Sample records for small temperature variation

  1. Small sensitivity to temperature variations of Si-photonic Mach-Zehnder interferometer using Si and SiN waveguides

    NASA Astrophysics Data System (ADS)

    Hiraki, Tatsurou; Fukuda, Hiroshi; Yamada, Koji; Yamamoto, Tsuyoshi

    2015-03-01

    We demonstrated a small sensitivity to temperature variations of delay-line Mach-Zehnder interferometer (DL MZI) on a Si photonics platform. The key technique is to balance a thermo-optic effect in the two arms by using waveguide made of different materials. With silicon and silicon nitride waveguides, the fabricated DL MZI with a free-spectrum range of ~40 GHz showed a wavelength shift of -2.8 pm/K with temperature variations, which is 24 times smaller than that of the conventional Si-waveguide DL MZI. We also demonstrated the decoding of the 40-Gbit/s differential phase-shift keying signals to on-off keying signals with various temperatures. The tolerable temperature variation for the acceptable power penalty was significantly improved due to the small wavelength shifts.

  2. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  3. Variation of stream temperature among mesoscale habitats within stream reaches: southern Appalachians

    Treesearch

    S. Lynsey Long; C. Rhett. Jackson

    2014-01-01

    Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River,...

  4. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle

    PubMed Central

    Lee, Changyeol; Wada, Ikuko

    2017-01-01

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering. PMID:28660880

  5. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    PubMed

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  6. Small temperature coefficient of resistivity of graphene/graphene oxide hybrid membranes.

    PubMed

    Sun, Pengzhan; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2013-10-09

    Materials with low temperature coefficient of resistivity (TCR) are of great importance in some areas, for example, highly accurate electronic measurement instruments and microelectronic integrated circuits. In this work, we demonstrated the ultrathin graphene-graphene oxide (GO) hybrid films prepared by layer-by-layer assembly with very small TCR (30-100 °C) in the air. Electrical response of the hybrid films to temperature variation was investigated along with the progressive reduction of GO sheets. The mechanism of electrical response to temperature variation of the hybrid film was discussed, which revealed that the interaction between graphene and GO and the chemical doping effect were responsible for the tunable control of its electrical response to temperature variation. The unique properties of graphene-GO hybrid film made it a promising candidate in many areas, such as high-end film electronic device and sensor applications.

  7. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    USGS Publications Warehouse

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following dam releases. Direct coupling may have occurred between streamflow and stream temperature for losing stream reaches, such that reduced streamflows facilitated increased afternoon stream temperatures and increased afternoon stream temperatures induced increased streambed losses, leading to even greater increases in both stream temperature and streamflow losses.

  8. Incorporating Temperature-driven Seasonal Variation in Survival, Growth, and Reproduction Models for Small Fish

    EPA Science Inventory

    Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...

  9. A multiple wavelet coherency method for temporal streamflow-precipitation-temperature relationships in 17 small catchments on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Liu, B.

    2017-12-01

    Climate change and human activities are two critical factors causing the dramatical variations of streamflow in the Yellow River Basin of China during the last several decades. More and more attention has been paid to the temporal relationships of streamflow with precipitation and temperature recently. The objective of the current study was to explore the contributions of precipitation and temperature to the temporal variations of streamflow on the Loess Plateau using a multiple wavelet coherency method. Annual streamflow during 1961-2013 for 17 small catchments were collected from the Yellow River Conservancy Commission and annual precipitation and temperature for each catchment were derived from the meteorological data at the national weather stations across the Loess Plateau through the China Meteorological Data Sharing Service System. An abrupt decrease was observed in the annual streamflow around year 2000 for any of the 17 catchments investigated, which was believed to be related with the extensive Grain for Green Project. According to bivariate wavelet coherences, however, annual streamflow showed strong temporal variations with annual precipitation at 8 out of the 17 catchments, where the percentage area of significant coherency (PASC) exceeded 50%. Especially in Weihe and Yiluohe catchments, the corresponding PASC were close to 100%, suggesting that annual precipitation change accounted for almost all the temporal streamflow variations. Compared to annual precipitation, the temporal correlation of temperature with streamflow was relatively small, as implied in the lower mean wavelet coherence (MWC) and PASC. Moreover, including temperature in addition to precipitation in the multiple wavelet coherency analysis failed to increase either MWC or PASC in any of the 17 catchments except for Qingjianhe and Qiushuihe catchments. It was indicated that for most catchments on the Loess Plateau, annual temperature was not significantly different from the red noise in explaining the additional variation in streamflow. In view of the small PASC values resulted for most catchments, there existed other environmental and/or anthropogenic factors responsible for the temporal variations of streamflow.

  10. Remotely sensed sea surface temperature variability off California during a 'Santa Ana' clearing

    NASA Technical Reports Server (NTRS)

    Lynn, R. J.; Svejkovsky, J.

    1984-01-01

    Multichannel atmospheric correction equations for the NOAA 6 proposed by Bernstein (1982) and by McClain (1981) are evaluated by using satellite and in situ data collected over and in the Southern California Bight. The temporal and spatial variation of sea surface temperature over small scales is estimated from the data, and the effect of this variation in matching satellite and in situ data sets is discussed. Changes in the temperature fields between images are examined for diurnal variation and for surface advection of horizontal temperature gradients.

  11. Infrared temperature measurements over bare soil and vegetation - A HAPEX perspective

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Perry, Eileen M.; Taconet, Odile

    1987-01-01

    Preliminary analyses of aircraft and ground measurements made in France during the HAPEX experiment show that horizontal radiometric surface temperature variations, as viewed by aircraft, can reflect the vertical profile of soil moisture (soil versus root zone) because of horizontal variations in vegetation density. Analyses based on one day's data show that, although horizontal variations in soil moisture were small, the vertical differences between a dry surface and a wet root zone were large. Horizontal temperature differences between bare soil, corn and oats reflect differences in the fractional vegetation cover, as seen by the radiometer. On the other hand, these horizontal variations in radiometric surface temperature seem to reflect real horizontal variations in surface turbulent energy fluxes.

  12. Insect eggs protected from high temperatures by limited homeothermy of plant leaves.

    PubMed

    Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur

    2009-11-01

    Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.

  13. Body Temperature Patterns and Rhythmicity in Free-Ranging Subterranean Damaraland Mole-Rats, Fukomys damarensis

    PubMed Central

    Streicher, Sonja; Boyles, Justin G.; Oosthuizen, Maria K.; Bennett, Nigel C.

    2011-01-01

    Body temperature (Tb) is an important physiological component that affects endotherms from the cellular to whole organism level, but measurements of Tb in the field have been noticeably skewed towards heterothermic species and seasonal comparisons are largely lacking. Thus, we investigated patterns of Tb patterns in a homeothermic, free-ranging small mammal, the Damaraland mole-rat (Fukomys damarensis) during both the summer and winter. Variation in Tb was significantly greater during winter than summer, and greater among males than females. Interestingly, body mass had only a small effect on variation in Tb and there was no consistent pattern relating ambient temperature to variation in Tb. Generally speaking, it appears that variation in Tb patterns varies between seasons in much the same way as in heterothermic species, just to a lesser degree. Both cosinor analysis and Fast Fourier Transform analysis revealed substantial individual variation in Tb rhythms, even within a single colony. Some individuals had no Tb rhythms, while others appeared to exhibit multiple rhythms. These data corroborate previous laboratory work showing multiplicity of rhythms in mole-rats and suggest the variation seen in the laboratory is a true indicator of the variation seen in the wild. PMID:22028861

  14. Lateral temperature variations at the core-mantle boundary deduced from the magnetic field

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1990-01-01

    Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.

  15. Temporal variation of phytoplankton in a small tropical crater lake, Costa Rica.

    PubMed

    Umaña-Villalobos, Gerardo

    2010-12-01

    The temporal variation in lake's phytoplankton is important to understand its general biodiversity. For tropical lakes, it has been hypothesized that they follow a similar pattern as temperate ones, on a much accelerated pace; nevertheless, few case studies have tried to elucidate this. Most studies in Costa Rica have used a monthly sampling scheme and failed in showing the expected changes. In this study, the phytoplankton of the small Barvas's crater lake was followed for more than three years, first with monthly and later with weekly samplings, that covered almost two years. Additional information on temperature and oxygen vertical profiles was obtained on a monthly basis, and surface temperature was measured during weekly samplings around noon. Results showed that in spite of its shallow condition (max. depth: 7m) and low surface temperature (11 to 19 degrees C), the lake stratifies at least for brief periods. The phytoplankton showed both, rapid change periods, and prolonged ones of relative stasis. The plankton composition fluctuated between three main phases, one characterized by the abundance of small sized desmids (Staurastrum paradoxum, Cosmarium asphaerosporum), a second phase dominated by equally small cryptomonads (Chryptochrysis minor, Chroomonas sp.) and a third phase dominated by the green alga Eutetramorus tetrasporus. Although data evidenced that monthly sampling could miss short term events, the temporal variation did not follow the typical dry and rainy seasons of the region, or any particular annual pattern. Year to year variation was high. As this small lake is located at the summit of Barva Volcano and receives the influence from both the Caribbean and the Pacific weather, seasonality at the lake is not clearly defined as in the rest of the country and short term variations in the local weather might have a stronger effect than broad seasonal trends. The occurrence of this short term changes in the phytoplankton of small tropical lakes in response to weather variations needs to be further explored in other lakes.

  16. Small angle neutron scattering study on the structural variation of lysozyme in bioprotectants

    NASA Astrophysics Data System (ADS)

    Koda, Shota; Takayama, Haruki; Shibata, Tomohiko; Mori, Tatsuya; Kojima, Seiji; Park, In-Sung; Shin, Tae-Gyu

    2015-05-01

    The thermal denaturation and subsequent structural variation of lysozyme in various bioprotectant candidate solutions such as trehalose and choline acetate have been investigated by using small angle neutron scattering and differential scanning calorimetry. The gyration radius shows little change with the addition of additives in a native state at room temperature. On heating the lysozyme solution, a remarkable increase in the gyration radius is observed at temperatures above the denaturation temperature without any bioprotectants. Such an increase is suppressed by the additives owing to the intermolecular interactions between the lysozyme molecules and the bioprotectants of trehalose and choline acetate. The fractal dimension of lysozyme varies slightly with the addition of the bioprotectant solutions, and shows a remarkable drop in the vicinity of the denaturation temperature for all the solutions.

  17. Body temperature changes during simulated bacterial infection in a songbird: fever at night and hypothermia during the day.

    PubMed

    Sköld-Chiriac, Sandra; Nord, Andreas; Tobler, Michael; Nilsson, Jan-Åke; Hasselquist, Dennis

    2015-09-01

    Although fever (a closely regulated increase in body temperature in response to infection) typically is beneficial, it is energetically costly and may induce detrimentally high body temperatures. This can increase the susceptibility to energetic bottlenecks and risks of overheating in some organisms. Accordingly, it could be particularly interesting to study fever in small birds, which have comparatively high metabolic rates and high, variable body temperatures. We therefore investigated two aspects of fever and other sickness behaviours (circadian variation, dose dependence) in a small songbird, the zebra finch. We injected lipopolysaccharide (LPS) at the beginning of either the day or the night, and subsequently monitored body temperature, body mass change and food intake for the duration of the response. We found pronounced circadian variation in the body temperature response to LPS injection, manifested by (dose-dependent) hypothermia during the day but fever at night. This resulted in body temperature during the peak response being relatively similar during the day and night. Day-to-night differences might be explained in the context of circadian variation in body temperature: songbirds have a high daytime body temperature that is augmented by substantial heat production peaks during activity. This might require a trade-off between the benefit of fever and the risk of overheating. In contrast, at night, when body temperature is typically lower and less variable, fever can be used to mitigate infection. We suggest that the change in body temperature during infection in small songbirds is context dependent and regulated to promote survival according to individual demands at the time of infection. © 2015. Published by The Company of Biologists Ltd.

  18. Body temperature patterns and rhythmicity in free-ranging subterranean Damaraland mole-rats, Fukomys damarensis.

    PubMed

    Streicher, Sonja; Boyles, Justin G; Oosthuizen, Maria K; Bennett, Nigel C

    2011-01-01

    Body temperature (T(b)) is an important physiological component that affects endotherms from the cellular to whole organism level, but measurements of T(b) in the field have been noticeably skewed towards heterothermic species and seasonal comparisons are largely lacking. Thus, we investigated patterns of T(b) patterns in a homeothermic, free-ranging small mammal, the Damaraland mole-rat (Fukomys damarensis) during both the summer and winter. Variation in T(b) was significantly greater during winter than summer, and greater among males than females. Interestingly, body mass had only a small effect on variation in T(b) and there was no consistent pattern relating ambient temperature to variation in T(b). Generally speaking, it appears that variation in T(b) patterns varies between seasons in much the same way as in heterothermic species, just to a lesser degree. Both cosinor analysis and Fast Fourier Transform analysis revealed substantial individual variation in T(b) rhythms, even within a single colony. Some individuals had no T(b) rhythms, while others appeared to exhibit multiple rhythms. These data corroborate previous laboratory work showing multiplicity of rhythms in mole-rats and suggest the variation seen in the laboratory is a true indicator of the variation seen in the wild.

  19. Small lakes show muted climate change signal in deepwater temperatures

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.

    2015-01-01

    Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.

  20. A search for relativistic electron induced stratospheric ozone depletion

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  1. Measurements of temperature profiles at the exit of small rockets.

    PubMed

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  2. Differences and Similarities between Summer and Winter Temperatures and Winds during MaCWAVE

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2008-01-01

    The Mountain and Convective Waves Ascending Vertically Experiment (MaCWAVE) was carried out in two sequences: one during the summer from the Andoya Rocket Range (69N) during July 2002 to examine convective initiation of gravity waves. The second was a winter sequence from ESRANGE (68N) during January 2003 to examine mountain-initiated waves. Inflatable falling spheres released from small meteorological rockets provided significant information about the variation of temperature and wind from 50 km and higher. The small rocket launch activity was restricted to 12-hour periods that inhibited observing a full diurnal cycle, nonetheless, the time-history of the measurements have provided information about tidal motion. During summer, temperature variation was smaller than observed during winter when peak differences reached 15-20 K at 80-85 km. variation in zonal winds varied up to more than 100 mps in summer and winter. Times of wind vs. altitude showed that the peak zonal component occurred approximately two hours ahead of the peak meridional wind. Measurement details and the observed variations are discussed.

  3. Long-term variations of the upper atmosphere parameters on Rome ionosonde observations and their interpretation

    NASA Astrophysics Data System (ADS)

    Perrone, Loredana; Mikhailov, Andrey; Cesaroni, Claudio; Alfonsi, Lucilla; Santis, Angelo De; Pezzopane, Michael; Scotto, Carlo

    2017-09-01

    A recently proposed self-consistent approach to the analysis of thermospheric and ionospheric long-term trends has been applied to Rome ionosonde summer noontime observations for the (1957-2015) period. This approach includes: (i) a method to extract ionospheric parameter long-term variations; (ii) a method to retrieve from observed foF1 neutral composition (O, O2, N2), exospheric temperature, Tex and the total solar EUV flux with λ < 1050 Å; and (iii) a combined analysis of the ionospheric and thermospheric parameter long-term variations using the theory of ionospheric F-layer formation. Atomic oxygen, [O] and [O]/[N2] ratio control foF1 and foF2 while neutral temperature, Tex controls hmF2 long-term variations. Noontime foF2 and foF1 long-term variations demonstrate a negative linear trend estimated over the (1962-2010) period which is mainly due to atomic oxygen decrease after ˜1990. A linear trend in (δhmF2)11y estimated over the (1962-2010) period is very small and insignificant reflecting the absence of any significant trend in neutral temperature. The retrieved neutral gas density, ρ atomic oxygen, [O] and exospheric temperature, Tex long-term variations are controlled by solar and geomagnetic activity, i.e. they have a natural origin. The residual trends estimated over the period of ˜5 solar cycles (1957-2015) are very small (<0.5% per decade) and statistically insignificant.

  4. Variations on the "Whoosh" Bottle Alcohol Explosion Demonstration Including Safety Notes.

    ERIC Educational Resources Information Center

    Fortman, John J.; Rush, Andrea C.; Stamper, Jennifer E.

    1999-01-01

    Presents several variations on a demonstration in which alcohol vapors are combusted in large small-necked bottles, causing a blue flame to shoot from the bottle's mouth. Describes variations with different pure alcohols, temperature, alcohol/water solution concentration, oxygen concentration, type of container, and the addition of salt for color.…

  5. Characterization Report on Fuels for NEAMS Model Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gofryk, Krzysztof

    Nearly 20% of the world’s electricity today is generated by nuclear energy from uranium dioxide (UO 2) fuel. The thermal conductivity of UO 2 governs the conversion of heat produced from fission events into electricity and it is an important parameter in reactor design and safety. While nuclear fuel operates at high to very high temperatures, thermal conductivity and other materials properties lack sensitivity to temperature variations and to material variations at reactor temperatures. As a result, both the uncertainties in laboratory measurements at high temperatures and the small differences in properties of different materials inevitably lead to large uncertaintiesmore » in models and little predictive power. Conversely, properties measured at low to moderate temperatures have more sensitivity, less uncertainty, and have larger differences in properties for different materials. These variations need to be characterized as they will afford the highest predictive capability in modeling and offer best assurances for validation and verification at all temperatures. This is well emphasized in the temperature variation of the thermal conductivity of UO 2.« less

  6. Linked hydrologic and climate variations in British Columbia and Yukon.

    PubMed

    Whitfield, P H

    2001-01-01

    Climatic and hydrologic variations between the decades 1976-1985 and 1986-1995 are examined at 34 climate stations and 275 hydrology stations. The variations in climate are distributed across a broad spatial area. Temperatures were generally warmer in the most recent decade, with many stations showing significant increases during the spring and fall. No significant decreases in temperature were found. Significant increases in temperature were more frequent in the south than in the northern portions of the region. Significant changes in precipitation were also more prevalent in the south. In coastal areas, there were significant decreases in precipitation during the dry season, and significant increases during the wet season. In the BC interior, significant precipitation decreases occurred during the fall, with significant increases during the winter and spring. In the north there were few changes in precipitation. The hydrologic responses to these variations in climate follow six distinctive patterns. The spatial distribution of these patterns suggests that in different ecozones, small variations in climate, particularly temperature, elicit different hydrologic responses.

  7. Day-to-day variations in the amplitude of the soil temperature cycle and impact on adult eclosion timing of the onion fly.

    PubMed

    Tanaka, Kazuhiro; Watari, Yasuhiko

    2017-06-01

    The onion fly Delia antiqua advances its eclosion timing with decreasing temperature amplitude to compensate for a depth-dependent phase delay of the zeitgeber. To elucidate whether or not naturally occurring day-to-day variations in the amplitude of soil temperature cycle disturb this compensatory response, we monitored daily variations in the temperature amplitude in natural soils and evaluated the impact on adult eclosion timing. Our results indicated that both median and variance of the soil temperature amplitude become smaller as depth increases. Insertion of a larger temperature fluctuation into the thermoperiod with smaller temperature amplitude induced a stronger phase delay, while insertion of a smaller temperature fluctuation into the thermoperiod with larger temperature amplitude had a weaker phase-advancing effect. It is therefore expected that larger diurnal temperature fluctuations disturb the compensatory response, particularly if they occur at deeper locations, while smaller temperature fluctuations do so only at shallower locations. Under natural conditions, however, the probability of occurrence of smaller or larger temperature fluctuations in shallower or deeper soils, respectively, is relatively small. Thus, naturally occurring day-to-day variations in the temperature amplitude rarely disturb the compensatory response, thereby having a subtle or negligible impact on adult eclosion timing.

  8. Using air/water/sediment temperature contrasts to identify groundwater seepage locations in small streams

    NASA Astrophysics Data System (ADS)

    Karan, S.; Sebok, E.; Engesgaard, P. K.

    2016-12-01

    For identifying groundwater seepage locations in small streams within a headwater catchment, we present a method expanding on the linear regression of air and stream temperatures. Thus, by measuring the temperatures in dual-depth; in the stream column and at the streambed-water interface (SWI), we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept and coefficient of determination), and the daily mean temperatures (temperature variance and the average difference between the minimum and maximum daily temperatures). Our study show that using metrics from single-depth stream temperature measurements only are not sufficient to identify substantial groundwater seepage locations within a headwater stream. Conversely, comparing the metrics from dual-depth temperatures show significant differences so that at groundwater seepage locations, temperatures at the SWI, merely explain 43-75 % of the variation opposed to ≥91 % at the corresponding stream column temperatures. The figure showing a box-plot of the variation in daily mean temperature depict that at several locations there is great variation in the range the upper and lower loggers due to groundwater seepage. In general, the linear regression show that at these locations at the SWI, the slopes (<0.25) and intercepts (>6.5oC) are substantially lower and higher, while the mean diel amplitudes (<0.98oC) are decreased compared to remaining locations. The dual-depth approach was applied in a post-glacial fluvial setting, where metrics analyses overall corresponded to field measurements of groundwater fluxes deduced from vertical streambed temperatures and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambed in such settings.

  9. The isolation of the temperature effect on branched GDGT distribution in an elevation transect of the Eastern Cordillera, Colombia

    NASA Astrophysics Data System (ADS)

    Anderson, V. J.; Shanahan, T. M.; Saylor, J.; Horton, B. K.

    2012-12-01

    Recently, the distribution of branched GDGT's (glycerol dialkyl glycerol tetraethers) has been proposed as a proxy for temperature and pH in soils via the MBT/CBT index, and has been used to reconstruct past temperature variations in a number of settings ranging from marine sediments to loess deposits and paleosols. However, empirical calibrations of the MBT/CBT index against temperature show significant scatter, leading to uncertainties as large as ±2 degrees C . In this study we seek to add to and improve upon the existing soil calibration using a new set of samples spanning a large elevation (and temperature) gradient in the Eastern Cordillera of Colombia. At each site we buried temperature loggers to constrain the diurnal and seasonal temperature experienced by each soil sample. Located only 5 degrees north of the equator, our sites experience a very small seasonal temperature variation - most sites display an annual range of less than 4 degrees C. In addition, the pH of all of the soils is almost invariant across the transect, with the vast majority of samples having pH's between 4 and 5. This dataset represents a "best-case" scenario - small variations in seasonal temperature, pH, and well-constrained instrumental data - which allow us to examine the brGDGT-temperature relationship in the absence of major confounding factors such as seasonality and soil chemistry. Interestingly, the relationship between temperature and the MBT/CBT index is not improved using this dataset, suggesting that these factors are not the cause of the anomalous scatter in the calibration dataset. However, we find that using other parameterizations for the regression equation instead of the MBT and CBT indices, the errors in our temperature estimates are significantly reduced.

  10. The role of simulated small-scale ocean variability in inverse computations for ocean acoustic tomography.

    PubMed

    Dushaw, Brian D; Sagen, Hanne

    2017-12-01

    Ocean acoustic tomography depends on a suitable reference ocean environment with which to set the basic parameters of the inverse problem. Some inverse problems may require a reference ocean that includes the small-scale variations from internal waves, small mesoscale, or spice. Tomographic inversions that employ data of stable shadow zone arrivals, such as those that have been observed in the North Pacific and Canary Basin, are an example. Estimating temperature from the unique acoustic data that have been obtained in Fram Strait is another example. The addition of small-scale variability to augment a smooth reference ocean is essential to understanding the acoustic forward problem in these cases. Rather than a hindrance, the stochastic influences of the small scale can be exploited to obtain accurate inverse estimates. Inverse solutions are readily obtained, and they give computed arrival patterns that matched the observations. The approach is not ad hoc, but universal, and it has allowed inverse estimates for ocean temperature variations in Fram Strait to be readily computed on several acoustic paths for which tomographic data were obtained.

  11. Active Pattern Factor Control for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    May, James E.

    1998-01-01

    Small variations in fuel/air mixture ratios within gas turbine combustors can result in measurable, and potentially detrimental, exit thermal gradients. Thermal gradients can increase emissions, as well as shorten the design life of downstream turbomachinery, particularly stator vanes. Uniform temperature profiles are usually sought through careful design and manufacturing of related combustor components. However, small componentto-component variations as well as numerous aging effects degrade system performance. To compensate for degraded thermal performance, researchers are investigating active, closed-loop control schemes.

  12. Microstructure characterization of 316L deformed at high strain rates using EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yvell, K., E-mail: kyv@du.se

    2016-12-15

    Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s{sup −1} at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneousmore » and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain. - Highlights: •Only changes in strain, not strain rate, gave differences in the microstructure. •A bimodal lognormal size distribution was found to describe the size distribution. •Variation of the subgrain fraction sizes agrees with models for heterogeneous slip. •Variation of subgrain size with strain describes part of the stress strain curve.« less

  13. Spectral Structure of Temperature Variations in the Midlatitude Mesopause Region

    NASA Astrophysics Data System (ADS)

    Perminov, V. I.; Semenov, A. I.; Medvedeva, I. V.; Pertsev, N. N.; Sukhodoev, V. A.

    2018-01-01

    Long-term series of midnight temperature in the mesopause region have been obtained from spectral observations of hydroxyl airglow emission (OH(6-2) λ840 nm band) at the Tory station (52° N, 103° E) in 2008-2016 and Zvenigorod (56° N, 37° E) station in 2000-2016. On their basis, the Lomb-Scargle spectra of the variations in the period range from 12 days to 11 years have been determined. Estimates of the amplitudes of statistically significant temperature fluctuations are made. The dominant oscillations are the first and second harmonics of the annual variation, the amplitudes of which are 23-24 K and 4-7 K, respectively. The remaining variations, the number of which was 16 for the Tory and 22 for Zvenigorod stations, have small amplitudes (0.5-3 K). Oscillations with combinational frequencies, which arise from modulation of the annual variation harmonics, are observed in a structure of the variation spectra in addition to interannual oscillations (periods from 2 to 11 years) and harmonics of the annual variation (up to its tenth harmonic).

  14. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage.

    PubMed

    Heuberger, Adam L; Broeckling, Corey D; Lewis, Matthew R; Salazar, Lauren; Bouckaert, Peter; Prenni, Jessica E

    2012-12-01

    The effect of temperature on non-volatile compounds in beer has not been well characterised during storage. Here, a metabolomics approach was applied to characterise the effect of storage temperature on non-volatile metabolite variation after 16weeks of storage, using fresh beer as a control. The metabolite profile of room temperature stored (RT) and cold temperature stored (CT) beer differed significantly from fresh, with the most substantial variation observed between RT and fresh beer. Metabolites that changed during storage included prenylated flavonoids, purines, and peptides, and all showed reduced quantitative variation under the CT storage conditions. Corresponding sensory panel observations indicated significant beer oxidation after 12 and 16weeks of storage, with higher values reported for RT samples. These data support that temperature affected beer oxidation during short-term storage, and reveal 5-methylthioadenosine (5-MTA) as a candidate non-volatile metabolite marker for beer oxidation and staling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Dualchannel Fuel Control Program.

    DTIC Science & Technology

    1981-08-01

    Generator 1 S Fluidic Speed Sensor and Power Turbine Wheels T = 0.1 s (speed) Recuperator 15 to 19 s Fluidic Temperature Sensor (temperature) T = 0.7 s...tradeoff between the highest sensitivity obtainable (as small a gap as possi- ble) and the noise or output variations due to disc runout . In

  16. [Responses of Picea likiangensis radial growth to climate change in the Small Zhongdian area of Yunnan Province, Southwest China].

    PubMed

    Zhao, Zhi-Jiang; Tan, Liu-Yi; Kang, Dong-Wei; Liu, Qi-Jing; Li, Jun-Qing

    2012-03-01

    Picea likiangensis (Franch. ) Pritz. primary forest is one of the dominant forest types in the Small Zhongdian area in Shangri-La County of Yunnan Province. In this paper, the responses of P. likiangensis tree-ring width to climate change were analyzed by dendrochronological methods, and the dendrochronology was built by using relatively conservative detrending negative exponential curves or linear regression. Correlation analysis and response function analysis were applied to explore the relationships between the residual chronology series (RES) and climatic factors at different time scales, and pointer year analysis was used to explain the reasons of producing narrow and wide rings. In the study area, the radial growth of P. likiangensis and the increasing air temperature from 1990 to 2008 had definite 'abruption'. The temperature and precipitation in previous year growth season were the main factors limiting the present year radial growth, and especially, the temperature in previous July played a negative feedback role in the radial growth, while the sufficient precipitation in previous July promoted the radial growth. The differences in the temperature variation and precipitation variation in previous year were the main reasons for the formation of narrow and wide rings. P. likiangensis radial growth was not sensitive to the variation of PDSI.

  17. Variations in Temperature at the Base of the Lithosphere Beneath the Archean Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Mareschal, J.; Jaupart, C. P.

    2013-12-01

    Most of the variations in surface heat flux in stable continents are caused by variations in crustal heat production, with an almost uniform heat flux at the base of the crust ( 15+/-3 mW/m2). Such relatively small differences in Moho heat flux cannot be resolved by heat flow data alone, but they lead to important lateral variations in lithospheric temperatures and thicknesses. In order to better constrain temperatures in the lower lithosphere, we have combined surface heat flow and heat production data from the southern Superior Province in Canada with vertical shear wave velocity profiles obtained from surface wave inversion. We use the Monte-Carlo method to generate lithospheric temperature profiles from which shear wave velocity can be calculated for a given mantle composition. We eliminate thermal models which yield lithospheric and sub-lithospheric velocities that do not fit the shear wave velocity profile. Surface heat flux being constrained, the free parameters of the thermal model are: the mantle heat flux, the mantle heat production, the crustal differentiation index (ratio of surface to bulk crustal heat production) and the temperature of the mantle isentrope. Two conclusions emerge from this study. One is that, for some profiles, the vertical variations in shear wave velocities cannot be accounted for by temperature alone but also require compositional changes within the lithosphere. The second is that there are long wavelength horizontal variations in mantle temperatures (~80-100K) at the base of the lithosphere and in the mantle below

  18. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Québec, 1984-2007.

    PubMed

    Vutcovici, Maria; Goldberg, Mark S; Valois, Marie-France

    2014-07-01

    The association between ambient temperature and mortality has been studied extensively. Recent data suggest an independent role of diurnal temperature variations in increasing daily mortality. Elderly adults-a growing subgroup of the population in developed countries-may be more susceptible to the effects of temperature variations. The aim of this study was to determine whether variations in diurnal temperature were associated with daily non-accidental mortality among residents of Montreal, Québec, who were 65 years of age and over during the period between 1984 and 2007. We used distributed lag non-linear Poisson models constrained over a 30-day lag period, adjusted for temporal trends, mean daily temperature, and mean daily concentrations of nitrogen dioxide and ozone to estimate changes in daily mortality with diurnal temperature. We found, over the 30 day lag period, a cumulative increase in daily mortality of 5.12% [95% confidence interval (CI): 0.02-10.49%] for a change from 5.9 °C to 11.1 °C (25th to 75th percentiles) in diurnal temperature, and a 11.27% (95%CI: 2.08-21.29%) increase in mortality associated with an increase of diurnal temperature from 11.1 to 17.5 °C (75th to 99th percentiles). The results were relatively robust to adjustment for daily mean temperature. We found that, in Montreal, diurnal variations in temperature are associated with a small increase in non-accidental mortality among the elderly population. More studies are needed in different geographical locations to confirm this effect.

  19. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians

    Treesearch

    Jason B. Dunham; Amanda E. Rosenberger; Charlie H. Luce; Bruce E. Rieman

    2007-01-01

    Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre­post fire comparison of temperatures between two sites (one...

  20. Fermi Surface Studies and Temperature Dependence of the Electron-Positron Momentum Density in the High Critical Temperature Superconducting Yttrium BARIUM(2) COPPER(3) OXYGEN(7-X) System by Two-Dimensional Acar

    NASA Astrophysics Data System (ADS)

    von Stetten, Eric Carl

    The electron-positron momentum density has been measured by the two dimensional angular correlation of annihilation radiation (2D ACAR) technique for single crystal and polycrystalline (sintered powder) YBa_2 Cu_3O_{7-x} samples. For sintered superconducting and nonsuperconducting samples, the shape and temperature variation of the momentum density was investigated using the high sensitivity 2D ACAR technique. The possible existence of Fermi surfaces (FS's) in the YBa_2Cu _3O_{7-x} system was investigated in high precision 2D ACAR experiments on an oriented (twinned) single crystal superconducting YBa_2Cu _3O_{7-x} (x ~ 0.1) sample, at temperatures above and below the superconducting transition temperature (~85 K). These experiments were performed in the c-axis projection, in order to observe the theoretically predicted cylindrical FS's (if they exist) in a single experiment, without a full reconstruction of the three dimensional momentum density. Large differences were observed between the room temperature 2D ACAR spectra for superconducting and nonsuperconducting sintered powder samples, and smaller differences were observed between the spectra for similarly prepared superconducting samples. For sintered superconducting samples, complex sample dependent temperature variations of the momentum density were observed, in contrast to the small linear temperature variation observed for a sintered powder nonsuperconducting sample. These results are interpreted as manifestations of the theoretically predicted preferential sampling of the linear Cu-O chain region by the positron in the YBa _2Cu_3O _{7-x} system. High precision experiments on the single crystal superconducting sample revealed a nearly isotropic 2D ACAR spectrum, with only four small (~3% of the height at p_{x} = p _{y} = 0) peaks centered along the (110) symmetry lines. A small narrowing of the 2D ACAR spectrum was observed above T_{c}. The Brillouin-zone-reduced momentum density was formed using the "Lock-Crisp-West folding" technique, in order to identify possible FS signatures; several small features were observed that could possibly be due to FS's. A computer study of statistical noise propagation in 2D ACAR data, however, found that the possible FS signatures in the experimental data are similar in shape and magnitude to noise produced features.

  1. GISS GCMAM Modeled Climate Responses to Total and Spectral Solar Forcing on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Wen, Guoyong; Cahalan, Robert; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Harder, Jerry

    2014-05-01

    We examine the influence of the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral Irradiance Monitor) observed spectral solar irradiance (SSI) variations on Earth's climate. We apply two reconstructed spectral solar forcing scenarios, one SIM based, the other based on the SATIRE (Spectral And Total Irradiance REconstruction) model, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine the climate responses on decadal and centennial time scales. We show that the atmosphere has different temperature, ozone, and dynamic responses to the two solar spectral forcing scenarios, even when the variations in TSI (Total Solar Irradiance) are the same. We find that solar variations under either scenario contribute a small fraction of the observed temperature increase since the industrial revolution. The trend of global averaged surface air temperature response to the SIM-based solar forcing is 0.02 °C/century, about half of the temperature trend to the SATIRE-based SSI. However the temporal variation of the surface air temperature for the SIM-based solar forcing scenario is much larger compared to its SATIRE counterpart. Further research is required to examine TSI and SSI variations in the ascending phase of solar cycle 24, to assess their implications for the solar influence on climate.

  2. GISS GCMAM Modeled Climate Responses to Total and Spectral Solar Forcing on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Rind, D. H.; Jonas, J.; Pilewskie, P.; Harder, J. W.; Krivova, N.

    2014-12-01

    We examine the influence of the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral Irradiance Monitor) observed spectral solar irradiance (SSI) variations on Earth's climate. We apply two reconstructed spectral solar forcing scenarios, one SIM based, the other based on the SATIRE (Spectral And Total Irradiance REconstruction) model, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine the climate responses on decadal and centennial time scales. We show that the atmosphere has different temperature, ozone, and dynamic responses to the two solar spectral forcing scenarios, even when the variations in TSI (Total Solar Irradiance) are the same. We find that solar variations under either scenario contribute a small fraction of the observed temperature increase since the industrial revolution. The trend of global averaged surface air temperature response to the SIM-based solar forcing is 0.02 °C/century, about half of the temperature trend to the SATIRE-based SSI. However the temporal variation of the surface air temperature for the SIM-based solar forcing scenario is much larger compared to its SATIRE counterpart. Further research is required to examine TSI and SSI variations in the ascending phase of solar cycle 24, to assess their implications for the solar influence on climate.

  3. Diel stream temperature regimes of Bukovsky regions of the conterminous United States

    NASA Astrophysics Data System (ADS)

    Ferencz, Stephen B.; Cardenas, M. Bayani

    2017-03-01

    Stream temperature which varies over daily to seasonal timescales is a primary control on myriad ecological, biogeochemical, and physical processes. Yet geographic patterns of its diel variations have not been fully characterized. Using daily temperature records spanning 15 years (2000-2014), monthly averaged mean daily temperature and diel temperature range were calculated for streams distributed across six Bukovsky regions of the conterminous U.S. Across all six regions, diel temperature fluctuations were lowest during the winter, around 1-2°C. During the summer there was wide distribution in diel temperatures (2°C-12°C). The regions revealed distinct differences in diel patterns for small and medium streams, but not for large streams. Small and medium streams exhibited notable hysteresis in their annual progression of diel temperature ranges, with larger diel temperature fluctuations in the spring than in the fall.

  4. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.

    PubMed

    Mattila, Anniina L K

    2015-12-01

    Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive models of the evolution of dispersal in the face of habitat fragmentation and climate change.

  5. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    NASA Technical Reports Server (NTRS)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  6. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India.

    PubMed

    Cator, Lauren J; Thomas, Shalu; Paaijmans, Krijn P; Ravishankaran, Sangamithra; Justin, Johnson A; Mathai, Manu T; Read, Andrew F; Thomas, Matthew B; Eapen, Alex

    2013-03-02

    Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings.

  7. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India

    PubMed Central

    2013-01-01

    Background Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. Methods A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Results Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Conclusions Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings. PMID:23452620

  8. Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe

    DOE PAGES

    Böhmer, A. E.; Taufour, V.; Straszheim, W. E.; ...

    2016-07-29

    The study of the iron-based superconductor FeSe has blossomed with the availability of high-quality single crystals, obtained through flux/vapor-transport growth techniques below the structural transformation temperature of its tetragonal phase, T≈450°C. Here, we report on the variation of sample morphology and properties due to small modifications in the growth conditions. A considerable variation of the superconducting transition temperature T c, from 8.8 K to 3 K, which cannot be correlated with the sample composition, is observed. Instead, we point out a clear correlation between T c and disorder, as measured by the residual resistivity ratio. Notably, the tetragonal-to-orthorhombic structural transitionmore » is also found to be quite strongly disorder dependent (T s≈72–90K) and linearly correlated with T c.« less

  9. Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens).

    PubMed

    Couvillon, Margaret J; Fitzpatrick, Ginny; Dornhaus, Anna

    Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16°C and 36°C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures.

  10. Irregular topography at the Earth’s inner core boundary

    PubMed Central

    Dai, Zhiyang; Wang, Wei; Wen, Lianxing

    2012-01-01

    Compressional seismic wave reflected off the Earth’s inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth’s ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4–8 km with a lateral length scale of 2–4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable. PMID:22547788

  11. Irregular topography at the Earth's inner core boundary.

    PubMed

    Dai, Zhiyang; Wang, Wei; Wen, Lianxing

    2012-05-15

    Compressional seismic wave reflected off the Earth's inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth's ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4-8 km with a lateral length scale of 2-4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable.

  12. Design of the PIXIE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael

    2012-01-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  13. Making Displaced Holograms At Two Wavelengths

    NASA Technical Reports Server (NTRS)

    Witherow, William K.; Ecker, Andreas

    1989-01-01

    Two-wavelength holographic system augmented with pair of prisms to introduce small separation between holograms formed simultaneously at two wavelengths on holographic plate. Principal use in study of flows. Gradients in index of refraction of fluid caused by variations in temperature, concentration, or both. Holography at one wavelength cannot be used to distinguish between two types of variations. Difference between spacings of fringes in photographs reconstructed from holograms taken simultaneously at two different wavelengths manipulated mathematically to determine type of variation.

  14. Multibeam collimator uses prism stack

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  15. Thermal Fluxes and Temperatures in Small Urban Headwater Streams of the BES LTER: Landscape Forest and Impervious Patches and the Importance of Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Kim, H.; Belt, K. T.; Welty, C.; Heisler, G.; Pouyat, R. V.; McGuire, M. P.; Stack, W. P.

    2006-05-01

    Water and material fluxes from urban landscape patches to small streams are modulated by extensive "engineered" drainage networks. Small urban headwater catchments are different in character and function from their larger receiving streams because of their extensive, direct connections to impervious surface cover (ISC) and their sometimes buried nature. They need to be studied as unique functional hydrologic units if impacts on biota are to be fully understood. As part of the Baltimore Ecosystem Study LTER project, continuous water temperature data are being collected at 2-minute intervals at over twenty small catchments representing various mixtures of forest and ISC. Suburban stream sites with greater ISC generally have higher summer water temperatures. Suburban catchments with most of their channel drainage contained within storm drain pipes show subdued diurnal variation and cool temperatures, but with very large spikes in summer runoff events. Conversely, high ISC urban piped streams have elevated "baseline" temperatures that stand well above all the other monitoring sites. There is a pronounced upstream-downstream effect; nested small headwater catchments experience more frequent, larger temperature spikes related to runoff events than downstream sites. Also, runoff-initiated temperature elevations at small stream sites unexpectedly last much longer than the storm runoff hydrographs. These observations suggest that for small headwater catchments, urban landscapes not only induce an ambient, "heat island" effect on stream temperatures, but also introduce thermal disturbance regimes and fluxes that are not trivial to aquatic biota.

  16. Temperature variation and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up.

    PubMed

    Stockfors, J

    2000-09-01

    Few studies have examined variation in respiration rates within trees, and even fewer studies have focused on variation caused by within-stem temperature differences. In this study, stem temperatures at 40 positions in the stem of one 30-year-old Norway spruce (Picea abies (L.) Karst.) were measured during 40 days between July 1994 and June 1995. The temperature data were used to simulate variations in respiration rate within the stem. The simulations assumed that the temperature-respiration relationship was constant (Q10 = 2) for all days and all stem positions. Total respiration for the whole stem was calculated by interpolating the temperature between the thermocouples and integrating the respiration rates in three dimensions. Total respiration rate of the stem was then compared to respiration rate scaled up from horizontal planes at the thermocouple heights (40, 140, 240 and 340 cm) on a surface area and on a sapwood volume basis. Simulations were made for three distributions of living cells in the stems: one with a constant 5% fraction of living cells, disregarding depth into the stem; one with a living cell fraction decreasing linearly with depth into the stem; and one with an exponentially decreasing fraction of living cells. Mean temperature variation within the stem was 3.7 degrees C, and was more than 10 degrees C for 8% of the time. The maximum measured temperature difference was 21.5 degrees C. The corresponding mean variation in respiration was 35% and was more than 50% for 24% of the time. Scaling up respiration rates from different heights between 40 and 240 cm to the whole stem produced an error of 2 to 58% for the whole year. For a single sunny day, the error was between 2 and 72%. Thus, within-stem variations in temperature may significantly affect the accuracy of scaling respiration data obtained from small samples to whole trees. A careful choice of chamber position and basis for scaling is necessary to minimize errors from variation in temperature.

  17. Thermal energy conversion by coupled shape memory and piezoelectric effects

    NASA Astrophysics Data System (ADS)

    Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander

    2012-09-01

    This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.

  18. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat.

    PubMed

    Hess, Moritz; Wildhagen, Henning; Junker, Laura Verena; Ensminger, Ingo

    2016-08-26

    Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.

  19. The influence of surface roughness on volatile transport on the Moon

    NASA Astrophysics Data System (ADS)

    Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2018-01-01

    The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.

  20. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1989-01-01

    Results are presented on the temperature correlation of the relative coalignment between the fine pointing sun sensor (FPSS) and fixed head star trackers (FHSTs) on the Solar Maximum Mission (SMM). This correlation can be caused by spacecraft electronic and mechanical effects. Routine daily measurements reveal a time dependent sensor coalignment variation. The magnitude of the alignment variation is on the order of 120 arc seconds (arc sec), which greatly exceeds the prelaunch thermal structural analysis estimate of 15 acr sec. Differences between FPSS-only and FHST-only yaw solutions as a function of mission day are correlated with the relevant spacecraft temperature. If unaccounted for, the sensor misalignments due to thermal effects are a significant source of error in attitude determination accuracy. Prominent sources of temperature variation are identified and correlated with the temperature profile observed on the SMM. It was determined that even relatively small changes in spacecraft temperature can affect the coalignments between the attitude hardware on the SMM and the science instrument support plate and that frequent recalibration of sensor alignments is necessary to compensate for this effect. An alterntive to frequent recalibration is to model the variation of alignments as a function of temperature and use this to maintain accurate ground or onboard alignment estimates. These flight data analysis results may be important consierations for prelaunch analysis of future missions.

  1. Scalable Super-Resolution Synthesis of Core-Vest Composites Assisted by Surface Plasmons.

    PubMed

    Montazeri, A O; Kim, Y; Fang, Y S; Soheilinia, N; Zaghi, G; Clark, J K; Maboudian, R; Kherani, N P; Carraro, C

    2018-02-15

    The behavior of composite nanostructures depends on both size and elemental composition. Accordingly, concurrent control of size, shape, and composition of nanoparticles is key to tuning their functionality. In typical core-shell nanoparticles, the high degree of symmetry during shell formation results in fully encapsulated cores with severed access to the surroundings. We commingle light parameters (wavelength, intensity, and pulse duration) with the physical properties of nanoparticles (size, shape, and composition) to form hitherto unrealized core-vest composite nanostructures (CVNs). Unlike typical core-shells, the plasmonic core of the resulting CVNs selectively maintains physical access to its surrounding. Tunable variations in local temperature profiles ≳50 °C are plasmonically induced over starburst-shaped nanoparticles as small as 50-100 nm. These temperature variations result in CVNs where the shell coverage mirrors the temperature variations. The precision thus offered individually tailors access pathways of the core and the shell.

  2. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, William R.

    1992-01-01

    Azulene-doped naphthalene was directionally solidified during the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection were determined as a function of the temperature profile in the furnace and the freezing rate. Convection velocities were two orders of magnitude lower when the temperature increased with height. Rarely was the convection pattern axisymmetric, even though the temperature varied less than 0.1 K around the circumference of the growth ampoule. Correspondingly the cross sectional variation in azulene concentration tended to be asymmetric, especially when the temperature increased with height. This cross sectional variation changed dramatically along the ingot, reflecting changes in convection presumably due to the decreasing height of the melt. Although there was large scatter and irreproducibility in the cross sectional variation in doping, this variation tended to be least when the growth rate was low and the convection was vigorous. It is expected that compositional variations would also be small at high growth rates with weak convection and flat interfaces, although this was not investigated in the present experiments. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions could produce greater inhomogeneities than on Earth. Combined use of microgravity and magnetic fields would be required to achieve homogeneity when it is necessary to freeze slowly in order to avoid constitutional supercooling.

  3. Characterisation of Seasonal Temperature Variation in a Shallow, Urban Aquifer: Implications for the Sustainable Development of Ground Source Heating Systems

    NASA Astrophysics Data System (ADS)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.

    2017-04-01

    Groundwater thermally enhanced by the Urban Heat Island effect can be utilised by ground source heating systems (GSHSs). However, the near subsurface is subject to seasonal temperature variation reflected in shallow groundwater that can differ by several degrees throughout the year. To sustainably manage the near surface thermal resource an understanding of factors which control variation in groundwater temperature and how these are transmitted through the aquifer is needed. We show that even in relatively small urban areas (Cardiff, U.K., situated on a shallow gravel aquifer) the Zone of Seasonal Fluctuation (ZSF) can vary in depth by 8m. GSHSs are more efficient if they are sited below the ZSF, where temperatures are more stable. In Spring 2014, 48 groundwater monitoring boreholes were profiled at a 1m resolution to measure groundwater temperature across Cardiff. These were reprofiled that Autumn and compared to the Spring temperatures, defining the ZSF. The average depth to the base of the ZSF was 9.5mbgl but ranged from 7.1-15.5mbgl. The amplitude of the differences between Spring and Autumn temperatures also varied. To better understand the high spatial variability 60 boreholes were instrumented with in situ temperature loggers, recording at half-hourly intervals. The first year's data revealed the amplitudes of temperature variation within boreholes with loggers at similar depths were not always consistent. It was also noted that lag times between air temperature and groundwater temperature were not uniform across the sites. The data also showed that where gravels occurred at shallower depths the ZSF tended to be shallower and lag times shorter. The wide spatial variability of the ZSF may be partially explained by differing landuse. Those boreholes in open, grassed areas showed a deeper ZSF than those in built-up areas but built-up areas generally showed the greatest variation between Spring and Autumn temperature profiles, suggesting heat loss from buildings and underground infrastructure plays a part. Natural and anthropogenic factors affecting spatial and temporal groundwater temperatures, either separately or in combination, that have been considered in this study include landuse, depth, lithology/lithostratigraphy, material properties, hydrogeological setting, thermal conductivity, buried infrastructure, land surface temperature, weather effects and solar radiation. This study shows that urban groundwater temperatures can vary greatly across a small area, which has implications for the successful development, and long-term performance of open- and closed-loop GSHSs, and the environmental regulation of these systems. Key to the effective wide-scale use of GSHSs is an understanding of the hydrogeological setting, chiefly how heat is transferred across the aquifer. This study attempts to provide insight into an array of factors which determine heat transfer in the ZSF.

  4. Small-scale variation in ecosystem CO2 fluxes in an alpine meadow depends on plant biomass and species richness.

    PubMed

    Hirota, Mitsuru; Zhang, Pengcheng; Gu, Song; Shen, Haihua; Kuriyama, Takeo; Li, Yingnian; Tang, Yanhong

    2010-07-01

    Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem's CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 micromol CO2 m(-2) s(-1) [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20 degrees C soil temperature, Re(20), was -10.9 micromol CO2 m(-2) s(-1) (CV, 27.3). Re(20) was positively correlated with vegetation biomass. GPP(max) was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.

  5. Reduced streamflow lowers dry-season growth of rainbow trout in a small stream

    Treesearch

    Bret C. Harvey; Rodney J. Nakamoto; Jason L. White

    2006-01-01

    A wide variety of resource management activities can affect surface discharge in small streams. Often, the effects of variation in streamflow on fish survival and growth can be difficult to estimate because of possible confounding with the effects of other variables, such as water temperature and fish density. We measured the effect of streamflow on survival and growth...

  6. Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor.

    PubMed

    Lahoz, F; Martín, I R; Gil-Rostra, J; Oliva-Ramirez, M; Yubero, F; Gonzalez-Elipe, A R

    2016-06-27

    A compact and portable optofluidic microresonator has been fabricated and characterized. It is based on a Fabry-Perot microcavity consisting essentially of two tailored dichroic Bragg mirrors prepared by reactive magnetron sputtering deposition. The microresonator has been filled with an ethanol solution of Nile-Blue dye. Infrared laser emission has been measured with a pump threshold as low as 0.12 MW/cm2 and an external energy conversion efficiency of 41%. The application of the device as a temperature and a chemical sensor is demonstrated. Small temperature variations as well as small amount of water concentrations in the liquid laser medium are detected as a shift of the resonant laser modes.

  7. Pressure dependence of thermal conductivity and specific heat in CeRh2Si2 measured by an extended thermal relaxation method

    NASA Astrophysics Data System (ADS)

    Nishigori, Shijo; Seida, Osamu

    2018-05-01

    We have developed a new technique for measuring thermal conductivity and specific heat under pressure by improving a thermal relaxation method. In this technique, a cylindrical sample with a small disc heater is embedded in the pressure-transmitting medium, then temperature variations of the sample and heater were directly measured by thermocouples during a heating and cooling process. Thermal conductivity and specific heat are estimated by comparing the experimental data with temperature variations simulated by a finite element method. The obtained thermal conductivity and specific heat of the test sample CeRh2Si2 exhibit a small enhancement and a clear peak arising from antiferromagnetic transition, respectively. The observation of these typical behaviors for magnetic compounds indicate that the technique is valid for the study on thermal properties under pressure.

  8. Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid

    NASA Technical Reports Server (NTRS)

    Furukawa, A.; Meyer, H.; Onuki, A.

    2004-01-01

    Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.

  9. Relationships between ten-year trends of tropospheric ozone and temperature over Taiwan.

    PubMed

    Hsu, Kuang-Jung

    2007-03-01

    The analyses of ten-year ozonesonde observations from 1993 till 2002, over Taipei, Taiwan show influences of climate change. Despite huge increases in its precursor emissions in this region, there were little variations in tropospheric ozone. Results indicate a warmer troposphere, a statistically insignificant rising tropopause, 79+/-206 m per decade, and decreasing tropopause temperature at -1.0+/-0.89 K per decade. The derived mean tropospheric ozone is 40.58+/-10.99 DU, and has a statistically insignificant small trend of -0.78+/-1.7 DU per decade. The derived ten-year vertical trends of temperature and ozone are inversely correlated with each other from the middle troposphere up to the lower stratosphere. The averaged monthly vertical temperature trends show a generally warmer middle troposphere. The tropospheric ozone monthly trend has small increases only in the lower troposphere during winter and spring. Strong decreases occur in summer, from the surface up into the stratosphere. For ozone variation, results suggest that influences of climate forcing are stronger than those from precursor increases. More frequent and/or intense convection in summer and other climate-induced effects may contribute to the less than expected ozone observed in the troposphere.

  10. DNA nanostructure-based fluorescence thermometer with silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Bu, Congcong; Mu, Lixuan; Cao, Xingxing; Chen, Min; She, Guangwei; Shi, Wensheng

    2018-07-01

    DNA nanostructure-based fluorescence thermometers were fabricated by linking fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains via a thermally sensitive DNA stem-loop at terminals 5‧ and 3‧. Variations of temperature alter the distance between the AgNCs and G-rich DNA chain, affecting the interaction between them. As a result, the intensity of fluorescence emission from the AgNCs at 636 nm can be sensitively modulated. It was found that the intensity of such red emission is more temperature sensitive than the equivalent green emission at 543 nm; sensitivity of ‑3.6%/°C was achieved. Through variation of the melting temperature of the DNA stem-loop, the response temperature range of the thermometers could be readily adjusted. Novel DNA nanostructure-based fluorescence thermometers as described in this work are anticipated to be able to measure the temperature of biological systems at small scales—even a single cell.

  11. Low-temperature transport in out-of-equilibrium XXZ chains

    NASA Astrophysics Data System (ADS)

    Bertini, Bruno; Piroli, Lorenzo

    2018-03-01

    We study the low-temperature transport properties of out-of-equilibrium XXZ spin-1/2 chains. We consider the protocol where two semi-infinite chains are prepared in two thermal states at small but different temperatures and suddenly joined together. We focus on the qualitative and quantitative features of the profiles of local observables, which at large times t and distances x from the junction become functions of the ratio \\zeta=x/t . By means of the generalized hydrodynamic equations, we analyse the rich phenomenology arising by considering different regimes of the phase diagram. In the gapped phases, variations of the profiles are found to be exponentially small in the temperatures, but described by non-trivial functions of ζ. We provide analytical formulae for the latter, which give accurate results also for small but finite temperatures. In the gapless regime, we show how the three-step conformal predictions for the profiles of energy density and energy current are naturally recovered from the hydrodynamic equations. Moreover, we also recover the recent non-linear Luttinger liquid predictions for low-temperature transport: universal peaks of width \

  12. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  13. FID navigator-based MR thermometry method to monitor small temperature changes in the brain of ventilated animals.

    PubMed

    Boulant, Nicolas; Bottlaender, Michel; Uhrig, Lynn; Giacomini, Eric; Luong, Michel; Amadon, Alexis; Massire, Aurélien; Larrat, Benoît; Vignaud, Alexandre

    2015-01-01

    An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Cryogenic High-Sensitivity Magnetometer

    NASA Technical Reports Server (NTRS)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  15. Soil and surface temperatures at the Viking landing sites

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.

    1976-01-01

    The annual temperature range for the Martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the Martian soil.

  16. Soil and surface temperatures at the viking landing sites.

    PubMed

    Kieffer, H H

    1976-12-11

    The annual temperature range for the martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the martian soil.

  17. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  18. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Yung, Y. L.; Chavez, F. P.

    1996-01-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.

  19. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    PubMed

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.

  20. The Solar Cycle Variation of Coronal Temperature and Density During Cycle 21-22

    DTIC Science & Technology

    1994-06-15

    We notice that a dramatic change in the intensity ratio implies a small change in temperature and therefore the precise calibration of each...The higher temperature material of these zones tends to lie over regions where magnetograph observations indicate a change in polarity of weak large...SPIE, 331,442, 1982. 7. Altrock, LC., Clmate Impact of Solar Variability Greenbelt, MD, NASA Conf. Publ. 3086, p. 287, 1990. 8. Fisher, LRL., McCabe, M

  1. Temperature-dependency of Magnetic Susceptibility U Advantages and Limits For Magneto-mineralogical Studies

    NASA Astrophysics Data System (ADS)

    Kontny, A.

    Low-field magnetic susceptibility measurements in the temperature range U192 to 700 C (k(T)) are a widely applied method used for the identification of magnetic phases and characteristic magnetic phase transitions. One of the advantages of this method is the precise determination of titanomagnetite composition independently from grain size. However, the interpretations of k(T)-curves often are discussed controversially because other effects like grain size or the occurrence of more than one magnetic phase complicate the courses. Case studies from the titanomagnetite and titanohe- matite solid solution series including pure magnetite and hematite will be presented and variations in chemical composition, alteration and grain size will be discussed in relation to their geological significance. (1) In subaerially extruded basaltic lava differences in the low-temperature legs of the k(T) curves indicate variations in the degree of high-temperature (deuteric) oxidation of titanomagnetite. This alteration to magnetite-rich titanomagnetite is accompanied by a grain size reduction, which can be correlated with the development of a susceptibility peak at about U160 C. Fur- ther oxidation transforms the titanomagnetite into titanohematite which again results in a characteristic k(T) behavior at low temperatures with a decrease in k with in- creasing temperature (2) Hydrothermal alteration from magnetite to hematite creates a hematite phase that cannot be seen in k(T)-curves. However, hematite that is grown in sediments, can be identified by its Tc. Therefore it is assumed that crystallinity of magnetic phases seems to play a significant role to explain a different behaviour. (3) Submarine basalts rapidly quenched from high temperatures often show wide anti- clines in the k(T)-curves which can be correlated with a range of chemical composition and grain sizes, including small amounts of pure magnetite. This feature is commonly attributed to low-temperature alteration of single domain grains of titanomagnetite and is described for ocean floor basalts. An alternative interpretation is given by composi- tional and grain size variations due to small scale fractionation of melt related to the cooling of the lava. Generally, the high-temperature leg of k(T) curves mostly indi- cates the chemical composition (Tc) and degree of alteration, the low-temperature leg seems to be more sensible for grain size variations.

  2. How important is interannual variability in the climatic interpretation of moraine sequences?

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2017-12-01

    Mountain glaciers respond to both long-term climate and interannual forcing. Anderson et al. (2014) pointed out that kilometer-scale fluctuations in glacier length may result from interannual variability in temperature and precipitation given a "steady" climate with no long-term trends in mean or variability of temperature and precipitation. They cautioned that use of outermost moraines from the Last Glacial Maximum (LGM) as indicators of LGM climate will, because of the role of interannual forcing, result in overestimation of the magnitude of long-term temperature depression and/or precipitation enhancement. Here we assess the implications of these ideas, by examining the effect of interannual variability on glacier length and inferred magnitude of LGM climate change from present under both an assumed steady LGM climate and an LGM climate with low-magnitude, long-period variation in summer temperature and annual precipitation. We employ both the original 1-stage linear glacier model (Roe and O'Neal, 2009) used by Anderson et al. (2014) and a newer 3-stage linear model (Roe and Baker, 2014). We apply the models to two reconstructed LGM glaciers in the Colorado Sangre de Cristo Mountains. Three-stage-model results indicate that, absent long-term variations through a 7500-year-long LGM, interannual variability would result in overestimation of mean LGM temperature depression from the outermost moraine of 0.2-0.6°C. If small long-term cyclic variations of temperature (±0.5°C) and precipitation (±5%) are introduced, the overestimation of LGM temperature depression reduces to less than 0.4°C, and if slightly greater long-term variation (±1.0°C and ±10% precipitation) is introduced, the magnitude of overestimation is 0.3°C or less. Interannual variability may produce a moraine sequence that differs from the sequence that would be expected were glacier length forced only by long-term climate. With small amplitude (±0.5°C and ±5% precipitation) long-term variation, the moraine sequence expected if forced by a combination of interannual variability and long-term climate differs from that expected based on long-term climate forcing alone in 38% of model runs. With the larger amplitude long-term forcing (±1.0°C and ±10% precipitation) this difference occurs in 20% of model runs.

  3. Both natural selection and isolation by distance explain phenotypic divergence in bill size and body mass between South Australian little penguin colonies.

    PubMed

    Colombelli-Négrel, Diane

    2016-11-01

    Morphological variation between populations of the same species can arise as a response to genetic variation, local environmental conditions, or a combination of both. In this study, I examined small-scale geographic variation in bill size and body mass in little penguins ( Eudyptula minor ) across five breeding colonies in South Australia separated by <150 km. To help understand patterns driving the differences, I investigated these variations in relation to environmental parameters (air temperature, sea surface temperature, and water depth) and geographic distances between the colonies. I found substantial morphological variation among the colonies for body mass and bill measurements (except bill length). Colonies further located from each other showed greater morphological divergence overall than adjacent colonies. In addition, phenotypic traits were somewhat correlated to environmental parameters. Birds at colonies surrounded by hotter sea surface temperatures were heavier with longer and larger bills. Birds with larger and longer bills were also found at colonies surrounded by shallower waters. Overall, the results suggest that both environmental factors (natural selection) and interpopulation distances (isolation by distance) are causes of phenotypic differentiation between South Australian little penguin colonies.

  4. Differences and Similarities in MaCWAVE Summer and Winter Temperatures and Winds

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2008-01-01

    Small meteorological rockets released inflatable falling spheres during the MaCWAVE Campaign. The Mountain and Convective Waves Ascending Vertically Experiment (MaCWAVE) was carried out in two parts, a summer sequence from Andoya Rocket Range (69N) during July 2002 to examine convective initiation of gravity waves and a winter sequence from ESRANGE (68N) during January 2003 to examine mountain-terrain initiated gravity waves. The sphere-tracked data provided significant information about the variation of temperature and wind from 70 km and above. The changes observed may be considered akin to tidal motion; unfortunately the launch activity was restricted to 12-hour periods, thus the observation of a full diurnal cycle was not possible. During summer, temperature variation was smaller than that observed during winter when peak to null differences reached 15-20 K at 80-85 km. Variation in the zonal winds varied up to 100+mps in summer and winter. Examination of the times of peak wind vs altitude showed that the peak zonal wind occurred approximately two hours ahead of the peak meridional wind. We provide details about the measurements and observed variations.

  5. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Liang; Zhou, Hang; Link, Timothy E

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  6. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE PAGES

    Wei, Liang; Zhou, Hang; Link, Timothy E; ...

    2018-05-16

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  7. [Effects of forest gap size and within-gap position on the microclimate in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Feng, Jing; Duan, Wen-Biao; Chen, Li-Xin

    2012-07-01

    HOBO automatic weather stations were installed in the central parts and at the south, north, east, and west edges of large, medium, and small gaps in a Pinus koraiensis-dominated broadleaved mixed forest in Xiaoxing' anling Mountains to measure the air temperature, relative humidity, and photosynthetic photon flux density (PPFD) in these locations and the total radiation and precipitation in the gap centres from June to September 2010, taking the closed forest stand and open field as the controls. The differences in the microclimate between various size forest gaps and between the gap centers and their edges as well as the variations of the microclimatic factors over time were analyzed, and the effects of sunny and overcast days on the diurnal variations of the microclimatic factors within forest gaps were compared, aimed to offer basic data and practice reference for gap regeneration and sustainable management of Pinus koraiensis-dominated broadleaved mixed forest. The PPFD was decreased in the order of large gap, medium gap, and small gap. For the same gaps, the PPFD in gap centre was greater than that in gap edge. The mean monthly air temperature and total radiation in gap centres were declined in the sequence of July, June, August, and September, and the amplitudes of the two climatic factors were decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. The mean monthly relative humidity in gap centres dropped in the order of August, July, September, and June, and the amplitude of this climatic factor was decreased in the sequence of closed forest stand, small gap, medium gap, large gap, and open field. The total and monthly precipitations for the three different size gaps and open field during measurement period generally decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. In sunny days, the variations of PPFD, air temperature, and relative humidity were greater in large gap than in small gap, but in overcast days, it was in opposite.

  8. Individual differences in normal body temperature: longitudinal big data analysis of patient records.

    PubMed

    Obermeyer, Ziad; Samra, Jasmeet K; Mullainathan, Sendhil

    2017-12-13

    To estimate individual level body temperature and to correlate it with other measures of physiology and health. Observational cohort study. Outpatient clinics of a large academic hospital, 2009-14. 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (-0.021°C for every decade, P<0.001) and African-American women the hottest (versus white men: 0.052°C, P<0.001). Several comorbidities were linked to lower temperature (eg, hypothyroidism: -0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, P<0.001), as were physiological measurements (eg, body mass index: 0.002 per m/kg 2 , P<0.001). Overall, measured factors collectively explained only 8.2% of individual temperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). Individuals' baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Individual differences in normal body temperature: longitudinal big data analysis of patient records

    PubMed Central

    Samra, Jasmeet K; Mullainathan, Sendhil

    2017-01-01

    Abstract Objective To estimate individual level body temperature and to correlate it with other measures of physiology and health. Design Observational cohort study. Setting Outpatient clinics of a large academic hospital, 2009-14. Participants 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Main outcome measures Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. Results In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (–0.021°C for every decade, P<0.001) and African-American women the hottest (versus white men: 0.052°C, P<0.001). Several comorbidities were linked to lower temperature (eg, hypothyroidism: –0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, P<0.001), as were physiological measurements (eg, body mass index: 0.002 per m/kg2, P<0.001). Overall, measured factors collectively explained only 8.2% of individual temperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). Conclusions Individuals’ baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. PMID:29237616

  10. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.

    2015-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.

  11. THE TWO REGIMES OF PHOTOSPHERIC MOTIONS IN {alpha} HYDRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, David F., E-mail: dfgray@uwo.ca

    2013-02-10

    High-resolution spectroscopic observations of {alpha} Hya were acquired between 2003 and 2010. Analysis of line shifts, differential shifts, line widths, and line bisectors points to two regimes of velocity fields in the photosphere of {alpha} Hya: (1) normal granulation embedded in (2) large convection cells. Variations occur on a wide range of timescales, from several years on down. Radial velocity variations, which are irregular and span 786 m s{sup -1}, have a distribution consistent with a true mean rise velocity of the large cells of {approx}725 m s{sup -1} and a dispersion of {approx}220 m s{sup -1}. The distribution ofmore » granulation velocities, as measured from the widths of spectral lines, shows only small variations, consistent with the two regime concepts. On the multi-year timescale, radial velocity changes, small temperature variations ({approx}10 K), and small line-width variations ({approx}<0.8%) track each other, possibly with phase shifts. The granulation velocity gradient for {alpha} Hya is about half as large as the Sun's and no variation with time was seen, implying that any variation in velocity gradient from one large cell to the next must be less than a few percent. The asymmetry in the granulation velocity distribution, as specified in the flux deficit, is smaller than expected for {alpha} Hya's position in the HR diagram and appears to be variable.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataria, T.; Showman, A. P.; Fortney, J. J.

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperaturemore » variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.« less

  13. Structural characterization and observation of variable range hopping conduction mechanism at high temperature in CdSe quantum dot solids

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Kumar Chatterjee, Sanat; Ghosh, Jiten; Kumar Meikap, Ajit

    2013-03-01

    We have used Rietveld refinement technique to extract the microstructural parameters of thioglycolic acid capped CdSe quantum dots. The quantum dot formation and its efficient capping are further confirmed by HR-TEM, UV-visible and FT-IR spectroscopy. Comparative study of the variation of dc conductivity with temperature (298 K ≤ T ≤ 460 K) is given considering Arrhenius formalism, small polaron hopping and Schnakenberg model. We observe that only Schnakenberg model provides good fit to the non-linear region of the variation of dc conductivity with temperature. Experimental variation of ac conductivity and dielectric parameters with temperature (298 K ≤ T ≤ 460 K) and frequency (80 Hz ≤ f ≤ 2 MHz) are discussed in the light of hopping theory and quantum confinement effect. We have elucidated the observed non-linearity in the I-V curves (measured within ±50 V), at dark and at ambient light, in view of tunneling mechanism. Tunnel exponents and non-linearity weight factors have also been evaluated in this regard.

  14. Solar gravitational energy and luminosity variations

    NASA Astrophysics Data System (ADS)

    Fazel, Z.; Rozelot, J. P.; Lefebvre, S.; Ajabshirizadeh, A.; Pireaux, S.

    2008-02-01

    Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations. Our best fit of modelled to observed irradiance gives d T = 1.2 K at d R = 10 mas. However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of [Livingston, W.C., Gray, D., Wallace, L., White, O.R., 2005. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (Eds.), Large-scale Structures and their Role in Solar Activity, ASP Conference Series, vol. 346. Astronomical Society of the Pacific, p. 353], showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (d R, d T)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations between 3.87 and 5.83 km, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain weak changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by an estimate of the asphericity-luminosity parameter, w = -7.61 × 10 -3, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.

  15. Inversion of gravity and bathymetry in oceanic regions for long-wavelength variations in upper mantle temperature and composition

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Jordan, Thomas H.

    1993-01-01

    Long-wavelength variations in geoid height, bathymetry, and SS-S travel times are all relatable to lateral variations in the characteristic temperature and bulk composition of the upper mantle. The temperature and composition are in turn relatable to mantle convection and the degree of melt extraction from the upper mantle residuum. Thus the combined inversion of the geoid or gravity field, residual bathymetry, and seismic velocity information offers the promise of resolving fundamental aspects of the pattern of mantle dynamics. The use of differential body wave travel times as a measure of seismic velocity information, in particular, permits resolution of lateral variations at scales not resolvable by conventional global or regional-scale seismic tomography with long-period surface waves. These intermediate scale lengths, well resolved in global gravity field models, are crucial for understanding the details of any chemical or physical layering in the mantle and of the characteristics of so-called 'small-scale' convection beneath oceanic lithosphere. In 1991 a three-year project to the NASA Geophysics Program was proposed to carry out a systematic inversion of long-wavelength geoid anomalies, residual bathymetric anomalies, and differential SS-S travel time delays for the lateral variation in characteristic temperature and bulk composition of the oceanic upper mantle. The project was funded as a three-year award, beginning on 1 Jan. 1992.

  16. Variational mixed quantum/semiclassical simulation of dihalogen guest and rare-gas solid host dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolu; Cina, Jeffrey A.

    2014-07-01

    A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.

  17. Direct ab initio dynamics study of the reaction of C 2(A 3Π u) radical with C 2H 6

    NASA Astrophysics Data System (ADS)

    Li, Na; Huo, Rui-Ping; Zhang, Xiang; Huang, Xu-Ri; Li, Ji-Lai; Sun, Chia-Chung

    2011-02-01

    The reaction of C 2 (A 3Π u) with C 2H 6 has been investigated at the BMC-CCSD//BB1K/6-311+G(2d, 2p) level. The classical barrier height for H-abstraction reaction is calculated to be 3.32 kcal/mol and the electron transfer behavior is also analyzed in detail. The rate constants are calculated by TST, CVT, and CVT/SCT over a wide temperature range 50-3000 K. The results indicate: (1) variational effect is small and nonclassical reflection effect is important to the H abstraction in high temperature region; and (2) variational effect is negligible and tunneling effect cooperating with the nonclassical reflection effect makes the rate constant temperature independence in low-temperature range. The CVT/SCT rate constants are in excellent agreement with experimental values.

  18. Does habitat fragmentation affect temperature-related life-history traits? A laboratory test with a woodland butterfly

    PubMed Central

    Karlsson, Bengt; Van Dyck, Hans

    2005-01-01

    Habitat fragmentation may change local climatic conditions leading to altered selection regimes for life-history traits in small ectotherms, including several insects. We investigated temperature-related performance in terms of fitness among populations of the woodland butterfly Pararge aegeria (L.) originating from populations of a closed, continuous woodland landscape versus populations of an open, highly fragmented agricultural landscape in central Belgium. Female fecundity and longevity were evaluated in a temperature-gradient experiment. As predicted, females of woodland landscape origin reached higher maximum daily fecundity and lifetime number of eggs than did agricultural landscape females at low ambient temperatures, but this reversed at high ambient temperature. Egg weight decreased with temperature, and eggs of woodland butterflies were smaller. Contrary to what is generally assumed, remaining thorax mass was a better predictor of lifetime reproductive output than was abdomen mass. Since we used the F2 generation from wild-caught females reared under common garden conditions, the observed effects are likely to rely on intrinsic, heritable variation. Our results suggest that differential selection regimes associated with different landscapes intervene by intraspecific variation in the response of a butterfly to variation in ambient temperature, and may thus be helpful when making predictions of future impacts on how wild populations respond to environmental conditions under a global change scenario, with increasing temperatures and fragmented landscapes. PMID:16024390

  19. Zonal-Mean Temperature Variations Inferred from SABER Measurements on TIMED Compared with UARS Observations

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans; Russell, James; Mlynczak, Marty; Reber, Carl A.

    2005-01-01

    In the Numerical Spectral Model (NSM, Mayr et al., 2003), small-scale gravity waves propagating in the north/south direction can generate zonal mean (m = 0) meridional wind oscillations with periods between 2 and 4 months. These oscillations tend to be confined to low latitudes and have been interpreted to be the meridional counterpart of the wave-driven Quasi Biennial Oscillation in the zonal circulation. Wave driven meridional winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. We have analyzed SABER temperature measurements in the altitude range between 55 and 95 km to investigate the existence such variations. Because there are also strong tidal signatures (up to approximately 20 K) in the data, our algorithm estimates both mean values and tides together from the data. Based on SABER temperature data, the intra-annual variations with periods between 2 and 4 months can have amplitudes up to 5 K or more, depending on the altitude. Their amplitudes are in qualitative agreement with those inferred Erom UARS data (from different years). The SABER temperature variations also reveal pronounced hemispherical asymmetries, which are qualitatively consistent with wave driven meridional wind oscillations across the equator. Oscillations with similar periods have been seen in the meridional winds based on UARS data (Huang and Reber, 2003).

  20. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  1. Photosynthesis of amphibious and obligately submerged plants in CO2-rich lowland streams.

    PubMed

    Sand-Jensen, Kaj; Frost-Christensen, Henning

    1998-11-01

    Small unshaded streams in lowland regions receive drainage water with high concentrations of free␣CO 2 , and they support an abundant growth of amphibious and obligately submerged plants. Our first objective was to measure the CO 2 regime during summer in a wide range of small alkaline Danish streams subject to wide variation in temperature, O 2 and CO 2 during the day. The second objective was to determine the effect of these variations on daily changes in light-saturated photosynthesis in water of a homophyllous and a heterophyllous amphibious species that only used CO 2 , and an obligately submerged species capable of using both HCO - 3 and CO 2 . We found that the median CO 2 concentrations of the streams were 11 and 6 times above air saturation in the morning and the afternoon, respectively, but stream sites with dense plant growth had CO 2 concentrations approaching air saturation in the afternoon. In contrast, outlets from lakes had low CO 2 concentrations close to, or below, air saturation. The amphibious species showed a reduction of photosynthesis in water from morning to afternoon along with the decline in CO 2 concentrations, while increasing temperature and O 2 had little effect on photosynthesis. Photosynthesis of the obligately submerged species varied little with the change of CO 2 because of HCO 3 - - use, and variations were mostly due to changes in O 2 concentration. Independent measurements showed that changes in temperature, O 2 and CO 2 could account for the daily variability of photosynthesis of all three species in water. The results imply that CO 2 supersaturation in small lowland streams is important for the rich representation of amphibious species and their contribution to system photosynthesis.

  2. The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Miao, Guofang; Noormets, Asko; Domec, Jean-Christophe; Trettin, Carl C.; McNulty, Steve G.; Sun, Ge; King, John S.

    2013-12-01

    and environmental pressures on wetland hydrology may trigger changes in carbon (C) cycling, potentially exposing vast amounts of soil C to rapid decomposition. We measured soil CO2 efflux (Rs) continuously from 2009 to 2010 in a lower coastal plain forested wetland in North Carolina, U.S., to characterize its main environmental drivers. To understand and quantify the spatial variation due to microtopography and associated differences in hydrology, measurements were conducted at three microsites along a microtopographic gradient. The seasonal hysteresis in Rs differed by microtopographic location and was caused by the transitions between flooded and nonflooded conditions. Because flooded Rs was small, we reported Rs dynamics mainly during nonflooded periods. A nested model, modified from conventional Q10 (temperature sensitivity) model with dynamic parameters, provided a significantly better simulation on the observed variation of Rs. The model performed better with daily data, indicating that soil temperature (Ts) and water table depth (WTD) were the primary drivers for seasonal variation. The diel variation of Rs was high and independent of Ts and WTD, which both had small diel variations, suggesting the likely association with plant activity. Overall, the site-average soil CO2 efflux was approximately 960-1103 g C m-2 yr-1 in 2010, of which 93% was released during nonflooded periods. Our study indicates that Rs is highly linked to hydroperiod and microtopography in forested wetlands and droughts in wetlands will accelerate soil C loss.

  3. Small within-day increases in temperature affects boldness and alters personality in coral reef fish.

    PubMed

    Biro, Peter A; Beckmann, Christa; Stamps, Judy A

    2010-01-07

    Consistent individual differences in behaviour, termed personality, are common in animal populations and can constrain their responses to ecological and environmental variation, such as temperature. Here, we show for the first time that normal within-daytime fluctuations in temperature of less than 3 degrees C have large effects on personality for two species of juvenile coral reef fish in both observational and manipulative experiments. On average, individual scores on three personality traits (PTs), activity, boldness and aggressiveness, increased from 2.5- to sixfold as a function of temperature. However, whereas most individuals became more active, aggressive and bold across temperature contexts (were plastic), others did not; this changed the individual rank order across temperatures and thus altered personality. In addition, correlations between PTs were consistent across temperature contexts, e.g. fish that were active at a given temperature also tended to be both bold and aggressive. These results (i) highlight the importance of very carefully controlling for temperature when studying behavioural variation among and within individuals and (ii) suggest that individual differences in energy metabolism may contribute to animal personality, given that temperature has large direct effects on metabolic rates in ectotherms.

  4. Heritable Variation for Sex Ratio under Environmental Sex Determination in the Common Snapping Turtle (Chelydra Serpentina)

    PubMed Central

    Janzen, F. J.

    1992-01-01

    The magnitude of quantitative genetic variation for primary sex ratio was measured in families extracted from a natural population of the common snapping turtle (Chelydra serpentina), which possesses temperature-dependent sex determination (TSD). Eggs were incubated at three temperatures that produced mixed sex ratios. This experimental design provided estimates of the heritability of sex ratio in multiple environments and a test of the hypothesis that genotype X environment (G X E) interactions may be maintaining genetic variation for sex ratio in this population of C. serpentina. Substantial quantitative genetic variation for primary sex ratio was detected in all experimental treatments. These results in conjunction with the occurrence of TSD in this species provide support for three critical assumptions of Fisher's theory for the microevolution of sex ratio. There were statistically significant effects of family and incubation temperature on sex ratio, but no significant interaction was observed. Estimates of the genetic correlations of sex ratio across environments were highly positive and essentially indistinguishable from +1. These latter two findings suggest that G X E interaction is not the mechanism maintaining genetic variation for sex ratio in this system. Finally, although substantial heritable variation exists for primary sex ratio of C. serpentina under constant temperatures, estimates of the effective heritability of primary sex ratio in nature are approximately an order of magnitude smaller. Small effective heritability and a long generation time in C. serpentina imply that evolution of sex ratios would be slow even in response to strong selection by, among other potential agents, any rapid and/or substantial shifts in local temperatures, including those produced by changes in the global climate. PMID:1592234

  5. A model for the temperature and composition effects in the semiannual variations of the thermospheric density

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Volland, H.

    1971-01-01

    A model is proposed in which latitudinal variations in composition and temperature are used to interpret the semiannual effect in the thermospheric density. Two heat sources are postulated for the semiannual circulation: one at high latitudes associated with the semiannual component in the occurance of magnetic storms and a second weaker one that peaks at the equator associated with the semiannual migration between both hemispheres. Depending on the relative magnitude of these sources, the latitude regions in which composition and temperature effects dominate vary. The temperature effects however should be expected weakest at low to mid latitudes where the relative concentration of atomic oxygen is enriched during equinox. At high latitudes the semiannual temperature component would peak, associated with an oxygen depletion in the lower thermosphere during equinox. In combining these features it is shown that the total atmospheric density could still exhibit a relatively small latitude dependence in the semiannual component with the tendency to decrease at high latitudes, in agreement with observations.

  6. A Generalized Multi-Phase Framework for Modeling Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet

    2003-01-01

    A generalized multi-phase formulation for cavitation in fluids operating at temperatures elevated relative to their critical temperatures is presented. The thermal effects and the accompanying property variations due to phase change are modeled rigorously. Thermal equilibrium is assumed and fluid thermodynamic properties are specified along the saturation line using the NIST-12 databank. Fundamental changes in the physical characteristics of the cavity when thermal effects become pronounced are identified; the cavity becomes more porous, the interface less distinct, and has increased entrainment when temperature variations are present. Quantitative estimates of temperature and pressure depressions in both liquid nitrogen and liquid hydrogen were computed and compared with experimental data of Hord for hydrofoils. Excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable. Liquid nitrogen cavities were consistently found to be in thermal equilibrium while liquid hydrogen cavities exhibited small, but distinct, non-equilibrium effects.

  7. Spatial and temporal variation of correlation between the Arctic total ozone and atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Huang, Fuxiang; Ren, suling; Han, Shuangshuang; Zheng, xiangdong; Deng, xuejiao

    2017-04-01

    Daily total ozone and atmospheric temperature profile data in 2015 from the AIRS are used to investigate the spatial and temporal variation of the correlation between the Arctic atmospheric ozone and temperature. In the study, 11 lays atmospheric temperature profiles from the troposphere to the stratosphere are investigated. These layer heights are 20, 50, 70, 100, 200, 250, 300, 400, 500, 600 and 700 hPa respectively. The results show that a significant seasonal split exists in the correlation between the Arctic ozone and atmospheric temperature. Figure 1 shows the spatial and temporal variation of the coefficient between the atmospheric ozone and temperature at 50hPa. It can be seen from the figure that an obvious spatiotemporal difference exists in the correlation between the Arctic total ozone and atmospheric temperature in the lower stratosphere. First, the seasonal difference is very remarkable, which is shown as a significant positive correlation in most regions during winter and summer, while no correlation in the majority of regions occurs during spring and autumn, with a weak positive or negative correlation in a small number regions. Second, the spatial differences are also very obvious. The summer maximum correlation coefficient occurs in the Barents Sea and other locations at 0.8 and above, while the winter maximum occurs in the Baffin Bay area at 0.6 to 0.8. However, in a small number of regions, such as the land to the west of the Bering Strait in winter and the Arctic Ocean core area in summer, the correlation coefficients were unable to pass the significance test to show no correlation. At the same time, in spring and autumn, a positive correlation only occurs over a few low-latitude land areas, while over other Arctic areas, weak negative correlation exists. The differences in horizontal position are clearly related to the land-sea distribution, underlying surface characteristics, glacial melting, and other factors. In the troposphere, the ozone and temperature have a strong negative correlation in spring and autumn, while presenting a weak negative correlation or no correlation in winter and summer. Figure 2 shows the spatial and temporal variation of the correlation coefficient between the atmospheric ozone and temperature at 500hPa. From figure 2, it can be seen that in the Arctic troposphere, the atmospheric ozone and tropospheric temperature mainly have a negative correlation. In winter and summer, a weak negative correlation is shown overall, but more than a third of the regions show no correlation. In spring, the negative correlation is the strongest between the ozone and temperature. Especially in Greenland - Queen Elizabeth Islands and southern New Siberian Islands, the correlation is the highest, with a correlation coefficient of -0.9 and above, followed by a negative correlation in autumn. Except for a small number of low-latitude scattered regions with weak correlation, the correlation coefficients of most regions are ranged between -0.5 and -0.7. At 300 hPa near the tropopause, the horizontal distribution and seasonal change of the correlation between the Arctic total ozone and atmospheric temperature are as shown in Fig. 3.At the height near the Arctic tropopause, the atmospheric ozone mainly has no correlation to temperature, especially in winter and summer, when no correlation exists in the majority of regions, while weak positive or negative correlation occurs in a small number of areas. In the majority of regions during spring, a weak negative correlation is shown, while no correlation appears in Western Greenland - Queen Elizabeth Islands. In autumn, most regions show no correlation, while weak negative correlation is presented in Eastern Greenland, Norwegian Sea - Barents Sea, and other locations. From figure 1-3, we can see a significant difference exists from the common law of positive correlation in the lower stratosphere and negative correlation in the troposphere at mid-low latitudes. The Arctic atmospheric ozone has a relation with temperature, showing significant spatial and temporal variation characteristics. In the stratosphere, winter and summer atmospheric temperatures mainly have a positive correlation to ozone. The summer maximum occurs in the Barents Sea to achieve 0.8 and above, while the winter maximum is 0.6 to 0.8 in the Baffin Bay area. In the troposphere, the autumn and spring atmospheric temperatures mainly have a negative correlation to the ozone. The spring correlation coefficient in Greenland to the Queen Elizabeth Islands reaches up to -0.9 and above, while the autumn value is -0.5 to -0.7. At about 300 hPa, the tropopause value is reduced to 0, and further decreased in the troposphere, to show a strong negative correlation. Based on the comprehensive analysis of various influence factors, the possible action mechanism of the spatiotemporal variation pattern of the correlation between the Arctic atmospheric ozone and temperature is discussed based on the seasonal differences of various influence factors. The spatial and temporal variation characteristics of the correlation between the Arctic atmospheric ozone and temperature are determined by the seasonal variation of various influencing factors of the Arctic atmospheric ozone and temperature. These factors include the atmospheric heating effect from the ozone matching with the Arctic sunshine conditions, the influence of dynamic delivery on the ozone and heat, the impact of underlying-surface glacial melting on atmospheric radiation and heat budget, and so on. At different heights in each season, the different effects from all kinds of factors on the ozone and temperature determine the spatiotemporal variation of the correlation between the ozone and temperature.

  8. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  9. Dependence of the muon intensity on the atmospheric temperature measured by the GRAPES-3 experiment

    NASA Astrophysics Data System (ADS)

    Arunbabu, K. P.; Ahmad, S.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Jhansi, V. B.; Kawakami, S.; Kojima, H.; Mohanty, P. K.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.; Tanaka, K.; Zuberi, M.

    2017-09-01

    The large area (560 m2) GRAPES-3 tracking muon telescope has been operating uninterruptedly at Ooty, India since 2001. Every day, it records 4 × 109 muons of ≥1 GeV with an angular resolution of ∼4°. The variation of atmospheric temperature affects the rate of decay of muons produced by the galactic cosmic rays (GCRs), which in turn modulates the muon intensity. By analyzing the GRAPES-3 data of six years (2005-2010), a small (amplitude ∼0.2%) seasonal variation (1 year (Yr) period) in the intensity of muons could be measured. The effective temperature 'Teff' of the upper atmosphere also displays a periodic variation with an amplitude of ∼1 K which was responsible for the observed seasonal variation in the muon intensity. At GeV energies, the muons detected by the GRAPES-3 are expected to be anti-correlated with Teff. The anti-correlation between the seasonal variation of Teff, and the muon intensity was used to measure the temperature coefficient αT by fast Fourier transform (FFT) technique. The magnitude of αT was found to scale with the assumed attenuation length 'λ' of the hadrons in the range λ = 80-180 g cm-2. However, the magnitude of the correction in the muon intensity was found to be almost independent of the value of λ used. For λ = 120 g cm-2 the value of temperature coefficient αT was found to be (- 0.17 ± 0.02)% K-1.

  10. Temperature measurements in an ytterbium fiber amplifier up to the mode instability threshold

    NASA Astrophysics Data System (ADS)

    Beier, F.; Heinzig, M.; Sattler, Bettina; Walbaum, Till; Haarlammert, N.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2016-03-01

    We report on the measurement of the longitudinal temperature distribution in a fiber amplifier fiber during high power operation. The measurement signal of an optical frequency domain reflectometer is coupled to an ytterbium doped amplifier fiber via a wavelength division multiplexer. The longitudinal temperature distribution was examined for different pump powers with a sub mm resolution. The results show even small temperature variations induced by slight changes of the environmental conditions along the fiber. The mode instability threshold of the fiber under investigation was determined to be 480W and temperatures could be measured overall the measured output power values.

  11. Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments?

    PubMed

    Sanny, M; Jinap, S; Bakker, E J; van Boekel, M A J S; Luning, P A

    2012-12-01

    The objective of this study was to obtain insight into the actual effectiveness of lowering reducing sugars concentration in par-fried potato strips on the concentration and variation of acrylamide in French fries prepared in real-life situations in food service establishments. Acrylamide, frying time, frying temperature, and reducing sugars were measured and characteristics of fryers were recorded. Data showed that the use of par-fried potato strips with lower concentrations of reducing sugars than the commonly used potato strips was an effective measure to reduce acrylamide concentrations in French fries prepared under standardised frying conditions. However, there was still large variation in the acrylamide concentrations in French fries, although the variation in reducing sugars concentrations in low and normal types of par-fried potato strips was very small and the frying conditions were similar. Factors that could affect the temperature-time profile of frying oil were discussed, such as setting a lower frying temperature at the end than at the start of frying, product/oil ratio and thawing practice. These need to be controlled in daily practice to reduce variation in acrylamide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Seasonal variation of air temperature at the Mendel Station, James Ross Island in the period of 2006-2009

    NASA Astrophysics Data System (ADS)

    Laska, Kamil; Prošek, Pavel; Budík, Ladislav

    2010-05-01

    Key words: air temperature, seasonal variation, James Ross Island, Antarctic Peninsula Recently, significant role of the atmospheric and oceanic circulation variation on positive trend of near surface air temperature along the Antarctic Peninsula has been reported by many authors. However, small number of the permanent meteorological stations located on the Peninsula coast embarrasses a detail analysis. It comprises analysis of spatiotemporal variability of climatic conditions and validation of regional atmospheric climate models. However, geographical location of the Czech Johann Gregor Mendel Station (hereafter Mendel Station) newly established on the northern ice-free part of the James Ross Island provides an opportunity to fill the gap. There are recorded important meteorological characteristics which allow to evaluate specific climatic regime of the region and their impact on the ice-shelf disintegration and glacier retreat. Mendel Station (63°48'S, 57°53'W) is located on marine terrace at the altitude of 7 m. In 2006, a monitoring network of several automatic weather stations was installed at different altitudes ranging from the seashore level up to mesas and tops of glaciers (514 m a.s.l.). In this contribution, a seasonal variation of near surface air temperature at the Mendel Station in the period of 2006-2009 is presented. Annual mean air temperature was -7.2 °C. Seasonal mean temperature ranged from +1.4 °C (December-February) to -17.7 °C (June-August). Frequently, the highest temperature occurred in the second half of January. It reached maximum of +8.1 °C. Sudden changes of atmospheric circulation pattern during winter caused a large interdiurnal variability of air temperature with the amplitude of 30 °C.

  13. Analysis of Infrared Signature Variation and Robust Filter-Based Supersonic Target Detection

    PubMed Central

    Sun, Sun-Gu; Kim, Kyung-Tae

    2014-01-01

    The difficulty of small infrared target detection originates from the variations of infrared signatures. This paper presents the fundamental physics of infrared target variations and reports the results of variation analysis of infrared images acquired using a long wave infrared camera over a 24-hour period for different types of backgrounds. The detection parameters, such as signal-to-clutter ratio were compared according to the recording time, temperature and humidity. Through variation analysis, robust target detection methodologies are derived by controlling thresholds and designing a temporal contrast filter to achieve high detection rate and low false alarm rate. Experimental results validate the robustness of the proposed scheme by applying it to the synthetic and real infrared sequences. PMID:24672290

  14. Seasonal and interannual variations of atmospheric CO2 and climate

    USGS Publications Warehouse

    Dettinger, M.D.; Ghil, M.

    1998-01-01

    Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) issued here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7 days at Mauna Loa and 18 days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3 years)-1 and (4 years)-1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6-8 months, with SST leading. Analysis of the QT and QQ signals in global gridded SSTs, joint SSA of CO2 and ??13C isotopic ratios, and SSA of CO2 and NH-land temperatures indicate that the QT variations in CO2 mostly reflect upwelling variations in the eastern tropical Pacific. QQ variations are dominated by the CO2 signature of terrestrial-ecosystem response to global QQ climate variations. Climate variations associated with these two interannual components of tropical variability have very different effects on global climate and, especially, on terrestrial ecosystems and the carbon cycle.

  15. Isoform switching facilitates period control in the Neurospora crassa circadian clock.

    PubMed

    Akman, Ozgur E; Locke, James C W; Tang, Sanyi; Carré, Isabelle; Millar, Andrew J; Rand, David A

    2008-01-01

    A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given that many biological rate constants have a Q(10) of around 2, it is remarkable that such clocks remain rhythmic under significant temperature changes. We introduce a new mathematical model for the Neurospora crassa circadian network incorporating experimental work showing that temperature alters the balance of translation between a short and long form of the FREQUENCY (FRQ) protein. This is used to discuss period control and functionality for the Neurospora system. The model reproduces a broad range of key experimental data on temperature dependence and rhythmicity, both in wild-type and mutant strains. We present a simple mechanism utilising the presence of the FRQ isoforms (isoform switching) by which period control could have evolved, and argue that this regulatory structure may also increase the temperature range where the clock is robustly rhythmic.

  16. Climatic variation and age-specific survival in Asian elephants from Myanmar.

    PubMed

    Mumby, Hannah S; Courtiol, Alexandre; Mar, Khyne U; Lummaa, Virpi

    2013-05-01

    Concern about climate change has intensified interest in understanding how climatic variability affects animal life histories. Despite such effects being potentially most dramatic in large, long-lived, and slowly reproducing terrestrial mammals, little is known of the effects of climatic variation on survival in those species. Asian elephants (Elephas maximus) are endangered across their distribution, and inhabit regions characterized by high seasonality of temperature and rainfall. We investigated the effects of monthly climatic variation on survival and causes of death in Asian elephants using a unique demographic data set of 1024 semi-captive, longitudinally monitored elephants from four sites in Myanmar between 1965 and 2000. Temperature had a significant effect on survival in both sexes and across all ages. For elephants between 1 month and 17 years of age, maximal survival was reached at -24 degrees C, and any departures from this temperature increased mortality, whereas neonates and mature elephants had maximal survival at even lower temperatures. Although males experienced higher mortality overall, sex differences in these optimal temperatures were small. Because the elephants spent more time during a year in temperatures above 24 degrees C than in temperatures below it, most deaths occurred at hot (temperatures>24 degrees C) rather than cold periods. Decreased survival at higher temperatures resulted partially from increased deaths from infectious disease and heat stroke, whereas the lower survival in the coldest months was associated with an increase in noninfectious diseases and poor health in general. Survival was also related to rainfall, with the highest survival rates during the wettest months for all ages and sexes. Our results show that even the normal-range monsoon variation in climate can exert a large impact on elephant survival in Myanmar, leading to extensive absolute differences in mortality; switching from favorable to unfavorable climatic conditions within average years doubled the odds for mortality. The persistence of a long-term trend toward higher global temperatures, combined with the possibility of higher variation in temperature between seasons, may pose a challenge to the survival of species such as Asian elephants.

  17. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    NASA Astrophysics Data System (ADS)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  18. Microclimatic Variation Within Sleeve Cages Used in Ecological Studies

    PubMed Central

    Nelson, Lori A.; Rieske, Lynne K.

    2014-01-01

    Abstract Sleeve cages for enclosing or excluding arthropods are essential components of field studies evaluating trophic interactions. Microclimatic variation in sleeve cages was evaluated to characterize its potential effects on subsequent long-term experiments. Two sleeve cage materials, polyester and nylon, and two cage sizes, 400 and 6000 cm 2 , were tested on eastern hemlock, Tsuga canadensis (L.) Carrière. Temperature and relative humidity inside and outside cages, and the cost and durability of the cage materials, were compared. Long-term effects of the sleeve cages were observed by measuring new growth on T. canadensis branches. The ultimate goal was to identify a material that minimizes bag-induced microclimatic variation. Bagged branches whose microclimates mimic those of surrounding unbagged branches should have minimal effects on plant growth and may prove ideal venues for assessing herbivore and predator behavior under natural conditions. No differences were found in temperature or humidity between caging materials. Small cages had higher average temperatures than large cages, especially in the winter, but this difference was confounded by the fact that small cages were positioned higher in trees than large cages. Differences in plant growth were detected. Eastern hemlock branches enclosed within polyester cages produced fewer new growth tips than uncaged controls. Both polyester and nylon cages reduced the length of new shoot growth relative to uncaged branches. In spite of higher costs, nylon cages were superior to polyester with respect to durability and ease of handling. PMID:25368083

  19. Toward understanding the structural heterogeneity and ion pair stability in dicationic ionic liquids.

    PubMed

    Li, Song; Bañuelos, José Leobardo; Zhang, Pengfei; Feng, Guang; Dai, Sheng; Rother, Gernot; Cummings, Peter T

    2014-12-07

    The structural and dynamical properties of dicationic ionic liquids (DILs) [Cn(mim)2](Tf2N)2, that is, 3-methylimidazolium dications separated by an alkyl chain and with bis(trifluoromethylsulfonyl)amide as the anion, were investigated by molecular dynamics (MD) simulation in combination with small/wide-angle X-ray scattering (SWAXS) measurements. Enhanced spatial heterogeneity is observed as the DIL chain length is increased, characterized by the changes in the scattering and the increased heterogeneity order parameter (HOP). Temperature variation imposes only slight influences on the local structures of DILs compared to monocationic ionic liquids (MILs). The peaks at 0.9 Å(-1) and 1.4 Å(-1) of the structure function shift towards low Q as the temperature increases, in a similar manner to MILs, and changes in peak positions in response to temperature changes are reflected in HOP variations. However, the prepeak shift with increasing temperature is ∼3 times smaller in DILs compared to MILs, and both MD and SWAXS indicate a DIL-specific prepeak shifting. Furthermore, the high ion pair/ion cage stability in DILs is indicative of high thermal stability and relative insensitivity of structural heterogeneity to temperature variation, which might be caused by the stronger Coulombic interactions in DILs.

  20. Inter-annual and Long-term Temperature Variations in the Mesopause Region at High Latitudes Generated by the Stratospheric QBO

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, John G.; Huang, Frank T.

    2007-01-01

    The Numerical Spectral Model (NSM) simulates the Quasi-biennial Oscillation (QBO) that dominates the zonal circulation of the lower stratosphere at low latitudes. In the model, the QBO is generated with parameterized small-scale gravity waves (GW), which are partially augmented in 3D with planetary waves owing to baroclinic instability. Due to GW filtering, the QBO extends into the upper mesosphere, evident in UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, even in simulations with latitude-independent wave source, the associated temperature variations extend to high latitudes. The meridional circulation redistributes some of the QBO energy to focus it partially onto the Polar Regions. The resulting QBO temperature variations away from the equator tend to increase at higher altitudes to produce inter-annual variations that can exceed 5 K in the polar mesopause region -- and our 3D model simulations show that the effect is variable from year to year and can produce large differences between the two hemispheres, presumably due to interactions involving the seasonal variations. Modeling studies with the NSM have shown that long-term variations can also be generated by the QBO interacting with the seasonal cycles through OW node-filtering. A 30-month QBO, optimally synchronized by the 6-month Semi-Annual Oscillation (SAO), thus produces a 5-year or semi-decadal (SD) oscillation -- and observational evidence for that has been provided by a recent analysis of stratospheric NCEP data. In a simulation with the 2D version of the NSM, this SD oscillation extends into the upper mesosphere, and we present results to show that the related temperature variations could contribute significantly to the long-term variations of the polar mesopause region. Quasi-decadal variations could furthermore arise from the modeled solar cycle modulations of the QBO and 12-month annual oscillation. Our numerical results are discussed in the context of the observed low summer temperatures reproduced by the model, to demonstrate that the above interannual and long-term variations could contribute significantly to the climatology of Polar Mesospheric Clouds (PMC) investigated by the Aeronomy of Ice in the Mesosphere (AIM) mission.

  1. Intra-seasonal Oscillations Inferred from SABER (TIMED) and MLS (UARS) Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Huang, F. T.; Mayr, H. G.; Russell, J.; Mlynczak, M.; Reber, C. A.; Mengel, J. G.

    2006-01-01

    In the zonal mean meridional winds of the upper mesosphere, intra-seasonal oscillations with periods between 1 and 4 months have been inferred from UARS measurements and independently predicted with the Numerical Spectral Model WSM). The wind oscillations tend to be confined to low latitudes and appear to be driven, at least in part, by small-scale gravity waves propagating in the meridional direction. Winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. Investigating this phenomenon, we have analyzed SABER temperatures from TIMED in the altitude range between 55 and 95 km to delineate with an empirical model, the year-long variability of the migrating tides and zonal mean components. The inferred seasonal variations of the diurnal tide, characterized by amplitude maxima near equinox, are in substantial agreement with UARS observations and results from the NSM. For the zonal mean, the dominant seasonal variations in the SABER temperatures, with annual (12 months) and semiannual (6 months) periodicities, agree well with those derived from UARS measurements. The intra-seasonal variations with periods between 2 and 4 months have amplitudes close to 2 K, almost half as large as those for the dominant seasonal variations. Their amplitudes are in qualitative agreement with the corresponding values inferred from UARS during different years. The SABER and UARS temperature variations reveal pronounced hemispherical asymmetries, consistent with meridional wind oscillations across the equator. The phase of the semi-annual temperature oscillations from the NSM agrees with the observations from UARS and SABER. But the amplitudes are systematically smaller, which may indicate that planetary waves are more important than is allowed for in the model. For the shorter-period intra-seasonal variations, which can be generated by gravity wave drag, the model results are generally in better agreement with the observations.

  2. Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres.

    PubMed

    Apai, D; Karalidi, T; Marley, M S; Yang, H; Flateau, D; Metchev, S; Cowan, N B; Buenzli, E; Burgasser, A J; Radigan, J; Artigau, E; Lowrance, P

    2017-08-18

    Brown dwarfs are massive analogs of extrasolar giant planets and may host types of atmospheric circulation not seen in the solar system. We analyzed a long-term Spitzer Space Telescope infrared monitoring campaign of brown dwarfs to constrain cloud cover variations over a total of 192 rotations. The infrared brightness evolution is dominated by beat patterns caused by planetary-scale wave pairs and by a small number of bright spots. The beating waves have similar amplitudes but slightly different apparent periods because of differing velocities or directions. The power spectrum of intermediate-temperature brown dwarfs resembles that of Neptune, indicating the presence of zonal temperature and wind speed variations. Our findings explain three previously puzzling behaviors seen in brown dwarf brightness variations. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  4. Detecting drift bias and exposure errors in solar and photosynthetically active radiation data

    USDA-ARS?s Scientific Manuscript database

    All-black thermopile pyranometers are commonly used to measure solar radiation. Ensuring that the sensors are stable and free of drift is critical to accurately measure small variations in global solar irradiance (K'), which is a potential driver of changes in surface temperature. We demonstrate tha...

  5. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes

    USGS Publications Warehouse

    Houser, J.N.

    2006-01-01

    The effects of water color on lake stratification, mean epilimnetic irradiance, and lake temperature dynamics were examined in small, north-temperate lakes that differed widely in water color (1.5-19.8 m -1). Among these lakes, colored lakes differed from clear lakes in the following ways: (i) the epilimnia were shallower and colder, and mean epilimnetic irradiance was reduced; (ii) the diel temperature cycles were more pronounced; (iii) whole-lake heat accumulation during stratification was reduced. The depth of the epilimnion ranged from 2.5 m in the clearest lake to 0.75 m in the most colored lake, and 91% of the variation in epilimnetic depth was explained by water color. Summer mean morning epilimnetic temperature was ???2??C cooler in the most colored lake compared with the clearest lake. In clear lakes, the diel temperature range (1.4 ?? 0.7??C) was significantly (p = 0.01) less than that in the most colored lake (2.1 ?? 1.0??C). Change in whole-lake heat content was negatively correlated with water color. Increasing water color decreased light penetration more than thermocline depth, leading to reduced mean epilimnetic irradiance in the colored lakes. Thus, in these small lakes, water color significantly affected temperature, thermocline depth, and light climate. ?? 2006 NRC.

  6. Experimental validation of a 0-D numerical model for phase change thermal management systems in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Schweitzer, Ben; Wilke, Stephen; Khateeb, Siddique; Al-Hallaj, Said

    2015-08-01

    A lumped (0-D) numerical model has been developed for simulating the thermal response of a lithium-ion battery pack with a phase-change composite (PCC™) thermal management system. A small 10s4p battery pack utilizing PCC material was constructed and subjected to discharge at various C-rates in order to validate the lumped model. The 18650 size Li-ion cells used in the pack were electrically characterized to determine their heat generation, and various PCC materials were thermally characterized to determine their apparent specific heat as a function of temperature. Additionally, a 2-D FEA thermal model was constructed to help understand the magnitude of spatial temperature variation in the pack, and to understand the limitations of the lumped model. Overall, good agreement is seen between experimentally measured pack temperatures and the 0-D model, and the 2-D FEA model predicts minimal spatial temperature variation for PCC-based packs at C-rates of 1C and below.

  7. Influence of soil environmental parameters on thoron exhalation rate.

    PubMed

    Hosoda, M; Tokonami, S; Sorimachi, A; Ishikawa, T; Sahoo, S K; Furukawa, M; Shiroma, Y; Yasuoka, Y; Janik, M; Kavasi, N; Uchida, S; Shimo, M

    2010-10-01

    Field measurements of thoron exhalation rates have been carried out using a ZnS(Ag) scintillation detector with an accumulation chamber. The influence of soil surface temperature and moisture saturation on the thoron exhalation rate was observed. When the variation of moisture saturation was small, the soil surface temperature appeared to induce a strong effect on the thoron exhalation rate. On the other hand, when the variation of moisture saturation was large, the influence of moisture saturation appeared to be larger than the soil surface temperature. The number of data ranged over 405, and the median was estimated to be 0.79 Bq m(-2) s(-1). Dependence of geology on the thoron exhalation rate from the soil surface was obviously found, and a nationwide distribution map of the thoron exhalation rate from the soil surface was drawn by using these data. It was generally high in the southwest region than in the northeast region.

  8. Do Titan's Mountains Betray the Late Acquisition of its Current Atmosphere

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan; Nimmo, F.

    2011-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history [1,2,3,4]. Prior to that time, Titan would have been nearly airless, with its volatiles frozen or sequestered. Present-day Titan experiences only small (approximately 4 K) pole-to-equator variations, owing to efficient heat transport via the thick atmosphere [5]; these temperature variations would have been much larger (approximately 20 K) in the absence of an atmosphere. If Titan's ice shell is conductive, the change in surface temperature associated with the development of an atmosphere would have led to changes in shell thickness. In particular, the poles would move down (inducing compression) while the equator would move up. Figure 1 shows the predicted change in surface elevation as a result of the change in surface temperature, using the numerical conductive shell thickness model of [6

  9. Basic temperature correction of QWIP cameras in thermoelastic/plastic tests of composite materials.

    PubMed

    Boccardi, Simone; Carlomagno, Giovanni Maria; Meola, Carosena

    2016-12-01

    The present work is concerned with the use of a quantum well infrared photodetector (QWIP) infrared camera to measure very small temperature variations, which are related to thermoelastic/plastic effects, developing on composites under relatively low loads, either periodic or due to impact. As is evident from previous work, some temperature variations are difficult to measure, being at the edge of the IR camera resolution and/or affected by the instrument noise. Conversely, they may be valuable to get either information about the material characteristics and its behavior under periodic load (thermoelastic), or to assess the overall extension of delaminations due to impact (thermo-plastic). An image post-processing procedure is herein described that, with the help of a reference signal, allows for suppression of the instrument noise and better discrimination of thermal signatures induced by the two different loads.

  10. The Spatial Coherence of Interannual Temperature Variations in the Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    King, John C.; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.

  11. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika.

    PubMed

    Kraemer, Benjamin M; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O'Reilly, Catherine M; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B

    2015-01-01

    Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake's seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change.

  12. A method to account for the temperature sensitivity of TCCON total column measurements

    NASA Astrophysics Data System (ADS)

    Niebling, Sabrina G.; Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.; Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) consists of ground-based Fourier Transform Spectrometer (FTS) systems all around the world. It achieves better than 0.25% precision and accuracy for total column measurements of CO2 [Wunch et al. (2011)]. In recent years, the TCCON data processing and retrieval software (GGG) has been improved to achieve better and better results (e. g. ghost correction, improved a priori profiles, more accurate spectroscopy). However, a small error is also introduced by the insufficent knowledge of the true temperature profile in the atmosphere above the individual instruments. This knowledge is crucial to retrieve highly precise gas concentrations. In the current version of the retrieval software, we use six-hourly NCEP reanalysis data to produce one temperature profile at local noon for each measurement day. For sites in the mid latitudes which can have a large diurnal variation of the temperature in the lowermost kilometers of the atmosphere, this approach can lead to small errors in the final gas concentration of the total column. Here, we present and describe a method to account for the temperature sensitivity of the total column measurements. We exploit the fact that H2O is most abundant in the lowermost kilometers of the atmosphere where the largest diurnal temperature variations occur. We use single H2O absorption lines with different temperature sensitivities to gain information about the temperature variations over the course of the day. This information is used to apply a posteriori correction of the retrieved gas concentration of total column. In addition, we show that the a posteriori temperature correction is effective by applying it to data from Lamont, Oklahoma, USA (36,6°N and 97,5°W). We chose this site because regular radiosonde launches with a time resolution of six hours provide detailed information of the real temperature in the atmosphere and allow us to test the effectiveness of our correction. References: Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 2087-2112, 2011.

  13. Climate alters intraspecific variation in copepod effect traits through pond food webs.

    PubMed

    Charette, Cristina; Derry, Alison M

    2016-05-01

    Essential fatty acids (EFAs) are primarily generated by phytoplankton in aquatic ecosystems, and can limit the growth, development, and reproduction of higher consumers. Among the most critical of the EFAs are highly unsaturated fatty acids (HUFAs), which are only produced by certain groups of phytoplankton. Changing environmental conditions can alter phytoplankton community and fatty acid composition and affect the HUFA content of higher trophic levels. Almost no research has addressed intraspecific variation in HUFAs in zooplankton, nor intraspecific relationships of HUFAs with body size and fecundity. This is despite that intraspecific variation in HUFAs can exceed interspecific variation and that intraspecific trait variation in body size and fecundity is increasingly recognized to have an important role in food web ecology (effect traits). Our study addressed the relative influences of abiotic selection and food web effects associated with climate change on intraspecific differences and interrelationships between HUFA content, body size, and fecundity of freshwater copepods. We applied structural equation modeling and regression analyses to intraspecific variation in a dominant calanoid copepod, Leptodiatomus minutus, among a series of shallow north-temperate ponds. Climate-driven diurnal temperature fluctuations favored the coexistence of diversity of phytoplankton groups with different temperature optima and nutritive quality. This resulted in unexpected positive relationships between temperature, copepod DHA content and body size. Temperature correlated positively with diatom biovolume, and mediated relationships between copepod HUFA content and body size, and between copepod body size and fecundity. The presence of brook trout further accentuated these positive effects in warm ponds, likely through nutrient cycling and stimulation of phytoplankton resources. Climate change may have previously unrecognized positive effects on freshwater copepod DHA content, body size, and fecundity in the small, shallow bodies of inland waters that are commonly found in north-temperate landscapes.

  14. Validity of thermally-driven small-scale ventilated filling box models

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  15. Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology.

    PubMed

    Malits, Maria; Nemirovsky, Yael

    2017-07-29

    This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode's sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode's perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor's channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate "on-line" temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode's small area and perimeter causes a high 1/ f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing.

  16. Predicting Southern Appalachian overstory vegetation with digital terrain data

    Treesearch

    Paul V. Bolstad; Wayne Swank; James Vose

    1998-01-01

    Vegetation in mountainous regions responds to small-scale variation in terrain, largely due to effects on both temperature and soil moisture. However, there are few studies of quantitative, terrain-based methods for predicting vegetation composition. This study investigated relationships between forest composition, elevation, and a derived index of terrain shape, and...

  17. Synthesis and thermal responsiveness of self-assembled gold nanoclusters.

    PubMed

    Ren, Shenqiang; Lim, Sung-Keun; Gradecak, Silvija

    2010-09-14

    A simple and versatile approach was developed to generate hierarchical assemblies of ultra-small gold nanocluster thin films using the combination of galvanic reaction and a block copolymer coordinated with gold complex. Variation of the temperature allows effective control over the optical response of these stimuli-responsive organic-nanocluster hybrid structures.

  18. EUCLIA—Exploring the UV/Optical Continuum Lag in Active Galactic Nuclei. I. A Model without Light Echoing

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng

    2018-03-01

    The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.

  19. Satellite and Skin Layer Effects on the Accuracy of Sea Surface Temperature Measurements from the GOES Satellites

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Bates, John J.; Scott, Donna J.

    2000-01-01

    The latest Geostationary Operational Environmental Satellites (GOES) have facilitated significant improvements in our ability to measure sea surface temperature (SST) from geostationary satellites. Nonetheless, difficulties associated with sensor calibration and oceanic near-surface temperature gradients affect the accuracy of the measurements and our ability to estimate and interpret the diurnal cycle of the bulk SST. Overall, measurements of SST from the GOES Imagers on the GOES 8-10 satellites are shown to have very small bias (less than 0.02 K) and rms differences of between 0.6 and 0.9 K relative to buoy observations. Separate consideration of individual measurement times, however, demonstrates systematic bias variations of over 0.6 K with measurement hour. These bias variations significantly affect both the amplitude and shape of estimates of the diurnal SST cycle. Modeled estimates of the temperature difference across the oceanic cool skin and diurnal thermocline show that bias variations up to 0.3 K can result from variability in the near-surface layer. Oceanic near-surface layer and known "satellite midnight" calibration effects, however, explain only a portion of the observed bias variations, suggesting other possible calibration concerns. Methods of explicitly incorporating skin layer and diurnal thermocline effects in satellite bulk SST measurements were explored in an effort to further improve the measurement accuracy. While the approaches contain more complete physics, they do not yet significantly improve the accuracy of bulk SST measurements due to remaining uncertainties in the temperature difference across the near-surface layer.

  20. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    PubMed

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Seasonal and interannual variations of atmospheric CO2 and climate

    NASA Astrophysics Data System (ADS)

    Dettinger, Michael D.; Ghil, Michael

    1998-02-01

    Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) is used here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7days at Mauna Loa and 18days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3years)-1 and (4years)-1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6 8months, with SST leading. Analysis of the QT and QQ signals in global gridded SSTs, joint SSA of CO2 and δ13C isotopic ratios, and SSA of CO2 and NH-land temperatures indicate that the QT variations in CO2 mostly reflect upwelling variations in the eastern tropical Pacific. QQ variations are dominated by the CO2 signature of terrestrial-ecosystem response to global QQ climate variations. Climate variations associated with these two interannual components of tropical variability have very different effects on global climate and, especially, on terrestrial ecosystems and the carbon cycle.

  2. Multi-year behaviour of the midnight OH∗ temperature according to observations at Zvenigorod over 2000-2016

    NASA Astrophysics Data System (ADS)

    Perminov, V. I.; Semenov, A. I.; Pertsev, N. N.; Medvedeva, I. V.; Dalin, P. A.; Sukhodoev, V. A.

    2018-04-01

    Using spectral measurements of the hydroxyl airglow at the Zvenigorod station (56° N, 37° E), Moscow region, over 2000-2016, we obtained the long-term set of data comprising 1822 midnight values of the OH∗ temperature in the mesopause region. These data revealed a 17-year series of its mean annual values, as well as amplitudes and phases of the first two harmonics of its annual variation. The obtained parameters were analyzed to determine statistically relevant characteristics of their long-term variations. As a result, we found that the long-term behaviour of the mean annual OH∗ temperature features a small negative linear trend (-0.07 ± 0.03 K/year) over the addressed period. Besides, its dependence on solar activity is shown to be 4.1 ± 0.5 K/100 SFU. Regarding the long-term behaviour of the mean annual OH∗ temperature, we revealed the existence of two oscillations with 3-year (the amplitude being 1.3 ± 0.2 K) and 4.1-year (the amplitude being 0.6 ± 0.2 K) periods. We obtained empirical relations describing year-to-year variations in the amplitudes and phases of the annual and semi-annual harmonics.

  3. Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study

    DOE PAGES

    Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo

    2017-12-24

    Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less

  4. Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo

    Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less

  5. Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian

    2015-11-01

    Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.

  6. Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models

    PubMed Central

    Knight, Christopher G.; Knight, Sylvia H. E.; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J.; Kettleborough, Jamie A.; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A.; Allen, Myles R.

    2007-01-01

    In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally. PMID:17640921

  7. Cable tunnel fire experiment study based on linear optical fiber fire detectors

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun

    2013-09-01

    Aiming at exiting linear temperature fire detection technology including temperature sensing cable, fiber Raman scattering, fiber Bragg grating, this paper establish an experimental platform in cable tunnel, set two different experimental scenes of the fire and record temperature variation and fire detector response time in the processing of fire simulation. Since a small amount of thermal radiation and no flame for the beginning of the small-scale fire, only directly contacting heat detectors can make alarm response and the rest of other non- contact detectors are unable to respond. In large-scale fire, the alarm response time of the fiber Raman temperature sensing fire detector and fiber Bragg grating temperature sensing fire detector is about 30 seconds, and depending on the thermocouples' record the temperature over the fire is less than 35° in first 60 seconds of large-scale fire, while the temperature rising is more than 5°/min within the range of +/- 3m. According to the technical characteristics of the three detectors, the engineering suitability of the typical linear heat detectors in cable tunnels early fire detection is analyzed, which provide technical support for the preparation of norms.

  8. Experimental and Numerical Investigation of Combined Sensible/Latent Thermal Energy Storage for High-Temperature Applications.

    PubMed

    Geissbühler, Lukas; Zavattoni, Simone; Barbato, Maurizio; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2015-01-01

    Combined sensible/latent heat storage allows the heat-transfer fluid outflow temperature during discharging to be stabilized. A lab-scale combined storage consisting of a packed bed of rocks and steel-encapsulated AlSi(12) was investigated experimentally and numerically. Due to the small tank-to-particle diameter ratio of the lab-scale storage, void-fraction variations were not negligible, leading to channeling effects that cannot be resolved in 1D heat-transfer models. The void-fraction variations and channeling effects can be resolved in 2D models of the flow and heat transfer in the storage. The resulting so-called bypass fraction extracted from the 2D model was used in the 1D model and led to good agreement with experimental measurements.

  9. Development of a versatile high-temperature short-time (HTST) pasteurization device for small-scale processing of cell culture medium formulations.

    PubMed

    Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan

    2018-07-01

    The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.

  10. A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.

    Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less

  11. A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems

    DOE PAGES

    Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.

    2018-04-23

    Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less

  12. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika

    PubMed Central

    Kraemer, Benjamin M.; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O’Reilly, Catherine M.; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B.

    2015-01-01

    Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake’s seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change. PMID:26147964

  13. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  14. The response of middle atmospheric ozone to solar UV irradiance variations with a period of 27 days

    NASA Technical Reports Server (NTRS)

    Chen, LI; Brasseur, Guy; London, Julius

    1994-01-01

    A one-dimensional photochemical-dynamical-radiative time-dependent model was used to study the response of middle atmospheric temperature and ozone to solar UV irradiance variations with the period of 27 days. The model solar UV O(x), HO(x), NO(x), and CIO(x)families and modeled solar UV variations. The amplitude of the primary temperature response to the solar UV variation is plus 0.4 K at 85-90 km with a phase lag of about 6 days. A secondary maximum response of plus 0.3 K at 45-50 km appears with a phase lag of 1 day. There is a maximum positive ozone response to the 27-day solar UV oscillation of 2.5 percent at 80-90 km with a phase lag of about 10 days after the solar irradiance maximum. At 70 km the ozone response is about 1.2 percent and is out of phase with the solar variation. In the upper stratosphere (40-50 km) the relative ozone variation is small, about 0.2 percent to 0.3 percent, and there is a negative phase of about 4 days between the ozone and solar oscillations. These oscillations are in phase in the middle stratosphere (35-40 km) where there is again a maximum relative response of about 0.6 percent. The reasons for these ozone amplitude and phase variations are discussed.

  15. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae).

    PubMed

    Lachenicht, M W; Clusella-Trullas, S; Boardman, L; Le Roux, C; Terblanche, J S

    2010-07-01

    The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 degrees C above and below optimum growth temperature of 29 degrees C (i.e. 25, 29, 33 degrees C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13min with acclimation at 33-25 degrees C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 degrees C: 18.25, 29 degrees C: 18.07, 33 degrees C: 25.5min). Thermal optima for running speed were higher (39.4-40.6 degrees C) than those for jumping performance (25.6-30.9 degrees C). Acclimation temperature affected jumping distance but not running speed (general linear model, p=0.0075) although maximum performance (U(MAX)) and optimum temperature (T(OPT)) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of T(OPT), U(MAX) and the temperature breadth (T(BR)) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 degrees C vs. 20-30% at 25 and 29 degrees C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Superconducting Effects in Optimization of Magnetic Penetration Thermometers for X-ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Balvin, M. A.; Denis, K. L.; Hsieh, W.-T.; Sadleir, J. E.; Bandler, Simon E.; Busch, Sarah E.; Merrell, W.; Kelly, Daniel P.; Nagler, Peter C.; hide

    2012-01-01

    We have made high resolution x-ray microcalorimeters using superconducting MoAu bilayers and Nb meander coils. The temperature sensor is a Magnetic Penetration Thermometer (MPT). Operation is similar to metallic magnetic calorimeters, but instead of the magnetic susceptibility of a paramagnetic alloy, we use the diamagnetic response of the superconducting MoAu to sense temperature changes in an x-ray absorber. Flux-temperature responsivtty can be large for small sensor heat capacity, with enough dynamic range for applications. We find models of observed flux-temperature curves require several effects to explain flux penetration or expulsion in the microscopic devices. The superconductor is non-local, with large coherence length and weak pinning of flux. At lowest temperatures, behavior is dominated by screening currents that vary as a result of the temperature dependence of the magnetic penetration depth, modified by the effect of the nonuniformity of the applied field occurring on a scale comparable to the coherence length. In the temperature regime where responslvity is greatest, spadal variations in the order parameter become important: both local variations as flux enters/leaves the film and an intermediate state is formed, and globally as changing stability of the electrical circuit creates a Meissner transition and flux is expelled/penetrates to minimize free energy.

  17. Effects of Light and Temperature on the Association between Zea mays and Spirillum lipoferum1

    PubMed Central

    Albrecht, Stephan L.; Okon, Yaacov; Burris, Robert H.

    1977-01-01

    Zea mays was grown on a low N nutrient solution under 16 conditions of light and temperature in a crossed-gradient room in an attempt to determine whether or not variation in climatic conditions influences N2 fixation by the association between maize and Spirillum lipoferum. Temperatures were 28, 32, 36, and 40 C and 10 C lower at night; light intensities were 500, 1,250, 2,400, and 3,000 ft-c. Plants harvested after 94 days showed no significant benefit from association with S. lipoferum either in dry weight production or in total N content; variations in temperature and light had only a small influence on N2 fixation under the conditions tested. Measurements of total N, together with designated assumptions, indicated that less than the equivalent of 0.5 kilogram of N was fixed/hectare during the entire growing period by the maize-S. lipoferum association. Rates of C2H2 reduction by replicate root samples generally were low and variable and did not correlate with the measurements of total N. PMID:16660131

  18. Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.

    1972-01-01

    An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.

  19. Aridity and decomposition processes in complex landscapes

    NASA Astrophysics Data System (ADS)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally decreased with increasing aridity with k going from 0.0025 day-1 on equatorial (dry) facing slopes to 0.0040 day-1 on polar (wet) facing slopes. However, differences in temperature as a result of morning vs afternoon sun on east and west aspects, respectively, (not captured in the aridity metric) resulted in poor prediction of decomposition for the sites located in the intermediate aridity range. Overall the results highlight that relatively small differences in microclimate due to slope orientation can have large effects on decomposition. Future research will aim to refine the aridity metric to better resolve small scale variation in surface temperature which is important when up-scaling decomposition processes to landscapes.

  20. Programmable Quantitative DNA Nanothermometers.

    PubMed

    Gareau, David; Desrosiers, Arnaud; Vallée-Bélisle, Alexis

    2016-07-13

    Developing molecules, switches, probes or nanomaterials that are able to respond to specific temperature changes should prove of utility for several applications in nanotechnology. Here, we describe bioinspired strategies to design DNA thermoswitches with programmable linear response ranges that can provide either a precise ultrasensitive response over a desired, small temperature interval (±0.05 °C) or an extended linear response over a wide temperature range (e.g., from 25 to 90 °C). Using structural modifications or inexpensive DNA stabilizers, we show that we can tune the transition midpoints of DNA thermometers from 30 to 85 °C. Using multimeric switch architectures, we are able to create ultrasensitive thermometers that display large quantitative fluorescence gains within small temperature variation (e.g., > 700% over 10 °C). Using a combination of thermoswitches of different stabilities or a mix of stabilizers of various strengths, we can create extended thermometers that respond linearly up to 50 °C in temperature range. Here, we demonstrate the reversibility, robustness, and efficiency of these programmable DNA thermometers by monitoring temperature change inside individual wells during polymerase chain reactions. We discuss the potential applications of these programmable DNA thermoswitches in various nanotechnology fields including cell imaging, nanofluidics, nanomedecine, nanoelectronics, nanomaterial, and synthetic biology.

  1. Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology

    PubMed Central

    Malits, Maria; Nemirovsky, Yael

    2017-01-01

    This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode’s sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode’s perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor’s channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate “on-line” temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode’s small area and perimeter causes a high 1/f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing. PMID:28758932

  2. A thermodynamic and heat transfer model for LNG ageing during ship transportation. Towards an efficient boil-off gas management

    NASA Astrophysics Data System (ADS)

    Krikkis, Rizos N.

    2018-06-01

    A non-equilibrium thermodynamic and heat transfer model for LNG ageing during ship transportation has been developed based on experimental data. The measurements reveal that the liquid temperature remains nearly constant, whereas significant variations are observed for the gas temperature. The measurement of the liquid temperature along the tank height suggests that a small scale rollover phenomenon may have taken place in one cargo tank. A time dependent heat transfer mechanism has been considered by taking into account the temperature variations of the atmospheric air, the seawater and the cofferdam environment which affect the cargo tanks. An important finding is that the evaporation rate (boil-of rate) is forced to follow the fuel flow consumption profile imposed by the vessel's propulsion system in order to match the tank pressure and volume constraints. The theoretical model is favorably compared to a comprehensive set on per hour basis of on board measurements of cargo temperatures and pressures, recorded during laden voyages, providing a better understanding of the underlying processes involved. The dominant role of the fuel consumption on the evaporation rate may be utilized in order to devise an efficient cargo management strategy during the laden voyage.

  3. Estimating the Triple-Point Isotope Effect and the Corresponding Uncertainties for Cryogenic Fixed Points

    NASA Astrophysics Data System (ADS)

    Tew, W. L.

    2008-02-01

    The sensitivities of melting temperatures to isotopic variations in monatomic and diatomic atmospheric gases using both theoretical and semi-empirical methods are estimated. The current state of knowledge of the vapor-pressure isotope effects (VPIE) and triple-point isotope effects (TPIE) is briefly summarized for the noble gases (except He), and for selected diatomic molecules including oxygen. An approximate expression is derived to estimate the relative shift in the melting temperature with isotopic substitution. In general, the magnitude of the effects diminishes with increasing molecular mass and increasing temperature. Knowledge of the VPIE, molar volumes, and heat of fusion are sufficient to estimate the temperature shift or isotopic sensitivity coefficient via the derived expression. The usefulness of this approach is demonstrated in the estimation of isotopic sensitivities and uncertainties for triple points of xenon and molecular oxygen for which few documented estimates were previously available. The calculated sensitivities from this study are considerably higher than previous estimates for Xe, and lower than other estimates in the case of oxygen. In both these cases, the predicted sensitivities are small and the resulting variations in triple point temperatures due to mass fractionation effects are less than 20 μK.

  4. Global temperature monitoring from space

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.

    1994-01-01

    Global and regional temperature variations in the lower troposphere and lower stratosphere are examined for the period 1979-92 from Microwave Sounder Unit (MSU) data obtained by the Television Infrared Observation Satellite (TIROS)-N series of National Oceanic and Atmospheric Administration (NOAA) operational satellites. In the lower troposphere, globally-averaged temperature variations appear to be dominated by tropical El Nino (warm) and La Nina (cool) events and volcanic eruptions. The Pinatubo volcanic eruption in June 1991 appears to have initiated a cooling trend which persisted through the most recent data analyzed (July, 1992), and largely overwhelmed the warming from the 1991-92 El Nino. The cooling has been stronger in the Northern Hemisphere than in the Southern Hemisphere. The temperature trend over the 13.5 year satellite record is small (+0.03 C) compared to the year-to-year variability (0.2-0.4 C), making detection of any global warming signal fruitless to date. However, the future global warming trend, currently predicted to be around 0.3 C/decade, will be much easier to discern should it develop. The lower stratospheric temperature record is dominated by warm episodes from the Pinatubo eruption and the March 1982 eruption of El Chichon volcano.

  5. Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Chatterji, Tapan; Iles, Gail N.; Ouladdiaf, Bachir; Hansen, Thomas C.

    2010-08-01

    We have investigated the magnetoelastic effects in MF2 (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature TN by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μB, 4.05 ± 0.05 μB and 1.99 ± 0.05 μB per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF2 (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.

  6. Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction.

    PubMed

    Chatterji, Tapan; Iles, Gail N; Ouladdiaf, Bachir; Hansen, Thomas C

    2010-08-11

    We have investigated the magnetoelastic effects in MF(2) (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature T(N) by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μ(B), 4.05 ± 0.05 μ(B) and 1.99 ± 0.05 μ(B) per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF(2) (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.

  7. Inter-species and Seasonal Variability in Mg / Ca in Larger Benthic Foraminifera: Implications for Paleo-proxy

    NASA Astrophysics Data System (ADS)

    Singh, A.; Saraswati, P. K.; Pande, K.; Sanyal, P.

    2015-12-01

    The reports of inter-species variability to intra-test heterogeneity in Mg/Ca in several species of foraminifera have raised question about its use in estimation of seawater temperatures and necessitate field and culture studies to verify it for species from different habitats. In this study, we attempt to investigate if Mg/Ca in larger benthic foraminifera (LBF) could be a potential proxy of seawater temperatures for shallow marine carbonates. The samples were collected in different seasons from coral reef at Akajima (Okinawa, Japan). The Ca and Mg of 13 species of LBF and small benthic foraminifera from the same season were determined to examine variation in Mg/Ca among the species calcified under presumably the same temperature and salinity conditions. We also analyzed Amphistegina lessoni from different seasons for Ca, Mg and δ18O to determine variation in Mg/Ca with temperature and see how the two proxies of temperatures, Mg/Ca and δ18O, correlate in the same species. The species cluster about two distinctly separated Mg/Ca values. The first group comprising species of Amphistegina, Gypsina, Ammonia and Elphidium have relatively lower Mg/Ca, varying from 30 to 45 mmol/mol. The second group, having average Mg/Ca ranging from ~110 to 170 mmol/mol, includes species of Schlumbergerella, Baculogypsinoides, Baculogypsina, Heterostegina, Operculina, Calcarina, Amphisorus, Alveolinella and Poroeponides. The result suggests large interspecies variability implying vital effect in foraminiferal Mg/Ca. There is no distinct difference in Mg/Ca values between porcelaneous and hyaline types or symbiont-bearing and symbiont-free types. In Amphistegina lessoni the variation in Mg/Ca between individuals of the same season is as large as variation across the seasons. There is no correlation between Mg/Ca and seawater temperature. Lack of correlation between Mg/Ca and δ18O further suggests that Mg/Ca in the species is not primarily controlled by temperature.

  8. 15 years of VLT/UVES OH intensities and temperatures in comparison with TIMED/SABER data

    NASA Astrophysics Data System (ADS)

    Noll, Stefan; Kimeswenger, Stefan; Proxauf, Bastian; Unterguggenberger, Stefanie; Kausch, Wolfgang; Jones, Amy M.

    2017-10-01

    The high-resolution echelle spectrograph UVES of the Very Large Telescope at Cerro Paranal in Chile has been regularly operated since April 2000. Thus, UVES archival data originally taken for astronomical projects but also including sky emission can be used to study airglow variations on a time scale longer than a solar cycle. Focusing on OH emission and observations until March 2015, we considered about 3000 high-quality spectra from two instrumental set-ups centred on 760 and 860 nm, which cover about 380 nm each. These data allowed us to measure line intensities for several OH bands in order to derive band intensities and rotational temperatures for different upper vibrational levels as a function of solar activity and observing date. The results were compared with those derived from emission and temperature profile data of the radiometer SABER on the TIMED satellite taken in the Cerro Paranal area between 2002 and 2015. In agreement with the SABER data, the long-term variations in OH intensity and temperature derived from the UVES data are dominated by the solar cycle, whereas secular trends appear to be negligible. Combining the UVES and SABER results, the solar cycle effects for the OH intensity and temperature are about 12-17% and 4-5 K per 100 sfu and do not significantly depend on the selected OH band. The data also reveal that variations of the effective OH emission layer height and air density can cause significant changes in the OH rotational temperatures due to a varying ratio of OH thermalising collisions by air molecules and OH radiation, deactivation, and destruction processes which impede the rotational relaxation. However, this effect appears to be of minor importance for the explanation of the rotational temperature variations related to the solar activity cycle, which causes only small changes in the OH emission profile.

  9. Temporal Gain Correction for X-Ray Calorimeter Spectrometers

    NASA Technical Reports Server (NTRS)

    Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.

    2016-01-01

    Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-HSXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.

  10. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  11. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE PAGES

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...

    2016-11-05

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  12. Changes in the temperature-dependent specific volume of supported polystyrene films with film thickness.

    PubMed

    Huang, Xinru; Roth, Connie B

    2016-06-21

    Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ∼20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ∼120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.

  13. Compensating temperature-induced ultrasonic phase and amplitude changes

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.

    2016-04-01

    In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.

  14. Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature.

    PubMed

    Ayton, Sasha; Tomlinson, Sean; Phillips, Ryan D; Dixon, Kingsley W; Withers, Philip C

    2016-05-15

    Seasonal acclimatisation of thermal tolerance, evaporative water loss and metabolic rate, along with regulation of the hive environment, are key ways whereby hive-based social insects mediate climatic challenges throughout the year, but the relative importance of these traits remains poorly understood. Here, we examined seasonal variation in metabolic rate and evaporative water loss of worker bees, and seasonal variation of hive temperature and relative humidity (RH), for the stingless bee Austroplebeia essingtoni (Apidae: Meliponini) in arid tropical Australia. Both water loss and metabolic rate were lower in the cooler, dry winter than in the hot, wet summer at most ambient temperatures between 20°C and 45°C. Contrary to expectation, thermal tolerance thresholds were higher in the winter than in the summer. Hives were cooler in the cooler, dry winter than in the hot, wet summer, linked to an apparent lack of hive thermoregulation. The RH of hives was regulated at approximately 65% in both seasons, which is higher than unoccupied control hives in the dry season, but less than unoccupied control hives in the wet season. Although adaptations to promote water balance appear more important for survival of A. essingtoni than traits related to temperature regulation, their capacity for water conservation is coincident with increased thermal tolerance. For these small, eusocial stingless bees in the arid tropics, where air temperatures are relatively high and stable compared with temperate areas, regulation of hive humidity appears to be of more importance than temperature for maintaining hive health. © 2016. Published by The Company of Biologists Ltd.

  15. SABER (TIMED) and MLS (UARS) Temperature Observations of Mesospheric and Stratospheric QBO and Related Tidal Variations

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.; Russell, James; Mlynczak, Marty; Mengel, John

    2006-01-01

    More than three years of temperature observations from the SABER (TIMED) and MLS WARS) instruments are analyzed to study the annual and inter-annual variations extending from the stratosphere into the upper mesosphere. The SABER measurements provide data from a wide altitude range (15 to 95 km) for the years 2002 to 2004, while the MLS data were taken in the 16 to 55 km altitude range a decade earlier. Because of the sampling properties of SABER and MLS, the variations with local solar time must be accounted for when estimating the zonal mean variations. An algorithm is thus applied that delineates with Fourier analysis the year-long variations of the migrating tides and zonal mean component. The amplitude of the diurnal tide near the equator shows a strong semiannual periodicity with maxima near equinox, which vary from year to year to indicate the influence from the Quasi-biennial Oscillation (QBO) in the zonal circulation. The zonal mean QBO temperature variations are analyzed over a range of latitudes and altitudes, and the results are presented for latitudes from 48"s to 48"N. New results are obtained for the QBO, especially in the upper stratosphere and mesosphere, and at mid-latitudes. At Equatorial latitudes, the QBO amplitudes show local peaks, albeit small, that occur at different altitudes. From about 20 to 40 km, and within about 15" of the Equator, the amplitudes can approach 3S K for the stratospheric QBO or SQBO. For the mesospheric QBO or MQBO, we find peaks near 70 km, with temperature amplitudes reaching 3.5"K, and near 85 km, the amplitudes approach 2.5OK. Morphologically, the amplitude and phase variations derived from the SABER and MLS measurements are in qualitative agreement. The QBO amplitudes tend to peak at the Equator but then increase again pole-ward of about 15" to 20'. The phase progression with altitude varies more gradually at the Equator than at mid-latitudes. A comparison of the observations with results from the Numerical Spectral Model (NSM) reveals that there is qualitative agreement. The NSM generates the QBO extending from the stratosphere into the upper mesosphere, with temperature variations extending to mid latitudes, but the predicted amplitudes are smaller than those observed.

  16. Nonadiabatic small-polaron hopping conduction in Li-doped and undoped Bi4Sr3Ca3CuyOx (0<=y<=5)

    NASA Astrophysics Data System (ADS)

    Mollah, S.; Som, K. K.; Bose, K.; Chakravorty, A. K.; Chaudhuri, B. K.

    1992-11-01

    Detailed experimental results of temperature- and CuO-concentration-dependent dc conductivities of semiconducting Bi4Sr3Ca3CuyOx (y=0 to 5) and Li-doped Bi4Sr3Ca3-zLizCu4Ox (z=0.1, 0.5, and 1.0) glasses are reported. The variation of activation energy with glass compositions dominates the conductivity. Unlike many glasses with transition-metal ions, a strong preexponential factor containing the ``small-polaron'' tunneling term [exp(-2αR)] is observed. Nonadiabatic small-polaron hopping mechanism is found to be appropriate for explaining the conductivity data of both glass systems. Addition of alkali-metal ions decreases the conductivities and causes appreciable change of some model parameters obtained from least-squares fittings of the experimental data. The overall thermal behavior of the electrical conductivities of the glasses, however, remains unaltered. This indicates that small (less than 10 wt.%) amount of Li or other alkali-metal ions in these glasses acts as a flux to keep the oxygen content fixed in the corresponding glass-ceramic (superconducting) phases. This in turn helps increase the superconducting transition temperature of the glass ceramics and also lower the sintering and melting temperatures of the glasses.

  17. A theoretical approach to study the melting temperature of metallic nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Neha; Joshi, Deepika P.

    2016-05-23

    The physical properties of any material change with the change of its size from bulk range to nano range. A theoretical study to account for the size and shape effect on melting temperature of metallic nanowires has been done. We have studied zinc (Zn), indium (In), lead (Pb) and tin (Sn) nanowires with three different cross sectional shapes like regular triangular, square and regular hexagonal. Variation of melting temperature with the size and shape is graphically represented with the available experimental data. It was found that melting temperature of the nanowires decreases with decrement in the size of nanowire, duemore » to surface effect and at very small size the most probable shape also varies with material.« less

  18. Small-scale impacts into rock - An evaluation of the effects of target temperature on experimental results

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Cintala, M. J.; Horz, F.

    1986-01-01

    A series of cratering and catastrophic fragmentation experiments has been performed, involving the impact of aluminum and stainless-steel spheres into warm (about 298 K) and cold (about 100 K) granodiorite targets. Although some vague hints of a thermal effect might be found in some of the results, in no case was there a substantial difference between the warm and cold series. Since these experiments were well within the strength-dominated regime of impact phenomena, variations due to low target temperatures in more energetic events will probably be negligible. Thus, there appear to be no significant temperature-dependent mechanical effects during impact into solid rock over a wide range of temperatures prevalent in the solar system.

  19. Temperature dependent DC characterization of InAlN/(AlN)/GaN HEMT for improved reliability

    NASA Astrophysics Data System (ADS)

    Takhar, K.; Gomes, U. P.; Ranjan, K.; Rathi, S.; Biswas, D.

    2015-02-01

    InxAl1-xN/AlN/GaN HEMT device performance is analysed at various temperatures with the help of physics based 2-D simulation using commercially available BLAZE and GIGA modules from SILVACO. Various material parameters viz. band-gap, low field mobility, density of states, velocity saturation, and substrate thermal conductivity are considered as critical parameters for predicting temperature effect in InxAl1-xN/AlN/GaN HEMT. Reduction in drain current and transconductance has been observed due to the decrease of 2-DEG mobility and effective electron velocity with the increase in temperature. Degradation in cut-off frequency follows the transconductance profile as variation in gate-source/gate-drain capacitances observed very small.

  20. Global Precipitation: Means, Variations and Trends During the Satellite Era (1979-2014)

    NASA Astrophysics Data System (ADS)

    Adler, Robert F.; Gu, Guojun; Sapiano, Matthew; Wang, Jian-Jian; Huffman, George J.

    2017-07-01

    Global precipitation variations over the satellite era are reviewed using the Global Precipitation Climatology Project (GPCP) monthly, globally complete analyses, which integrate satellite and surface gauge information. Mean planetary values are examined and compared, over ocean, with information from recent satellite programs and related estimates, with generally positive agreements, but with some indication of small underestimates for GPCP over the global ocean. Variations during the satellite era in global precipitation are tied to ENSO events, with small increases during El Ninos, and very noticeable decreases after major volcanic eruptions. No overall significant trend is noted in the global precipitation mean value, unlike that for surface temperature and atmospheric water vapor. However, there is a pattern of positive and negative trends across the planet with increases over tropical oceans and decreases over some middle latitude regions. These observed patterns are a result of a combination of inter-decadal variations and the effect of the global warming during the period. The results reviewed here indicate the value of such analyses as GPCP and the possible improvement in the information as the record lengthens and as new, more sophisticated and more accurate observations are included.

  1. Astronomical variation experiments with a Mars general circulation model

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Haberle, R. M.; Murphy, J. R.; Schaeffer, J.; Lee, H.

    1992-01-01

    In time scales of a hundred thousand to a million years, the eccentricity of Mars orbit varies in a quasi-periodic manner between extremes as large as 0.14 and as small as 0 and the tilt of its axis of rotation with respect to the orbit normal also varies quasi-periodically between extremes as large as 35 deg and as small as 15 deg. In addition, the orientation of the axis precesses on comparable time scales. These astronomical variations are much more extreme than those experienced by the Earth. These variations are thought to have strongly modulated the seasonal cycles of dust, carbon dioxide, and water. One manifestation of the induced quasiperiodic climate changes may be the layered terrain of the polar regions, with individual layers perhaps recording variations in the absolute and/or relative deposition rates of dust and water in the polar regions, most likely in association with the winter time deposition of carbon dioxide ice. In an attempt to understand the manner in which atmospheric temperatures and winds respond to the astronomical forcings, we have initiated a series of numerical experiments with the NASA/Ames general circulation model of the Martian Atmosphere.

  2. Nanometre-scale thermometry in a living cell

    NASA Astrophysics Data System (ADS)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2013-08-01

    Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz-1/2) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.

  3. Environmental controls of daytime leaf carbon exchange: Implications for estimates of ecosystem fluxes in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Heskel, M.; Tang, J.

    2017-12-01

    Leaf-level photosynthesis and respiration are sensitive to short- and long-term changed in temperature, and how these processes respond to phenological and seasonal transitions and daily temperature variation dictate how carbon is first assimilated and released in terrestrial ecosystems. We examined the short-term temperature response of daytime leaf carbon exchange at Harvard Forest across growing season, with the specific objective to quantify the light inhibition of dark respiration and photorespiration in leaves and use this to better inform daytime carbon assimilation and efflux estimates at the canopy scale. Dark and light respiration increased with measurement temperature and varied seasonally in a proportional manner, with the level of inhibition remaining relatively constant through the growing season. Higher rates of mitochondrial respiration and photorespiration at warmer temperatures drove a lower carbon use efficiency. Using temperature, light, and canopy leaf area index values to drive models, we estimate partitioned ecosystem fluxes and re-calculate gross primary production under multiple scenarios that include and exclude the impact of light inhibition, thermal acclimation, and seasonal variation in physiology. Quantifying the contribution of these `small fluxes' to ecosystem carbon exchange in forests provides a nuanced approach for integrating physiology into regional model estimates derived from eddy covariance and remote-sensing methods.

  4. Diel Surface Temperature Range Scales with Lake Size

    PubMed Central

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  5. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas

    NASA Astrophysics Data System (ADS)

    Akin, S.; Winemiller, K. O.; Gelwick, F. P.

    2003-05-01

    Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large spatial scales, and species-specific response to local environmental variation.

  6. Thermal record of the test tubes method used for small fibers assessment.

    PubMed

    Collina, Denny D; Villarroel, Manoel F; Tierra-Criollo, Carlos Julio

    2011-12-01

    In Brazil, the test that uses test tubes filled with cold water (25ºC) and tubes filled with water heated to a temperature of 45ºC is recommended by the Ministry of Health as a way of evaluate thermal sensitivity on the injured skin of leprosy patients. The purpose of this work was to quantify the thermal stimulation applied to the skin, as well as the temperature variation of the heated water and of the tube's outer surface during stimulation sessions. The experiment had the participation of 14 healthy volunteers (31.2 ± 11.4 years-old), ten of which were male (33.1 ± 13.5 years-old) and four were female (26.5 ± 4.7 years-old). Three consecutive stimulation sessions were carried out, each of them with four stimuli. The maximum skin temperature at the end of the stimuli was measured at 35.8 ± 0.6ºC. Such temperature values may be useful in the assessment of the loss of small fibers, which are responsible for the sensation of warmth.

  7. The effects of large- and small-scale density structures on the radio from coronal streamers

    NASA Astrophysics Data System (ADS)

    Thejappa, G.; Kundu, M. R.

    1994-01-01

    The radio observations of the coronal streamers obtained using Clark Lake radioheliograph at 73.8, 50.0, and 38.5 MHz during a period of minimum activity in September 1986 are presented. Streamers appear to correlate with two prominent disk sources whose intensites fluctuated randomly. The variations in half-power diameter of the radio Sun are found to correspond with the variations in the white-light extents of the coronal streamers. It appears that the shape of the radio Sun is not a function of the phase of the solar cycle; instead it depends on the relative positions of the streamers in the corona. The observed peak brightness temperatures, TB, of the streamers are found to be very low, being approximately equal to 6 x 104 K. We compute the brightness temperature distribution along the equator by tracing the rays in the coronal plasma. The rays are deflected away by the streamers before reaching the critical density level, whereas they penetrate deeper into the coronal hole for small angles between the line of sight and the streamer axis. As a consequence, it is found that the streamers and coronal holes appear in the calculated equatorial brightness distribution as irregular brightness depressions and enhancements, respectively. The fine structures are found to disappear when the scattering due to small-scale density inhomogeneities is included in the ray-tracing calculations. The required relative level of density fluctuations, epsilon1 = (delta N)/N, is found to be greater than 12% to reduce the peak brightness temperature from 106 K to 6 x 104 K for all the three frequencies.

  8. Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)

    2001-01-01

    The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.

  9. Morphology of the transition from an axial high to a rift valley at the Southeast Indian Ridge and the relation to variations in mantle temperature

    NASA Astrophysics Data System (ADS)

    Shah, Anjana K.; SempéRé, Jean-Christophe

    1998-03-01

    The Southeast Indian Ridge exhibits a transition in axial morphology from an East Pacific Rise-like axial high near 100°E to a Mid-Atlantic Ridge-like rift valley near 116°E but spreads at a nearly constant rate of 74-76 mm/yr. Assuming that the source of this transition lies in variations in mantle temperature, we use shipboard gravity-derived crustal thickness and ridge flank depth to estimate the variations in temperature associated with the changes in morphological style. Within the transitional region, SeaBeam 2000 bathymetry shows scattered instances of highs, valleys, and split volcanic ridges at the axis. A comparison of axial morphology to abyssal hill shapes and symmetry properties suggests that this unorganized distribution is due to the ridge axis episodically alternating between an axial valley and a volcanic ridge. Axial morphology can then be divided into three classes, with distinct geographic borders: axial highs and rifted highs are observed west of a transform fault at 102°45'E; rift valleys are observed east of a transform fault at 114°E; and an intermediate-style morphology which alternates between a volcanic ridge and a shallow axial valley is observed between the two. One segment, between 107° and 108°30'E, forms an exception to the geographical boundaries. Gravity-derived crustal thickness and flank depth generally vary monotonically over the region, with the exception of the segment between 107°E and 108°30'E. The long-wavelength variations in these properties correlate with the above morphological classification. Gravity-derived crustal thickness varies on average ˜2 km between the axial high and rift valley regions. The application of previous models relating crustal thickness and mantle temperature places the corresponding temperature variation at 25°C-50°C, depending on the model used. The average depth of ridge flanks varies by ˜550 m over the study area. For a variation of 25°-50°C, thermal models of the mantle predict depth variations of 75-150 m. These values are consistent with observations when the combined contributions of crustal thickness and mantle density to ridge flank depth are considered, assuming Airy isostasy. Crustal thickness variations differ at the two transitions described above: A difference of 750 m in crustal thickness is observed at the rift valley/intermediate-style transition, suggesting small variations in crustal thickness and mantle temperature drive this transition. At the axial high-rifted high/intermediate-style transition, crustal thickness variations are not resolvable, suggesting that this transition is controlled by threshold values of crustal thickness and mantle temperature, and is perhaps related to the presence of a steady state magma chamber.

  10. Design, Analysis and Implementation of an Experimental System to Harvest Energy From Atmospheric Temperature Variations Using Ethyl Chloride Filled Bellows

    NASA Astrophysics Data System (ADS)

    Ali, Gibran

    The increase in global warming and the dwindling supplies of fossil fuels have shifted the focus from traditional to alternate sources of energy. This has resulted in a concerted effort towards finding new energy sources as well as better understanding traditional renewable energy sources such as wind and solar power. In addition to the shift in focus towards alternate energy, the last two decades have offered a dramatic rise in the use of digital technologies such as wireless sensor networks that require small but isolated power supplies. Energy harvesting, a method to gather energy from ambient sources including sunlight, vibrations, heat, etc., has provided some success in powering these systems. One of the unexplored areas of energy harvesting is the use of atmospheric temperature variations to obtain usable energy. This thesis investigates an innovative mechanism to extract energy from atmospheric variations using ethyl chloride filled mechanical bellows. The energy harvesting process was divided into two parts. The first part consisted of extracting energy from the temperature variations and converting it into the potential energy stored in a linear coil spring. This was achieved by designing and fabricating an apparatus that consisted of an ethyl chloride filled bellows working against a mechanical spring in a closed and controlled environment. The bellows expanded/contracted depending upon the ambient temperature and the energy harvested was calculated as a function of the bellows' length. The experiments showed that 6 J of potential energy may be harvested for a 23°C change in temperature. The numerical results closely correlated to the experimental data with an error magnitude of 1%. In regions with high diurnal temperature variation, such an apparatus may yield approximately 250 microwatts depending on the diurnal temperature range. The second part of the energy harvesting process consisted of transforming linear expansion of the bellows into electric power. A system was designed and simulated using Mathworks Simulink and SimDriveline packages that converted the linear oscillations of the bellows into electric power. This was achieved in two steps; a gear train was designed that would convert the linear displacement of the bellows into potential energy stored in a spiral spring. The spiral spring would then periodically engage to a small generator producing electric power. The electrical power generated was found to depend solely on the potential energy stored in the spring. It was discovered that for a sinusoidal force with constant amplitude and frequency, the potential energy stored in the spring depended on the duration of force input and the parameters of the drivetrain such as the spring stiffness, the gear ratios, and the pinion radii. After simulating the system for different parameters, an optimal set of values was presented to maximize the electrical energy output for a given duration of time. For constant amplitude (120 N) sinusoidal force input with a time period of T seconds, the system stored 37 J, 65 J, and 90 J after a time of 3T, 5T, and 7T, respectively. The electric power output was 7.14 microwatts for a conversion efficiency of 5%. The next step is building a physical geartrain generator assembly based on the design presented in the thesis. The physical system will first be verified by simulating the force input using a pneumatic cylinder. The two parts of the research experiment can then be integrated into one system that would generate electric power directly from temporal temperature and pressure variations.

  11. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their output frequency range and power.

  12. Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.

    2015-06-01

    The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.

  13. Estimation of Joule heating and its role in nonlinear electrical response of Tb0.5Sr0.5MnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Nhalil, Hariharan; Elizabeth, Suja

    2016-12-01

    Highly non-linear I-V characteristics and apparent colossal electro-resistance were observed in non-charge ordered manganite Tb0.5Sr0.5MnO3 single crystal in low temperature transport measurements. Significant changes were noticed in top surface temperature of the sample as compared to its base while passing current at low temperature. By analyzing these variations, we realize that the change in surface temperature (ΔTsur) is too small to have caused by the strong negative differential resistance. A more accurate estimation of change in the sample temperature was made by back-calculating the sample temperature from the temperature variation of resistance (R-T) data (ΔTcal), which was found to be higher than ΔTsur. This result indicates that there are large thermal gradients across the sample. The experimentally derived ΔTcal is validated with the help of a simple theoretical model and estimation of Joule heating. Pulse measurements realize substantial reduction in Joule heating. With decrease in sample thickness, Joule heating effect is found to be reduced. Our studies reveal that Joule heating plays a major role in the nonlinear electrical response of Tb0.5Sr0.5MnO3. By careful management of the duty cycle and pulse current I-V measurements, Joule heating can be mitigated to a large extent.

  14. Path homogeneity along a horizontal line-of-sight path during the FESTER experiment: first results

    NASA Astrophysics Data System (ADS)

    Gunter, W. H.; Maritz, B.; Koago, M.; Wainman, C. K.; Gardener, M. E.; February, F.; van Eijk, A. M. J.

    2016-10-01

    The First European South African Experiment (FESTER) was conducted over about a 10 month period at the Institute of Maritime Technology (IMT) in False Bay, South Africa. One of the important goals was the establishment of the air-sea temperature difference (ASTD) homogeneity along the main propagation link atmospheric path since it is a basic assumption for most of the atmospheric turbulence models (caused by refractive index variations). The ASTD was measured from a small scientific work boat (called Sea Lab) moving along a straight in- and outbound track along the main propagation link path. The air temperature on-board was measured using standard weather sensors, while the sea surface temperature was measured using a long wavelength infrared radiometer, which was compared to the bulk sea temperature half a meter below the sea surface. This was obtained by an under water temperature sensor mounted on a `surfboard' that was towed alongside Sea Lab. Vertical water temperature profiles were also measured along the main propagation path in order to determine the depth of the surface mixed layer and thermocline using a Conductivity Temperature Depth profiler (CTD). First results investigated the ASTD variation along the horizontal line-of-sight path used by the principal electro-optic transmission link monitoring equipment (i.e. scintillometer and multi-spectral radiometer-transmissometer system).

  15. Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys

    NASA Astrophysics Data System (ADS)

    Chang, P.-H.; Zhuravlev, I. A.; Belashchenko, K. D.

    2018-04-01

    Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.

  16. Effect of temperature and pressure on the dynamics of nanoconfined propane

    NASA Astrophysics Data System (ADS)

    Gautam, Siddharth; Liu, Tingting; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene; Welch, Susan; Cole, David

    2014-04-01

    We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

  17. Intrapopulation Genome Size Variation in D. melanogaster Reflects Life History Variation and Plasticity

    PubMed Central

    Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.

    2014-01-01

    We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905

  18. Water quality of Lake Austin and Town Lake, Austin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, F.L.; Wells, F.C.; Shelby, W.J.

    1988-01-01

    Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except formore » iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.« less

  19. CALiPER Report 20.3: Robustness of LED PAR38 Lamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-12-30

    A small sample of each of the CALiPER Application Summary Report 20 PAR38 lamp types underwent stress testing that included substantial temperature and humidity changes, electrical variation, and vibration. The results do not directly address expected lifetime, but can be compared with one another, as well as with benchmark conventional products, to assess the relative robustness of the product designs.

  20. Short communication: Variation in the composition and properties of Swedish raw milk for ultra-high-temperature processing.

    PubMed

    Karlsson, Maria A; Langton, Maud; Innings, Fredrik; Wikström, Malin; Lundh, Åse Sternesjö

    2017-04-01

    The composition and properties of raw milk are of great importance for the quality and shelf life of the final dairy product, especially in products with a long shelf life [e.g., ultra-high-temperature (UHT)-treated milk]. The objective of this study was to investigate the compositional variation in raw milk samples before processing at the dairy plant. Moreover, we wanted to investigate the effect of the UHT process on this variation (i.e., if the same variation could be observed in the corresponding UHT milk). The quality traits analyzed included detailed milk composition, counts of total and psychrotrophic bacteria, proteolytic activity, and color, as well as predictive measures of stability (i.e., ethanol stability and heat coagulating time). Samples of raw milk and the corresponding produced UHT milk were collected and analyzed on a monthly basis during 1 yr. Principal component analysis was used to identify months showing similarities and differences with respect to total variation. In contrast to previous studies, we observed only small variations between months and no clear effect of season for the raw milk. For the UHT milk, July and the winter months (December, January, and February) tended to separate from the other months. Quality traits showing significant variation were only to some extent identical in raw milk and UHT-processed milk. A better understanding of the natural variation in raw milk quality will provide opportunities to improve the shelf life of UHT-treated milk products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Inter-Diffusion in the Presence of Free Convection

    NASA Technical Reports Server (NTRS)

    Gupta, Prabhat K.

    1999-01-01

    Because of their technological importance, establishment of the precise values of interdiffusion coefficients is important in multicomponent fluid systems. Such values are not available because diffusion is influenced by free convection due to compositionally induced density variations. In this project, earth based diffusion experiments are being performed in a viscous fluid system PbO-SiO2 at temperatures between 500-1000 C. This system is chosen because it shows a large variation in density with small changes in composition and is expected to show a large free convection effect. Infinite diffusion couples at different temperatures and times are being studied with different orientations with respect to gravity. Composition fields will be measured using an Electron Microprobe Analyzer and will be compared with the results of a complementary modeling study to extract the values of the true diffusion coefficient from the measured diffusion profiles.

  2. High-Temperature Slow Crack Growth of Silicon Carbide Determined by Constant-Stress-Rate and Constant-Stress Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung H.; Salem, J. A.; Nemeth, N. N.

    1998-01-01

    High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.

  3. High-sensitivity density fluctuation detector

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hoeft, T.

    1987-01-01

    A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.

  4. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Morteza; Shokrgozar, Mohammad A.; Behzadi, Shahed

    2013-03-01

    It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature.It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32551b

  5. Method for identifying anomalous terrestrial heat flows

    DOEpatents

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  6. Effects of Long Term Thermal Exposure on Chemically Pure (CP) Titanium Grade 2 Room Temperature Tensile Properties and Microstructure

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2007-01-01

    Room temperature tensile testing of Chemically Pure (CP) Titanium Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K for times up to 5,000 h. No significant changes in microstructure or failure mechanism were observed. A statistical analysis of the data was performed. Small statistical differences were found, but all properties were well above minimum values for CP Ti Grade 2 as defined by ASTM standards and likely would fall within normal variation of the material.

  7. Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas

    NASA Astrophysics Data System (ADS)

    Liu, Yechi

    2018-06-01

    The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.

  8. Compressible flow at high pressure with linear equation of state

    NASA Astrophysics Data System (ADS)

    Sirignano, William A.

    2018-05-01

    Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.

  9. Temperature-Dependent Second Shell Interference in the First Shell Analysis of Crystalline InP X-ray Absorption Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Schnohr, Claudia S.; Araujo, Leandro L.; Ridgway, Mark C.

    2014-09-01

    Analysing only the first nearest neighbour (NN) scattering signal is a commonly used and often successful way to treat extended X-ray absorption fine structure data. However, using temperature-dependent measurements of InP as an example, we demonstrate how this approach can lead to erroneous first NN structural parameters in systems with a weak first but strong second NN scatterer. In such cases, particularly low temperature data may suffer from an overlap of first and second NN scattering signals caused by the Fourier transformation (FT) even if the dominant peaks appear to be well separated. The first NN structural parameters then vary as a function of the FT settings if only the first NN scattering contribution is considered in the analysis. Although this variation is small, it can also lead to significant differences in other calculated properties such as the Einstein temperature. We demonstrate that these variations can be avoided either by choosing an appropriate FT window or by including the scattering contributions of higher shells in the analysis. The latter is achieved by a path fitting approach and yields structural parameters independent of the FT settings used.

  10. Inverse problem and variation method to optimize cascade heat exchange network in central heating system

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin

    2017-12-01

    Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.

  11. Multiferroic properties of microwave sintered PbFe12-xO19-δ

    NASA Astrophysics Data System (ADS)

    Prathap, S.; Madhuri, W.

    2017-05-01

    The effect of iron deficiency on the structural, electrical, ferroelectric and magnetic properties of nano PbFe12-xO19-δ (where x=0.0, 0.25, 0.50, 0.75, 1.0) hexaferrites prepared by sol-gel auto combustion and processed by microwaves are investigated. X-ray analysis confirms single phase magneto-plumbite phase formation. The surface morphology is studied from Field Emission Scanning Electron Microscope. Further, optical properties are investigated using Fourier Transform Infrared spectra and UV-visible spectra. AC electrical conductivity is estimated as a function of temperature and frequency in the range of room temperature (RT) to 500 °C and 100 Hz to 5MHz. AC electrical conduction analysis shows that conduction is mainly due to small polaron hopping mechanism. The variation of polarization with applied electric field exhibits hysteresis loop confirming the ferroelectric nature. The initial permeability studies with varying temperature reveals that the Curie transition temperature for the present series is around 400 °C. Variation of initial permeability with frequency ranging from 100 to 5 MHz shows a constant value (except for x=0.0) opening avenues for high frequency applications.

  12. Dynamic Switching of Helical Microgel Ribbons.

    PubMed

    Zhang, Hang; Mourran, Ahmed; Möller, Martin

    2017-03-08

    We report on a microscopic poly(N-isopropylacrylamide) hydrogel ribbon, coated by a thin gold layer, that shows helical coiling. Confined swelling and shrinkage of the hydrogel below and above its characteristic volume phase transition leads to a temperature actuated reversal of the sense of the helix. The extent and the shape of the winding are controlled by the dimensions and mechanical properties of the bilayer ribbon. We focus on a cylindrical helix geometry and monitor the morphing under equilibrium and nonequilibrium conditions, that is, when the temperature changes faster than the volume (millisecond range). For slow temperature variations, the water release and uptake follow the equilibrium transition trajectory determined by the time needed for the diffusion of water into and out of the microscopic gel. Much faster variations of the temperature are accomplished by internal heating of embedded gold nanorods by IR-light irradiation. This causes elastic stresses that strongly affect the motions. This method enables well-reproducible deviations from the equilibrium transition path and allows us to control rather precisely the spatiotemporal transformation in a cyclic repetitive process. Actuation and response are sensitive to small variations of temperature and composition of the aqueous sol in which the gel is immersed. The principle as described may be used to detect specific analytes that bind either to the surface of the gold layer or within the gel and can modify the interaction between the water and the gel. The reported nonequilibrium morphing implies that the system dissipates energy and may also be able to perform work as required for a microscopic motor.

  13. Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound

    NASA Astrophysics Data System (ADS)

    Mohamed, C. Ben; Karoui, K.; Saidi, S.; Guidara, K.; Rhaiem, A. Ben

    2014-10-01

    The [(C2H5)NH3]2CdCl4 hybrid material was prepared and its calorimetric study and electric properties were investigated at low temperature. The X-ray powder diffractogram has shown that the compound is crystallized in the orthorhombic system with Abma space group, and the refined unit cell parameters are a=7.546 Å, b=7.443 Å, and c=21.831 Å. The calorimetric study has revealed two endothermic peaks at 216 K and 357 K, which are confirmed by the variation of fp and σdc as a function of temperature. The equivalent circuit based on the Z-View-software was proposed and the conduction mechanisms were determined. The obtained results have been discussed in terms of the correlated barrier hopping model (CBH) in phase I (low temperature (OLT)), non-overlapping small polaron tunneling model (NSPT) in phase II (room temperature (ORT)) and the overlapping large polaron tunneling model in phase III (high temperature (OHT)). The density of localized states NF(E) at the Fermi level and the binding energy Wm were calculated. The variation of the dielectric loss log(εʺ) with log(ω) was found to follow the empirical law, ε″=B ωm(T).

  14. Portfolio effects, climate change, and the persistence of small populations: analyses on the rare plant Saussurea weberi.

    PubMed

    Abbott, Ronald E; Doak, Daniel F; Peterson, Megan L

    2017-04-01

    The mechanisms that stabilize small populations in the face of environmental variation are crucial to their long-term persistence. Building from diversity-stability concepts in community ecology, within-population diversity is gaining attention as an important component of population stability. Genetic and microhabitat variation within populations can generate diverse responses to common environmental fluctuations, dampening temporal variability across the population as a whole through portfolio effects. Yet, the potential for portfolio effects to operate at small scales within populations or to change with systematic environmental shifts, such as climate change, remain largely unexplored. We tracked the abundance of a rare alpine perennial plant, Saussurea weberi, in 49 1-m 2 plots within a single population over 20 yr. We estimated among-plot correlations in log annual growth rate to test for population-level synchrony and quantify portfolio effects across the 20-yr study period and also in 5-yr subsets based on June temperature quartiles. Asynchrony among plots, due to different plot-level responses to June temperature, reduced overall fluctuations in abundance and the probability of decline in population models, even when accounting for the effects of density dependence on dynamics. However, plots became more synchronous and portfolio effects decreased during the warmest years of the study, suggesting that future climate warming may erode stabilizing mechanisms in populations of this rare plant. © 2017 by the Ecological Society of America.

  15. Within-season variability of fighting behaviour in an Australian alpine grasshopper

    PubMed Central

    Muschett, Giselle; Umbers, Kate D. L.; Herberstein, Marie E.

    2017-01-01

    Throughout the breeding season, changing environmental and biological conditions can lead to variation in the reproductive landscape of many species. In alpine environments temperature is a key driver of behaviour for small ectotherms such as insects, but variable biotic factors such as mate quality and availability can also influence behaviour. Kosicuscola tristis is a small semelparous grasshopper of the Australian alpine region. In a rare behaviour among grasshoppers, K. tristis males engage in vigorous fights over access to females, involving mandible displays, kicking, biting and grappling. In this study we describe the variation in fighting behaviour of K. tristis throughout the breeding season and test several hypotheses related to temperature, body size, mating behaviour, and female quality. We show that K. tristis males are more aggressive toward each other at the end of the breeding season than at the beginning. This increased aggression is associated with decreased daily average temperatures (from ~20°C to ~9°C), decreased mating activity, increased female fecundity, and an unexpected trend toward an increase in female-to-male aggression. These results suggest that K. tristis is likely under increased selective pressure to time key life cycle events with favourable biological and climatic conditions. The stochastic nature of alpine environments combined with a relatively short life span and breeding season, as well as limited mating opportunities toward the end of the season may have contributed to the evolution of this extraordinary mating system. PMID:28403243

  16. The localized effect of the Bi level on the valence band in the dilute bismuth GaBixAs1-x alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Zhu, Min-Min; Wang, Jun; Wang, Sha-Sha; Lu, Ke-Qing

    2018-05-01

    The research on the temperature dependence of the band gap energy of the dilute bismuth GaBixAs1-x alloy has been done. It is found that its temperature insensitiveness is due to the enhanced localized character of the valence band state and the small decrease of the temperature coefficient for the conduction band minimum (CBM). The enhanced localized character of the valence band state is the main factor. In order to describe the localized effect of the Bi levels on the valence band, the localized energy is introduced into the Varshni's equation. It is found that the effect of the localized Bi level on the valence band becomes strong with increasing Bi content. In addition, it is found that the pressure dependence of the band gap energy of GaBixAs1-x does not seem to be influenced by the localized Bi levels. It is due to two factors. One is that the pressure dependence of the band gap energy is mainly determined by the D CBM of GaBixAs1-x. The D CBM of GaBixAs1-x is not influenced by the localized Bi levels. The other is that the small variation of the pressure coefficient for the D valence band maximum (VBM) state of GaBixAs1-x can be cancelled by the variation of the pressure coefficient for the D CBM state of GaBixAs1-x.

  17. Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel.

    PubMed

    Perrier, Frédéric; Richon, Patrick; Gautam, Umesh; Tiwari, Dilli Ram; Shrestha, Prithvi; Sapkota, Soma Nath

    2007-01-01

    The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.

  18. Diurnal blood pressure variations are associated with changes in distal-proximal skin temperature gradient.

    PubMed

    Kräuchi, Kurt; Gompper, Britta; Hauenstein, Daniela; Flammer, Josef; Pflüger, Marlon; Studerus, Erich; Schötzau, Andy; Orgül, Selim

    2012-11-01

    It is generally assumed that skin vascular resistance contributes only to a small extent to total peripheral resistance and hence to blood pressure (BP). However, little is known about the impact of skin blood flow (SBF) changes on the diurnal variations of BP under ambulatory conditions. The main aim of the study was to determine whether diurnal patterns of distal SBF are related to mean arterial BP (MAP). Twenty-four-hour ambulatory measurements of BP, heart rate (HR) and distal (mean of hands and feet) as well as proximal (mean of sternum and infraclavicular region) skin temperatures were carried out in 51 patients (men/women = 18/33) during a 2-d eye hospital investigation. The standardized ambulatory protocol allowed measurements with minimal interference from uncontrolled parameters and, hence, some conclusive interpretations. The distal minus proximal skin temperature gradient (DPG) provided a measure for distal SBF. Individual cross-correlation analyses revealed that the diurnal pattern of MAP was nearly a mirror image of DPG and hence of distal SBF. Scheduled lunch and dinner induced an increase in DPG and a decline in MAP, while HR increased. Low daytime DPG (i.e. low distal SBF) levels significantly predicted sleep-induced BP dipping (r = -.436, p = .0014). Preliminary path analysis suggested that outdoor air temperature and atmospheric pressure may act on MAP via changed distal SBF. Changes in distal SBF may contribute to diurnal variation in MAP, including sleep-induced BP dipping and changes related to food intake. This finding might have an impact on individual cardiovascular risk prediction with respect to diurnal, seasonal and weather variations; however, the underlying mechanisms remain to be discovered.

  19. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change.

    PubMed

    Woods, H Arthur; Dillon, Michael E; Pincebourde, Sylvain

    2015-12-01

    We analyze the effects of changing patterns of thermal availability, in space and time, on the performance of small ectotherms. We approach this problem by breaking it into a series of smaller steps, focusing on: (1) how macroclimates interact with living and nonliving objects in the environment to produce a mosaic of thermal microclimates and (2) how mobile ectotherms filter those microclimates into realized body temperatures by moving around in them. Although the first step (generation of mosaics) is conceptually straightforward, there still exists no general framework for predicting spatial and temporal patterns of microclimatic variation. We organize potential variation along three axes-the nature of the objects producing the microclimates (abiotic versus biotic), how microclimates translate macroclimatic variation (amplify versus buffer), and the temporal and spatial scales over which microclimatic conditions vary (long versus short). From this organization, we propose several general rules about patterns of microclimatic diversity. To examine the second step (behavioral sampling of locally available microclimates), we construct a set of models that simulate ectotherms moving on a thermal landscape according to simple sets of diffusion-based rules. The models explore the effects of both changes in body size (which affect the time scale over which organisms integrate operative body temperatures) and increases in the mean and variance of temperature on the thermal landscape. Collectively, the models indicate that both simple behavioral rules and interactions between body size and spatial patterns of thermal variation can profoundly affect the distribution of realized body temperatures experienced by ectotherms. These analyses emphasize the rich set of problems still to solve before arriving at a general, predictive theory of the biological consequences of climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  1. Effects of Humidity Variation on the Hantavirus Infection and Hemorrhagic Fever with Renal Syndrome Occurrence in Subtropical China

    PubMed Central

    Xiao, Hong; Huang, Ru; Gao, Li-Dong; Huang, Cun-Rui; Lin, Xiao-Ling; Li, Na; Liu, Hai-Ning; Tong, Shi-Lu; Tian, Huai-Yu

    2016-01-01

    Infection rates of rodents have a significant influence on the transmission of hemorrhagic fever with renal syndrome (HFRS). In this study, four cities and two counties with high HFRS incidence in eastern Hunan Province in China were studied, and surveillance data of rodents, as well as HFRS cases and related environmental variables from 2007 to 2010, were collected. Results indicate that the distribution and infection rates of rodents are closely associated with environmental conditions. Hantavirus infections in rodents were positively correlated with temperature vegetation dryness index and negatively correlated with elevation. The predictive risk maps based on multivariate regression model revealed that the annual variation of infection risks is small, whereas monthly variation is large and corresponded well to the seasonal variation of human HFRS incidence. The identification of risk factors and risk prediction provides decision support for rodent surveillance and the prevention and control of HFRS. PMID:26711521

  2. Assessing the accuracy of globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate

    NASA Astrophysics Data System (ADS)

    Khrit, N. G.; Alghoul, M. A.; Sopian, K.; Lahimer, A. A.; Elayeb, O. K.

    2017-11-01

    Assessing outdoor human thermal comfort and urban climate quality require experimental investigation of microclimatic conditions and their variations in open urban spaces. For this, it is essential to provide quantitative information on air temperature, humidity, wind velocity and mean radiant temperature. These parameters can be quantified directly except mean radiant temperature (Tmrt). The most accurate method to quantify Tmrt is integral radiation measurements (3-D shortwave and long-wave) which require using expensive radiometer instruments. To overcome this limitation the well-known globe thermometer method was suggested to calculate Tmrt. The aim of this study was to assess the possibility of using indoor globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate. Globe thermometer method using small and large sizes of black-painted copper globes (50mm, 150mm) were used to estimate Tmrt and compare it with the reference Tmrt estimated by integral radiation method. The results revealed that the globe thermometer method considerably overestimated Tmrt during the middle of the day and slightly underestimated it in the morning and late evening. The difference between the two methods was obvious when the amount of incoming solar radiation was high. The results also showed that the effect of globe size on the estimated Tmrt is mostly small. Though, the estimated Tmrt by the small globe showed a relatively large amount of scattering caused by rapid changes in radiation and wind speed.

  3. Electrodynamics of the middle atmosphere: Superpressure balloon program

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1987-01-01

    In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.

  4. A role for ocean biota in tropical intraseasonal atmospheric variability

    NASA Astrophysics Data System (ADS)

    Gildor, Hezi; Sobel, Adam H.; Cane, Mark A.; Sambrotto, Raymond N.

    2003-05-01

    We propose that temporal variations within the marine plankton system can induce intraseasonal variations in sea surface temperature (SST) through the effect on solar penetration due to chlorophyll and other optically active organic components. Sensitivity studies with a simple model suggest that these small oscillations in SST may stimulate radiative-convective oscillations in the atmosphere which amplify them and thus induce or modulate significant variability in the coupled system. Long term bio-optical measurements in the Western Pacific, where satellite time series are degraded by clouds, would provide a test of our theory and would improve our understanding of the heat balance in this climatically important region.

  5. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  6. Climatic conditions as a risk factor in canine gastric dilatation-volvulus.

    PubMed

    Dennler, R; Koch, D; Hassig, M; Howard, J; Montavon, P M

    2005-01-01

    Canine acute gastric dilatation-volvulus (GDV) is a life-threatening condition of multifactorial origin. The risk of developing GDV is influenced by a variety of factors, including breed, age, gender, temperament, diet and management. A relationship between seasonal variations and the frequency of GDV has been previously documented although no association was found with any specific climatic event. Variables in weather conditions within a defined geographic region were investigated in a retrospective study of 287 client-owned dogs diagnosed with GDV between 1992 and 1999. Monthly incidences were evaluated and differences in atmospheric temperature, humidity and pressure between days in which GDV cases were observed and days in which no case was presented were examined. Although temperature was significantly associated with the occurrence of GDV, the difference in temperatures between days with and days without GDV cases was so small that it is unlikely to be of clinical relevance. Moreover, no significant association was found between GDV occurrence and atmospheric pressure or humidity, and a seasonal variation in GDV incidence was not observed.

  7. Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Beebe, R. F.; Sneden, C.

    1974-01-01

    From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.

  8. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.

    PubMed

    Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao

    2018-04-02

    Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.

  9. Impact of cloud timing on surface temperature and related hydroclimatic dynamics

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Yin, J.

    2015-12-01

    Cloud feedbacks have long been identified as one of the largest source of uncertainty in climate change predictions. Differences in the spatial distribution of clouds and the related impact on surface temperature and climate dynamics have been recently emphasized in quasi-equilibrium General Circulation Models (GCM). However, much less attention has been paid to the temporal variation of cloud presence and thickness. Clouds in fact shade the solar radiation during the daytime, but also acts as greenhouse gas to reduce the emission of longwave radiation to the outer space anytime of the day. Thus it is logical to expect that even small differences in timing and thickness of clouds could result in very different predictions in GCMs. In this study, these two effects of cloud dynamics are analyzed by tracking the cloud impacts on longwave and shortwave radiation in a minimalist transient thermal balance model of the land surface. The marked changes in surface temperature due to alterations in the timing of onset of clouds demonstrate that capturing temporal variation of cloud at sub-daily scale should be a priority in cloud parameterization schemes in GCMs.

  10. Influence of ground surface characteristics on the mean radiant temperature in urban areas.

    PubMed

    Lindberg, Fredrik; Onomura, Shiho; Grimmond, C S B

    2016-09-01

    The effect of variations in land cover on mean radiant temperature (T mrt ) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of ground surface materials on T mrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction in T mrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused T mrt to be underestimated. The implications of using high temporal resolution (e.g. 15 minutes) meteorological forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites.

  11. Geomorphic determinants of species composition of alpine tundra, Glacier National Park, U.S.A.

    USGS Publications Warehouse

    George P. Malanson,; Bengtson, Lindsey E.; Fagre, Daniel B.

    2012-01-01

    Because the distribution of alpine tundra is associated with spatially limited cold climates, global warming may threaten its local extent or existence. This notion has been challenged, however, based on observations of the diversity of alpine tundra in small areas primarily due to topographic variation. The importance of diversity in temperature or moisture conditions caused by topographic variation is an open question, and we extend this to geomorphology more generally. The extent to which geomorphic variation per se, based on relatively easily assessed indicators, can account for the variation in alpine tundra community composition is analyzed versus the inclusion of broad indicators of regional climate variation. Visual assessments of topography are quantified and reduced using principal components analysis (PCA). Observations of species cover are reduced using detrended correspondence analysis (DCA). A “best subsets” regression approach using the Akaike Information Criterion for selection of variables is compared to a simple stepwise regression with DCA scores as the dependent variable and scores on significant PCA axes plus more direct measures of topography as independent variables. Models with geographic coordinates (representing regional climate gradients) excluded explain almost as much variation in community composition as models with them included, although they are important contributors to the latter. The geomorphic variables in the model are those associated with local moisture differences such as snowbeds. The potential local variability of alpine tundra can be a buffer against climate change, but change in precipitation may be as important as change in temperature.

  12. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  13. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    NASA Astrophysics Data System (ADS)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  14. Mantle thermal history during supercontinent assembly and breakup

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Zhong, S.

    2013-12-01

    We use mantle convection simulations driven by plate motion boundary conditions to investigate changes in mantle temperature through time. It has been suggested that circum-Pangean subduction prevented convective thermal mixing between sub-continental and sub-oceanic regions. We performed thermo-chemical simulations of mantle convection with velocity boundary conditions based on plate motions for the past 450 Myr using Earth-like Rayleigh number and ~60% internal heating using three different plate motion models for the last 200 Myr [Lithgow-Bertelloni and Richards 1998; Gurnis et al. 2012; Seton et al. 2012; Zhang et al. 2010]. We quantified changes in upper-mantle temperature between 200-1000 km depth beneath continents (defined as the oldest 30% of Earth's surface) and beneath oceans. Sub-continental upper mantle temperature was relatively stable and high between 330 and 220 Ma, coincident with the existence of the supercontinent Pangea. The average sub-continental temperature during this period was, however, only ~10 K greater than during the preceding 100 Myr. In the ~200 Myr since the breakup of Pangea, sub-continental temperatures have decreased only ~15 K in excess of the 0.02 K/Myr secular cooling present in our models. Sub-oceanic upper mantle temperatures did not vary more than 5 K between 400 and 200 Ma and the cooling trend following Pangea breakup is less pronounced. Recent geochemical observations imply rapid upper mantle cooling of O(10^2) K during continental breakup; our models do not produce warming of this magnitude beneath Pangea or cooling of similar magnitude associated with the breakup of Pangea. Our models differ from those that produce strong sub-continental heating in that the circum-Pangean subduction curtain does not completely inhibit mixing between the sub-continental and sub-oceanic regions and we include significant internal heating, which limits the rate of temperature increase. Heat transport in our simulations is controlled to first order by plate motions. Most of the temporal variability in surface heat flow is driven by variations in seafloor spreading rate and the accompanying changes in slab velocities dominate variations in buoyancy flux at all mantle depths. Variations in plume buoyancy flux are small but are correlated with the slab buoyancy flux variations.

  15. [Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland].

    PubMed

    Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui

    2008-04-01

    By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.

  16. Small Scale Biodiversity of an Alkaline Hot Spring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Walther, K.; Oiler, J.; Meyer-Dombard, D. R.

    2012-12-01

    To date, many phylogenetic diversity studies have been conducted in Yellowstone National Park (YNP) [1-7] focusing on the amplification of the 16S rRNA gene and "metagenomic" datasets. However, few reports focus on diversity at small scales. Here, we report on a small scale biodiversity study of sediment and biofilm communities within a confined area of a YNP hot spring, compare and contrast these communities to other sediment and biofilm communities from previous studies [1-7], and with other sediment and biofilm communities in the same system. Sediment and biofilm samples were collected, using a 30 x 50 cm sampling grid divided in 5 x 5 cm squares, which was placed in the outflow channel of "Bat Pool", an alkaline (pH 7.9) hot spring in YNP. Accompanying geochemical data included a full range of spectrophotometry measurements along with major ions, trace elements, and DIC/DOC. In addition, in situ temperature and conductivity arrays were placed within the grid location. The temperature array closest to the source varied between 83-88°C, while the temperature array 40 cm downstream varied between ~83.5-86.5°C. The two conductivity arrays yielded measurements of 5632 μS and 5710 μS showing little variation within the sampling area. Within the grid space, DO ranged from 0.5-1.33 mg/L, with relatively similar, but slightly lower values down the outflow channel. Sulfide values within the grid ranged from 1020-1671 μg/L, while sulfide values outside of the grid region fluctuated, but generally followed the trend of decreasing from source down the outflow. Despite the relative heterogeneity of chemical and physical parameters in the grid space, there was biological diversity in sediments and biofilms at the 5 cm scale. Small scale biodiversity was analyzed by selecting a representative number of samples from within the grid. DNA was extracted and variable regions V3 and V6 (Archaea and Bacteria, respectively) were sequenced with 454 pyrosequencing. The datasets from each of the samples were randomly subsampled and the same number of sequences was taken from each dataset so that the samples could be directly compared. Using the Ribosomal Database Project Pyrosequencing Pipeline (http://rdp.cme.msu.edu/), the sequences were aligned, complete linkage clustering was performed, Shannon and Chao1 indices were calculated, and rarefaction curves were made. The RDP Classifier tool afforded classification in a taxonomical hierarchy and the samples were compared on the order level to determine the variation of the microbial communities within the sampling grid. Additional alpha and beta diversity indices were also established. Through comparing the samples on the order level, it was determined that there is variation within a small sampling area despite similar geochemical and temperature conditions at the time of sampling. This variation is seen in both the sediment and biofilm communities, primarily seen among Bacteria. [1] Barns, S.M. et al. (1994) PNAS. 91: 1609-1613. [2] Barns, S.M. et al. (1996) PNAS. 93: 9188-9193. [3] Hall, J.R. et al. (2008) AEM. 74(15): 4910-4922. [4] Hugenholtz, P. et al. (1998) JofBac. 180(2): 366-376. [5] Meyer-Dombard, D. R. et al. (2005) Geobio. 3: 211-227. [6] Meyer-Dombard, D.R. et al. (2011) EM. 13(8): 2216-2231. [7] Reysenbach, A.L. et al. (1994) AEM. 60 (6): 2113-2119.

  17. Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando

    2004-01-01

    The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.

  18. Summer stream water temperature models for Great Lakes streams: New York

    USGS Publications Warehouse

    Murphy, Marilyn K.; McKenna, James E.; Butryn, Ryan S.; McDonald, Richard P.

    2010-01-01

    Temperature is one of the most important environmental influences on aquatic organisms. It is a primary driver of physiological rates and many abiotic processes. However, despite extensive research and measurements, synoptic estimates of water temperature are not available for most regions, limiting our ability to make systemwide and large-scale assessments of aquatic resources or estimates of aquatic species abundance and biodiversity. We used subwatershed averaging of point temperature measurements and associated multiscale landscape habitat conditions from over 3,300 lotic sites throughout New York State to develop and train artificial neural network models. Separate models predicting water temperature (in cold, cool, and warm temperature classes) within small catchment–stream order groups were developed for four modeling units, which together encompassed the entire state. Water temperature predictions were then made for each stream segment in the state. All models explained more than 90% of data variation. Elevation, riparian forest cover, landscape slope, and growing degree-days were among the most important model predictors of water temperature classes. Geological influences varied among regions. Predicted temperature distributions within stream networks displayed patterns of generally increasing temperature downstream but were patchy due to the averaging of water temperatures within stream size-classes of small drainages. Models predicted coldwater streams to be most numerous and warmwater streams to be generally associated with the largest rivers and relatively flat agricultural areas and urban areas. Model predictions provide a complete, georeferenced map of summer daytime mean stream temperature potential throughout New York State that can be used for planning and assessment at spatial scales from the stream segment class to the entire state.

  19. Atmospheric circulation patterns and spatial climatic variations in Beringia

    NASA Astrophysics Data System (ADS)

    Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.

    1998-08-01

    Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.

  20. Application and theoretical analysis of the flamelet model for supersonic turbulent combustion flows in the scramjet engine

    NASA Astrophysics Data System (ADS)

    Gao, Zhenxun; Wang, Jingying; Jiang, Chongwen; Lee, Chunhian

    2014-11-01

    In the framework of Reynolds-averaged Navier-Stokes simulation, supersonic turbulent combustion flows at the German Aerospace Centre (DLR) combustor and Japan Aerospace Exploration Agency (JAXA) integrated scramjet engine are numerically simulated using the flamelet model. Based on the DLR combustor case, theoretical analysis and numerical experiments conclude that: the finite rate model only implicitly considers the large-scale turbulent effect and, due to the lack of the small-scale non-equilibrium effect, it would overshoot the peak temperature compared to the flamelet model in general. Furthermore, high-Mach-number compressibility affects the flamelet model mainly through two ways: the spatial pressure variation and the static enthalpy variation due to the kinetic energy. In the flamelet library, the mass fractions of the intermediate species, e.g. OH, are more sensible to the above two effects than the main species such as H2O. Additionally, in the combustion flowfield where the pressure is larger than the value adopted in the generation of the flamelet library or the conversion from the static enthalpy to the kinetic energy occurs, the temperature obtained by the flamelet model without taking compressibility effects into account would be undershot, and vice versa. The static enthalpy variation effect has only little influence on the temperature simulation of the flamelet model, while the effect of the spatial pressure variation may cause relatively large errors. From the JAXA case, it is found that the flamelet model cannot in general be used for an integrated scramjet engine. The existence of the inlet together with the transverse injection scheme could cause large spatial variations of pressure, so the pressure value adopted for the generation of a flamelet library should be fine-tuned according to a pre-simulation of pure mixing.

  1. Physical and biogeochemical correlates of spatio-temporal variation in the δ13C of marine macroalgae

    NASA Astrophysics Data System (ADS)

    Mackey, Andrew P.; Hyndes, Glenn A.; Carvalho, Matheus C.; Eyre, Bradley D.

    2015-05-01

    Carbon isotope ratios (13C/12C) can be used to trace sources of production supporting food chains, as δ13C undergoes relatively small and predictable increases (∼0.5‰) through each trophic level. However, for this technique to be precise, variation in δ13C signatures of different sources of production (baseline sources) must be clearly defined and distinct from each other. Despite this, δ13C in the primary producers of marine systems are highly variable over space and time, due to the complexity of physical and biogeochemical processes that drive δ13C variation at the base of these foodwebs. We measured spatial and temporal variation in the δ13C of two species of macroalgae that are important dietary components of grazers over temperate reefs: the small kelp Ecklonia radiata, and the red alga Plocamium preissianum, and related any variation to a suite of physical and biogeochemical variables. Patterns in δ13C variation, over different spatial (10 s m to 100 km) and temporal scales (weeks to seasons), differed greatly between taxa, but these were partly explained by the δ13C of dissolved inorganic carbon (DIC) and light. However, while the δ13C in E. radiata was not related to water temperature, a highly significant proportion of the spatio-temporal variation in δ13C of P. preissianum was explained by temperature alone. Accordingly, we applied this relationship to project (across temperate Australasia) and forecast (in time, south-western Australia) patterns in P. preissianum δ13C. The mean projected δ13C for P. preissianum in the study region varied by only ∼1‰ over a 12-month period, compared to ∼3‰ over 2000 km. This illustrates the potential scale in the shift of δ13C in baseline food sources over broad scales, and its implications to food web studies. While we show that those relationships differ across taxonomic groups, we recommend developing models to explain variability in δ13C of other baseline sources to facilitate the interpretation of variation in δ13C of consumers in food webs, particularly where data for baselines are absent over broad scales.

  2. Comparative evaluation of thermal stress of fish in a small pond with a fish shelter

    NASA Astrophysics Data System (ADS)

    Ahn, Chang Hyuk; Song, Ho Myeon; Park, Jae Ro; Park, Joon-Ha; Jo, Gyu-Hong; Park, Jum-Ok

    2018-06-01

    This study analyzed the water quality parameters in a fish shelter, which is an artificial structure built in a shallow pond, during early summer. The results of the water quality parameter analyses measured at St. 1 (open water space) and St. 2 (fish shelter) indicated that the fish shelter provides a stable space for fish, with lower water temperatures and less daily water quality variations in the early summer season than the open water space. Due to the temperature reduction and stable effects of these fish shelters, in this study, we found that there was an effect of reducing thermal stress for the Acheilognathinae during early summer. As such, if the fish shelter is introduced into the small pond applied to the urban area, it can be effective for reducing the thermal stress of the Acheilognathinae. In the future, we will need to carry out more detailed research based on this data.

  3. Magnetic Penetration Effects in Small Superconducting Devices

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W.-T.; Kelly, D. P.; Nagler, P. C.; Porst, J.-P.; Sadleir, J. E.; hide

    2011-01-01

    The temperature dependent behavior of a superconducting body in an applied magnetic field involves flux penetration/expulsion both from screening currents (within a magnetic penetration depth) and variations in the superconducting order parameter (locally to form vortices or a mixed state, or globally in the Meissner effect). The temperature dependence of the magnetic penetration depth, in particular, has been used to make highly sensitive macroscopic thermometers. For the microscopic device volumes required in sensitive low temperature photon detectors, properties of actual thin film materials, non-uniformity of applied magnetic fields, and the influence of measurement circuit dynamics are complicating factors. We discuss the various penetration effects as demonstrated in a particularly promising combination of material and geometry that we have used to make sensitive x-ray microcalorimeters.

  4. Enhanced ferromagnetic properties and high temperature dielectric anomalies in Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} prepared by hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharathi, K. Kamala, E-mail: kkamalabharathi@gmail.com; Ramesh, G.; Patro, L.N.

    2015-02-15

    Graphical abstract: Temperature variation of dielectric constant of Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} at various frequencies as a function of temperature indicating anomalies at 420 and 540 K. - Highlights: • Substitution of Sm ions for Bi enhances the saturation magnetization of BiFeO{sub 3}. • XPS studies indicate the creation of oxygen vacancies upon Ca substitution. • Dielectric measurements show dielectric anomalies at high temperatures. • Raman spectra at high temperatures confirm the dielectric anomaly temperatures. - Abstract: Enhanced ferromagnetic properties and high temperature dielectric anomalies in the temperature range of 300–873 K in Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} (BCSFO)more » prepared by hydrothermal method are reported. BiFeO{sub 3} is seen to crystallize in rhombohedrally distorted perovskite structure without any impurity phase. Substitution of small amount of Ca and Sm (Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3}) leads to increase in the lattice constant values and formation of small amount of secondary phase. Magnetization curve of pure BFO indicates very weak ferromagnetism combined with antiferromagnetic nature of the samples. Whereas, BCSFO sample shows very clear and enhanced ferromagnetic nature. Saturation magnetization and Neel’s temperature values are found to be 4.36 emu/g and 664 K, respectively. X-ray photoelectron spectroscopy indicates the creation of oxygen vacancies upon Ca substitution in Bi site. Dielectric anomalies at 420 and 540 K were observed for Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} from the temperature variation of dielectric constant and specific heat capacity measurements. Observation of dielectric anomalies in pure BiFeO{sub 3} sample reveals that the origin of dielectric peaks is purely from the primary phase. Raman spectroscopy study indicates a clear shift and broadening of A modes (between 100 and 200 cm{sup −1}) at the dielectric anomaly temperatures supporting the observed dielectric anomalies.« less

  5. First laboratory high-temperature emissivity measurements of Venus analog measurements in the near-infrared atmospheric windows

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.

    2014-12-01

    The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering new instrument designs for future Venus missions.

  6. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    PubMed Central

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  7. Infrared-temperature variability in a large agricultural field

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. J.

    1981-01-01

    Dunnigan Agro-Meteorological Experiment airborne thermal scanner images of a large varying-terrain barley field are acquired and analyzed. Temperature variability that may occur within instantaneous fields of view (IFOV) is defined (coefficient of variation: standard deviation/mean temperature in degrees C), and the percentage of the area within various IFOV's within + or - 1, 2, 3, and 5 degrees of the mean is determined. With the exception of very rugged terrain, over 80% of the area within 4, 16, 65 and 258 ha cells was at temperatures within + or - 3 C of the mean cell temperature. Remote measurements of field temperature appeared to be slightly influenced by pixel size in the range 4 ha to 259 ha, and the area percentage within any pixel which contributes within + or - 1, 2, 3, and 5 degrees C of the mean, is nominally the same. In conclusion, no great advantage is found in utilizing a small IFOV instead of a large one for remote sensing of crop temperature.

  8. Behavioral Adjustments by a Small Neotropical Primate (Callithrix jacchus) in a Semiarid Caatinga Environment

    PubMed Central

    De la Fuente, María Fernanda Castellón; Souto, Antonio; Sampaio, Marilian Boachá; Schiel, Nicola

    2014-01-01

    We provide the first information on the behavior of a small primate (Callithrix jacchus) inhabiting a semiarid Caatinga environment in northeastern Brazil. We observed behavioral variations in response to temperature fluctuation throughout the day. Due to the high temperatures, low precipitation, and resource scarcity in the Caatinga, as well as the lack of physiological adaptations (e.g., a highly concentrated urine and a carotid rete to cool down the brain) of these primates, we expected that the common marmosets would exhibit behavioral adjustments, such as a prolonged resting period or the use of a large home range. During the six-month period, we collected 246 hours of behavioral data of two groups (10 individuals) of Callithrix jacchus. Most of the observed behavioral patterns were influenced by temperature fluctuation. Animals rested longer and reduced other activities, such as foraging, when temperatures were higher. Both study groups exploited home ranges of 2.21–3.26 ha, which is within the range described for common marmosets inhabiting the Atlantic Forest. Our findings confirm that common marmosets inhabiting the Caatinga adjust their behavioral patterns to cope with the high temperatures that characterize this environment and highlight their ability to survive across a wide range of different environmental conditions. PMID:25431785

  9. Behavioral adjustments by a small neotropical primate (Callithrix jacchus) in a semiarid Caatinga environment.

    PubMed

    De la Fuente, María Fernanda Castellón; Souto, Antonio; Sampaio, Marilian Boachá; Schiel, Nicola

    2014-01-01

    We provide the first information on the behavior of a small primate (Callithrix jacchus) inhabiting a semiarid Caatinga environment in northeastern Brazil. We observed behavioral variations in response to temperature fluctuation throughout the day. Due to the high temperatures, low precipitation, and resource scarcity in the Caatinga, as well as the lack of physiological adaptations (e.g., a highly concentrated urine and a carotid rete to cool down the brain) of these primates, we expected that the common marmosets would exhibit behavioral adjustments, such as a prolonged resting period or the use of a large home range. During the six-month period, we collected 246 hours of behavioral data of two groups (10 individuals) of Callithrix jacchus. Most of the observed behavioral patterns were influenced by temperature fluctuation. Animals rested longer and reduced other activities, such as foraging, when temperatures were higher. Both study groups exploited home ranges of 2.21-3.26 ha, which is within the range described for common marmosets inhabiting the Atlantic Forest. Our findings confirm that common marmosets inhabiting the Caatinga adjust their behavioral patterns to cope with the high temperatures that characterize this environment and highlight their ability to survive across a wide range of different environmental conditions.

  10. How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates

    NASA Astrophysics Data System (ADS)

    Zwarts, Leo; Wanink, Jan H.

    For several reasons, waders in the Wadden Sea face a large seasonal and annual variation in their food supply. Observations on a tidal flat in the Dutch Wadden Sea have shown that: - (1) The average energy density of ten invertebrate prey species varies between 21 and 23 kJ·g -1 AFDW. In Scrobicularia plana and Mya arenaria, but not in Macoma balthica, the energy density is 10% lower in winter than in summer. - (2) Depending on the species, body weights of prey of similar size are 30 to 60% lower in winter than in summer. - (3) The year-to-year fluctuation in standing-crop biomass is larger in some species than in others, the difference depending mainly on the frequency of successful recruitment. The overall biomass of the macrobenthos in winter is half of that in summer, but the timing of the peak biomass differs per species. - (4) The burying depth varies per species: Cerastoderma edule live just beneath the surface, while M. balthica, S. plana, M. arenaria, Arenicola marina and Nereis diversicolor bury more deeply and the majority of these prey live out of reach of the bird's bill. In all six species, burying depth increases with size. There is no seasonal variation in depth of C. edule and M. arenaria, but the four other species live at most shallow depth in early summer and most deeply in midwinter. Burying depths in winter vary from year to year, but are unrelated to temperature. Neither has temperature any effect on depth within months. For knot Calidris canutus feeding on M. balthica, the fluctuation in the accessible fraction was the main source of variation in the biomass of prey that is actually harvestable, i.e. the biomass of prey of suitable size that is accessible. Accordingly, the paper reviews the available data on the temporal variations in accessibility, detectability, ingestibility, digestibility and profitability of prey for waders. Only a small part of the prey is harvestable since many accessible prey are ignored because of their low profitability, while many profitable prey are inaccessible. The profitability of prey depends on their size and weight but also on their depth in the mud, since handling time increases with burying depth. A simple biomechanical rule explains why the handling time of small prey increases with bill length and why large, long-billed waders ignore a disproportionately larger part of the small prey. The fraction detectable for visually feeding waders is usually very low, especially when the temperature of the substrate is below 3-6°C. Waders vary their prey choice over the year in response to the changes in the availability and profitability of their different prey species. The food supply harvestable by waders is much lower in winter than in summer. For waders wintering in the Wadden Sea, the food supply may be characterized as unpredictable and usually meagre. Waders wintering in NW Europe are concentrated in coastal sites where the average surface temperature is above 3°C. This probably cannot be explained by a greater burying depth, and only partly by a lower body condition, of prey in colder areas. Yet the harvestable fraction is lower in colder sites, especially for sight-feeding waders, as invertebrates are less active at low temperatures. However, the lower energetic cost of living and reduced chances of the prey being covered by ice may also contribute to the waders' preference for warmer sites.

  11. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    NASA Astrophysics Data System (ADS)

    Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.

    2018-06-01

    The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.

  12. The influence of diurnal temperatures on the hydrochemistry of a tufa-depositing stream

    NASA Astrophysics Data System (ADS)

    Drysdale, R.; Lucas, S.; Carthew, K.

    2003-12-01

    At-a-station diurnal variations in carbonate hydrochemistry were measured during four observation periods at Davys Creek, a tufa-depositing stream in central NSW, Australia. Major ion concentrations and continuously logged measurements of specific conductivity, pH and temperature showed that changes in the amount of CaCO3 deposited upstream of the study reach were directly related to changes in diurnal water temperatures, which control the rate of CO2 efflux to the atmosphere. The greatest upstream losses occurred during the mid-afternoon water temperature peak, whereas the lowest upstream losses occurred at sunrise, when water temperatures were at their lowest. Cloudy days at all times of the year produced small diurnal water temperatures ranges (c. 2-5°C) and, consequently, relatively small changes in upstream CaCO3 loss (23-50 mg L-1) through the day. Clear sunny days, especially during summer months, produced large diurnal water temperature changes (up to c. 11°C), which in turn triggered diurnal changes in upstream CaCO3 loss of up to 100 mg L-1. By implication, the active reach of tufa deposition must advance downstream and increase in length during the evening and vice versa during the day. Given that the temperature of Davys Creek waters are a function of insolation, changes in the reach of tufa deposition under baseflow conditions are a direct function of the prevailing weather. This has implications for the palaeoclimatic interpretation of fossil tufa deposits. Copyright

  13. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.

    PubMed

    O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N

    2017-12-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.

  14. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats

    PubMed Central

    Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries

    2017-01-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats (Molossus molossus) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature. Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known. PMID:29308259

  15. One-step synthesis of highly dispersed gold nanocrystals on silica spheres.

    PubMed

    Phonthammachai, Nopphawan; White, Timothy J

    2007-11-06

    Highly dispersed gold nanocrystals decorating silica spheres were prepared from HAuCl4 and NaOH via a deposition-precipitation (DP) process, in which the isoelectric point (IEP) of the substrate was adjusted during sphere synthesis by interaction of the surface with ammonia molecules. Through the systematic variation of pH (4-8), reaction temperature (65-96 degrees C), and time (10-30 min), a superior product with small (2-5 nm), homogeneously distributed gold crystals was obtained at pH 7 and a reaction temperature of 96 degrees C. These materials will offer enhanced performance as catalysts and contrast enhancers in biomedical imaging.

  16. Safety Performance of Exterior Wall Insulation Material Based on Large Security Concept

    NASA Astrophysics Data System (ADS)

    Zuo, Q. L.; Wang, Y. J.; Li, J. S.

    2018-05-01

    In order to evaluate the fire spread characteristics of building insulation materials under corner fire, an experiment is carried out with small-scale fire spread test system. The change rule of the parameters such as the average height of the flame, the average temperature of the flame and the shape of the flame are analyzed. The variations of the fire spread characteristic parameters of the building insulation materials are investigated. The results show that the average temperature of Expanded Polystyrene (EPS) board, with different thickness, decrease - rise - decrease - increase. During the combustion process, the fire of 4cm thick plate spreads faster.

  17. A ferroelectric model for the low emissivity highlands on Venus

    NASA Technical Reports Server (NTRS)

    Shepard, Michael K.; Arvidson, Raymond E.; Brackett, Robert A.; Fegley, Bruce, Jr.

    1994-01-01

    A model to explain the low emissivity venusian highlands is proposed utilizing the temperature-dependent dielectric constant of ferroelectric minerals. Ferroelectric minerals are known to occur in alkaline and carbonite rocks, both of which are plausible for Venus. Ferroelectric minerals possess extremely high dielectric constants (10(exp 5)) over small temperature intervals and are only required in minor (much less than 1%) abundances to explain the observed emissivities. The ferroelectric model can account for: (1) the observed reduction in emissivity with increased altitude, (2) the abrupt return to normal emissivities at highest elevations, and (3) the variations in the critical elevation observed from region to region.

  18. A mesoscale analysis of the pre-storm environment on the 17 June 1986 COHMEX day. [Cooperative Huntsville Meteorological Experiment

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Schudalla, Ronald L.

    1989-01-01

    The study presented utilized special mesoscale Cooperative Huntsville Meteorological Experiment (COHMEX) data to understand the evolution of the preconvective environment on June 17, 1986. Using the special mesoscale COHMEX data, several mechanisms for triggering the convection are investigated. Afternoon heating probably was a major factor as observed noontime temperatures were near the sounding-derived convection temperatures. The special surface network revealed a quasi-stationary area of convergence not aligned with the front that may be associated with the orography of the area. This study demonstrates that rapid, small scale atmospheric variations preceded convective development on June 17, 1986.

  19. Curvature-correction-based time-domain CMOS smart temperature sensor with an inaccuracy of -0.8 °C-1.2 °C after one-point calibration from -40 °C to 120 °C

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Lin, Shih-Hao; Lin, Yi

    2014-06-01

    This paper proposes a time-domain CMOS smart temperature sensor featuring on-chip curvature correction and one-point calibration support for thermal management systems. Time-domain inverter-based temperature sensors, which exhibit the advantages of low power and low cost, have been proposed for on-chip thermal monitoring. However, the curvature is large for the thermal transfer curve, which substantially affects the accuracy as the temperature range increases. Another problem is that the inverter is sensitive to process variations, resulting in difficulty for the sensors to achieve an acceptable accuracy for one-point calibration. To overcome these two problems, a temperature-dependent oscillator with curvature correction is proposed to increase the linearity of the oscillatory width, thereby resolving the drawback caused by a costly off-chip second-order master curve fitting. For one-point calibration support, an adjustable-gain time amplifier was adopted to eliminate the effect of process variations, with the assistance of a calibration circuit. The proposed circuit occupied a small area of 0.073 mm2 and was fabricated in a TSMC CMOS 0.35-μm 2P4M digital process. The linearization of the oscillator and the effect cancellation of process variations enabled the sensor, which featured a fixed resolution of 0.049 °C/LSB, to achieve an optimal inaccuracy of -0.8 °C to 1.2 °C after one-point calibration of 12 test chips from -40 °C to 120 °C. The power consumption was 35 μW at a sample rate of 10 samples/s.

  20. Multispectral infrared target detection: phenomenology and modeling

    NASA Astrophysics Data System (ADS)

    Cederquist, Jack N.; Rogne, Timothy J.; Schwartz, Craig R.

    1993-10-01

    Many targets of interest provide only very small signature differences from the clutter background. The ability to detect these small difference targets should be improved by using data which is diverse in space, time, wavelength or some other observable. Target materials often differ from background materials in the variation of their reflectance or emittance with wavelength. A multispectral sensor is therefore considered as a means to improve detection of small signal targets. If this sensor operates in the thermal infrared, it will not need solar illumination and will be useful at night as well as during the day. An understanding of the phenomenology of the spectral properties of materials and an ability to model and simulate target and clutter signatures is needed to understand potential target detection performance from multispectral infrared sensor data. Spectral variations in material emittance are due to vibrational energy transitions in molecular bonds. The spectral emittances of many materials of interest have been measured. Examples are vegetation, soil, construction and road materials, and paints. A multispectral infrared signature model has been developed which includes target and background temperature and emissivity, sky, sun, cloud and background irradiance, multiple reflection effects, path radiance, and atmospheric attenuation. This model can be used to predict multispectral infrared signatures for small signal targets.

  1. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  2. Étude de la variation spatio-temporelle des paramètres physico-chimiques caractérisant la qualité des eaux d'une lagune côtière et ses zonations écologiques : cas de Moulay Bousselham, Maroc

    NASA Astrophysics Data System (ADS)

    Labbardi, Hanane; Ettahiri, Omar; Lazar, Said; Massik, Zakia; El Antri, Said

    2005-04-01

    Our interest is related to the hydrological characteristics of the Moulay Bousselham lagoon. Water samples were taken monthly from July 2001 to June 2002 in 15 stations distributed along the lagoon. The various measured hydrological parameters (temperature, salinity, suspended matter, chlorophyll a) showed significant monthly variations ( p<0.001), whereas spatially among all sampled stations, only the salinity showed significant variations. The variability analysis approached by the analysis of the normalized principal components combined with discriminate analysis showed very small inter-stations variability. Its percentage is 11% and 9% of the total variance during high and low tide, respectively. To cite this article: H. Labbardi et al., C. R. Geoscience 337 (2005).

  3. Nonlinear Spectroscopy of Multicomponent Droplets and Two- and Three Dimensional Measurements in Flames.

    DTIC Science & Technology

    1994-03-31

    fluorescence intensity with temperature , which allows the fuel cn ce to be found directly from the acetaldehyde fluorescence. An alternative means of measuring... oxidizer . The measured quantities are used to form 17 a conserved scalar from which the mixtur fraction is determined in an iterative process. We have...turbulent nonpemIixed acetaklehyde flame. Acetaldehyde (CH3CHO) was chosen for its relatively high fluorescence yield and small variation of

  4. Seasonal and Meteorological Effects on Activity of Chrysops Variegatus (Diptera: Tabanidae) in Paraguay

    DTIC Science & Technology

    1986-06-01

    weeks of peak tabanid abundance. Temperature, humidity, and wind accounted for 89%) of the variation observed during the 23 weeks. Activity of this...Chrysops variegatus (De Geer) is a small, yellow-and-brown tabanid occurring from Mexico to Argentina and in the West Indies (Fairchild 19T 1...measuring tabanid populations were attempted initially. All of these involved capturing and killing the flies. Trials of these methods indicated

  5. A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer

    PubMed Central

    Cobo, Angelica; Sheybani, Roya; Tu, Heidi; Meng, Ellis

    2016-01-01

    We present an implantable micropump with a miniature form factor and completely wireless operation that enables chronic drug administration intended for evaluation and development of cancer therapies in freely moving small research animals such as rodents. The low power electrolysis actuator avoids the need for heavy implantable batteries. The infusion system features a class E inductive powering system that provides on-demand activation of the pump as well as remote adjustment of the delivery regimen without animal handling. Micropump performance was demonstrated using a model anti-cancer application in which daily doses of 30 μL were supplied for several weeks with less than 6% variation in flow rate within a single pump and less than 8% variation across different pumps. Pumping under different back pressure, viscosity, and temperature conditions were investigated; parameters were chosen so as to mimic in vivo conditions. In benchtop tests under simulated in vivo conditions, micropumps provided consistent and reliable performance over a period of 30 days with less than 4% flow rate variation. The demonstrated prototype has potential to provide a practical solution for remote chronic administration of drugs to ambulatory small animals for research as well as drug discovery and development applications. PMID:26855476

  6. A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era

    NASA Astrophysics Data System (ADS)

    Rosenthal, Yair; Kalansky, Julie; Morley, Audrey; Linsley, Braddock

    2017-01-01

    The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores and corals in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2 °C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget are at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.

  7. Seasonal variations in modern speleothem calcite growth in Central Texas, U.S.A

    USGS Publications Warehouse

    Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M.

    2007-01-01

    Variations in growth rates of speleothem calcite have been hypothesized to reflect changes in a range of paleoenvironmental variables, including atmospheric temperature and precipitation, drip-water composition, and the rate of soil CO2 delivery to the subsurface. To test these hypotheses, we quantified growth rates of modern speleothem calcite on artificial substrates and monitored concurrent environmental conditions in three caves across the Edwards Plateau in central Texas. Within each of two caves, different drip sites exhibit similar annual cycles in calcite growth rates, even though there are large differences between the mean growth rates at the sites. The growth-rate cycles inversely correlate to seasonal changes in regional air temperature outside the caves, with near-zero growth rates during the warmest summer months, and peak growth rates in fall through spring. Drip sites from caves 130 km apart exhibit similar temporal patterns in calcite growth rate, indicating a controlling mechanism on at least this distance. The seasonal variations in calcite growth rate can be accounted for by a primary control by regional temperature effects on ventilation of cave-air CO2 concentrations and/or drip-water CO2 contents. In contrast, site-to-site differences in the magnitude of calcite growth rates within an individual cave appear to be controlled principally by differences in drip rate. A secondary control by drip rate on the growth rate temporal variations is suggested by interannual variations. No calcite growth was observed in the third cave, which has relatively high values of and small seasonal changes in cave-air CO2. These results indicate that growth-rate variations in ancient speleothems may serve as a paleoenvironmental proxy with seasonal resolution. By applying this approach of monitoring the modern system, speleothem growth rate and geochemical proxies for paleoenviromnental change may be evaluated and calibrated. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).

  8. Predicting the response of seven Asian glaciers to future climate scenarios using a simple linear glacier model

    NASA Astrophysics Data System (ADS)

    Ren, Diandong; Karoly, David J.

    2008-03-01

    Observations from seven Central Asian glaciers (35-55°N; 70-95°E) are used, together with regional temperature data, to infer uncertain parameters for a simple linear model of the glacier length variations. The glacier model is based on first order glacier dynamics and requires the knowledge of reference states of forcing and glacier perturbation magnitude. An adjoint-based variational method is used to optimally determine the glacier reference states in 1900 and the uncertain glacier model parameters. The simple glacier model is then used to estimate the glacier length variations until 2060 using regional temperature projections from an ensemble of climate model simulations for a future climate change scenario (SRES A2). For the period 2000-2060, all glaciers are projected to experience substantial further shrinkage, especially those with gentle slopes (e.g., Glacier Chogo Lungma retreats ˜4 km). Although nearly one-third of the year 2000 length will be reduced for some small glaciers, the existence of the glaciers studied here is not threatened by year 2060. The differences between the individual glacier responses are large. No straightforward relationship is found between glacier size and the projected fractional change of its length.

  9. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility

    DOE PAGES

    Gatu Johnson, M.; Knauer, J. P.; Cerjan, C. J.; ...

    2016-08-15

    Here, an accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T ion are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T ion are observed and the difference is seen to increase with increasing apparent DT T ion. The line-of-sight rms variations of both DD and DT T ion are small,more » ~150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T ion. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT Tion greater than the DD T ion, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.« less

  10. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatu Johnson, M.; Knauer, J. P.; Cerjan, C. J.

    Here, an accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T ion are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T ion are observed and the difference is seen to increase with increasing apparent DT T ion. The line-of-sight rms variations of both DD and DT T ion are small,more » ~150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T ion. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT Tion greater than the DD T ion, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.« less

  11. Seasonal temperature acclimatization in a semi-fossorial mammal and the role of burrows as thermal refuges

    PubMed Central

    Rachlow, Janet L.; Chappell, Mark A.; Camp, Meghan J.; Johnson, Timothy R.; Shipley, Lisa A.; Paul, David R.; Forbey, Jennifer S.

    2018-01-01

    Small mammals in habitats with strong seasonal variation in the thermal environment often exhibit physiological and behavioral adaptations for coping with thermal extremes and reducing thermoregulatory costs. Burrows are especially important for providing thermal refuge when above-ground temperatures require high regulatory costs (e.g., water or energy) or exceed the physiological tolerances of an organism. Our objective was to explore the role of burrows as thermal refuges for a small endotherm, the pygmy rabbit (Brachylagus idahoensis), during the summer and winter by quantifying energetic costs associated with resting above and below ground. We used indirect calorimetry to determine the relationship between energy expenditure and ambient temperature over a range of temperatures that pygmy rabbits experience in their natural habitat. We also measured the temperature of above- and below-ground rest sites used by pygmy rabbits in eastern Idaho, USA, during summer and winter and estimated the seasonal thermoregulatory costs of resting in the two microsites. Although pygmy rabbits demonstrated seasonal physiological acclimatization, the burrow was an important thermal refuge, especially in winter. Thermoregulatory costs were lower inside the burrow than in above-ground rest sites for more than 50% of the winter season. In contrast, thermal heterogeneity provided by above-ground rest sites during summer reduced the role of burrows as a thermal refuge during all but the hottest periods of the afternoon. Our findings contribute to an understanding of the ecology of small mammals in seasonal environments and demonstrate the importance of burrows as thermal refuge for pygmy rabbits. PMID:29576977

  12. Geographic Information System and Geoportal «River basins of the European Russia»

    NASA Astrophysics Data System (ADS)

    Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.

    2018-01-01

    Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.

  13. Scaling studies of solar pumped lasers

    NASA Astrophysics Data System (ADS)

    Christiansen, W. H.; Chang, J.

    1985-08-01

    A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.

  14. Scaling studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Chang, J.

    1985-01-01

    A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.

  15. Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.

    1990-09-01

    The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.

  16. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    PubMed

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Detection of Small Stress Relaxation in Tightened Metallic Structures by Ultrasounds

    NASA Astrophysics Data System (ADS)

    Augereau, F.; Portal, A.

    Experimental data are presented here to highlight the performances of ultrasounds for the control or the better understanding of the quality of the mechanical contact between tightened plates. Thus, variations of the mechanical load as small as those induced by creep or stress relaxation are potentially detectable by simply monitoring the amplitude of the reflected acoustic plane wave reflected at this interface. To illustrate this, two 3 cm thick aluminium plates are firstly tightened with a given torque and next, the amplitude of the acoustic wave is monitored for several days. All long this test, the temperature of the sample is controlled as well as the compression load applied to the plates using a thermocouple and a bolt gauge sensor. The reflected amplitude decreases quickly during first hours and then stabilises after a week approximately. The total variation reaches -28% of the initial value of the reflected amplitude. During this test, temperature is remained almost constant and its fluctuation around the ambient temperature is not correlated with the reflected amplitude. As expected from classic stress relaxation tests, the compression load has slowly decreased by an amount of only -1% but this should have logically increased the reflected amplitude. Further investigations have shown that instrumentation drift were negligible. Consequently, this large decrease of the reflected amplitude has been interpreted as the indication of the increase of the contact area between the two tightened plates. This test attests the high sensitivity of ultrasonic reflection measurement to investigate quality of mechanical contacts for non destructive testing.

  18. Atmospheric Response to Zonal Variations in Midlatitude SST: Transient and Stationary Eddies and Their Feedback(.

    NASA Astrophysics Data System (ADS)

    Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping

    2003-10-01

    Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.

  19. Highs and lows, ups and downs: Meteorology and mood in bipolar disorder.

    PubMed

    Bullock, Ben; Murray, Greg; Meyer, Denny

    2017-01-01

    Seasonal variation of manic and depressive symptoms is a controversial topic in bipolar disorder research. Several studies report seasonal patterns of hospital admissions for depression and mania and variation in symptoms that appear to follow a seasonal pattern, whereas others fail to report such patterns. Differences in research methodologies, data analysis strategies, and temporal resolution of data may partly explain the variation in findings between studies. The current study adds a novel perspective to the literature by investigating specific meteorological factors such as atmospheric pressure, hours of sunshine, relative humidity, and daily maximum and minimum temperatures as more proximal predictors of self-reported daily mood change in people diagnosed with bipolar disorder. The results showed that daily maximum temperature was the only meteorological variable to predict clinically-relevant mood change, with increases in temperature associated with greater odds of a transition into manic mood states. The mediating effects of sleep and activity were also investigated and suggest at least partial influence on the prospective relationship between maximum temperature and mood. Limitations include the small sample size and the fact that the number and valence of social interactions and exposure to natural light were not investigated as potentially important mediators of relationships between meteorological factors and mood. The current data make an important contribution to the literature, serving to clarify the specific meteorological factors that influence mood change in bipolar disorder. From a clinical perspective, greater understanding of seasonal patterns of symptoms in bipolar disorder will help mood episode prophylaxis in vulnerable individuals.

  20. A model of the spatial and temporal variation of the Uranus thermal structure

    NASA Technical Reports Server (NTRS)

    Bezard, B.; Gautier, D.

    1986-01-01

    Seasonal variability of the temperature structure of Uranus is modeled for all latitudes in the .0004 to 2 bar pressure range in anticipation of the Voyager encounter in January 1986. Atmospheric heating in the model results on the one hand from an internal heat source and, on the other hand, from absorption of solar energy by methane and by non-conservative aerosols located between the 0.5 and 2 bar levels. Various cases for the behavior of the internal heat flux are investigated, such as constant with latitude or constrained to yield a time-averaged thermal emission independent of latitude. Meridional transport of heat in the stably stratified atmosphere is not taken into account. The results indicate that the Voyager encounter time, very small north-south temperature asymmetry should be expected. Moreover, the northern hemisphere, although not illuminated, should emit as much energy (within one percent) as the southern hemisphere at this date. At a given latitude, extreme temperatures are reached at the equinoxes. At the poles, seasonal amplitudes of about 10 K in the upper stratosphere and 6 K at the 0.6 bar level are predicted, and the variation with time of the emission to space is found to be at most 20 percent. The atmosphere of Uranus appears to be characterized by very long radiative response times (mainly due to its cold temperature) which inhibit the large seasonal variations that one could otherwise expect in view of the high obliquity of the planet and its long orbital period.

  1. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome

    USGS Publications Warehouse

    Verant, Michelle L.; Boyles, Justin G.; Waldrep, William; Wibbelt, Gudrun; Blehert, David S.

    2012-01-01

    White-nose syndrome (WNS) is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.

  2. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana.

    PubMed

    Zhen, Ying; Ungerer, Mark C

    2008-12-01

    Elucidating the molecular basis of adaptive phenotypic variation represents a central aim in evolutionary biology. Traits exhibiting patterns of clinal variation represent excellent models for studies of molecular adaptation, especially when variation in phenotype can be linked to organismal fitness in different environments. Natural accessions of the model plant species Arabidopsis thaliana exhibit clinal variation in freezing tolerance that follows a gradient of temperature variability across the species' native range (Zhen Y, Ungerer MC. 2008. Clinal variation in freezing tolerance among natural accessions of A. thaliana. New Phytol. 177:419-427). Here, we report that this pattern of variation is attributable, at least in part, to relaxed purifying selection on members of a small family of transcriptional activators (the CBF/DREB1s) in the species' southern range. These regulatory genes play a critical role in the ability of A. thaliana plants to undergo cold acclimation and thereby achieve maximum freezing tolerance. Relative to accessions from northern regions, accessions of A. thaliana from the southern part of their geographic range exhibit levels of nonsynonymous nucleotide polymorphism that are approximately 2.8-fold higher across this small gene subfamily. Relaxed selection on the CBF/DREB1s in southern accessions also has resulted in multiple mutations in regulatory regions resulting in abrogated expression of particular subfamily members in particular accessions. These coding-region and regulatory mutations compromise the ability of these genes to act as efficient transcriptional activators during the cold acclimation process, as determined by reductions in rates of induction and maximum levels of expression in the downstream genes they regulate. This study highlights the potential role of regulatory genes in underlying adaptive phenotypic variation in nature.

  3. Radiation induced precursor flow field ahead of a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S.; Szema, K. Y.

    1977-01-01

    The change in flow properties ahead of the bow shock of a Jovian entry body, resulting from absorption of radiation from the shock layer, is investigated. Ultraviolet radiation is absorbed by the free stream gases, causing dissociation, ionization, and an increase in enthalpy of flow ahead of the shock wave. As a result of increased fluid enthalpy, the entire flow field in the precursor region is perturbed. The variation in flow properties is determined by employing the small perturbation technique of classical aerodynamics as well as the thin layer approximation for the preheating zone. By employing physically realistic models of radiative transfer, solutions are obtained for velocity, pressure, density, temperature, and enthalpy variations. The results indicate that the precursor flow effects, in general, are greater at higher altitudes. Just ahead of the shock, however, the effects are larger at lower altitudes. Pre-heating of the gas significantly increases the static pressure and temperature ahead of the shock for velocities exceeding 36 km/sec.

  4. Fuzzy control of battery chargers

    NASA Astrophysics Data System (ADS)

    Aldridge, Jack

    1996-03-01

    The increasing reliance on battery power for portable terrestrial purposes, such as portable tools, portable computers, and telecommunications, provides motivation to optimize the battery charging process with respect to speed of charging and charging cycle lifetime of the battery. Fuzzy control, implemented on a small microcomputer, optimizes charging in the presence of nonlinear effects and large uncertainty in the voltage vs. charge state characteristics for the battery. Use of a small microcontroller makes possible a small, capable, and affordable package for the charger. Microcontroller-based chargers provide improved performance by adjusting both charging voltage and charging current during the entire charging process depending on a current estimate of the state of charge of the battery. The estimate is derived from the zero-current voltage of the battery and the temperature and their rates of change. All of these quantities are uncertain due to the variation in condition between the individual cells in a battery, the rapid and nonlinear dependence of the fundamental electrochemistry on the internal temperature, and the placement of a single temperature sensor within the battery package. While monitoring the individual cell voltages and temperatures would be desirable, cost and complexity considerations preclude the practice. NASA has developed considerable technology in batteries for supplying significant amounts of power for spacecraft and in fuzzy control techniques for the space applications. In this paper, we describe how we are using both technologies to build an optimal charger prototype as a precursor to a commercial version.

  5. Thermal responses and survival after heat exposure are modulated by maintained differences in body temperature in mice

    NASA Astrophysics Data System (ADS)

    Fishman, Rachelle H. B.

    1988-03-01

    When individual mice were examined, it was found that the colonic body temperature T col of each individual within a genetically heterogeneous population tended to remain either above (“warm”) or below (“cool”) the population mean. T col of warm, but not cool, mice showed circadian variation. When exposed to a T a of 43° C, the T col of cool mice increased by as musch as 2.4° C more than that of warm mice for a given 15 min increment of heating at 43°C. Survival of mice after acute lethal heat load (LD75, -45°C) was significantly inversely correlated with T col. Small persistent differences in body temperature of individuals may indicate differing thermal adaptedness.

  6. Long-term stability of the Io high-temperature plasma torus

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Skinner, T. E.; Durrance, S. T.; Feldman, P. D.; Festou, M. C.

    1985-01-01

    The short wavelength camera of the International Ultraviolet Explorer satellite was used to measure S II 1256, S III 1199, semiforbidden S III 1729, and semiforbidden S IV 1406 emission from the high-temperature region of the Io plasma torus. Observations over a period of five years (1979-1984) indicate that the Io plasma parameters have relatively small variations, particularly in the case of the mixing ratio for the dominant constituent S(++), and electron temperature. A simple three-dimensional model of the plasma torus was used to obtain the ion mixing ratios and the plasma density for each observation. The results are compared with Voyager 1 data for mixing ratio (ion density divided by electron density); ionization balance; and plasma density. The results of the comparison are discussed in detail.

  7. Effects of temperature variability on community structure in a natural microbial food web.

    PubMed

    Zander, Axel; Bersier, Louis-Félix; Gray, Sarah M

    2017-01-01

    Climate change research has demonstrated that changing temperatures will have an effect on community-level dynamics by altering species survival rates, shifting species distributions, and ultimately, creating mismatches in community interactions. However, most of this work has focused on increasing temperature, and still little is known about how the variation in temperature extremes will affect community dynamics. We used the model aquatic community held within the leaves of the carnivorous plant, Sarracenia purpurea, to test how food web dynamics will be affected by high temperature variation. We tested the community response of the first (bacterial density), second (protist diversity and composition), and third trophic level (predator mortality), and measured community respiration. We collected early and late successional stage inquiline communities from S. purpurea from two North American and two European sites with similar average July temperature. We then created a common garden experiment in which replicates of these communities underwent either high or normal daily temperature variation, with the average temperature equal among treatments. We found an impact of temperature variation on the first two, but not on the third trophic level. For bacteria in the high-variation treatment, density experienced an initial boost in growth but then decreased quickly through time. For protists in the high-variation treatment, alpha-diversity decreased faster than in the normal-variation treatment, beta-diversity increased only in the European sites, and protist community composition tended to diverge more in the late successional stage. The mortality of the predatory mosquito larvae was unaffected by temperature variation. Community respiration was lower in the high-variation treatment, indicating a lower ecosystem functioning. Our results highlight clear impacts of temperature variation. A more mechanistic understanding of the effects that temperature, and especially temperature variation, will have on community dynamics is still greatly needed. © 2016 John Wiley & Sons Ltd.

  8. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  9. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb.

    PubMed

    Rasmussen, Pil U; Hugerth, Luisa W; Blanchet, F Guillaume; Andersson, Anders F; Lindahl, Björn D; Tack, Ayco J M

    2018-03-24

    Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above-ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root-associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root-associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small-scale variation in community dynamics and biodiversity. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  10. Dependence of the form factor of ganglioside micelles on a conformational change with temperature

    NASA Astrophysics Data System (ADS)

    Corti, Mario; Boretta, Marco; Cantù, Laura; Del Favero, Elena; Lesieur, Pierre

    1996-09-01

    The gangliosides GM2, GM1 and GD1b, biological amphiphiles with a double tail hydrophobic part and an oligosaccharide chain headgroup, form micelles in solution. Light scattering experiments have shown that ganglioside micelles which have gone through a temperature cycle have a smaller molecular mass and hydrodynamic radius than those which have been kept at room temperature. This fact has been interpreted with the hypothesis that, with temperature, the ganglioside molecules undergo a conformational change which affects their micellar properties appreciably. Careful small angle X-ray experiments, aimed to confirm the light scattering data and to evidence differences in the micellar internal structure are presented. Ganglioside micelles are quite inhomogeneous particles with respect to X-ray scattering, since there is a large contrast variation between the inner lipid part and the external hydrated sugar layer. Experimental form factors are fitted with a double-shell oblate-ellipsoid model.

  11. Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.

    2014-01-01

    Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.

  12. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  13. Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Sudeep J.; Joshi, Giri; Wang, Shidong; Curtarolo, Stefano; Gaume, Romain M.

    2016-11-01

    Magnéli phase Ti5O9 ceramics with 200-nm grain-size were fabricated by hot-pressing nanopowders of titanium and anatase TiO2 at 1223 K. The thermoelectric properties of these ceramics were investigated from room temperature to 1076 K. We show that the experimental variation of the electrical conductivity with temperature follows a non-adiabatic small-polaron model with an activation energy of 64 meV. In this paper, we propose a modified Heikes-Chaikin-Beni model, based on a canonical ensemble of closely spaced titanium t 2g levels, to account for the temperature dependency of the Seebeck coefficient. Modeling of the thermal conductivity data reveals that the phonon contribution remains constant throughout the investigated temperature range. The thermoelectric figure-of-merit ZT of this nanoceramic material reaches 0.3 K at 1076 K.

  14. Effect of Refractive Index Variation on Two-Wavelength Interferometry for Fluid Measurements

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1998-01-01

    Two wavelength interferometry can in principle be used to measure changes in both temperature and concentration in a fluid, but measurement errors may be large if the fluid dispersion is small. This paper quantifies the effects of uncertainties in dn/dT and dn/dC on the measured temperature and concentration when using the simple expression dn = (dn/dT)dT + (dn/dC)dC. For the data analyzed here, ammonium chloride in water from -5 to 10(exp infinity) C over a concentration range of 2-14% and for wavelengths 514.5 and 633 nm, it is shown that the gradients must be known to within 0.015% to produce a modest 10% uncertainty in the measured temperature and concentration. These results show that real care must be taken to ensure the accuracy of refractive index gradients when using two wavelength interferometry for the simultaneous measurement of temperature and concentration.

  15. Passive monitoring using traffic noise recordings - case study on the Steinachtal Bridge

    NASA Astrophysics Data System (ADS)

    Salvermoser, Johannes; Stähler, Simon; Hadziioannou, Céline

    2015-04-01

    Civil structures age continuously. The early recognition of potentially critical damages is an important economical issue, but also one of public safety. Continuous tracking of small changes in the medium by using passive methods would offer an extension to established active non-destructive testing procedures at relatively low cost. Here we present a case study of structural monitoring using continuous recordings of traffic noise on a 200 meter long reinforced concrete highway bridge in Germany. Over two months of continuos geophone records are used in the frequency range of 2-8 Hz. Using passive image interferometry, evaluation of hourly cross-correlations between recordings at pairs of receivers yield velocity variations in the range of -1.5% to +2.1%. We were able to correlate our outcomes with temperature measurements of the same two month period. The measured velocity changes scale with the temperature variations with on average a dv/v of 0.064% per degree Celsius. This value is in accordance with other studies of concrete response to temperature, confirming that we are able to observe subtle changes with physical origin. It is shown that traffic noise is temporally homogenenous enough to fulfill the requirements of passive image interferometry.

  16. A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers

    NASA Astrophysics Data System (ADS)

    Sliski, David H.; Blake, Cullen H.; Halverson, Samuel

    2017-12-01

    We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.

  17. Responses of Soil CO2 Fluxes to Short-Term Experimental Warming in Alpine Steppe Ecosystem, Northern Tibet

    PubMed Central

    Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan

    2013-01-01

    Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m-2 for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature. PMID:23536854

  18. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet.

    PubMed

    Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan

    2013-01-01

    Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2) for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.

  19. Modeling the Thermoelectric Properties of Ti5O9 Magneli Phase Ceramics

    DTIC Science & Technology

    2016-07-14

    these ceramics were investigated from room temperature to 1076 K. We show that the experimental variation of the electrical conduc- tivity with...figure-of-merit ZT of this nanoceramic material reaches 0.3 K at 1076 K. Key words: Thermoelectrics, nanoceramics, magnéli phase, small polaron...be obtained from the previous data. Thermal conductivity values were extrapolated for 876 K, 975 K, and 1076 K to match the range of thermopower and

  20. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ˜1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (˜0°C-120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  1. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).

    PubMed

    Brown, Kelly J; Downs, Colleen T

    2006-01-01

    Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.

  2. Temperature in lowland Danish streams: contemporary patterns, empirical models and future scenarios

    NASA Astrophysics Data System (ADS)

    Lagergaard Pedersen, Niels; Sand-Jensen, Kaj

    2007-01-01

    Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold-water and oxygen-demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air-water regression model (r2: 0.903-0.947). The predictions improved in all instances (r2: 0.927-0.964) by a non-linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0.933-0.969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un-shaded sites, relative humidity, precipitation and discharge. Application of the non-linear logistic model for a warming scenario of 4-5 °C higher air temperatures in Denmark in 2070-2100 yielded predictions of temperatures rising 1.6-3.0 °C during winter and summer and 4.4-6.0 °C during spring in un-shaded streams with low groundwater input. Groundwater-fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright

  3. Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.

    PubMed

    Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M

    2014-04-01

    The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of the mechanical properties correlation in hierarchical biological materials, and human dental tissue in particular. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    PubMed Central

    Darnaude, Audrey M.; Sturrock, Anna; Trueman, Clive N.; Mouillot, David; EIMF; Campana, Steven E.; Hunter, Ewan

    2014-01-01

    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified. PMID:25279667

  5. Strength and Anisotropy in Tournemire Shale: Temperature, Pressure and Time Dependences

    NASA Astrophysics Data System (ADS)

    Bonnelye, A.; Schubnel, A.; Zhi, G.; David, C.; Dick, P.

    2017-12-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. We conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France, under two different temperatures (26°C, 75°C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1along, perpendicular and 45° to bedding). In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1 15 minutes. The brittle creep failure stress of our Tournemire shale samples was systematically observed 50% higher than its short-term peak strength, with larger final axial strain accumulated. During creep, ultrasonic wave velocities first decreased, and then increased gradually. The magnitude of elastic wave velocity variations showed an important orientation and temperature dependence: velocities measured perpendicular to bedding showed increased variation, variation that was enhanced at higher temperature and higher pressure. The case of complete elastic anisotropy reversal was observed for sample deformed perpendicular to bedding, with amount of axial strain needed to reach anisotropy reversal reduced at higher temperature. SEM observations highlight the competition between crack growth, sealing/healing, and possibly mineral rotation, pressure solution or anisotropic compaction during creep defromation. Our study highlights that the short-term peak strength has little meaning in shale material, which can over-consolidate importantly by `plastic' flow. In addition, we show that elastic anisotropy can switch and even reverse over relatively short time periods (<10 days) and for relatively small amount of plastic deformation (<5%).

  6. A further contribution to the seasonal variation of weighted mean temperature

    NASA Astrophysics Data System (ADS)

    Ding, Maohua; Hu, Wusheng

    2017-12-01

    The weighted mean temperature Tm is a variable parameter in the Global Navigation Satellite System (GNSS) meteorology and the Askne-Nordius zenith wet delay (ZWD) model. Some parameters about the Tm seasonal variation (e.g. the annual mean value, the annual range, the annual and semi-annual amplitudes, and the long-term trend) were discussed before. In this study, some additional results about the Tm seasonal variation on a global scale were found by using the Tm time series at 309 global radiosonde sites. Periodic signals of the annual and semi-annual variations were detected in these Tm time series by using the Lomb-Scargle periodogram. The annual variation is the main component of the periodic Tm in non-tropical regions, while the annual variation or the semiannual variation can be the main component of the periodic Tm in tropics. The mean annual Tm almost keeps constant with the increasing latitude in tropics, while it decreases with the increasing latitude in non-tropical regions. From a global perspective, Tm has an increasing trend of 0.22 K/decade on average, which may be caused by the global warming effects. The annual phase is almost found in about January for the non-tropical regions of the Southern Hemisphere and in about July for the non-tropical regions of the Northern Hemisphere, but it has no clear symmetry in tropics. Unlike the annual phase, the geographical distributions of semi-annual phase do not follow obvious rules. In non-tropical regions, the maximum and minimum Tm of the seasonal model are usually found in respective summer and winter days while the maximum and minimum Tm are distributed over a whole year but not in any fixed seasons for tropical regions. The seasonal model errors increase with the increasing value of annual amplitude. A primary reason for the irregular seasonal variation in tropics is that Tm has rather small variations in this region.

  7. Processes of 30-90 days sea surface temperature variability in the northern Indian Ocean during boreal summer

    NASA Astrophysics Data System (ADS)

    Vialard, J.; Jayakumar, A.; Gnanaseelan, C.; Lengaigne, M.; Sengupta, D.; Goswami, B. N.

    2012-05-01

    During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against ~0.25 for wind stress) and in observations (0.8 regression coefficient); ~60% of the heat flux variation is due do shortwave radiation and ~40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our ~100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

  8. Small-scale convection beneath the transverse ranges, California: Implications for interpretation of gravity anomalies

    NASA Technical Reports Server (NTRS)

    Humphreys, E. D.; Hager, B. H.

    1985-01-01

    Tomographic inversion of upper mantle P wave velocity heterogeneities beneath southern California shows two prominent features: an east-west trending curtain of high velocity material (up to 3% fast) in the upper 250 km beneath the Transverse Ranges and a region of low velocity material (up to 4% slow) in the 100 km beneath the Salton Trough. These seismic velocity anomalies were interpreted as due to small scale convection in the mantle. Using this hypothesis and assuming that temperature and density anomalies are linearly related to seismic velocity anomalies through standard coefficients of proportionality, leads to inferred variations of approx. + or - 300 C and approx. + or - 0.03 g/cc.

  9. The vibrational spectrum of the hydrated alanine-leucine peptide in the amide region from IR experiments and first principles calculations

    NASA Astrophysics Data System (ADS)

    Hassan, Irtaza; Donati, Luca; Stensitzki, Till; Keller, Bettina G.; Heyne, Karsten; Imhof, Petra

    2018-04-01

    We have combined infrared (IR) experiments with molecular dynamics (MD) simulations in solution at finite temperature to analyse the vibrational signature of the small floppy peptide Alanine-Leucine. IR spectra computed from first-principles MD simulations exhibit no distinct differences between conformational clusters of α -helix or β -sheet-like folds with different orientations of the bulky leucine side chain. All computed spectra show two prominent bands, in good agreement with the experiment, that are assigned to the stretch vibrations of the carbonyl and carboxyl group, respectively. Variations in band widths and exact maxima are likely due to small fluctuations in the backbone torsion angles.

  10. A comparison of the effects of 2 cattle-cooling systems on dairy cows in a desert environment.

    PubMed

    Ortiz, X A; Smith, J F; Bradford, B J; Harner, J P; Oddy, A

    2010-10-01

    An experiment was conducted to investigate the effects of operation time and size of Korral Kool (KK; Korral Kool Inc., Mesa, AZ) systems on core body temperature (CBT) of dairy cows. Two KK systems were compared: a system with 1.29-m-diameter, 3-hp fans spaced 6 m apart (referred to as small) and a system with 1.52-m-diameter, 5-hp fans spaced 8 m apart (referred to as big). Forty-eight multiparous Holstein cows were assigned randomly to 8 pens (4 big, 4 small), and pens were assigned randomly to a sequence of treatments (KK operated for 21 or 24 h/d) in a switchback design. A complementary calorimetric analysis was developed to investigate the cooling area under the KK units of the big and small systems. Twenty-five sensors distributed equally under the KK units measured ambient temperature at 5-min intervals for 2 h. Average ambient temperature was 35.0±0.6°C and relative humidity was 45±8%. There were significant treatment effects on mean CBT: cows on the small 24-h treatment had a lower mean CBT than cows on the small 21-h treatment (39.22 vs. 39.36±0.14°C), and cows on the big 24-h treatment had a lower mean CBT than cows on the big 21-h treatment (38.95 vs. 39.09±0.13°C). A significant treatment by time interaction was observed. The greatest difference between systems occurred at 0100 h; treatment means at this time were 39.05, 39.01, 39.72, and 39.89±0.16°C for the big 24-h, big 21-h, small 24-h, and small 21-h treatments, respectively. At certain times of day, the big system reduced CBT more than the small system. These results show that CBT of multiparous cows decreased when KK system operational time was increased from 21 to 24 h regardless of the size of the KK cooling system used. The calorimetric analysis showed that even though the big system resulted in lower mean ambient temperatures than the small system, the distance between units in the big system should be decreased to reduce the variation in temperature under the big units. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. An ultrasound-based liquid pressure measurement method in small diameter pipelines considering the installation and temperature.

    PubMed

    Li, Xue; Song, Zhengxiang

    2015-04-09

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy.

  12. Studying the influence of temperature and pressure on microphysical properties of mixed-phase clouds using airborne measurements

    NASA Astrophysics Data System (ADS)

    Andreea, Boscornea; Sabina, Stefan; Sorin-Nicolae, Vajaiac; Mihai, Cimpuieru

    2015-04-01

    One cloud type for which the formation and evolution process is not well-understood is the mixed-phase type. In general mixed-phase clouds consist of liquid droplets and ice crystals. The temperature interval within both liquid droplets and ice crystals can potentially coexist is limited to 0 °C and - 40 °C. Mixed-phase clouds account for 20% to 30% of the global cloud coverage. The need to understand the microphysical characteristics of mixed-phase clouds to improve numerical forecast modeling and radiative transfer calculation is of major interest in the atmospheric community. In the past, studies of cloud phase composition have been significantly limited by a lack of aircraft instruments capable of discriminating between the ice and liquid phase for a wide range of particle sizes. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote-sensing techniques. The knowledge of the temperature and pressure variation during the airborne measurements is crucial in order to understand their influence on the cloud dynamics and also their role in the cloud formation processes like accretion and coalescence. Therefore, in this paper is presented a comprehensive study of cloud microphysical properties in mixed-phase clouds in focus of the influence of temperature and pressure variation on both, cloud dynamics and the cloud formation processes, using measurements performed with the ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research in property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS). The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 µm) and a HAWKEYE cloud probe. The analyzed data in this work is acquired during 2 flight hours on the 23th of October 2014 in mixed clouds formations over Romania ( Craiova, Lat 44°19', Lon 23°48' ). The temperature variation during the cloud sounding was between -14 °C and -2 °C, with a maximum altitude in the cloud of 4863 m and a minimum altitude of 3353 m. In total 6 horizontal lines of 10 minutes each where performed recording ice crystal number concentrations (using the CIP - Cloud Imaging Probe) between 10 to 20 particles/cm3 outside the cloud layer and over 100 particles/cm3 inside the cloud layer and a number concentration of small droplets, aerosol and small ice crystals (using the CAS - Cloud Aerosol Spectrometer) between 150 particles/cm3 outside the cloud layer and 1600 particles/cm3 inside the cloud layer, this values confirms also the presence of IN (ice nuclei) in the atmosphere between the cloud layers. The results in respect with size distribution of cloud's particles and LWC show to be controlled by the temperature and pressure variations.

  13. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    PubMed

    Huber, John H; Childs, Marissa L; Caldwell, Jamie M; Mordecai, Erin A

    2018-05-01

    Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal variation in temperature, the model provides a baseline for mechanistically understanding environmental suitability for virus transmission by Aedes aegypti. Overlaying the impact of human activities and socioeconomic factors onto this mechanistic temperature-dependent framework is critical for understanding likelihood and magnitude of outbreaks.

  14. Gyrophase drifts and the orbital evolution of dust at Jupiter's Gossamer Ring

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Mendis, D. A.; Schaffer, Les

    1989-01-01

    The 'gyrophase drift' phenomenon in Jupiter's fine-dust 'gossamer ring' is presently shown to exceed the plasma-drag drift, and may be able to move small, charged grains either toward or away from synchronous radius. The grain gyrophase drifts toward the higher temperature in the presence of a radial gradient in plasma temperature; gyrophase drift will also occur in conjunction with a radial gradient in the relative concentrations of different plasma ion species, or even due to plasma-grain velocity variation associated with the grain's cycloidal motion through the plasma. The Poynting-Robertson drift is noted to be diminutive by comparison with either the plasma-drag or gyrophase drifts.

  15. Thermal response of a Fermi-Pasta-Ulam chain with Andersen thermostats

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Federico; Baiesi, Marco

    2017-11-01

    The linear response to temperature variations is well characterised for equilibrium systems but a similar theory is not available, for example, for inertial heat conducting systems, whose paradigm is the Fermi-Pasta-Ulam (FPU) model driven by two different boundary temperatures. For models of inertial systems out of equilibrium, including relaxing systems, we show that Andersen thermostats are a natural tool for studying the thermal response. We derive a fluctuation-response relation that allows to predict thermal expansion coefficients or the heat capacitance in nonequilibrium regimes. Simulations of the FPU chain of oscillators suggest that estimates of susceptibilities obtained with our relation are better than those obtained via a small perturbation.

  16. On Fully Developed Channel Flows: Some Solutions and Limitations, and Effects of Compressibility, Variable Properties, and Body Forces

    NASA Technical Reports Server (NTRS)

    Maslen, Stephen H.

    1959-01-01

    An examination of the effects of compressibility, variable properties, and body forces on fully developed laminar flow has indicated several limitations on such streams. In the absence of a pressure gradient, but presence of a body force (e.g., gravity), an exact fully developed gas flow results. For a liquid this follows also for the case of a constant streamwise pressure gradient. These motions are exact in the sense of a Couette flow. In the liquid case two solutions (not a new result) can occur for the same boundary conditions. An approximate analytic solution was found which agrees closely with machine calculations.In the case of approximately exact flows, it turns out that for large temperature variations across the channel the effects of convection (due to, say, a wall temperature gradient) and frictional heating must be negligible. In such a case the energy and momentum equations are separated, and the solutions are readily obtained. If the temperature variations are small, then both convection effects and frictional heating can consistently be considered. This case becomes the constant-property incompressible case (or quasi-incompressible case for free-convection flows) considered by many authors. Finally there is a brief discussion of cases wherein streamwise variations of all quantities are allowed but only a such form that independent variables are separable. For the case where the streamwise velocity varies inversely as the square root distance along the channel a solution is given.

  17. Projecting pest population dynamics under global warming: the combined effect of inter- and intra-annual variations.

    PubMed

    Zidon, Royi; Tsueda, Hirotsugu; Morin, Efrat; Morin, Shai

    2016-06-01

    The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current predictions based on mean temperature anomalies are relatively conservative and it is better to apply stochastic tools to resolve complex responses to climate change while taking natural variability into account. In summary, we propose a modeling framework capable of determining distinct intra-annual temperature patterns leading to large or small population sizes, for pest risk assessment and management planning of both natural and agricultural ecosystems.

  18. Quantum Shielding Effects on the Eikonal Collision Cross Section in Strongly Coupled Two-temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-05-01

    The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.

  19. Warming and Resource Availability Shift Food Web Structure and Metabolism

    PubMed Central

    O'Connor, Mary I.; Piehler, Michael F.; Leech, Dina M.; Anton, Andrea; Bruno, John F.

    2009-01-01

    Climate change disrupts ecological systems in many ways. Many documented responses depend on species' life histories, contributing to the view that climate change effects are important but difficult to characterize generally. However, systematic variation in metabolic effects of temperature across trophic levels suggests that warming may lead to predictable shifts in food web structure and productivity. We experimentally tested the effects of warming on food web structure and productivity under two resource supply scenarios. Consistent with predictions based on universal metabolic responses to temperature, we found that warming strengthened consumer control of primary production when resources were augmented. Warming shifted food web structure and reduced total biomass despite increases in primary productivity in a marine food web. In contrast, at lower resource levels, food web production was constrained at all temperatures. These results demonstrate that small temperature changes could dramatically shift food web dynamics and provide a general, species-independent mechanism for ecological response to environmental temperature change. PMID:19707271

  20. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  1. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    PubMed Central

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  2. Nucleolar DEAD-Box RNA Helicase TOGR1 Regulates Thermotolerant Growth as a Pre-rRNA Chaperone in Rice

    PubMed Central

    Tang, Ding; Zhang, Yu’e; Cheng, Zhukuan; Xue, Yongbiao

    2016-01-01

    Plants have evolved a considerable number of intrinsic tolerance strategies to acclimate to ambient temperature increase. However, their molecular mechanisms remain largely obscure. Here we report a DEAD-box RNA helicase, TOGR1 (Thermotolerant Growth Required1), prerequisite for rice growth themotolerance. Regulated by both temperature and the circadian clock, its expression is tightly coupled to daily temperature fluctuations and its helicase activities directly promoted by temperature increase. Located in the nucleolus and associated with the small subunit (SSU) pre-rRNA processome, TOGR1 maintains a normal rRNA homeostasis at high temperature. Natural variation in its transcript level is positively correlated with plant height and its overexpression significantly improves rice growth under hot conditions. Our findings reveal a novel molecular mechanism of RNA helicase as a key chaperone for rRNA homeostasis required for rice thermotolerant growth and provide a potential strategy to breed heat-tolerant crops by modulating the expression of TOGR1 and its orthologs. PMID:26848586

  3. Genetic divergence and isolation by thermal environment in geothermal populations of an aquatic invertebrate.

    PubMed

    Johansson, M P; Quintela, M; Laurila, A

    2016-09-01

    Temperature is one of the most influential forces of natural selection impacting all biological levels. In the face of increasing global temperatures, studies over small geographic scales allowing investigations on the effects of gene flow are of great value for understanding thermal adaptation. Here, we investigated genetic population structure in the freshwater gastropod Radix balthica originating from contrasting thermal habitats in three areas of geothermal activity in Iceland. Snails from 32 sites were genotyped at 208 AFLP loci. Five AFLPs were identified as putatively under divergent selection in Lake Mývatn, a geothermal lake with an almost 20 °C difference in mean temperature across a distance of a few kilometres. In four of these loci, variation across all study populations was correlated with temperature. We found significant population structure in neutral markers both within and between the areas. Cluster analysis using neutral markers classified the sites mainly by geography, whereas analyses using markers under selection differentiated the sites based on temperature. Isolation by distance was stronger in the neutral than in the outlier loci. Pairwise differences based on outlier FST were significantly correlated with temperature at different spatial scales, even after correcting for geographic distance or neutral pairwise FST differences. In general, genetic variation decreased with increasing environmental temperature, possibly suggesting that natural selection had reduced the genetic diversity in the warm origin sites. Our results emphasize the influence of environmental temperature on the genetic structure of populations and suggest local thermal adaptation in these geothermal habitats. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  4. High-temperature thermocline TES combining sensible and latent heat - CFD modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Zavattoni, Simone A.; Geissbühler, Lukas; Barbato, Maurizio C.; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2017-06-01

    The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model's constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.

  5. Tide-related variability of TAG hydrothermal activity observed by deep-sea monitoring system and OBSH

    NASA Astrophysics Data System (ADS)

    Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa

    1997-12-01

    Hydrothermal activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring system (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG hydrothermal mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of hydrothermal upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to hydrothermal venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.

  6. Sex-specific differences of craniofacial traits in Croatia: the impact of environment in a small geographic area.

    PubMed

    Buretic-Tomljanovic, Alena; Giacometti, Jasminka; Ostojic, Sasa; Kapovic, Miljenko

    2007-01-01

    Craniometric variation in humans reflects different genetic and environmental influences. Long-term climatic adaptation is less likely to show an impact on size and shape variation in a small local area than at the global level. The aim of this work was to assess the contribution of the particular environmental factors to body height and craniofacial variability in a small geographic area of Croatia. A total of 632 subjects, aged 18-21, participated in the survey. Body height, head length, head breadth, head height, head circumference, cephalic index, morphological face height, face breadth, and facial index were analysed regarding geographic, climatic and dietary conditions in different regions of the country, and correlated with the specific climatic variables (cumulative multiyear sunshine duration, cumulative multiyear average precipitation, multiyear average air temperatures) and calcium concentrations in drinking water. Significant differences between groups classified according to geographic, climatic or dietary affiliation, and the impact of the environmental predictors on the variation in the investigated traits were assessed using multiple forward stepwise regression analyses. Higher body height measures in both sexes were significantly correlated with Mediterranean diet type. Mediterranean diet type also contributed to higher head length and head circumference measures in females. Cephalic index values correlated to geographic regions in both sexes, showing an increase from southern to eastern Croatia. In the same direction, head length significantly decreased in males and head breadth increased in females. Mediterranean climate was associated with higher and narrower faces in females. The analysis of the particular climatic variables did not reveal a significant influence on body height in either sex. Concurrently, climatic features influenced all craniofacial traits in females and only head length and facial index in males. Mediterranean climate, characterized by higher average sunshine duration, higher average precipitation and higher average air temperatures, was associated with longer, higher and narrower skulls, higher head circumference, lower cephalic index, and higher and narrower faces (lower facial index). Calcium concentrations in drinking water did not correlate significantly with any dependent variable. A significant effect of environmental factors on body height and craniofacial variability was found in Croatian young adult population. This effect was more pronounced in females, revealing sex-specific craniofacial differentiation. However, the impact of environment was low and may explain only 1.0-7.32% variation of the investigated traits.

  7. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 2: Elastomer characteristics at constant temperature

    NASA Technical Reports Server (NTRS)

    Gupta, P. K.; Tessarzik, J. M.; Cziglenyi, L.

    1974-01-01

    Dynamic properties of a commerical polybutadiene compound were determined at a constant temperature of 32 C by a forced-vibration resonant mass type of apparatus. The constant thermal state of the elastomer was ensured by keeping the ambient temperature constant and by limiting the power dissipation in the specimen. Experiments were performed with both compression and shear specimens at several preloads (nominal strain varying from 0 to 5 percent), and the results are reported in terms of a complex stiffness as a function of frequency. Very weak frequency dependence is observed and a simple power law type of correlation is shown to represent the data well. Variations in the complex stiffness as a function of preload are also found to be small for both compression and shear specimens.

  8. Dielectric and AC conductivity studies on SrBi4Ti4O15

    NASA Astrophysics Data System (ADS)

    Jose, Roshan; Saravanan, K. Venkata

    2018-05-01

    The four layered SrBi4Ti4O15 ceramics which belong to the aurivillius family of oxide was prepared by conventional solid state reaction technique. Analysis of the dielectric data as a function of temperature and frequency revealed normal phase transition. The frequency dependent ac conductivity follows Jonscher's universal power law. Frequency exponent (n), pre-exponential factor (A), bulk dc conductivity (σdc), and hopping frequency (ωp) were determined from the fitting curves. The variation of frequency exponent with temperature indicates that large polaron hopping mechanism up to curie-temperature, then its changes to small polaron hopping. The activation energies were calculated from ac conductivity, bulk dc conductivity and hopping frequency. The activation energies revealed that conductivity had contributions from migrations of oxygen vacancies, bismuth ion vacancies and strontium ion vacancies.

  9. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2017-08-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  10. Effects of the temperature and pressure on the electronic and optical properties of an exciton in GaAs/Ga1-xAlxAs quantum ring

    NASA Astrophysics Data System (ADS)

    El-Bakkari, K.; Sali, A.; Iqraoun, E.; Rezzouk, A.; Es-Sbai, N.; Ouazzani Jamil, M.

    2018-06-01

    Using a variational approach, we have calculated the binding energies (E1s,2sb) and interband emission energy (Eph) of an exciton confined in GaAs / Ga1 - x Alx As quantum rings (QRs) structures under effects of the temperature and pressure, in the effective mass approximation. We have taken into consideration the difference in the effective masses of the charge carriers in two materials, well and barrier. The results that we have obtained show clearly that E1s,2sb and Eph are influenced by the structure geometries of QR (height H, radial thickness Δ R and potential barrier), the temperature and pressure. Indeed, with a smaller geometric parameter, E1s,2sb and Eph become higher due to the improvement in confinement of the charge carriers. We have also observed that for a given value of the temperature, the pressure leads to an increasing of the E1s,2sb and Eph , and the latter quantities are decreasing with temperature. In addition, these variations of the E1s,2sb and Eph under the external perturbations are more remarkable in small H for fixed Δ R , and for larger Δ R for a given value of the H, because for the choice of a finite height of the barrier in the z direction and an infinite confinement in ρ direction.

  11. Spatiotemporal Variations in the Difference between Satellite-observed Land Surface Temperature and Station-based Near-surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Lian, X.

    2016-12-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.

  12. Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah

    1998-01-01

    The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.

  13. A Polymer Optical Fiber Temperature Sensor Based on Material Features.

    PubMed

    Leal-Junior, Arnaldo; Frizera-Netoc, Anselmo; Marques, Carlos; Pontes, Maria José

    2018-01-19

    This paper presents a polymer optical fiber (POF)-based temperature sensor. The operation principle of the sensor is the variation in the POF mechanical properties with the temperature variation. Such mechanical property variation leads to a variation in the POF output power when a constant stress is applied to the fiber due to the stress-optical effect. The fiber mechanical properties are characterized through a dynamic mechanical analysis, and the output power variation with different temperatures is measured. The stress is applied to the fiber by means of a 180° curvature, and supports are positioned on the fiber to inhibit the variation in its curvature with the temperature variation. Results show that the sensor proposed has a sensitivity of 1.04 × 10 -3 °C -1 , a linearity of 0.994, and a root mean squared error of 1.48 °C, which indicates a relative error of below 2%, which is lower than the ones obtained for intensity-variation-based temperature sensors. Furthermore, the sensor is able to operate at temperatures up to 110 °C, which is higher than the ones obtained for similar POF sensors in the literature.

  14. The interaction of neutral evolutionary processes with climatically-driven adaptive changes in the 3D shape of the human os coxae.

    PubMed

    Betti, Lia; von Cramon-Taubadel, Noreen; Manica, Andrea; Lycett, Stephen J

    2014-08-01

    Differences in the breadth of the pelvis among modern human populations and among extinct hominin species have often been interpreted in the light of thermoregulatory adaptation, whereby a larger pelvic girdle would help preserve body temperature in cold environments while a narrower pelvis would help dissipate heat in tropical climates. There is, however, a theoretical problem in interpreting a pattern of variation as evidence of selection without first accounting for the effects of neutral evolutionary processes (i.e., mutation, genetic drift and migration). Here, we analyse 3D configurations of 27 landmarks on the os coxae of 1494 modern human individuals representing 30 male and 23 female populations from five continents and a range of climatic conditions. We test for the effects of climate on the size and shape of the pelvic bone, while explicitly accounting for population history (i.e., geographically-mediated gene flow and genetic drift). We find that neutral processes account for a substantial proportion of shape variance in the human os coxae in both sexes. Beyond the neutral pattern due to population history, temperature is a significant predictor of shape and size variation in the os coxae, at least in males. The effect of climate on the shape of the pelvic bone, however, is comparatively limited, explaining only a small percentage of shape variation in males and females. In accordance with previous hypotheses, the size of the os coxae tends to increase with decreasing temperature, although the significance of the association is reduced when population history is taken into account. In conclusion, the shape and size of the human os coxae reflect both neutral evolutionary processes and climatically-driven adaptive changes. Neutral processes have a substantial effect on pelvic variation, suggesting such factors will need to be taken into account in future studies of human and fossil hominin coxal variation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Being cool: how body temperature influences ageing and longevity.

    PubMed

    Keil, Gerald; Cummings, Elizabeth; de Magalhães, João Pedro

    2015-08-01

    Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifespans both in wild populations and in laboratory conditions. Many life-extending manipulations in rodents, such as caloric restriction, also decrease core body temperature. Nonetheless, an inverse relationship between temperature and lifespan can be obscured or reversed, especially when the range of body temperatures is small as in homeotherms. An example is observed in humans: women appear to have a slightly higher body temperature and yet live longer than men. The mechanisms involved in the relationship between temperature and longevity also appear to be less direct than once thought with neuroendocrine processes possibly mediating complex physiological responses to temperature changes. Lastly, we discuss species differences in longevity in mammals and how this relates to body temperature and argue that the low temperature of the long-lived naked mole-rat possibly contributes to its exceptional longevity.

  16. Effect of Temperature Variations on Molecular Weight Distributions - Batch, Chain Addition Polymerizations

    DTIC Science & Technology

    those that might be formed by temperature variations in real reactors. Under most conditions, temperature variations appear to have a much greater effect on MWD than residence time distributions and micromixing .

  17. Fracture toughness of the IEA heat of F82H ferritic/martensitic stainless steel as a function of loading mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaxin; Gelles, D.S.; Hirth, J.P.

    1997-04-01

    Mode I and mixed-mode I/III fracture toughness tests were performed for the IEA heat of the reduced activation ferritic/martensitic stainless steel F82H at ambient temperature in order to provide comparison with previous measurements on a small heat given a different heat treatment. The results showed that heat to heat variations and heat treatment had negligible consequences on Mode I fracture toughness, but behavior during mixed-mode testing showed unexpected instabilities.

  18. High sensitivity boundary layer transition detector

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hoeft, T.

    1985-01-01

    A high sensitivity differential interferometer has been developed to locate the region where the boundary layer flow changes from laminar to turbulent. Two experimental configurations have been used to evaluate the performance of the interferometer, open shear layer configuration and wind tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of .001 the laser wavelength.

  19. Dinosaur energetics: setting the bounds on feasible physiologies and ecologies.

    PubMed

    Clarke, Andrew

    2013-09-01

    The metabolic status of dinosaurs has long been debated but remains unresolved as no consistent picture has emerged from a range of anatomical and isotopic evidence. Quantitative analysis of dinosaur energetics, based on general principles applicable to all vertebrates, shows that many features of dinosaur lifestyle are compatible with a physiology similar to that of extant lizards, scaled up to dinosaur body masses and temperatures. The analysis suggests that sufficient metabolic scope would have been available to support observed dinosaur growth rates and allow considerable locomotor activity, perhaps even migration. Since at least one dinosaur lineage evolved true endothermy, this study emphasizes there was no single dinosaur physiology. Many small theropods were insulated with feathers and appear to have been partial or full endotherms. Uninsulated small taxa, and all juveniles, presumably would have been ectothermic, with consequent diurnal and seasonal variations in body temperature. In larger taxa, inertial homeothermy would have resulted in warm and stable body temperatures but with a basal metabolism significantly below that of extant mammals or birds of the same size. It would appear that dinosaurs exhibited a range of metabolic levels to match the broad spectrum of ecological niches they occupied.

  20. Speed of sound in muscle for use in sonomicrometry.

    PubMed

    Marsh, Richard L

    2016-12-08

    Converting ultrasound transit time into a measure of distance when using sonomicrometry requires that the speed of sound be known. A number of different values for the speed of sound in muscle have been assumed in studies of skeletal and cardiac muscle, and in some cases the effect of temperature has been ignored. The speed of ultrasound with frequencies greater than 1MHz in skeletal and cardiac muscle is briefly reviewed, including the effects of temperature and contractile state. A simplified equation for the speed of sound in pure water is presented for the temperature range from 0-50°C. This equation can be used when calibrating sonomicrometer transducers in water. The data available indicate that the speed of sound in both cardiac and skeletal muscle can be approximated by multiplying the speed of sound in pure water at the measurement temperature by 1.045. Differences in the speed of sound in the longitudinal and transverse directions and changes with contractile state appear to be small and in most cases can probably be safely ignored. The normal variation in muscle composition does not greatly affect the speed of ultrasound in muscle, but investigators placing sonomicrometer transducers near tendons should be conscious of the much greater speed of sound in tendon and variation with loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Phase transition for the system of finite volume in the ϕ4 theory in the Tsallis nonextensive statistics

    NASA Astrophysics Data System (ADS)

    Ishihara, Masamichi

    2018-04-01

    We studied the effects of nonextensivity on the phase transition for the system of finite volume V in the ϕ4 theory in the Tsallis nonextensive statistics of entropic parameter q and temperature T, when the deviation from the Boltzmann-Gibbs (BG) statistics, |q ‑ 1|, is small. We calculated the condensate and the effective mass to the order q ‑ 1 with the normalized q-expectation value under the free particle approximation with zero bare mass. The following facts were found. The condensate Φ divided by v, Φ/v, at q (v is the value of the condensate at T = 0) is smaller than that at q‧ for q > q‧ as a function of Tph/v which is the physical temperature Tph divided by v. The physical temperature Tph is related to the variation of the Tsallis entropy and the variation of the internal energies, and Tph at q = 1 coincides with T. The effective mass decreases, reaches minimum, and increases after that, as Tph increases. The effective mass at q > 1 is lighter than the effective mass at q = 1 at low physical temperature and heavier than the effective mass at q = 1 at high physical temperature. The effects of the nonextensivity on the physical quantity as a function of Tph become strong as |q ‑ 1| increases. The results indicate the significance of the definition of the expectation value, the definition of the physical temperature, and the constraints for the density operator, when the terms including the volume of the system are not negligible.

  2. Effect of Drying Temperature on the Chemical Properties and Diffusivity of belimbi (averrhoa belimbi)

    NASA Astrophysics Data System (ADS)

    Shahari, N.; Jamil, N.; Rasmani, K. A.; Nursabrina

    2015-09-01

    In recent years, many dried fruit products have been developed in response to a strong demand by the customer. This type of fruit has a different composition and hence different moisture diffusivity (D). During drying, Fick's Law of diffusion, which describes the movement of liquid water was used to calculate this diffusivity. However diffusivity has strong effects on the material drying characteristics and these must be determined. In this paper, Fick's Law of diffusion with different kinds of boundary conditions was solve using separation of variable (SOV). In order to get the value of D, results obtained using SOV will be compared with the results from the drying of belimbi at temperature of 40°C, 50°C and 60°C. Although the results show that variation in the values of diffusivity for different temperatures is relatively small, but the variation in the total time required for drying is significantly bigger: between 3-7 hours. Its shown that diffusivity is an important measurement and should be considered in the modeling of the drying process. The chemical properties of belimbi slices in terms of vitamin C, total ash and antioxidant activity with different air temperatures and pretreatment were also investigated. Higher drying temperatures gives less drying time, a lower vitamin C and antioxidant activity but a greater total of ash, whilst pre-treatment can increased vitamin C and antioxidant activity. The results show that pre-treatment and the drying temperature are important variables to improve mass and heat transfer, as well as the belimbi chemical properties.

  3. Variation in the thermal parameters of Odontophrynus occidentalis in the Monte desert, Argentina: response to the environmental constraints.

    PubMed

    Sanabria, Eduardo Alfredo; Quiroga, Lorena Beatriz; Martino, Adolfo Ludovico

    2012-03-01

    We studied the variation of thermal parameters of Odontophrynus occidentalis between season (wet and dry) in the Monte desert (Argentina). We measured body temperatures, microhabitat temperatures, and operative temperatures; while in the laboratory, we measured the selected body temperatures. Our results show a change in the thermal parameters of O. occidentalis that is related to environmental constraints of their thermal niche. Environmental thermal constraints are present in both seasons (dry and wet), showing variations in thermal parameters studied. Apparently imposed environmental restrictions, the toads in nature always show body temperatures below the set point. Acclimatization is an advantage for toads because it allows them to bring more frequent body temperatures to the set point. The selected body temperature has seasonal intraindividual variability. These variations can be due to thermo-sensitivity of toads and life histories of individuals that limits their allocation and acquisition of resources. Possibly the range of variation found in selected body temperature is a consequence of the thermal environmental variation along the year. These variations of thermal parameters are commonly found in deserts and thermal bodies of nocturnal ectotherms. The plasticity of selected body temperature allows O. occidentales to have longer periods of activity for foraging and reproduction, while maintaining reasonable high performance at different temperatures. The plasticity in seasonal variation of the thermal parameters has been poorly studied, and is greatly advantageous to desert species during changes in both seasonal and daily temperature, as these environments are known for their high environmental variability. © 2012 WILEY PERIODICALS, INC.

  4. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream

    NASA Astrophysics Data System (ADS)

    Westhoff, M. C.; Gooseff, M. N.; Bogaard, T. A.; Savenije, H. H. G.

    2011-10-01

    Hyporheic exchange is an important process that underpins stream ecosystem function, and there have been numerous ways to characterize and quantify exchange flow rates and hyporheic zone size. The most common approach, using conservative stream tracer experiments and 1-D solute transport modeling, results in oversimplified representations of the system. Here we present a new approach to quantify hyporheic exchange and the size of the hyporheic zone (HZ) using high-resolution temperature measurements and a coupled 1-D transient storage and energy balance model to simulate in-stream water temperatures. Distributed temperature sensing was used to observe in-stream water temperatures with a spatial and temporal resolution of 2 and 3 min, respectively. The hyporheic exchange coefficient (which describes the rate of exchange) and the volume of the HZ were determined to range between 0 and 2.7 × 10-3 s-1 and 0 and 0.032 m3 m-1, respectively, at a spatial resolution of 1-10 m, by simulating a time series of in-stream water temperatures along a 565 m long stretch of a small first-order stream in central Luxembourg. As opposed to conventional stream tracer tests, two advantages of this approach are that exchange parameters can be determined for any stream segment over which data have been collected and that the depth of the HZ can be estimated as well. Although the presented method was tested on a small stream, it has potential for any stream where rapid (in regard to time) temperature change of a few degrees can be obtained.

  5. Centennial-Scale Relationship Between the Southern Hemisphere Westerly Winds and Temperature

    NASA Astrophysics Data System (ADS)

    Hodgson, D. A.; Perren, B.; Roberts, S. J.; Sime, L. C.; Verleyen, E.; Van Nieuwenhuyze, W.; Vyverman, W.

    2017-12-01

    Recent changes in the intensity and position of the Southern Hemisphere Westerly Winds (SHW) have been implicated in a number of important physical changes in the Southern High Latitudes. These include changes in the efficiency of the Southern Ocean CO2 sink through alterations in ocean circulation, the loss of Antarctic ice shelves through enhanced basal melting, changes in Antarctic sea ice extent, and warming of the Antarctic Peninsula. Many of these changes have far-reaching implications for global climate and sea level rise. Despite the importance of the SHW in global climate, our current understanding of the past and future behaviour of the westerly winds is limited by relatively few reconstructions and measurements of the SHW in their core belt over the Antarctic Circumpolar Current; the region most relevant to Southern Ocean air-sea gas exchange. The aim of this study was to reconstruct changes in the relative strength of the SHW at Marion Island, one of a small number of sub-Antarctic islands that lie in the core of the SHWs. We applied independent diatom- and geochemistry- based methods to track past changes in relative wind intensity. This mutiproxy approach provides a validation that the proxies are responding to the external forcing (the SHW) rather than local (e.g. precipitation ) or internal dynamics. Results show that that the strength of the SHW are intrinsically linked to extratropical temperatures over centennial timescales, with warmer temperatures driving stronger winds. Our findings also suggest that large variations in the path and intensity of the westerly winds are driven by relatively small variations in temperature over these timescales. This means that with continued climate warming, even in the absence of anthropogenic ozone-depletion, we should anticipate large shifts in the SHW, causing stronger, more poleward-intensified winds in the decades and centuries to come, with attendant impacts on ocean circulation, ice shelf stability, and anthropogenic CO2 sequestration.

  6. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams

    NASA Astrophysics Data System (ADS)

    Kristensen, P. B.; Kristensen, E. A.; Riis, T.; Baisner, A. J.; Larsen, S. E.; Verdonschot, P. F. M.; Baattrup-Pedersen, A.

    2013-05-01

    Predictions of the future climate infer that stream water temperatures may increase in temperate lowland areas and that streams without riparian forest will be particularly prone to elevated stream water temperature. Planting of riparian forest is a potential mitigation measure to reduce water temperatures for the benefit of stream organisms. However, no studies have yet determined the length of a forested reach required to obtain a significant temperature decrease. To investigate this we measured the temperature in five small Danish lowland streams from June 2010 to July 2011, all showing a sharp transition between an upstream open reach and a downstream forested reach. In all stream reaches we also measured canopy cover and a range of physical variables characterizing the streams reaches. This allowed us to analyse differences in mean daily temperature and amplitude per month among forested and open sections as well as to study annual temperature regimes and the influence of physical conditions on temperature changes. Stream water temperature in the open reaches was affected by heating, and in July we observed an increase in temperature over the entire length of the investigated reaches, reaching temperatures higher than the incipient lethal limit for brown trout. Along the forest reaches a significant decrease in July temperatures was recorded immediately (100 m) when the stream moved into the forested area. In three of our study streams the temperature continued to decrease the longer the stream entered into the forested reach, and the temperature decline did not reach a plateau. The temperature increases along the open reaches were accompanied by stronger daily temperature variation; however, when the streams entered into the forest, the range in daily variation decreased. Multiple regression analysis of the combined effects on stream water temperature of canopy cover, Width/Depth ratio, discharge, current velocity and water temperature revealed that canopy cover and Width/Depth were the two variables responsible for the reduced temperature observed when the streams enter the forest. In consequence, we conclude that even relatively short stretches (100-500 m) of forest alongside streams may combat the negative effects of heating of stream water and that forest planting can be a useful mitigation measure.

  7. Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vertruyen, B.; Cloots, R.; Abell, J. S.; Jackson, T. J.; da Silva, R. C.; Popova, E.; Keller, N.

    2008-09-01

    We have studied the influence of the stoichiometry on the structural, magnetic, and magneto-optical properties of bismuth iron garnet (Bi3Fe5O12) thin films grown by pulsed laser deposition. Films with different stoichiometries have been obtained by varying the Bi/Fe ratio of the target and the oxygen pressure during deposition. Stoichiometry variations influence the Curie temperature TC by tuning the (Fe)-O-[Fe] geometry: TC increases when the lattice parameter decreases, contrary to what happens in the case of stoichiometric rare-earth iron garnets. The thermal variation of the magnetization, the Faraday rotation, and the Faraday ellipticity have been analyzed in the frame of the Néel two-sublattice magnetization model giving energies of -48K (4.1 meV), -29K (2.5 meV), and 84 K (7.3 meV) for the three magnetic exchange integrals jaa , jdd , and jad , respectively. Magneto-optical spectroscopy linked to compositional analysis by Rutherford backscattering spectroscopy shows that Bi and/or Fe deficiencies also affect the spectral variation (between 1.77 and 3.1 eV). Our results suggest that bismuth deficiency has an effect on the magneto-optical response of the tetrahedral Fe sublattice, whereas small iron deficiencies affect predominantly the magneto-optical response of the octahedral sublattice.

  8. Regional and circadian variations of sweating rate and body surface temperature in camels (Camelus dromedarius).

    PubMed

    Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A

    2012-07-01

    It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  9. Global exospheric temperatures and densities under active solar conditions. [measured by OGO-6

    NASA Technical Reports Server (NTRS)

    Wydra, B. J.

    1975-01-01

    Temperatures measured by the OGO-6 satellite using the 6300 A airglow spectrum are compared with temperatures derived from total densities and N2 densities. It is shown that while the variation of the total densities with latitude and magnetic activity agree well with values used for CIRA (1972), the temperature behavior is very different. While the temperatures derived from the N2 density were in much better agreement there were several important differences which radically affect the pressure gradients. The variation of temperature with magnetic activity indicated a seasonal and local time effect and also a latitude and delay time variation different from previous density derived temperatures. A new magnetic index is proposed that is better correlated with the observed temperatures. The temperature variations at high latitudes were examined for three levels of magnetic activity for both solstices and equinox conditions. A temperature maximum in the pre-midnight sector and a minimum in the noon sector were noted and seasonal and geomagnetic time and latitude effects discussed. Neutral temperature, density, pressure and boundary oxygen variations for the great storm of March 8, 1970 are presented.

  10. [Distribution of environmental temperature and relative humidity according to the number of conditioned air changes in laboratory animals rooms].

    PubMed

    Fujita, S; Obara, T; Tanaka, I; Yamauchi, C

    1981-01-01

    The relation of the rate of circulating air change to room temperature and relative humidity in animal quarters with a central air-conditioning system during heating and cooling seasons was investigated, with the results as follows: During the period of heating, the ambient temperature generally rose with a fall of relative humidity as the number of conditioned air changes per hour was increased. Vertical differences in temperature and humidity between levels of 0.5 and 1.5 m above the floor also diminished with increasing air change rate. This tendency was more conspicuous in small animals rooms with outer walls facing north and west. With increasing rate of air changes, the room temperature was prone to decline and the relative humidity to rise during the period of cooling. There were less vertical differences in temperature and humidity during this period. The velocity of air circulation within the animal quarters and its variations tended to increase progressively with increasing rate of ventilation, though the changes were modest.

  11. Innovative Methodologies for thermal Energy Release Measurement: case of La Solfatara volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Marfe`, Barbara; Avino, Rosario; Belviso, Pasquale; Caliro, Stefano; Carandente, Antonio; Marotta, Enrica; Peluso, Rosario

    2015-04-01

    This work is devoted to improve the knowledge on the parameters that control the heat flux anomalies associated with the diffuse degassing processes of volcanic and hydrothermal areas. The methodologies currently used to measure heat flux (i.e. CO2 flux or temperature gradient) are either poorly efficient or effective, and are unable to detect short to medium time (days to months) variation trends in the heat flux. A new method, based on the use of thermal imaging cameras, has been applied to estimate the heat flux and its time variations. This approach will allow faster heat flux measurement than already accredited methods, improving in this way the definition of the activity state of a volcano and allowing a better assessment of the related hazard and risk mitigation. The idea is to extrapolate the heat flux from the ground surface temperature that, in a purely conductive regime, is directly correlated to the shallow temperature gradient. We use thermal imaging cameras, at short distances (meters to hundreds of meters), to quickly obtain a mapping of areas with thermal anomalies and a measure of their temperature. Preliminary studies have been carried out throughout the whole of the La Solfatara crater in order to investigate a possible correlation between the surface temperature and the shallow thermal gradient. We have used a FLIR SC640 thermal camera and K type thermocouples to assess the two measurements at the same time. Results suggest a good correlation between the shallow temperature gradient ΔTs and the surface temperature Ts depurated from background, and despite the campaigns took place during a period of time of a few years, this correlation seems to be stable over the time. This is an extremely motivating result for a further development of a measurement method based only on the use of small range thermal imaging camera. Surveys with thermal cameras may be manually done using a tripod to take thermal images of small contiguous areas and then joining them together in a bigger map of the whole area. However this kind of scanning does not fully solve the low speed problem of traditional techniques: a future development of this technique will be the use of drone-born IR cameras.

  12. Urban effects on extreme heat in a mid-sized North American city

    NASA Astrophysics Data System (ADS)

    Schatz, J.; Kucharik, C. J.

    2013-12-01

    As climate change drives global temperatures higher, heat waves are projected to increase in frequency, intensity, and duration, particularly in cities where the urban heat island effect can further raise local temperatures. Cities contain 50% of the global population and 80% of the North American population, and these percentages are projected to reach 70% globally and 87% in North America by 2030. This creates a need to understand the nature of heat events not just globally but also within cities where local climate variation can be substantial. That local variation could prove highly consequential for heat adaptation in cities, making it important to understand the dynamics of extreme heat within urban landscapes. Our study addresses this need by characterizing 400m-resolution variation in air temperature and heat index during a historically hot year in Madison, Wisconsin. Madison is a mid-sized temperate city with a metropolitan area population of 568,593. It is surrounded by several large lakes and a complex rural landscape of agriculture, forests, wetlands, and grasslands. In 2012, Madison experienced its hottest year and third hottest summer on record, with the Madison airport reporting 39 days exceeding 90°F compared to an average of 9 days. In March 2012, we installed 135 Onset HOBO ProV2 T/RH sensors across the Madison area to record air temperature and relative humidity at 15 minute intervals. The data from this network provides a unique opportunity to study small-scale spatial variation in the magnitude and duration of hot conditions that are projected to become more common in the future. Our sensors recorded substantial variation in the magnitude and duration of high temperatures and heat indices during the summer of 2012. For temperature, the densest parts of the city experienced >200 hours ≥90°F compared to <100 hours in many rural areas. Temperatures ≥100°F occurred up to 22 hours in some parts of the city versus 0 hours in much of the rural surroundings. For heat index, the densest parts of Madison experienced >300 hours ≥90°F compared to <200 hours in most rural areas. Heat indices ≥100°F occurred >70 hours in dense urban areas compared to <50 hours in rural. The magnitude and duration of high temperatures were positively related to percent impervious surface coverage and negatively related to lake proximity, though lake proximity was not always significant. Heat index showed similar patterns with respect to impervious cover, but unlike temperature was negatively related to water body proximity due to the lakes providing a source of high humidity. Further results and analyses will be described and visualized, including a comparison with the relatively cool and wet summer of 2013. As climate change continues to raise heat related risks in cities across the world, these results have important implications for urban adaptation to high heat and its effects on human health, electric power demand, and the environment.

  13. [Effect of climate change on net primary productivity of Korean pine (Pinus koraiensis) at different successional stages of broad-leaved Korean pine forest].

    PubMed

    Qiu, Yang; Gao, Lu-Shuang; Zhang, Xue; Guo, Jing; Ma, Zhi-Yuan

    2014-07-01

    Pinus koraiensis in broad-leaved Korean pine forests of Changbai Mountain at different successional stages (secondary poplar-birch forest, secondary coniferous and broad-leaved forest and the primitive Korean pine forest) were selected in this paper as the research objects. In this research, the annual growth of net primary productivity (NPP) (1921-2006) of P. koraiensis was obtained by combining the tree-ring chronology and relative growth formulae, the correlation between NPP of P. koraiensis and climatic factors was developed, and the annual growth of NPP of P. koraiensis at different successional stages in relation to climatic variation within different climate periods were analyzed. The results showed that, in the research period, the correlations between climatic factors and NPP of P. koraiensis at different successional stages were different. With increasing the temperature, the correlations between NPP of P. koraiensis in the secondary poplar-birch forest and the minimum temperatures of previous and current growing seasons changed from being significantly negative to being significantly positive. The positive correlation between NPP of P. koraiensis in the secondary coniferous and broad-leaved forest and the minimum temperature in current spring changed into significantly positive correlation between NPP of P. koraiensis and the temperatures in previous and current growing seasons. The climatic factors had a stronger hysteresis effect on NPP of P. koraiensis in the secondary coniferous and broad-leaved forest, but NPP of P. koraiensis in the primitive Korean pine forest had weaker correlation with temperature but stronger positive correlation with the precipitation of previous growing season. The increases of minimum and mean temperatures were obvious, but no significant variations of the maximum temperature and precipitation were observed at our site. The climatic variation facilitated the increase of the NPP of P. koraiensis in the secondary poplar-birch forest at the initial successional stage and in secondary coniferous and broad-leaved forest at the intermediate successional stage, and this effect was especially obvious for the secondary coniferous and broad-leaved forest, but very small for the primitive Korean pine forest which was at the climax phase.

  14. Using Check-All-That-Apply (CATA) method for determining product temperature-dependent sensory-attribute variations: A case study of cooked rice.

    PubMed

    Pramudya, Ragita C; Seo, Han-Seok

    2018-03-01

    Temperatures of most hot or cold meal items change over the period of consumption, possibly influencing sensory perception of those items. Unlike temporal variations in sensory attributes, product temperature-induced variations have not received much attention. Using a Check-All-That-Apply (CATA) method, this study aimed to characterize variations in sensory attributes over a wide range of temperatures at which hot or cold foods and beverages may be consumed. Cooked milled rice, typically consumed at temperatures between 70 and 30°C in many rice-eating countries, was used as a target sample in this study. Two brands of long-grain milled rice were cooked and randomly presented at 70, 60, 50, 40, and 30°C. Thirty-five CATA terms for cooked milled rice were generated. Eighty-eight untrained panelists were asked to quickly select all the CATA terms that they considered appropriate to characterize sensory attributes of cooked rice samples presented at each temperature. Proportions of selection by panelists for 13 attributes significantly differed among the five temperature conditions. "Product temperature-dependent sensory-attribute variations" differed with two brands of milled rice grains. Such variations in sensory attributes, resulted from both product temperature and rice brand, were more pronounced among panelists who more frequently consumed rice. In conclusion, the CATA method can be useful for characterizing "product temperature-dependent sensory attribute variations" in cooked milled-rice samples. Further study is needed to examine whether the CATA method is also effective in capturing "product temperature-dependent sensory-attribute variations" in other hot or cold foods and beverages. Published by Elsevier Ltd.

  15. Buckling of a circular plate made of a shape memory alloy due to a reverse thermoelastic martensite transformation

    NASA Astrophysics Data System (ADS)

    Movchan, A. A.; Sil'chenko, L. G.

    2008-02-01

    We solve the axisymmetric buckling problem for a circular plate made of a shape memory alloy undergoing reverse martensite transformation under the action of a compressing load, which occurs after the direct martensite transformation under the action of a generally different (extending or compressing) load. The problem was solved without any simplifying assumptions concerning the transverse dimension of the supplementary phase transition region related to buckling. The mathematical problem was reduced to a nonlinear eigenvalue problem. An algorithm for solving this problem was proposed. It was shown that the critical buckling load under the reverse transition, which is obtained by taking into account the evolution of the phase strains, can be many times lower than the same quantity obtained under the assumption that the material behavior is elastic even for the least (martensite) values of the elastic moduli. The critical buckling force decreases with increasing modulus of the load applied at the preliminary stage of direct transition and weakly depends on whether this load was extending or compressing. In shape memory alloys (SMA), mutually related processes of strain and direct (from the austenitic into the martensite phase) or reverse thermoelastic phase transitions may occur. The direct transition occurs under cooling and (or) an increase in stresses and is accompanied by a significant decrease (nearly by a factor of three in titan nickelide) of the Young modulus. If the direct transition occurs under the action of stresses with nonzero deviator, then it is accompanied by accumulation of macroscopic phase strains, whose intensity may reach 8%. Under the reverse transition, which occurs under heating and (or) unloading, the moduli increase and the accumulated strain is removed. For plates compressed in their plane, in the case of uniform temperature distribution over the thickness, one can separate trivial processes under which the strained plate remains plane and the phase ratio has a uniform distribution over the thickness. For sufficiently high compressing loads, the trivial process of uniform compression may become unstable in the sense that, for small perturbations of the plate deflection, temperature, the phase ratio, or the load, the difference between the corresponding perturbed process and the unperturbed process may be significant. The results of several experiments concerning the buckling of SMA elements are given in [1, 2], and the statement and solution of the corresponding boundary value problems can be found in [3-11]. The experimental studies [2] and several analytic solutions obtained for the Shanley column [3, 4], rods [5-7], rectangular plates under direct [8] and reverse [9] transitions showed that the processes of thermoelastic phase transitions can significantly (by several times) decrease the critical buckling loads compared with their elastic values calculated for the less rigid martensite state of the material. Moreover, buckling does not occur in the one-phase martensite state in which the elastic moduli are minimal but in the two-phase state in which the values of the volume fractions of the austenitic and martensite phase are approximately equal to each other. This fact is most astonishing for buckling, studied in the present paper, under the reverse transition in which the Young modulus increases approximately half as much from the beginning of the phase transition to the moment of buckling. In [3-9] and in the present paper, the static buckling criterion is used. Following this criterion, the critical load is defined to be the load such that a nontrivial solution of the corresponding quasistatic problem is possible under the action of this load. If, in the problems of stability of rods and SMA plates, small perturbations of the external load are added to small perturbations of the deflection (the critical force is independent of the amplitude of the latter), then the critical forces vary depending on the value of perturbations of the external load [5, 8, 9]. Thus, in the case of small perturbations of the load, the problem of stability of SMA elements becomes indeterminate. The solution of the stability problem for SMA elements also depends on whether the small perturbations of the phase ratio and the phase strain tensor are taken into account. According to this, the problem of stability of SMA elements can be solved in the framework of several statements (concepts, hypotheses) which differ in the set of quantities whose perturbations are admissible (taken into account) in the process of solving the problem. The variety of these statements applied to the problem of buckling of SMA elements under direct martensite transformation is briefly described in [4, 5]. But, in the problem of buckling under the reverse transformation, some of these statements must be changed. The main question which we should answer when solving the problem of stability of SMA elements is whether small perturbations of the phase ratio (the volume fraction of the martensite phase q) are taken into account, because an appropriate choice significantly varies the results of solving the stability problem. If, under the transition to the adjacent form of equilibrium, the phase ratio of all points of the body is assumed to remain the same, then we deal with the "fixed phase atio" concept. The opposite approach can be classified as the "supplementary phase transition" concept (which occurs under the transition to the adjacent form of equilibrium). It should be noted that, since SMA have temperature hysteresis, the phase ratio in SMA can endure only one-sided small variations. But if we deal with buckling under the inverse transformation, then the variation in the volume fraction of the martensite phase cannot be positive. The phase ratio is not an independent variable, like loads or temperature, but, due to the constitutive relations, its variations occur together with the temperature variations and, in the framework of connected models for a majority of SMA, together with variations in the actual stresses. Therefore, the presence or absence of variations in q is determined by the presence or absence of variations in the temperature, deflection, and load, as well as by the system of constitutive relations used in this particular problem. In the framework of unconnected models which do not take the influence of actual stresses on the phase ratio into account, the "fixed phase ratio" concept corresponds to the case of absence of temperature variations. The variations in the phase ratio may also be absent in connected models in the case of specially chosen values of variations in the temperature and (or) in the external load, as well as in the case of SMA of CuMn type, for which the influence of the actual stresses on the phase compound is absent or negligible. In the framework of the "fixed phase ratio" hypothesis, the stability problem for SMA elements has a solution coinciding in form with the solution of the corresponding elastic problem, with the elastic moduli replaced by the corresponding functions of the phase ratio. In the framework of the supplementary phase transition" concept, the result of solving the stability problem essentially depends on whether the small perturbations of the external loads are taken into account in the process of solving the problem. The point is that, when solving the problem in the connected setting, the supplementary phase transition region occupies, in general, not the entire cross-section of the plate but only part of it, and the location of the boundary of this region depends on the existence and the value of these small perturbations. More precisely, the existence of arbitrarily small perturbations of the actual load can result in finite changes of the configuration of the supplementary phase transition region and hence in finite change of the critical values of the load. Here we must distinguish the "fixed load" hypothesis where no perturbations of the external loads are admitted and the "variable load" hypothesis in the opposite case. The conditions that there no variations in the external loads imply additional equations for determining the boundary of the supplementary phase transition region. If the "supplementary phase transition" concept and the "fixed load" concept are used together, then the solution of the stability problem of SMA is uniquely determined in the same sense as the solution of the elastic stability problem under the static approach. In the framework of the "variable load" concept, the result of solving the stability problem for SMA ceases to be unique. But one can find the upper and lower bounds for the critical forces which correspond to the cases of total absence of the supplementary phase transition: the upper bound corresponds to the critical load coinciding with that determined in the framework of the "fixed phase ratio" concept, and the lower bound corresponds to the case where the entire cross-section of the plate experiences the supplementary phase transition. The first version does not need any additional name, and the second version can be called as the "all-round supplementary phase transition" hypothesis. In the present paper, the above concepts are illustrated by examples of solving problems about axisymmetric buckling of a circular freely supported or rigidly fixed plate experiencing reverse martensite transformation under the action of an external force uniformly distributed over the contour. We find analytic solutions in the framework of all the above-listed statements except for the case of free support in the "fixed load" concept, for which we obtain a numerical solution.

  16. Time-Averaged Velocity, Temperature and Density Surveys of Supersonic Free Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.

    2005-01-01

    A spectrally resolved molecular Rayleigh scattering technique was used to simultaneously measure axial component of velocity U, static temperature T, and density p in unheated free jets at Mach numbers M = 0.6,0.95, 1.4 and 1.8. The latter two conditions were achieved using contoured convergent-divergent nozzles. A narrow line-width continuous wave laser was passed through the jet plumes and molecular scattered light from a small region on the beam was collected and analyzed using a Fabry-Perot interferometer. The optical spectrum analysis air density at the probe volume was determined by monitoring the intensity variation of the scattered light using photo-multiplier tubes. The Fabry-Perot interferometer was operated in the imaging mode, whereby the fringe formed at the image plane was captured by a cooled CCD camera. Special attention was given to remove dust particles from the plume and to provide adequate vibration isolation to the optical components. The velocity profiles from various operating conditions were compared with that measured by a Pitot tube. An excellent comparison within 5m's demonstrated the maturity of the technique. Temperature was measured least accurately, within 10K, while density was measured within 1% uncertainty. The survey data consisted of centerline variations and radial profiles of time-averaged U, T and p. The static temperature and density values were used to determine static pressure variations inside the jet. The data provided a comparative study of jet growth rates with increasing Mach number. The current work is part of a data-base development project for Computational Fluid Dynamics and Aeroacoustics codes that endeavor to predict noise characteristics of high speed jets. A limited amount of far field noise spectra from the same jets are also presented. Finally, a direct experimental validation was obtained for the Crocco-Busemann equation which is commonly used to predict temperature and density profiles from known velocity profiles. Data presented in this paper are available in ASCII format upon request.

  17. Seasonal and inter-annual variation in ecosystem scale methane emission from a boreal fen

    NASA Astrophysics Data System (ADS)

    Rinne, Janne; Li, Xuefei; Raivonen, Maarit; Peltola, Olli; Sallantaus, Tapani; Haapanala, Sami; Smolander, Sampo; Alekseychik, Pavel; Aurela, Mika; Korrensalo, Aino; Mammarella, Ivan; Tuittila, Eeva-Stiina; Vesala, Timo

    2016-04-01

    Northern wetlands are one of the major sources of atmospheric methane. We have measured ecosystem scale methane emissions from a boreal fen continuously since 2005. The site is an oligotrophic fen in boreal vegetation zone situated in Siikaneva wetland complex in Southern Finland. The mean annual temperature in the area is 3.3°C and total annual precipitation 710 mm. We have conducted the methane emission measurements by the eddy covariance method. Additionally we have measured fluxes of carbon dioxide, water vapor, and sensible heat together with a suite of other environmental parameters. We have analyzed this data alongside with a model run with University of Helsinki methane model. The measured fluxes show generally highest methane emission in late summers coinciding with the highest temperatures in saturated peat zone. During winters the fluxes show small but detectable emission despite the snow and ice cover on the fen. More than 90% of the annual methane emission occurs in snow-free period. The methane emission and peat temperature are connected in exponential manner in seasonal scales, but methane emission does not show the expected behavior with water table. The lack of water table position dependence also contrasts with the spatial variation across microtopography. There is no systematic variation in sub-diurnal time scale. The general seasonal cycle in methane emission is captured well with the methane model. We will show how well the model reproduces the temperature and water table position dependencies observed. The annual methane emission is typically around 10 gC m-2. This is a significant part of the total carbon exchange between the fen and the atmosphere and about twice the estimated carbon loss by leaching from the fen area. The inter-annual variability in the methane emission is modest. The June-September methane emissions from different years, comprising most of the annual emission, correlates positively with peat temperature, but not with water table position.

  18. Seasonal change in a pollinator community and the maintenance of style length variation in Mertensia fusiformis (Boraginaceae).

    PubMed

    Forrest, Jessica R K; Ogilvie, Jane E; Gorischek, Alex M; Thomson, James D

    2011-07-01

    In sub-alpine habitats, patchiness in snowpack produces marked, small-scale variation in flowering phenology. Plants in early- and late-melting patches are therefore likely to experience very different conditions during their flowering periods. Mertensia fusiformis is an early-flowering perennial that varies conspicuously in style length within and among populations. The hypothesis that style length represents an adaptation to local flowering time was tested. Specifically, it was hypothesized that lower air temperatures and higher frost risk would favour short-styled plants (with stigmas more shielded by corollas) in early-flowering patches, but that the pollen-collecting behaviour of flower visitors in late-flowering patches would favour long-styled plants. Floral morphology was measured, temperatures were monitored and pollinators were observed in several matched pairs of early and late populations. To evaluate effects of cold temperatures on plants of different style lengths, experimental pollinations were conducted during mornings (warm) and evenings (cool), and on flowers that either had or had not experienced a prior frost. The effectiveness of different pollinators was quantified as seed set following single visits to plants with relatively short or long styles. Late-flowering populations experienced warmer temperatures than early-flowering populations and a different suite of pollinators. Nectar-foraging bumble-bee queens and male solitary bees predominated in early populations, whereas pollen-collecting female solitary bees were more numerous in later sites. Pollinators differed significantly in their abilities to transfer pollen to stigmas at different heights, in accordance with our prediction. However, temperature and frost sensitivity did not differ between long- and short-styled plants. Although plants in late-flowering patches tended to have longer styles than those in early patches, this difference was not consistent. Seasonal change in pollinator-mediated selection on style length may help maintain variation in this trait in M. fusiformis, but adaptation to local flowering time is not apparent. The prevalence of short styles in these populations requires further explanation.

  19. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    PubMed

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  20. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel

    2014-01-01

    Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  1. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  2. Visible photoluminescence of porous Si(1-x)Ge(x) obtained by stain etching

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Fathauer, R. W.; George, T.; Pike, W. T.; Vasquez, R. P.; Taylor, A. P.

    1993-01-01

    We have investigated visible photoluminescence (PL) from thin porous Si(1-x)Ge(x) alloy layers prepared by stain etching of molecular-beam-epitaxy-grown material. Seven samples with nominal Ge fraction x varying from 0.04 to 0.41 were studied at room temperature and 80 K. Samples of bulk stain etched Si and Ge were also investigated. The composition of the porous material was determined using X-ray photoemission spectroscopy and Rutherford backscattering techniques to be considerably more Ge-rich than the starting epitaxial layers. While the luminescence intensity drops significantly with the increasing Ge fraction, we observe no significant variation in the PL wavelength at room temperature. This is clearly in contradiction to the popular model based on quantum confinement in crystalline silicon which predicts that the PL energy should follow the bandgap variation of the starting material. However, our data are consistent with small active units containing only a few Si atoms that are responsible for the light emission. Such units are present in many compounds proposed in the literature as the cause of the visible PL in porous Si.

  3. Temperature induced distortions in space telescope mirrors

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Rudmann, A. A.

    1993-01-01

    In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.

  4. Results and evaluation of a pilot primary monitoring network, San Francisco Bay, California, 1978

    USGS Publications Warehouse

    Bradford, W.L.; Iwatsubo, R.T.

    1980-01-01

    A primary monitoring network of 12 stations, with measurements at 1-meter depth intervals every 2 weeks during periods of high inflow from the Sacramento-San Joaquin River delta, and every 4-6 weeks during seasonal low delta inflows, appears adequate to observe major changes in ambient water quality in San Francisco Bay. A 1-year study tested the network operation and determined that analysis of the data could demonstrate the major changes in salinity, temperature, and light-attenuation distributions known to occur, based on earlier research, in response to variations of delta inflow and to other physical processes. Observations of eddies at two stations, of the influence of water from a river flooding in the extreme south bay, and of difference in salinity and temperature laterally across the entrance to the south bay are all new but are consistent with existing models. The pH, dissolved oxygen, and light-attenuation measurements, while adequate to observe small-scale vertical variations, are not sufficiently sensitive to detect the effects of phytoplankton blooms. (USGS)

  5. Temperature and Vibration Dependence of the Faraday Effect of Gd₂O₃ NPs-Doped Alumino-Silicate Glass Optical Fiber.

    PubMed

    Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek

    2018-03-27

    All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.

  6. Inter-annual variability in fossil-fuel CO2 emissions due to temperature anomalies

    NASA Astrophysics Data System (ADS)

    Bréon, F.-M.; Boucher, O.; Brender, P.

    2017-07-01

    It is well known that short-term (i.e. interannual) variations in fossil-fuel CO2 emissions are closely related to the evolution of the national economies. Nevertheless, a fraction of the CO2 emissions are linked to domestic and business heating and cooling, which can be expected to be related to the meteorology, independently of the economy. Here, we analyse whether the signature of the inter-annual temperature anomalies is discernible in the time series of CO2 emissions at the country scale. Our analysis shows that, for many countries, there is a clear positive correlation between a heating-degree-person index and the component of the CO2 emissions that is not explained by the economy as quantified by the gross domestic product (GDP). Similarly, several countries show a positive correlation between a cooling-degree-person (CDP) index and CO2 emissions. The slope of the linear relationship for heating is on the order of 0.5-1 kg CO2 (degree-day-person)-1 but with significant country-to-country variations. A similar relationship for cooling shows even greater diversity. We further show that the inter-annual climate anomalies have a small but significant impact on the annual growth rate of CO2 emissions, both at the national and global scale. Such a meteorological effect was a significant contribution to the rather small and unexpected global emission growth rate in 2014 while its contribution to the near zero emission growth in 2015 was insignificant.

  7. Characterization of LANDSAT-4 TM and MSS Image Quality for Interpretation of Agricultural and Forest Resources

    NASA Technical Reports Server (NTRS)

    Degloria, S. D.; Colwell, R. N.

    1984-01-01

    Systematic analysis of both image and numeric data shows that the overall spectral, spatial, and radiometric quality of the TM data are excellent. Spectral variations in fallow fields are due to the vaiability in soil moisture and surface roughness resulting from the various stages of field preparation for small grains production. Spectrally, the addition of the first TM short wave infrared band (Band 5) significantly enhanced ability to discriminate different crop types. Bands 1, 5, and 6 contain saturated pixels due to high albedo effects, low moisture conditions, and high radiant temperatures of granite and dry, bare soil on south facing slopes, respectively. Spatially, the two fold decrease in interpixel distance and four fold decrease in area per pixel between the TM and MSS allow for improved discrimination of small fields, boundary conditions, road and stream networks in rough terrain, and small forest clearings resulting from various forest management practices.

  8. Nanoscale density variations induced by high energy heavy ions in amorphous silicon nitride and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Mota-Santiago, P.; Vazquez, H.; Bierschenk, T.; Kremer, F.; Nadzri, A.; Schauries, D.; Djurabekova, F.; Nordlund, K.; Trautmann, C.; Mudie, S.; Ridgway, M. C.; Kluth, P.

    2018-04-01

    The cylindrical nanoscale density variations resulting from the interaction of 185 MeV and 2.2 GeV Au ions with 1.0 μm thick amorphous SiN x :H and SiO x :H layers are determined using small angle x-ray scattering measurements. The resulting density profiles resembles an under-dense core surrounded by an over-dense shell with a smooth transition between the two regions, consistent with molecular-dynamics simulations. For amorphous SiN x :H, the density variations show a radius of 4.2 nm with a relative density change three times larger than the value determined for amorphous SiO x :H, with a radius of 5.5 nm. Complementary infrared spectroscopy measurements exhibit a damage cross-section comparable to the core dimensions. The morphology of the density variations results from freezing in the local viscous flow arising from the non-uniform temperature profile in the radial direction of the ion path. The concomitant drop in viscosity mediated by the thermal conductivity appears to be the main driving force rather than the presence of a density anomaly.

  9. Mass-induced sea level variations in the Red Sea from steric-corrected altimetry, GRACE, in-situ bottom pressure records, and hydrographic observations

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Lemoine, Jean-Michel; Zhong, Min; Xu, Houze

    2014-05-01

    An annual amplitude of ~18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from steric-corrected altimetry and the Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 to 2011, which dominates the mean sea level in the region. Seawater mass variations here generally reach maximum in late January/early February. The steric component of SLV calculated from oceanographic temperature and salinity data is relatively small and peaks about seven months later than mass variations. The phase difference between the steric SLV and the mass-induced SLV indicates that when the Red Sea gains the mass from inflow water in winter, the steric SLV fall, and vice versa in summer. In-situ bottom pressure records in the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. Furthermore, we compare the horizontal water mass flux in the Red Sea from steric-corrected altimetry and GRACE with that estimated from hydrographic observations.

  10. Global trends

    NASA Technical Reports Server (NTRS)

    Megie, G.; Chanin, M.-L.; Ehhalt, D.; Fraser, P.; Frederick, J. F.; Gille, J. C.; Mccormick, M. P.; Schoebert, M.; Bishop, L.; Bojkov, R. D.

    1990-01-01

    Measuring trends in ozone, and most other geophysical variables, requires that a small systematic change with time be determined from signals that have large periodic and aperiodic variations. Their time scales range from the day-to-day changes due to atmospheric motions through seasonal and annual variations to 11 year cycles resulting from changes in the sun UV output. Because of the magnitude of all of these variations is not well known and highly variable, it is necessary to measure over more than one period of the variations to remove their effects. This means that at least 2 or more times the 11 year sunspot cycle. Thus, the first requirement is for a long term data record. The second related requirement is that the record be consistent. A third requirement is for reasonable global sampling, to ensure that the effects are representative of the entire Earth. The various observational methods relevant to trend detection are reviewed to characterize their quality and time and space coverage. Available data are then examined for long term trends or recent changes in ozone total content and vertical distribution, as well as related parameters such as stratospheric temperature, source gases and aerosols.

  11. Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data

    NASA Astrophysics Data System (ADS)

    Tate, C. G.; Moersch, J.; Jun, I.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Drake, D.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Maclennan, E.; Malakhov, A.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.

    2018-06-01

    The Mars Science Laboratory Dynamic Albedo of Neutrons (DAN) experiment measures the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). During the mission, DAN passive mode data were collected over the full diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these locations. We investigate different hypotheses that could be causing these observed variations. These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange of water vapor between the atmosphere and regolith, and instrumental effects on the neutron count rates. Our investigation suggests the most likely factors contributing to the observed diurnal variations in DAN passive data are instrumental effects and time-variable preferential shielding of alpha particles, with other environmental effects only having small contributions.

  12. Met Éireann high resolution reanalysis for Ireland

    NASA Astrophysics Data System (ADS)

    Gleeson, Emily; Whelan, Eoin; Hanley, John

    2017-03-01

    The Irish Meteorological Service, Met Éireann, has carried out a 35-year very high resolution (2.5 km horizontal grid) regional climate reanalysis for Ireland using the ALADIN-HIRLAM numerical weather prediction system. This article provides an overview of the reanalysis, called MÉRA, as well as a preliminary analysis of surface parameters including screen level temperature, 10 m wind speeds, mean sea-level pressure (MSLP), soil temperatures, soil moisture and 24 h rainfall accumulations. The quality of the 3-D variational data assimilation used in the reanalysis is also assessed. Preliminary analysis shows that it takes almost 12 months to spin up the deep soil in terms of moisture, justifying the choice of running year-long spin up periods. Overall, the model performed consistently over the time period. Small biases were found in screen-level temperatures (less than -0.5 °C), MSLP (within 0.5 hPa) and 10 m wind speed (up to 0.5 m s-1) Soil temperatures are well represented by the model. 24 h accumulations of precipitation generally exhibit a small positive bias of ˜ 1 mm per day and negative biases over mountains due to a mismatch between the model orography and the geography of the region. MÉRA outperforms the ERA-Interim reanalysis, particularly in terms of standard deviations in screen-level temperatures and surface winds. This dataset is the first of its kind for Ireland that will be made publically available during spring 2017.

  13. SURFplus Model Calibration for PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2017-12-06

    The SURFplus reactive burn model is calibrated for the TATB based explosive PBX 9502 at three initial temperatures; hot (75 C), ambient (23 C) and cold (-55 C). The CJ state depends on the initial temperature due to the variation in the initial density and initial specific energy of the PBX reactants. For the reactants, a porosity model for full density TATB is used. This allows the initial PBX density to be set to its measured value even though the coeffcient of thermal expansion for the TATB and the PBX differ. The PBX products EOS is taken as independent ofmore » the initial PBX state. The initial temperature also affects the sensitivity to shock initiation. The model rate parameters are calibrated to Pop plot data, the failure diameter, the limiting detonation speed just above the failure diameters, and curvature effect data for small curvature.« less

  14. Magnetic field dependent atomic tunneling in non-magnetic glasses

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  15. The effect of grid transparency and finite collector size on determining ion temperature and density by the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Troy, B. E., Jr.; Maier, E. J.

    1973-01-01

    The analysis of ion data from retarding potential analyzers (RPA's) is generally done under the planar approximation, which assumes that the grid transparency is constant with angle of incidence and that all ions reaching the plane of the collectors are collected. These approximations are not valid for situations in which the ion thermal velocity is comparable to the vehicle velocity, causing ions to enter the RPA with high average transverse velocity. To investigate these effects, the current-voltage curves for H+ at 4000 K were calculated, taking into account the finite collector size and the variation of grid transparency with angle. These curves are then analyzed under the planar approximation. The results show that only small errors in temperature and density are introduced for an RPA with typical dimensions; and that even when the density error is substantial for non-typical dimensions, the temperature error remains minimal.

  16. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  17. Giant Thermal Expansion in 2D and 3D Cellular Materials.

    PubMed

    Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di

    2018-05-01

    When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermal elastoplastic structural analysis of non-metallic thermal protection systems

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Yagawa, G.

    1972-01-01

    An incremental theory and numerical procedure to analyze a three-dimensional thermoelastoplastic structure subjected to high temperature, surface heat flux, and volume heat supply as well as mechanical loadings are presented. Heat conduction equations and equilibrium equations are derived by assuming a specific form of incremental free energy, entropy, stresses and heat flux together with the first and second laws of thermodynamics, von Mises yield criteria and Prandtl-Reuss flow rule. The finite element discretization using the linear isotropic three-dimensional element for the space domain and a difference operator corresponding to a linear variation of temperature within a small time increment for the time domain lead to systematic solutions of temperature distribution and displacement and stress fields. Various boundary conditions such as insulated surfaces and convection through uninsulated surface can be easily treated. To demonstrate effectiveness of the present formulation a number of example problems are presented.

  19. Temperature-fluctuation-sensitive accumulative effect of the phase measurement errors in low-coherence interferometry in characterizing arrayed waveguide gratings.

    PubMed

    Zhao, Changyun; Wei, Bing; Yang, Longzhi; Wang, Gencheng; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2015-09-20

    We investigate the accumulative effect of the phase measurement errors in characterizing optical multipath components by low-coherence interferometry. The accumulative effect is caused by the fluctuation of the environment temperature, which leads to the variation of the refractive index of the device under test. The resulting phase measurement errors accumulate with the increasing of the phase difference between the two interferometer arms. Our experiments were carried out to demonstrate that the accumulative effect is still obvious even though the thermo-optical coefficient of the device under test is quite small. Shortening the measurement time to reduce the fluctuation of the environment temperature can effectively restrain the accumulative effect. The experiments show that when the scanning speed increases to 4.8 mm/s, the slope of the phase measurement errors decreases to 5.52×10(-8), which means the accumulative effect can be ignored.

  20. Calculated occultation profiles of Io and the hot spots

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L. A.; Matson, D. L.; Johnson, T. V.; Lunine, J. I.

    1986-01-01

    Occultations of Io by other Galilean satellites in 1985 provide a means to locate volcanic hot spots and to model their temperatures. The expected time variations in the integral reflected and emitted radiation of the occultations are computed as a function of wavelength (visual to 8.7 microns). The best current ephemerides were used to calculate the geometry of each event as viewed from earth. Visual reflectances were modeled from global mosaics of Io. Thermal emission from the hot spots was calculated from Voyager 1 IRIS observations and, for regions unobserved by IRIS, from a model based on the distribution of low-albedo features. The occultations may help determine (1) the location and temperature distribution of Loki; (2) the source(s) of excess emission in the region from long 50 deg to 200 deg and (3) the distribution of small, high-temperature sources.

  1. Changes in the electrical properties of pure and doped polymers under the influence of small doses of X-rays

    NASA Astrophysics Data System (ADS)

    Mahmoud, S. A.; Madi, N. K.; Kassem, M. E.; El-Khatib, A.

    A study has been made of the temperature dependence of the d.c. conductivity of pure and borated low density polyethylene LDPE (4% and 8% borax). The above calculations were carried out before and after X-ray irradiation. The irradiation dose was varied from 0 to 1000 rad. The d.c. electrical conductivity of Polyvinyl chloride (PVC) and perspex was measured as a function of temperature ranging from 20°C to 100°C. These samples were irradiated with X-rays of dose 200 rad. The variation of the d.c. conductivity of the treated samples versus temperature was investigated. The results reveal that the d.c. conductivity of LDPE is highly affected by radiation and/or dopant. In addition, the sensitivity of the explored polymers to X-ray irradiation is strongly dependent on its chemical nature.

  2. X-ray Emission Line Anisotropy Effects on the Isoelectronic Temperature Measurement Method

    NASA Astrophysics Data System (ADS)

    Liedahl, Duane; Barrios, Maria; Brown, Greg; Foord, Mark; Gray, William; Hansen, Stephanie; Heeter, Robert; Jarrott, Leonard; Mauche, Christopher; Moody, John; Schneider, Marilyn; Widmann, Klaus

    2016-10-01

    Measurements of the ratio of analogous emission lines from isoelectronic ions of two elements form the basis of the isoelectronic method of inferring electron temperatures in laser-produced plasmas, with the expectation that atomic modeling errors cancel to first order. Helium-like ions are a common choice in many experiments. Obtaining sufficiently bright signals often requires sample sizes with non-trivial line optical depths. For lines with small destruction probabilities per scatter, such as the 1s2p-1s2 He-like resonance line, repeated scattering can cause a marked angular dependence in the escaping radiation. Isoelectronic lines from near-Z equimolar dopants have similar optical depths and similar angular variations, which leads to a near angular-invariance for their line ratios. Using Monte Carlo simulations, we show that possible ambiguities associated with anisotropy in deriving electron temperatures from X-ray line ratios are minimized by exploiting this isoelectronic invariance.

  3. The effects of daily weather variables on psychosis admissions to psychiatric hospitals

    NASA Astrophysics Data System (ADS)

    McWilliams, Stephen; Kinsella, Anthony; O'Callaghan, Eadbhard

    2013-07-01

    Several studies have noted seasonal variations in admission rates of patients with psychotic illnesses. However, the changeable daily meteorological patterns within seasons have never been examined in any great depth in the context of admission rates. A handful of small studies have posed interesting questions regarding a potential link between psychiatric admission rates and meteorological variables such as environmental temperature (especially heat waves) and sunshine. In this study, we used simple non-parametric testing and more complex ARIMA and time-series regression analysis to examine whether daily meteorological patterns (wind speed and direction, barometric pressure, rainfall, sunshine, sunlight and temperature) exert an influence on admission rates for psychotic disorders across 12 regions in Ireland. Although there were some weak but interesting trends for temperature, barometric pressure and sunshine, the meteorological patterns ultimately did not exert a clinically significant influence over admissions for psychosis. Further analysis is needed.

  4. Controls over hydrocarbon emissions from boreal forest conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerdau, M.; Litvak, M.; Monson, R.

    1995-06-01

    The emissions of monoterpenes and isoprene were measured from two species of conifers native to the boreal forest of Canada, jack pine, Pinus rigida, and black spruce, Picea Mariana. We examined the effects of phenology and needle age on the emissions of these compounds, and the variations in tissue concentrations of monoterpenes. We measured photosynthetic carbon uptake and hydrocarbon emissions at two sites in northern Saskatchewan under controlled light, temperatures, and CO{sub 2} concentrations, and analyzed carbon uptake rates using an infra-red gas analyzer and hydrocarbon emissions using a solid sorbent/thermal desorption system coupled to a gas chromatograph with amore » mass spectrometer. Our data indicate a strong effect of temperature and seasonality on emissions but only small effects of site conditions. These results suggest that regional models of hydrocarbon emissions from boreal forests should focus on temperature and phenology as the most important controlling variables.« less

  5. Cell chip temperature measurements in different operation regimes of HCPV modules

    NASA Astrophysics Data System (ADS)

    Rumyantsev, V. D.; Chekalin, A. V.; Davidyuk, N. Yu.; Malevskiy, D. A.; Pokrovskiy, P. V.; Sadchikov, N. A.; Pan'chak, A. N.

    2013-09-01

    A new method has been developed for accurate measurements of the solar cell temperature in maximum power point (MPP) operation regime in comparison with that in open circuit (OC) regime (TMPP and TOC). For this, an electronic circuit has been elaborated for fast variation of the cell load conditions and for voltage measurements, so that VOC values could serve as an indicator of TMPP at the first moment after the load disconnection. The method was verified in indoor investigations of the single-junction AlGaAs/GaAs cells under CW laser irradiation, where different modifications of the heat spreaders were involved. PV modules of the "SMALFOC" design (Small-size concentrators; Multijunction cells; "All-glass" structure; Lamination technology; Fresnel Optics for Concentration) with triple-junction InGaP/GaAs/Ge cells were examined outdoors to evaluate temperature regimes of their operation.

  6. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Huibin; Wells, Peter; Edmondson, Philip D.

    Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less

  7. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels

    DOE PAGES

    Ke, Huibin; Wells, Peter; Edmondson, Philip D.; ...

    2017-07-12

    Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less

  8. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections

    PubMed Central

    Reich, Peter B.; Rich, Roy L.; Lu, Xingjie; Wang, Ying-Ping; Oleksyn, Jacek

    2014-01-01

    Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north–south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions. PMID:25225397

  9. Memory Metals

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under contract to NASA during preparations for the space station, Memry Technologies Inc. investigated shape memory effect (SME). SME is a characteristic of certain metal alloys that can change shape in response to temperature variations. In the late 1980s and early 1990s, Memry used its NASA-acquired expertise to produce a line of home and industrial safety products, and refined the technology in the mid-1990s. Among the new products they developed are three MemrySafe units which prevent scalding from faucets. Each system contains a small valve that reacts to temperature, not pressure. When the water reaches dangerous temperatures, the unit reduces the flow to a trickle; when the scalding temperature subsides, the unit restores normal flow. Other products are the FIRECHEK 2 and 4, heat-activated shutoff valves for industrial process lines, which sense excessive heat and cut off pneumatic pressure. The newest of these products is Memry's Demand Management Water Heater which shifts the electricity requirement from peak to off-peak demands, conserving energy and money.

  10. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record

    PubMed Central

    Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi

    2014-01-01

    Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming. PMID:24402348

  11. High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Brown, Shannon T.; Lim, Boon H.; Tanner, Alan B.; Tanabe, Jordan M.; Kangaslahti, Pekka P.; Gaier, Todd C.; Soria, Mary M.; Lambrigtsen, Bjorn H.; Denning, Richard F.; Stachnik, Robert A.

    2012-01-01

    Microwave imaging radiometers operating in the 50-183 GHz range for retrieving atmospheric temperature and water vapor profiles from airborne platforms have been limited in the spatial scales of atmospheric structures that are resolved not because of antenna aperture size, but because of high receiver noise masking the small variations that occur on small spatial scales. Atmospheric variability on short spatial and temporal scales (second/ km scale) is completely unresolved by existing microwave profilers. The solution was to integrate JPL-designed, high-frequency, low-noise-amplifier (LNA) technology into the High-Altitude MMIC Sounding Radiometer (HAMSR), which is an airborne microwave sounding radiometer, to lower the system noise by an order of magnitude to enable the instrument to resolve atmospheric variability on small spatial and temporal scales. HAMSR has eight sounding channels near the 60-GHz oxygen line complex, ten channels near the 118.75-GHz oxygen line, and seven channels near the 183.31-GHz water vapor line. The HAMSR receiver system consists of three heterodyne spectrometers covering the three bands. The antenna system consists of two back-to-back reflectors that rotate together at a programmable scan rate via a stepper motor. A single full rotation includes the swath below the aircraft followed by observations of ambient (roughly 0 C in flight) and heated (70 C) blackbody calibration targets located at the top of the rotation. A field-programmable gate array (FPGA) is used to read the digitized radiometer counts and receive the reflector position from the scan motor encoder, which are then sent to a microprocessor and packed into data files. The microprocessor additionally reads telemetry data from 40 onboard housekeeping channels (containing instrument temperatures), and receives packets from an onboard navigation unit, which provides GPS time and position as well as independent attitude information (e.g., heading, roll, pitch, and yaw). The raw data files are accessed through an Ethernet port. The HAMSR data rate is relatively low at 75 kbps, allowing for real-time access over the Global Hawk high-data-rate downlink. Once on the ground, the raw data are unpacked and processed through two levels of processing. The Level 1 product contains geo-located, time-stamped, calibrated brightness temperatures for the Earth scan. These data are then input to a lD variational retrieval algorithm to produce temperature, water vapor, and cloud liquid water profiles, as well as several derived products such as potential temperature and relative humidity.

  12. A multi-scale comparison of trait linkages to environmental and spatial variables in fish communities across a large freshwater lake.

    PubMed

    Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J

    2011-07-01

    Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.

  13. Vegetation, climate and lake changes over the last 7000 years at the boreal treeline in north-central Siberia

    NASA Astrophysics Data System (ADS)

    Klemm, Juliane; Herzschuh, Ulrike; Pestryakova, Luidmila A.

    2016-09-01

    Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ∼100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ∼2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.

  14. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.

    2013-01-01

    With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.

  15. Seasonal variation in parasite infection patterns of marine fish species from the Northern Wadden Sea in relation to interannual temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Schade, Franziska M.; Raupach, Michael J.; Mathias Wegner, K.

    2016-07-01

    Marine environmental conditions are naturally changing throughout the year, affecting life cycles of hosts as well as parasites. In particular, water temperature is positively correlated with the development of many parasites and pathogenic bacteria, increasing the risk of infection and diseases during summer. Interannual temperature fluctuations are likely to alter host-parasite interactions, which may result in profound impacts on sensitive ecosystems. In this context we investigated the parasite and bacterial Vibrionaceae communities of four common small fish species (three-spined stickleback Gasterosteus aculeatus, Atlantic herring Clupea harengus, European sprat Sprattus sprattus and lesser sand eel Ammodytes tobianus) in the Northern Wadden Sea over a period of two years. Overall, we found significantly increased relative diversities of infectious species at higher temperature differentials. On the taxon-specific level some macroparasite species (trematodes, nematodes) showed a shift in infection peaks that followed the water temperatures of preceding months, whereas other parasite groups showed no effects of temperature differentials on infection parameters. Our results show that even subtle changes in seasonal temperatures may shift and modify the phenology of parasites as well as opportunistic pathogens that can have far reaching consequences for sensitive ecosystems.

  16. Spatial and Temporal Variations in Titan's Surface Temperatures from Cassini CIRS Observations

    NASA Technical Reports Server (NTRS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; deKok, R.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2012-01-01

    We report a wide-ranging study of Titan's surface temperatures by analysis of the Moon's outgoing radiance through a spectral window in the thermal infrared at 19 mm (530/cm) characterized by lower atmospheric opacity. We begin by modeling Cassini Composite Infrared Spectrometer (CIRS) far infrared spectra collected in the period 2004-2010, using a radiative transfer forward model combined with a non-linear optimal estimation inversion method. At low-latitudes, we agree with the HASI near-surface temperature of about 94 K at 101S (Fulchignoni et al., 2005). We find a systematic decrease from the equator toward the poles, hemispherically asymmetric, of approx. 1 K at 60 deg. south and approx. 3 K at 60 deg. north, in general agreement with a previous analysis of CIRS data and with Voyager results from the previous northern winter. Subdividing the available database, corresponding to about one Titan season, into 3 consecutive periods, small seasonal changes of up to 2 K at 60 deg N became noticeable in the results. In addition, clear evidence of diurnal variations of the surface temperatures near the equator are observed for the first time: we find a trend of slowly increasing temperature from the morning to the early afternoon and a faster decrease during the night. The diurnal change is approx. 1.5 K, in agreement with model predictions for a surface with a thermal inertia between 300 and 600 J/ sq. m s (exp -1/2) / K. These results provide important constraints on coupled surface-atmosphere models of Titan's meteorology and atmospheric dynamic.

  17. Estimation of surface temperature variations due to changes in sky and solar flux with elevation.

    USGS Publications Warehouse

    Hummer-Miller, S.

    1981-01-01

    Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author

  18. Thermal and Hydrodynamic Environments Mediate Individual and Aggregative Feeding of a Functionally Important Omnivore in Reef Communities

    PubMed Central

    Frey, Desta L.; Gagnon, Patrick

    2015-01-01

    In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12–15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity. PMID:25774674

  19. Thermal and hydrodynamic environments mediate individual and aggregative feeding of a functionally important omnivore in reef communities.

    PubMed

    Frey, Desta L; Gagnon, Patrick

    2015-01-01

    In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12-15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity.

  20. Increased temperature variation poses a greater risk to species than climate warming.

    PubMed

    Vasseur, David A; DeLong, John P; Gilbert, Benjamin; Greig, Hamish S; Harley, Christopher D G; McCann, Kevin S; Savage, Van; Tunney, Tyler D; O'Connor, Mary I

    2014-03-22

    Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050-2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.

  1. Increased temperature variation poses a greater risk to species than climate warming

    PubMed Central

    Vasseur, David A.; DeLong, John P.; Gilbert, Benjamin; Greig, Hamish S.; Harley, Christopher D. G.; McCann, Kevin S.; Savage, Van; Tunney, Tyler D.; O'Connor, Mary I.

    2014-01-01

    Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance. PMID:24478296

  2. In Search of Sun-Climate Connection Using Solar Irradiance Measurements and Climate Records

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Kyle, H. Lee

    2000-01-01

    The Earth's temperature has risen approximately 0.5 degree-C in the last 150 years. Because the atmospheric concentration of carbon dioxide has increased nearly 30% since the industrial revolution, a common conjecture, supported by various climate models, is that anthropogenic greenhouse gases have contributed to global warming. Another probable factor for the warming is the natural variation of solar irradiance. Although the variation is as small as 0.1 % it is hypothesized that it contributes to part of the temperature rise. Warmer or cooler ocean temperature at one part of the Globe may manifest as abnormally wet or dry weather patterns some months or years later at another part of the globe. Furthermore, the lower atmosphere can be affected through its coupling with the stratosphere, after the stratospheric ozone absorbs the ultraviolet portion of the solar irradiance. In this paper, we use wavelet transforms based on Morlet wavelet to analyze the time-frequency properties in several datasets, including the Radiation Budget measurements, the long-term total solar irradiance time series, the long-term temperature at two locations for the North and the South Hemisphere. The main solar cycle, approximately 11 years, are identified in the long-term total solar irradiance time series. The wavelet transform of the temperature datasets show annual cycle but not the solar cycle. Some correlation is seen between the length of the solar cycle extracted from the wavelet transform and the North Hemisphere temperature time series. The absence of the 11-year cycle in a time series does not necessarily imply that the geophysical parameter is not affected by the solar cycle; rather it simply reflects the complex nature of the Earth's response to climate forcings.

  3. Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos.

    PubMed

    Swanson, David; Zhang, Yufeng; Liu, Jin-Song; Merkord, Christopher L; King, Marisa O

    2014-03-15

    Seasonal phenotypic flexibility in small birds produces a winter phenotype with elevated maximum cold-induced metabolic rates (=summit metabolism, Msum). Temperature and photoperiod are candidates for drivers of seasonal phenotypes, but their relative impacts on metabolic variation are unknown. We examined photoperiod and temperature effects on Msum, muscle masses and activities of key catabolic enzymes in winter dark-eyed juncos (Junco hyemalis). We randomly assigned birds to four treatment groups varying in temperature (cold=3°C; warm=24°C) and photoperiod [short day (SD)=8 h:16 h light:dark; long day (LD)=16 h:8 h light:dark] in a two-by-two design. We measured body mass (Mb), flight muscle width and Msum before and after 3 and 6 weeks of acclimation, and flight muscle and heart masses after 6 weeks. Msum increased for cold-exposed, but not for warm-exposed, birds. LD birds gained more Mb than SD birds, irrespective of temperature. Flight muscle size and mass did not differ significantly among groups, but heart mass was larger in cold-exposed birds. Citrate synthase, carnitine palmitoyl transferase and β-hydroxyacyl Co-A dehydrogenase activities in the pectoralis were generally higher for LD and cold groups. The cold-induced changes in Msum and heart mass parallel winter changes for small birds, but the larger Mb and higher catabolic enzyme activities in LD birds suggest photoperiod-induced changes associated with migratory disposition. Temperature appears to be a primary driver of flexibility in Msum in juncos, but photoperiod-induced changes in Mb and catabolic enzyme activities, likely associated with migratory disposition, interact with temperature to contribute to seasonal phenotypes.

  4. Greenland ice sheet melt from MODIS and associated atmospheric variability.

    PubMed

    Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E

    2014-03-16

    Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.

  5. Genetic Architecture of Nest Building in Mice LG/J × SM/J

    PubMed Central

    Sauce, Bruno; de Brito, Reinaldo Alves; Peripato, Andrea Cristina

    2012-01-01

    Maternal care is critical to offspring growth and survival, which is greatly improved by building an effective nest. Some suggest that genetic variation and underlying genetic effects differ between fitness-related traits and other phenotypes. We investigated the genetic architecture of a fitness-related trait, nest building, in F2 female mice intercrossed from inbred strains SM/J and LG/J using a QTL analysis for six related nest phenotypes (Presence and Structure pre- and postpartum, prepartum Material Used and postpartum Temperature). We found 15 direct-effect QTLs explaining from 4 to 13% of the phenotypic variation in nest building, mostly with non-additive effect. Epistatic analyses revealed 71 significant epistatic interactions which together explain from 28.4 to 75.5% of the variation, indicating an important role for epistasis in the adaptive process of nest building behavior in mice. Our results suggest a genetic architecture with small direct effects and a larger number of epistatic interactions as expected for fitness-related phenotypes. PMID:22654894

  6. Underwater Sound: Deep-Ocean Propagation: Variations of temperature and pressure have great influence on the propagation of sound in the ocean.

    PubMed

    Frosch, R A

    1964-11-13

    The absorption of sound in sea water varies markedly with frequency, being much greater at high than at low frequencies. It is sufficiently small at frequencies below several kilocycles per second, however, to permit propagation to thousands of miles. Oceanographic factors produce variations in sound velocity with depth, and these variations have a strong influence on long-range propagation. The deep ocean is characterized by a strong channel, generally at a depth of 500 to 1500 meters. In addition to guided propagation in this channel, the velocity structure gives rise to strongly peaked propagation from surface sources to surface receivers 48 to 56 kilometers away, with strong shadow zones of weak intensity in between. The near-surface shadow zone, in the latter case, may be filled in by bottom reflections or near-surface guided propagation due to a surface isothermal layer. The near-surface shadow zones can be avoided with certainty only through locating sources and receivers deep in the ocean.

  7. Influence of Mercury

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Aurnou, J. M.; Aubert, J.

    2009-04-01

    Due to the absence of an atmosphere and proximity to the Sun, Mercury's surface temperature varies laterally by several 100s K, even when averaged over long time periods. The dominant variation in time-averaged surface T occurs from pole to equator (~225 K) [1]. The resonant relationship between Mercury's orbit and rotation results in a smaller longitudinal variation (~100 K) [1]. Here we demonstrate, using models of mantle convection in a 3-D spherical shell, that this stationary lateral variation in surface temperature has a small but significant influence on mantle convection and on the lateral variation of heat flux across the core-mantle boundary (CMB). We evaluate the possible observational signature of this laterally-varying convection in terms of boundary topography, stress distribution, gravity and moment of inertia tensor. We furthermore test whether the lateral variation in CMB flux is capable of driving a thermal wind dynamo, i.e., weak dynamo action with no internally-driven core convective motions. For Mercury's mantle we assume a dry olivine rheology including both diffusion creep and disclocation creep with rheological parameters such as activation energy and volume taken from the synthesis of [2]. We assume decaying radiogenic heat sources with the same concentration as in the bulk silicate Earth, and a parameterised model of core cooling. The models are run for 4.5 Ga from a relatively hot initial state with random initial perturbations. We use the code StagYY, which uses a finite-volume discretization on a spherical yin-yang grid and a multigrid solver [3]. Results in spherical axisymmetric geometry, compare a case with constant surface temperature to one with a latitude-dependent surface temperature. The system forms about 3 convection cells from pole to equator. Although the results look similar to first order, in the latitude-dependent case the convection is noticably more sluggish and colder towards the pole. In CMB flux, both cases display large oscillations due to convection cells. A pole-to-equator trend is superimposed on this for the case with laterally-varying surface temperature. Although the amplitude of this long-wavelength variation is smaller than that of the within-cell variation, its long-wavelength nature might be effective in driving thermal winds in the core. Results in a full 3-D spherical shell indicate that convection adopts a cellular structure with a polygonal network of downwellings and plume-like upwellings, as is usually obtained for stagnant lid convection, for example, in the recent 3-D spherical Mercury models of [4]. This is in notable contrast to the models of [5], in which linear upwellings were obtained. This difference could be because the initial perturbations used by [5] used a small number of low-order spherical harmonics, i.e., a long-wavelength pattern with particular symmetries, whereas our initial perturbations are random white noise. The origin of this difference requires further investigation. The pattern of CMB heat flux shows a strong l=2, m=0 pattern, again with superimposed small-scale variations due to convection cells. The surface geoid displays an very dominant (2,0) pattern, which would be a strong diagnostic of this behaviour. These models are being further analysed for boundary topography and stress distribution. Models of planetary dynamos have traditionally depended upon the concept that secular cooling and internal radioactive decay are responsible for genererating convective fluid motions within the core [e.g. 6]. Some models, of Earth's dynamo in particular, also include thermal winds --shear flows driven by heat flux variations along the core-mantle boundary -- that modify the dynamo process [e.g. 7]. We have now shown, following the work of [8], that thermal winds themselves are capable of driving dynamo action in planetary cores (Fig. 4). In fully self-consistent, three-dimensional models, we find that thermal wind dynamos do not require a net heat flux to emanate from the core and can operate even when the core fluid is neutrally stratified. In these models, the dynamo is powered externally by thermal energy stored in the mantle. This dynamo mechanism can occur on planetary bodies, such as Mercury, which are likely to have weak net heat fluxes from their cores but possess significant core-mantle boundary heat flux variations (Figures 1 - 3). We plan to use the pattern of CMB heat flux from the mantle models as a boundary condition for core models, in order to determine the feasibility of thermal wind dynamo action occurring in Mercury's core. References [1] Aharonson, O., et al. (2004) EPSL, 218, 261-268. [2] Karato, S. and Wu, P. (1993) Sci., 260, 771-778. [3] Tackley, P. J. (2008) PEPI, doi: 10.1016/j.pepi.2008.08.005.. [4] Breuer, D. et al. (2007) Sp. Sci. Rev., 132, 229-260. [5] King, S. D. (2008) Nature Geoscience, 1, 229-232. [5] Heimpel, M. H. et al. (2005) EPSL, 236, 542-557. [7] Willis, A., et al. (2007) PEPI, 165, 83-92. [8] Sarson, G., (2003) PRSL A, 459, 1241-1259. [9] Aubert, J., et al. (2008) GJI, 172, 945-956.

  8. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Anet, J. G.; Stenke, A.; Raible, C. C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F. X.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brugnara, Y.; Schmutz, W.

    2014-05-01

    The newly developed atmosphere-ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann-Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600-2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600-1850) the simulated surface temperature trends are in reasonable agreement with temperature reconstructions, although the multi-decadal variability is more pronounced. This enhanced variability can be attributed to the variability in the solar forcing. The simulated temperature reductions during the Maunder Minimum are in the lowest probability range of the proxy records. During the Dalton Minimum, when also volcanic forcing is an important driver of temperature variations, the agreement is better. In the industrial period from 1850 onward SOCOL-MPIOM overestimates the temperature increase in comparison to observational data sets. Sensitivity simulations show that this overestimation can be attributed to the increasing trend in the solar forcing reconstruction that is used in this study and an additional warming induced by the simulated ozone changes.

  9. Novel shape memory alloy optical fibre connection method

    NASA Astrophysics Data System (ADS)

    Trouillard, G.; Zivojinovic, P.; Cerutti, R.; Godmaire, X. Pruneau; Weynant, E.

    2010-02-01

    In this paper, the capacity and quality of a shape memory alloy device is demonstrated for installation and connection of 125-μm to 1000-μm optical fibres. The new mechanical splice has the particularity of using a very simple tool for aligning and holding the cladding of fibres itself without the need of glue. Optimend main characteristics are its small dimensions (few millimetres), reusability, glueless, ruggedness, low temperature variation, heat dissipation and ease of use. These properties are very suitable for many optical fibre applications where both quick and reliable connections are desirable.

  10. Temperature Variations from HST Imagery and Spectroscopy of NGC 7009

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Bhatt, N. J.; Dufour, R. J.; Buckalew, B. A.; Barlow, M. J.; Liu, X.-W.; Storey, P. J.; Balick, B.; Harrington, J. P.; Ferland, G. J.

    2002-01-01

    We present new HST/WFPC2 imagery and STIS long-slit spectroscopy of the planetary nebula NGC 7009. The primary goal was to obtain high spatial resolution of the intrinsic line ratio [O III] 4364/5008 and thereby evaluate the electron temperature (Te) and the mean-square Te variation (t(sup 2, sub A)) across the nebula. The observations here do not address Te fluctuation along the line of sight. The WFPC2 Te map is rather uniform; almost all values are between 9000 - 11,000 K, with the higher Te's closely coinciding with the inner He(++)-zone. The results indicate very small values - certainly less than 0.01 - for t(sup 2, sub A) throughout. Our STIS data allow an even more direct determination of Te and t(sup 2, sub A), albeit for a much smaller area than with WFPC2. We present results from binning the data along the slit into tiles that are 0.5 in square (matching the slit width). The average [O III] temperature using 45 tiles (excluding the central star and STIS fiducial bars) is 10,146 K; t(sup 2, sub A) is 0.0036. Although we have measured t(sup 2, sub A) in only 2-dimensions, we conclude that temperature fluctuations alone are unlikely to explain for NGC 7009 the large discrepancy between heavy element abundances inferred from emission lines that are collisionally excited compared with those that are due to recombination lines.

  11. Microclimatic temperatures at Danish cattle farms, 2000-2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus.

    PubMed

    Haider, Najmul; Cuellar, Ana Carolina; Kjær, Lene Jung; Sørensen, Jens Havskov; Bødker, Rene

    2018-03-05

    Microclimatic temperatures provide better estimates of vector-borne disease transmission parameters than standard meteorological temperatures, as the microclimate represent the actual temperatures to which the vectors are exposed. The objectives of this study were to quantify farm-level geographic variations and temporal patterns in the extrinsic incubation period (EIP) of Schmallenberg virus transmitted by Culicoides in Denmark through generation of microclimatic temperatures surrounding all Danish cattle farms. We calculated the hourly microclimatic temperatures at potential vector-resting sites within a 500 m radius of 22,004 Danish cattle farms for the months April to November from 2000 to 2016. We then modeled the daily EIP of Schmallenberg virus at each farm, assuming vectors choose resting sites either randomly or based on temperatures (warmest or coolest available) every hour. The results of the model output are presented as 17-year averages. The difference between the warmest and coolest microhabitats at the same farm was on average 3.7 °C (5th and 95th percentiles: 1.0 °C to 7.8 °C). The mean EIP of Schmallenberg virus (5th and 95th percentiles) for all cattle farms during spring, summer, and autumn was: 23 (18-33), 14 (12-18) and 51 (48-55) days, respectively, assuming Culicoides select resting sites randomly. These estimated EIP values were considerably shorter than those estimated using standard meteorological temperatures obtained from a numerical weather prediction model for the same periods: 43 (39-52), 21 (17-24) and 57 (55-58) days, respectively. When assuming that vectors actively select the coolest resting sites at a farm, the EIP was 2.3 (range: 1.1 to 4.1) times longer compared to that of the warmest sites at the same farm. We estimated a wide range of EIP in different microclimatic habitats surrounding Danish cattle farms, stressing the importance of identifying the specific resting sites of vectors when modeling vector-borne disease transmission. We found a large variation in the EIP among different farms, suggesting disease transmission may vary substantially between regions, even within a small country. Our findings could be useful for designing risk-based surveillance, and in the control and prevention of emerging and re-emerging vector-borne diseases.

  12. Electron transport in high aspect ratio semiconductor nanowires and metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Zhuting

    We are facing variability problems for modern semiconductor transistors due to the fact that the performances of nominally identical devices in the scale of 10 100 nm could be dramatically different attributed to the small manufacturing variations. Different doping strategies give statistical variations in the number of dopant atom density ND in the channel. The material size gives variations in wire diameter dW. And the immediate environment of the material leads to an additional level of variability. E.g. vacuum-semiconductor interface causes variations in surface state density Ds, metal-semiconductor interface causes variations in Schottky barrier and dielectric semiconductor interface induces dielectric confinement at small scales. To approach these variability problems, I choose Si-doped GaAs nanowires as an example. I investigate transport in Si-doped GaAs nanowire (NW) samples contacted by lithographically patterned Gold-Titanium films as function of temperature T. I find a drastically different temperature dependence between the wire resistance RW, which is relatively weak, and the zero bias resistance RC, which is strong. I show that the data are consistent with a model based on a sharp donor energy level slightly above the bottom of the semiconductor conduction band and develop a simple method for using transport measurements for estimates of the doping density after nanowire growth. I discuss the predictions of effective free carrier density n eff as function of the surface state density Ds and wire size dW. I also describe a correction to the widely used model of Schottky contacts that improves thermodynamic consistency of the Schottky tunnel barrier profile and show that the original theory may underestimate the barrier conductance under certain conditions. I also provide analytical calculations for shallow silicon dopant energy in GaAs crystals, and find the presence of dielectrics (dielectric screening) and free carriers (Coulomb screening) cause a reduction of ionization energy and shift the donor energy level ED upward, accompanying conduction band EC shift downward due to band gap narrowing for doped semiconductor material. The theoretical results are in a reasonable agreement with previous experimental data. I also find that when the material reduces to nanoscale, dielectric confinement and surface depletion compete with both Coulomb screening and dielectric screening that shift the donor level ED down towards the band gap. The calculation should be appropriate for all types of semiconductors and dopant species.

  13. Diffuse near-infrared reflectance spectroscopy during heatstroke in a mouse model: pilot study.

    PubMed

    Abookasis, David; Zafrir, Elad; Nesher, Elimelech; Pinhasov, Albert; Sternklar, Shmuel; Mathews, Marlon S

    2012-10-01

    Heatstroke, a form of hyperthermia, is a life-threatening condition characterized by an elevated core body temperature that rises above 40°C (104°F) and central nervous system dysfunction that results in delirium, convulsions, or coma. Without emergency treatment, the victim lapses into a coma and death soon follows. The study presented was conducted with a diffuse reflectance spectroscopy (DRS) setup to assess the effects of brain dysfunction that occurred during heatstroke in mice model (n=6). It was hypothesized that DRS can be utilized in small animal studies to monitor change in internal brain tissue temperature during heatstroke injury since it induces a sequence of pathologic changes that change the tissue composition and structure. Heatstroke was induced by exposure of the mice body under general anesthesia, to a high ambient temperature. A type of DRS in which the brain tissue was illuminated through the intact scalp with a broadband light source and diffuse reflected spectra was employed, taking in the spectral region between 650 and 1000 nm and acquired at an angle of 90 deg at a position on the scalp ∼12  mm from the illumination site. The temperature at the onset of the experiment was ∼34°C (rectal temperature) with increasing intervals of 1°C until mouse death. The increase in temperature caused optical scattering signal changes consistent with a structural alteration of brain tissue, ultimately resulting in death. We have found that the peak absorbance intensity and its second derivative at specific wavelengths correlate well with temperature with an exponential dependence. Based on these findings, in order to estimate the influence of temperature on the internal brain tissue a reflectance-temperature index was established and was seen to correlate as well with measured temperature. Overall, results indicate variations in neural tissue properties during heatstroke and the feasibility to monitor and assess internal temperature variations using DRS. Although several approaches have described the rise in temperature and its impact on tissue, to the best of our knowledge no information is available describing the ability to monitor temperature during heatstroke with DRS. The motivation of this study was to successfully describe this ability.

  14. Food supply and size class depending variations in phytodetritus intake in the benthic foraminifer Ammonia tepida.

    PubMed

    Wukovits, Julia; Bukenberger, Patrick; Enge, Annekatrin Julie; Gerg, Maximillian; Wanek, Wolfgang; Watzka, Margarete; Heinz, Petra

    2018-04-13

    Ammonia tepida is a common and abundant benthic foraminifer in intertidal mudflats. Benthic foraminifera are primary consumers and detritivores and act as key players in sediment nutrient fluxes. In this study, laboratory feeding experiments using isotope-labeled phytodetritus were carried out with A. tepida collected at the German Wadden Sea, to investigate the response of A. tepida to varying food supply. Feeding mode (single pulse, constant feeding; different incubation temperatures) caused strong variations in cytoplasmic carbon and nitrogen cycling, suggesting generalistic adaptations to variations in food availability. To study the influence of intraspecific size to foraminiferal carbon and nitrogen cycling, three size fractions (125-250 µm, 250-355 µm, >355 µm) of A. tepida specimens were separated. Small individuals showed higher weight specific intake for phytodetritus, especially for phytodetrital nitrogen, highlighting that size distribution within foraminiferal populations is relevant to interpret foraminiferal carbon and nitrogen cycling. These results were used to extrapolate the data to natural populations of living A. tepida in sediment cores, demonstrating the impact of high abundances of small individuals on phytodetritus processing and nutrient cycling. It is estimated that at high abundances of individuals in the 125-250 µm size fraction, Ammonia populations can account for more than 11% of phytodetritus processing in intertidal benthic communities. © 2018. Published by The Company of Biologists Ltd.

  15. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    PubMed

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Reliability-Based Life Assessment of Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Halford, Gary R.; Korovaichuk, Igor

    2004-01-01

    Onboard radioisotope power systems being developed and planned for NASA's deep-space missions require reliable design lifetimes of up to 14 yr. The structurally critical heater head of the high-efficiency Stirling power convertor has undergone extensive computational analysis of operating temperatures, stresses, and creep resistance of the thin-walled Inconel 718 bill of material. A preliminary assessment of the effect of uncertainties in the material behavior was also performed. Creep failure resistance of the thin-walled heater head could show variation due to small deviations in the manufactured thickness and in uncertainties in operating temperature and pressure. Durability prediction and reliability of the heater head are affected by these deviations from nominal design conditions. Therefore, it is important to include the effects of these uncertainties in predicting the probability of survival of the heater head under mission loads. Furthermore, it may be possible for the heater head to experience rare incidences of small temperature excursions of short duration. These rare incidences would affect the creep strain rate and, therefore, the life. This paper addresses the effects of such rare incidences on the reliability. In addition, the sensitivities of variables affecting the reliability are quantified, and guidelines developed to improve the reliability are outlined. Heater head reliability is being quantified with data from NASA Glenn Research Center's accelerated benchmark testing program.

  17. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  18. Morphology and tectonics of the Mid-Atlantic Ridge, 7°-12°S

    NASA Astrophysics Data System (ADS)

    Bruguier, N. J.; Minshull, T. A.; Brozena, J. M.

    2003-02-01

    We present swath bathymetric, gravity, and magnetic data from the Mid-Atlantic Ridge between the Ascension and the Bode Verde fracture zones, where significant ridge-hot spot interaction has been inferred. The ridge axis in this region may be divided into four segments. The central two segments exhibit rifted axial highs, while the northernmost and southernmost segments have deep rift valleys typical of slow-spreading mid-ocean ridges. Bathymetric and magnetic data indicate that both central segments have experienced ridge jumps since ˜1 Ma. Mantle Bouguer anomalies (MBAs) derived from shipboard free air gravity and swath bathymetric data show deep subcircular lows centered on the new ridge axes, suggesting that mantle flow has been established beneath the new spreading centers for at least ˜1 Myr. Inversion of gravity data indicates that crustal thicknesses vary by ˜4 km along axis, with the thickest crust occurring beneath a large axial volcanic edifice. Once the effects of lithospheric aging have been removed, a model in which gravity variations are attributed entirely to crustal thickness variations is more consistent with data from an axis-parallel seismic line than a model that includes additional along-axis variations in mantle temperature. Both geophysical and geochemical data from the region may be explained by the melting of small (<200 km) mantle chemical heterogeneities rather than elevated temperatures. Therefore, there may be no Ascension/Circe plume.

  19. Optimal body size and energy expenditure during winter: why are voles smaller in declining populations?

    PubMed

    Ergon, Torbjørn; Speakman, John R; Scantlebury, Michael; Cavanagh, Rachel; Lambin, Xavier

    2004-03-01

    Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.

  20. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China).

    PubMed

    Cui, Lifang; Wang, Lunche; Singh, Ramesh P; Lai, Zhongping; Jiang, Liangliang; Yao, Rui

    2018-05-23

    The variation in vegetation greenness provides good understanding of the sustainable management and monitoring of land surface ecosystems. The present paper discusses the spatial-temporal changes in vegetation and controlling factors in the Yangtze River Basin (YRB) using Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) for the period 2001-2013. Theil-Sen Median trend analysis, Pearson correlation coefficients, and residual analysis have been used, which shows decreasing trend of the annual mean NDVI over the whole YRB. Spatially, the regions with significant decreasing trends were mainly located in parts of central YRB, and pronounced increasing trends were observed in parts of the eastern and western YRB. The mean NDVI during spring and summer seasons increased, while it decreased during autumn and winter seasons. The seasonal mean NDVI shows spatial heterogeneity due to the vegetation types. The correlation analysis shows a positive relation between NDVI and temperature over most of the YRB, whereas NDVI and precipitation show a negative correlation. The residual analysis shows an increase in NDVI in parts of eastern and western YRB and the decrease in NDVI in the small part of Yangtze River Delta (YRD) and the mid-western YRB due to human activities. In general, climate factors were the principal drivers of NDVI variation in YRB in recent years.

  1. Modeling calcification periods of Cytheridella ilosvayi from Florida based on isotopic signatures and hydrological data

    NASA Astrophysics Data System (ADS)

    Meyer, Juliane; Wrozyna, Claudia; Leis, Albrecht; Piller, Werner E.

    2017-11-01

    The isotopic signatures of ostracod shells are the result of the temperature and composition of their host water and the phenology and ecology of the target species. Investigations addressing the influence of site-specific environmental variations on the isotopic ranges of ostracod shells are still rare but can provide important information on habitat-dependent variations and may signify a seasonally restricted timing of calcification periods. Here we present isotopic signatures (δ18Oostr, δ13Costr) of living Cytheridella ilosvayi (Ostracoda) and physical, chemical, and isotopic (δD, δ18Owater, δ13CDIC) compositions of 14 freshwater habitats (rivers, lakes, canals, marshes, sinkholes) in South Florida from winter 2013 and summer 2014. We also present instrumental data of river temperatures and δ18O of precipitation (δ18Oprec) from this region. The physicochemical and isotopic compositions of the selected sites characterize the different habitats and show the influence of the source water, biological activity, and duration of exposure to the surface. Mean δ18Oostr and δ13Costr signatures of C. ilosvayi shells correlate well with the isotopic composition of their host waters. Within-sample variabilities in repeated isotopic measurements of single ostracod shells reflect habitat-dependent ranges. The similarly high range of ostracod δ18O in rivers and one marsh sample indicates that both temperature and δ18Oprec are responsible for their variation in the whole study area. Rivers and canals, which are predominantly influenced by the input and mixing of inorganic carbon from the catchment, show smaller δ13Costr ranges than the marsh dominated by local fluctuations in biological activities. Based on these observations, background data of water temperatures and δ18Oprec were used to calculate monthly δ18O variations in a theoretical calcite formed in rivers in Florida assuming a direct reaction on precipitation changes. The calculated values showed a high variation coupled with low mean values during the summer wet season, while during the winter dry season the variation remains small and mean values increased. Inferred configurations were used to approximate possible calcification periods of C. ilosvayi. For a plausible calcification period, mean values and ranges of δ18Oostr had to be equal to the theoretical calcite with a slight positive offset (vital effect). The applied model suggests a seasonal calcification period of C. ilosvayi in early spring that is probably coupled to the hydrologic cycle of Florida.

  2. Periodic Heat Transfer at Small Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Pfriem, H.

    1943-01-01

    The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.

  3. Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting.

    PubMed

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.

  4. Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting

    PubMed Central

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate. PMID:22346652

  5. The Potential of Multicolor Photometry for Pulsating Subdwarf B Stars

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Fontaine, G.; Brassard, P.; Bergeron, P.

    2005-12-01

    We investigate the potential of multicolor photometry for partial mode identification in both long- and short-period variable subdwarf B stars. The technique presented is based on the fact that the frequency dependence of an oscillation's amplitude and phase bears the signature of the mode's degree index l, among other things. Unknown contributing factors can be eliminated through the evaluation of the amplitude ratios and phase differences arising from the brightness variation in different wavebands, theoretically enabling the inference of the degree index from observations in two or more bandpasses. Employing a designated model atmosphere code, we calculate the brightness variation expected across the visible disk during a pulsation cycle in terms of temperature, radius, and surface gravity perturbations to the emergent flux for representative EC 14026 and PG 1716 star models. Nonadiabatic effects are considered in detail and found to be significant from nonadiabatic pulsation calculations applied to our state-of-the-art models of subdwarf B stars. Our results indicate that the brightness variations observed in subdwarf B stars are caused primarily by changes in temperature and radius, with surface gravity perturbations playing a small role. For PG 1716 stars, temperature effects dominate in the limit of long periods with the result that the oscillatory amplitudes and phases lose their period dependence and nonadiabatic effects become unimportant. Outside this regime, however, their values are strongly influenced by both factors. We find that the phase shifts between brightness variations in different wavebands are generally small but may lie above the experimental detection threshold in certain cases. The prospect of mode discrimination seems much more promising on the basis of the corresponding amplitude ratios. While in EC 14026 stars the amplitude ratios predicted are very similar for modes with l=0, 1, or 2, they are well separated from those of modes with l=3, l=5, and l=4 or 6, each of which form a distinct group. For the case of the PG 1716 stars it should be possible to discriminate between modes with l=1, 2, 4, or 6 and those of degree indices l=3 and l=5. Identifying modes within a given group is challenging for both types of pulsator and requires multicolor photometry of extremely high quality. Nevertheless, we demonstrate that it is feasible using the example of the largest amplitude peak detected for the fast pulsator KPD 2109+4401 by Jeffery et al. Predicted color-amplitude ratios for a series of representative EC 14026 and PG 1716 stars are available upon request. Interested collaborators please contact S. K. Randall or G. Fontaine.

  6. Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice

    PubMed Central

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996

  7. Temperature variations recorded during interinstitutional air shipments of laboratory mice.

    PubMed

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 degrees C), 14.6% to low temperatures (less than 7.2 degrees C), and 61% to temperature variations of 11 degrees C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers.

  8. A study of the physics and chemistry of TMC-1

    NASA Technical Reports Server (NTRS)

    Pratap, P.; Dickens, J. E.; Snell, R. L.; Miralles, M. P.; Bergin, E. A.; Irvine, W. M.; Schloerb, F. P.

    1997-01-01

    We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed.

  9. On the integration of ultrananocrystalline diamond (UNCD) with CMOS chip

    DOE PAGES

    Mi, Hongyi; Yuan, Hao -Chih; Seo, Jung -Hun; ...

    2017-03-27

    A low temperature deposition of high quality ultrananocrystalline diamond (UNCD) film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage V th, transconductance g m, cut-off frequency f T and maximum oscillation frequency f max.more » Finally, the results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.« less

  10. On the integration of ultrananocrystalline diamond (UNCD) with CMOS chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, Hongyi; Yuan, Hao -Chih; Seo, Jung -Hun

    A low temperature deposition of high quality ultrananocrystalline diamond (UNCD) film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage V th, transconductance g m, cut-off frequency f T and maximum oscillation frequency f max.more » Finally, the results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.« less

  11. The effect of hydrostatic pressure on model membrane domain composition and lateral compressibility.

    PubMed

    Barriga, H M G; Law, R V; Seddon, J M; Ces, O; Brooks, N J

    2016-01-07

    Phase separation in ternary model membranes is known to occur over a range of temperatures and compositions and can be induced by increasing hydrostatic pressure. We have used small angle X-ray scattering (SAXS) to study phase separation along pre-determined tie lines in dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CHOL) mixtures. We can unequivocally distinguish the liquid ordered (Lo) and liquid disordered (Ld) phases in diffraction patterns from biphasic mixtures and compare their lateral compressibility. The variation of tie line endpoints with increasing hydrostatic pressure was determined, at atmospheric pressure and up to 100 MPa. We find an extension and shift of the tie lines towards the DOPC rich region of the phase diagram at increased pressure, this behaviour differs slightly from that reported for decreasing temperature.

  12. Evaluation results of the 700 deg C Chinese strain gages

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1984-01-01

    There is a continuing interest and need for resistance strain gages capable of making static strain measurements on components located in the hot section of gas turbine engines. A paper by Tsen-tai Wu describes the development and evaluation of high temperature gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire. Several of these gages and a quantity of P12-2 ceramic adhesive were purchased for evaluation. Nine members of the aircraft turbine engine community were invited to participate in an evaluation of these gages. Each participant was sent one strain gage, a small amount of ceramic adhesive, instructions for mounting the gage on a test beam, and a set of suggestions for the experiment. Data on gage factor variation with temperature, apparent strain, and drift are discussed.

  13. A transported probability density function/photon Monte Carlo method for high-temperature oxy-natural gas combustion with spectral gas and wall radiation

    NASA Astrophysics Data System (ADS)

    Zhao, X. Y.; Haworth, D. C.; Ren, T.; Modest, M. F.

    2013-04-01

    A computational fluid dynamics model for high-temperature oxy-natural gas combustion is developed and exercised. The model features detailed gas-phase chemistry and radiation treatments (a photon Monte Carlo method with line-by-line spectral resolution for gas and wall radiation - PMC/LBL) and a transported probability density function (PDF) method to account for turbulent fluctuations in composition and temperature. The model is first validated for a 0.8 MW oxy-natural gas furnace, and the level of agreement between model and experiment is found to be at least as good as any that has been published earlier. Next, simulations are performed with systematic model variations to provide insight into the roles of individual physical processes and their interplay in high-temperature oxy-fuel combustion. This includes variations in the chemical mechanism and the radiation model, and comparisons of results obtained with versus without the PDF method to isolate and quantify the effects of turbulence-chemistry interactions and turbulence-radiation interactions. In this combustion environment, it is found to be important to account for the interconversion of CO and CO2, and radiation plays a dominant role. The PMC/LBL model allows the effects of molecular gas radiation and wall radiation to be clearly separated and quantified. Radiation and chemistry are tightly coupled through the temperature, and correct temperature prediction is required for correct prediction of the CO/CO2 ratio. Turbulence-chemistry interactions influence the computed flame structure and mean CO levels. Strong local effects of turbulence-radiation interactions are found in the flame, but the net influence of TRI on computed mean temperature and species profiles is small. The ultimate goal of this research is to simulate high-temperature oxy-coal combustion, where accurate treatments of chemistry, radiation and turbulence-chemistry-particle-radiation interactions will be even more important.

  14. Temperature dependence of Henry's law constants and KOA for simple and heteroatom-substituted PAHs by COSMO-RS

    NASA Astrophysics Data System (ADS)

    Parnis, J. Mark; Mackay, Donald; Harner, Tom

    2015-06-01

    Henry's Law constants (H) and octanol-air partition coefficients (KOA) for polycyclic aromatic hydrocarbons (PAHs) and selected nitrogen-, oxygen- and sulfur-containing derivatives have been computed using the COSMO-RS method between -5 and 40 °C in 5 °C intervals. The accuracy of the estimation was assessed by comparison of COSMOtherm values with published experimental temperature-dependence data for these and similar PAHs. COSMOtherm log H estimates with temperature-variation for parent PAHs are shown to have a root-mean-square (RMS) error of 0.38 (PAH), based on available validation data. Estimates of O-, N- and S-substituted derivative log H values are found to have RMS errors of 0.30 at 25 °C. Log KOA estimates with temperature variation from COSMOtherm are shown to be strongly correlated with experimental values for a small set of unsubstituted PAHs, but with a systematic underestimation and associated RMS error of 1.11. Similar RMS error of 1.64 was found for COSMO-RS estimates of a group of critically-evaluated log KOA values at room temperature. Validation demonstrates that COSMOtherm estimates of H and KOA are of sufficient accuracy to be used for property screening and preliminary environmental risk assessment, and perform very well for modeling the influence of temperature on partitioning behavior in the temperature range -5 to 40 °C. Temperature-dependent shifts of up to 2 log units in log H and one log unit for log KOA are predicted for PAH species over the range -5 and 40 °C. Within the family of PAH molecules, COSMO-RS is sufficiently accurate to make it useful as a source of estimates for modeling purposes, following corrections for systematic underestimation of KOA. Average changes in the values for log H and log KOA upon substitution are given for various PAH substituent categories, with the most significant shifts being associated with the ionizing nitro functionality and keto groups.

  15. Ecotypic variation in chloroplast small heat-shock proteins and related thermotolerance in Chenopodium album.

    PubMed

    Shakeel, Samina; Haq, Noor Ul; Heckathorn, Scott A; Hamilton, E William; Luthe, Dawn S

    2011-08-01

    Production of chloroplast-localized small heat-shock proteins (Cp-sHSP) is correlated with increased thermotolerance in plants. Ecotypic variation in function and expression of Cp-sHSPs was analyzed in two Chenopodium album ecotypes from cool vs. warm-temperate USA habitats [New York (NY) and Mississippi (MS) respectively]. P(et) was more heat tolerant in the MS than the NY ecotype, and MS ecotype derived proportionally greater protection of P(et) by Cp-sHSP during high temperatures. Four genes encoding Cp-sHSPs were isolated and characterized: CaHSP25.99n (NY-1) and CaHSP26.23n (NY-2) from NY ecotype, and CaHSP26.04m (MS-1) and CaHSP26.26m (MS-2) from MS ecotype. The genes were nearly identical in predicted amino-acid sequence and hydrophobicity. Gene expression analysis indicated that MS-1 and MS-2 transcripts were constitutively expressed at low levels at 25 °C, while no NY-1 and NY-2 transcripts were detected at this temperature. Maximum accumulation of NY-1 and NY-2 transcripts occurred at 33 °C and 40 °C for MS-1 and MS-2. Immunoblot analysis revealed that (1) protein expression was highest at 37 °C in both ecotypes, but was greater in MS than NY ecotype at 40 °C; and (2) import of Cp-sHSP into chloroplasts was more heat-labile in NY ecotype. The higher expression of one isoform in MS ecotype may contribute to its enhanced thermotolerance. Absence of correlation between protein and transcript levels, suggests the post-transcriptional regulation is occurring. Promoter analysis of these genes revealed significant variations in heat-shock elements (HSE), core motifs required for heat-shock-factor binding. We propose a correlation between unique promoter architecture, Cp-sHSP expression and thermotolerance in both ecotypes. Published by Elsevier Masson SAS.

  16. Properties of QBO and SAO Generated by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Reddy, C. A.; Chan, K. L.; Porter, H. S.

    1999-01-01

    We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are relatively small for the zonal winds.

  17. Effect of developer temperature changes on the sensitometric properties of direct exposure and screen-film imaging systems.

    PubMed

    Kircos, L T; Staninec, M; Chou, L S

    1989-02-01

    A heat exchanger was developed and incorporated into the recirculation system of a dental processor to maintain strict temperature control. Without the heat exchanger, developer temperature rose steadily over 8 h to a maximum of 35.7 degrees C: with the heat exchanger it was maintained, regardless of ambient conditions, at the desired temperature with virtually no fluctuation. Sensitometric properties of base and fog, speed, and average gradient were measured for D and E speed films and Lanex Regular/T-Mat G and Lanex Fast/T-Mat Hscreen-film systems at developer temperatures of 21.1, 23.8, 26.7, 29.4 and 32.2 degrees C. Small changes in these properties were found for D and E speed films: on the other hand, Lanex Regular/T-Mat G showed a 65% increase in base and fog and Lanex Fast/T-Mat H a 43% increase in average gradient over the temperature range studied. Although these changes may not be clinically significant for intra-oral and dental radiography, the variations in image quality may compromise controlled imaging experiments and clinically compromise radiographic quality when using screen-film systems.

  18. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    NASA Astrophysics Data System (ADS)

    Bin Mansoor, Saad; Sami Yilbas, Bekir

    2015-08-01

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron-phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.

  19. [The limnology of Tunisia: physicochemical study].

    PubMed

    Boumaiza, M

    1984-01-01

    Several chemical and physical parameters are measured in forty seven stations, distributed on the most part of the hydrographic systems of Tunisia. Some parameters: temperature of the water (T), salinity (S, electric conductivity (CE), chloride (Cl-), total hardness (DT) and turbidity (TUR) show great variations in the Northern hydrographic systems. In these systems, the parameters (S, CE, Cl-, DT) are generally elevated in the tributaries of the south bank of the Medjerda, the North-East streams, Melah and Tine Streams which flow in the Ichkeul lake. The waters in these septentrional systems are sometimes very turbid. The waters of the meridional hydrological system are very clear. The resurgence thermal waters are characterized by the small amplitude of variations of the studied parameters. The waters are alkaline, generally very mineralized they are well oxygenized in the no-polluted stations.

  20. Drinking-water quality and variations in water levels in the fractured crystalline-rock aquifer, west-central Jefferson County, Colorado. Water-resources investigations (interim)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.C.; Johnson, C.J.

    1979-09-01

    In parts of the area, water for domestic use obtained from the fractured crystalline-rock aquifer contained excessive concentrations of dissolved fluoride, dissolved nitrite plus nitrate, dissolved solids, dissolved iron, dissolved manganese, dissolved zinc, coliform bacteria, gross alpha radiation, and gross beta radiation. Based on water-quality analyses from 26 wells located in small urbanized areas, water from 21 of the wells contained excessive concentrations of one or more constituents. Local variations in concentrations of 15 chemical constituents, specific conductance, and water temperature were statistically significant. Depths to water in 11 non-pumping wells ranged from 1 to 15 feet annually. Three-year trendsmore » in water-level changes in 6 of the 11 wells indicated a decrease in stored water in the aquifer.« less

  1. Characterization of the Solid-Phase Behavior of n-Nonylammonium Tetrachlorocuprate by Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ning, Guo

    1995-06-01

    The solid-phase behavior of [n-C9H19NH3]2CuCl4 was investigated by infrared spectroscopy. The nature of the three solid phases (phase I, phase II, and phase III) is discussed. A temperature-dependent study of infrared spectra provides evidence for the occurrence of structural phase transitions related to the dynamics of the alkyl chains and -NH3 polar heads. The phase transition at Tc1 (22°C) arises from variation in the interaction and packing structure of the chain. The phase transition at Tc2 (34°C) is related to variation in partial conformational order-disorder at the intramolecular level. The GTG or GTG‧ and small concentration of TG structures near the CH3 group are generated in phase III (above 38°C).

  2. A note on anomalous band-gap variations in semiconductors with temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  3. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect

    PubMed Central

    Pontes, Maria José

    2018-01-01

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young’s and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber’s stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5–97% and temperature in the range of 21–46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors. PMID:29558387

  4. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect.

    PubMed

    Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; Marques, Carlos; Pontes, Maria José

    2018-03-20

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young's and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber's stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5-97% and temperature in the range of 21-46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors.

  5. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Geels, Randall Scott

    The theory, design, fabrication, and testing of vertical-cavity surface-emitting lasers (VCSELs) is explored in depth. The design of the distributed Bragg reflector (DBR) mirrors is thoroughly treated and both analytic and numerical approaches for computing the reflectivity are covered. The electrical properties of the DBR mirrors are also considered and graded interfaces are found to be critical in reducing the series voltage drop in the mirrors. Thickness variations due to growth rate uncertainties are considered and the permissible thickness inaccuracies are discussed. Layer thickness variations of several percent can be tolerated without large changes in the threshold current. The growth of VCSELs by molecular beam epitaxy (MBE) is described in detail as is the device processing technology for broad area as well as small area devices. Results from numerous devices are reported. Broad area in-plane lasers were used to characterize the material and determine the internal parameters. Broad area VCSELs were fabricated to determine the characteristics of the VCSEL cavity. Small area VCSELs were fabricated and extensively tested. Measured and derived parameters from small area devices include: threshold current (~0.7 mA), peak output power (>3 mW), maximum operation temperature (>110^ circC), output power at 100^ circC (~0.4 mW), and linewidth (85 MHz). The near field, far field, and polarization characteristics were also measured.

  6. Factors affecting the occurrence of saugers in small, high-elevation rivers near the western edge of the species' natural distribution

    USGS Publications Warehouse

    Amadio, C.J.; Hubert, W.A.; Johnson, Kevin; Oberlie, D.; Dufek, D.

    2005-01-01

    Factors affecting the occurrence of saugers Sander canadensis were studied throughout the Wind River basin, a high-elevation watershed (> 1,440 m above mean sea level) on the western periphery of the species' natural distribution in central Wyoming. Adult saugers appeared to have a contiguous distribution over 170 km of streams among four rivers in the watershed. The upstream boundaries of sauger distribution were influenced by summer water temperatures and channel slopes in two rivers and by water diversion dams that created barriers to upstream movement in the other two rivers. Models that included summer water temperature, maximum water depth, habitat type (pool or run), dominant substrate, and alkalinity accounted for the variation in sauger occurrence across the watershed within the areas of sauger distribution. Water temperature was the most important basin-scale habitat feature associated with sauger occurrence, and maximum depth was the most important site-specific habitat feature. Saugers were found in a larger proportion of pools than runs in all segments of the watershed and occurred almost exclusively in pools in upstream segments of the watershed. Suitable summer water temperatures and deep, low-velocity habitat were available to support saugers over a large portion of the Wind River watershed. Future management of saugers in the Wind River watershed, as well as in other small river systems within the species' native range, should involve (1) preserving natural fluvial processes to maintain the summer water temperatures and physical habitat features needed by saugers and (2) assuring that barriers to movement do not reduce upstream boundaries of populations.

  7. Joule heating induced stream broadening in free-flow zone electrophoresis.

    PubMed

    Dutta, Debashis

    2018-03-01

    The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Three-dimensional temperature fields of the North Patagonian Sea recorded by Magellanic penguins as biological sampling platforms

    NASA Astrophysics Data System (ADS)

    Sala, Juan E.; Pisoni, Juan P.; Quintana, Flavio

    2017-04-01

    Temperature is a primary determinant of biogeographic patterns and ecosystem processes. Standard techniques to study the ocean temperature in situ are, however, particularly limited by their time and spatial coverage, problems which might be partially mitigated by using marine top predators as biological platforms for oceanographic sampling. We used small archival tags deployed on 33 Magellanic penguins (Spheniscus magellanicus), and obtained 21,070 geo-localized profiles of water temperature, during late spring of 2008, 2011, 2012 and 2013; in a region of the North Patagonian Sea with limited oceanographic records in situ. We compared our in situ data of sea surface temperature (SST) with those available from satellite remote sensing; to describe the three-dimensional temperature fields around the area of influence of two important tidal frontal systems; and to study the inter-annual variation in the three-dimensional temperature fields. There was a strong positive relationship between satellite- and animal-derived SST data although there was an overestimation by remote-sensing by a maximum difference of +2 °C. Little inter-annual variability in the 3-dimensional temperature fields was found, with the exception of 2012 (and to a lesser extent in 2013) where the SST was significantly higher. In 2013, we found weak stratification in a region which was unexpected. In addition, during the same year, a warm small-scale vortex is indicated by the animal-derived temperature data. This allowed us to describe and better understand the dynamics of the water masses, which, so far, have been mainly studied by remote sensors and numerical models. Our results highlight again the potential of using marine top predators as biological platforms to collect oceanographic data, which will enhance and accelerate studies on the Southwest Atlantic Ocean. In a changing world, threatened by climate change, it is urgent to fill information gaps on the coupled ocean-atmosphere system allowing to link the hydrothermal process to the at-sea distribution of top predators.

  9. Influence of temperature variations on the entropy and correlation of the Grey-Level Co-occurrence Matrix from B-Mode images.

    PubMed

    Alvarenga, André V; Teixeira, César A; Ruano, Maria Graça; Pereira, Wagner C A

    2010-02-01

    In this work, the feasibility of texture parameters extracted from B-Mode images were explored in quantifying medium temperature variation. The goal is to understand how parameters obtained from the gray-level content can be used to improve the actual state-of-the-art methods for non-invasive temperature estimation (NITE). B-Mode images were collected from a tissue mimic phantom heated in a water bath. The phantom is a mixture of water, glycerin, agar-agar and graphite powder. This mixture aims to have similar acoustical properties to in vivo muscle. Images from the phantom were collected using an ultrasound system that has a mechanical sector transducer working at 3.5 MHz. Three temperature curves were collected, and variations between 27 and 44 degrees C during 60 min were allowed. Two parameters (correlation and entropy) were determined from Grey-Level Co-occurrence Matrix (GLCM) extracted from image, and then assessed for non-invasive temperature estimation. Entropy values were capable of identifying variations of 2.0 degrees C. Besides, it was possible to quantify variations from normal human body temperature (37 degrees C) to critical values, as 41 degrees C. In contrast, despite correlation parameter values (obtained from GLCM) presented a correlation coefficient of 0.84 with temperature variation, the high dispersion of values limited the temperature assessment.

  10. Herbarium specimens show patterns of fruiting phenology in native and invasive plant species across New England.

    PubMed

    Gallinat, Amanda S; Russo, Luca; Melaas, Eli K; Willis, Charles G; Primack, Richard B

    2018-01-01

    Patterns of fruiting phenology in temperate ecosystems are poorly understood, despite the ecological importance of fruiting for animal nutrition and seed dispersal. Herbarium specimens represent an under-utilized resource for investigating geographical and climatic factors affecting fruiting times within species, patterns in fruiting times among species, and differences between native and non-native invasive species. We examined over 15,000 herbarium specimens, collected and housed across New England, and found 3159 specimens with ripe fruits, collected from 1849-2013. We examined patterns in fruiting phenology among 37 native and 18 invasive woody plant species common to New England. We compared fruiting dates between native and invasive species, and analyzed how fruiting phenology varies with temperature, space, and time. Spring temperature and year explained a small but significant amount of the variation in fruiting dates. Accounting for the moderate phylogenetic signal in fruiting phenology, invasive species fruited 26 days later on average than native species, with significantly greater standard deviations. Herbarium specimens can be used to detect patterns in fruiting times among species. However, the amount of intraspecific variation in fruiting times explained by temporal, geographic, and climatic predictors is small, due to a combination of low temporal resolution of fruiting specimens and the protracted nature of fruiting. Later fruiting times in invasive species, combined with delays in autumn bird migrations in New England, may increase the likelihood that migratory birds will consume and disperse invasive seeds in New England later into the year. © 2018 Botanical Society of America.

  11. Understanding Copper Isotope Behavior in the High Temperature Magmatic-Hydrothermal Porphyry Environment

    NASA Astrophysics Data System (ADS)

    Gregory, Melissa J.; Mathur, Ryan

    2017-11-01

    Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.

  12. [Effects of forest gap size and uprooted microsite on the microclimate in Pinus koraiensis-dominated broad-leaved mixed forest].

    PubMed

    Duan, Wen-biao; Du, Shan; Chen, Li-xin; Wang, Li-xia; Wei, Quan-shuai; Zhao, Jian-hui

    2013-08-01

    Three representative forest gaps with pit-mound microsites formed by uprooted trees were selected within the 2.55 hm2 plot in a Pinus koraiensis-dominated broad-leaved mixed forest in Xiao Xing'an Mountains of Northeast China. The cleared land and closed stand were set up as the controls, and the PAR, air temperature and relative humidity in the centers of different size gaps and in mound top as well as the total radiation and precipitation in the gap centers were measured between July and September, 2011 by using multichannel automatic meteorological stations. The differences of the microclimate between the gap centers and mound top in different months were compared, and the monthly and diurnal variations of the microclimatic factors in the gap centers and in the mound top under typical weather conditions were analyzed. The results showed that the mean monthly PAR and air temperature in the three gaps of different sizes were in the order of large gap > medium gap > small gap, and the mean monthly relative humidity was in the order of small gap > medium gap > large gap. For the same size gap, the mean monthly PAR and air temperature were higher in the mound top than in the gap center, whereas the mean monthly relative humidity was higher in the gap center than in the mound top. Both the mean monthly total radiation and the mean monthly air temperature in the forest gaps and in the controls were in the order of July > August > September and of cleared land > large gap > medium gap > small gap > closed stand, while the mean monthly relative humidity was in the order of closed stand > small gap > medium gap > large gap > cleared land. The differences in the mean monthly relative humidity between closed stand and various gaps and between closed stand and cleared land reached significant level. The monthly precipitation from July to September decreased in the order of cleared land > large gap > medium gap > small gap > closed stand. Whether in sunny days or in overcast days, the mean daily PAR and air temperature were higher in mound top than in gap center, and the mean daily relative humidity was in opposite. Whether in mound top or in gap center, the mean daily PAR and air temperature were higher in sunny days than in overcast days, while the mean daily relative humidity was higher in overcast days than in sunny days.

  13. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years

    NASA Astrophysics Data System (ADS)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.

    2014-03-01

    We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.

  14. Global convergence in leaf respiration from estimates of thermal acclimation across time and space.

    PubMed

    Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, Kaoru

    2015-09-01

    Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    NASA Astrophysics Data System (ADS)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust models, since this step is the bottle-neck of this technique. In the first approach, a plot-scale model was used to predict the temperature reached in samples collected in other plots from the same site. In a plot-scale model, all the heated aliquots come from a unique plot-scale sample. As expected, the results obtained with this approach were deceptive, because this approach was assuming that a plot-scale model would be enough to represent the whole variability of the site. The accuracy (measured as the root mean square error of prediction, thereinafter RMSEP) was 86ºC, and the bias was also high (>30ºC). In the second approach, the temperatures predicted through several plot-scale models were averaged. The accuracy was improved (RMSEP=65ºC) respect the first approach, because the variability from several plots was considered and biased predictions were partially counterbalanced. However, this approach implies more efforts, since several plot-scale models are needed. In the third approach, the predictions were obtained with site-scale models. These models were constructed with aliquots from several plots. In this case, the results were accurate, since the RMSEP was around 40ºC, the bias was very small (<1ºC) and the R2 was 0.92. As expected, this approach clearly outperformed the second approach, in spite of the fact that the same efforts were needed. In a plot-scale model, only one interaction between temperature and soil components was modelled. However, several different interactions between temperature and soil components were present in the calibration matrix of a site-scale model. Consequently, the site-scale models were able to model the temperature reached excluding the influence of the differences in soil composition, resulting in more robust models respect that variation. Summarizing, the results were highlighting the importance of an adequate strategy to develop robust and accurate models with moderate efforts, and how a wrong strategy can result in deceptive predictions.

  16. Remotely-sensed phenologies of C3 and C4 grasses in Hawaii using MODIS Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Pau, S.; Still, C. J.

    2010-12-01

    The C3 and C4 photosynthetic pathway is a fundamental physiological and ecological distinction in tropical and subtropical savannas and grasslands. Although C4 plants account for 20-25% of global terrestrial productivity, large uncertainties remain regarding their response to climate variability and future climate change. Recent work has shown that key differences in the ecology of C3 and C4 grasses may have been pre-adaptations to environments prior to the evolution of the C4 grasses and not attributable to photosynthetic pathway. The Hawaiian Islands are ideal for studying C3 and C4 grass plant functional types (PFTs) because of the combination of broad climatic gradients within a small geographic area. This study uses MODIS NDVI and EVI time-series data to examine the phenologies of C3 and C4 grasses in a phylogenetic context. Specifically we address 3 primary questions: (1) Do C3 and C4 sister taxa, and C4 subtypes exhibit distinct timing in phenological metrics (onset of greening, onset of senescence, maximum and minimum greenness, length of growing season)? (2) How does the interannual variation in these phenological metrics correlate with interannual variations in climate such as precipitation, air temperature, land surface temperature, and sea surface temperature? (3) How does the length of the growing season translate into differences in productivity?

  17. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: A case study

    Treesearch

    Ying Ouyang; Jia-En Zhang; Yide Li; Prem Parajuli; Gary Feng

    2015-01-01

    Rainfall and air temperature variations resulting from climate change are important driving forces to change hydrologic processes in watershed ecosystems. This study investigated the impacts of past and future rainfall and air temperature variations upon water discharge, water outflow (from the watershed outlet), and evaporative loss in the Lower Yazoo River Watershed...

  18. Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.

  19. Monitoring of oceanographic properties of Glacier Bay, Alaska 2004

    USGS Publications Warehouse

    Madison, Erica N.; Etherington, Lisa L.

    2005-01-01

    Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.

  20. High temperature and temperature variation undermine future disease susceptibility in a population of the invasive garden ant Lasius neglectus.

    PubMed

    Pamminger, Tobias; Steier, Thomas; Tragust, Simon

    2016-06-01

    Environmental temperature and temperature variation can have strong effects on the outcome of host-parasite interactions. Whilst such effects have been reported for different host systems, long-term consequences of pre-infection temperatures on host susceptibility and immunity remain understudied. Here, we show that experiencing both a biologically relevant increase in temperature and temperature variation undermines future disease susceptibility of the invasive garden ant Lasius neglectus when challenged with a pathogen under a constant temperature regime. In light of the economic and ecological importance of many social insects, our results emphasise the necessity to take the hosts' temperature history into account when studying host-parasite interactions under both natural and laboratory conditions, especially in the face of global change.

  1. High temperature and temperature variation undermine future disease susceptibility in a population of the invasive garden ant Lasius neglectus

    NASA Astrophysics Data System (ADS)

    Pamminger, Tobias; Steier, Thomas; Tragust, Simon

    2016-06-01

    Environmental temperature and temperature variation can have strong effects on the outcome of host-parasite interactions. Whilst such effects have been reported for different host systems, long-term consequences of pre-infection temperatures on host susceptibility and immunity remain understudied. Here, we show that experiencing both a biologically relevant increase in temperature and temperature variation undermines future disease susceptibility of the invasive garden ant Lasius neglectus when challenged with a pathogen under a constant temperature regime. In light of the economic and ecological importance of many social insects, our results emphasise the necessity to take the hosts' temperature history into account when studying host-parasite interactions under both natural and laboratory conditions, especially in the face of global change.

  2. Origin of the monolayer Raman signature in hexagonal boron nitride: a first-principles analysis.

    PubMed

    Ontaneda, Jorge; Singh, Anjali; Waghmare, Umesh V; Grau-Crespo, Ricardo

    2018-05-10

    Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman signature, consisting of an upshift in the frequency of the E 2g vibrational mode with respect to the bulk value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer in comparison with the bulk. There is universal agreement among all tested functionals in predicting the magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, while the intralayer distances slightly contract, in agreement with observed experimental behavior. Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with temperature, and becomes very small at room temperature. We conclude that the different thermal expansion of bulk and monolayer partially 'erases' the intrinsic Raman signature, accounting for its small magnitude in recent experiments on suspended samples.

  3. Origin of the monolayer Raman signature in hexagonal boron nitride: a first-principles analysis

    NASA Astrophysics Data System (ADS)

    Ontaneda, Jorge; Singh, Anjali; Waghmare, Umesh V.; Grau-Crespo, Ricardo

    2018-05-01

    Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman signature, consisting of an upshift in the frequency of the E2g vibrational mode with respect to the bulk value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer in comparison with the bulk. There is universal agreement among all tested functionals in predicting the magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, while the intralayer distances slightly contract, in agreement with observed experimental behavior. Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with temperature, and becomes very small at room temperature. We conclude that the different thermal expansion of bulk and monolayer partially ‘erases’ the intrinsic Raman signature, accounting for its small magnitude in recent experiments on suspended samples.

  4. Temporal Variations of Titan's Middle-Atmospheric Temperatures From 2004-2009 Observed by Cassini/CIRS

    NASA Technical Reports Server (NTRS)

    Achterberg, Richard K.; Gierasch, Peter J.; Flasar, F. Michael; Nixon, Conor A.

    2010-01-01

    We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (Ls from 293deg to 4deg; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1 to 2K from 2004 through early 2007, then declined by 2 to 4K throughout 2008 and 2009, with the changes, being larger at more, polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1 to 2K increase, from 2005 through 2009. At north polar latitudes within the polar vortex, temperatures in the middle stratosphe=re show a approx. 4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature. changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.

  5. Temporal Variations of Titan's Middle-Atmospheric Temperatures from 2004 to 2009 Observed by Cassini/CIRS

    NASA Technical Reports Server (NTRS)

    Achterberg, Richard K.; Gierasch, Peter J.; Conrath, Barney J.; Flasar, F. Michael; Nixon, Conor A.

    2011-01-01

    We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (Ls from 293 deg. to 48 deg.; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009, at north polar latitudes within the polar vortex, temperatures in the middle stratosphere show an approximately 4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.

  6. The effect of skin reflectance on thermal traits in a small heliothermic ectotherm.

    PubMed

    Matthews, Genevieve; Goulet, Celine T; Delhey, Kaspar; Chapple, David G

    2016-08-01

    Variation in colour patterning is prevalent among and within species. A number of theories have been proposed in explaining its evolution. Because solar radiation interacts with the pigmentation of the integument causing light to either be reflected or absorbed into the body, thermoregulation has been considered to be a primary selective agent, particularly among ectotherms. Accordingly, the colour-mediated thermoregulatory hypothesis states that darker individuals will heat faster and reach higher thermal equilibria while paler individuals will have the opposite traits. It was further predicted that dark colouration would promote slower cooling rates and higher thermal performance temperatures. To test these hypotheses we quantified the reflectance, selected body temperatures, performance optima, as well as heating and cooling rates of an ectothermic vertebrate, Lampropholis delicata. Our results indicated that colour had no influence on thermal physiology, as all thermal traits were uncorrelated with reflectance. We suggest that crypsis may instead be the stronger selective agent as it may have a more direct impact on fitness. Our study has improved our knowledge of the functional differences among individuals with different colour patterns, and the evolutionary significance of morphological variation within species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mass fractionation processes of transition metal isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  8. Reaction Norms in Natural Conditions: How Does Metabolic Performance Respond to Weather Variations in a Small Endotherm Facing Cold Environments?

    PubMed Central

    Petit, Magali; Vézina, François

    2014-01-01

    Reaction norms reflect an organisms' capacity to adjust its phenotype to the environment and allows for identifying trait values associated with physiological limits. However, reaction norms of physiological parameters are mostly unknown for endotherms living in natural conditions. Black-capped chickadees (Poecile atricapillus) increase their metabolic performance during winter acclimatization and are thus good model to measure reaction norms in the wild. We repeatedly measured basal (BMR) and summit (Msum) metabolism in chickadees to characterize, for the first time in a free-living endotherm, reaction norms of these parameters across the natural range of weather variation. BMR varied between individuals and was weakly and negatively related to minimal temperature. Msum varied with minimal temperature following a Z-shape curve, increasing linearly between 24°C and −10°C, and changed with absolute humidity following a U-shape relationship. These results suggest that thermal exchanges with the environment have minimal effects on maintenance costs, which may be individual-dependent, while thermogenic capacity is responding to body heat loss. Our results suggest also that BMR and Msum respond to different and likely independent constraints. PMID:25426860

  9. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  10. Fishing and temperature effects on the size structure of exploited fish stocks.

    PubMed

    Tu, Chen-Yi; Chen, Kuan-Ting; Hsieh, Chih-Hao

    2018-05-08

    Size structure of fish stock plays an important role in maintaining sustainability of the population. Size distribution of an exploited stock is predicted to shift toward small individuals caused by size-selective fishing and/or warming; however, their relative contribution remains relatively unexplored. In addition, existing analyses on size structure have focused on univariate size-based indicators (SBIs), such as mean length, evenness of size classes, or the upper 95-percentile of the length frequency distribution; these approaches may not capture full information of size structure. To bridge the gap, we used the variation partitioning approach to examine how the size structure (composition of size classes) responded to fishing, warming and the interaction. We analyzed 28 exploited stocks in the West US, Alaska and North Sea. Our result shows fishing has the most prominent effect on the size structure of the exploited stocks. In addition, the fish stocks experienced higher variability in fishing is more responsive to the temperature effect in their size structure, suggesting that fishing may elevate the sensitivity of exploited stocks in responding to environmental effects. The variation partitioning approach provides complementary information to univariate SBIs in analyzing size structure.

  11. Parasites of the mangrove mussel Mytella guyanensis (Bivalvia: Mytilidae) in Camamu Bay, Bahia, Brazil.

    PubMed

    Ceuta, L O; Boehs, G

    2012-08-01

    This contribution reports the parasites found in the mangrove mussel Mytella guyanensis in Camamu Bay, Bahia, Brazil. Samples were collected monthly from September 2006 through October 2007. A total of 460 individuals were collected, fixed in Davidson's solution, and processed by standard histological techniques, and the sections were stained with Harris hematoxylin and eosin (H&E). The water temperature ranged from 23.5 to 31.6 ºC, and the salinity from 25 to 37‰. Microscopic analysis showed Rickettsia-like organisms (RLOs), Nematopsis sp. (Apicomplexa), and Platyhelminthes, including a turbellarian, sporocysts of Bucephalus sp., metacercariae, and metacestodes of Tylocephalum sp. Parasites were observed mainly in the gills, mantle, and digestive gland. The prevalence of Nematopsis sp. was 100%, and in heavily infected mussels the tissues of the labial palps were damaged. RLOs occurred in high prevalence and intensity of infection in some periods. The digenean sporocysts showed moderate prevalence but high intensity of infection, and caused parasitic castration. In general, there was no significant spatial or temporal variation (p > 0.05) of the parasites, which is probably attributable to the small variations of temperature and salinity in the region.

  12. Spatiotemporal variations in litter mass and their relationships with climate in temperate grassland: A case study from Xilingol grassland, Inner Mongolia (China)

    NASA Astrophysics Data System (ADS)

    Ren, Hongrui; Zhang, Bei

    2018-02-01

    Clarifying spatiotemporal variations of litter mass and their relationships with climate factors will advance our understanding of ecosystem structure and functioning in grasslands. Our objective is to investigate the spatiotemporal variations of litter mass in the growing season and their relationships with precipitation and temperature in the Xilingol grassland using MOD09A1 data. With widely used STI (simple tillage index), we firstly estimated the litter mass of Xilingol grassland in the growing season from 2000 to 2014. Then we investigated the variations of litter mass in the growing season at regional and site scales. We further explored the spatiotemporal relationships between litter mass and precipitation and temperature at both scales. The litter mass increased with increasing mean annual precipitation and decreasing mean annual temperature at regional scale. The variations of litter mass at given sites followed quadratic function curves in the growing season, and litter mass generally attained maximums between August 1 and September 1. Positive spatial relationship was observed between litter mass variations and precipitation, and negative spatial relationship was found between litter mass variations and temperature in the growing season. There was no significant relationship between inter-annual variations of litter mass and precipitation and temperature at given sites. Results illustrate that precipitation and temperature are important drivers in shaping ecosystem functioning as reflected in litter mass at regional scale in the Xilingol grassland. Our findings also suggest the action of distinct mechanism in controlling litter mass variations at regional and sites scales.

  13. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering?

    PubMed

    Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole

    2016-07-01

    Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  15. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation.

    PubMed

    Pandey, R B; Farmer, B L

    2014-11-07

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ∼ 3) at low temperature to a ramified fibrous network (D ∼ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ∼ 1.6) of fibrous Glu- and Thr-chain configurations.

  16. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Farmer, B. L.

    2014-11-01

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Dong; N. Paterson; S.G. Kazarian

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained amore » small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.« less

  18. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    USGS Publications Warehouse

    Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  19. Reconstructing last 2000 years of temperature variation from Pyrenean caves (N Spain)

    NASA Astrophysics Data System (ADS)

    Moreno, Ana; Bartolomé, Miguel; Pérez, Carlos; Sancho, Carlos; Cacho, Isabel; Stoll, Heather; Delgado-Huertas, Antonio; Edwards, R. Lawrence; Cheng, Hai

    2016-04-01

    The Central Pyrenees, and particularly the protected area known as Ordesa and Monte Perdido National Park, is a high-altitude karstic region rich in cavities with active drips and present precipitation of carbonates. Although not generally very abundant, there are speleothems growths in several of those cavities. We present here (1) a three-year seasonal monitoring survey to isolate the environmental parameters influencing isotopic composition of farmed carbonate and (2) the last 2000 years isotopic record resulting from compiling seven stalagmites from three different caves. In temperate regions such as the NE Iberian Peninsula is difficult to discern the influences on δ18O variation in speleothems since temperature, amount of precipitation or even source effect are usually acting simultaneously. Main results after three years monitoring period indicate a strong dependence on air temperature through its influence on rainfall δ18O, although a small amount effect is not discarded. The good overlapping during the observational period of δ18O from actively growing modern stalagmites and air temperature in the area supports this dependence and provides a reliable proxy for the temperature evolution along last millennia. The stalagmites belong to three different caves (Seso, Gloces and B-1 caves) but still present a very coherent isotopic signal allowing us to discard local effects (diagenetic imprint, non-equilibrium fractionation) and to produce a stacked record with decadal resolution. Interpreting this signal as regional temperature variation divides the temporal sequence in five main periods, in consonance with historical stages. Thus, a continuous decrease in temperature characterized the end of the Roman period (0-500 AD). Lower temperatures are dominant during "Dark Ages" (500-1000 AD) that increase during the Medieval Climate Anomaly (MCA, 1000-1400 AD). Following this warm period, the cold signal during the Little Ice Age is very well replicated in several speleothems, even for short events lasting less than a decade. The warming that identifies the Industrial Era (from 1850 AD to present day) is also well document. This reconstruction is in striking similarity with other high-resolution records in Europe and, particularly, with global temperature reconstructions for last 2000 years. In addition, the fact that the δ18O signal presented here is so well replicated in speleothems from different caves gives strong support to our interpretation and opens the door to further research on Pyrenean speleothems as exceptional archives of thermal oscillations.

  20. Intra-population level variation in thresholds for physical dormancy-breaking temperature

    PubMed Central

    Liyanage, Ganesha S.; Ooi, Mark K. J.

    2015-01-01

    Background and Aims Intra-population variation in seed dormancy is an advantage for population persistence in unpredictable environments. The important role played by physically dormant species in these habitats makes understanding the level of variation in their dormancy a key ecological question. Heat produced in the soil is the major dormancy-breaking stimulus and, in fire prone ecosystems, soil temperatures generated by fire may vary spatially and over time. While many studies have investigated variation in initial dormancy, a measure that is of little value in fire-prone ecosystems, where initial dormancy levels are uniformly high, intra-population variation in dormancy-breaking temperature thresholds has never been quantified. This study predicted that species would display variation in dormancy-breaking temperature thresholds within populations, and investigated whether this variation occurred between individual plants from the same maternal environment. Methods The intra-population variation in dormancy-breaking thresholds of five common physically dormant shrub species (family Fabaceae) from fire-prone vegetation in south-eastern Australia was assessed using heat treatments and germination trials. Replicate batches of seeds from each of four maternal plants of Dillwynia floribunda, Viminaria juncea, Bossiaea heterophylla, Aotus ericoides and Acacia linifolia were treated at 40, 60, 80, 100 and 120 °C. Key Results Dormancy-breaking response to heat treatments varied significantly among individual plants for all species, with some individuals able to germinate after heating at low temperatures and others restricting germination to temperatures that only occur as a result of high-severity fires. Germination rate (T50) varied among individuals of three species. Conclusions Variation detected among individuals that were in close proximity to each other indicates that strong differences in dormancy-breaking temperature thresholds occur throughout the broader population. Differences found at the individual plant level could contribute to subsequent variation within the seed bank, providing a bet-hedging strategy, and represent a mechanism for increasing the probability of population persistence in the face of fire regime variability. PMID:25997432

  1. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.

    2017-11-01

    This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures are sufficiently below freezing, the near-surface environment is generally stably stratified and the hourly averaged turbulent fluxes are quite small and irregular with on average small downward sensible heat fluxes and upward latent heat and carbon dioxide fluxes. The magnitude of the turbulent fluxes increases rapidly when surface snow disappears and the air temperatures rise above freezing during spring melt and eventually reaches a summer maximum. Throughout the summer months strong upward sensible and latent heat fluxes and downward carbon dioxide (uptake by the surface) are typically observed indicating persistent unstable (convective) stratification. Due to the combined effects of day length and solar zenith angle, the convective boundary layer forms in the High Arctic (e.g., in Eureka) and can reach long-lived quasi-stationary states in summer. During late summer and early autumn all turbulent fluxes rapidly decrease in magnitude when the air temperature decreases and falls below freezing. Unlike Eureka, a pronounced zero-curtain effect consisting of a sustained surface temperature hiatus at the freezing point is observed in Tiksi during fall due to wetter and/or water saturated soils.

  2. The Magmatic Structure of Mid-ocean Ridges: Integrating Geophysical and Petrological Observations

    NASA Astrophysics Data System (ADS)

    Maclennan, J.; Singh, S.

    Geophysical surveys, petrological observations and numerical models have all played an important role in the study of magmatic processes at mid-ocean ridges. However, few studies have attempted to integrate the constraints from both geophysical and geochemical observations in order to develop models of mid-ocean ridges. Composi- tional variation within the oceanic crust must be considered when geophysical models are interpreted in terms of variation in temperature or fluid fraction. Modellers com- monly assume that the crust is compositionally homogeneous and that the relationship between temperature and melt fraction does not vary within the crust. However, the compositions of oceanic crustal rocks collected from the Oman ophiolite vary widely and their predicted solidus temperatures vary from 990­1240C and their liquidus temperatures from 1250­1700C. Compositional variation within the solid part of the oceanic crust causes variation in seismic velocities. At fixed temperature and pressure the compositional variation present in crustal rocks can give P-wave velocity variation of 1 km s-1 or more. This has the same effect as a temperature variation of 1500C in the solid or of a variation of 20% in the melt fraction. The importance of this petrolog- ical framework for the interpretation of the seismic structure of mid-ocean ridges and for the development of thermal models of oceanic crustal accretion is demonstrated using an example from the East Pacific Rise near 9N.

  3. Sensing the heat stress by Mammalian cells.

    PubMed

    Cates, Jordan; Graham, Garrett C; Omattage, Natalie; Pavesich, Elizabeth; Setliff, Ian; Shaw, Jack; Smith, Caitlin Lee; Lipan, Ovidiu

    2011-08-11

    The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO) cells. The time profile of the GFP protein depends on the transient activity, Transient(t), of the heat shock system. The function Transient(t) depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104). The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i) the response of the cell to two consecutive shocks (i.e., no recovery time in between shocks) depends on the order of the input shocks, that is the shocks do not commute; (ii) the responses may be classified as mild or severe, depending on the temperature level and the duration of the heat shock and (iii) the response is highly sensitive to small variations in temperature. We propose a mathematical model that maps temperature into the transient activity using experimental data that describes the time course of the response to input thermal stress. The model is built on thermotolerance without recovery time, sharp sensitivity to small variations in temperature and the existence of mild and severe classes of stress responses. The theoretical predictions are tested against experimental data using a series of double-shock inputs. The theoretical structure is represented by a sequence of three cascade processes that transform the input stress into the transient activity. The structure of the cascade is nonlinear-linear-nonlinear (NLN). The first nonlinear system (N) from the NLN structure represents the amplification of small changes in the environmental temperature; the linear system (L) represents the thermotolerance without recovery time, whereas the last system (N) represents the transition of the cell's response from a mild to a severe shock.

  4. Fuel Temperature Fluctuations During Storage

    NASA Astrophysics Data System (ADS)

    Levitin, R. E.; Zemenkov, Yu D.

    2016-10-01

    When oil and petroleum products are stored, their temperature significantly impacts how their properties change. The paper covers the problem of determining temperature fluctuations of hydrocarbons during storage. It provides results of the authors’ investigations of the stored product temperature variations relative to the ambient temperature. Closeness and correlation coefficients between these values are given. Temperature variations equations for oil and petroleum products stored in tanks are deduced.

  5. The effect of small variations in profile of airfoils

    NASA Technical Reports Server (NTRS)

    Ward, Kenneth E

    1931-01-01

    This report deals with the effect of small variations in ordinates specified by different laboratories for the airfoil section. This study was made in connection with a more general investigation of the effect of small irregularities of the airfoil surface on the aerodynamic characteristics of an airfoil. These tests show that small changes in airfoil contours, resulting from variations in the specified ordinates, have a sufficiently large effect upon the airfoil characteristics to justify the taking of great care in the specification of ordinates for the construction of models.

  6. Geographic variation in the response of Culex pipiens life history traits to temperature.

    PubMed

    Ruybal, Jordan E; Kramer, Laura D; Kilpatrick, A Marm

    2016-02-29

    Climate change is predicted to alter the transmission of many vector-borne pathogens. The quantitative impact of climate change is usually estimated by measuring the temperature-performance relationships for a single population of vectors, and then mapping this relationship across a range of temperatures or locations. However, life history traits of different populations often differ significantly. Specifically, performance across a range of temperatures is likely to vary due to local adaptation to temperature and other factors. This variation can cause spatial variation in pathogen transmission and will influence the impact of climate change on the transmission of vector-borne pathogens. We quantified variation in life history traits for four populations of Culex pipiens (Linnaeus) mosquitoes. The populations were distributed along altitudinal and latitudinal gradients in the eastern United States that spanned ~3 °C in mean summer temperature, which is similar to the magnitude of global warming expected in the next 3-5 decades. We measured larval and adult survival, development rate, and biting rate at six temperatures between 16 and 35 °C, in a common garden experiment. Temperature had strong and consistent non-linear effects on all four life history traits for all four populations. Adult female development time decreased monotonically with increasing temperature, with the largest decrease at cold temperatures. Daily juvenile and adult female survival also decreased with increasing temperature, but the largest decrease occurred at higher temperatures. There was significant among-population variation in the thermal response curves for the four life history traits across the four populations, with larval survival, adult survival, and development rate varying up to 45, 79, and 84 % among populations, respectively. However, variation was not correlated with local temperatures and thus did not support the local thermal adaptation hypothesis. These results suggest that the impact of climate change on vector-borne disease will be more variable than previous predictions, and our data provide an estimate of this uncertainty. In addition, the variation among populations that we observed will shape the response of vectors to changing climates.

  7. The Biological Nature of Geochemical Proxies: algal symbionts affect coral skeletal chemistry

    NASA Astrophysics Data System (ADS)

    Owens, K.; Cohen, A. L.; Shimizu, N.

    2001-12-01

    The strontium-calcium ratio (Sr/Ca) of reef coral skeleton is an important ocean temperature proxy that has been used to address some particularly controversial climate change issues. However, the paleothermometer has sometimes proven unreliable and there are indications that the temperature-dependence of Sr/Ca in coral aragonite is linked to the photosynthetic activity of algal symbionts (zooxanthellae) in coral tissue. We examined the effect of algal symbiosis on skeletal chemistry using Astrangia danae, a small colonial temperate scleractinian that occurs naturally with and without zooxanthellae. Live symbiotic (deep brown) and asymbiotic (white) colonies of similar size were collected in Woods Hole where water temperatures fluctuate seasonally between -2oC and 23oC. We used a microbeam technique (Secondary Ion Mass Spectrometry) and a 30 micron diameter sampling beam to construct high-resolution Sr/Ca profiles, 2500 microns long, down the growth axes of the outer calical (thecal) walls. Profiles generated from co-occuring symbiotic and asymbiotic colonies are remarkably different despite their exposure to identical water temperatures. Symbiotic coral Sr/Ca displays four large-amplitude annual cycles with high values in the winter, low values in the summer and a temperature dependence similar to that of tropical reef corals. By comparison, Sr/Ca profiles constructed from asymbiotic coral skeleton display little variability over the same time period. Asymbiont Sr/Ca is relatively insensitive to the enormous temperature changes experienced over the year; the temperature dependence is similar to that of nighttime skeletal deposits in tropical reef corals and non-biological aragonite precipitates. We propose that the large variations in skeletal Sr/Ca observed in all symbiont-hosting coral species are not related to SST variability per se but are driven primarily by large seasonal variations in skeletal calcification rate associated with symbiont photosynthesis. Our model provides a framework for understanding the role of biology in determining coral skeletal chemistry and an explanation for anomalous Sr/Ca-based paleotemperature derivations.

  8. Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot

    NASA Astrophysics Data System (ADS)

    El-Yadri, M.; Aghoutane, N.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2018-05-01

    This work reports on theoretical investigation of the temperature and hydrostatic pressure effects on the confined donor impurity in a AlGaAs-GaAs hollow cylindrical core-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with approximately rigid walls. Within the framework of the effective-mass approximation and by using a variational approach, we have computed the donor binding energies as a function of the shell size in order to study the behavior of the electron-impurity attraction for a very small thickness under the influence of both temperature and hydrostatic pressure. Our results show that the temperature and hydrostatic pressure have a significant influence on the impurity binding energy for large shell quantum dots. It will be shown that the binding energy is more pronounced with increasing pressure and decreasing temperature for any impurity position and quantum dot size. The photoionization cross section is also analyzed by considering only the in-plane incident radiation polarization. Its behavior is investigated as a function of photon energy for different values of pressure and temperature. The opposite effects caused by temperature and hydrostatic pressure reveal a big practical interest and offer an alternative way to tuning of correlated electron-impurity transitions in optoelectronic devices.

  9. Direct and indirect ENSO modulation of winter temperature over the Asian–Pacific–American region

    PubMed Central

    Leung, Marco Y. T.; Zhou, Wen

    2016-01-01

    In this study, the direct and indirect atmospheric responses over the Asian–Pacific–American region to the El Niño–Southern Oscillation (ENSO) are documented. Since ENSO is likely to induce the northward displacement of the East Asian trough (NDEAT), some of the influence of ENSO on the Asian–Pacific–American region is possibly indirect and acts by inducing NDEAT. To separate corresponding influences of ENSO and NDEAT, partial regression is utilized. It is noted that temperature variations in the East Asian–Western Pacific region are controlled mainly by NDEAT. In contrast, ENSO demonstrates a weak direct relation to the temperature variation over the East Asian–Western Pacific region. This suggests that the influence of ENSO on this region is indirect, through modulation of NDEAT. On the other hand, temperature variation over the tropical eastern Pacific is dominated by ENSO forcing. Finally, temperature variation over the eastern North American–Western Pacific region is controlled by both ENSO and NDEAT. Nevertheless, their influences on temperature and circulation over this region tend to offset each other. This implies that temperature variation is controlled by their relative strengths. PMID:27821838

  10. Analytical model for effect of temperature variation on PSF consistency in wavefront coding infrared imaging system

    NASA Astrophysics Data System (ADS)

    Feng, Bin; Shi, Zelin; Zhang, Chengshuo; Xu, Baoshu; Zhang, Xiaodong

    2016-05-01

    The point spread function (PSF) inconsistency caused by temperature variation leads to artifacts in decoded images of a wavefront coding infrared imaging system. Therefore, this paper proposes an analytical model for the effect of temperature variation on the PSF consistency. In the proposed model, a formula for the thermal deformation of an optical phase mask is derived. This formula indicates that a cubic optical phase mask (CPM) is still cubic after thermal deformation. A proposed equivalent cubic phase mask (E-CPM) is a virtual and room-temperature lens which characterizes the optical effect of temperature variation on the CPM. Additionally, a calculating method for PSF consistency after temperature variation is presented. Numerical simulation illustrates the validity of the proposed model and some significant conclusions are drawn. Given the form parameter, the PSF consistency achieved by a Ge-material CPM is better than the PSF consistency by a ZnSe-material CPM. The effect of the optical phase mask on PSF inconsistency is much slighter than that of the auxiliary lens group. A large form parameter of the CPM will introduce large defocus-insensitive aberrations, which improves the PSF consistency but degrades the room-temperature MTF.

  11. Sources of Variation in Creep Testing

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  12. Improved protocol and data analysis for accelerated shelf-life estimation of solid dosage forms.

    PubMed

    Waterman, Kenneth C; Carella, Anthony J; Gumkowski, Michael J; Lukulay, Patrick; MacDonald, Bruce C; Roy, Michael C; Shamblin, Sheri L

    2007-04-01

    To propose and test a new accelerated aging protocol for solid-state, small molecule pharmaceuticals which provides faster predictions for drug substance and drug product shelf-life. The concept of an isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a critical degradant level, is introduced for solid-state pharmaceuticals. Reliable estimates for temperature and relative humidity effects are handled using a humidity-corrected Arrhenius equation, where temperature and relative humidity are assumed to be orthogonal. Imprecision is incorporated into a Monte-Carlo simulation to propagate the variations inherent in the experiment. In early development phases, greater imprecision in predictions is tolerated to allow faster screening with reduced sampling. Early development data are then used to design appropriate test conditions for more reliable later stability estimations. Examples are reported showing that predicted shelf-life values for lower temperatures and different relative humidities are consistent with the measured shelf-life values at those conditions. The new protocols and analyses provide accurate and precise shelf-life estimations in a reduced time from current state of the art.

  13. Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.

    2018-02-01

    We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.

  14. Finite-temperature time-dependent variation with multiple Davydov states

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Fujihashi, Yuta; Chen, Lipeng; Zhao, Yang

    2017-03-01

    The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.

  15. Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion.

    PubMed

    Villegas-Amtmann, Stella; Atkinson, Shannon; Paras-Garcia, Alberto; Costa, Daniel P

    2012-08-01

    Survival depends on an animal's ability to find and acquire prey. In diving vertebrates, this ability is directly related to their physiological capability (e.g. oxygen stores). We studied the seasonal variation in oxygen stores, body temperature and body condition in California sea lions (Zalophus californianus) (CSL) as a function of seasonal variation in temperature, primary productivity, diving behavior and reproductive stage. During summer, blood oxygen stores were significantly greater and muscle oxygen stores were significantly lower than in winter. Total oxygen stores, body condition and body temperature did not change between seasons but variations in body temperature were greater during summer. Changes in oxygen stores are partly attributed to diving behavior, temperature and pregnancy that could increase oxygen consumption. Blood and muscle oxygen stores appear to be influenced by reproductive state. Blood oxygen stores are more likely influenced by diving behavior and temperature than muscle oxygen stores. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Multi-path variational transition state theory for chemical reaction rates of complex polyatomic species: ethanol + OH reactions.

    PubMed

    Zheng, Jingjing; Truhlar, Donald G

    2012-01-01

    Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.

  17. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    NASA Astrophysics Data System (ADS)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  18. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    USGS Publications Warehouse

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.

  19. Thermal control requirements for large space structures

    NASA Technical Reports Server (NTRS)

    Manoff, M.

    1978-01-01

    Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.

  20. Resolving 3D magnetism in nanoparticles using polarization analyzed SANS

    NASA Astrophysics Data System (ADS)

    Krycka, K. L.; Booth, R.; Borchers, J. A.; Chen, W. C.; Conlon, C.; Gentile, T. R.; Hogg, C.; Ijiri, Y.; Laver, M.; Maranville, B. B.; Majetich, S. A.; Rhyne, J. J.; Watson, S. M.

    2009-09-01

    Utilizing a polarized 3He cell as an analyzer we were able to perform a full polarization analysis on small-angle neutron scattering (SANS) data from an ensemble of 7 nm magnetite nanoparticles. The results led to clear separation of magnetic and nuclear scattering plus a 3D vectorial decomposition of the magnetism observed. At remanence variation in long-range magnetic correlation length was found to be highly dependent on temperature from 50 to 300 K. Additionally, we were able to compare the magnetic scattering from moments along and perpendicular to an applied field at saturation and in remanence.

Top