performance was studied in a flow-through system under controlled conditions. The chemical uptake of microcystins (MCs) and cylindrospermopsin (CYN) into the passive sampler remained linear and integrative throughout the exposure period. The rate of accumulation of most of the MC compounds tested was dependent on temperature and flow velocity. The use of 13C labelled polychlorinated biphenyls as performance reference compounds (PRCs) in silicone membrane/γ-Fe2O3 nanoparticle passive sampler, Chemcatcher and polar organic chemical integrative sampler (POCIS) was evaluated. The majority of PRCs improved the semi quantitative nature of water concentration estimated by the three samplers. The corrected sampling rate values of model biotoxin compounds were used to estimate the time-weighted average concentrations in natural cyanobacterial water blooms of the Hartbeespoort dam. The corrected sampling rates RScorr values varied from 0.1140 to 0.5628 Ld-1 between samplers with silicone membrane having the least RScorr values compared to the Chemcatcher and POCIS. The three passive sampling devises provided a more relevant picture of the biotoxin concentration in the Hartbeespoort dam. The results suggested that the three sampling devices are suitable for use in monitoring microcystins and cylindrospermopsin concentrations in aquatic environments.
NASA Astrophysics Data System (ADS)
Martin, N. A.; Ferracci, V.; Cassidy, N.; Hook, J.; Battersby, R. M.; Tang, Y. S.; Stevens, A. C. M.; Jones, M. R.; Braban, C. F.; Gates, L.; Hangartner, M.; Sacco, P.; Pagani, D.; Hoffnagle, J.
2016-12-01
Intensive farming, the increased use of fertilizers, and certain industrial processes are believed to be responsible for increases in the amount fraction of ammonia (NH3) found in Europe. NH3 contributes to eutrophication and acidification of land and freshwater, leading to a loss of biodiversity, undesirable changes to the ecosystem, and to secondary particulate matter (PM) formation. Measurements of ambient ammonia over a wide geographical area, are principally carried out with low-cost diffusive samplers or by active sampling with denuders, with each technique delivering time-integrated values over the monitoring period. The goal of this work was to measure the NH3 diffusive sampling rates of five different designs of commercial diffusive samplers (FSM Radiello radial sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler, and CEH ALPHA sampler), together with validation tests with a denuder sampler (CEH DELTA denuder). The would deliver validated improvements in the accuracy of ambient measurements of NH3 in the field through the establishment of metrological traceability using new stable ammonia Primary Standard Gas Mixtures (PSMs), developed by gravimetry at NPL. All devices were simultaneously exposed in a controlled atmosphere test facility (CATFAC) containing traceable amount fractions of ammonia applicable to a range of ambient monitoring conditions, with well-defined conditions of temperature, relative humidity and wind speed. Online continuous monitoring of the test atmospheres was carried out with a calibrated cavity ring-down spectrometer modified to account for cross interference by water. Exposed samplers were analysed by individual manufacturers for ammonium using traceable wet chemical techniques. The measured diffusive sampling rates were then applied to field measurements carried out at the Whim Bog experimental station in Scotland, where there is a facility in place for controlled releases of NH3 and also a background site.
Wooding, Madelien; Rohwer, Egmont R; Naudé, Yvette
2017-09-01
The presence of micropollutants in the aquatic environment is a worldwide environmental concern. The diversity of micropollutants and the low concentration levels at which they may occur in the aquatic environment have greatly complicated the analysis and detection of these chemicals. Two sorptive extraction samplers and two thermal desorption methods for the detection of micropollutants in water were compared. A low-cost, disposable, in-house made sorptive extraction sampler was compared to SBSE using a commercial Twister sorptive sampler. Both samplers consisted of polydimethylsiloxane (PDMS) as a sorptive medium to concentrate micropollutants. Direct thermal desorption of the disposable samplers in the inlet of a GC was compared to conventional thermal desorption using a commercial thermal desorber system (TDS). Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) was used for compound separation and identification. Ten micropollutants, representing a range of heterogeneous compounds, were selected to evaluate the performance of the methods. The in-house constructed sampler, with its associated benefits of low-cost and disposability, gave results comparable to commercial SBSE. Direct thermal desorption of the disposable sampler in the inlet of a GC eliminated the need for expensive consumable cryogenics and total analysis time was greatly reduced as a lengthy desorption temperature programme was not required. Limits of detection for the methods ranged from 0.0010 ng L -1 to 0.19 ng L -1 . For most compounds, the mean (n = 3) recoveries ranged from 85% to 129% and the % relative standard deviation (% RSD) ranged from 1% to 58% with the majority of the analytes having a %RSD of less than 30%. Copyright © 2017 Elsevier B.V. All rights reserved.
Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie
2014-03-01
Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were unavailable. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Stebounova, Larissa V; Gonzalez-Pech, Natalia I; Park, Jae Hong; Anthony, T Renee; Grassian, Vicki H; Peters, Thomas M
2018-05-18
There is an increasing need to evaluate concentrations of nanoparticles in occupational settings due to their potential negative health effects. The Nanoparticle Respiratory Deposition (NRD) personal sampler was developed to collect nanoparticles separately from larger particles in the breathing zone of workers, while simultaneously providing a measure of respirable mass concentration. This study compared concentrations measured with the NRD sampler to those measured with a nano Micro Orifice Uniform-Deposit Impactor (nanoMOUDI) and respirable samplers in three workplaces. The NRD sampler performed well at two out of three locations, where over 90% of metal particles by mass were submicrometer particle size (a heavy vehicle machining and assembly facility and a shooting range). At the heavy vehicle facility, the mean metal mass concentration of particles collected on the diffusion stage of the NRD was 42.5 ± 10.0 µg/m3, within 5% of the nanoMOUDI concentration of 44.4 ± 7.4 µg/m3. At the shooting range, the mass concentration for the diffusion stage of the NRD was 5.9 µg/m3, 28% above the nanoMOUDI concentration of 4.6 µg/m3. In contrast, less favorable results were obtained at an iron foundry, where 95% of metal particles by mass were larger than 1 µm. The accuracy of nanoparticle collection by NRD diffusion stage may have been compromised by high concentrations of coarse particles at the iron foundry, where the NRD collected almost 5-fold more nanoparticle mass compared to the nanoMOUDI on one sampling day and was more than 40% different on other sampling days. The respirable concentrations measured by NRD samplers agreed well with concentrations measured by respirable samplers at all sampling locations. Overall, the NRD sampler accurately measured concentrations of nanoparticles in industrial environments when concentrations of large, coarse mode, particles were low.
Performance of high flow rate samplers for respirable particle collection.
Lee, Taekhee; Kim, Seung Won; Chisholm, William P; Slaven, James; Harper, Martin
2010-08-01
The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m(-3) in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins-Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size ((50)d(ae)) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 microm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2-11 times based on gravimetric analysis. Dust loading inside the high flow rate samplers does not appear to affect the particle separation in either FSP10 or GK2.69. The high flow rate samplers overestimated compared to the International Standards Organization/Comité Européen de Normalisation/ACGIH respirable convention [up to 40% at large MMAD (27.5 microm)] and could provide overestimated exposure data with the current flow rates. However, both cyclones appeared to be able to provide relatively unbiased assessments of RCS when their flow rates were adjusted.
Performance of High Flow Rate Samplers for Respirable Particle Collection
Lee, Taekhee; Kim, Seung Won; Chisholm, William P.; Slaven, James; Harper, Martin
2010-01-01
The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m−3 in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins–Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size (50dae) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 μm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2–11 times based on gravimetric analysis. Dust loading inside the high flow rate samplers does not appear to affect the particle separation in either FSP10 or GK2.69. The high flow rate samplers overestimated compared to the International Standards Organization/Comité Européen de Normalisation/ACGIH respirable convention [up to 40% at large MMAD (27.5 μm)] and could provide overestimated exposure data with the current flow rates. However, both cyclones appeared to be able to provide relatively unbiased assessments of RCS when their flow rates were adjusted. PMID:20660144
Vroblesky, Don A.; Borchers, J.W.; Campbell, T.R.; Kinsey, Willey
2000-01-01
Fourteen wells were instrumented with diffusion samplers as a test to determine whether the samplers could be used to obtain representative volatile organic compound concentrations at a study site in Sacramento, California. Single diffusion samplers were placed in 10-foot-long well screens, and multiple diffusion samplers were positioned in 20-foot-long well screens. Borehole geophysical logs and electromagnetic flowmeter tests were run in selected wells with 20-foot-long well screens prior to deploying the samplers. The diffusion samplers were recovered after 25 to 30 days, and the wells were then sampled by using the purge-and-sample method. In most wells, the concentrations obtained by using the downhole diffusion samplers closely matched those obtained by using the purge-and-sample method. In seven wells, the concentrations differed between the two methods by only 2 micrograms per liter (g/L) or less. In three wells, volatile organic compounds were not detected in water obtained by using either method. In the four remaining wells, differences between the methods were less than 2g/L in the 0.2- to 8.5-g/L concentration range and from 1.2 to 8.7g/L in the 10- to 26-g/L concentration range. Greater differences (23 percent or 14.5g/L, 31 percent or 66g/L, and 46 percent or 30g/L) between the two methods were observed for tetrachloroethene concentrations, which ranged between 30 and 211g/L in three wells. The most probable explanation for the differences is that in some wells, the purging induced drawdowns and introduced water that differed in volatile organic compound concentrations from the in situ water in contact with the screened interval of the well. Alternate explanations include the possibility of unrecorded changes in nearby contaminant-extraction-well operation during the equilibration period. The data suggest that the combined use of borehole flowmeter tests and diffusion samplers may be useful in optimizing the radius of capture of contaminated ground water by the contaminant-removal wells. Overall, the data suggest that the use of diffusion samplers provided an alternative sampling method to the purge-and-sample approach. 1U.S. Geological Survey, Stephenson Center, Suite 129, 720 Gracern Road, Columbia, South Carolina 29210-7651. 2U.S. Geological Survey, 6000 J Street, Sacramento, California 95819-6129.
Evaluation of membrane filter field monitors for microbiological air sampling
NASA Technical Reports Server (NTRS)
Fields, N. D.; Oxborrow, G. S.; Puleo, J. R.; Herring, C. M.
1974-01-01
Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar.
Gradient-free MCMC methods for dynamic causal modelling
Sengupta, Biswa; Friston, Karl J.; Penny, Will D.
2015-03-14
Here, we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density -- albeit at almost 1000% increase in computational time, in comparisonmore » to the most efficient algorithm (i.e., the adaptive MCMC sampler).« less
New approach to calibrating bed load samplers
Hubbell, D.W.; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.
1985-01-01
Cyclic variations in bed load discharge at a point, which are an inherent part of the process of bed load movement, complicate calibration of bed load samplers and preclude the use of average rates to define sampling efficiencies. Calibration curves, rather than efficiencies, are derived by two independent methods using data collected with prototype versions of the Helley‐Smith sampler in a large calibration facility capable of continuously measuring transport rates across a 9 ft (2.7 m) width. Results from both methods agree. Composite calibration curves, based on matching probability distribution functions of samples and measured rates from different hydraulic conditions (runs), are obtained for six different versions of the sampler. Sampled rates corrected by the calibration curves agree with measured rates for individual runs.
2011-02-01
of either trade or manufacturers’ names in this report does not constitute an official endorsement of any commercial products. This report may not be...different mechanisms (Cox and Wathes , 1995). Mechanisms include impaction, interception, sedimentation, diffusion, and electrostatic attraction. A brief...forces can also be a source of surface deposition on the inlet and the transport tube prior to the collection area (Cox and Wathes , 1995
Example of Weathering And Sun Angle
1996-12-12
The letter 'B' or perhaps the figure '8' appears to have been etched into the Mars rock at the left edge of this picture taken yesterday by NASA's Viking 1 Lander. It is believed to be an illusion caused by weathering processes and the angle of the sun as it illuminated the scene for the spacecraft camera. The object at lower left is the housing containing the surface sampler scoop. http://photojournal.jpl.nasa.gov/catalog/PIA00386
Land Based Environmental Monitoring at Johnston Island - Disposal of Herbicide Orange
1978-09-01
for man and other terrestrial species were reviewed to determine permissible intake levels. Observations in man are primarily expost facto judgements of...areas, and the ever present danger from the stored HO stocks, let the Air Force to conduct a study to I’ develop procedures for the ecologically safe...responsible for the siting and operation of personnel samplers. 3. AIR Surface trade winds were essentially constant throughout the study period with winds
Comet nucleus and asteroid sample return missions
NASA Technical Reports Server (NTRS)
Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.
1992-01-01
During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.
Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia
Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.
2012-01-01
Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for contaminants at the Patterson Anti-Tank Range at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas samplers from the area estimated to be the Patterson Anti-Tank Range and in the hyporheic zone and floodplain of Brier Creek. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers in the hyporheic zone and floodplain of Brier Creek contained total petroleum hydrocarbons, benzene, octane, and pentadecane concentrations above method detection levels. All soil-gas samplers within the boundary of the Patterson Anti-Tank Range contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler located near the middle of the site and near the remnants of a manmade earthen mound and trench. The highest toluene mass detected was 1.04 micrograms and was located in the center of the Patterson Anti-Tank Range and coincides with a manmade earthen mound. Some soil-gas samplers installed detected undecane masses greater than the method detection level of 0.04 microgram, with the highest detection of soil-gas undecane mass of 58.64 micrograms collected along the southern boundary of the site. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed.
Chen, Wei; Pan, Suhong; Cheng, Hao; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C
2018-06-15
A passive water sampler based on the diffusive gradients in thin-films (DGT) technique was developed and tested for 3 groups of endocrine disrupting chemicals (EDCs, including oestrogens, alkyl-phenols and bisphenols). Three different resins (hydrophilic-lipophilic-balanced (HLB), XAD18 and Strata-XL-A (SXLA)) were investigated for their suitability as the binding phase for DGT devices. Laboratory tests across a range of pH (3.5-9.5), ionic strength (0.001-0.5 M) and dissolved organic matter concentration (0-20 mg L -1 ) showed HLB and XAD18-DGT devices were more stable compared to SXLA-DGT. HLB-DGT and XAD18-DGT accumulated test chemicals with time consistent with theoretical predictions, while SXLA-DGT accumulated reduced amounts of chemical. DGT performance was also compared in field deployments up to 28 days, alongside conventional active sampling at a wastewater treatment plant. Uptake was linear to the samplers over 18 days, and then began to plateau/decline, indicating the maximum deployment time in those conditions. Concentrations provided by the DGT samplers compared well with those provided by auto-samplers. DGT integrated concentrations over the deployment period in a way that grab-sampling cannot. The advantages of the DGT sampler over active sampling include: low cost, ease of simultaneous multi-site deployment, in situ analyte pre-concentration and reduction of matrix interferences compared with conventional methods. Compared to other passive sampler designs, DGT uptake is independent of flow rate and therefore allows direct derivation of field concentrations from measured compound diffusion coefficients. This passive DGT sampler therefore constitutes a viable and attractive alternative to conventional grab and active water sampling for routine monitoring of selected EDCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
The CE way of thinking: "all is relative!".
Schmitt-Kopplin, Philippe; Fekete, Agnes
2008-01-01
Over the last two decades, the development of capillary electrophoresis (CE) instruments has lead to systems with programmable samplers, separation columns, separation buffers, and detection devices comparable visually in many aspects to the setup of classical chromatography. Two characteristics make CE essentially different from chromatography and are the basis of the CE way of thinking: first is the injection type and the liquid flow within the capillary. When the injection is made hydrodynamically (such as in most of the applications found in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. The second characteristic is that in CE, buffer velocity is not pressure-driven, as in liquid chromatography, but is electrokinetically governed by the quality of the capillary surface (separation buffer dependent surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is that the migration time of the analytes apparently nonreproducible, although the velocity of the ions is the same. The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired time-scale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size; see Chapter 23).
Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for VOCs and Explosives
2007-08-01
prevent losses due to sorption . The time needed for equilibration will depend on the sampling device (and the materials in the sampler), the physical...bottles contain a perfluoroalkoxy ( PFA ) Teflon-coated spring mechanism that is connected to PFA Teflon end caps at both ends of the bottles...materials: polyvinylidene fluoride (PVDF) Kynar tubing or PFA Teflon tubing. These samplers are deployed in the well with the end caps of the bottle
Operation PLUMBBOB. Summary Report, Test Group 57, Nevada Test Site. Extracted Version
1982-06-04
numnber) Operation PI*;UMBDOo lest Group 57 conducted a one- point detonation for the purpose of studying hazards from acci- dents. The objectives were...I ! i - 5-6 ABSTRACT On April 24, 1957, Operation Plumbbob Test Group 57 conducted a one- point detonation Ifor the purpose of studying...Plot of Air Sampler Array. 54 4.5 Staplex Air Sampler With Adapter Head . 55 4. 6 Staplex Air Sampler With Annular Impactor 56 13 ILLUSTRATIONS
A passive sampler for airborne formaldehyde
NASA Astrophysics Data System (ADS)
Grosjean, Daniel; Williams, Edwin L.
A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min -1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C 18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min -1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16-156 ppb) and sampling duration (1.5-72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.
Jeong, Jee Yeon; Park, Jong Su; Kim, Pan Gyi
2016-06-01
Shipbuilding involves intensive welding activities, and welders are exposed to a variety of metal fumes, including manganese, that may be associated with neurological impairments. This study aimed to characterize total and size-fractionated manganese exposure resulting from welding operations in shipbuilding work areas. In this study, we characterized manganese-containing particulates with an emphasis on total mass (n = 86, closed-face 37-mm cassette samplers) and particle size-selective mass concentrations (n = 86, 8-stage cascade impactor samplers), particle size distributions, and a comparison of exposure levels determined using personal cassette and impactor samplers. Our results suggest that 67.4% of all samples were above the current American Conference of Governmental Industrial Hygienists manganese threshold limit value of 100 μg/m(3) as inhalable mass. Furthermore, most of the particles containing manganese in the welding process were of the size of respirable particulates, and 90.7% of all samples exceeded the American Conference of Governmental Industrial Hygienists threshold limit value of 20 μg/m(3) for respirable manganese. The concentrations measured with the two sampler types (cassette: total mass; impactor: inhalable mass) were significantly correlated (r = 0.964, p < 0.001), but the total concentration obtained using cassette samplers was lower than the inhalable concentration of impactor samplers.
Mazzella, N.; Lissalde, S.; Moreira, S.; Delmas, F.; Mazellier, P.; Huckins, J.N.
2010-01-01
Passive samplers such as the Polar Organic Chemical Integrative Sampler (POCIS) are useful tools for monitoring trace levels of polar organic chemicals in aquatic environments. The use of performance reference compounds (PRC) spiked into the POCIS adsorbent for in situ calibration may improve the semiquantitative nature of water concentration estimates based on this type of sampler. In this work, deuterium labeled atrazine-desisopropyl (DIA-d5) was chosen as PRC because of its relatively high fugacity from Oasis HLB (the POCIS adsorbent used) and our earlier evidence of its isotropic exchange. In situ calibration of POCIS spiked with DIA-d5was performed, and the resulting time-weighted average concentration estimates were compared with similar values from an automatic sampler equipped with Oasis HLB cartridges. Before PRC correction, water concentration estimates based on POCIS data sampling ratesfrom a laboratory calibration exposure were systematically lower than the reference concentrations obtained with the automatic sampler. Use of the DIA-d5 PRC data to correct POCIS sampling rates narrowed differences between corresponding values derived from the two methods. Application of PRCs for in situ calibration seems promising for improving POCIS-derived concentration estimates of polar pesticides. However, careful attention must be paid to the minimization of matrix effects when the quantification is performed by HPLC-ESI-MS/MS. ?? 2010 American Chemical Society.
Shahpoury, Pourya; Hageman, Kimberly J; Matthaei, Christoph D; Alumbaugh, Robert E; Cook, Michelle E
2014-10-07
Silicone passive samplers and macroinvertebrates were used to measure time-integrated concentrations of polycyclic aromatic hydrocarbons (PAHs) in alpine streams during annual snowmelt. The three sampling sites were located near a main highway in Arthur's Pass National Park in the Southern Alps of New Zealand. A similar set of PAH congeners, composed of 2-4 rings, were found in silicone passive samplers and macroinvertebrates. The background PAH concentrations were similar at all sites, implying that proximity to the highway did not affect concentrations. In passive samplers, an increase of PAH concentrations by up to seven times was observed during snowmelt. In macroinvertebrates, the concentration changes were moderate; however, macroinvertebrate sampling did not occur during the main pulse observed in the passive samplers. The extent of vegetation in the catchment appeared to affect the concentration patterns seen at the different stream sites. A strong correlation was found between PAH concentrations in passive samplers and the amount of rainfall in the study area, indicating that the washout of contaminants from snowpack by rainfall was an important process.
In planta passive sampling devices for assessing subsurface chlorinated solvents.
Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G
2014-06-01
Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Scanning SQUID sampler with 40-ps time resolution
NASA Astrophysics Data System (ADS)
Cui, Zheng; Kirtley, John R.; Wang, Yihua; Kratz, Philip A.; Rosenberg, Aaron J.; Watson, Christopher A.; Gibson, Gerald W.; Ketchen, Mark B.; Moler, Kathryn. A.
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ0. This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Scanning SQUID sampler with 40-ps time resolution.
Cui, Zheng; Kirtley, John R; Wang, Yihua; Kratz, Philip A; Rosenberg, Aaron J; Watson, Christopher A; Gibson, Gerald W; Ketchen, Mark B; Moler, Kathryn A
2017-08-01
Scanning Superconducting QUantum Interference Device (SQUID) microscopy provides valuable information about magnetic properties of materials and devices. The magnetic flux response of the SQUID is often linearized with a flux-locked feedback loop, which limits the response time to microseconds or longer. In this work, we present the design, fabrication, and characterization of a novel scanning SQUID sampler with a 40-ps time resolution and linearized response to periodically triggered signals. Other design features include a micron-scale pickup loop for the detection of local magnetic flux, a field coil to apply a local magnetic field to the sample, and a modulation coil to operate the SQUID sampler in a flux-locked loop to linearize the flux response. The entire sampler device is fabricated on a 2 mm × 2 mm chip and can be scanned over macroscopic planar samples. The flux noise at 4.2 K with 100 kHz repetition rate and 1 s of averaging is of order 1 mΦ 0 . This SQUID sampler will be useful for imaging dynamics in magnetic and superconducting materials and devices.
Design and Computational Fluid Dynamics Investigation of a Personal, High Flow Inhalable Sampler
Anthony, T. Renée; Landázuri, Andrea C.; Van Dyke, Mike; Volckens, John
2016-01-01
The objective of this research was to develop an inlet to meet the inhalable sampling criterion at 10 l min−1 flow using the standard, 37-mm cassette. We designed a porous head for this cassette and evaluated its performance using computational fluid dynamics (CFD) modeling. Particle aspiration efficiency was simulated in a wind tunnel environment at 0.4 m s−1 freestream velocity for a facing-the-wind orientation, with sampler oriented at both 0° (horizontal) and 30° down angles. The porous high-flow sampler oriented 30° downward showed reasonable agreement with published mannequin wind tunnel studies and humanoid CFD investigations for solid particle aspiration into the mouth, whereas the horizontal orientation resulted in oversampling. Liquid particles were under-aspirated in all cases, however, with 41–84% lower aspiration efficiencies relative to solid particles. A sampler with a single central 15-mm pore at 10 l min−1 was also investigated and was found to match the porous sampler’s aspiration efficiency for solid particles; the single-pore sampler is expected to be more suitable for liquid particle use. PMID:20418278
Dry deposition of reduced and reactive nitrogen: A surrogate surfaces approach
NASA Astrophysics Data System (ADS)
Shahin, Usama Mohammed
Nitrogen deposition constitutes an important component of acidic deposition to terrestrial surfaces. However, deposition flux and ambient concentration measurement methods and are still under development. A new sampler using water as a surrogate surface was developed in the Department of Environmental Engineering at Illinois Institute of Technology. This study investigated nitrate and ammonia dry deposition to the water surface sampler, a Nylasorb filter, a citric acid impregnated filter, and a greased strip on the dry deposition plate. The nitrogen containing species that may be responsible for nitrate dry deposition to the WSS include nitrogen monoxide (NO), nitrogen dioxide (NO2), peroxyacetyl nitrate (PAN), nitrous acid (HNO2), nitric acid (HNO3), and particulate nitrate. The experimental measurements showed that HNO3 and particulate nitrate are the major nitrate contributors to the WSS. Ammonia sources to the water surface are ammonia gas (NH3) and ammonium (NH4+). The experimental results showed that these two species are the sole sources to ammonium deposition. Comparison between the measured deposition velocity of SO2, and HNO3, shows that their dry deposition velocities are statistically the same at the 95% confidence level and NH3 deposition velocity and the water evaporation rate are also the same. It was also shown that the air side MTC of two different compounds were correlated to the square root of the inverse of the molecular weight for compounds. The measured MTC was tested by the application of two models, the resistance model and the water evaporation model. The resistance model prediction of the MTC was very close to the measured value but the evaporation model prediction was not. This result is compatible with the finding of Yi, (1997) who used the same WSS for measurements of SO2. The experimental data collected in this research project was used to develop an empirical model to measure the MTC that is [kl/over D] = 0.0426 ([lv/rho/over /mu])0.8([/mu/over /rho [ D
Qian, Jiajie; Jennings, Brandon; Cwiertny, David M; Martinez, Andres
2017-11-15
We fabricated a suite of polymeric electrospun nanofiber mats (ENMs) and investigated their performance as next-generation passive sampler media for environmental monitoring of organic compounds. Electrospinning of common polymers [e.g., polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and polystyrene (PS), among others] yielded ENMs with reproducible control of nanofiber diameters (from 50 to 340 nm). The ENM performance was investigated initially with model hydrophilic (aniline and nitrobenzene) and hydrophobic (selected PCB congeners and dioxin) compounds, generally revealing fast chemical uptake into all of these ENMs, which was well described by a one compartment, first-order kinetic model. Typical times to reach 90% equilibrium (t 90% ) were ≤7 days under mixing conditions for all the ENMs and <0.5 days for the best performing materials under static (i.e., no mixing) conditions. Collectively, these short equilibrium timescales suggest that ENMs may be used in the field as an equilibrium-passive sampler, at least for our model compounds. Equilibrium partitioning coefficients (K ENM-W , L kg -1 ) averaged 2 and 4.7 log units for the hydrophilic and hydrophobic analytes, respectively. PAN, PMMA and PS were prioritized for additional studies because they exhibited not only the greatest capacity for simultaneous uptake of the entire model suite (log K ENM-W ∼1.5-6.2), but also fast uptake. For these optimized ENMs, the rates of uptake into PAN and PMMA were limited by aqueous phase diffusion to the nanofiber surface, and the rate-determining step for PS was analyte specific. Sorption isotherms also revealed that the environmental application of these optimized ENMs would occur within the linear uptake regime. We examined the ENM performance for the measurement of pore water concentrations from spiked soil and freshwater sediments. Soil and sediment studies not only yielded reproducible pore water concentrations and comparable values to other passive sampler materials, but also provided practical insights into ENM stability and fouling in such systems. Furthermore, fast uptake for a suite of structurally diverse hydrophilic and moderately hydrophobic compounds was obtained for PAN and PS, with t 90% ranging from 0.01 to 4 days with mixing and K ENM-W values ranging from 1.3 to 3.2 log units. Our findings show promise for the development and use of ENMs as equilibrium-passive samplers for a range of organic pollutants across soil/sediment and water systems.
7 CFR 52.29 - Who may become licensed sampler.
Code of Federal Regulations, 2010 CFR
2010-01-01
... MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Licensing of Samplers and...
Woodstove smoke and CO emissions: comparison of reference methods with the VIP sampler.
Jaasma, D R; Champion, M C; Shelton, J W
1990-06-01
A new field sampler has been developed for measuring the particulate matter (PM) and carbon monoxide emissions of woodburning stoves. Particulate matter is determined by carbon balance and the workup of a sample train which is similar to a room-temperature EPA Method 5G train. A steel tank, initially evacuated, serves as the motive force for sampling and also accumulates a gas sample for post-test analysis of time-averaged stack CO and CO2 concentrations. Workup procedures can be completed within 72 hours of sampler retrieval. The system has been compared to reference methods in two laboratory test series involving six different woodburning appliances and two independent laboratories. The correlation of field sampler emission rates and reference method rates is strong.
Gradient-free MCMC methods for dynamic causal modelling.
Sengupta, Biswa; Friston, Karl J; Penny, Will D
2015-05-15
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density - albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Woodstove smoke and CO emissions: Comparison of reference methods with the VIP sampler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaasma, D.R.; Champion, M.C.; Shelton, J.W.
1990-06-01
A new field sampler has been developed for measuring the particulate matter (PM) and carbon monoxide emissions of woodburning stoves. Particulate matter is determined by carbon balance and the workup of a sample train which is similar to a room-temperature EPA Method 5G train. A steel tank, initially evacuated, serves as the motive force for sampling and also accumulates a gas sample for post-test analysis of time-averaged stack CO and CO{sub 2} concentrations. Workup procedures can be completed within 72 hours of sampler retrieval. The system has been compared to reference methods in two laboratory test series involving six differentmore » woodburning appliances and two independent laboratories. The correlation of field sampler emission rates and reference method rates is strong.« less
Woodstove emission measurement methods: Comparison and emission factors update
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrillis, R.C.; Jaasma, D.R.
1993-01-01
Since woodstoves are tested for certification in the laboratory using EPA Methods 5G and 5H, it is of interest to determine the correlation between these regulatory methods and the inhouse equipment. Two inhouse sampling systems have been used mostwidely: one is an intermittent, pump-driven particulate sampler that collects particulate and condensible organics on a filter and organic adsorbent resin; and the other uses an evacuated cylinder as the motive force and particulate and condensible organics are collected in a condenser and dual filter. Both samplers can operate unattended for 1-week periods. A large number of tests have been run comparingmore » Methods 5G and 5H to both samplers. The paper presents these comparison data and determines the relationships between regulations and field samplers.« less
7 CFR 52.30 - Application to become a licensed sampler.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURAL MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Licensing of Samplers...
NASA Technical Reports Server (NTRS)
Boubel, Richard W.
1971-01-01
The stack sampler described in this paper has been developed to overcome the difficulties of particulate sampling with presently available equipment. Its use on emissions from hog fuel fired boilers, back-fired incinerators, wigwam burners, asphalt plants, and seed cleaning cyclones is reported. The results indicate that the sampler is rapid and reliable in its use. It is relatively simple and inexpensive to operate. For most sources it should be considered over the more complicated and expensive sampling trains being used and specified.
NASA Astrophysics Data System (ADS)
Bromhal, G. S.; Wilson, T. H.; Wells, A.; Diehl, R.; Smith, D. H.
2003-12-01
Recently, a few thousand tons of CO2 were injected into the West Pearl Queen field, a depleted oil reservoir in southeastern New Mexico, for a pilot carbon sequestration project. Small amounts of 3 different perfluorocarbon tracers were injected with the CO2. Approximately 50 capillary absorption tube samplers (CATS) were located across the field within 2m of the grounds surface to detect the tracers in extremely small (~10-13L) quantities. After only several days, the CATS detected quantities of tracers at distances of up to 350m from the injection well. Greater amounts of tracers were detected in the different directions. The underground transport mechanism(s) are uncertain; however, appearance of tracer in the CATS after only a 6 day period suggests that CO2 movement may have occurred through near-surface processes. Subsequent tracer measurements made over 10 and 54 day time periods revealed continued tracer leakage. To try to understand the tracer information, we conducted lineament interpretations of the area using a black and white aerial photo taken in 1949, digital orthophotos, and Landsat TM imagery. Lineament interpretations revealed distinct northeast and northwest trending lineament sets. These directions coincided roughly with the direction of tracer-leakage into areas northwest and southwest of the injection well. The near-surface geology consists of a few-feet thick veneer of late Pleistocene and Holocene sand dunes covering the middle Pleistocene Mescalero caliche. A survey of the caliche was made using ground penetrating radar (GPR) to attempt to identify any preferential migration pathways. Modeling studies also were performed to identify the potential leakage pathways at the site. Because of the relatively fast appearance of tracers at large distances from the injection well, simple diffusion through the surface layers was ruled out. Wind patterns in the area have also made transport through the atmosphere and back into the ground highly unlikely. Other potential leakage pathways were transport from the well through the saturated zone and diffusion into the unsaturated zone or combined pressure-driven and diffusive flow through the vadose zone. An analysis of these alternatives has been made for this study.
Lee, Eun Gyung; Magrm, Rana; Kusti, Mohannad; Kashon, Michael L; Guffey, Steven; Costas, Michelle M; Boykin, Carie J; Harper, Martin
2017-01-01
This study was to determine occupational exposures to formaldehyde and to compare concentrations of formaldehyde obtained by active and passive sampling methods. In one pathology and one histology laboratories, exposure measurements were collected with sets of active air samplers (Supelco LpDNPH tubes) and passive badges (ChemDisk Aldehyde Monitor 571). Sixty-six sample pairs (49 personal and 17 area) were collected and analyzed by NIOSH NMAM 2016 for active samples and OSHA Method 1007 (using the manufacturer's updated uptake rate) for passive samples. All active and passive 8-hr time-weighted average (TWA) measurements showed compliance with the OSHA permissible exposure limit (PEL-0.75 ppm) except for one passive measurement, whereas 78% for the active and 88% for the passive samples exceeded the NIOSH recommended exposure limit (REL-0.016 ppm). Overall, 73% of the passive samples showed higher concentrations than the active samples and a statistical test indicated disagreement between two methods for all data and for data without outliers. The OSHA Method cautions that passive samplers should not be used for sampling situations involving formalin solutions because of low concentration estimates in the presence of reaction products of formaldehyde and methanol (a formalin additive). However, this situation was not observed, perhaps because the formalin solutions used in these laboratories included much less methanol (3%) than those tested in the OSHA Method (up to 15%). The passive samplers in general overestimated concentrations compared to the active method, which is prudent for demonstrating compliance with an occupational exposure limit, but occasional large differences may be a result of collecting aerosolized droplets or splashes on the face of the samplers. In the situations examined in this study the passive sampler generally produces higher results than the active sampler so that a body of results from passive samplers demonstrating compliance with the OSHA PEL would be a valid conclusion. However, individual passive samples can show lower results than a paired active sampler so that a single result should be treated with caution.
Koehler, Kirsten A.; Anthony, T. Renee; Van Dyke, Michael
2016-01-01
The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min−1 of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies through screened inlets and that particle bounce, for solid particles, is an important determinant of aspiration and sampling efficiencies for samplers with screened inlets. PMID:21965462
Savoie, Jennifer G.; Lyford, Forest P.; Clifford, Scott
1999-01-01
In March and April 1998, a network of water-to-vapor diffusion samplers was installed along the Cochato River at the Baird & McGuire Superfund Site in Holbrook, Massachusetts, where a plume of volatile organic compounds (VOCs) is present in ground water. The purpose of installing the sampler network was to determine if VOCs were present in river-bottom sediments while a ground-water extraction system was operating and after the system had been shut down for two weeks. Water-to-water diffusion samplers placed at selected locations provided supplemental information about concentrations of VOCs in pore water in the river-bottom sediments. Water levels in piezometers and river stage were measured concurrently to determine if ground water was discharging to the river. Benzene, toluene, ethylbenzene and xylenes (BTEX compounds) were detected in water-tovapor and water-to-water diffusion samplers located in the area where the plume is known to pass beneath the river for both pumping and nonpumping conditions. Concentrations of total BTEX compounds in water-to-vapor diffusion samplers ranged from non-detect upriver and downriver from the plume area to greater than 200 parts per million by volume in the plume area. Concentrations of total BTEX compounds were not significantly different for pumping than for non-pumping conditions. Concentrations of total BTEX compounds in water-to-water diffusion samplers ranged from non-detect to 680 micrograms per liter. The limited number of water-to-water diffusion samplers did not indicate that concentrations were higher for pumping or non-pumping conditions. Trichloroethylene and tetrachloroethylene also were detected in water-to-vapor diffusion samplers downriver from the area where the BTEX compounds were detected. Water levels in four piezometers were consistently higher than the river stage, indicating an upward hydraulic gradient and ground-water discharge to the river. The concentrations of VOCs in riverbottom sediments and the upward hydraulic gradients observed indicate that contaminants from the Baird & McGuire ground-water plume were discharging to the Cochato River during the study period for both pumping and non-pumping conditions.
A Comparison of Four Gravimetric Fine Particle Sampling Methods.
Yanosky, Jeff D; Maclntosh, David L
2001-06-01
A study was conducted to compare four gravimetric methods of measuring fine particle (PM 2.5 ) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM 2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM 2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM 2.5 levels from the FRM samplers were 13.6 and 6.8 μg/m 3 , respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 μg/m 3 , p = 0.0007), the HI and the MiniVol (0.85 μg/m 3 , p = 0.0048), and the KTL and the MiniVol (1.23 μg/m 3 , p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [β 1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [ = 0.88, 95% CI (0.78-0.98)]. Regression R 2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 μg/m 3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM 2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if ~10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 μg/m 3 ).
A comparison of four gravimetric fine particle sampling methods.
Yanosky, J D; MacIntosh, D L
2001-06-01
A study was conducted to compare four gravimetric methods of measuring fine particle (PM2.5) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM2.5 levels from the FRM samplers were 13.6 and 6.8 microg/m3, respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 microg/m3, p = 0.0007), the HI and the MiniVol (0.85 microg/m3, p = 0.0048), and the KTL and the MiniVol (1.23 microg/m3, p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [beta1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [beta1 = 0.88, 95% CI (0.78-0.98)]. Regression R2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 microg/m3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if approximately 10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 microg/m3).
Dynamics of plankton populations in upwelling areas
NASA Technical Reports Server (NTRS)
Szekielda, K. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. Repeated coverage over the test site along the northwest coast of Africa showed that the structure of chlorophyll distribution is much more complicated than expected from continuous recordings. ERTS-1 data showed a very fast change in the chlorophyll distribution and it seems that also the concentration changes quickly. ERTS-1 showed on some frames offshore transportation of dust from the Sahara. All frames from Channel 7 will be arranged as a montage to derive the transportation pattern of dust. This step is important in biological aspects of interpreting ERTS-1 data, because the dissolution kinetics of eolian dust particles may influence significantly the chemistry of the surface water. Since visibility and the biochemistry of the test site off Africa are influenced by the dust transport, dust collection will be included in the ground truth program. Besides chlorophyll and other hydrographical parameters, the dust load in the test area will be measured. The collection plan is discussed along with a description of the high volume air sampler and the Anderson particle sizing head sampler to be used for the dust measurements.
Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.
2002-01-01
A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, A.K.; Kitada, T.
1996-12-31
Dhaka is the capital and the biggest city of Bangladesh, and is expanding very rapidly. Emissions from heavy traffic and many small industries and commercial complexes, newly developed in and around the city, are polluting the air of Dhaka city. The air pollution is severe especially in winter due to adverse meteorological conditions such as low wind speed and dry, stably-stratified air, which restricts the mixing height to low levels and prevent dispersion of pollutants. But so far no study of air pollution of Dhaka city has been done. We have first measured SO{sub 2} and NO{sub 2} concentrations inmore » Dhaka city in a large scale and derived their spatial distributions over Dhaka. Molecular diffusion tubes, which do not require power sources and are produced at low cost, have been used to measure the concentration distributions of SO{sub 2} and NO{sub 2} at 64 sites in Dhaka city and its suburbs during the period of December-January of 1995-96. The diffusion tube samplers were calibrated using 6 automated air pollution monitoring stations in Aichi-prefecture, Japan. The calibration curve and the distribution of the concentration data acquired by automatic measurement instrument at each location showed that the error range of measurements with the molecular diffusion tube samplers was 2-27%. The samples were analyzed using ion-chromatography and spectrophotometer to determine the concentrations of SO{sub 2} and NO{sub 2} respectively. The contamination of unexposed tubes under field conditions was determined and the value of the blank test was subtracted from the measurements of the diffusion tube samplers. The effects of wind turbulence and temperature were reduced using polyflon filters.« less
Carbonate system at Iheya North in Okinawa Trough~IODP drilling and post drilling environment~
NASA Astrophysics Data System (ADS)
Noguchi, T.; Hatta, M.; Sunamura, M.; Fukuba, T.; Suzue, T.; Kimoto, H.; Okamura, K.
2012-12-01
The Iheya North hydrothermal field in middle Okinawa Trough is covered with thick hemipelagic and volcanic sediment. Geochemical characteristics of Okinawa Trough is to provide abundant of CO2, CH4, NH4, H2, and H2S which originated from magmatic gases, sedimentary organic matters. On this hydrothermal field, a scientific drilling by Integrated Ocean Drilling Program (IODP) Expedition 331 was conducted to investigate metabolically diverse subseafloor microbial ecosystem and their physical and chemical settings. To clarify the spatial distribution of physical condition beneath seafloor around the hydrothermal filed, we focus on the carbonate species analysis to reconstruct in-situ pH, which regulate the diversities of microbial community and mineral composition. We developed the small sample volume dissolved total inorganic carbon (DIC) analyzer and conducted the onboard analysis for the interstitial water during IODP Exp.331. Total alkalinity, boron, phosphate, and ammonium also analyzed for thermodynamic calculation. In this presentation, we represent the spatial distribution of pH beneath the Iheya North hydrothermal field. In addition, we developed a 128 bottles multiple water sampler (ANEMONE) for post drilling environmental monitoring. ANEMONE sampler was deployed on the manned submersible Shinkai 6500 with other chemical sensors (CTD, turbidity, pH, ORP, and H2S), and collected the hydrothermal plume samples every 5 minutes during YK12-05 cruise by R/V Yokosuka (Japan Agency for Marine-Earth Science and Technology, JAMSTEC). DIC concentration of plume samples collected by ANEMONE sampler were analyzed just after submersible retrieve, and nutrients, manganese, density, and total cell counts determination were conducted onshore analysis. Based on these results, we describe the spatial distribution of DIC and carbonate system on Iheya North hydrothermal field (interstitial water, hydrothermal fluid, and hydrothermal plume).
NASA Astrophysics Data System (ADS)
Wozniak, M. C.; Steiner, A.; Ault, A. P.; Kort, E. A.; Lersch, T.; Casuccio, G.
2017-12-01
Observations of airborne pollen are typically made with volumetric samplers that obtain a time-averaged pollen concentration at a single point. While spatial variations in surface pollen concentrations may be known with these samplers given multiple sampling sites, real-time boundary layer transport of pollen grains cannot be determined except by particle dispersion or tracer transport models. Recently, light detection and ranging (lidar) techniques, such as depolarization, have been used to measure pollen transport and optical properties throughout the boundary layer over time. Here, we use a ground-based micro-pulse lidar (MPL) to observe boundary layer vertical profiles before, during and after the peak anemophilous (wind-driven) pollen season. The lidar depolarization ratio is measured in tandem with the normalized R-squared backscatter (NRB) intensity to determine the contribution of aspherical particles to the scatterers present throughout the boundary layer. Measurements are taken from April 15 - July 12, 2016 at the University of Michigan Biological Station (UMBS) PROPHET outdoor research lab and tower within a largely forested region. UMBS is dominated by Acer rubrum, Betula papyrifera, Pinus resinosa, Quercus rubra and Pinus strobus, all of which began flowering on 4/19, 5/3, 5/25, 5/25 and 6/14, respectively. Temperature, relative humidity and wind speed measured on site determine daytime conditions conducive to pollen dispersion from flowers. Lidar depolarization ratios between 0.08-0.14 and higher are observed in the daytime boundary layer on days shortly after the flowering dates of the aforementioned species, elevated above the background level of 0.06 or less. Lidar observations are supplemented with aerosol compositional analysis determined by computer-controlled scanning electron microscopy and energy-dispersive X-ray spectroscopy (CCSEM-EDX) on passive sampler data from below, within and above the forest canopy at PROPHET tower. Particles are separated into the following classes based on composition: pollen, non-pollen biological, soot and other (including mineral dust). Particle shape parameters such as aspect ratio and circularity determined from CCSEM images to estimate how aspherical, and thus how strongly depolarizing, each particle class is.
Li, Bao; Wang, Zhi-Qi; Wang, Qian-Suo; Cuan, Jing-Bo
2013-06-01
By using cylindrical sediment sampler and Peeper' s interstitial water sampler, the intact sediment and interstitial water were collected from different zones of Nansi Lake in Shandong Province in summer and winter. The distribution characteristics of the sediment phosphorus forms and of the phosphate (PO4(3-)-P) in interstitial water were analyzed, and their correlations were discussed. In the sediments of Nansi Lake, phosphorus was richer, and had a significant spatial differentiation, with an overall decreasing trend from north to south, which was related to the seriously polluted Northern Nansi Lake near Jining City. Among the phosphorous forms, inorganic phosphorus (IP) had the highest concentration, accounting for 52.3%-87.2% and 60.6%-88.3% of the total phosphorus (TP) in summer and winter, respectively. The TP concentrations in 5 cm surface sediment of four sub-lakes were all higher in summer than in winter, which could be related to the human activities such as exuberant aquaculture, more chemical fertilizers application around lake, and frequent tourism activities, etc. in summer. In vertical direction, the PO4(3-)-P concentration in interstitial water decreased after an initial increase in summer and winter, and was obviously higher in summer than in winter, suggesting that the phosphorous in sediment had a higher potential to release to the overlying water in summer. The organic phosphorus (OP) and IP in sediment had a significant correlation in summer but less correlation in winter, indicating that the transformation between sediment IP and OP was more active in summer than in winter. The iron and aluminum bound phosphorus (Fe/Al-P) and IP in sediment were significantly positively correlated with the PO4(3-)-P in interstitial water. In summer and winter, the average PO4(3-)-P concentration in interstitial water collected by Peeper' s interstitial water sampler was about 20%-50% higher than that collected by the conventional centrifugal method, suggesting that using Peeper' s interstitial water sampler could be more precise.
Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sondrup, A. Jeffrey; Rood, Arthur S.
A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) formore » every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National Emission Standards for Hazardous Air Pollutants maximum exposed individual location (i.e., Frenchman’s Cabin) was no more than 0.1 mrem yr–1 (i.e., 1% of the 10 mrem yr–1 standard). Detection frequencies were calculated separately for the onsite and offsite monitoring network. As expected, detection frequencies were generally less for the offsite sampling network compared to the onsite network. Overall, the monitoring network is very effective at detecting the potential releases of Cs-137 or Sr-90 from all sources/facilities using either the ESER or BEA MDAs. The network was less effective at detecting releases of Pu-239. Maximum detection frequencies for Pu-239 using ESER MDAs ranged from 27.4 to 100% for onsite samplers and 3 to 80% for offsite samplers. Using BEA MDAs, the maximum detection frequencies for Pu-239 ranged from 2.1 to 100% for onsite samplers and 0 to 5.9% for offsite samplers. The only release that was not detected by any of the samplers under any conditions was a release of Pu-239 from the Idaho Nuclear Technology and Engineering Center main stack (CPP-708). The methodology described in this report could be used to improve sampler placement and detection frequency, provided clear performance objectives are defined.« less
Inexpensive, easy-to-construct suction coring devices usable from small boats
Onuf, Christopher P.; Chapman, Duane C.; Rizzo, William M.
1996-01-01
Collection of sediment cores in depths of 1-5 m is difficult with traditional sampling gear. Here we describe three suction coring devices constructed with readily available plumbing supplies and parts easily made from acrylic plastic and silicone sealant. The samplers have been used successfully in sediments ranging from coarse sands and shell hash to muds, highly organic deposits, and dense clays. Successful applications have ranged from contaminants analysis, toxicity testing, seagrass mapping, and assessment of sediment-microfloral interactions to sampling the infauna of surf-swept beaches.
Apparatus and method for automated monitoring of airborne bacterial spores
NASA Technical Reports Server (NTRS)
Ponce, Adrian (Inventor)
2009-01-01
An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.