Sample records for small variable segments

  1. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters.

    PubMed

    Galavis, Paulina E; Hollensen, Christian; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert

    2010-10-01

    Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [(18)F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation.

  2. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters

    PubMed Central

    GALAVIS, PAULINA E.; HOLLENSEN, CHRISTIAN; JALLOW, NGONEH; PALIWAL, BHUDATT; JERAJ, ROBERT

    2014-01-01

    Background Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Material and methods Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45–60 minutes post-injection of 10 mCi of [18F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Conclusion Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation. PMID:20831489

  3. The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer.

    PubMed

    Bashir, Usman; Azad, Gurdip; Siddique, Muhammad Musib; Dhillon, Saana; Patel, Nikheel; Bassett, Paul; Landau, David; Goh, Vicky; Cook, Gary

    2017-12-01

    Measures of tumour heterogeneity derived from 18-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) scans are increasingly reported as potential biomarkers of non-small cell lung cancer (NSCLC) for classification and prognostication. Several segmentation algorithms have been used to delineate tumours, but their effects on the reproducibility and predictive and prognostic capability of derived parameters have not been evaluated. The purpose of our study was to retrospectively compare various segmentation algorithms in terms of inter-observer reproducibility and prognostic capability of texture parameters derived from non-small cell lung cancer (NSCLC) 18 F-FDG PET/CT images. Fifty three NSCLC patients (mean age 65.8 years; 31 males) underwent pre-chemoradiotherapy 18 F-FDG PET/CT scans. Three readers segmented tumours using freehand (FH), 40% of maximum intensity threshold (40P), and fuzzy locally adaptive Bayesian (FLAB) algorithms. Intraclass correlation coefficient (ICC) was used to measure the inter-observer variability of the texture features derived by the three segmentation algorithms. Univariate cox regression was used on 12 commonly reported texture features to predict overall survival (OS) for each segmentation algorithm. Model quality was compared across segmentation algorithms using Akaike information criterion (AIC). 40P was the most reproducible algorithm (median ICC 0.9; interquartile range [IQR] 0.85-0.92) compared with FLAB (median ICC 0.83; IQR 0.77-0.86) and FH (median ICC 0.77; IQR 0.7-0.85). On univariate cox regression analysis, 40P found 2 out of 12 variables, i.e. first-order entropy and grey-level co-occurence matrix (GLCM) entropy, to be significantly associated with OS; FH and FLAB found 1, i.e., first-order entropy. For each tested variable, survival models for all three segmentation algorithms were of similar quality, exhibiting comparable AIC values with overlapping 95% CIs. Compared with both FLAB and FH, segmentation with 40P yields superior inter-observer reproducibility of texture features. Survival models generated by all three segmentation algorithms are of at least equivalent utility. Our findings suggest that a segmentation algorithm using a 40% of maximum threshold is acceptable for texture analysis of 18 F-FDG PET in NSCLC.

  4. Variability of manual ciliary muscle segmentation in optical coherence tomography images.

    PubMed

    Chang, Yu-Cherng; Liu, Keke; Cabot, Florence; Yoo, Sonia H; Ruggeri, Marco; Ho, Arthur; Parel, Jean-Marie; Manns, Fabrice

    2018-02-01

    Optical coherence tomography (OCT) offers new options for imaging the ciliary muscle allowing direct in vivo visualization. However, variation in image quality along the length of the muscle prevents accurate delineation and quantification of the muscle. Quantitative analyses of the muscle are accompanied by variability in segmentation between examiners and between sessions for the same examiner. In processes such as accommodation where changes in muscle thickness may be tens of microns- the equivalent of a small number of image pixels, differences in segmentation can influence the magnitude and potentially the direction of thickness change. A detailed analysis of variability in ciliary muscle thickness measurements was performed to serve as a benchmark for the extent of this variability in studies on the ciliary muscle. Variation between sessions and examiners were found to be insignificant but the magnitude of variation should be considered when interpreting ciliary muscle results.

  5. Small rural hospitals: an example of market segmentation analysis.

    PubMed

    Mainous, A G; Shelby, R L

    1991-01-01

    In recent years, market segmentation analysis has shown increased popularity among health care marketers, although marketers tend to focus upon hospitals as sellers. The present analysis suggests that there is merit to viewing hospitals as a market of consumers. Employing a random sample of 741 small rural hospitals, the present investigation sought to determine, through the use of segmentation analysis, the variables associated with hospital success (occupancy). The results of a discriminant analysis yielded a model which classifies hospitals with a high degree of predictive accuracy. Successful hospitals have more beds and employees, and are generally larger and have more resources. However, there was no significant relationship between organizational success and number of services offered by the institution.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr; University of Farhat Abbas Setif1, Sétif, 19000; Mohamadi, Tayeb

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.

  7. Variable styles of rifting expressed in crustal structure across three rift segments of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Lizarralde, D. D.; Axen, G. J.; Brown, H. E.; Fletcher, J. M.; Fernandez, A. G.; Harding, A. J.; Holbrook, W. S.; Kent, G. M.; Paramo, P.; Sutherland, F. H.; Umhoefer, P. J.

    2007-05-01

    We present a summary of results from a crustal-scale seismic experiment conducted in the southern Gulf of California. This experiment, the PESCADOR experiment, imaged crustal structure across three rift segments, the Alarcon, Guaymas, and San José del Cabo to Puerto Vallarta (Cabo-PV) segments, using seismic refraction/wide-angle reflection data acquired with airgun sources and recorded by closely spaced (10-15 km) ocean-bottom seismometers (OBSs). The imaged crustal structure reveals a surprisingly large variation in rifting style and magmatism between these segments: the Alarcon segment is a wide rift with apparently little syn-rift magmatism; the Guaymas segment is a narrow, magmatically robust rift; and the Cabo-PV segment is a narrow, magmatically "normal" rift. Our explanation for the observed variability is non-traditional in that we do not invoke mantle temperature, the factor commonly invoked to explain end-member volcanic and non-volcanic rifted margins, as the source of the considerable, though non-end-member variability we observe. Instead, we invoke mantle depletion related to pre-rift arc volcanism to account for observed wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism. These factors may commonly vary over small lateral spatial scales in regions that have transitioned from convergent to extensional tectonics, as is the case for the Gulf of California and many other rifts. Our hypothesis suggests that substantial lateral variability may exist within the uppermost mantle beneath the Gulf of California today, and it is hoped that ongoing efforts to image upper mantle structure here will provide tests for this hypothesis.

  8. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.

    PubMed

    Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G

    2017-01-01

    Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys." In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10- 20 μm .

  9. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin

    PubMed Central

    Ghanta, Sindhu; Jordan, Michael I.; Kose, Kivanc; Brooks, Dana H.; Rajadhyaksha, Milind; Dy, Jennifer G.

    2016-01-01

    Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped “peaks and valleys”. In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10 – 20µm. PMID:27723590

  10. Comparison of computer systems and ranking criteria for automatic melanoma detection in dermoscopic images.

    PubMed

    Møllersen, Kajsa; Zortea, Maciel; Schopf, Thomas R; Kirchesch, Herbert; Godtliebsen, Fred

    2017-01-01

    Melanoma is the deadliest form of skin cancer, and early detection is crucial for patient survival. Computer systems can assist in melanoma detection, but are not widespread in clinical practice. In 2016, an open challenge in classification of dermoscopic images of skin lesions was announced. A training set of 900 images with corresponding class labels and semi-automatic/manual segmentation masks was released for the challenge. An independent test set of 379 images, of which 75 were of melanomas, was used to rank the participants. This article demonstrates the impact of ranking criteria, segmentation method and classifier, and highlights the clinical perspective. We compare five different measures for diagnostic accuracy by analysing the resulting ranking of the computer systems in the challenge. Choice of performance measure had great impact on the ranking. Systems that were ranked among the top three for one measure, dropped to the bottom half when changing performance measure. Nevus Doctor, a computer system previously developed by the authors, was used to participate in the challenge, and investigate the impact of segmentation and classifier. The diagnostic accuracy when using an automatic versus the semi-automatic/manual segmentation is investigated. The unexpected small impact of segmentation method suggests that improvements of the automatic segmentation method w.r.t. resemblance to semi-automatic/manual segmentation will not improve diagnostic accuracy substantially. A small set of similar classification algorithms are used to investigate the impact of classifier on the diagnostic accuracy. The variability in diagnostic accuracy for different classifier algorithms was larger than the variability for segmentation methods, and suggests a focus for future investigations. From a clinical perspective, the misclassification of a melanoma as benign has far greater cost than the misclassification of a benign lesion. For computer systems to have clinical impact, their performance should be ranked by a high-sensitivity measure.

  11. Mesoscale spatial variability of selected aquatic invertebrate community metrics from a minimally impaired stream segment

    USGS Publications Warehouse

    Gebler, J.B.

    2004-01-01

    The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.

  12. Defensive Gin-Trap Closure Response of Tenebrionid Beetle, Zophobas atratus, Pupae

    PubMed Central

    Ichikawa, Toshio; Kurauchi, Toshiaki; Yamawaki, Yoshifumi

    2012-01-01

    Pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have jaws called gin traps on the lateral margin of their jointed abdominal segments. When a weak tactile stimulation was applied to the intersegmental region between the two jaws of a gin trap in a resting pupa, the pupa rapidly closed and reopened single or multiple gin traps adjacent to the stimulated trap for 100200 ms. In response to a strong stimulation, a small or large rotation of the abdominal segments occurred after the rapid closure of the traps. Analyses of trajectory patterns of the last abdominal segment during the rotations revealed that the rotational responses were graded and highly variable with respect to the amplitudes of their horizontal and vertical components. The high variability of these rotational responses is in contrast with the low variability (or constancy) of abdominal rotations induced by the tactile stimulation of cephalic and thoracic appendages. Since the closed state of the gin traps lasts only for a fraction of a second, the response may mainly function to deliver a “painful” stimulus to an attacker rather than to cause serious damage. PMID:23448309

  13. Defensive gin-trap closure response of tenebrionid beetle, Zophobas atratus, pupae.

    PubMed

    Ichikawa, Toshio; Kurauchi, Toshiaki; Yamawaki, Yoshifumi

    2012-01-01

    Pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have jaws called gin traps on the lateral margin of their jointed abdominal segments. When a weak tactile stimulation was applied to the intersegmental region between the two jaws of a gin trap in a resting pupa, the pupa rapidly closed and reopened single or multiple gin traps adjacent to the stimulated trap for 100200 ms. In response to a strong stimulation, a small or large rotation of the abdominal segments occurred after the rapid closure of the traps. Analyses of trajectory patterns of the last abdominal segment during the rotations revealed that the rotational responses were graded and highly variable with respect to the amplitudes of their horizontal and vertical components. The high variability of these rotational responses is in contrast with the low variability (or constancy) of abdominal rotations induced by the tactile stimulation of cephalic and thoracic appendages. Since the closed state of the gin traps lasts only for a fraction of a second, the response may mainly function to deliver a "painful" stimulus to an attacker rather than to cause serious damage.

  14. Metabolically active tumour volume segmentation from dynamic [(18)F]FLT PET studies in non-small cell lung cancer.

    PubMed

    Hoyng, Lieke L; Frings, Virginie; Hoekstra, Otto S; Kenny, Laura M; Aboagye, Eric O; Boellaard, Ronald

    2015-01-01

    Positron emission tomography (PET) with (18)F-3'-deoxy-3'-fluorothymidine ([(18)F]FLT) can be used to assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of tumours in dynamic [(18)F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its test-retest performance in [(18)F]FLT PET in non-small cell lung cancer (NSCLC) patients. Nine NSCLC patients underwent two 60-min dynamic [(18)F]FLT PET scans within 7 days prior to treatment. Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested. Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value (SUV) were evaluated. KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue, which was shown to be related to heterogeneous [(18)F]FLT uptake areas within the tumour. For [(18)F]FLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for tumour segmentation in NSCLC [(18)F]FLT PET studies in multicentre studies. Yet, it was observed that KF has the potential to subsegment lesions in high and low proliferative areas.

  15. Algorithm guided outlining of 105 pancreatic cancer liver metastases in Ultrasound.

    PubMed

    Hann, Alexander; Bettac, Lucas; Haenle, Mark M; Graeter, Tilmann; Berger, Andreas W; Dreyhaupt, Jens; Schmalstieg, Dieter; Zoller, Wolfram G; Egger, Jan

    2017-10-06

    Manual segmentation of hepatic metastases in ultrasound images acquired from patients suffering from pancreatic cancer is common practice. Semiautomatic measurements promising assistance in this process are often assessed using a small number of lesions performed by examiners who already know the algorithm. In this work, we present the application of an algorithm for the segmentation of liver metastases due to pancreatic cancer using a set of 105 different images of metastases. The algorithm and the two examiners had never assessed the images before. The examiners first performed a manual segmentation and, after five weeks, a semiautomatic segmentation using the algorithm. They were satisfied in up to 90% of the cases with the semiautomatic segmentation results. Using the algorithm was significantly faster and resulted in a median Dice similarity score of over 80%. Estimation of the inter-operator variability by using the intra class correlation coefficient was good with 0.8. In conclusion, the algorithm facilitates fast and accurate segmentation of liver metastases, comparable to the current gold standard of manual segmentation.

  16. Magnetic resonance brain tissue segmentation based on sparse representations

    NASA Astrophysics Data System (ADS)

    Rueda, Andrea

    2015-12-01

    Segmentation or delineation of specific organs and structures in medical images is an important task in the clinical diagnosis and treatment, since it allows to characterize pathologies through imaging measures (biomarkers). In brain imaging, segmentation of main tissues or specific structures is challenging, due to the anatomic variability and complexity, and the presence of image artifacts (noise, intensity inhomogeneities, partial volume effect). In this paper, an automatic segmentation strategy is proposed, based on sparse representations and coupled dictionaries. Image intensity patterns are singly related to tissue labels at the level of small patches, gathering this information in coupled intensity/segmentation dictionaries. This dictionaries are used within a sparse representation framework to find the projection of a new intensity image onto the intensity dictionary, and the same projection can be used with the segmentation dictionary to estimate the corresponding segmentation. Preliminary results obtained with two publicly available datasets suggest that the proposal is capable of estimating adequate segmentations for gray matter (GM) and white matter (WM) tissues, with an average overlapping of 0:79 for GM and 0:71 for WM (with respect to original segmentations).

  17. Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    León, Madeleine; Escalante-Ramirez, Boris

    2013-11-01

    Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16- MRI of knee and tested with leave-one-out method.

  18. The Demand for Single Engine Piston Aircraft,

    DTIC Science & Technology

    1987-08-01

    Other promising variables included Student Pilots and - Maintenance and overhaul costs. None of the national economic " variables tested was effective ...publicity and are presumed to exist 1everywhere. *O 2-11 . ., Today’s deregulated airline envi ronrrient has had opposing effects on the use of small aircraft...delivered. Foreign producers have learned to compete effectively in these segments of the U.S. marketplace. one can assume they could do the same in

  19. Validation of the Carotid Intima-Media Thickness Variability: Can Manual Segmentations Be Trusted as Ground Truth?

    PubMed

    Meiburger, Kristen M; Molinari, Filippo; Wong, Justin; Aguilar, Luis; Gallo, Diego; Steinman, David A; Morbiducci, Umberto

    2016-07-01

    The common carotid artery intima-media thickness (IMT) is widely accepted and used as an indicator of atherosclerosis. Recent studies, however, have found that the irregularity of the IMT along the carotid artery wall has a stronger correlation with atherosclerosis than the IMT itself. We set out to validate IMT variability (IMTV), a parameter defined to assess IMT irregularities along the wall. In particular, we analyzed whether or not manual segmentations of the lumen-intima and media-adventitia can be considered reliable in calculation of the IMTV parameter. To do this, we used a total of 60 simulated ultrasound images with a priori IMT and IMTV values. The images, simulated using the Fast And Mechanistic Ultrasound Simulation software, presented five different morphologies, four nominal IMT values and three different levels of variability along the carotid artery wall (no variability, small variability and large variability). Three experts traced the lumen-intima (LI) and media-adventitia (MA) profiles, and two automated algorithms were employed to obtain the LI and MA profiles. One expert also re-traced the LI and MA profiles to test intra-reader variability. The average IMTV measurements of the profiles used to simulate the longitudinal B-mode images were 0.002 ± 0.002, 0.149 ± 0.035 and 0.286 ± 0.068 mm for the cases of no variability, small variability and large variability, respectively. The IMTV measurements of one of the automated algorithms were statistically similar (p > 0.05, Wilcoxon signed rank) when considering small and large variability, but non-significant when considering no variability (p < 0.05, Wilcoxon signed rank). The second automated algorithm resulted in statistically similar values in the small variability case. Two readers' manual tracings, however, produced IMTV measurements with a statistically significant difference considering all three variability levels, whereas the third reader found a statistically significant difference in both the no variability and large variability cases. Moreover, the error range between the reader and automatic IMTV values was approximately 0.15 mm, which is on the same order of small IMTV values, indicating that manual and automatic IMTV readings should be not used interchangeably in clinical practice. On the basis of our findings, we conclude that expert manual tracings should not be considered reliable in IMTV measurement and, therefore, should not be trusted as ground truth. On the other hand, our automated algorithm was found to be more reliable, indicating how automated techniques could therefore foster analysis of the carotid artery intima-media thickness irregularity. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface.

    PubMed

    Walker, David; Yu, Guoyu; Li, Hongyu; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2012-08-27

    Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets. In parallel, industrial requirements for edge-control are emerging in several applications. This paper reports on a new approach, where edges are controlled throughout polishing of the entire surface of a part, which has been pre-machined to its final external dimensions. The method deploys compliant bonnets delivering influence functions of variable diameter, complemented by small pitch tools sized to accommodate aspheric mis-fit. We describe results on witness hexagons in preparation for full size prototype segments for the European Extremely Large Telescope, and comment on wider applications of the technology.

  1. Integrated Control of Na Transport along the Nephron

    PubMed Central

    Schnermann, Jürgen

    2015-01-01

    The kidney filters vast quantities of Na at the glomerulus but excretes a very small fraction of this Na in the final urine. Although almost every nephron segment participates in the reabsorption of Na in the normal kidney, the proximal segments (from the glomerulus to the macula densa) and the distal segments (past the macula densa) play different roles. The proximal tubule and the thick ascending limb of the loop of Henle interact with the filtration apparatus to deliver Na to the distal nephron at a rather constant rate. This involves regulation of both filtration and reabsorption through the processes of glomerulotubular balance and tubuloglomerular feedback. The more distal segments, including the distal convoluted tubule (DCT), connecting tubule, and collecting duct, regulate Na reabsorption to match the excretion with dietary intake. The relative amounts of Na reabsorbed in the DCT, which mainly reabsorbs NaCl, and by more downstream segments that exchange Na for K are variable, allowing the simultaneous regulation of both Na and K excretion. PMID:25098598

  2. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  3. Comparing demographic, health status and psychosocial strategies of audience segmentation to promote physical activity.

    PubMed

    Boslaugh, Sarah E; Kreuter, Matthew W; Nicholson, Robert A; Naleid, Kimberly

    2005-08-01

    The goal of audience segmentation is to identify population subgroups that are homogeneous with respect to certain variables associated with a given outcome or behavior. When such groups are identified and understood, targeted intervention strategies can be developed to address their unique characteristics and needs. This study compares the results of audience segmentation for physical activity that is based on either demographic, health status or psychosocial variables alone, or a combination of all three types of variables. Participants were 1090 African-American and White adults from two public health centers in St Louis, MO. Using a classification-tree algorithm to form homogeneous groups, analyses showed that more segments with greater variability in physical activity were created using psychosocial versus health status or demographic variables and that a combination of the three outperformed any individual set of variables. Simple segmentation strategies such as those relying on demographic variables alone provided little improvement over no segmentation at all. Audience segmentation appears to yield more homogeneous subgroups when psychosocial and health status factors are combined with demographic variables.

  4. Internal vibrations of a molecule consisting of rigid segments. I - Non-interacting internal vibrations

    NASA Technical Reports Server (NTRS)

    He, X. M.; Craven, B. M.

    1993-01-01

    For molecular crystals, a procedure is proposed for interpreting experimentally determined atomic mean square anisotropic displacement parameters (ADPs) in terms of the overall molecular vibration together with internal vibrations with the assumption that the molecule consists of a set of linked rigid segments. The internal librations (molecular torsional or bending modes) are described using the variable internal coordinates of the segmented body. With this procedure, the experimental ADPs obtained from crystal structure determinations involving six small molecules (sym-trinitrobenzene, adenosine, tetra-cyanoquinodimethane, benzamide, alpha-cyanoacetic acid hydrazide and N-acetyl-L-tryptophan methylamide) have been analyzed. As a consequence, vibrational corrections to the bond lengths and angles of the molecule are calculated as well as the frequencies and force constants for each internal torsional or bending vibration.

  5. Ground-motion signature of dynamic ruptures on rough faults

    NASA Astrophysics Data System (ADS)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.

    2016-04-01

    Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.

  6. Analysis of manual segmentation in paranasal CT images.

    PubMed

    Tingelhoff, Kathrin; Eichhorn, Klaus W G; Wagner, Ingo; Kunkel, Maria E; Moral, Analia I; Rilk, Markus E; Wahl, Friedrich M; Bootz, Friedrich

    2008-09-01

    Manual segmentation is often used for evaluation of automatic or semi-automatic segmentation. The purpose of this paper is to describe the inter and intraindividual variability, the dubiety of manual segmentation as a gold standard and to find reasons for the discrepancy. We realized two experiments. In the first one ten ENT surgeons, ten medical students and one engineer outlined the right maxillary sinus and ethmoid sinuses manually on a standard CT dataset of a human head. In the second experiment two participants outlined maxillary sinus and ethmoid sinuses five times consecutively. Manual segmentation was accomplished with custom software using a line segmentation tool. The first experiment shows the interindividual variability of manual segmentation which is higher for ethmoidal sinuses than for maxillary sinuses. The variability can be caused by the level of experience, different interpretation of the CT data or different levels of accuracy. The second experiment shows intraindividual variability which is lower than interindividual variability. Most variances in both experiments appear during segmentation of ethmoidal sinuses and outlining hiatus semilunaris. Concerning the inter and intraindividual variances the segmentation result of one manual segmenter could not directly be used as gold standard for the evaluation of automatic segmentation algorithms.

  7. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R; Yang, J; Pan, T

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less

  8. Corn and soybean Landsat MSS classification performance as a function of scene characteristics

    NASA Technical Reports Server (NTRS)

    Batista, G. T.; Hixson, M. M.; Bauer, M. E.

    1982-01-01

    In order to fully utilize remote sensing to inventory crop production, it is important to identify the factors that affect the accuracy of Landsat classifications. The objective of this study was to investigate the effect of scene characteristics involving crop, soil, and weather variables on the accuracy of Landsat classifications of corn and soybeans. Segments sampling the U.S. Corn Belt were classified using a Gaussian maximum likelihood classifier on multitemporally registered data from two key acquisition periods. Field size had a strong effect on classification accuracy with small fields tending to have low accuracies even when the effect of mixed pixels was eliminated. Other scene characteristics accounting for variability in classification accuracy included proportions of corn and soybeans, crop diversity index, proportion of all field crops, soil drainage, slope, soil order, long-term average soybean yield, maximum yield, relative position of the segment in the Corn Belt, weather, and crop development stage.

  9. Intestinal nodular lymphoid hyperplasia and extraintestinal lymphoma--a rare association.

    PubMed

    Monsanto, P; Lérias, C; Almeida, N; Lopes, S; Cabral, J E; Figueiredo, P; Silva, M; Julião, M; Gouveia, H; Sofia, C

    2012-06-01

    Nodular lymphoid hyperplasia of the gastrointestinal tract is characterized by the presence of innumerable small discrete nodules involving a variable segment of the gastrointestinal tract. The association between nodular lymphoid hyperplasia and other benign and malignant diseases has been clearly described, with an increased risk of gastrointestinal tumours, namely gastrointestinal lymphoma. However, the association with extraintestinal lymphoma seems extremely rare. The authors present a clinical case of a patient with nodular lymphoid hyperplasia of the small and large intestine that subsequently developed an extraintestinal lymphoma (diffuse large B-cell lymphoma).

  10. Automatic cerebrospinal fluid segmentation in non-contrast CT images using a 3D convolutional network

    NASA Astrophysics Data System (ADS)

    Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra

    2017-03-01

    Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.

  11. Lithospheric buckling and intra-arc stresses: A mechanism for arc segmentation

    NASA Technical Reports Server (NTRS)

    Nelson, Kerri L.

    1989-01-01

    Comparison of segment development of a number of arcs has shown that consistent relationships between segmentation, volcanism and variable stresses exists. Researchers successfully modeled these relationships using the conceptual model of lithospheric buckling of Yamaoka et al. (1986; 1987). Lithosphere buckling (deformation) provides the needed mechanism to explain segmentation phenomenon; offsets in volcanic fronts, distribution of calderas within segments, variable segment stresses and the chemical diversity seen between segment boundary and segment interior magmas.

  12. Automatic segmentation of the facial nerve and chorda tympani using image registration and statistical priors

    NASA Astrophysics Data System (ADS)

    Noble, Jack H.; Warren, Frank M.; Labadie, Robert F.; Dawant, Benoit M.

    2008-03-01

    In cochlear implant surgery, an electrode array is permanently implanted in the cochlea to stimulate the auditory nerve and allow deaf people to hear. A minimally invasive surgical technique has recently been proposed--percutaneous cochlear access--in which a single hole is drilled from the skull surface to the cochlea. For the method to be feasible, a safe and effective drilling trajectory must be determined using a pre-operative CT. Segmentation of the structures of the ear would improve trajectory planning safety and efficiency and enable the possibility of automated planning. Two important structures of the ear, the facial nerve and chorda tympani, present difficulties in intensity based segmentation due to their diameter (as small as 1.0 and 0.4 mm) and adjacent inter-patient variable structures of similar intensity in CT imagery. A multipart, model-based segmentation algorithm is presented in this paper that accomplishes automatic segmentation of the facial nerve and chorda tympani. Segmentation results are presented for 14 test ears and are compared to manually segmented surfaces. The results show that mean error in structure wall localization is 0.2 and 0.3 mm for the facial nerve and chorda, proving the method we propose is robust and accurate.

  13. Semiautomatic Segmentation of Glioma on Mobile Devices.

    PubMed

    Wu, Ya-Ping; Lin, Yu-Song; Wu, Wei-Guo; Yang, Cong; Gu, Jian-Qin; Bai, Yan; Wang, Mei-Yun

    2017-01-01

    Brain tumor segmentation is the first and the most critical step in clinical applications of radiomics. However, segmenting brain images by radiologists is labor intense and prone to inter- and intraobserver variability. Stable and reproducible brain image segmentation algorithms are thus important for successful tumor detection in radiomics. In this paper, we propose a supervised brain image segmentation method, especially for magnetic resonance (MR) brain images with glioma. This paper uses hard edge multiplicative intrinsic component optimization to preprocess glioma medical image on the server side, and then, the doctors could supervise the segmentation process on mobile devices in their convenient time. Since the preprocessed images have the same brightness for the same tissue voxels, they have small data size (typically 1/10 of the original image size) and simple structure of 4 types of intensity value. This observation thus allows follow-up steps to be processed on mobile devices with low bandwidth and limited computing performance. Experiments conducted on 1935 brain slices from 129 patients show that more than 30% of the sample can reach 90% similarity; over 60% of the samples can reach 85% similarity, and more than 80% of the sample could reach 75% similarity. The comparisons with other segmentation methods also demonstrate both efficiency and stability of the proposed approach.

  14. Comparative analysis of the L, M, and S RNA segments of Crimean-Congo haemorrhagic fever virus isolates from southern Africa.

    PubMed

    Goedhals, Dominique; Bester, Phillip A; Paweska, Janusz T; Swanepoel, Robert; Burt, Felicity J

    2015-05-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a member of the Bunyaviridae family with a tripartite, negative sense RNA genome. This study used predictive software to analyse the L (large), M (medium), and S (small) segments of 14 southern African CCHFV isolates. The OTU-like cysteine protease domain and the RdRp domain of the L segment are highly conserved among southern African CCHFV isolates. The M segment encodes the structural glycoproteins, GN and GC, and the non-structural glycoproteins which are post-translationally cleaved at highly conserved furin and subtilase SKI-1 cleavage sites. All of the sites previously identified were shown to be conserved among southern African CCHFV isolates. The heavily O-glycosylated N-terminal variable mucin-like domain of the M segment shows the highest sequence variability of the CCHFV proteins. Five transmembrane domains are predicted in the M segment polyprotein resulting in three regions internal to and three regions external to the membrane across the G(N), NS(M) and G(C) glycoproteins. The corroboration of conserved genome domains and sequence identity among geographically diverse isolates may assist in the identification of protein function and pathogenic mechanisms, as well as the identification of potential targets for antiviral therapy and vaccine design. As detailed functional studies are lacking for many of the CCHFV proteins, identification of functional domains by prediction of protein structure, and identification of amino acid level similarity to functionally characterised proteins of related viruses or viruses with similar pathogenic mechanisms are a necessary step for selection of areas for further study. © 2015 Wiley Periodicals, Inc.

  15. An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling*

    PubMed Central

    Huang, Yu; Su, Yuzhuo; Rorden, Christopher; Dmochowski, Jacek; Datta, Abhishek; Parra, Lucas C.

    2014-01-01

    Targeted transcranial stimulation with electric currents requires accurate models of the current flow from scalp electrodes to the human brain. Idiosyncratic anatomy of individual brains and heads leads to significant variability in such current flows across subjects, thus, necessitating accurate individualized head models. Here we report on an automated processing chain that computes current distributions in the head starting from a structural magnetic resonance image (MRI). The main purpose of automating this process is to reduce the substantial effort currently required for manual segmentation, electrode placement, and solving of finite element models. In doing so, several weeks of manual labor were reduced to no more than 4 hours of computation time and minimal user interaction, while current-flow results for the automated method deviated by less than 27.9% from the manual method. Key facilitating factors are the addition of three tissue types (skull, scalp and air) to a state-of-the-art automated segmentation process, morphological processing to correct small but important segmentation errors, and automated placement of small electrodes based on easily reproducible standard electrode configurations. We anticipate that such an automated processing will become an indispensable tool to individualize transcranial direct current stimulation (tDCS) therapy. PMID:23367144

  16. Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities

    PubMed Central

    Glatz, Andreas; Bastin, Mark E.; Kiker, Alexander J.; Deary, Ian J.; Wardlaw, Joanna M.; Valdés Hernández, Maria C.

    2015-01-01

    Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. PMID:25451469

  17. A new segmentation strategy for processing magnetic anomaly detection data of shallow depth ferromagnetic pipeline

    NASA Astrophysics Data System (ADS)

    Feng, Shuo; Liu, Dejun; Cheng, Xing; Fang, Huafeng; Li, Caifang

    2017-04-01

    Magnetic anomalies produced by underground ferromagnetic pipelines because of the polarization of earth's magnetic field are used to obtain the information on the location, buried depth and other parameters of pipelines. In order to achieve a fast inversion and interpretation of measured data, it is necessary to develop a fast and stable forward method. Magnetic dipole reconstruction (MDR), as a kind of integration numerical method, is well suited for simulating a thin pipeline anomaly. In MDR the pipeline model must be cut into small magnetic dipoles through different segmentation methods. The segmentation method has an impact on the stability and speed of forward calculation. Rapid and accurate simulation of deep-buried pipelines has been achieved by exciting segmentation method. However, in practical measurement, the depth of underground pipe is uncertain. When it comes to the shallow-buried pipeline, the present segmentation may generate significant errors. This paper aims at solving this problem in three stages. First, the cause of inaccuracy is analyzed by simulation experiment. Secondly, new variable interval section segmentation is proposed based on the existing segmentation. It can help MDR method to obtain simulation results in a fast way under the premise of ensuring the accuracy of different depth models. Finally, the measured data is inversed based on new segmentation method. The result proves that the inversion based on the new segmentation can achieve fast and accurate inversion of depth parameters of underground pipes without being limited by pipeline depth.

  18. Spinal cord grey matter segmentation challenge.

    PubMed

    Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien

    2017-05-15

    An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Segmenting words from natural speech: subsegmental variation in segmental cues.

    PubMed

    Rytting, C Anton; Brew, Chris; Fosler-Lussier, Eric

    2010-06-01

    Most computational models of word segmentation are trained and tested on transcripts of speech, rather than the speech itself, and assume that speech is converted into a sequence of symbols prior to word segmentation. We present a way of representing speech corpora that avoids this assumption, and preserves acoustic variation present in speech. We use this new representation to re-evaluate a key computational model of word segmentation. One finding is that high levels of phonetic variability degrade the model's performance. While robustness to phonetic variability may be intrinsically valuable, this finding needs to be complemented by parallel studies of the actual abilities of children to segment phonetically variable speech.

  20. Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase.

    PubMed

    Yancopoulos, G D; Blackwell, T K; Suh, H; Hood, L; Alt, F W

    1986-01-31

    We have recently proposed that a common recombinase performs all of the many variable region gene assembly events in B and T cells, and that the specificity of these joining events is mediated by regulating the "accessibility" of the involved gene segments. To test this possibility, we have introduced "accessible" T cell receptor (TCR) variable region gene segments into a pre-B cell line capable of recombining endogenous and transfected immunoglobulin (Ig) variable region gene segments. Although the corresponding "inaccessible" endogenous TCR gene segments do not rearrange in this line or in B cells in general, the introduced TCR gene segments join very frequently and, in fact, closely resemble introduced Ig gene segments in their recombination characteristics. These observations suggest a new role for conventional Ig transcriptional enhancers--recombinational enhancement. Our studies provide insight into additional aspects of the joining mechanism such as N region insertion, aberrant joining, and recombination-recognition sequence requirements for joining.

  1. Low-dimensional organization of angular momentum during walking on a narrow beam.

    PubMed

    Chiovetto, Enrico; Huber, Meghan E; Sternad, Dagmar; Giese, Martin A

    2018-01-08

    Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body's angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement kinematics of participants walking on a narrow beam and computed the angular momentum contributions of the body segments with respect to three different axes. Results showed that, despite considerable variability in the movement kinematics, the angular momentum was characterized by a low-dimensional organization based on a small number of segmental coordination patterns. When the angular momentum was computed with respect to the beam axis, the largest fraction of its variation was accounted for by the trunk segment. This simple organization was robust and invariant across all participants. These findings support the hypothesis that control strategies for complex balancing tasks might be easier to understand by investigating angular momentum instead of the segmental kinematics.

  2. A robustness test of the braided device foreshortening algorithm

    NASA Astrophysics Data System (ADS)

    Moyano, Raquel Kale; Fernandez, Hector; Macho, Juan M.; Blasco, Jordi; San Roman, Luis; Narata, Ana Paula; Larrabide, Ignacio

    2017-11-01

    Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF). METHODS: We used the 3DRA images of 10 aneurysmatic patients (cases). The cases were segmented by applying a marching cubes algorithm with a broad range of thresholds in order to generate 10 surface models each. We selected a braided device to apply the BDF algorithm to each surface model. The range of the computed flow diverter lengths for each case was obtained to calculate the variability of the method against the threshold segmentation values. RESULTS: An evaluation study over 10 clinical cases indicates that the final length of the deployed flow diverter in each vessel model is stable, shielding maximum difference of 11.19% in vessel diameter and maximum of 9.14% in the simulated stent length for the threshold values. The average coefficient of variation was found to be 4.08 %. CONCLUSION: A study evaluating how the threshold segmentation affects the simulated length of the deployed FD, was presented. The segmentation algorithm used to segment intracranial aneurysm 3D angiography images presents small variation in the resulting stent simulation.

  3. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  4. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 2: Model equations and base aircraft data

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Equations incorporated in a VATOL six degree of freedom off-line digital simulation program and data for the Vought SF-121 VATOL aircraft concept which served as the baseline for the development of this program are presented. The equations and data are intended to facilitate the development of a piloted VATOL simulation. The equation presentation format is to state the equations which define a particular model segment. Listings of constants required to quantify the model segment, input variables required to exercise the model segment, and output variables required by other model segments are included. In several instances a series of input or output variables are followed by a section number in parentheses which identifies the model segment of origination or termination of those variables.

  5. Segmenting hospitals for improved management strategy.

    PubMed

    Malhotra, N K

    1989-09-01

    The author presents a conceptual framework for the a priori and clustering-based approaches to segmentation and evaluates them in the context of segmenting institutional health care markets. An empirical study is reported in which the hospital market is segmented on three state-of-being variables. The segmentation approach also takes into account important organizational decision-making variables. The sophisticated Thurstone Case V procedure is employed. Several marketing implications for hospitals, other health care organizations, hospital suppliers, and donor publics are identified.

  6. Genomic signal analysis of pathogen variability

    NASA Astrophysics Data System (ADS)

    Cristea, Paul Dan

    2006-02-01

    The paper presents results in the study of pathogen variability by using genomic signals. The conversion of symbolic nucleotide sequences into digital signals offers the possibility to apply signal processing methods to the analysis of genomic data. The method is particularly well suited to characterize small size genomic sequences, such as those found in viruses and bacteria, being a promising tool in tracking the variability of pathogens, especially in the context of developing drug resistance. The paper is based on data downloaded from GenBank [32], and comprises results on the variability of the eight segments of the influenza type A, subtype H5N1, virus genome, and of the Hemagglutinin (HA) gene, for the H1, H2, H3, H4, H5 and H16 types. Data from human and avian virus isolates are used.

  7. The Sheath-less Planar Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Cooke, D. L.

    2017-12-01

    The Langmuir probe is one of the oldest plasma diagnostics, provided the plasma density and species temperature from analysis of a current-voltage curve as the voltage is swept over a practically chosen range. The analysis depends on a knowledge or theory of the many factors that influence the current-voltage curve including, probe shape, size, nearby perturbations, and the voltage reference. For applications in Low Earth Orbit, the Planar Langmuir Probe, PLP, is an attractive geometry because the ram ion current is very constant over many Volts of a sweep, allowing the ion density and electron temperature to be determined independently with the same instrument, at different points on the sweep. However, when the physical voltage reference is itself small and electrically floating as with a small spacecraft, the spacecraft and probe system become a double probe where the current collection theory depends on the interaction of the spacecraft with the plasma which is generally not as simple as the probe itself. The Sheath-less PLP, SPLP, interlaces on a single ram facing surface, two variably biased probe elements, broken into many small and intertwined segments on a scale smaller than the plasma Debye length. The SPLP is electrically isolated from the rest of the spacecraft. For relative bias potentials of a few volts, the ion current to all segments of each element will be constant, while the electron currents will vary as a function of the element potential and the electron temperature. Because the segments are small, intertwined, and floating, the assembly will always present the same floating potential to the plasma, with minimal growth as a function of voltage, thus sheath-less and still planar. This concept has been modelled with Nascap, and tested with a physical model inserted into a Low Earth Orbit-like chamber plasma. Results will be presented.

  8. Weak simulated extratropical responses to complete tropical deforestation

    USGS Publications Warehouse

    Findell, K.L.; Knutson, T.R.; Milly, P.C.D.

    2006-01-01

    The Geophysical Fluid Dynamics Laboratory atmosphere-land model version 2 (AM2/LM2) coupled to a 50-m-thick slab ocean model has been used to investigate remote responses to tropical deforestation. Magnitudes and significance of differences between a control run and a deforested run are assessed through comparisons of 50-yr time series, accounting for autocorrelation and field significance. Complete conversion of the broadleaf evergreen forests of South America, central Africa, and the islands of Oceania to grasslands leads to highly significant local responses. In addition, a broad but mild warming is seen throughout the tropical troposphere (<0.2??C between 700 and 150 mb), significant in northern spring and summer. However, the simulation results show very little statistically significant response beyond the Tropics. There are no significant differences in any hydroclimatic variables (e.g., precipitation, soil moisture, evaporation) in either the northern or the southern extratropics. Small but statistically significant local differences in some geopotential height and wind fields are present in the southeastern Pacific Ocean. Use of the same statistical tests on two 50-yr segments of the control run show that the small but significant extratropical differences between the deforested run and the control run are similar in magnitude and area to the differences between nonoverlapping segments of the control run. These simulations suggest that extratropical responses to complete tropical deforestation are unlikely to be distinguishable from natural climate variability.

  9. Prenatal Diagnosis of a Segmental Small Bowel Volvulus with Threatened Premature Labor

    PubMed Central

    Mottet, Nicolas; Ramanah, Rajeev; Riethmuller, Didier

    2017-01-01

    Fetal primary small bowel volvulus is extremely rare but represents a serious life-threatening condition needing emergency neonatal surgical management to avoid severe digestive consequences. We report a case of primary small bowel volvulus with meconium peritonitis prenatally diagnosed at 27 weeks and 4 days of gestation during threatened premature labor with reduced fetal movements. Ultrasound showed a small bowel mildly dilated with thickened and hyperechogenic intestinal wall, with a typical whirlpool configuration. Normal fetal development allowed continuation of pregnancy with ultrasound follow-up. Induction of labor was decided at 37 weeks and 2 days of gestation because of a significant aggravation of intestinal dilatation appearing more extensive with peritoneal calcifications leading to the suspicion of meconium peritonitis, associated with reduced fetal movements and reduced fetal heart rate variability, for neonatal surgical management with a good outcome. PMID:29230337

  10. Coronary vasodilation by the use of sublingual nitroglycerin using 64-slice dual-source coronary computed tomography angiography.

    PubMed

    Okada, Munemasa; Nakashima, Yoshiteru; Nomura, Takafumi; Miura, Toshiro; Nao, Tomoko; Yoshimura, Masayuki; Sano, Yuichi; Matsunaga, Naofumi

    2015-03-01

    Sublingual nitroglycerin capsules or spray is routinely used to treat anginal attacks and to maximally dilate the epicardial coronary arteries during coronary angiography. These dilated coronary vessels have an advantage, but increased heart rates were disadvantageous for coronary computed tomography angiography (CTA). The influence of applying nitroglycerin was analyzed regarding the coronary diameter, coronary luminal attenuation, evaluable number of coronary segments, heart rate (HR), HR variability, the optimal reconstruction phase, and image scoring of CTA in the same patients using a 64-slice dual-source CT. Fifty-two patients with atypical chest pain underwent coronary CTA before and after the administration of sublingual nitroglycerin without heart rate control. The coronary diameter and luminal attenuation were measured on short-axial images in each coronary segment. The coronary vasodilation ratios (VRs) were calculated from the coronary diameters at the same location before and after the use of nitroglycerin. The local institutional review board approved this study and written informed consent was obtained from all the patients. No significant differences were noted in the HR variability or optimal reconstruction phase, despite an increase in HR after the use of nitroglycerin. Nitroglycerin significantly enlarged the coronary artery diameter, and VRs of each coronary segment ranged from 7.54% to 22.26%. As compared with baseline coronary diameter, VRs of minor segments (16.91%) were significantly larger than those of major segments (11.35%), and the magnitude of VR correlated with the baseline coronary diameter (r=-0.48, p<0.001). Coronary luminal attenuation significantly increased due to additional administration of contrast material after the use of nitroglycerin (p<0.01), but no significant difference was noted in the image quality after the use of nitroglycerin. Sublingual nitroglycerin significantly enlarged the coronary diameters, especially in peripheral small coronary arteries, and increased the evaluable number of coronary segments on coronary CTA. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  11. Gender differences in head-neck segment dynamic stabilization during head acceleration.

    PubMed

    Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph

    2005-02-01

    Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.

  12. Phonological effects in handwriting production: evidence from the implicit priming paradigm.

    PubMed

    Afonso, Olivia; Álvarez, Carlos J

    2011-11-01

    In the present article, we report 3 experiments using the odd-man-out variant of the implicit priming paradigm, aimed at determining the role played by phonological information during the handwriting process. Participants were asked to write a small set of words learned in response to prompts. Within each block, response words could share initial segments (constant homogeneous) or not (heterogeneous). Also, 2 variable homogeneous blocks were created by including a response word that did not share orthographic onset with the other response (odd-man-out). This odd-man-out could be phonologically related to the targets or not. Experiment 1 showed a preparation effect in the constant homogeneous condition, which disappeared (spoil effect) in the variable condition not phonologically related. However, no spoil effect was found when the odd-man-out shared the phonological initial segment with the targets. In Experiment 2, we obtained a spoil effect in the variable phonologically related condition, but it was significantly smaller than in the variable not phonologically related condition. The effects observed in Experiment 2 vanished in Experiment 3 under articulatory suppression, suggesting that they originated at a sublexical level. These findings suggest that phonological sublexical information is used during handwriting and provide evidence that the implicit priming paradigm (and the odd-man-out version of this) is a suitable tool for handwriting production research.

  13. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.

    PubMed

    Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer

    2013-10-01

    The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Consistent interactive segmentation of pulmonary ground glass nodules identified in CT studies

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Fang, Ming; Naidich, David P.; Novak, Carol L.

    2004-05-01

    Ground glass nodules (GGNs) have proved especially problematic in lung cancer diagnosis, as despite frequently being malignant they characteristically have extremely slow rates of growth. This problem is further magnified by the small size of many of these lesions now being routinely detected following the introduction of multislice CT scanners capable of acquiring contiguous high resolution 1 to 1.25 mm sections throughout the thorax in a single breathhold period. Although segmentation of solid nodules can be used clinically to determine volume doubling times quantitatively, reliable methods for segmentation of pure ground glass nodules have yet to be introduced. Our purpose is to evaluate a newly developed computer-based segmentation method for rapid and reproducible measurements of pure ground glass nodules. 23 pure or mixed ground glass nodules were identified in a total of 8 patients by a radiologist and subsequently segmented by our computer-based method using Markov random field and shape analysis. The computer-based segmentation was initialized by a click point. Methodological consistency was assessed using the overlap ratio between 3 segmentations initialized by 3 different click points for each nodule. The 95% confidence interval on the mean of the overlap ratios proved to be [0.984, 0.998]. The computer-based method failed on two nodules that were difficult to segment even manually either due to especially low contrast or markedly irregular margins. While achieving consistent manual segmentation of ground glass nodules has proven problematic most often due to indistinct boundaries and interobserver variability, our proposed method introduces a powerful new tool for obtaining reproducible quantitative measurements of these lesions. It is our intention to further document the value of this approach with a still larger set of ground glass nodules.

  15. Morphological MRI characteristics of recent small subcortical infarcts.

    PubMed

    Gattringer, Thomas; Eppinger, Sebastian; Pinter, Daniela; Pirpamer, Lukas; Berghold, Andrea; Wünsch, Gerit; Ropele, Stefan; Wardlaw, Joanna M; Enzinger, Christian; Fazekas, Franz

    2015-10-01

    New imaging criteria for recent small subcortical infarcts have recently been proposed, replacing the earlier term 'lacunar infarction', but their applicability and impact on lesion selection is yet unknown. To collect information on the morphologic characteristics and variability of recent small subcortical infarcts on magnetic resonance imaging in regard to lesion location and demographic variables. We identified all patients with acute stroke and cerebral magnetic resonance imaging from 2008 to 2013 in our hospital database and selected those with a single recent small subcortical infarct defined by an estimated maximal axial diameter of 20 mm. Recent small subcortical infarcts were segmented on diffusion-weighted imaging and fluid-attenuated inversion recovery sequence to calculate the largest axial and longitudinal diameter and lesion volume. We assessed morphometric differences of recent small subcortical infarcts regarding location and demographic variables and the impact of different recent small subcortical infarct definitions on lesion selection. Three hundred forty-four patients (median age 72; range 25-92 years, 65% male) were selected. Most recent small subcortical infarcts were located in the basal ganglia (n = 111), followed by pons (n = 92), thalamus (n = 77), and centrum semiovale (n = 64). Quantitative measurements confirmed visual assessment of the axial diameter in 95%. All morphometric variables were strongly intercorrelated and comparable on diffusion-weighted imaging and fluid-attenuated inversion recovery sequence. Recent small subcortical infarcts in the basal ganglia were significantly larger both in the axial and longitudinal direction compared with other regions. Dichotomization of recent small subcortical infarcts according to axial (≤ / >15 mm) or longitudinal (≤ / >20 mm) sizes resulted in different regional frequencies and distributions. Age, gender, and time from stroke onset to magnetic resonance imaging did not influence lesion metrics or the distribution of recent small subcortical infarcts. Our study confirms the recent neuroimaging criteria for recent small subcortical infarcts as a practical concept. Definitions of the maximal axial and longitudinal diameter have a significant impact on the frequency and distribution of selected infarcts, which has to be considered for future studies. © 2015 World Stroke Organization.

  16. AgRISTARS: Supporting research. Spring small grains planting date distribution model

    NASA Technical Reports Server (NTRS)

    Hodges, T.; Artley, J. A. (Principal Investigator)

    1981-01-01

    A model was developed using 996 planting dates at 51 LANDSAT segments for spring wheat and spring barley in Minnesota, Montana, North Dakota, and South Dakota in 1979. Daily maximum and minimum temperatures and precipitation were obtained from the cooperative weather stations nearest to each segment. The model uses a growing degree day summation modified for daily temperature range to estimate the beginning of planting and uses a soil surface wetness variable to estimate how a fixed number of planting days are distributed after planting begins. For 1979, the model predicts first, median, and last planting dates with root mean square errors of 7.91, 6.61, and 7.09 days, respectively. The model also provides three or four dates to represent periods of planting activity within the planting season. Although the full model was not tested on an independent data set, it may be suitable in areas other than the U.S. Great Plains where spring small grains are planted as soon as soil and air temperatures become warm enough in the spring for plant growth.

  17. Scan-rescan reproducibility of segmental aortic wall shear stress as assessed by phase-specific segmentation with 4D flow MRI in healthy volunteers.

    PubMed

    van der Palen, Roel L F; Roest, Arno A W; van den Boogaard, Pieter J; de Roos, Albert; Blom, Nico A; Westenberg, Jos J M

    2018-05-26

    The aim was to investigate scan-rescan reproducibility and observer variability of segmental aortic 3D systolic wall shear stress (WSS) by phase-specific segmentation with 4D flow MRI in healthy volunteers. Ten healthy volunteers (age 26.5 ± 2.6 years) underwent aortic 4D flow MRI twice. Maximum 3D systolic WSS (WSSmax) and mean 3D systolic WSS (WSSmean) for five thoracic aortic segments over five systolic cardiac phases by phase-specific segmentations were calculated. Scan-rescan analysis and observer reproducibility analysis were performed. Scan-rescan data showed overall good reproducibility for WSSmean (coefficient of variation, COV 10-15%) with moderate-to-strong intraclass correlation coefficient (ICC 0.63-0.89). The variability in WSSmax was high (COV 16-31%) with moderate-to-good ICC (0.55-0.79) for different aortic segments. Intra- and interobserver reproducibility was good-to-excellent for regional aortic WSSmax (ICC ≥ 0.78; COV ≤ 17%) and strong-to-excellent for WSSmean (ICC ≥ 0.86; COV ≤ 11%). In general, ascending aortic segments showed more WSSmax/WSSmean variability compared to aortic arch or descending aortic segments for scan-rescan, intraobserver and interobserver comparison. Scan-rescan reproducibility was good for WSSmean and moderate for WSSmax for all thoracic aortic segments over multiple systolic phases in healthy volunteers. Intra/interobserver reproducibility for segmental WSS assessment was good-to-excellent. Variability of WSSmax is higher and should be taken into account in case of individual follow-up or in comparative rest-stress studies to avoid misinterpretation.

  18. Interobserver variability in identification of breast tumors in MRI and its implications for prognostic biomarkers and radiogenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Ashirbani, E-mail: as698@duke.edu; Grimm, La

    Purpose: To assess the interobserver variability of readers when outlining breast tumors in MRI, study the reasons behind the variability, and quantify the effect of the variability on algorithmic imaging features extracted from breast MRI. Methods: Four readers annotated breast tumors from the MRI examinations of 50 patients from one institution using a bounding box to indicate a tumor. All of the annotated tumors were biopsy proven cancers. The similarity of bounding boxes was analyzed using Dice coefficients. An automatic tumor segmentation algorithm was used to segment tumors from the readers’ annotations. The segmented tumors were then compared between readersmore » using Dice coefficients as the similarity metric. Cases showing high interobserver variability (average Dice coefficient <0.8) after segmentation were analyzed by a panel of radiologists to identify the reasons causing the low level of agreement. Furthermore, an imaging feature, quantifying tumor and breast tissue enhancement dynamics, was extracted from each segmented tumor for a patient. Pearson’s correlation coefficients were computed between the features for each pair of readers to assess the effect of the annotation on the feature values. Finally, the authors quantified the extent of variation in feature values caused by each of the individual reasons for low agreement. Results: The average agreement between readers in terms of the overlap (Dice coefficient) of the bounding box was 0.60. Automatic segmentation of tumor improved the average Dice coefficient for 92% of the cases to the average value of 0.77. The mean agreement between readers expressed by the correlation coefficient for the imaging feature was 0.96. Conclusions: There is a moderate variability between readers when identifying the rectangular outline of breast tumors on MRI. This variability is alleviated by the automatic segmentation of the tumors. Furthermore, the moderate interobserver variability in terms of the bounding box does not translate into a considerable variability in terms of assessment of enhancement dynamics. The authors propose some additional ways to further reduce the interobserver variability.« less

  19. Computer-aided liver volumetry: performance of a fully-automated, prototype post-processing solution for whole-organ and lobar segmentation based on MDCT imaging.

    PubMed

    Fananapazir, Ghaneh; Bashir, Mustafa R; Marin, Daniele; Boll, Daniel T

    2015-06-01

    To evaluate the performance of a prototype, fully-automated post-processing solution for whole-liver and lobar segmentation based on MDCT datasets. A polymer liver phantom was used to assess accuracy of post-processing applications comparing phantom volumes determined via Archimedes' principle with MDCT segmented datasets. For the IRB-approved, HIPAA-compliant study, 25 patients were enrolled. Volumetry performance compared the manual approach with the automated prototype, assessing intraobserver variability, and interclass correlation for whole-organ and lobar segmentation using ANOVA comparison. Fidelity of segmentation was evaluated qualitatively. Phantom volume was 1581.0 ± 44.7 mL, manually segmented datasets estimated 1628.0 ± 47.8 mL, representing a mean overestimation of 3.0%, automatically segmented datasets estimated 1601.9 ± 0 mL, representing a mean overestimation of 1.3%. Whole-liver and segmental volumetry demonstrated no significant intraobserver variability for neither manual nor automated measurements. For whole-liver volumetry, automated measurement repetitions resulted in identical values; reproducible whole-organ volumetry was also achieved with manual segmentation, p(ANOVA) 0.98. For lobar volumetry, automated segmentation improved reproducibility over manual approach, without significant measurement differences for either methodology, p(ANOVA) 0.95-0.99. Whole-organ and lobar segmentation results from manual and automated segmentation showed no significant differences, p(ANOVA) 0.96-1.00. Assessment of segmentation fidelity found that segments I-IV/VI showed greater segmentation inaccuracies compared to the remaining right hepatic lobe segments. Automated whole-liver segmentation showed non-inferiority of fully-automated whole-liver segmentation compared to manual approaches with improved reproducibility and post-processing duration; automated dual-seed lobar segmentation showed slight tendencies for underestimating the right hepatic lobe volume and greater variability in edge detection for the left hepatic lobe compared to manual segmentation.

  20. U.S. Army Custom Segmentation System

    DTIC Science & Technology

    2007-06-01

    segmentation is individual or intergroup differences in response to marketing - mix variables. Presumptions about segments: •different demands in a...product or service category, •respond differently to changes in the marketing mix Criteria for segments: •The segments must exist in the environment

  1. Statistical optimisation techniques in fatigue signal editing problem

    NASA Astrophysics Data System (ADS)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-01

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  2. Statistical optimisation techniques in fatigue signal editing problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window andmore » fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.« less

  3. A segmentation approach for a delineation of terrestrial ecoregions

    NASA Astrophysics Data System (ADS)

    Nowosad, J.; Stepinski, T.

    2017-12-01

    Terrestrial ecoregions are the result of regionalization of land into homogeneous units of similar ecological and physiographic features. Terrestrial Ecoregions of the World (TEW) is a commonly used global ecoregionalization based on expert knowledge and in situ observations. Ecological Land Units (ELUs) is a global classification of 250 meters-sized cells into 4000 types on the basis of the categorical values of four environmental variables. ELUs are automatically calculated and reproducible but they are not a regionalization which makes them impractical for GIS-based spatial analysis and for comparison with TEW. We have regionalized terrestrial ecosystems on the basis of patterns of the same variables (land cover, soils, landform, and bioclimate) previously used in ELUs. Considering patterns of categorical variables makes segmentation and thus regionalization possible. Original raster datasets of the four variables are first transformed into regular grids of square-sized blocks of their cells called eco-sites. Eco-sites are elementary land units containing local patterns of physiographic characteristics and thus assumed to contain a single ecosystem. Next, eco-sites are locally aggregated using a procedure analogous to image segmentation. The procedure optimizes pattern homogeneity of all four environmental variables within each segment. The result is a regionalization of the landmass into land units characterized by uniform pattern of land cover, soils, landforms, climate, and, by inference, by uniform ecosystem. Because several disjoined segments may have very similar characteristics, we cluster the segments to obtain a smaller set of segment types which we identify with ecoregions. Our approach is automatic, reproducible, updatable, and customizable. It yields the first automatic delineation of ecoregions on the global scale. In the resulting vector database each ecoregion/segment is described by numerous attributes which make it a valuable GIS resource for global ecological and conservation studies.

  4. Multi-atlas segmentation of the cartilage in knee MR images with sequential volume- and bone-mask-based registrations

    NASA Astrophysics Data System (ADS)

    Lee, Han Sang; Kim, Hyeun A.; Kim, Hyeonjin; Hong, Helen; Yoon, Young Cheol; Kim, Junmo

    2016-03-01

    In spite of its clinical importance in diagnosis of osteoarthritis, segmentation of cartilage in knee MRI remains a challenging task due to its shape variability and low contrast with surrounding soft tissues and synovial fluid. In this paper, we propose a multi-atlas segmentation of cartilage in knee MRI with sequential atlas registrations and locallyweighted voting (LWV). First, bone is segmented by sequential volume- and object-based registrations and LWV. Second, to overcome the shape variability of cartilage, cartilage is segmented by bone-mask-based registration and LWV. In experiments, the proposed method improved the bone segmentation by reducing misclassified bone region, and enhanced the cartilage segmentation by preventing cartilage leakage into surrounding similar intensity region, with the help of sequential registrations and LWV.

  5. Assessing Variability in Brain Tumor Segmentation to Improve Volumetric Accuracy and Characterization of Change.

    PubMed

    Rios Piedra, Edgar A; Taira, Ricky K; El-Saden, Suzie; Ellingson, Benjamin M; Bui, Alex A T; Hsu, William

    2016-02-01

    Brain tumor analysis is moving towards volumetric assessment of magnetic resonance imaging (MRI), providing a more precise description of disease progression to better inform clinical decision-making and treatment planning. While a multitude of segmentation approaches exist, inherent variability in the results of these algorithms may incorrectly indicate changes in tumor volume. In this work, we present a systematic approach to characterize variability in tumor boundaries that utilizes equivalence tests as a means to determine whether a tumor volume has significantly changed over time. To demonstrate these concepts, 32 MRI studies from 8 patients were segmented using four different approaches (statistical classifier, region-based, edge-based, knowledge-based) to generate different regions of interest representing tumor extent. We showed that across all studies, the average Dice coefficient for the superset of the different methods was 0.754 (95% confidence interval 0.701-0.808) when compared to a reference standard. We illustrate how variability obtained by different segmentations can be used to identify significant changes in tumor volume between sequential time points. Our study demonstrates that variability is an inherent part of interpreting tumor segmentation results and should be considered as part of the interpretation process.

  6. Implementation and evaluation of a new workflow for registration and segmentation of pulmonary MRI data for regional lung perfusion assessment.

    PubMed

    Böttger, T; Grunewald, K; Schöbinger, M; Fink, C; Risse, F; Kauczor, H U; Meinzer, H P; Wolf, Ivo

    2007-03-07

    Recently it has been shown that regional lung perfusion can be assessed using time-resolved contrast-enhanced magnetic resonance (MR) imaging. Quantification of the perfusion images has been attempted, based on definition of small regions of interest (ROIs). Use of complete lung segmentations instead of ROIs could possibly increase quantification accuracy. Due to the low signal-to-noise ratio, automatic segmentation algorithms cannot be applied. On the other hand, manual segmentation of the lung tissue is very time consuming and can become inaccurate, as the borders of the lung to adjacent tissues are not always clearly visible. We propose a new workflow for semi-automatic segmentation of the lung from additionally acquired morphological HASTE MR images. First the lung is delineated semi-automatically in the HASTE image. Next the HASTE image is automatically registered with the perfusion images. Finally, the transformation resulting from the registration is used to align the lung segmentation from the morphological dataset with the perfusion images. We evaluated rigid, affine and locally elastic transformations, suitable optimizers and different implementations of mutual information (MI) metrics to determine the best possible registration algorithm. We located the shortcomings of the registration procedure and under which conditions automatic registration will succeed or fail. Segmentation results were evaluated using overlap and distance measures. Integration of the new workflow reduces the time needed for post-processing of the data, simplifies the perfusion quantification and reduces interobserver variability in the segmentation process. In addition, the matched morphological data set can be used to identify morphologic changes as the source for the perfusion abnormalities.

  7. Intra- and interoperator variability of lobar pulmonary volumes and emphysema scores in patients with chronic obstructive pulmonary disease and emphysema: comparison of manual and semi-automated segmentation techniques.

    PubMed

    Molinari, Francesco; Pirronti, Tommaso; Sverzellati, Nicola; Diciotti, Stefano; Amato, Michele; Paolantonio, Guglielmo; Gentile, Luigia; Parapatt, George K; D'Argento, Francesco; Kuhnigk, Jan-Martin

    2013-01-01

    We aimed to compare the intra- and interoperator variability of lobar volumetry and emphysema scores obtained by semi-automated and manual segmentation techniques in lung emphysema patients. In two sessions held three months apart, two operators performed lobar volumetry of unenhanced chest computed tomography examinations of 47 consecutive patients with chronic obstructive pulmonary disease and lung emphysema. Both operators used the manual and semi-automated segmentation techniques. The intra- and interoperator variability of the volumes and emphysema scores obtained by semi-automated segmentation was compared with the variability obtained by manual segmentation of the five pulmonary lobes. The intra- and interoperator variability of the lobar volumes decreased when using semi-automated lobe segmentation (coefficients of repeatability for the first operator: right upper lobe, 147 vs. 96.3; right middle lobe, 137.7 vs. 73.4; right lower lobe, 89.2 vs. 42.4; left upper lobe, 262.2 vs. 54.8; and left lower lobe, 260.5 vs. 56.5; coefficients of repeatability for the second operator: right upper lobe, 61.4 vs. 48.1; right middle lobe, 56 vs. 46.4; right lower lobe, 26.9 vs. 16.7; left upper lobe, 61.4 vs. 27; and left lower lobe, 63.6 vs. 27.5; coefficients of reproducibility in the interoperator analysis: right upper lobe, 191.3 vs. 102.9; right middle lobe, 219.8 vs. 126.5; right lower lobe, 122.6 vs. 90.1; left upper lobe, 166.9 vs. 68.7; and left lower lobe, 168.7 vs. 71.6). The coefficients of repeatability and reproducibility of emphysema scores also decreased when using semi-automated segmentation and had ranges that varied depending on the target lobe and selected threshold of emphysema. Semi-automated segmentation reduces the intra- and interoperator variability of lobar volumetry and provides a more objective tool than manual technique for quantifying lung volumes and severity of emphysema.

  8. Clinical Prognosis of Superior Versus Basal Segment Stage I Non-Small Cell Lung Cancer.

    PubMed

    Handa, Yoshinori; Tsutani, Yasuhiro; Tsubokawa, Norifumi; Misumi, Keizo; Hanaki, Hideaki; Miyata, Yoshihiro; Okada, Morihito

    2017-12-01

    Despite its extensive size, variations in the clinicopathologic features of tumors in the lower lobe have been little studied. The present study investigated the prognostic differences in tumors originating from the superior and basal segments of the lower lobe in patients with non-small cell lung cancer. Data of 134 patients who underwent lobectomy or segmentectomy with systematic nodal dissection for clinical stage I, radiologically solid-dominant, non-small cell lung cancer in the superior segment (n = 60) or basal segment (n = 74) between April 2007 and December 2015 were retrospectively reviewed. Factors affecting survival were assessed by the Kaplan-Meier method and Cox regression analyses. Prognosis in the superior segment group was worse than that in the basal segment group (5-year overall survival rates 62.6% versus 89.9%, p = 0.0072; and 5-year recurrence-free survival rates 54.4% versus 75.7%, p = 0.032). In multivariable Cox regression analysis, a superior segment tumor was an independent factor for poor overall survival (hazard ratio 3.33, 95% confidence interval: 1.22 to 13.5, p = 0.010) and recurrence-free survival (hazard ratio 2.90, 95% confidence interval: 1.20 to 7.00, p = 0.008). The superior segment group tended to have more pathologic mediastinal lymph node metastases than the basal segment group (15.0% versus 5.4%, p = 0.080). Tumor location was a prognostic factor for clinical stage I non-small cell lung cancer in the lower lobe. Patients with superior segment tumors had worse prognosis than patients with basal segment tumors, with more metastases in mediastinal lymph nodes. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Unsupervised segmentation of H and E breast images

    NASA Astrophysics Data System (ADS)

    Hope, Tyna A.; Yaffe, Martin J.

    2017-03-01

    Heterogeneity of ductal carcinoma in situ (DCIS) continues to be an important topic. Combining biomarker and hematoxylin and eosin (HE) morphology information may provide more insights than either alone. We are working towards a computer-based identification and description system for DCIS. As part of the system we are developing a region of interest finder for further processing, such as identifying DCIS and other HE based measures. The segmentation algorithm is designed to be tolerant of variability in staining and require no user interaction. To achieve stain variation tolerance we use unsupervised learning and iteratively interrogate the image for information. Using simple rules (e.g., "hematoxylin stains nuclei") and iteratively assessing the resultant objects (small hematoxylin stained objects are lymphocytes), the system builds up a knowledge base so that it is not dependent upon manual annotations. The system starts with image resolution-based assumptions but these are replaced by knowledge gained. The algorithm pipeline is designed to find the simplest items first (segment stains), then interesting subclasses and objects (stroma, lymphocytes), and builds information until it is possible to segment blobs that are normal, DCIS, and the range of benign glands. Once the blobs are found, features can be obtained and DCIS detected. In this work we present the early segmentation results with stains where hematoxylin ranges from blue dominant to red dominant in RGB space.

  10. Perianal Crohn's disease - association with significant inflammatory activity in proximal small bowel segments.

    PubMed

    Xavier, Sofia; Cúrdia Gonçalves, Tiago; Dias de Castro, Francisca; Magalhães, Joana; Rosa, Bruno; Moreira, Maria João; Cotter, José

    2018-04-01

    Perianal Crohn's disease (CD) prevalence varies according to the disease location, being particularly frequent in patients with colonic involvement. We aimed to evaluate small bowel involvement and compare small bowel capsule endoscopy findings and inflammatory activity between patients with and without perianal disease. Retrospective single-center study including 71 patients - all patients with perianal CD (17 patients) who performed a small bowel capsule endoscopy were included, and non-perianal CD patients were randomly selected (54 patients). Clinical and analytical variables at diagnosis were reviewed. Statistical analysis was performed with SPSS v21.0 and a two-tailed p value <.05 was defined as indicating statistical significance. Patients had a median age of 30 ± 16 years with 52.1% females. Perianal disease was present in 23.9%. Patients with perianal disease had significantly more relevant findings (94.1% vs 66.6%, p = .03) and erosions (70.6% vs 42.6%, p = .04), however, no differences were found between the two groups regarding ulcer, villous edema and stenosis detection. Overall, patients with perianal disease had more frequently significant small bowel inflammatory activity, defined as a Lewis Score ≥135 (94.1% vs 64.8%, p = .03), and higher Lewis scores in the first and second tertiles (450 ± 1129 vs 0 ± 169, p = .02 and 675 ± 1941 vs 0 ± 478, p = .04, respectively). No differences were found between the two groups regarding third tertile inflammatory activity assessed with the Lewis Score. Patients with perianal CD have significantly higher inflammatory activity in the small bowel, particularly in proximal small bowel segments, when compared with patients without perianal disease.

  11. Multifractal model of magnetic susceptibility distributions in some igneous rocks

    USGS Publications Warehouse

    Gettings, Mark E.

    2012-01-01

    Measurements of in-situ magnetic susceptibility were compiled from mainly Precambrian crystalline basement rocks beneath the Colorado Plateau and ranges in Arizona, Colorado, and New Mexico. The susceptibility meter used measures about 30 cm3 of rock and measures variations in the modal distribution of magnetic minerals that form a minor component volumetrically in these coarsely crystalline granitic to granodioritic rocks. Recent measurements include 50–150 measurements on each outcrop, and show that the distribution of magnetic susceptibilities is highly variable, multimodal and strongly non-Gaussian. Although the distribution of magnetic susceptibility is well known to be multifractal, the small number of data points at an outcrop precludes calculation of the multifractal spectrum by conventional methods. Instead, a brute force approach was adopted using multiplicative cascade models to fit the outcrop scale variability of magnetic minerals. Model segment proportion and length parameters resulted in 26 676 models to span parameter space. Distributions at each outcrop were normalized to unity magnetic susceptibility and added to compare all data for a rock body accounting for variations in petrology and alteration. Once the best-fitting model was found, the equation relating the segment proportion and length parameters was solved numerically to yield the multifractal spectrum estimate. For the best fits, the relative density (the proportion divided by the segment length) of one segment tends to be dominant and the other two densities are smaller and nearly equal. No other consistent relationships between the best fit parameters were identified. The multifractal spectrum estimates appear to distinguish between metamorphic gneiss sites and sites on plutons, even if the plutons have been metamorphosed. In particular, rocks that have undergone multiple tectonic events tend to have a larger range of scaling exponents.

  12. The Structure of the Plakin Domain of Plectin Reveals an Extended Rod-like Shape*

    PubMed Central

    Carballido, Ana M.

    2016-01-01

    Plakins are large multi-domain proteins that interconnect cytoskeletal structures. Plectin is a prototypical plakin that tethers intermediate filaments to membrane-associated complexes. Most plakins contain a plakin domain formed by up to nine spectrin repeats (SR1–SR9) and an SH3 domain. The plakin domains of plectin and other plakins harbor binding sites for junctional proteins. We have combined x-ray crystallography with small angle x-ray scattering (SAXS) to elucidate the structure of the plakin domain of plectin, extending our previous analysis of the SR1 to SR5 region. Two crystal structures of the SR5-SR6 region allowed us to characterize its uniquely wide inter-repeat conformational variability. We also report the crystal structures of the SR7-SR8 region, refined to 1.8 Å, and the SR7–SR9 at lower resolution. The SR7–SR9 region, which is conserved in all other plakin domains, forms a rigid segment stabilized by uniquely extensive inter-repeat contacts mediated by unusually long helices in SR8 and SR9. Using SAXS we show that in solution the SR3–SR6 and SR7–SR9 regions are rod-like segments and that SR3–SR9 of plectin has an extended shape with a small central kink. Other plakins, such as bullous pemphigoid antigen 1 and microtubule and actin cross-linking factor 1, are likely to have similar extended plakin domains. In contrast, desmoplakin has a two-segment structure with a central flexible hinge. The continuous versus segmented structures of the plakin domains of plectin and desmoplakin give insight into how different plakins might respond to tension and transmit mechanical signals. PMID:27413182

  13. The Use of Attitude Segmentation in Selecting Market Targets and Choosing a New Product Name: Application to an Automated Teller System.

    ERIC Educational Resources Information Center

    Mauldin, Charles R.; And Others

    Ninety-six subjects were randomly chosen from 386 bank customers who responded to a questionnaire using subjective variables to segment or label respondents. A review of subjective segmentation studies revealed that the studies can be divided into three approaches--benefit segmentation, attitude segmentation, and life style segmentation. Choosing…

  14. Comparison and assessment of semi-automatic image segmentation in computed tomography scans for image-guided kidney surgery.

    PubMed

    Glisson, Courtenay L; Altamar, Hernan O; Herrell, S Duke; Clark, Peter; Galloway, Robert L

    2011-11-01

    Image segmentation is integral to implementing intraoperative guidance for kidney tumor resection. Results seen in computed tomography (CT) data are affected by target organ physiology as well as by the segmentation algorithm used. This work studies variables involved in using level set methods found in the Insight Toolkit to segment kidneys from CT scans and applies the results to an image guidance setting. A composite algorithm drawing on the strengths of multiple level set approaches was built using the Insight Toolkit. This algorithm requires image contrast state and seed points to be identified as input, and functions independently thereafter, selecting and altering method and variable choice as needed. Semi-automatic results were compared to expert hand segmentation results directly and by the use of the resultant surfaces for registration of intraoperative data. Direct comparison using the Dice metric showed average agreement of 0.93 between semi-automatic and hand segmentation results. Use of the segmented surfaces in closest point registration of intraoperative laser range scan data yielded average closest point distances of approximately 1 mm. Application of both inverse registration transforms from the previous step to all hand segmented image space points revealed that the distance variability introduced by registering to the semi-automatically segmented surface versus the hand segmented surface was typically less than 3 mm both near the tumor target and at distal points, including subsurface points. Use of the algorithm shortened user interaction time and provided results which were comparable to the gold standard of hand segmentation. Further, the use of the algorithm's resultant surfaces in image registration provided comparable transformations to surfaces produced by hand segmentation. These data support the applicability and utility of such an algorithm as part of an image guidance workflow.

  15. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.

    PubMed

    Shahedi, Maysam; Cool, Derek W; Romagnoli, Cesare; Bauman, Glenn S; Bastian-Jordan, Matthew; Gibson, Eli; Rodrigues, George; Ahmad, Belal; Lock, Michael; Fenster, Aaron; Ward, Aaron D

    2014-11-01

    Three-dimensional (3D) prostate image segmentation is useful for cancer diagnosis and therapy guidance, but can be time-consuming to perform manually and involves varying levels of difficulty and interoperator variability within the prostatic base, midgland (MG), and apex. In this study, the authors measured accuracy and interobserver variability in the segmentation of the prostate on T2-weighted endorectal magnetic resonance (MR) imaging within the whole gland (WG), and separately within the apex, midgland, and base regions. The authors collected MR images from 42 prostate cancer patients. Prostate border delineation was performed manually by one observer on all images and by two other observers on a subset of ten images. The authors used complementary boundary-, region-, and volume-based metrics [mean absolute distance (MAD), Dice similarity coefficient (DSC), recall rate, precision rate, and volume difference (ΔV)] to elucidate the different types of segmentation errors that they observed. Evaluation for expert manual and semiautomatic segmentation approaches was carried out. Compared to manual segmentation, the authors' semiautomatic approach reduces the necessary user interaction by only requiring an indication of the anteroposterior orientation of the prostate and the selection of prostate center points on the apex, base, and midgland slices. Based on these inputs, the algorithm identifies candidate prostate boundary points using learned boundary appearance characteristics and performs regularization based on learned prostate shape information. The semiautomated algorithm required an average of 30 s of user interaction time (measured for nine operators) for each 3D prostate segmentation. The authors compared the segmentations from this method to manual segmentations in a single-operator (mean whole gland MAD = 2.0 mm, DSC = 82%, recall = 77%, precision = 88%, and ΔV = - 4.6 cm(3)) and multioperator study (mean whole gland MAD = 2.2 mm, DSC = 77%, recall = 72%, precision = 86%, and ΔV = - 4.0 cm(3)). These results compared favorably with observed differences between manual segmentations and a simultaneous truth and performance level estimation reference for this data set (whole gland differences as high as MAD = 3.1 mm, DSC = 78%, recall = 66%, precision = 77%, and ΔV = 15.5 cm(3)). The authors found that overall, midgland segmentation was more accurate and repeatable than the segmentation of the apex and base, with the base posing the greatest challenge. The main conclusions of this study were that (1) the semiautomated approach reduced interobserver segmentation variability; (2) the segmentation accuracy of the semiautomated approach, as well as the accuracies of recently published methods from other groups, were within the range of observed expert variability in manual prostate segmentation; and (3) further efforts in the development of computer-assisted segmentation would be most productive if focused on improvement of segmentation accuracy and reduction of variability within the prostatic apex and base.

  16. The ASAC Flight Segment and Network Cost Models

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce J.; Lee, David A.; Retina, Nusrat; Wingrove, Earl R., III; Malone, Brett; Hall, Stephen G.; Houser, Scott A.

    1997-01-01

    To assist NASA in identifying research art, with the greatest potential for improving the air transportation system, two models were developed as part of its Aviation System Analysis Capability (ASAC). The ASAC Flight Segment Cost Model (FSCM) is used to predict aircraft trajectories, resource consumption, and variable operating costs for one or more flight segments. The Network Cost Model can either summarize the costs for a network of flight segments processed by the FSCM or can be used to independently estimate the variable operating costs of flying a fleet of equipment given the number of departures and average flight stage lengths.

  17. CHARACTERIZATION OF CoRoT TARGET FIELDS WITH BERLIN EXOPLANET SEARCH TELESCOPE. II. IDENTIFICATION OF PERIODIC VARIABLE STARS IN THE LRc2 FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabath, P.; Fruth, T.; Rauer, H.

    2009-04-15

    We report on photometric observations of the CoRoT LRc2 field with the new robotic Berlin Exoplanet Search Telescope II (BEST II). The telescope system was installed and commissioned at the Observatorio Cerro Armazones, Chile, in 2007. BEST II is a small aperture telescope with a wide field of view dedicated to the characterization of the stellar variability primarily in CoRoT target fields with high stellar densities. The CoRoT stellar field LRc2 was observed with BEST II up to 20 nights in 2007 July and August. From the acquired data containing about 100,000 stars, 426 new periodic variable stars were identifiedmore » and 90% of them are located within the CoRoT exoplanetary CCD segments and may be of further interest for CoRoT additional science programs.« less

  18. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.

    PubMed

    Karimi, Davood; Samei, Golnoosh; Kesch, Claudia; Nir, Guy; Salcudean, Septimiu E

    2018-05-15

    Most of the existing convolutional neural network (CNN)-based medical image segmentation methods are based on methods that have originally been developed for segmentation of natural images. Therefore, they largely ignore the differences between the two domains, such as the smaller degree of variability in the shape and appearance of the target volume and the smaller amounts of training data in medical applications. We propose a CNN-based method for prostate segmentation in MRI that employs statistical shape models to address these issues. Our CNN predicts the location of the prostate center and the parameters of the shape model, which determine the position of prostate surface keypoints. To train such a large model for segmentation of 3D images using small data (1) we adopt a stage-wise training strategy by first training the network to predict the prostate center and subsequently adding modules for predicting the parameters of the shape model and prostate rotation, (2) we propose a data augmentation method whereby the training images and their prostate surface keypoints are deformed according to the displacements computed based on the shape model, and (3) we employ various regularization techniques. Our proposed method achieves a Dice score of 0.88, which is obtained by using both elastic-net and spectral dropout for regularization. Compared with a standard CNN-based method, our method shows significantly better segmentation performance on the prostate base and apex. Our experiments also show that data augmentation using the shape model significantly improves the segmentation results. Prior knowledge about the shape of the target organ can improve the performance of CNN-based segmentation methods, especially where image features are not sufficient for a precise segmentation. Statistical shape models can also be employed to synthesize additional training data that can ease the training of large CNNs.

  19. Interleaved 3D-CNNs for joint segmentation of small-volume structures in head and neck CT images.

    PubMed

    Ren, Xuhua; Xiang, Lei; Nie, Dong; Shao, Yeqin; Zhang, Huan; Shen, Dinggang; Wang, Qian

    2018-05-01

    Accurate 3D image segmentation is a crucial step in radiation therapy planning of head and neck tumors. These segmentation results are currently obtained by manual outlining of tissues, which is a tedious and time-consuming procedure. Automatic segmentation provides an alternative solution, which, however, is often difficult for small tissues (i.e., chiasm and optic nerves in head and neck CT images) because of their small volumes and highly diverse appearance/shape information. In this work, we propose to interleave multiple 3D Convolutional Neural Networks (3D-CNNs) to attain automatic segmentation of small tissues in head and neck CT images. A 3D-CNN was designed to segment each structure of interest. To make full use of the image appearance information, multiscale patches are extracted to describe the center voxel under consideration and then input to the CNN architecture. Next, as neighboring tissues are often highly related in the physiological and anatomical perspectives, we interleave the CNNs designated for the individual tissues. In this way, the tentative segmentation result of a specific tissue can contribute to refine the segmentations of other neighboring tissues. Finally, as more CNNs are interleaved and cascaded, a complex network of CNNs can be derived, such that all tissues can be jointly segmented and iteratively refined. Our method was validated on a set of 48 CT images, obtained from the Medical Image Computing and Computer Assisted Intervention (MICCAI) Challenge 2015. The Dice coefficient (DC) and the 95% Hausdorff Distance (95HD) are computed to measure the accuracy of the segmentation results. The proposed method achieves higher segmentation accuracy (with the average DC: 0.58 ± 0.17 for optic chiasm, and 0.71 ± 0.08 for optic nerve; 95HD: 2.81 ± 1.56 mm for optic chiasm, and 2.23 ± 0.90 mm for optic nerve) than the MICCAI challenge winner (with the average DC: 0.38 for optic chiasm, and 0.68 for optic nerve; 95HD: 3.48 for optic chiasm, and 2.48 for optic nerve). An accurate and automatic segmentation method has been proposed for small tissues in head and neck CT images, which is important for the planning of radiotherapy. © 2018 American Association of Physicists in Medicine.

  20. Automated Bone Segmentation and Surface Evaluation of a Small Animal Model of Post-Traumatic Osteoarthritis.

    PubMed

    Ramme, Austin J; Voss, Kevin; Lesporis, Jurinus; Lendhey, Matin S; Coughlin, Thomas R; Strauss, Eric J; Kennedy, Oran D

    2017-05-01

    MicroCT imaging allows for noninvasive microstructural evaluation of mineralized bone tissue, and is essential in studies of small animal models of bone and joint diseases. Automatic segmentation and evaluation of articular surfaces is challenging. Here, we present a novel method to create knee joint surface models, for the evaluation of PTOA-related joint changes in the rat using an atlas-based diffeomorphic registration to automatically isolate bone from surrounding tissues. As validation, two independent raters manually segment datasets and the resulting segmentations were compared to our novel automatic segmentation process. Data were evaluated using label map volumes, overlap metrics, Euclidean distance mapping, and a time trial. Intraclass correlation coefficients were calculated to compare methods, and were greater than 0.90. Total overlap, union overlap, and mean overlap were calculated to compare the automatic and manual methods and ranged from 0.85 to 0.99. A Euclidean distance comparison was also performed and showed no measurable difference between manual and automatic segmentations. Furthermore, our new method was 18 times faster than manual segmentation. Overall, this study describes a reliable, accurate, and automatic segmentation method for mineralized knee structures from microCT images, and will allow for efficient assessment of bony changes in small animal models of PTOA.

  1. Market Segmentation from a Behavioral Perspective

    ERIC Educational Resources Information Center

    Wells, Victoria K.; Chang, Shing Wan; Oliveira-Castro, Jorge; Pallister, John

    2010-01-01

    A segmentation approach is presented using both traditional demographic segmentation bases (age, social class/occupation, and working status) and a segmentation by benefits sought. The benefits sought in this case are utilitarian and informational reinforcement, variables developed from the Behavioral Perspective Model (BPM). Using data from 1,847…

  2. Distribution of immunoglobulin G antibody secretory cells in small intestine of Bactrian camels (Camelus bactrianus).

    PubMed

    Zhang, Wang-Dong; Wang, Wen-Hui; Jia, Shuai

    2015-08-25

    To explore the morphological evidence of immunoglobulin G (IgG) participating in intestinal mucosal immunity, 8 healthy adult Bactrian camels used. First, IgG was successfully isolated from their serum and rabbit antibody against Bactrian camels IgG was prepared. The IgG antibody secretory cells (ASCs) in small intestine were particularly observed through immumohistochemical staining, then after were analyzed by statistical methods. The results showed that the IgG ASCs were scattered in the lamina propria (LP) and some of them aggregated around of the intestinal glands. The IgG ASCs density was the highest from middle segment of duodenum to middle segment of jejunum, and then in ended segment of jejunum and initial segment of ileum, the lowest was in initial segment of duodenum, in middle and ended segment of ileum. It was demonstrated that the IgG ASCs mainly scattered in the effector sites of the mucosal immunity, though the density of IgG ASCs was different in different segment of small intestine. Moreover, this scatted distribution characteristic would provide a morphology basis for research whether IgG form a full-protection and immune surveillance in mucosal immunity homeostasis of integral intestine.

  3. Testing the shorter and variable recurrence interval hypothesis along the Cholame segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Williams, A.; Arrowsmith, R.; Rockwell, T. K.; Akciz, S. O.; Grant Ludwig, L.

    2016-12-01

    The Cholame segment of the San Andreas Fault interacts with the Parkfield segment to the northwest with its creep and M6 earthquakes and the locked Carrizo segment to the southeast. Although offset reconstructions exist for this 75 km reach, rupture behavior is poorly characterized, limiting seismic hazard evaluation. Here we present new paleoseismic results from 2 fault perpendicular 26 m long trenches connected by a 15 m long fault parallel trench. The site is located south of the Parkfield segment 20 km southeast of Highway 46. Site geomorphology is characterized by several 50 m offset drainages northwest of the trenches, small shutter ridges and sag ponds, and alluvial fans crossing the fault. Fault zone stratigraphy consists of alternating finely bedded sands, silts, and gravels, and bioturbated soil horizons. The strata record 3-4 earthquakes and possible deformation post-1857, similar to the LY4 site 38 km southeast. E4, E3 and the most recent earthquake (MRE) are well supported by evidence of decreasing vertical offset up-sequence, capped fissure fill and colluvial wedges, which create small horst and graben structures. Units display vertical offsets ranging from 60 cm at the base to 12 cm near the MRE horizon, small colluvial wedges, and sag deposits within the 4 m wide fault zone. E2—the penultimate-is less certain, supported only by the decreasing offset in the stratigraphic sequence. The E4 event horizon is a gradational clayey silt sag deposit capped by discontinuous gravel, 18 cm at its thickest point and extending 4.8 m across the fault zone. The E3 and E2 event horizons are capped by thin bedded silty clay, and bounded by discontinuous burn horizons. The MRE horizon extends 6 m across the main fault zone, and consists of a silty clay sag deposit capped by very fine, bedded sand and coarse gravel, 22 cm at its thickest point and overlying a burn horizon. If the MRE is indeed the 1857 event, it has significant potential in correlation with the high quality rupture records at Bidart (70 km southeast), and Frazier Mountain (180 km southeast). This site contains abundant detrital charcoal in many of the units and burn horizons at or near event horizons providing great potential for bracketing the age of these paleoearthquakes.

  4. A Comparison of Vertical Stiffness Values Calculated from Different Measures of Center of Mass Displacement in Single-Leg Hopping.

    PubMed

    Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Hobara, Hiroaki; Clothier, Peter J

    2017-02-01

    This study assessed the agreement between K vert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that K vert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m -1 ) and 95% limits of agreement (-1.89 to 3.75 kN⋅m -1 ). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m -1 ), sacral marker cluster and double integration (-3.25 kN⋅m -1 ), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m -1 ). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of K vert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of K vert during single-leg, on-the-spot hopping.

  5. Composition and assembly of a spectral and agronomic data base for 1980 spring small grain segments

    NASA Technical Reports Server (NTRS)

    Helmer, D.; Krantz, J.; Kinsler, M.; Tomkins, M.

    1983-01-01

    A data set was assembled which consolidates the LANDSAT spectral data, ground truth observation data, and analyst cloud screening data for 28 spring small grain segments collected during the 1980 crop year.

  6. A shape-based segmentation method for mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen

    2013-07-01

    Segmentation of mobile laser point clouds of urban scenes into objects is an important step for post-processing (e.g., interpretation) of point clouds. Point clouds of urban scenes contain numerous objects with significant size variability, complex and incomplete structures, and holes or variable point densities, raising great challenges for the segmentation of mobile laser point clouds. This paper addresses these challenges by proposing a shape-based segmentation method. The proposed method first calculates the optimal neighborhood size of each point to derive the geometric features associated with it, and then classifies the point clouds according to geometric features using support vector machines (SVMs). Second, a set of rules are defined to segment the classified point clouds, and a similarity criterion for segments is proposed to overcome over-segmentation. Finally, the segmentation output is merged based on topological connectivity into a meaningful geometrical abstraction. The proposed method has been tested on point clouds of two urban scenes obtained by different mobile laser scanners. The results show that the proposed method segments large-scale mobile laser point clouds with good accuracy and computationally effective time cost, and that it segments pole-like objects particularly well.

  7. Segmented Polynomial Models in Quasi-Experimental Research.

    ERIC Educational Resources Information Center

    Wasik, John L.

    1981-01-01

    The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research designs. Linear combinations of dummy variable vectors appear to provide tests of effects in the two quasi-experimental designs. (Author/BW)

  8. Automatic extraction of planetary image features

    NASA Technical Reports Server (NTRS)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  9. Breaking It Down: Knowledge Transfer in a Multimedia Learning Environment

    ERIC Educational Resources Information Center

    Mariano, Gina

    2014-01-01

    The purpose of this study was to determine the effects of segmentation on immediate and delayed recall and transfer in a multimedia learning environment. The independent variables of segmentation and non-segmentation, as well as immediate and delayed transfer assessments, were manipulated to assess the effects of segmentation on the participant's…

  10. Pancreas and cyst segmentation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  11. Stylus/tablet user input device for MRI heart wall segmentation: efficiency and ease of use.

    PubMed

    Taslakian, Bedros; Pires, Antonio; Halpern, Dan; Babb, James S; Axel, Leon

    2018-05-02

    To determine whether use of a stylus user input device (UID) would be superior to a mouse for CMR segmentation. Twenty-five consecutive clinical cardiac magnetic resonance (CMR) examinations were selected. Image analysis was independently performed by four observers. Manual tracing of left (LV) and right (RV) ventricular endocardial contours was performed twice in 10 randomly assigned sessions, each session using only one UID. Segmentation time and the ventricular function variables were recorded. The mean segmentation time and time reduction were calculated for each method. Intraclass correlation coefficients (ICC) and Bland-Altman plots of function variables were used to assess intra- and interobserver variability and agreement between methods. Observers completed a Likert-type questionnaire. The mean segmentation time (in seconds) was significantly less with the stylus compared to the mouse, averaging 206±108 versus 308±125 (p<0.001) and 225±140 versus 353±162 (p<0.001) for LV and RV segmentation, respectively. The intra- and interobserver agreement rates were excellent (ICC≥0.75) regardless of the UID. There was an excellent agreement between measurements derived from manual segmentation using different UIDs (ICC≥0.75), with few exceptions. Observers preferred the stylus. The study shows a significant reduction in segmentation time using the stylus, a subjective preference, and excellent agreement between the methods. • Using a stylus for MRI ventricular segmentation is faster compared to mouse • A stylus is easier to use and results in less fatigue • There is excellent agreement between stylus and mouse UIDs.

  12. Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth.

    PubMed

    Odland, Audun; Server, Andres; Saxhaug, Cathrine; Breivik, Birger; Groote, Rasmus; Vardal, Jonas; Larsson, Christopher; Bjørnerud, Atle

    2015-11-01

    Volumetric magnetic resonance imaging (MRI) is now widely available and routinely used in the evaluation of high-grade gliomas (HGGs). Ideally, volumetric measurements should be included in this evaluation. However, manual tumor segmentation is time-consuming and suffers from inter-observer variability. Thus, tools for semi-automatic tumor segmentation are needed. To present a semi-automatic method (SAM) for segmentation of HGGs and to compare this method with manual segmentation performed by experts. The inter-observer variability among experts manually segmenting HGGs using volumetric MRIs was also examined. Twenty patients with HGGs were included. All patients underwent surgical resection prior to inclusion. Each patient underwent several MRI examinations during and after adjuvant chemoradiation therapy. Three experts performed manual segmentation. The results of tumor segmentation by the experts and by the SAM were compared using Dice coefficients and kappa statistics. A relatively close agreement was seen among two of the experts and the SAM, while the third expert disagreed considerably with the other experts and the SAM. An important reason for this disagreement was a different interpretation of contrast enhancement as either surgically-induced or glioma-induced. The time required for manual tumor segmentation was an average of 16 min per scan. Editing of the tumor masks produced by the SAM required an average of less than 2 min per sample. Manual segmentation of HGG is very time-consuming and using the SAM could increase the efficiency of this process. However, the accuracy of the SAM ultimately depends on the expert doing the editing. Our study confirmed a considerable inter-observer variability among experts defining tumor volume from volumetric MRIs. © The Foundation Acta Radiologica 2014.

  13. Analytical Modeling of Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    A unique foam/Multilayer Insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). The MLI was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or heat leak is reduced by about half in comparison with standard MLI. The focus of this paper is on analytical modeling of the Variable Density MLI (VD-MLI) on-orbit performance (i.e. vacuum/low pressure environment). The foam/VD-MLI combination model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three MLI segments with different layer densities. The last segment is considered to be a shroud that surrounds the last MLI layer. Two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the layer separator materials.

  14. Pneumothorax detection in chest radiographs using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Blumenfeld, Aviel; Konen, Eli; Greenspan, Hayit

    2018-02-01

    This study presents a computer assisted diagnosis system for the detection of pneumothorax (PTX) in chest radiographs based on a convolutional neural network (CNN) for pixel classification. Using a pixel classification approach allows utilization of the texture information in the local environment of each pixel while training a CNN model on millions of training patches extracted from a relatively small dataset. The proposed system uses a pre-processing step of lung field segmentation to overcome the large variability in the input images coming from a variety of imaging sources and protocols. Using a CNN classification, suspected pixel candidates are extracted within each lung segment. A postprocessing step follows to remove non-physiological suspected regions and noisy connected components. The overall percentage of suspected PTX area was used as a robust global decision for the presence of PTX in each lung. The system was trained on a set of 117 chest x-ray images with ground truth segmentations of the PTX regions. The system was tested on a set of 86 images and reached diagnosis accuracy of AUC=0.95. Overall preliminary results are promising and indicate the growing ability of CAD based systems to detect findings in medical imaging on a clinical level accuracy.

  15. Using data mining to segment healthcare markets from patients' preference perspectives.

    PubMed

    Liu, Sandra S; Chen, Jie

    2009-01-01

    This paper aims to provide an example of how to use data mining techniques to identify patient segments regarding preferences for healthcare attributes and their demographic characteristics. Data were derived from a number of individuals who received in-patient care at a health network in 2006. Data mining and conventional hierarchical clustering with average linkage and Pearson correlation procedures are employed and compared to show how each procedure best determines segmentation variables. Data mining tools identified three differentiable segments by means of cluster analysis. These three clusters have significantly different demographic profiles. The study reveals, when compared with traditional statistical methods, that data mining provides an efficient and effective tool for market segmentation. When there are numerous cluster variables involved, researchers and practitioners need to incorporate factor analysis for reducing variables to clearly and meaningfully understand clusters. Interests and applications in data mining are increasing in many businesses. However, this technology is seldom applied to healthcare customer experience management. The paper shows that efficient and effective application of data mining methods can aid the understanding of patient healthcare preferences.

  16. Segmented Poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy.

    PubMed

    Voss, A; Fischer, C; Schroeder, R; Figulla, H R; Goernig, M

    2010-01-01

    The prognostic value of heart rate variability in patients with dilated cardiomyopathy (DCM) is limited and does not contribute to risk stratification although the dynamics of ventricular repolarization differs considerably between DCM patients and healthy subjects. Neither linear nor nonlinear methods of heart rate variability analysis could discriminate between patients at high and low risk for sudden cardiac death. The aim of this study was to analyze the suitability of the new developed segmented Poincaré plot analysis (SPPA) to enhance risk stratification in DCM. In contrast to the usual applied Poincaré plot analysis the SPPA retains nonlinear features from investigated beat-to-beat interval time series. Main features of SPPA are the rotation of cloud of points and their succeeded variability depended segmentation. Significant row and column probabilities were calculated from the segments and led to discrimination (up to p<0.005) between low and high risk in DCM patients. For the first time an index from Poincaré plot analysis of heart rate variability was able to contribute to risk stratification in patients suffering from DCM.

  17. Kinematic control of walking.

    PubMed

    Lacquaniti, F; Ivanenko, Y P; Zago, M

    2002-10-01

    The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power output over a gait cycle (3, 4), phase control could be used for limiting the overall energy expenditure with increasing speed (22). Adaptation to different walking conditions, such as changes in body posture, body weight unloading and backward walk, also involves inter-segmental phase tuning, as does the maturation of limb kinematics in toddlers.

  18. Segment-Wise Genome-Wide Association Analysis Identifies a Candidate Region Associated with Schizophrenia in Three Independent Samples

    PubMed Central

    Rietschel, Marcella; Mattheisen, Manuel; Breuer, René; Schulze, Thomas G.; Nöthen, Markus M.; Levinson, Douglas; Shi, Jianxin; Gejman, Pablo V.; Cichon, Sven; Ophoff, Roel A.

    2012-01-01

    Recent studies suggest that variation in complex disorders (e.g., schizophrenia) is explained by a large number of genetic variants with small effect size (Odds Ratio∼1.05–1.1). The statistical power to detect these genetic variants in Genome Wide Association (GWA) studies with large numbers of cases and controls (∼15,000) is still low. As it will be difficult to further increase sample size, we decided to explore an alternative method for analyzing GWA data in a study of schizophrenia, dramatically reducing the number of statistical tests. The underlying hypothesis was that at least some of the genetic variants related to a common outcome are collocated in segments of chromosomes at a wider scale than single genes. Our approach was therefore to study the association between relatively large segments of DNA and disease status. An association test was performed for each SNP and the number of nominally significant tests in a segment was counted. We then performed a permutation-based binomial test to determine whether this region contained significantly more nominally significant SNPs than expected under the null hypothesis of no association, taking linkage into account. Genome Wide Association data of three independent schizophrenia case/control cohorts with European ancestry (Dutch, German, and US) using segments of DNA with variable length (2 to 32 Mbp) was analyzed. Using this approach we identified a region at chromosome 5q23.3-q31.3 (128–160 Mbp) that was significantly enriched with nominally associated SNPs in three independent case-control samples. We conclude that considering relatively wide segments of chromosomes may reveal reliable relationships between the genome and schizophrenia, suggesting novel methodological possibilities as well as raising theoretical questions. PMID:22723893

  19. Presence of broadly reactive and group-specific neutralizing epitopes on newly described isolates of Crimean-Congo hemorrhagic fever virus.

    PubMed

    Ahmed, Asim A; McFalls, Jeanne M; Hoffmann, Christian; Filone, Claire Marie; Stewart, Shaun M; Paragas, Jason; Khodjaev, Shabot; Shermukhamedova, Dilbar; Schmaljohn, Connie S; Doms, Robert W; Bertolotti-Ciarlet, Andrea

    2005-12-01

    Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the genus Nairovirus of the family Bunyaviridae, causes severe disease in humans with high rates of mortality. The virus has a tripartite genome composed of a small (S), a medium (M) and a large (L) RNA segment; the M segment encodes the two viral glycoproteins, G(N) and G(C). Whilst relatively few full-length M segment sequences are available, it is apparent that both G(N) and G(C) may exhibit significant sequence diversity. It is unknown whether considerable antigenic differences exist between divergent CCHFV strains, or whether there are conserved neutralizing epitopes. The M segments derived from viral isolates of a human case of CCHF in South Africa (SPU 41/84), an infected tick (Hyalomma marginatum) in South Africa (SPU 128/81), a human case in Congo (UG 3010), an infected individual in Uzbekistan (U2-2-002) and an infected tick (Hyalomma asiaticum) in China (Hy13) were sequenced fully, and the glycoproteins were expressed. These novel sequences showed high variability in the N-terminal region of G(N) and more modest differences in the remainder of G(N) and in G(C). Phylogenetic analyses placed these newly identified strains in three of the four previously described M segment groups. Studies with a panel of mAbs specific to G(N) and G(C) indicated that there were significant antigenic differences between the M segment groups, although several neutralizing epitopes in both G(N) and G(C) were conserved among all strains examined. Thus, the genetic diversity exhibited by CCHFV strains results in significant antigenic differences that will need to be taken into consideration for vaccine development.

  20. Small should be the New Big: High-resolution Models with Small Segments have Big Advantages when Modeling Eutrophication in the Great Lakes

    EPA Science Inventory

    Historical mathematical models, especially Great Lakes eutrophication models, traditionally used course segmentation schemes and relatively simple hydrodynamics to represent system behavior. Although many modelers have claimed success using such models, these representations can ...

  1. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment

    USDA-ARS?s Scientific Manuscript database

    UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in 3 equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats, n=8/age using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin...

  2. Weather analysis and interpretation procedures developed for the US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H. (Principal Investigator)

    1980-01-01

    Procedures and techniques for providing analyses of meteorological conditions at segments during the growing season were developed for the U.S./Canada Wheat and Barley Exploratory Experiment. The main product and analysis tool is the segment-level climagraph which depicts temporally meteorological variables for the current year compared with climatological normals. The variable values for the segment are estimates derived through objective analysis of values obtained at first-order station in the region. The procedures and products documented represent a baseline for future Foreign Commodity Production Forecasting experiments.

  3. Effect of dietary fat on the distribution of mucosal mass and cell proliferation along the small intestine.

    PubMed Central

    Jenkins, A P; Thompson, R P

    1992-01-01

    This study investigated how substitution of long chain triglycerides for glucose in a mixed diet affects the overall small intestinal mucosal mass and the distribution of mucosal mass and cell proliferation along the small intestine. Four groups of eight female Wistar rats (180-200 g) were isocalorically fed mixed diets containing the essential fatty acid rich oil Efamol substituted for glucose at concentrations of 1.2%, 10%, 25%, and 50% total calories for 20 to 23 days. The small intestine was divided into three equal length segments and whole gut weights, mucosal weights, protein and DNA determined. Cell proliferation was estimated from the two hour accumulation of vincristine arrested metaphases in microdissected crypts at points 0%, 17%, 33%, 50%, 66%, and 100% small intestinal length. There were no differences between groups in parameters of overall small intestinal or distal segment mucosal mass. With increasing levels of fat, however, there was a significant trend for the mucosal mass of the proximal segment to fall and that of the middle segment to rise. The pattern of two hour metaphase accumulation reflected these changes. These regional changes in mucosal mass and cell proliferation may reflect differences in the sites of absorption of fat and glucose. PMID:1541418

  4. Effect of dietary fat on the distribution of mucosal mass and cell proliferation along the small intestine.

    PubMed

    Jenkins, A P; Thompson, R P

    1992-02-01

    This study investigated how substitution of long chain triglycerides for glucose in a mixed diet affects the overall small intestinal mucosal mass and the distribution of mucosal mass and cell proliferation along the small intestine. Four groups of eight female Wistar rats (180-200 g) were isocalorically fed mixed diets containing the essential fatty acid rich oil Efamol substituted for glucose at concentrations of 1.2%, 10%, 25%, and 50% total calories for 20 to 23 days. The small intestine was divided into three equal length segments and whole gut weights, mucosal weights, protein and DNA determined. Cell proliferation was estimated from the two hour accumulation of vincristine arrested metaphases in microdissected crypts at points 0%, 17%, 33%, 50%, 66%, and 100% small intestinal length. There were no differences between groups in parameters of overall small intestinal or distal segment mucosal mass. With increasing levels of fat, however, there was a significant trend for the mucosal mass of the proximal segment to fall and that of the middle segment to rise. The pattern of two hour metaphase accumulation reflected these changes. These regional changes in mucosal mass and cell proliferation may reflect differences in the sites of absorption of fat and glucose.

  5. Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline

    PubMed Central

    Wang, Jiahui; Vachet, Clement; Rumple, Ashley; Gouttard, Sylvain; Ouziel, Clémentine; Perrot, Emilie; Du, Guangwei; Huang, Xuemei; Gerig, Guido; Styner, Martin

    2014-01-01

    Automated segmenting and labeling of individual brain anatomical regions, in MRI are challenging, due to the issue of individual structural variability. Although atlas-based segmentation has shown its potential for both tissue and structure segmentation, due to the inherent natural variability as well as disease-related changes in MR appearance, a single atlas image is often inappropriate to represent the full population of datasets processed in a given neuroimaging study. As an alternative for the case of single atlas segmentation, the use of multiple atlases alongside label fusion techniques has been introduced using a set of individual “atlases” that encompasses the expected variability in the studied population. In our study, we proposed a multi-atlas segmentation scheme with a novel graph-based atlas selection technique. We first paired and co-registered all atlases and the subject MR scans. A directed graph with edge weights based on intensity and shape similarity between all MR scans is then computed. The set of neighboring templates is selected via clustering of the graph. Finally, weighted majority voting is employed to create the final segmentation over the selected atlases. This multi-atlas segmentation scheme is used to extend a single-atlas-based segmentation toolkit entitled AutoSeg, which is an open-source, extensible C++ based software pipeline employing BatchMake for its pipeline scripting, developed at the Neuro Image Research and Analysis Laboratories of the University of North Carolina at Chapel Hill. AutoSeg performs N4 intensity inhomogeneity correction, rigid registration to a common template space, automated brain tissue classification based skull-stripping, and the multi-atlas segmentation. The multi-atlas-based AutoSeg has been evaluated on subcortical structure segmentation with a testing dataset of 20 adult brain MRI scans and 15 atlas MRI scans. The AutoSeg achieved mean Dice coefficients of 81.73% for the subcortical structures. PMID:24567717

  6. Learning-Based Object Identification and Segmentation Using Dual-Energy CT Images for Security.

    PubMed

    Martin, Limor; Tuysuzoglu, Ahmet; Karl, W Clem; Ishwar, Prakash

    2015-11-01

    In recent years, baggage screening at airports has included the use of dual-energy X-ray computed tomography (DECT), an advanced technology for nondestructive evaluation. The main challenge remains to reliably find and identify threat objects in the bag from DECT data. This task is particularly hard due to the wide variety of objects, the high clutter, and the presence of metal, which causes streaks and shading in the scanner images. Image noise and artifacts are generally much more severe than in medical CT and can lead to splitting of objects and inaccurate object labeling. The conventional approach performs object segmentation and material identification in two decoupled processes. Dual-energy information is typically not used for the segmentation, and object localization is not explicitly used to stabilize the material parameter estimates. We propose a novel learning-based framework for joint segmentation and identification of objects directly from volumetric DECT images, which is robust to streaks, noise and variability due to clutter. We focus on segmenting and identifying a small set of objects of interest with characteristics that are learned from training images, and consider everything else as background. We include data weighting to mitigate metal artifacts and incorporate an object boundary field to reduce object splitting. The overall formulation is posed as a multilabel discrete optimization problem and solved using an efficient graph-cut algorithm. We test the method on real data and show its potential for producing accurate labels of the objects of interest without splits in the presence of metal and clutter.

  7. Prognostic value of myocardial perfusion SPECT versus exercise electrocardiography in patients with ST-segment depression on resting electrocardiography.

    PubMed

    De Lorenzo, Andrea; Hachamovitch, Rory; Kang, Xingping; Gransar, Heidi; Sciammarella, Maria G; Hayes, Sean W; Friedman, John D; Cohen, Ishac; Germano, Guido; Berman, Daniel S

    2005-01-01

    The value of exercise-induced ST-segment depression for the prognostic evaluation of patients with 1 mm of ST depression or greater on the resting electrocardiogram is controversial. Patients who underwent exercise myocardial perfusion single photon emission computed tomography (MPS) and had resting ST depression of 1 mm or greater with a nondiagnostic exercise electrocardiographic response (n = 1122) were followed up for 3.4 +/- 2.3 years. Those with paced rhythm, pre-excitation, left bundle branch block, or myocardial revascularization within the first 60 days after MPS were excluded. Additional exercise-induced ST-segment depression was considered significant if > or = 2 mm MPS was scored semiquantitatively by use of a 20-segment model of the left ventricle; the percentage of myocardium involved with stress defects (% myo) was derived by normalizing to the maximal possible score of 80. Hard events were defined as nonfatal myocardial infarction or cardiac death. A Cox analysis was used to determine independent predictors of hard events among clinical, exercise, and nuclear variables. Hard event rates increased as a function of % myo for either patients with exercise-induced ST depression (1.4%/y for normal MPS vs 4.1%/y for % myo >10%, P < .03) or those without it (0.7%/y for normal MPS vs 3.0%/y for % myo >10%, P = .0001). Age, diabetes mellitus, shortness of breath as the presenting symptom, and % myo were independent predictors of hard events. Exercise-induced ST depression was predictive of hard events only when it was 3 mm or greater. The presence and extent of perfusion defects, reflected in the % myo, had incremental prognostic value over clinical variables and also over all degrees of exercise-induced ST depression. Although MPS effectively risk-stratifies patients with resting ST depression of 1 mm or greater, the prognostic value of exercise-induced ST depression is limited in these patients, with a small added risk when severe (> or = 3 mm).

  8. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT

    PubMed Central

    Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross-sectional mouse data. PMID:23152834

  9. Reliability study of tibialis posterior and selected leg muscle EMG and multi-segment foot kinematics in rheumatoid arthritis associated pes planovalgus

    PubMed Central

    Barn, Ruth; Rafferty, Daniel; Turner, Deborah E.; Woodburn, James

    2012-01-01

    Objective To determine within- and between-day reliability characteristics of electromyographic (EMG) activity patterns of selected lower leg muscles and kinematic variables in patients with rheumatoid arthritis (RA) and pes planovalgus. Methods Five patients with RA underwent gait analysis barefoot and shod on two occasions 1 week apart. Fine-wire (tibialis posterior [TP]) and surface EMG for selected muscles and 3D kinematics using a multi-segmented foot model was undertaken barefoot and shod. Reliability of pre-determined variables including EMG activity patterns and inter-segment kinematics were analysed using coefficients of multiple correlation, intraclass correlation coefficients (ICC) and the standard error of the measurement (SEM). Results Muscle activation patterns within- and between-day ranged from fair-to-good to excellent in both conditions. Discrete temporal and amplitude variables were highly variable across all muscle groups in both conditions but particularly poor for TP and peroneus longus. SEMs ranged from 1% to 9% of stance and 4% to 27% of maximum voluntary contraction; in most cases the 95% confidence interval crossed zero. Excellent within-day reliability was found for the inter-segment kinematics in both conditions. Between-day reliability ranged from fair-to-good to excellent for kinematic variables and all ICCs were excellent; the SEM ranged from 0.60° to 1.99°. Conclusion Multi-segmented foot kinematics can be reliably measured in RA patients with pes planovalgus. Serial measurement of discrete variables for TP and other selected leg muscles via EMG is not supported from the findings in this cohort of RA patients. Caution should be exercised when EMG measurements are considered to study disease progression or intervention effects. PMID:22721819

  10. An Exploratory Study of the Influence of Load and Practice on Segmental and Articulatory Variability in Children with Speech Sound Disorders

    PubMed Central

    Vuolo, Janet; Goffman, Lisa

    2017-01-01

    This exploratory treatment study used phonetic transcription and speech kinematics to examine changes in segmental and articulatory variability. Nine children, ages 4- to 8-years-old, served as participants, including two with childhood apraxia of speech (CAS), five with speech sound disorder (SSD), and two who were typically developing (TD). Children practised producing agent + action phrases in an imitation task (low linguistic load) and a retrieval task (high linguistic load) over five sessions. In the imitation task in session one, both participants with CAS showed high degrees of segmental and articulatory variability. After five sessions, imitation practice resulted in increased articulatory variability for five participants. Retrieval practice resulted in decreased articulatory variability in three participants with SSD. These results suggest that short-term speech production practice in rote imitation disrupts articulatory control in children with and without CAS. In contrast, tasks that require linguistic processing may scaffold learning for children with SSD but not CAS. PMID:27960554

  11. Analysis of Soccer Players’ Positional Variability During the 2012 UEFA European Championship: A Case Study

    PubMed Central

    Moura, Felipe Arruda; Santana, Juliana Exel; Vieira, Nathália Arnosti; Santiago, Paulo Roberto Pereira; Cunha, Sergio Augusto

    2015-01-01

    The purpose of this study was to analyse players’ positional variability during the 2012 UEFA European Championship by applying principal component analysis (PCA) to data gathered from heat maps posted on the UEFA website. We analysed the teams that reached the finals and semi-finals of the competition. The players’ 2D coordinates from each match were obtained by applying an image-processing algorithm to the heat maps. With all the players’ 2D coordinates for each match, we applied PCA to identify the directions of greatest variability. Then, two orthogonal segments were centred on each player’s mean position for all matches. The segments’ directions were driven by the eigenvectors of the PCA, and the length of each segment was defined as one standard deviation around the mean. Finally, an ellipse was circumscribed around both segments. To represent player variability, segment lengths and elliptical areas were analysed. The results demonstrate that Portugal exhibited the lowest variability, followed by Germany, Spain and Italy. Additionally, a graphical representation of every player’s ellipse provided insight into the teams’ organisational features throughout the competition. The presented study provides important information regarding soccer teams’ tactical strategy in high-level championships that allows coaches to better control team organisation on the pitch. PMID:26557206

  12. Segmentation in low-penetration and low-involvement categories: an application to lottery games.

    PubMed

    Guesalaga, Rodrigo; Marshall, Pablo

    2013-09-01

    Market segmentation is accepted as a fundamental concept in marketing and several authors have recently proposed a segmentation model where personal and environmental variables intersect with each other to form motivating conditions that drive behavior and preferences. This model of segmentation has been applied to packaged goods. This paper extends this literature by proposing a segmentation model for low-penetration and low involvement (LP-LI) products. An application to the lottery games in Chile supports the proposed model. The results of the study show that in this type of products (LP-LI), the attitude towards the product category is the most important factor that distinguishes consumers from non consumers, and heavy users from light users, and consequently, a critical segmentation variable. In addition, a cluster analysis shows the existence of three segments: (1) the impulsive dreamers, who believe in chance, and in that lottery games can change their life, (2) the skeptical, that do not believe in chance, nor in that lottery games can change their life and (3) the willing, who value the benefits of playing.

  13. The effects of deprivation and relative deprivation on self-reported morbidity in England: an area-level ecological study

    PubMed Central

    2013-01-01

    Background Socioeconomic status gradients in health outcomes are well recognised and may operate in part through the psychological effect of observing disparities in affluence. At an area-level, we explored whether the deprivation differential between neighbouring areas influenced self-reported morbidity over and above the known effect of the deprivation of the area itself. Methods Deprivation differentials between small areas (population size approximately 1,500) and their immediate neighbours were derived (from the Index of Multiple Deprivation (IMD)) for Lower Super Output Area (LSOA) in the whole of England (n=32482). Outcome variables were self-reported from the 2001 UK Census: the proportion of the population suffering Limiting Long-Term Illness (LLTI) and ‘not good health’. Linear regression was used to identify the effect of the deprivation differential on morbidity in different segments of the population, controlling for the absolute deprivation. The population was segmented using IMD tertiles and P2 People and Places geodemographic classification. P2 is a commercial market segmentation tool, which classifies small areas according to the characteristics of the population. The classifications range in deprivation, with the most affluent type being ‘Mature Oaks’ and the least being ‘Urban Challenge’. Results Areas that were deprived compared to their immediate neighbours suffered higher rates of ‘not good health’ (β=0.312, p<0.001) and LLTI (β=0.278, p<0.001), after controlling for the deprivation of the area itself (‘not good health’—ß=0.655, p<0.001; LLTI—ß=0.548, p<0.001). The effect of the deprivation differential relative to the effect of deprivation was strongest in least deprived segments (e.g., for ‘not good health’, P2 segments ‘Mature Oaks’—β=0.638; ‘Rooted Households’—β=0.555). Conclusions Living in an area that is surrounded by areas of greater affluence has a negative impact on health in England. A possible explanation for this phenomenon is that negative social comparisons between areas cause ill-health. This ‘psychosocial effect’ is greater still in least deprived segments of the population, supporting the notion that psychosocial effects become more important when material (absolute) deprivation is less relevant. PMID:23360584

  14. A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1977-01-01

    Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.

  15. Notalgia paresthetica: treatment using intradermal botulinum toxin A.

    PubMed

    Pérez-Pérez, L; García-Gavín, J; Allegue, F; Caeiro, J L; Fabeiro, J M; Zulaica, A

    2014-01-01

    Notalgia paresthetica is a sensory mononeuropathy that affects dorsal segments T2 to T6. It can have a significant effect on quality of life. Numerous treatments have been used with variable results. Five patients diagnosed with notalgia paresthetica were treated with intradermal botulinum toxin A. None had achieved relief of the pruritus with previous treatments. Variable results were observed after the administration of intradermal botulinum toxin. Complete resolution of the pruritus was not achieved in any of the patients. Botulinum toxin A appears to be a safe therapeutic option for patients with notalgia paresthetica. However, data currently available come from small patient series, making it difficult to draw definitive conclusions regarding the true efficacy and long-term effects of this treatment. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  16. Variability of High Resolution Vp/Vs and Seismic Velocity Structure Along the Nicaragua/Costa Rica Segment of the Middle America Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moore-Driskell, M. M.; DeShon, H. R.

    2012-12-01

    Previous studies of subduction zone earthquakes have shown that fault conditions control earthquake rupture and behavior. There are many potential properties that may vary along the subduction margin that could cause fault zone variability, including plate age, temperature, and/or geometry, convergence rate, state of hydration, overriding geology, subducting sediment packages, or subducting seamounts/ridges. The Nicaragua/Costa Rica segment of the Middle America subduction zone is highly variable along strike and down dip. We use this margin to examine how these variable conditions affect earthquake behavior by determining local ratios of compressional to shear wave velocities (Vp/Vs) and detailed seismic velocity structure. Vp/Vs is one of the best tools available to reliably define fault conditions because it is directly related to the Poisson's ratio of the fault material, and it is sensitive to the presence of fluids and changing permeability. Thus with well-resolved near source Vp/Vs measurements we can infer composition and/or high fluid pressures. Here, we use a technique developed by Lin and Shearer (2007) to determine local Vp/Vs in small areas (~2 x 2 x 2 km) with high seismicity. Within the seismogenic zone, we find the margin to be highly variable along strike in Vp/Vs and seismic velocity. These changes correlate to documented variability in incoming plate properties. Increased Vp/Vs is associated with intraplate earthquakes along Nicaragua and northern Costa Rica. We compare our results with other geophysical studies including new high-resolution images of seismic velocity structure, an extensive catalog of high quality relocated events, apparent stress calculations, coupling, and SSE/NVT occurrence. A better understanding of the connection between fault properties and earthquake behavior gives insight into the role of fluids in seismogenesis, the spectrum of earthquake rupture, and possible hazard at subduction zones.

  17. Major and trace element modeling of mid-ocean ridge mantle melting from the garnet to the plagioclase stability fields: Generating local and global compositional variability

    NASA Astrophysics Data System (ADS)

    Brown, S. M.; Behn, M. D.; Grove, T. L.

    2017-12-01

    We present results of a combined petrologic - geochemical (major and trace element) - geodynamical forward model for mantle melting and subsequent melt modification. The model advances Behn & Grove (2015), and is calibrated using experimental petrology. Our model allows for melting in the plagioclase, spinel, and garnet fields with a flexible retained melt fraction (from pure batch to pure fractional), tracks residual mantle composition, and includes melting with water, variable melt productivity, and mantle mode calculations. This approach is valuable for understanding oceanic crustal accretion, which involves mantle melting and melt modification by migration and aggregation. These igneous processes result in mid-ocean ridge basalts that vary in composition at the local (segment) and global scale. The important variables are geophysical and geochemical and include mantle composition, potential temperature, mantle flow, and spreading rate. Accordingly, our model allows us to systematically quantify the importance of each of these external variables. In addition to discriminating melt generation effects, we are able to discriminate the effects of different melt modification processes (inefficient pooling, melt-rock reaction, and fractional crystallization) in generating both local, segment-scale and global-scale compositional variability. We quantify the influence of a specific igneous process on the generation of oceanic crust as a function of variations in the external variables. We also find that it is unlikely that garnet lherzolite melting produces a signature in either major or trace element compositions formed from aggregated melts, because when melting does occur in the garnet field at high mantle temperature, it contributes a relatively small, uniform fraction (< 10%) of the pooled melt compositions at all spreading rates. Additionally, while increasing water content and/or temperature promote garnet melting, they also increase melt extent, pushing the pooled composition to lower Sm/Yb and higher Lu/Hf.

  18. Classification of small lesions in dynamic breast MRI: Eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement over time.

    PubMed

    Nagarajan, Mahesh B; Huber, Markus B; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2013-10-01

    Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they don't exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of sixty annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were also used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter , thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented ( p < 0.05). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.

  19. Non-invasive energy meter for fixed and variable flow systems

    DOEpatents

    Menicucci, David F.; Black, Billy D.

    2005-11-01

    An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

  20. Effect of Vilon and Epithalon on glucose and glycine absorption in various regions of small intestine in aged rats.

    PubMed

    Khavinson, V Kh; Egorova, V V; Timofeeva, N M; Malinin, V V; Gordova, L A; Gromova, L V

    2002-05-01

    Vilon (Lys-Glu) and Epithalon (Ala-Glu-Asp-Gly) administered orally for 1 month improved transport characteristics of the small intestine in aged rats. Vilon enhanced passive glucose accumulation in the serous fluid in inverted sac made from the distal region of the small intestine, while Epithalon enhanced this process in the medial region. Vilon stimulated active glucose accumulation in the serous sac of the medial small intestine, Epithalon - in the proximal and distal small intestinal segments. Glycine absorption increased only in the proximal intestinal segment under the effect of Epithalon.

  1. Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Cousens, Brian L.

    2013-01-01

    Although rocks in the two arc segments have similar metal abundances, they are metallogenically distinct. Small porphyry copper deposits are characteristic of the northern segment whereas significant epithermal precious metal deposits are most commonly associated with the southern segment. These metallogenic differences are also fundamentally linked to the tectonic settings and crustal regimes within which these two arc segments evolved.

  2. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this identification. The approach starts by segmenting water bodies from an image, which are then categorized using shape-based classification. Segmentation uses combination of pan sharpened multispectral bands and is based on the active contours without edges technique. The segmentation is robust to noise and can detect objects with weak boundaries that is important for extraction of troughs. We then categorize the segmented regions via shape based classification. Because segmentation accuracy is the main factor impacting the quality of the shape-based classification, for segmentation accuracy assessment we created reference image using WorldView-2 satellite image of ice-wedge polygonal tundra. Reference image contained manually labelled image regions which cover components of drainage networks, such as troughs, ponds, rivers and lakes. The evaluation has shown that the approach provides a good accuracy of segmentation and reasonable classification results. The overall accuracy of the segmentation is approximately 95%, the segmentation user's and producer's accuracies are approximately 92% and 97% respectively.

  3. A Quantitative Review and Meta-Models of the Variability and Factors Affecting Oral Drug Absorption-Part I: Gastrointestinal pH.

    PubMed

    Abuhelwa, Ahmad Y; Foster, David J R; Upton, Richard N

    2016-09-01

    This study aimed to conduct a quantitative meta-analysis for the values of, and variability in, gastrointestinal (GI) pH in the different GI segments; characterize the effect of food on the values and variability in these parameters; and present quantitative meta-models of distributions of GI pH to help inform models of oral drug absorption. The literature was systemically reviewed for the values of, and the variability in, GI pH under fed and fasted conditions. The GI tract was categorized into the following 10 distinct regions: stomach (proximal, mid-distal), duodenum (proximal, mid-distal), jejunum and ileum (proximal, mid, and distal small intestine), and colon (ascending, transverse, and descending colon). Meta-analysis used the "metafor" package of the R language. The time course of postprandial stomach pH was modeled using NONMEM. Food significantly influenced the estimated meta-mean stomach and duodenal pH but had no significant influence on small intestinal and colonic pH. The time course of postprandial pH was described using an exponential model. Increased meal caloric content increased the extent and duration of postprandial gastric pH buffering. The different parts of the small intestine had significantly different pH. Colonic pH was significantly different for descending but not for ascending and transverse colon. Knowledge of GI pH is important for the formulation design of the pH-dependent dosage forms and in understanding the dissolution and absorption of orally administered drugs. The meta-models of GI pH may also be used as part of semi-physiological pharmacokinetic models to characterize the effect of GI pH on the in vivo drug release and pharmacokinetics.

  4. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  5. Segmentation of Natural Gas Customers in Industrial Sector Using Self-Organizing Map (SOM) Method

    NASA Astrophysics Data System (ADS)

    Masbar Rus, A. M.; Pramudita, R.; Surjandari, I.

    2018-03-01

    The usage of the natural gas which is non-renewable energy, needs to be more efficient. Therefore, customer segmentation becomes necessary to set up a marketing strategy to be right on target or to determine an appropriate fee. This research was conducted at PT PGN using one of data mining method, i.e. Self-Organizing Map (SOM). The clustering process is based on the characteristic of its customers as a reference to create the customer segmentation of natural gas customers. The input variables of this research are variable of area, type of customer, the industrial sector, the average usage, standard deviation of the usage, and the total deviation. As a result, 37 cluster and 9 segment from 838 customer data are formed. These 9 segments then employed to illustrate the general characteristic of the natural gas customer of PT PGN.

  6. Kinematic foot types in youth with equinovarus secondary to hemiplegia.

    PubMed

    Krzak, Joseph J; Corcos, Daniel M; Damiano, Diane L; Graf, Adam; Hedeker, Donald; Smith, Peter A; Harris, Gerald F

    2015-02-01

    Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Kinematic foot types in youth with equinovarus secondary to hemiplegia

    PubMed Central

    Krzak, Joseph J.; Corcos, Daniel M.; Damiano, Diane L.; Graf, Adam; Hedeker, Donald; Smith, Peter A.; Harris, Gerald F.

    2015-01-01

    Background Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. Objective To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. Results PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. Conclusion This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). PMID:25467429

  8. Identification of highly variable supernumerary chromosome segments in an asexual pathogen

    USDA-ARS?s Scientific Manuscript database

    Supernumerary chromosome segments are known to harbor different transposons from their essential counterparts. The aim of this study was to investigate the role of transposons in the origin and evolution of supernumerary segments in the asexual fungal pathogen Fusariumvirguliforme. We compared the g...

  9. Dendritic tree extraction from noisy maximum intensity projection images in C. elegans.

    PubMed

    Greenblum, Ayala; Sznitman, Raphael; Fua, Pascal; Arratia, Paulo E; Oren, Meital; Podbilewicz, Benjamin; Sznitman, Josué

    2014-06-12

    Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available "ground truth" images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity-based methods. Such approach provides a useable segmentation framework, ultimately delivering a speed-up for dendritic tree identification on the user end and a reliable first step towards further morphological characterizations of tree arborization.

  10. Comparison of manual and automatic techniques for substriatal segmentation in 11C-raclopride high-resolution PET studies.

    PubMed

    Johansson, Jarkko; Alakurtti, Kati; Joutsa, Juho; Tohka, Jussi; Ruotsalainen, Ulla; Rinne, Juha O

    2016-10-01

    The striatum is the primary target in regional C-raclopride-PET studies, and despite its small volume, it contains several functional and anatomical subregions. The outcome of the quantitative dopamine receptor study using C-raclopride-PET depends heavily on the quality of the region-of-interest (ROI) definition of these subregions. The aim of this study was to evaluate subregional analysis techniques because new approaches have emerged, but have not yet been compared directly. In this paper, we compared manual ROI delineation with several automatic methods. The automatic methods used either direct clustering of the PET image or individualization of chosen brain atlases on the basis of MRI or PET image normalization. State-of-the-art normalization methods and atlases were applied, including those provided in the FreeSurfer, Statistical Parametric Mapping8, and FSL software packages. Evaluation of the automatic methods was based on voxel-wise congruity with the manual delineations and the test-retest variability and reliability of the outcome measures using data from seven healthy male participants who were scanned twice with C-raclopride-PET on the same day. The results show that both manual and automatic methods can be used to define striatal subregions. Although most of the methods performed well with respect to the test-retest variability and reliability of binding potential, the smallest average test-retest variability and SEM were obtained using a connectivity-based atlas and PET normalization (test-retest variability=4.5%, SEM=0.17). The current state-of-the-art automatic ROI methods can be considered good alternatives for subjective and laborious manual segmentation in C-raclopride-PET studies.

  11. The influence of divided attention on walking turns: Effects on gait control in young adults with and without a history of low back pain.

    PubMed

    Smith, Jo Armour; Gordon, James; Kulig, Kornelia

    2017-10-01

    The cognitive control of gait is altered in individuals with low back pain, but it is unclear if this alteration persists between painful episodes. Locomotor perturbations such as walking turns may provide a sensitive measure of gait adaptation during divided attention in young adults. The purpose of this study was to investigate changes in gait during turns performed with divided attention, and to compare healthy young adults with asymptomatic individuals who have a history of recurrent low back pain (rLBP). Twenty-eight participants performed 90° ipsilateral walking turns at a controlled speed of 1.5m/s. During the divided attention condition they concurrently performed a verbal 2-back task. Step length and width, trunk-pelvis and hip excursion, inter-segmental coordination and stride-to-stride variability were quantified using motion capture. Mixed-model ANOVA were used to examine the effect of divided attention and group, and interaction effects on the selected variables. Step length variability decreased significantly with divided attention in the healthy group but not in the rLBP group (post-hoc p=0.024). Inter-segmental coordination variability was significantly decreased during divided attention (main effect of condition p <0.000). There were small but significant reductions in hip axial and sagittal motion across groups (main effect of condition p=0.044 and p=0.040 respectively), and a trend toward increased frontal motion in the rLBP group only (post-hoc p=0.048). These findings suggest that the ability to switch attentional resources during gait is altered in young adults with a history of rLBP, even between symptomatic episodes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Automatic delineation of tumor volumes by co-segmentation of combined PET/MR data

    NASA Astrophysics Data System (ADS)

    Leibfarth, S.; Eckert, F.; Welz, S.; Siegel, C.; Schmidt, H.; Schwenzer, N.; Zips, D.; Thorwarth, D.

    2015-07-01

    Combined PET/MRI may be highly beneficial for radiotherapy treatment planning in terms of tumor delineation and characterization. To standardize tumor volume delineation, an automatic algorithm for the co-segmentation of head and neck (HN) tumors based on PET/MR data was developed. Ten HN patient datasets acquired in a combined PET/MR system were available for this study. The proposed algorithm uses both the anatomical T2-weighted MR and FDG-PET data. For both imaging modalities tumor probability maps were derived, assigning each voxel a probability of being cancerous based on its signal intensity. A combination of these maps was subsequently segmented using a threshold level set algorithm. To validate the method, tumor delineations from three radiation oncologists were available. Inter-observer variabilities and variabilities between the algorithm and each observer were quantified by means of the Dice similarity index and a distance measure. Inter-observer variabilities and variabilities between observers and algorithm were found to be comparable, suggesting that the proposed algorithm is adequate for PET/MR co-segmentation. Moreover, taking into account combined PET/MR data resulted in more consistent tumor delineations compared to MR information only.

  13. Incorporating partially identified sample segments into acreage estimation procedures: Estimates using only observations from the current year

    NASA Technical Reports Server (NTRS)

    Sielken, R. L., Jr. (Principal Investigator)

    1981-01-01

    Several methods of estimating individual crop acreages using a mixture of completely identified and partially identified (generic) segments from a single growing year are derived and discussed. A small Monte Carlo study of eight estimators is presented. The relative empirical behavior of these estimators is discussed as are the effects of segment sample size and amount of partial identification. The principle recommendations are (1) to not exclude, but rather incorporate partially identified sample segments into the estimation procedure, (2) try to avoid having a large percentage (say 80%) of only partially identified segments, in the sample, and (3) use the maximum likelihood estimator although the weighted least squares estimator and least squares ratio estimator both perform almost as well. Sets of spring small grains (North Dakota) data were used.

  14. Stricturoplasty-a bowel-sparing option for long segment small bowel Crohn's disease.

    PubMed

    Limmer, Alexandra M; Koh, Hoey C; Gilmore, Andrew

    2017-08-01

    Stricturoplasty is a surgical option for management of severe stricturing Crohn's disease of the small bowel. It avoids the need for small bowel resection and the associated metabolic complications. This report contrasts the indications and technical aspects of two different stricturoplasty techniques. Case 1 describes an extensive Michelassi (side-to-side isoperistaltic) stricturoplasty performed for a 100 cm segment of diseased small bowel in a 45-year-old patient. Case 2 describes the performance of 12 Heineke-Mikulicz stricturoplasties in a 23-year-old patient with multiple short fibrotic strictures.

  15. Illustration of year-to-year variation in wheat spectral profile crop growth curves. [Kansas, Oklahoma, North Dakota and South Dakota

    NASA Technical Reports Server (NTRS)

    Gonzalez, P.; Jones, C. (Principal Investigator)

    1980-01-01

    Data previously compiled on the year to year variability of spectral profile crop growth parameters for spring and winter wheat in Kansas, Oklahoma, and the Dakotas were used with a profile model to develop graphs illustrating spectral profile crop growth curves for a number of years and a number of spring and winter wheat segments. These curves show the apparent variability in spectral profiles for wheat from one year to another within the same segment and from one segment to another within the same year.

  16. System for detecting operating errors in a variable valve timing engine using pressure sensors

    DOEpatents

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  17. The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body axis segmentation

    NASA Technical Reports Server (NTRS)

    Seaver, E. C.; Paulson, D. A.; Irvine, S. Q.; Martindale, M. Q.

    2001-01-01

    We are interested in understanding whether the annelids and arthropods shared a common segmented ancestor and have approached this question by characterizing the expression pattern of the segment polarity gene engrailed (en) in a basal annelid, the polychaete Chaetopterus. We have isolated an en gene, Ch-en, from a Chaetopterus cDNA library. Genomic Southern blotting suggests that this is the only en class gene in this animal. The predicted protein sequence of the 1.2-kb cDNA clone contains all five domains characteristic of en proteins in other taxa, including the en class homeobox. Whole-mount in situ hybridization reveals that Ch-en is expressed throughout larval life in a complex spatial and temporal pattern. The Ch-en transcript is initially detected in a small number of neurons associated with the apical organ and in the posterior portion of the prototrochophore. At later stages, Ch-en is expressed in distinct patterns in the three segmented body regions (A, B, and C) of Chaetopterus. In all segments, Ch-en is expressed in a small set of segmentally iterated cells in the CNS. In the A region, Ch-en is also expressed in a small group of mesodermal cells at the base of the chaetal sacs. In the B region, Ch-en is initially expressed broadly in the mesoderm that then resolves into one band/segment coincident with morphological segmentation. The mesodermal expression in the B region is located in the anterior region of each segment, as defined by the position of ganglia in the ventral nerve cord, and is involved in the morphogenesis of segment-specific feeding structures late in larval life. We observe banded mesodermal and ectodermal staining in an anterior-posterior sequence in the C region. We do not observe a segment polarity pattern of expression of Ch-en in the ectoderm, as is observed in arthropods. Copyright 2001 Academic Press.

  18. Shopping Effort Classification: Implications for Segmenting the College Student Market

    ERIC Educational Resources Information Center

    Wright, Robert E.; Palmer, John C.; Eidson, Vicky; Griswold, Melissa

    2011-01-01

    Market segmentation strategies based on levels of consumer shopping effort have long been utilized by marketing professionals. Such strategies can be beneficial in assisting marketers with development of appropriate marketing mix variables for segments. However, these types of strategies have not been assessed by researchers examining segmentation…

  19. Anatomical variations in the pattern of the right hepatic veins draining the posterior segment of the right lobe of the liver.

    PubMed

    Shilal, Poonam; Tuli, Anita

    2015-03-01

    The pattern of drainage in the right posterior lobe of liver varies considerably. The knowledge of this variation is very important while performing various surgeries on the right posterior lobe. A study was conducted to see the variations in the pattern of drainage of posterior segment of the right lobe of liver. The aim was to see the variations of right hepatic vein and small accessory hepatic veins draining the posterior segment, the presence of which led to modifications in drainage of posterior segment. Sixty formalin fixed adult human liver specimens were dissected manually. According to the pattern of drainage of tributaries of right hepatic vein, the right hepatic vein was classified into type I, type II, type III and type IV. According to presence of inferior right hepatic vein, three types of drainage of posterior lobe were seen: Type I, (76.36%) right hepatic vein was large, draining wide area of posterior segment. A small inferior right hepatic vein drained the small area of posterior segment. In Type II, (19.92%) both right hepatic and inferior right hepatic veins were medium sized draining the posteroinferior segment of the right lobe concomitantly. In Type III, (32%) accessory veins, the middle right hepatic vein drained the posterosuperior (VII) as well as the posteroinferior (VI) segment. In one specimen, there were numerous middle right hepatic veins draining the right posterior segment. The knowledge of anatomic relationship of veins draining right lobe, is important in performing right posterior segmentectomy. For safe resection of the liver, the complex anatomy of the distribution of the tributaries of the right hepatic vein and the accessory veins have to be studied prior to any surgery done on liver.

  20. Variability and reliability of the vastus lateralis muscle anatomy.

    PubMed

    D'Arpa, Salvatore; Toia, Francesca; Brenner, Erich; Melloni, Carlo; Moschella, Francesco; Cordova, Adriana

    2016-08-01

    The aims of this study are to investigate the variability of the morphological and neurovascular anatomy of the vastus lateralis (VL) muscle and to describe the relationships among its intramuscular partitions and with the other muscles of the quadriceps femoris. Clinical implications in its reliability as a flap donor are also discussed. In 2012, the extra- and intramuscular neurovascular anatomy of the VL was investigated in 10 cadaveric lower limbs. In three specimens, the segmental arterial pedicles were injected with latex of different colors to point out their anastomotic connections. The morphological anatomy was investigated with regard to the mutual relationship of the three muscular partitions and the relation of the VL with the other muscles of the quadriceps femoris. The VL has a segmental morphological anatomy. However, the fibers of its three partitions interconnect individually and with the other bellies of the quadriceps femoris, particularly, in several variable portions with the vastus intermedius and mainly in the posterior part of the VL. The lateral circumflex femoral artery and its branches have variable origin, but demonstrate constant segmental distribution. Intramuscular dissection and colored latex injections show a rich anastomotic vascular network among the three partitions. Moderate variability exists in both the myological and the neurovascular anatomy of the VL. Despite this variability, the anatomy of the VL always has a constant segmental pattern, which makes the VL a reliable flap donor. Detailed knowledge of the VL anatomy could have useful applications in a broad clinical field.

  1. Multi-region statistical shape model for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Romera, Jordi; Kjer, H. Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel A.

    2016-03-01

    Statistical shape models are commonly used to analyze the variability between similar anatomical structures and their use is established as a tool for analysis and segmentation of medical images. However, using a global model to capture the variability of complex structures is not enough to achieve the best results. The complexity of a proper global model increases even more when the amount of data available is limited to a small number of datasets. Typically, the anatomical variability between structures is associated to the variability of their physiological regions. In this paper, a complete pipeline is proposed for building a multi-region statistical shape model to study the entire variability from locally identified physiological regions of the inner ear. The proposed model, which is based on an extension of the Point Distribution Model (PDM), is built for a training set of 17 high-resolution images (24.5 μm voxels) of the inner ear. The model is evaluated according to its generalization ability and specificity. The results are compared with the ones of a global model built directly using the standard PDM approach. The evaluation results suggest that better accuracy can be achieved using a regional modeling of the inner ear.

  2. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.

    PubMed

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B

    2012-04-01

    Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  4. Quasi-reinforcement: control of responding by a percentage-reinforcement schedule1

    PubMed Central

    Neuringer, Allen J.; Chung, Shin-Ho

    1967-01-01

    When a variable-interval schedule of reinforcement was segmented into small fixed-interval components, with reinforcements following some components and brief blackouts following the others, rate of responding doubled and a positively accelerated pattern within each component was obtained. Presented according to this percentage reinforcement paradigm, the blackouts approximated the functions of a food reinforcer. These effects occurred only when the behavior sequence required to produce reinforcement was identical to that required to produce blackout. The quasi-reinforcing effects of these blackout stimuli suggest that a neutral stimulus need not occasion or accompany a primary reinforcer to acquire reinforcing properties. PMID:16811304

  5. Locomotor variation and bending regimes of capuchin limb bones.

    PubMed

    Demes, Brigitte; Carlson, Kristian J

    2009-08-01

    Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate ("terrestrial"), on an elevated pole ("arboreal"), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. "Arboreal" locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than "terrestrial" locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further.

  6. Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers.

    PubMed

    Wisse, Eva; Spiering, A J H; van Leeuwen, Ellen N M; Renken, Raymond A E; Dankers, Patricia Y W; Brouwer, Linda A; van Luyn, Marja J A; Harmsen, Martin C; Sommerdijk, Nico A J M; Meijer, E W

    2006-12-01

    The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in terms of mechanical properties, processibility and histocompatibility. Comparison of the data with those obtained from the structurally related poly(urethane urea) 1 revealed that the difference in hard segment structure does not significantly affect the potency for application as a biomaterial. Nevertheless, the small differences in hard block composition had a strong effect on the molecular recognition properties of the hydrogen bonding segments. High selectivity was found for poly(urea) 2 in which bisureidobutylene-functionalized azobenzene dye 3 was selectively incorporated while bisureidopentylene-functionalized azobenzene dye 4 was completely released. In contrast, the incorporation of both dyes in poly(urethane urea) 1 led in both cases to their gradual release in time. Thermal analysis of the polymers in combination with variable temperature infrared experiments indicated that the hard blocks in 1 showed a sharp melting point, whereas those in 2 showed a very broad melting trajectory. This suggests a more precise organization of the hydrogen bonding segments in the hard blocks of poly(urea) 2 compared to poly(urethane urea) 1 and explains the results from the molecular recognition experiments. Preliminary results revealed that a bisureidobutylene-functionalized GRGDS peptide showed more supramolecular interaction with the PCL-based poly(urea), containing the bisureidobutylene recognition unit, as compared to HMW PCL, lacking this recognition unit.

  7. Probabilistic atlas based labeling of the cerebral vessel tree

    NASA Astrophysics Data System (ADS)

    Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2015-03-01

    Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.

  8. Midterm Clinical Outcomes after Modified High Ligation and Segmental Stripping of Incompetent Small Saphenous Veins

    PubMed Central

    Hong, Ki Pyo

    2015-01-01

    Background The aim of this study was to evaluate the midterm clinical outcomes after modified high ligation and segmental stripping of small saphenous vein (SSV) varicosities. Methods Between January 2010 and March 2013, 62 patients (69 legs) with isolated primary small saphenous varicose veins were enrolled in this study. The outcomes measured were reflux in the remaining distal SSV, the recurrence of varicose veins, the improvement of preoperative symptoms, and the rate of postoperative complications. Results No major complications occurred. No instances of the recurrence of varicose veins at previous stripping sites were noted. Three legs (4.3%) showed reflux in the remaining distal small saphenous veins. The preoperative symptoms were found to have improved in 96.4% of the cases. Conclusion In the absence of flush ligation of the saphenopopliteal junction, modified high ligation and segmental stripping of small saphenous vein varicosities with preoperative duplex marking is an effective treatment method for reducing postoperative complications and the recurrence of SSV incompetence. PMID:26665106

  9. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    NASA Astrophysics Data System (ADS)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  10. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance.

    PubMed

    Ngo, Tuan Anh; Lu, Zhi; Carneiro, Gustavo

    2017-01-01

    We introduce a new methodology that combines deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance (MR) data. This combination is relevant for segmentation problems, where the visual object of interest presents large shape and appearance variations, but the annotated training set is small, which is the case for various medical image analysis applications, including the one considered in this paper. In particular, level set methods are based on shape and appearance terms that use small training sets, but present limitations for modelling the visual object variations. Deep learning methods can model such variations using relatively small amounts of annotated training, but they often need to be regularised to produce good generalisation. Therefore, the combination of these methods brings together the advantages of both approaches, producing a methodology that needs small training sets and produces accurate segmentation results. We test our methodology on the MICCAI 2009 left ventricle segmentation challenge database (containing 15 sequences for training, 15 for validation and 15 for testing), where our approach achieves the most accurate results in the semi-automated problem and state-of-the-art results for the fully automated challenge. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  11. Dissolution of covalent adaptable network polymers in organic solvent

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  12. Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment.

    PubMed

    Kocsis, E; Trus, B L; Steer, C J; Bisher, M E; Steven, A C

    1991-08-01

    We have developed computational techniques that allow image averaging to be applied to electron micrographs of filamentous molecules that exhibit tight and variable curvature. These techniques, which involve straightening by cubic-spline interpolation, image classification, and statistical analysis of the molecules' curvature properties, have been applied to purified brain clathrin. This trimeric filamentous protein polymerizes, both in vivo and in vitro, into a wide range of polyhedral structures. Contrasted by low-angle rotary shadowing, dissociated clathrin molecules appear as distinctive three-legged structures, called "triskelions" (E. Ungewickell and D. Branton (1981) Nature 289, 420). We find triskelion legs to vary from 35 to 62 nm in total length, according to an approximately bell-shaped distribution (mu = 51.6 nm). Peaks in averaged curvature profiles mark hinges or sites of enhanced flexibility. Such profiles, calculated for each length class, show that triskelion legs are flexible over their entire lengths. However, three curvature peaks are observed in every case: their locations define a proximal segment of systematically increasing length (14.0-19.0 nm), a mid-segment of fixed length (approximately 12 nm), and a rather variable end-segment (11.6-19.5 nm), terminating in a hinge just before the globular terminal domain (approximately 7.3 nm diameter). Thus, two major factors contribute to the overall variability in leg length: (1) stretching of the proximal segment and (2) stretching of the end-segment and/or scrolling of the terminal domain. The observed elasticity of the proximal segment may reflect phosphorylation of the clathrin light chains.

  13. Spatially explicit exposure assessment for small streams in catchments of the orchard growing region `Lake Constance

    NASA Astrophysics Data System (ADS)

    Golla, B.; Bach, M.; Krumpe, J.

    2009-04-01

    1. Introduction Small streams differ greatly from the standardised water body used in the context of aquatic risk assessment for the regulation of plant protection products in Germany. The standard water body is static, with a depth of 0.3 m and a width of 1.0 m. No dilution or water replacement takes place. Spray drift happens always in direction to the water body. There is no variability in drift deposition rate (90th percentile spray drift deposition values [2]). There is no spray drift filtering by vegetation. The application takes place directly adjacent to the water body. In order to establish a more realistic risk assessment procedure the Federal Office for Consumer Protection and Food Safety (BVL) and the Federal Environment Agency (UBA) aggreed to replace deterministic assumptions with data distributions and spatially explicit data and introduce probabilistic methods [3, 4, 5]. To consider the spatial and temporal variability in the exposure situations of small streams the hydraulic and morphological characteristics of catchments need to be described as well as the spatial distribution of fields treated with pesticides. As small streams are the dominant type of water body in most German orchard regions, we use the growing region Lake Constance as pilot region. 2. Materials and methods During field surveys we derive basic morphological parameters for small streams in the Lake Constance region. The mean water width/depth ratio is 13 with a mean depth of 0.12 m. The average residence time is 5.6 s/m (n=87) [1]. Orchards are mostly located in the upper parts of the catchments. Based on an authoritative dataset on rivers and streams of Germany (ATKIS DLM25) we constructed a directed network topology for the Lake Constance region. The gradient of the riverbed is calculated for river stretches of > 500 m length. The network for the pilot region consists of 2000 km rivers and streams. 500 km stream length are located within a distance of 150 m to orchards. Within this distance a spray drift exposure with adverse effects is theoretically possible [6]. The network is segmented to approx. 80'000 segments of 25 m length. One segment is the basic element of the exposure assessment. Based on the Manning-Strickler formula and empirically determined relations two equations are developed to express the width and depth of the streams and the flow velocity [7]. Using Java programming and spatial network analysis within Oracle 10g/Spatial DBMS we developed a tool to simulate concentration over time for all single 25 m segments of the stream network. The analysis considers the spatially explicit upstream exposure situations due to the locations of orchards and recovery areas in the catchments. The application which takes place on a specific orchard is simulated according to realistic application patterns or to the simplistic assumption that all orchards are sprayed on the same day. 3. Results The results of the analysis are distributions of time average concentrations (mPEC) for all single stream segments of the stream network. The averaging time window can be defined flexibly between 1 h (mPEC1h) to 24 h (mPEC24h). Spatial network analysis based on georeferenced hydraulic and morphological parameters proved to be a suitable approach for analysing the exposure situation of streams under more realistic aspects. The time varying concentration of single stream segments can be analysed over a vegetation period or a single day. Stream segments which exceed a trigger concentration or segments with a specific pulse concentration pattern in given time windows can be identified and be addressed by e.g. implementing additional drift mitigation measures. References [1] Golla, B., J. Krumpe, J. Strassemeyer, and V. Gutsche. (2008): Refined exposure assessment of small streams in German orchard regions. Part 1. Results of a hydromorphological survey. Journal für Kulturpflanzen (submitted). [2] Rautmann, D., Streloke, M, and Winkler, R (1999): New basic drift values in the authorization procedure for plant protection products, pp. 133-141. In Workshop on risk management and risk mitigation measures in the context of authorization of plant protection products [3] Klein, A. W., Dechet, F., and Streloke, M (2003): Probabilistic Assessment Method for Risk Analysis in the framework of Plant Protection Product Authorisation, Industrieverband Agrar (IVA, 2006), Frankfurt/Main [4] Schulz R, Stehle S, Elsaesser F, Matezki S, Müller A, Neumann M, Ohliger R, Wogram J, Zenker K. 2008. Geodata-based Probabilistic Risk Assessment and Management of Pesticides in Germany, a Conceptual Framework. IEAM_2008-032R [5] Kubiak, R., Hommen, Bach, M., Classen, G. Fent, H.-G. Frede, A. Gergs, B. Golla, M. Klein, J. Krumpe, S. Matetzki, A. Müller, M. Neumann,T. G. Preuss, H. T. Ratte, M. Roß-Nickoll, S. Reichenberger, C. Schäfers, T. Strauss, A. Toschki, M. Trapp, J. Wogram (2009): A new GIS based approach for the assessment and management of environmental risks of plant protection, SETAC EUROPE Göteborg [6] Enzian, S. ,Golla., B. (2006) A method for the identification and classification of "save distance" cropland to the potential drift exposure of pesticides towards surface waters. UBA-Texte [7] Bach, M., Träbing, K. and Frede, H.-G. (2004): Morphological Characteristics of small rivers in the context of probabilistic exposure assessment. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 56

  14. Variability and Reproducibility of Segmental Longitudinal Strain Measurement: A Report From the EACVI-ASE Strain Standardization Task Force.

    PubMed

    Mirea, Oana; Pagourelias, Efstathios D; Duchenne, Jurgen; Bogaert, Jan; Thomas, James D; Badano, Luigi P; Voigt, Jens-Uwe

    2018-01-01

    In this study, we compared left ventricular (LV) segmental strain measurements obtained with different ultrasound machines and post-processing software packages. Global longitudinal strain (GLS) has proven to be a reproducible and valuable tool in clinical practice. Data about the reproducibility and intervendor differences of segmental strain measurements, however, are missing. We included 63 volunteers with cardiac magnetic resonance-proven infarct scar with segmental LV function ranging from normal to severely impaired. Each subject was examined within 2 h by a single expert sonographer with machines from multiple vendors. All 3 apical views were acquired twice to determine the test-retest and the intervendor variability. Segmental longitudinal peak systolic, end-systolic, and post-systolic strain were measured using 7 vendor-specific systems (Hitachi, Tokyo, Japan; Esaote, Florence, Italy; GE Vingmed Ultrasound, Horten, Norway; Philips, Andover, Massachusetts; Samsung, Seoul, South Korea; Siemens, Mountain View, California; and Toshiba, Otawara, Japan) and 2 independent software packages (Epsilon, Ann Arbor, Michigan; and TOMTEC, Unterschleissheim, Germany) and compared among vendors. Image quality and tracking feasibility differed among vendors (analysis of variance, p < 0.05). The absolute test-retest difference ranged from 2.5% to 4.9% for peak systolic, 2.6% to 5.0% for end-systolic, and 2.5% to 5.0% for post-systolic strain. The average segmental strain values varied significantly between vendors (up to 4.5%). Segmental strain parameters from each vendor correlated well with the mean of all vendors (r 2 range 0.58 to 0.81) but showed very different ranges of values. Bias and limits of agreement were up to -4.6 ± 7.5%. In contrast to GLS, LV segmental longitudinal strain measurements have a higher variability on top of the known intervendor bias. The fidelity of different software to follow segmental function varies considerably. We conclude that single segmental strain values should be used with caution in the clinic. Segmental strain pattern analysis might be a more robust alternative. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. HLA-E regulatory and coding region variability and haplotypes in a Brazilian population sample.

    PubMed

    Ramalho, Jaqueline; Veiga-Castelli, Luciana C; Donadi, Eduardo A; Mendes-Junior, Celso T; Castelli, Erick C

    2017-11-01

    The HLA-E gene is characterized by low but wide expression on different tissues. HLA-E is considered a conserved gene, being one of the least polymorphic class I HLA genes. The HLA-E molecule interacts with Natural Killer cell receptors and T lymphocytes receptors, and might activate or inhibit immune responses depending on the peptide associated with HLA-E and with which receptors HLA-E interacts to. Variable sites within the HLA-E regulatory and coding segments may influence the gene function by modifying its expression pattern or encoded molecule, thus, influencing its interaction with receptors and the peptide. Here we propose an approach to evaluate the gene structure, haplotype pattern and the complete HLA-E variability, including regulatory (promoter and 3'UTR) and coding segments (with introns), by using massively parallel sequencing. We investigated the variability of 420 samples from a very admixed population such as Brazilians by using this approach. Considering a segment of about 7kb, 63 variable sites were detected, arranged into 75 extended haplotypes. We detected 37 different promoter sequences (but few frequent ones), 27 different coding sequences (15 representing new HLA-E alleles) and 12 haplotypes at the 3'UTR segment, two of them presenting a summed frequency of 90%. Despite the number of coding alleles, they encode mainly two different full-length molecules, known as E*01:01 and E*01:03, which corresponds to about 90% of all. In addition, differently from what has been previously observed for other non classical HLA genes, the relationship among the HLA-E promoter, coding and 3'UTR haplotypes is not straightforward because the same promoter and 3'UTR haplotypes were many times associated with different HLA-E coding haplotypes. This data reinforces the presence of only two main full-length HLA-E molecules encoded by the many HLA-E alleles detected in our population sample. In addition, this data does indicate that the distal HLA-E promoter is by far the most variable segment. Further analyses involving the binding of transcription factors and non-coding RNAs, as well as the HLA-E expression in different tissues, are necessary to evaluate whether these variable sites at regulatory segments (or even at the coding sequence) may influence the gene expression profile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Aquatic insect community structure under the influence of small dams in a stream of the Mogi-Guaçu river basin, state of São Paulo.

    PubMed

    Saulino, H H L; Corbi, J J; Trivinho-Strixino, S

    2014-02-01

    The fragmentation of lotic systems caused by construction of dams has modified many aquatic communities. The objective of this study was to analyse changes in the aquatic insect community structure by discontinuity of habitat created by dams along the Ribeirão das Anhumas, a sub-basin of the Mogi-Guaçu River (state of São Paulo, Brazil). Entomofauna collection was carried out in 10 segments upstream and downstream of five dams along the longitudinal profile of the stream, with a quick sampling method using a D net (mesh 250 mm) with 2 minutes of sampling effort. The insects were sorted and identified to the lowest possible taxonomic level and analysed by the Shannon diversity index, β diversity, richness estimated by rarefaction curves and relative participation of functional feeding groups. The results showed a slight reduction in diversity in the downstream segments, as well as along the longitudinal profile of the stream. However, there were no significant differences in abundance and richness between the upstream and downstream segments, indicating that the dams did not influence these variables. Differences were observed in the functional feeding groups along the longitudinal profile. Predator and gatherer insects were dominant in all segments analysed. The feeding group of shredders was more abundant in the segment DSIII with the participation of Marilia Müller (Odontoceridae - Trichoptera), although we observed a decrease of shredders and scrapers with the decrease of the canopy cover reducing values of β diversity in the continuum of Ribeirão das Anhumas. This result demonstrated the importance of the conservation of the riparian vegetation in order to maintain the integrity of the stream.

  17. Minding the gaps: literacy enhances lexical segmentation in children learning to read.

    PubMed

    Havron, Naomi; Arnon, Inbal

    2017-11-01

    Can emergent literacy impact the size of the linguistic units children attend to? We examined children's ability to segment multiword sequences before and after they learned to read, in order to disentangle the effect of literacy and age on segmentation. We found that early readers were better at segmenting multiword units (after controlling for age, cognitive, and linguistic variables), and that improvement in literacy skills between the two sessions predicted improvement in segmentation abilities. Together, these findings suggest that literacy acquisition, rather than age, enhanced segmentation. We discuss implications for models of language learning.

  18. Riparian and Associated Habitat Characteristics Related to Nutrient Concentrations and Biological Responses of Small Streams in Selected Agricultural Areas, United States, 2003-04

    USGS Publications Warehouse

    Zelt, Ronald B.; Munn, Mark D.

    2009-01-01

    Physical factors, including both in-stream and riparian habitat characteristics that limit biomass or otherwise regulate aquatic biological condition, have been identified by previous studies. However, linking the ecological significance of nutrient enrichment to habitat or landscape factors that could allow for improved management of streams has proved to be a challenge in many regions, including agricultural landscapes, where many ecological stressors are strong and the variability among watersheds typically is large. Riparian and associated habitat characteristics were sampled once during 2003-04 for an intensive ecological and nutrients study of small perennial streams in five contrasting agricultural landscapes across the United States to determine how biological communities and ecosystem processes respond to varying levels of nutrient enrichment. Nutrient concentrations were determined in stream water at two different sampling times per site and biological samples were collected once per site near the time of habitat characterization. Data for 141 sampling sites were compiled, representing five study areas, located in parts of the Delmarva Peninsula (Delaware and Maryland), Georgia, Indiana, Ohio, Nebraska, and Washington. This report examines the available data for riparian and associated habitat characteristics to address questions related to study-unit contrasts, spatial scale-related differences, multivariate correlation structure, and bivariate relations between selected habitat characteristics and either stream nutrient conditions or biological responses. Riparian and associated habitat characteristics were summarized and categorized into 22 groups of habitat variables, with 11 groups representing land-use and land-cover characteristics and 11 groups representing other riparian or in-stream habitat characteristics. Principal components analysis was used to identify a reduced set of habitat variables that describe most of the variability among the sampled sites. The habitat characteristics sampled within the five study units were compared statistically. Bivariate correlations between riparian habitat variables and either nutrient-chemistry or biological-response variables were examined for all sites combined, and for sites within each study area. Nutrient concentrations were correlated with the extent of riparian cropland. For nitrogen species, these correlations were more frequently at the basin scale, whereas for phosphorus, they were about equally frequent at the segment and basin scales. Basin-level extents of riparian cropland and reach-level bank vegetative cover were correlated strongly with both total nitrogen and dissolved inorganic nitrogen (DIN) among multiple study areas, reflecting the importance of agricultural land-management and conservation practices for reducing nitrogen delivery from near-stream sources. When sites lacking segment-level wetlands were excluded, the negative correlation of riparian wetland extent with DIN among 49 sites was strong at the reach and segment levels. Riparian wetland vegetation thus may be removing dissolved nutrients from soil water and shallow groundwater passing through riparian zones. Other habitat variables that correlated strongly with nitrogen and phosphorus species included suspended sediment, light availability, and antecedent water temperature. Chlorophyll concentrations in seston were positively correlated with phosphorus concentrations for all sites combined. Benthic chlorophyll was correlated strongly with nutrient concentrations in only the Delmarva study area and only in fine-grained habitats. Current velocity or hydraulic scour could explain correlation patterns for benthic chlorophyll among Georgia sites, whereas chlorophyll in seston was correlated with antecedent water temperature among Washington and Delmarva sites. The lack of any consistent correlation pattern between habitat characteristics and organic material density (ash-free dry mass)

  19. Stricturoplasty—a bowel-sparing option for long segment small bowel Crohn's disease

    PubMed Central

    Koh, Hoey C.; Gilmore, Andrew

    2017-01-01

    Abstract Stricturoplasty is a surgical option for management of severe stricturing Crohn's disease of the small bowel. It avoids the need for small bowel resection and the associated metabolic complications. This report contrasts the indications and technical aspects of two different stricturoplasty techniques. Case 1 describes an extensive Michelassi (side-to-side isoperistaltic) stricturoplasty performed for a 100 cm segment of diseased small bowel in a 45-year-old patient. Case 2 describes the performance of 12 Heineke-Mikulicz stricturoplasties in a 23-year-old patient with multiple short fibrotic strictures. PMID:29423160

  20. Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Hedayat, A.; Brown, T. M.

    2004-01-01

    A unique foam/multilayer insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated using a large-scale hydrogen tank. The foam substrate insulates for ground-hold periods and enables a gaseous nitrogen purge as opposed to helium. The MLI, designed for an on-orbit storage period for 45 days, includes several unique features including a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or tank heat leak is reduced by about half in comparison with standard MLI. The focus of this effort is on analytical modeling of the variable density MLI (VD-MLI) on-orbit performance. The foam/VD-MLI model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three different MLI layer densities. The last segment is an environmental boundary or shroud that surrounds the last MLI layer. Two approaches are considered: a variable density MLI modeled layer by layer and a semiempirical model or "modified Lockheed equation." Results from the two models were very comparable and were within 5-8 percent of the measured data at the 300 K boundary condition.

  1. Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area.

    PubMed

    Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I

    2007-11-15

    Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.

  2. Measurement of thermally ablated lesions in sonoelastographic images using level set methods

    NASA Astrophysics Data System (ADS)

    Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.

    2008-03-01

    The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.

  3. Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes

    NASA Astrophysics Data System (ADS)

    Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.

  4. Site conditions related to erosion on logging roads

    Treesearch

    R. M. Rice; J. D. McCashion

    1985-01-01

    Synopsis - Data collected from 299 road segments in northwestern California were used to develop and test a procedure for estimating and managing road-related erosion. Site conditions and the design of each segment were described by 30 variables. Equations developed using 149 of the road segments were tested on the other 150. The best multiple regression equation...

  5. Transfer learning improves supervised image segmentation across imaging protocols.

    PubMed

    van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen

    2015-05-01

    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

  6. Mapping mountain pine beetle mortality through growth trend analysis of time-series landsat data

    USGS Publications Warehouse

    Liang, Lu; Chen, Yanlei; Hawbaker, Todd J.; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    Disturbances are key processes in the carbon cycle of forests and other ecosystems. In recent decades, mountain pine beetle (MPB; Dendroctonus ponderosae) outbreaks have become more frequent and extensive in western North America. Remote sensing has the ability to fill the data gaps of long-term infestation monitoring, but the elimination of observational noise and attributing changes quantitatively are two main challenges in its effective application. Here, we present a forest growth trend analysis method that integrates Landsat temporal trajectories and decision tree techniques to derive annual forest disturbance maps over an 11-year period. The temporal trajectory component successfully captures the disturbance events as represented by spectral segments, whereas decision tree modeling efficiently recognizes and attributes events based upon the characteristics of the segments. Validated against a point set sampled across a gradient of MPB mortality, 86.74% to 94.00% overall accuracy was achieved with small variability in accuracy among years. In contrast, the overall accuracies of single-date classifications ranged from 37.20% to 75.20% and only become comparable with our approach when the training sample size was increased at least four-fold. This demonstrates that the advantages of this time series work flow exist in its small training sample size requirement. The easily understandable, interpretable and modifiable characteristics of our approach suggest that it could be applicable to other ecoregions.

  7. Reproducibility of myelin content-based human habenula segmentation at 3 Tesla.

    PubMed

    Kim, Joo-Won; Naidich, Thomas P; Joseph, Joshmi; Nair, Divya; Glasser, Matthew F; O'halloran, Rafael; Doucet, Gaelle E; Lee, Won Hee; Krinsky, Hannah; Paulino, Alejandro; Glahn, David C; Anticevic, Alan; Frangou, Sophia; Xu, Junqian

    2018-03-26

    In vivo morphological study of the human habenula, a pair of small epithalamic nuclei adjacent to the dorsomedial thalamus, has recently gained significant interest for its role in reward and aversion processing. However, segmenting the habenula from in vivo magnetic resonance imaging (MRI) is challenging due to the habenula's small size and low anatomical contrast. Although manual and semi-automated habenula segmentation methods have been reported, the test-retest reproducibility of the segmented habenula volume and the consistency of the boundaries of habenula segmentation have not been investigated. In this study, we evaluated the intra- and inter-site reproducibility of in vivo human habenula segmentation from 3T MRI (0.7-0.8 mm isotropic resolution) using our previously proposed semi-automated myelin contrast-based method and its fully-automated version, as well as a previously published manual geometry-based method. The habenula segmentation using our semi-automated method showed consistent boundary definition (high Dice coefficient, low mean distance, and moderate Hausdorff distance) and reproducible volume measurement (low coefficient of variation). Furthermore, the habenula boundary in our semi-automated segmentation from 3T MRI agreed well with that in the manual segmentation from 7T MRI (0.5 mm isotropic resolution) of the same subjects. Overall, our proposed semi-automated habenula segmentation showed reliable and reproducible habenula localization, while its fully-automated version offers an efficient way for large sample analysis. © 2018 Wiley Periodicals, Inc.

  8. Anatomical variations in lymphatic drainage of the right lung: applications in lung cancer surgery.

    PubMed

    Ndiaye, Assane; Di-Marino, V; Ba, P S; Ndiaye, Aï; Gaye, M; Nazarian, S

    2016-12-01

    To specify the topography and variations in lymphatic drainage of the right lung to the mediastinum and their therapeutic implications in non-small cell lung cancers (NSCLC). We injected a dye into the subpleural lymphatic vessels in 65 right lung segments, followed by dissection in 22 subjects. At the upper lobe, we had injected 32 segments. We noted extrasegmental overflow in one case; extrasegmental and extralobar drainage in two cases; drainage to the lymph nodes of another lobe in one case. Fifty-six percent of the segments drained directly (skipping intrapulmonary and hilar lymph nodes) into the right paratracheal lymph nodes, and one dorsal segment drained into the thoracic duct. A ventral segment drained into the inferior tracheobronchial lymph nodes. A contralateral drainage to the recurrent chain was observed in two cases. Sixteen segments of the middle lobe were injected and mainly drained into the inferior tracheobronchial lymph nodes with six direct paths; one medial segment drained into the right anterior mediastinal chain. We noted three contralateral drainages and eight downward abdominal drainages. Out of the 17 segments of the lower lobe injected, 6 segments drained into the lymph nodes of another lobe, 5 segments showed a direct route to the lower quadrant chains. We noted one time a drainage into the paraesophageal lymph nodes. The variations in lymphatic drainage of the right lung require to carry out systematically a radical mediastinal lymphadenectomy during the removal of non-small cell lung cancers and to associate an adjuvant treatment.

  9. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.

  10. SU-C-BRA-01: Interactive Auto-Segmentation for Bowel in Online Adaptive MRI-Guided Radiation Therapy by Using a Multi-Region Labeling Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y; Chen, I; Kashani, R

    Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less

  11. Market segmentation strategy in internet market

    NASA Astrophysics Data System (ADS)

    Ren, Yawei; Yang, Deli; Diao, Xinjun

    2010-04-01

    This paper presents a model to describe the competitive dynamics of web sites on the WWW market and analyze the stability of the model which is composed of one powerful site and two small sites. One of the most important results that emerge from this simple model is that strong competition among websites does not necessarily lead to the demise of the small website on the WWW market. From the stability analysis of the model, we obtain a series of conditions in which small sites can obtain competitive advantages by using the market segmentation strategy.

  12. Parenchymal preserving anatomic resections result in less pulmonary function loss in patients with Stage I non-small cell lung cancer.

    PubMed

    Macke, Ryan A; Schuchert, Matthew J; Odell, David D; Wilson, David O; Luketich, James D; Landreneau, Rodney J

    2015-04-01

    A suggested benefit of sublobar resection for stage I non-small cell lung cancer (NSCLC) compared to lobectomy is a relative preservation of pulmonary function. Very little objective data exist, however, supporting this supposition. We sought to evaluate the relative impact of both anatomic segmental and lobar resection on pulmonary function in patients with resected clinical stage I NSCLC. The records of 159 disease-free patients who underwent anatomic segmentectomy (n = 89) and lobectomy (n = 70) for the treatment of stage I NSCLC with pre- and postoperative pulmonary function tests performed between 6 to 36 months after resection were retrospectively reviewed. Changes in forced expiratory volume in one second (FEV1) and diffusion capacity of carbon monoxide (DLCO) were analyzed based upon the number of anatomic pulmonary segments removed: 1-2 segments (n = 77) or 3-5 segments (n = 82). Preoperative pulmonary function was worse in the lesser resection cohort (1-2 segments) compared to the greater resection group (3-5 segments) (FEV1(%predicted): 79% vs. 85%, p = 0.038; DLCO(%predicted): 63% vs. 73%, p = 0.010). A greater decline in FEV1 was noted in patients undergoing resection of 3-5 segments (FEV1 (observed): 0.1 L vs. 0.3 L, p = 0.003; and FEV1 (% predicted): 4.3% vs. 8.2%, p = 0.055). Changes in DLCO followed this same trend (DLCO(observed): 1.3 vs. 2.4 mL/min/mmHg, p = 0.015; and DLCO(% predicted): 3.6% vs. 5.9%, p = 0.280). Parenchymal-sparing resections resulted in better preservation of pulmonary function at a median of one year, suggesting a long-term functional benefit with small anatomic segmental resections (1-2 segments). Prospective studies to evaluate measurable functional changes, as well as quality of life, between segmentectomy and lobectomy with a larger patient cohort appear justified.

  13. White matter lesion extension to automatic brain tissue segmentation on MRI.

    PubMed

    de Boer, Renske; Vrooman, Henri A; van der Lijn, Fedde; Vernooij, Meike W; Ikram, M Arfan; van der Lugt, Aad; Breteler, Monique M B; Niessen, Wiro J

    2009-05-01

    A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.

  14. Large Area Crop Inventory Experiment (LACIE). Review of LACIE methodology, a project evaluation of technical acceptability

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The author has identified the following significant results. Results indicated that the LANDSAT data and the classification technology can estimate the small grains area within a sample segment accurately and reliably enough to meet the LACIE goals. Overall, the LACIE estimates in a 9 x 11 kilometer segment agree well with ground and aircraft determined area within these segments. The estimated c.v. of the random classification error was acceptably small. These analyses confirmed that bias introduced by various factors, such as LANDSAT spatial resolution, lack of spectral resolution, classifier bias, and repeatability, was not excessive in terms of the required performance criterion. Results of these tests did indicate a difficulty in differentiating wheat from other closely related small grains. However, satisfactory wheat area estimates were obtained through the reduction of the small grain area estimates in accordance with relative amounts of these crops as determined from historic data; these procedures are being further refined.

  15. Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys.

    PubMed

    Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E; Blais, Jaime D; Czerwiec, Frank S; Harris, Peter C; King, Bernard F; Torres, Vicente E; Erickson, Bradley J

    2017-08-01

    Deep learning techniques are being rapidly applied to medical imaging tasks-from organ and lesion segmentation to tissue and tumor classification. These techniques are becoming the leading algorithmic approaches to solve inherently difficult image processing tasks. Currently, the most critical requirement for successful implementation lies in the need for relatively large datasets that can be used for training the deep learning networks. Based on our initial studies of MR imaging examinations of the kidneys of patients affected by polycystic kidney disease (PKD), we have generated a unique database of imaging data and corresponding reference standard segmentations of polycystic kidneys. In the study of PKD, segmentation of the kidneys is needed in order to measure total kidney volume (TKV). Automated methods to segment the kidneys and measure TKV are needed to increase measurement throughput and alleviate the inherent variability of human-derived measurements. We hypothesize that deep learning techniques can be leveraged to perform fast, accurate, reproducible, and fully automated segmentation of polycystic kidneys. Here, we describe a fully automated approach for segmenting PKD kidneys within MR images that simulates a multi-observer approach in order to create an accurate and robust method for the task of segmentation and computation of TKV for PKD patients. A total of 2000 cases were used for training and validation, and 400 cases were used for testing. The multi-observer ensemble method had mean ± SD percent volume difference of 0.68 ± 2.2% compared with the reference standard segmentations. The complete framework performs fully automated segmentation at a level comparable with interobserver variability and could be considered as a replacement for the task of segmentation of PKD kidneys by a human.

  16. Segmentation of culturally diverse visitors' values in forest recreation management

    Treesearch

    C. Li; H.C. Zinn; G.E. Chick; J.D. Absher; A.R. Graefe; Y. Hsu

    2007-01-01

    The purpose of this study was to examine the potential utility of HOFSTEDE’s measure of cultural values (1980) for group segmentation in an ethnically diverse population in a forest recreation context, and to validate the values segmentation, if any, via socio-demographic and service quality related variables. In 2002, the visitors to the Angeles National Forest (ANF)...

  17. Gland segmentation in prostate histopathological images

    PubMed Central

    Singh, Malay; Kalaw, Emarene Mationg; Giron, Danilo Medina; Chong, Kian-Tai; Tan, Chew Lim; Lee, Hwee Kuan

    2017-01-01

    Abstract. Glandular structural features are important for the tumor pathologist in the assessment of cancer malignancy of prostate tissue slides. The varying shapes and sizes of glands combined with the tedious manual observation task can result in inaccurate assessment. There are also discrepancies and low-level agreement among pathologists, especially in cases of Gleason pattern 3 and pattern 4 prostate adenocarcinoma. An automated gland segmentation system can highlight various glandular shapes and structures for further analysis by the pathologist. These objective highlighted patterns can help reduce the assessment variability. We propose an automated gland segmentation system. Forty-three hematoxylin and eosin-stained images were acquired from prostate cancer tissue slides and were manually annotated for gland, lumen, periacinar retraction clefting, and stroma regions. Our automated gland segmentation system was trained using these manual annotations. It identifies these regions using a combination of pixel and object-level classifiers by incorporating local and spatial information for consolidating pixel-level classification results into object-level segmentation. Experimental results show that our method outperforms various texture and gland structure-based gland segmentation algorithms in the literature. Our method has good performance and can be a promising tool to help decrease interobserver variability among pathologists. PMID:28653016

  18. Effect of acetylcysteine on adaptation of intestinal smooth muscle after small bowel bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrodt, N.W.; Belloso, R.M.; Biskin, L.C.

    1986-03-05

    The authors have postulated that the adaptive changes in function and structure of bypassed segments of small bowel are due in part to the change in intestinal contents following operation. The purpose of these experiments was to determine if a mucolytic agent could alter the adaptation. Rats were anesthetized and a 70% jejunoileal bypass was performed. The bypassed segments then were perfused with either saline or acetylcysteine for 3-12 days. Then, either intestinal transit was determined using Cr-51, or segments were taken for morphometric analysis. Transit, as assessed by the geometric center, was increased 32% by acetylcysteine treatment. Treatment alsomore » caused a decrease in hypertrophy of the muscularis. Muscle wet weight, muscle cross-sectional area, and muscle layer thickness all were significantly less in those animals infused with acetyl-cysteine. No decreases in hypertrophy were seen in the in-continuity segments. These data indicate that alterations in intestinal content can affect the course of adaptation of intestinal muscle in response to small bowel bypass.« less

  19. Inferring action structure and causal relationships in continuous sequences of human action.

    PubMed

    Buchsbaum, Daphna; Griffiths, Thomas L; Plunkett, Dillon; Gopnik, Alison; Baldwin, Dare

    2015-02-01

    In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a sequence of observed behavior into meaningful actions, and determining which of those actions lead to effects in the world. Here we present a Bayesian analysis of how statistical and causal cues to segmentation should optimally be combined, as well as four experiments investigating human action segmentation and causal inference. We find that both people and our model are sensitive to statistical regularities and causal structure in continuous action, and are able to combine these sources of information in order to correctly infer both causal relationships and segmentation boundaries. Copyright © 2014. Published by Elsevier Inc.

  20. Rigid shape matching by segmentation averaging.

    PubMed

    Wang, Hongzhi; Oliensis, John

    2010-04-01

    We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.

  1. Hedgehog signaling regulates segment formation in the annelid Platynereis.

    PubMed

    Dray, Nicolas; Tessmar-Raible, Kristin; Le Gouar, Martine; Vibert, Laura; Christodoulou, Foteini; Schipany, Katharina; Guillou, Aurélien; Zantke, Juliane; Snyman, Heidi; Béhague, Julien; Vervoort, Michel; Arendt, Detlev; Balavoine, Guillaume

    2010-07-16

    Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning, has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns before the morphological appearance of segments in the annelid Platynereis dumerilii. Treatments with small molecules antagonistic to Hedgehog signaling disrupt segment formation. Platynereis Hedgehog is not necessary to establish early segment patterns but is required to maintain them. The molecular similarity of segment patterning functions of the Hedgehog pathway in an annelid and in arthropods supports a common origin of segmentation in protostomes.

  2. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng

    2018-04-01

    This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.

  3. James Webb Space Telescope segment phasing using differential optical transfer functions

    PubMed Central

    Codona, Johanan L.; Doble, Nathan

    2015-01-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms. PMID:27042684

  4. Concentric agonist-antagonist robots for minimally invasive surgeries

    NASA Astrophysics Data System (ADS)

    Oliver-Butler, Kaitlin; Epps, Zane H.; Rucker, Daniel Caleb

    2017-03-01

    We present a novel continuum robot design concept, Concentric Agonist-Antagonist Robots (CAAR), that uses push-pull, agonist-antagonist action of a pair of concentric tubes. The CAAR tubes are designed to have noncentral, offset neutral axes, and they are fixed together at their distal ends. Axial base translations then induce bending in the device. A CAAR segment can be created by selectively cutting asymmetric notches into the profile of two stock tubes, which relocates the neutral bending plane away from the center of the inner lumen. Like conventional concentric-tube robots (CTRs) based on counter-rotating precurved tubes, a CAAR can be made at very small scales and contain a large, open lumen. In contrast with CTRs, the CAAR concept has no elastic stability issues, offers a larger range of motion, and has lower overall stiffness. Furthermore, by varying the position of the neutral axes along the length of each tube, arbitrary, variable curvature actuation modes can be achieved. Precurving the tubes can additionally increase the workspace of a single segment. A single two-tube assembly can be used to create 3 degree-of-freedom (DOF) robot segments, and multiple segments can be deployed concentrically. Both additive manufacturing and traditional machining of stock tubes can create and customize the geometry and performance of the CAAR. In this paper, we explore the CAAR concept, provide kinematic and static models, and experimentally evaluate the model with a both a straight and a precurved CAAR. We conclude with a discussion of the significance and our plans for future work.

  5. CONSTITUENCY IN A SYSTEMIC DESCRIPTION OF THE ENGLISH CLAUSE.

    ERIC Educational Resources Information Center

    HUDSON, R.A.

    TWO WAYS OF DESCRIBING CLAUSES IN ENGLISH ARE DISCUSSED IN THIS PAPER. THE FIRST, TERMED THE "FEW-IC'S" APPROACH, IS A SEGMENTATION OF THE CLAUSE INTO A SMALL NUMBER OF IMMEDIATE CONSTITUENTS WHICH REQUIRE A LARGE NUMBER OF FURTHER SEGMENTATIONS BEFORE THE ULTIMATE CONSTITUENTS ARE REACHED. THE SECOND, "MANY-IC'S" APPROACH, IS A SEGMENTATION INTO…

  6. F response and H reflex analysis of physiological unity of gravity and antigravity muscles in man.

    PubMed

    García, H A; Fisher, M A

    1977-01-01

    Observational differences between reflex (H reflex) and antidromic (F response) activation of segmental motoneurons by a peripheral electrical stimulus are described. In contrast to H reflexes, the percentage of F responses found after a series of stimuli is directly related to the pick-up field of the recording electrode consistent with this response being due to the variable activation of a small fraction of the available motoneuron pool. Despite the differing physiological mechanisms, both F responses and H reflexes can be used to demonstrate similar relative "central excitatory states" for antigravity muscles (i.e. extensors in the lower extremity and flexors in the upper extremity) and their antagonist gravity muscles. H reflexes were elicited not only in their usual location in certain antigravity muscles but also in unusual locations by length/tension changes in agonist and antagonist groups as well as by passive stretch. The data argue for the physiological unity of similarly acting gravity and antigravity muscles as well as supporting a meaningful role of group II afferents in normal segmental motoneuron pool excitability.

  7. Proximate and landscape factors influence grassland bird distributions

    USGS Publications Warehouse

    Cunningham, M.A.; Johnson, D.H.

    2006-01-01

    Ecologists increasingly recognize that birds can respond to features well beyond their normal areas of activity, but little is known about the relative importance of landscapes and proximate factors or about the scales of landscapes that influence bird distributions. We examined the influences of tree cover at both proximate and landscape scales on grassland birds, a group of birds of high conservation concern, in the Sheyenne National Grassland in North Dakota, USA. The Grassland contains a diverse array of grassland and woodland habitats. We surveyed breeding birds on 2015 100 m long transect segments during 2002 and 2003. We modeled the occurrence of 19 species in relation to habitat features (percentages of grassland, woodland, shrubland, and wetland) within each 100-m segment and to tree cover within 200-1600 m of the segment. We used information-theoretic statistical methods to compare models and variables. At the proximate scales, tree cover was the most important variable, having negative influences on 13 species and positive influences on two species. In a comparison of multiple scales, models with only proximate variables were adequate for some species, but models combining proximate with landscape information were best for 17 of 19 species. Landscape-only models were rarely competitive. Combined models at the largest scales (800-1600 m) were best for 12 of 19 species. Seven species had best models including 1600-m landscapes plus proximate factors in at least one year. These were Wilson's Phalarope (Phalaropus tricolor), Sedge Wren (Cistothorus platensis), Field Sparrow (Spizella pusilla), Grasshopper Sparrow (Ammodramus savannarum), Bobolink (Dolychonix oryzivorus), Red-winged Blackbird (Agelaius phoeniceus), and Brown-headed Cowbird (Molothrus ater). These seven are small-bodied species; thus larger-bodied species do not necessarily respond most to the largest landscapes. Our findings suggest that birds respond to habitat features at a variety of scales. Models with only landscape-scale tree cover were rarely competitive, indicating that broad-scale modeling alone, such as that based solely on remotely sensed data, is likely to be inadequate in explaining species distributions. ?? 2006 by the Ecological Society of America.

  8. Object-based delineation and classification of alluvial fans by application of mean-shift segmentation and support vector machines

    NASA Astrophysics Data System (ADS)

    Pipaud, Isabel; Lehmkuhl, Frank

    2017-09-01

    In the field of geomorphology, automated extraction and classification of landforms is one of the most active research areas. Until the late 2000s, this task has primarily been tackled using pixel-based approaches. As these methods consider pixels and pixel neighborhoods as the sole basic entities for analysis, they cannot account for the irregular boundaries of real-world objects. Object-based analysis frameworks emerging from the field of remote sensing have been proposed as an alternative approach, and were successfully applied in case studies falling in the domains of both general and specific geomorphology. In this context, the a-priori selection of scale parameters or bandwidths is crucial for the segmentation result, because inappropriate parametrization will either result in over-segmentation or insufficient segmentation. In this study, we describe a novel supervised method for delineation and classification of alluvial fans, and assess its applicability using a SRTM 1‧‧ DEM scene depicting a section of the north-eastern Mongolian Altai, located in northwest Mongolia. The approach is premised on the application of mean-shift segmentation and the use of a one-class support vector machine (SVM) for classification. To consider variability in terms of alluvial fan dimension and shape, segmentation is performed repeatedly for different weightings of the incorporated morphometric parameters as well as different segmentation bandwidths. The final classification layer is obtained by selecting, for each real-world object, the most appropriate segmentation result according to fuzzy membership values derived from the SVM classification. Our results show that mean-shift segmentation and SVM-based classification provide an effective framework for delineation and classification of a particular landform. Variable bandwidths and terrain parameter weightings were identified as being crucial for consideration of intra-class variability, and, in turn, for a constantly high segmentation quality. Our analysis further reveals that incorporation of morphometric parameters quantifying specific morphological aspects of a landform is indispensable for developing an accurate classification scheme. Alluvial fans exhibiting accentuated composite morphologies were identified as a major challenge for automatic delineation, as they cannot be fully captured by a single segmentation run. There is, however, a high probability that this shortcoming can be overcome by enhancing the presented approach with a routine merging fan sub-entities based on their spatial relationships.

  9. Comparison of the trunk-pelvis and lower extremities sagittal plane inter-segmental coordination and variability during walking in persons with and without chronic low back pain.

    PubMed

    Ebrahimi, Samaneh; Kamali, Fahimeh; Razeghi, Mohsen; Haghpanah, Seyyed Arash

    2017-04-01

    Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P<0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P<0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P<0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development, application, and sensitivity analysis of a water quality index for drinking water management in small systems.

    PubMed

    Scheili, A; Rodriguez, Manuel J; Sadiq, R

    2015-11-01

    The aim of this study was to produce a drinking water assessment tool for operators of small distribution systems. A drinking water quality index (DWQI) was developed and applied to small systems based on the water quality index of the Canadian Council of Ministers of Environment. The drinking water quality index was adapted to specific needs by creating four drinking water quality scenarios. First, the temporal and spatial dimensions of drinking water quality variability were taken into account. The DWQI was designed to express global drinking water quality according to different monitoring frequencies. Daily, monthly, and seasonal assessment was also considered. With the data made available, it was possible to use the index as a spatial monitoring tool and express water quality in different points in the distribution system. Moreover, adjustments were made to prioritize the type of contaminant to monitor. For instance, monitoring contaminants with acute health effects led to a scenario based on daily measures, including easily accessible and affordable water quality parameters. On the other hand, contaminants with chronic effects, especially disinfection by-products, were considered in a seasonal monitoring scenario where disinfection by-product reference values were redefined according to their seasonal variability. A sensitivity analysis was also carried out to validate the index. Globally, the DWQI developed is adapted to the needs of small systems. In fact, expressing drinking water quality using the DWQI contributes to the identification of problematic periods and segments in the distribution system. Further work may include this index in the development of a customized decision-making tool for small-system operators and managers.

  11. Tunable graded rod laser assembly

    NASA Technical Reports Server (NTRS)

    AuYeung, John C. (Inventor)

    1985-01-01

    A tunable laser assembly including a pair of radially graded indexed optical segments aligned to focus the laser to form an external resonant cavity with an optical axis, the respective optical segments are retativity moveable along the optical axis and provide a variable et aion gap sufficient to permit variable tuning of the laser wavelength without altering the effective length of the resonant cavity. The gap also include a saturable absorbing material providing a passive mode-locking of the laser.

  12. Grading vascularity from histopathological images based on traveling salesman distance and vessel size

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Hemminger, Jessica; Kurt, Habibe; Lozanski, Gerard; Gurcan, Metin

    2014-03-01

    Vascularity represents an important element of tissue/tumor microenvironment and is implicated in tumor growth, metastatic potential and resistence to therapy. Small blood vessels can be visualized using immunohistochemical stains specific to vascular cells. However, currently used manual methods to assess vascular density are poorly reproducible and are at best semi quantitative. Computer based quantitative and objective methods to measure microvessel density are urgently needed to better understand and clinically utilize microvascular density information. We propose a new method to quantify vascularity from images of bone marrow biopsies stained for CD34 vascular lining cells protein as a model. The method starts by automatically segmenting the blood vessels by methods of maxlink thresholding and minimum graph cuts. The segmentation is followed by morphological post-processing to reduce blast and small spurious objects from the bone marrow images. To classify the images into one of the four grades, we extracted 20 features from the segmented blood vessel images. These features include first four moments of the distribution of the area of blood vessels, first four moments of the distribution of 1) the edge weights in the minimum spanning tree of the blood vessels, 2) the shortest distance between blood vessels, 3) the homogeneity of the shortest distance (absolute difference in distance between consecutive blood vessels along the shortest path) between blood vessels and 5) blood vessel orientation. The method was tested on 26 bone marrow biopsy images stained with CD34 IHC stain, which were evaluated by three pathologists. The pathologists took part in this study by quantifying blood vessel density using gestalt assessment in hematopoietic bone marrow portions of bone marrow core biopsies images. To determine the intra-reader variability, each image was graded twice by each pathologist with two-week interval in between their readings. For each image, the ground truth (grade) was acquired through consensus among the three pathologists at the end of the study. A ranking of the features reveals that the fourth moment of the distribution of the area of blood vessels along with the first moment of the distribution of the shortest distance between blood vessels can correctly grade 68.2% of the bone marrow biopsies, while the intra- and inter-reader variability among the pathologists are 66.9% and 40.0%, respectively.

  13. Deep residual networks for automatic segmentation of laparoscopic videos of the liver

    NASA Astrophysics Data System (ADS)

    Gibson, Eli; Robu, Maria R.; Thompson, Stephen; Edwards, P. Eddie; Schneider, Crispin; Gurusamy, Kurinchi; Davidson, Brian; Hawkes, David J.; Barratt, Dean C.; Clarkson, Matthew J.

    2017-03-01

    Motivation: For primary and metastatic liver cancer patients undergoing liver resection, a laparoscopic approach can reduce recovery times and morbidity while offering equivalent curative results; however, only about 10% of tumours reside in anatomical locations that are currently accessible for laparoscopic resection. Augmenting laparoscopic video with registered vascular anatomical models from pre-procedure imaging could support using laparoscopy in a wider population. Segmentation of liver tissue on laparoscopic video supports the robust registration of anatomical liver models by filtering out false anatomical correspondences between pre-procedure and intra-procedure images. In this paper, we present a convolutional neural network (CNN) approach to liver segmentation in laparoscopic liver procedure videos. Method: We defined a CNN architecture comprising fully-convolutional deep residual networks with multi-resolution loss functions. The CNN was trained in a leave-one-patient-out cross-validation on 2050 video frames from 6 liver resections and 7 laparoscopic staging procedures, and evaluated using the Dice score. Results: The CNN yielded segmentations with Dice scores >=0.95 for the majority of images; however, the inter-patient variability in median Dice score was substantial. Four failure modes were identified from low scoring segmentations: minimal visible liver tissue, inter-patient variability in liver appearance, automatic exposure correction, and pathological liver tissue that mimics non-liver tissue appearance. Conclusion: CNNs offer a feasible approach for accurately segmenting liver from other anatomy on laparoscopic video, but additional data or computational advances are necessary to address challenges due to the high inter-patient variability in liver appearance.

  14. Guidance of a Solar Sail Spacecraft to the Sun - L(2) Point.

    NASA Astrophysics Data System (ADS)

    Hur, Sun Hae

    The guidance of a solar sail spacecraft along a minimum-time path from an Earth orbit to a region near the Sun-Earth L_2 libration point is investigated. Possible missions to this point include a spacecraft "listening" for possible extra-terrestrial electromagnetic signals and a science payload to study the geomagnetic tail. A key advantage of the solar sail is that it requires no fuel. The control variables are the sail angles relative to the Sun-Earth line. The thrust is very small, on the order of 1 mm/s^2, and its magnitude and direction are highly coupled. Despite this limited controllability, the "free" thrust can be used for a wide variety of terminal conditions including halo orbits. If the Moon's mass is lumped with the Earth, there are quasi-equilibrium points near L_2. However, they are unstable so that some form of station keeping is required, and the sail can provide this without any fuel usage. In the two-dimensional case, regulating about a nominal orbit is shown to require less control and result in smaller amplitude error response than regulating about a quasi-equilibrium point. In the three-dimensional halo orbit case, station keeping using periodically varying gains is demonstrated. To compute the minimum-time path, the trajectory is divided into two segments: the spiral segment and the transition segment. The spiral segment is computed using a control law that maximizes the rate of energy increase at each time. The transition segment is computed as the solution of the time-optimal control problem from the endpoint of the spiral to the terminal point. It is shown that the path resulting from this approximate strategy is very close to the exact optimal path. For the guidance problem, the approximate strategy in the spiral segment already gives a nonlinear full-state feedback law. However, for large perturbations, follower guidance using an auxiliary propulsion is used for part of the spiral. In the transition segment, neighboring extremal feedback guidance using the solar sail, with feedforward control only near the terminal point, is used to correct perturbations in the initial conditions.

  15. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    PubMed

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.

    2018-03-01

    This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.

  17. Lexico-semantic and acoustic-phonetic processes in the perception of noise-vocoded speech: implications for cochlear implantation

    PubMed Central

    McGettigan, Carolyn; Rosen, Stuart; Scott, Sophie K.

    2014-01-01

    Noise-vocoding is a transformation which, when applied to speech, severely reduces spectral resolution and eliminates periodicity, yielding a stimulus that sounds “like a harsh whisper” (Scott et al., 2000, p. 2401). This process simulates a cochlear implant, where the activity of many thousand hair cells in the inner ear is replaced by direct stimulation of the auditory nerve by a small number of tonotopically-arranged electrodes. Although a cochlear implant offers a powerful means of restoring some degree of hearing to profoundly deaf individuals, the outcomes for spoken communication are highly variable (Moore and Shannon, 2009). Some variability may arise from differences in peripheral representation (e.g., the degree of residual nerve survival) but some may reflect differences in higher-order linguistic processing. In order to explore this possibility, we used noise-vocoding to explore speech recognition and perceptual learning in normal-hearing listeners tested across several levels of the linguistic hierarchy: segments (consonants and vowels), single words, and sentences. Listeners improved significantly on all tasks across two test sessions. In the first session, individual differences analyses revealed two independently varying sources of variability: one lexico-semantic in nature and implicating the recognition of words and sentences, and the other an acoustic-phonetic factor associated with words and segments. However, consequent to learning, by the second session there was a more uniform covariance pattern concerning all stimulus types. A further analysis of phonetic feature recognition allowed greater insight into learning-related changes in perception and showed that, surprisingly, participants did not make full use of cues that were preserved in the stimuli (e.g., vowel duration). We discuss these findings in relation cochlear implantation, and suggest auditory training strategies to maximize speech recognition performance in the absence of typical cues. PMID:24616669

  18. Segmenting the thoracic, abdominal and pelvic musculature on CT scans combining atlas-based model and active contour model

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Summers, Ronald M.

    2013-03-01

    Segmentation of the musculature is very important for accurate organ segmentation, analysis of body composition, and localization of tumors in the muscle. In research fields of computer assisted surgery and computer-aided diagnosis (CAD), muscle segmentation in CT images is a necessary pre-processing step. This task is particularly challenging due to the large variability in muscle structure and the overlap in intensity between muscle and internal organs. This problem has not been solved completely, especially for all of thoracic, abdominal and pelvic regions. We propose an automated system to segment the musculature on CT scans. The method combines an atlas-based model, an active contour model and prior segmentation of fat and bones. First, body contour, fat and bones are segmented using existing methods. Second, atlas-based models are pre-defined using anatomic knowledge at multiple key positions in the body to handle the large variability in muscle shape. Third, the atlas model is refined using active contour models (ACM) that are constrained using the pre-segmented bone and fat. Before refining using ACM, the initialized atlas model of next slice is updated using previous atlas. The muscle is segmented using threshold and smoothed in 3D volume space. Thoracic, abdominal and pelvic CT scans were used to evaluate our method, and five key position slices for each case were selected and manually labeled as the reference. Compared with the reference ground truth, the overlap ratio of true positives is 91.1%+/-3.5%, and that of false positives is 5.5%+/-4.2%.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milostan, Catharina; Levin, Todd; Muehleisen, Ralph T.

    Many electric utilities operate energy efficiency incentive programs that encourage increased dissemination and use of energy-efficient (EE) products in their service territories. The programs can be segmented into three broad categories—downstream incentive programs target product end users, midstream programs target product distributors, and upstream programs target product manufacturers. Traditional downstream programs have had difficulty engaging Small Business/Small Portfolio (SBSP) audiences, and an opportunity exists to expand Commercial Midstream Incentive Programs (CMIPs) to reach this market segment instead.

  20. A novel adaptive scoring system for segmentation validation with multiple reference masks

    NASA Astrophysics Data System (ADS)

    Moltz, Jan H.; Rühaak, Jan; Hahn, Horst K.; Peitgen, Heinz-Otto

    2011-03-01

    The development of segmentation algorithms for different anatomical structures and imaging protocols is an important task in medical image processing. The validation of these methods, however, is often treated as a subordinate task. Since manual delineations, which are widely used as a surrogate for the ground truth, exhibit an inherent uncertainty, it is preferable to use multiple reference segmentations for an objective validation. This requires a consistent framework that should fulfill three criteria: 1) it should treat all reference masks equally a priori and not demand consensus between the experts; 2) it should evaluate the algorithmic performance in relation to the inter-reference variability, i.e., be more tolerant where the experts disagree about the true segmentation; 3) it should produce results that are comparable for different test data. We show why current state-of-the-art frameworks as the one used at several MICCAI segmentation challenges do not fulfill these criteria and propose a new validation methodology. A score is computed in an adaptive way for each individual segmentation problem, using a combination of volume- and surface-based comparison metrics. These are transformed into the score by relating them to the variability between the reference masks which can be measured by comparing the masks with each other or with an estimated ground truth. We present examples from a study on liver tumor segmentation in CT scans where our score shows a more adequate assessment of the segmentation results than the MICCAI framework.

  1. Infrared dim small target segmentation method based on ALI-PCNN model

    NASA Astrophysics Data System (ADS)

    Zhao, Shangnan; Song, Yong; Zhao, Yufei; Li, Yun; Li, Xu; Jiang, Yurong; Li, Lin

    2017-10-01

    Pulse Coupled Neural Network (PCNN) is improved by Adaptive Lateral Inhibition (ALI), while a method of infrared (IR) dim small target segmentation based on ALI-PCNN model is proposed in this paper. Firstly, the feeding input signal is modulated by lateral inhibition network to suppress background. Then, the linking input is modulated by ALI, and linking weight matrix is generated adaptively by calculating ALI coefficient of each pixel. Finally, the binary image is generated through the nonlinear modulation and the pulse generator in PCNN. The experimental results show that the segmentation effect as well as the values of contrast across region and uniformity across region of the proposed method are better than the OTSU method, maximum entropy method, the methods based on conventional PCNN and visual attention, and the proposed method has excellent performance in extracting IR dim small target from complex background.

  2. Importance of fishing as a segmentation variable in the application of a social worlds model

    USGS Publications Warehouse

    Gigliotti, Larry M.; Chase, Loren

    2017-01-01

    Market segmentation is useful to understanding and classifying the diverse range of outdoor recreation experiences sought by different recreationists. Although many different segmentation methodologies exist, many are complex and difficult to measure accurately during in-person intercepts, such as that of creel surveys. To address that gap in the literature, we propose a single-item measure of the importance of fishing as a surrogate to often overly- or needlesslycomplex segmentation techniques. The importance of fishing item is a measure of the value anglers place on the activity or a coarse quantification of how central the activity is to the respondent’s lifestyle (scale: 0 = not important, 1 = slightly, 2 = moderately, 3 = very, and 4 = fishing is my most important recreational activity). We suggest the importance scale may be a proxy measurement for segmenting anglers using the social worlds model as a theoretical framework. Vaske (1980) suggested that commitment to recreational activities may be best understood in relation to social group participation and the social worlds model provides a rich theoretical framework for understanding social group segments. Unruh (1983) identified four types of actor involvement in social worlds: strangers, tourists, regulars, and insiders, differentiated by four characteristics (orientation, experiences, relationships, and commitment). We evaluated the importance of fishing as a segmentation variable using data collected by a mixed-mode survey of South Dakota anglers fishing in 2010. We contend that this straightforward measurement may be useful for segmenting outdoor recreation activities when more complicated segmentation schemes are not suitable. Further, this index, when coupled with the social worlds model, provides a valuable framework for understanding the segments and making management decisions.

  3. Development of a semi-automated combined PET and CT lung lesion segmentation framework

    NASA Astrophysics Data System (ADS)

    Rossi, Farli; Mokri, Siti Salasiah; Rahni, Ashrani Aizzuddin Abd.

    2017-03-01

    Segmentation is one of the most important steps in automated medical diagnosis applications, which affects the accuracy of the overall system. In this paper, we propose a semi-automated segmentation method for extracting lung lesions from thoracic PET/CT images by combining low level processing and active contour techniques. The lesions are first segmented in PET images which are first converted to standardised uptake values (SUVs). The segmented PET images then serve as an initial contour for subsequent active contour segmentation of corresponding CT images. To evaluate its accuracy, the Jaccard Index (JI) was used as a measure of the accuracy of the segmented lesion compared to alternative segmentations from the QIN lung CT segmentation challenge, which is possible by registering the whole body PET/CT images to the corresponding thoracic CT images. The results show that our proposed technique has acceptable accuracy in lung lesion segmentation with JI values of around 0.8, especially when considering the variability of the alternative segmentations.

  4. Small mammals taphonomy and environmental evolution during Late Pleistocene-Holocene in Monte Desert: The evidence of Gruta del Indio (central west Argentina)

    NASA Astrophysics Data System (ADS)

    Fernández, Fernando J.; Pardiñas, Ulyses F. J.

    2018-07-01

    Very few excavated sequences in southern South America provide an approximation to the environmental evolution covering the segment Late Pleistocene-Holocene. Here we present the taphonomic analysis and paleoenvironmental reconstruction based on the small mammal remains retrieved from the archaeological and paleontological site Gruta del Indio (Mendoza Province, Argentina). Radiocarbon dates situate the small mammal deposits studied within the Late Pleistocene and Holocene. Thus, these assemblages provide a record for inferring environmental evolution in the middle basin of Atuel River during the last ∼31 ky BP. Taphonomic analysis revealed that most of small mammal remains were incorporated by a little destructive nocturnal owl. Recorded species include mainly cricetid and caviomorph rodents and a single marsupial. While Pleistocene assemblages have not exclusive species, the specific richness increases towards the Holocene probably linked with the climatic variability related to ENSO. In overall, the recorded small mammals suggest environmental stability during the Late Pleistocene-Holocene, mostly associated with Monte Desert conditions. Conversely, the pollen sequence studied from Gruta del Indio was interpreted as indicator of a deep environmental change during the Pleistocene-Holocene transition, when the Patagonian steppe was replaced by Monte Desert. Potential biases linked with these kinds of proxies are discussed.

  5. A universal reference sample derived from clone vector for improved detection of differential gene expression

    PubMed Central

    Khan, Rishi L; Gonye, Gregory E; Gao, Guang; Schwaber, James S

    2006-01-01

    Background Using microarrays by co-hybridizing two samples labeled with different dyes enables differential gene expression measurements and comparisons across slides while controlling for within-slide variability. Typically one dye produces weaker signal intensities than the other often causing signals to be undetectable. In addition, undetectable spots represent a large problem for two-color microarray designs and most arrays contain at least 40% undetectable spots even when labeled with reference samples such as Stratagene's Universal Reference RNAs™. Results We introduce a novel universal reference sample that produces strong signal for all spots on the array, increasing the average fraction of detectable spots to 97%. Maximizing detectable spots on the reference image channel also decreases the variability of microarray data allowing for reliable detection of smaller differential gene expression changes. The reference sample is derived from sequence contained in the parental EST clone vector pT7T3D-Pac and is called vector RNA (vRNA). We show that vRNA can also be used for quality control of microarray printing and PCR product quality, detection of hybridization anomalies, and simplification of spot finding and segmentation tasks. This reference sample can be made inexpensively in large quantities as a renewable resource that is consistent across experiments. Conclusion Results of this study show that vRNA provides a useful universal reference that yields high signal for almost all spots on a microarray, reduces variation and allows for comparisons between experiments and laboratories. Further, it can be used for quality control of microarray printing and PCR product quality, detection of hybridization anomalies, and simplification of spot finding and segmentation tasks. This type of reference allows for detection of small changes in differential expression while reference designs in general allow for large-scale multivariate experimental designs. vRNA in combination with reference designs enable systems biology microarray experiments of small physiologically relevant changes. PMID:16677381

  6. Issues about axial diffusion during segmental hair analysis.

    PubMed

    Kintz, Pascal

    2013-06-01

    The detection of a single drug exposure in hair (doping offence, drug-facilitated crime) is based on the presence of the compound of interest in the segment corresponding to the period of the alleged event. However, in some cases, the drug is detected in consecutive segments. As a consequence, interpretation of the results is a challenge that deserves particular attention. Literature evaluation and data obtained from the 20-year experience in drug testing in hair of the author are used as the basis to establish a theory to validate the concept of single exposure in authentic forensic cases where the drug is detected in 2 or 3 segments. The gained experience recommends to wait for 4-5 weeks after the alleged event and then to collect strands of hair. Assuming normal hair growth rate (1 cm/mo), it is advisable to cut the strand into 3 segments of 2 cm to document eventual exposure. Administration of a single dose would be confirmed by the presence of the drug in the proximal 2-cm segment (root), whereas not detected in the 2 other segments. However, in the daily experience of the author, it was noticed that sometimes (about 1 case from 10 examinations), the drug can be detected in 2 or 3 consecutive segments. Such a disposition was even observed in volunteer experiments in the literature. As it was also described for cocaine in early 1996, there is considerable variability in the area over which incorporated drug can be distributed in the hair shaft and in the rate of axial distribution of drug along the hair shaft. This can explain why a small amount of drug, as compared with the concentration in the proximal segment, can be measured in the second segment, as a result of an irregular movement. Another explanation for broadening the band of positive hair from a single dose is that drugs and metabolites are incorporated into hair during formation of the hair shaft via diffusion from sweat and other secretions. The presence of confounding interferences in the hair matrix or changes in the hair structure due to cosmetic treatments might mislead the final result of hair analysis. To qualify for a single exposure in hair, the author proposes to consider that the highest drug concentration must be detected in the segment corresponding to the period of the alleged event (calculated with a hair growth rate at 1 cm/mo) and that the measured concentration be at least 3 times higher than those measured in the previous or the following segments. This must only be done using scalp hair after cutting the hair directly close to the scalp.

  7. Segmental-dependent permeability throughout the small intestine following oral drug administration: Single-pass vs. Doluisio approach to in-situ rat perfusion.

    PubMed

    Lozoya-Agullo, Isabel; Zur, Moran; Beig, Avital; Fine, Noa; Cohen, Yael; González-Álvarez, Marta; Merino-Sanjuán, Matilde; González-Álvarez, Isabel; Bermejo, Marival; Dahan, Arik

    2016-12-30

    Intestinal drug permeability is position dependent and pertains to a specific point along the intestinal membrane, and the resulted segmental-dependent permeability phenomenon has been recognized as a critical factor in the overall absorption of drug following oral administration. The aim of this research was to compare segmental-dependent permeability data obtained from two different rat intestinal perfusion approaches: the single-pass intestinal perfusion (SPIP) model and the closed-loop (Doluisio) rat perfusion method. The rat intestinal permeability of 12 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was assessed in three small intestinal regions: the upper jejunum, mid-small intestine, and the terminal ileum, using both the SPIP and the Doluisio experimental methods. Excellent correlation was evident between the two approaches, especially in the upper jejunum (R 2 =0.95). Significant regional-dependent permeability was found in half of drugs studied, illustrating the importance and relevance of segmental-dependent intestinal permeability. Despite the differences between the two methods, highly comparable results were obtained by both methods, especially in the medium-high P eff range. In conclusion, the SPIP and the Doluisio method are both equally useful in obtaining crucial segmental-dependent intestinal permeability data. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Applied anatomy of small branches of the portal vein in transverse groove of hepatic hilum.

    PubMed

    Yan, Pei-ning; Tan, Wei-feng; Yang, Xin-wei; Zhang, Chuan-sen; Jiang, Xiao-qing

    2014-12-01

    The objective of this study was to provide the morphological details on small branches of the portal vein in transverse groove of hepatic hilum. According to the surgery significance, the small branches of portal vein in transverse groove of hepatic hilum were named as "Short hepatic portal veins (SHPVs)". SHPVs were minutely dissected in 30 adult cadaveric livers. The number, diameter, length, origin points, and entering liver sites of SHPVs were explored and measured. There were 181 SHPVs in 30 liver specimens, including 46% (83/181) from the left portal vein, 31% (56/181) from the bifurcation, and 23% (42/181) from the right portal vein. At the entering liver sites of SHPVs, 22% (40/181) supplied for segment IV, 9% (17/181) for segment V, 4% (7/181) for segment VI, 23% (41/181) for segment VII, and 42% (76/181) for segment I (caudate lobe). There were 6.0 ± 2.4 branches per liver specimen with range 3-12. The mean diameter of SHPVs was 2.25 ± 0.89 mm. The average length of SHPVs was 4.86 ± 2.12 mm. SHPVs widely existed in each liver specimen. The detailed anatomical study of SHPVs could be useful to avoid damaging the short portal branches during hepatic operations, such as isolated or combined caudate lobectomy.

  9. Model-Based Segmentation of Cortical Regions of Interest for Multi-subject Analysis of fMRI Data

    NASA Astrophysics Data System (ADS)

    Engel, Karin; Brechmann, Andr'e.; Toennies, Klaus

    The high inter-subject variability of human neuroanatomy complicates the analysis of functional imaging data across subjects. We propose a method for the correct segmentation of cortical regions of interest based on the cortical surface. First results on the segmentation of Heschl's gyrus indicate the capability of our approach for correct comparison of functional activations in relation to individual cortical patterns.

  10. Addition of simethicone improves small bowel capsule endoscopy visualisation quality.

    PubMed

    Krijbolder, M S; Grooteman, K V; Bogers, S K; de Jong, D J

    2018-01-01

    Small bowel capsule endoscopy (SBCE) is an important diagnostic tool for small-bowel diseases but its quality may be hampered by intraluminal gas. This study evaluated the added value of the anti-foaming agent, simethicone, to a bowel preparation with polyethylene glycol (PEG) on the quality of small bowel visualisation and its use in the Netherlands. This was a retrospective, single-blind, cohort study. Patients in the PEG group only received PEG prior to SBCE. Patients in the PEG-S group ingested additional simethicone. Two investigators assessed the quality of small-bowel visualisation using a four-point scale for 'intraluminal gas' and 'faecal contamination'. By means of a survey, the use of anti-foaming agents was assessed in a random sample of 16 Dutch hospitals performing SBCE. The quality of small bowel visualisation in the PEG group (n = 33) was significantly more limited by intraluminal gas when compared with the PEG-S group (n = 31): proximal segment 83.3% in PEG group vs. 18.5% in PEG-S group (p < 0.01), distal segment 66.7% vs. 18.5% respectively (p < 0.01). No difference was observed in the amount of faecal contamination (proximal segment 80.0% PEG vs. 59.3% PEG-S, p = 0.2; distal segment 90.0% PEG vs. 85.2% PEG-S, p = 0.7), mean small bowel transit times (4.0 PEG vs. 3.9 hours PEG-S, p = 0.7) and diagnostic yield (43.3% PEG vs. 22.2% PEG-S, p = 0.16). Frequency of anti-foaming agent use in the Netherlands was low (3/16, 18.8%). Simethicone is of added value to a PEG bowel preparation in improving the quality of visualisation of the small bowel by reducing intraluminal gas. At present, the use of anti-foaming agents in SBCE preparation is not standard practice in the Netherlands.

  11. The Complete Nucleotide Sequence of the Human Immunoglobulin Heavy Chain Variable Region Locus

    PubMed Central

    Matsuda, Fumihiko; Ishii, Kazuo; Bourvagnet, Patrice; Kuma, Kei-ichi; Hayashida, Hidenori; Miyata, Takashi; Honjo, Tasuku

    1998-01-01

    The complete nucleotide sequence of the 957-kb DNA of the human immunoglobulin heavy chain variable (VH) region locus was determined and 43 novel VH segments were identified. The region contains 123 VH segments classifiable into seven different families, of which 79 are pseudogenes. Of the 44 VH segments with an open reading frame, 39 are expressed as heavy chain proteins and 1 as mRNA, while the remaining 4 are not found in immunoglobulin cDNAs. Combinatorial diversity of VH region was calculated to be ∼6,000. Conservation of the promoter and recombination signal sequences was observed to be higher in functional VH segments than in pseudogenes. Phylogenetic analysis of 114 VH segments clearly showed clustering of the VH segments of each family. However, an independent branch in the tree contained a single VH, V4-44.1P, sharing similar levels of homology to human VH families and to those of other vertebrates. Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the locus took place at least eight times between 133 and 10 million years ago. One nonimmunoglobulin gene of unknown function was identified in the intergenic region. PMID:9841928

  12. Microstructural Organization of Elastomeric Polyurethanes with Siloxane-Containing Soft Segments

    NASA Astrophysics Data System (ADS)

    Choi, Taeyi; Weklser, Jadwiga; Padsalgikar, Ajay; Runt, James

    2011-03-01

    In the present study, we investigate the microstructure of two series of segmented polyurethanes (PUs) containing siloxane-based soft segments and the same hard segments, the latter synthesized from diphenylmethane diisocyanate and butanediol. The first series is synthesized using a hydroxy-terminated polydimethylsiloxane macrodiol and varying hard segment contents. The second series are derived from an oligomeric diol containing both siloxane and aliphatic carbonate species. Hard domain morphologies were characterized using tapping mode atomic force microscopy and quantitative analysis of hard/soft segment demixing was conducted using small-angle X-ray scattering. The phase transitions of all materials were investigated using DSC and dynamic mechanical analysis, and hydrogen bonding by FTIR spectroscopy.

  13. Solar harvesting by a heterostructured cell with built-in variable width quantum wells

    NASA Astrophysics Data System (ADS)

    Brooks, W.; Wang, H.; Mil'shtein, S.

    2018-02-01

    We propose cascaded heterostructured p-i-n solar cells, where inside of the i-region is a set of Quantum Wells (QWs) with variable thicknesses to enhance absorption of different photonic energies and provide quick relaxation for high energy carriers. Our p-i-n heterostructure carries top p-type and bottom n-type 11.3 Å thick AlAs layers, which are doped by acceptors and donor densities up to 1019/cm3. The intrinsic region is divided into 10 segments where each segment carries ten QWs of the same width and the width of the QWs in each subsequent segment gradually increases. The top segment consists of 10 QWs with widths of 56.5Å, followed by a segment with 10 wider QWs with widths of 84.75Å, followed by increasing QW widths until the last segment has 10 QWs with widths of 565Å, bringing the total number of QWs to 100. The QW wall height is controlled by alternating AlAs and GaAs layers, where the AlAs layers are all 11.3Å thick, throughout the entire intrinsic region. Configuration of variable width QWs prescribes sets of energy levels which are suitable for absorption of a wide range of photon energies and will dissipate high electron-hole energies rapidly, reducing the heat load on the solar cell. We expect that the heating of the solar cell will be reduced by 8-11%, enhancing efficiency. The efficiency of the designed solar cell is 43.71%, the Fill Factor is 0.86, the density of short circuit current (ISC) will not exceed 338 A/m2 and the open circuit voltage (VOC) is 1.51V.

  14. Surgeon and type of anesthesia predict variability in surgical procedure times.

    PubMed

    Strum, D P; Sampson, A R; May, J H; Vargas, L G

    2000-05-01

    Variability in surgical procedure times increases the cost of healthcare delivery by increasing both the underutilization and overutilization of expensive surgical resources. To reduce variability in surgical procedure times, we must identify and study its sources. Our data set consisted of all surgeries performed over a 7-yr period at a large teaching hospital, resulting in 46,322 surgical cases. To study factors associated with variability in surgical procedure times, data mining techniques were used to segment and focus the data so that the analyses would be both technically and intellectually feasible. The data were subdivided into 40 representative segments of manageable size and variability based on headers adopted from the common procedural terminology classification. Each data segment was then analyzed using a main-effects linear model to identify and quantify specific sources of variability in surgical procedure times. The single most important source of variability in surgical procedure times was surgeon effect. Type of anesthesia, age, gender, and American Society of Anesthesiologists risk class were additional sources of variability. Intrinsic case-specific variability, unexplained by any of the preceding factors, was found to be highest for shorter surgeries relative to longer procedures. Variability in procedure times among surgeons was a multiplicative function (proportionate to time) of surgical time and total procedure time, such that as procedure times increased, variability in surgeons' surgical time increased proportionately. Surgeon-specific variability should be considered when building scheduling heuristics for longer surgeries. Results concerning variability in surgical procedure times due to factors such as type of anesthesia, age, gender, and American Society of Anesthesiologists risk class may be extrapolated to scheduling in other institutions, although specifics on individual surgeons may not. This research identifies factors associated with variability in surgical procedure times, knowledge of which may ultimately be used to improve surgical scheduling and operating room utilization.

  15. Analytical Models for Variable Density Multilayer Insulation Used in Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.

    2001-01-01

    A unique multilayer insulation concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). A combination of foam/Multi layer Insulation (MLI) was used. The MLI (45 layers of Double Aluminized Mylar (DAM) with Dacron net spacers) was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer DAM perforations for venting during ascent to orbit. The focus of this paper is on analytical modeling of the variable density MLI performance during orbital coast periods. The foam/MLI combination model is considered to have five segments. The first segment represents the foam layer. The second, third, and fourth segments represent the three layers of MLI with different layer densities and number of shields. Finally, the last segment is considered to be a shroud that surrounds the last MLI layer. The hot boundary temperature is allowed to vary from 164 K to 305 K. To simulate MLI performance, two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the separator materials. The heat flux values predicted by each approach are compared for different boundary temperatures and MLI systems with 30, 45, 60, and 75 layers.

  16. A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: what is the minimum increase in size to detect growth in repeated CT examinations.

    PubMed

    de Hoop, Bartjan; Gietema, Hester; van Ginneken, Bram; Zanen, Pieter; Groenewegen, Gerard; Prokop, Mathias

    2009-04-01

    We compared interexamination variability of CT lung nodule volumetry with six currently available semi-automated software packages to determine the minimum change needed to detect the growth of solid lung nodules. We had ethics committee approval. To simulate a follow-up examination with zero growth, we performed two low-dose unenhanced CT scans in 20 patients referred for pulmonary metastases. Between examinations, patients got off and on the table. Volumes of all pulmonary nodules were determined on both examinations using six nodule evaluation software packages. Variability (upper limit of the 95% confidence interval of the Bland-Altman plot) was calculated for nodules for which segmentation was visually rated as adequate. We evaluated 214 nodules (mean diameter 10.9 mm, range 3.3 mm-30.0 mm). Software packages provided adequate segmentation in 71% to 86% of nodules (p < 0.001). In case of adequate segmentation, variability in volumetry between scans ranged from 16.4% to 22.3% for the various software packages. Variability with five to six software packages was significantly less for nodules >or=8 mm in diameter (range 12.9%-17.1%) than for nodules <8 mm (range 18.5%-25.6%). Segmented volumes of each package were compared to each of the other packages. Systematic volume differences were detected in 11/15 comparisons. This hampers comparison of nodule volumes between software packages.

  17. Computer-aided pulmonary image analysis in small animal models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J.

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next.more » The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.« less

  18. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties.

    PubMed

    Ma, Zuwei; Hong, Yi; Nelson, Devin M; Pichamuthu, Joseph E; Leeson, Cory E; Wagner, William R

    2011-09-12

    Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800-1400%) and high tensile strength (30-60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M(n) and PVLCL 6000 M(n)), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.

  19. Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock

    NASA Astrophysics Data System (ADS)

    Martel, Stephen J.; Pollard, David D.

    1989-07-01

    We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.

  20. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    PubMed

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  1. Geochemistry of lavas from the Australian-Antarctic Ridge, easternmost Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Park, S.; Langmuir, C. H.; Lin, J.; Kim, S.; Hahm, D.; Michael, P. J.; Baker, E. T.

    2012-12-01

    The intermediate spreading Australian-Antarctic Ridge (AAR), an easternmost extension of the South East Indian Ridge located in the south of Tasmania, is one of the largest unexplored regions of the global mid-ocean ridge system, owing to its remote location and a very limited workable weather window. In early and late 2011, the Korea Polar Research Institute (KOPRI) conducted two surveys of two segments at 160°E (KR1) and 152.5°E (KR2) using the icebreaker Araon, producing a multi-beam map, 48 rock core samples and a MAPR (Miniature Autonomous Plume Recorder) hydrothermal survey. The full spreading rate of the spreading center in this area is 68 mm/yr. The axial depth of KR1 is relatively shallow (~2,000m) and is a first-order segment bounded by two large offset transform faults. The axial morphology of KR1 varies substantially from an axial high plateau (Segment 1) in the west, to a small rift valley (Segment 2), to an axial high with graben (Segment 3), and to a substantial rift valley (Segment 4) in the east. These changes occur in the absence of marked offsets in the ridge, such as overlapping spreading centers. Even so, these segments can be divided still further into shorter scale segments based on small discontinuities in the linearity of the axis and variations in rock chemistry. Small offsets in bathymetry can be associated with large chemical changes, such as between Segments 2 and 3, where incompatible element abundances change by almost a factor of ten. Incompatible trace element ratios for basalts show a regular pattern that is nonetheless not a single gradient. Along Segments 1 and 2, an axial high changes to a modest rift, (La/Sm)N of basalts decreases from 0.9 to 0.5. Then there is an abrupt step in enrichment to (La/Sm)N of 1.5, associated with a shallower depths and the appearance of an off-axis seamount south of the axis. This enrichment persists eastwards and then declines progressively to values of (La/Sm)N of 0.7 in the pronounced rift valley of Segment 4. Plume signals indicating hydrothermal vents were found in the middle of KR1 where the most enriched basalts occur and the magma supply appears robust. The first- order segment KR2 can be divided into two segments -- an axial high western segment, and a rift valley eastern segment. Hydrothermal vent signals were mainly found in the western part of the segment. The KR2 samples are mostly depleted, but KR2 also contains enriched basalts, including an E-MORB with 0.65% K2O in the western segment. Enriched KR2 basalts have different ratios of alkalis to HFSE compared to KR1, suggesting they are not derived from the same enriched component. In general in this region, inflated axial morphology is associated with trace element enrichment, suggesting that magma flux is being influenced by changing mantle composition on the segment scale.

  2. Enteric colonization by staphylococcus delphini in four ferret kits with diarrhoea.

    PubMed

    Gary, J M; Langohr, I M; Lim, A; Bolin, S; Bolin, C; Moore, I; Kiupel, M

    2014-11-01

    Four, 1-to 4-week-old ferret kits were submitted to the Diagnostic Center for Population and Animal Health at Michigan State University for post-mortem examination. Grossly, multiple bowel loops in all ferret kits were distended by mucoid faecal material. Microscopically, there was no evidence of inflammation or notable alteration to the normal mucosal morphology. Gram-positive coccoid bacteria colonized variable segments of the small intestine. These bacteria were identified as Staphylococcus delphini by phenotypic and molecular analyses. Enzyme-linked immunosorbent assay for detection of Staphylococcus enterotoxins was positive and polymerase chain reaction detected the gene for Staphylococcus enterotoxin E in the isolates. The hypersecretory diarrhoea in these ferret kits may have been associated with colonization of the small intestine by S. delphini, cultures of which were shown in vitro to be potentially capable of producing enterotoxin E. The condition described in these ferrets is similar to 'sticky' kit syndrome in mink. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Reduction of false-positives in a CAD scheme for automated detection of architectural distortion in digital mammography

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Mencattini, Arianna; Casti, Paola; Martinelli, Eugenio; di Natale, Corrado; Catani, Juliana H.; de Barros, Nestor; Melo, Carlos F. E.; Gonzaga, Adilson; Vieira, Marcelo A. C.

    2018-02-01

    This paper proposes a method to reduce the number of false-positives (FP) in a computer-aided detection (CAD) scheme for automated detection of architectural distortion (AD) in digital mammography. AD is a subtle contraction of breast parenchyma that may represent an early sign of breast cancer. Due to its subtlety and variability, AD is more difficult to detect compared to microcalcifications and masses, and is commonly found in retrospective evaluations of false-negative mammograms. Several computer-based systems have been proposed for automated detection of AD in breast images. The usual approach is automatically detect possible sites of AD in a mammographic image (segmentation step) and then use a classifier to eliminate the false-positives and identify the suspicious regions (classification step). This paper focus on the optimization of the segmentation step to reduce the number of FPs that is used as input to the classifier. The proposal is to use statistical measurements to score the segmented regions and then apply a threshold to select a small quantity of regions that should be submitted to the classification step, improving the detection performance of a CAD scheme. We evaluated 12 image features to score and select suspicious regions of 74 clinical Full-Field Digital Mammography (FFDM). All images in this dataset contained at least one region with AD previously marked by an expert radiologist. The results showed that the proposed method can reduce the false positives of the segmentation step of the CAD scheme from 43.4 false positives (FP) per image to 34.5 FP per image, without increasing the number of false negatives.

  4. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension.

    PubMed

    Bennett, Charles R; DiAngelo, Denis J; Kelly, Brian P

    2015-01-01

    Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension.

  5. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension

    PubMed Central

    Bennett, Charles R.; DiAngelo, Denis J.

    2015-01-01

    Background Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Methods Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Results Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. Conclusions The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension. PMID:26273551

  6. Ionene modified small polymeric beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.

  7. Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.

    PubMed

    Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo

    2017-10-01

    Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.

  8. Ambient occlusion - A powerful algorithm to segment shell and skeletal intrapores in computed tomography data

    NASA Astrophysics Data System (ADS)

    Titschack, J.; Baum, D.; Matsuyama, K.; Boos, K.; Färber, C.; Kahl, W.-A.; Ehrig, K.; Meinel, D.; Soriano, C.; Stock, S. R.

    2018-06-01

    During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AO-derived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance-map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources.

  9. A preliminary investigation of the relationships between historical crash and naturalistic driving.

    PubMed

    Pande, Anurag; Chand, Sai; Saxena, Neeraj; Dixit, Vinayak; Loy, James; Wolshon, Brian; Kent, Joshua D

    2017-04-01

    This paper describes a project that was undertaken using naturalistic driving data collected via Global Positioning System (GPS) devices to demonstrate a proof-of-concept for proactive safety assessments of crash-prone locations. The main hypothesis for the study is that the segments where drivers have to apply hard braking (higher jerks) more frequently might be the "unsafe" segments with more crashes over a long-term. The linear referencing methodology in ArcMap was used to link the GPS data with roadway characteristic data of US Highway 101 northbound (NB) and southbound (SB) in San Luis Obispo, California. The process used to merge GPS data with quarter-mile freeway segments for traditional crash frequency analysis is also discussed in the paper. A negative binomial regression analyses showed that proportion of high magnitude jerks while decelerating on freeway segments (from the driving data) was significantly related with the long-term crash frequency of those segments. A random parameter negative binomial model with uniformly distributed parameter for ADT and a fixed parameter for jerk provided a statistically significant estimate for quarter-mile segments. The results also indicated that roadway curvature and the presence of auxiliary lane are not significantly related with crash frequency for the highway segments under consideration. The results from this exploration are promising since the data used to derive the explanatory variable(s) can be collected using most off-the-shelf GPS devices, including many smartphones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison of radiography and ultrasonography for diagnosing small-intestinal mechanical obstruction in vomiting dogs.

    PubMed

    Sharma, Ajay; Thompson, Margret S; Scrivani, Peter V; Dykes, Nathan L; Yeager, Amy E; Freer, Sean R; Erb, Hollis N

    2011-01-01

    A cross-sectional study was performed on acutely vomiting dogs to compare the accuracy of radiography and ultrasonography for the diagnosis of small-intestinal mechanical obstruction and to describe several radiographic and ultrasonographic signs to identify their contribution to the final diagnosis. The sample population consisted of 82 adult dogs and small-intestinal obstruction by foreign body was confirmed in 27/82 (33%) dogs by surgery or necropsy. Radiography produced a definitive result (obstructed or not obstructed) in 58/82 (70%) of dogs; ultrasonography produced a definitive result in 80/82 (97%) of dogs. On radiographs, a diagnosis of obstruction was based on detection of segmental small-intestinal dilatation, plication, or detection of a foreign body. Approximately 30% (8/27) of obstructed dogs did not have radiographic signs of segmental small-intestinal dilatation, of which 50% (4/8) were due to linear foreign bodies. The ultrasonographic diagnosis of small-intestinal obstruction was based on detection of an obstructive lesion, sonographic signs of plication or segmental, small-intestinal dilatation. The ultrasonographic presence or absence of moderate-to-severe intestinal diameter enlargement (due to lumen dilatation) of the jejunum (>1.5 cm) was a useful discriminatory finding and, when present, should prompt a thorough search for a cause of small-intestinal obstruction. In conclusion, both abdominal radiography and abdominal ultrasonography are accurate for diagnosing small-intestinal obstruction in vomiting dogs and either may be used depending on availability and examiner choice. Abdominal ultrasonography had greater accuracy, fewer equivocal results and provided greater diagnostic confidence compared with radiography. © 2010 Veterinary Radiology & Ultrasound.

  11. [Cardiac rhythm variability as an index of vegetative heart regulation in a situation of psychoemotional tension].

    PubMed

    Revina, N E

    2006-01-01

    Differentiated role of segmental and suprasegmental levels of cardiac rhythm variability regulation in dynamics of motivational human conflict was studied for the first time. The author used an original method allowing simultaneous analysis of psychological and physiological parameters of human activity. The study demonstrates that will and anxiety, as components of motivational activity spectrum, form the "energetic" basis of voluntary-constructive and involuntary-affective behavioral strategies, selectively uniting various levels of suprasegmental and segmental control of human heart functioning in a conflict situation.

  12. Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters

    PubMed Central

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741

  13. Segmentation of nerve bundles and ganglia in spine MRI using particle filters.

    PubMed

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.

  14. Sampling-based ensemble segmentation against inter-operator variability

    NASA Astrophysics Data System (ADS)

    Huo, Jing; Okada, Kazunori; Pope, Whitney; Brown, Matthew

    2011-03-01

    Inconsistency and a lack of reproducibility are commonly associated with semi-automated segmentation methods. In this study, we developed an ensemble approach to improve reproducibility and applied it to glioblastoma multiforme (GBM) brain tumor segmentation on T1-weigted contrast enhanced MR volumes. The proposed approach combines samplingbased simulations and ensemble segmentation into a single framework; it generates a set of segmentations by perturbing user initialization and user-specified internal parameters, then fuses the set of segmentations into a single consensus result. Three combination algorithms were applied: majority voting, averaging and expectation-maximization (EM). The reproducibility of the proposed framework was evaluated by a controlled experiment on 16 tumor cases from a multicenter drug trial. The ensemble framework had significantly better reproducibility than the individual base Otsu thresholding method (p<.001).

  15. Fine alignment of a large segmented mirror

    NASA Technical Reports Server (NTRS)

    Dey, Thomas William (Inventor)

    2010-01-01

    A system for aligning a segmented mirror includes a source of radiation directed along a first axis to the segmented mirror and a beamsplitter removably inserted along the first axis for redirecting radiation from the first axis to a second axis, substantially perpendicular to the first axis. An imaging array is positioned along the second axis for imaging the redirected radiation, and a knife-edge configured for cutting the redirected radiation is serially positioned to occlude and not occlude the redirected radiation, effectively providing a variable radiation pattern detected by the imaging array for aligning the segmented mirror.

  16. Voting strategy for artifact reduction in digital breast tomosynthesis.

    PubMed

    Wu, Tao; Moore, Richard H; Kopans, Daniel B

    2006-07-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.

  17. Marketing the Community College Starts with Understanding Students' Perspectives.

    ERIC Educational Resources Information Center

    Absher, Keith; Crawford, Gerald

    1996-01-01

    Examines variables taken into account by community college students in choosing a college, arguing that increased competition for students means that colleges must employ marketing strategies. Discusses the use of the selection factors as market segmentation tools. Identifies five principal market segments based on student classifications of…

  18. A Study of the Effectiveness of the Army’s National Advertising Expenditures. Volume 3. Appendices.

    DTIC Science & Technology

    1981-08-31

    N W Ayer Incorpor- ated to study the effectiveness of the Army’s national recruitment advertising . N W Ayer’s Marketing Services Department undertook...Army priorities for the quality of the recruit mix required investigating the differential impact of advertising on key market segments. Segmentation... market segment. Three key considerations in specifying the advertising variables are that 𔄃’ *individual media components were analyzed to account for

  19. Optimal trajectories for the aeroassisted flight experiment. Part 4: Data, tables, and graphs

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.; Lee, W. Y.; Wang, H.; Wu, G. D.

    1989-01-01

    The determination of optimal trajectories for the aeroassisted flight experiment (AFE) is discussed. Data, tables, and graphs relative to the following transfers are presented: (IA) indirect ascent to a 178 NM perigee via a 197 NM apogee; and (DA) direct ascent to a 178 NM apogee. For both transfers, two cases are investigated: (1) the bank angle is continuously variable; and (2) the trajectory is divided into segments along which the bank angle is constant. For case (2), the following subcases are studied: two segments, three segments, four segments, and five segments; because the time duration of each segment is optimized, the above subcases involve four, six, eight, and ten parameters, respectively. Presented here are systematic data on a total of ten optimal trajectories (OT), five for Transfer IA and five for Transfer DA. For comparison purposes and only for Transfer IA, a five-segment reference trajectory RT is also considered.

  20. Joint multi-object registration and segmentation of left and right cardiac ventricles in 4D cine MRI

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Kepp, Timo; Schmidt-Richberg, Alexander; Handels, Heinz

    2014-03-01

    The diagnosis of cardiac function based on cine MRI requires the segmentation of cardiac structures in the images, but the problem of automatic cardiac segmentation is still open, due to the imaging characteristics of cardiac MR images and the anatomical variability of the heart. In this paper, we present a variational framework for joint segmentation and registration of multiple structures of the heart. To enable the simultaneous segmentation and registration of multiple objects, a shape prior term is introduced into a region competition approach for multi-object level set segmentation. The proposed algorithm is applied for simultaneous segmentation of the myocardium as well as the left and right ventricular blood pool in short axis cine MRI images. Two experiments are performed: first, intra-patient 4D segmentation with a given initial segmentation for one time-point in a 4D sequence, and second, a multi-atlas segmentation strategy is applied to unseen patient data. Evaluation of segmentation accuracy is done by overlap coefficients and surface distances. An evaluation based on clinical 4D cine MRI images of 25 patients shows the benefit of the combined approach compared to sole registration and sole segmentation.

  1. Randomized Controlled Trial of Cholestyramine and Hydrotalcite to Eliminate Bile for Capsule Endoscopy

    PubMed Central

    Hong-Bin, Chen; Yue, Huang; Chun, Huang; Shu-Ping, Xiao; Yue, Zhang; Xiao-Lin, Li

    2016-01-01

    Background/Aims: Bile is the main cause of poor bowel preparation for capsule endoscopy (CE). We aimed to determine whether cholestyramine and hydrotalcite can eliminate bile in the bowel. Patients and Methods: Patients undergoing CE were randomized into two groups. Group A patients (n = 75) recieved 250 mL 20% mannitol and 1 L 0.9% saline orally at 20:00 hours on the day before and at 05:00 hours on the day of CE and 20 mL simethicone 30 min before CE. Group B patients (n = 73) were treated identically, except for taking oral cholestyramine and hydrotalcite, starting 3 days before CE. Greenish luminal contents were assessed by four tissue color bar segments using Color Area Statistics software. Bowel cleanliness was evaluated by visualized area percentage assessment of cleansing (AAC) score. Result: Bowel cleanliness (82.7% [62/75] vs 46.6% [34/73]; χ2 = 14.596, P = 0.000). and detected greenish luminal contents (20.0% [15/75] vs 8.2% [6/73]; χ2 = 4.217, P = 0.040) were significantly greater in Group A than in Group B. Greenish luminal contents in the two groups differed significantly in the captured small-bowel (t = −13.74, P = 0.000) segments and proximal small-bowel (t = −0.7365, P = 0.000) segments, but not for the distal small-bowel (t = −0.552, P = 0.581) segments. Conclusions: Cholestyramine and hydrotalcite were ineffective in eliminating bile and improving small-bowel preparation. PMID:26997218

  2. Short Bowel Syndrome

    MedlinePlus

    ... in the intestine hypomotility agents to increase the time it takes food to travel through the intestines, leading to increased nutrient absorption ... dilated segment of the small intestine slow the time it takes for food to travel through the small intestine lengthen the small intestine ...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; Balter, P; Court, L

    Purpose: To evaluate the performance of commercially available automatic segmentation tools built into treatment planning systems (TPS) in terms of their segmentation accuracy and flexibility in customization. Methods: Twelve head-and-neck cancer patients and twelve thoracic cancer patients were retrospectively selected to benchmark the model-based segmentation (MBS) and atlas-based segmentation (ABS) in RayStation TPS and the Smart Probabilistic Image Contouring Engine (SPICE) in Pinnacle TPS. Multi-atlas contouring service (MACS) that was developed in-house as a plug-in of Pinnacle TPS was evaluated as well. Manual contours used in clinic were reviewed and modified for consistency and served as ground truth for themore » evaluation. Head-and-neck evaluation included six regions of interest (ROIs): left and right parotid glands, brainstem, spinal cord, mandible, and submandibular glands. Thoracic evaluation includes seven ROIs: left and right lungs, spinal cord, heart, esophagus, and left and right brachial plexus. Auto-segmented contours were compared with the manual contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: In head- and-neck evaluation, only mandible has a high accuracy in all segmentations (DSC>85%); SPICE achieved DSC>70% for parotid glands; MACS achieved this for both parotid glands and submandibular glands; and RayStation ABS achieved this for spinal cord. In thoracic evaluation, SPICE achieved the best in lung and heart segmentation, while MACS achieved the best for all other structures. The less distinguishable structures on CT images, such as brainstem, spinal cord, parotid glands, submandibular glands, esophagus, and brachial plexus, showed great variability in different segmentation tools (mostly DSC<70% and MSD>3mm). The template for RayStation ABS can be easily customized by users, while RayStation MBS and SPICE rely on the vendors to provide the templates/models. Conclusion: Great variability was observed in different segmentation tools applied to different structures. These commercially-available segmentation tools should be carefully evaluated before clinical use.« less

  4. Pattern of metastasis outside tumor-bearing segments in primary lung cancer: rationale for segmentectomy.

    PubMed

    Sakairi, Yuichi; Yoshino, Ichiro; Yoshida, Shigetoshi; Suzuki, Hidemi; Tagawa, Tetsuzo; Iwata, Takekazu; Mizobuchi, Teruaki

    2014-05-01

    Patterns of intrapulmonary metastasis, particularly metastasis outside tumor-bearing segments, were investigated in lung cancer patients to address the rationale for segmentectomy. In a consecutive series of patients who underwent resection of two or more pulmonary segments for primary lung cancer, intrapulmonary spread patterns, such as segmental/intersegmental node metastasis and pulmonary parenchymal metastasis, were pathologically examined. Eligible 244 lesions included 167 adenocarcinomas, 66 squamous cell carcinomas, and 11 large cell carcinomas. Pathologic stages included 0 to IA (n=111), IB (n=56), IIA (n=31), IIB (n=20), IIIA (n=23), and IIIB to IV (n=3); and N1 (n=26) and N2 (n=22). Intrapulmonary spread was observed in 24 cases (9.8%). Of these, metastasis outside tumor-bearing segments was only observed in 4 cases (1.6%), and such cancer spread was more frequently seen in cases with extrapulmonary (hilar to mediastinal) nodal metastasis (7.9%) than in cases without extrapulmonary metastasis (0.5%; p=0.01). Metastasis outside tumor-bearing segments was not observed in 64 tumors with pure or mixed ground glass opacity features on computed tomography. Although tumor location (peripheral or central/intermediate) was not related to the incidence of metastasis outside tumor-bearing segments, intrapulmonary spread was observed in only 1 of 52 peripheral small (≤20 mm) tumors. Metastasis outside tumor-bearing segments is rarely observed in cases with tumors (1) without extrapulmonary nodal metastasis and (2) with ground glass opacity or peripheral small (≤20 mm) features. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Automatic segmentation and co-registration of gated CT angiography datasets: measuring abdominal aortic pulsatility

    NASA Astrophysics Data System (ADS)

    Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng

    2007-03-01

    Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.

  6. Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability

    NASA Astrophysics Data System (ADS)

    Zender, J. J.; Kariyappa, R.; Giono, G.; Bergmann, M.; Delouille, V.; Damé, L.; Hochedez, J.-F.; Kumara, S. T.

    2017-09-01

    Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims: We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011-January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods: The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed full-disk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results: Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions: Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying magnetic structures is demonstrated in this study. Sophisticated feature identification and segmentation tools are important in providing more insights into the role of various magnetic features in both the short- and long-term changes in the solar irradiance. The movie associated to Fig. 2 is available at http://www.aanda.org

  7. Effect of Low-Concentration Polymers on Crystal Growth in Molecular Glasses: A Controlling Role for Polymer Segmental Mobility Relative to Host Dynamics.

    PubMed

    Huang, Chengbin; Powell, C Travis; Sun, Ye; Cai, Ting; Yu, Lian

    2017-03-02

    Low-concentration polymers can strongly influence crystal growth in small-molecule glasses, a phenomenon important for improving physical stability against crystallization. We measured the velocity of crystal growth in two molecular glasses, nifedipine (NIF) and o-terphenyl (OTP), each doped with four or five different polymers. For each polymer, the concentration was fixed at 1 wt % and a wide range of molecular weights was tested. We find that a polymer additive can strongly alter the rate of crystal growth, from a 10-fold reduction to a 10-fold increase. For a given polymer, increasing molecular weight slows down crystal growth and the effect saturates around DP = 100, where DP is the degree of polymerization. For all the systems studied, the polymer effect on crystal growth rate forms a master curve in the variable (T g,polymer - T g,host )/T cryst , where T g is the glass transition temperature and T cryst is the crystallization temperature. These results support the view that a polymer's effect on crystal growth is controlled by its segmental mobility relative to the host-molecule dynamics. In the proposed model, crystal growth rejects impurities and creates local polymer-rich regions, which must be traversed by host molecules to sustain crystal growth at rates determined by polymer segmental mobility. Our results do not support the view that host-polymer hydrogen bonding plays a controlling role in crystal growth inhibition.

  8. Reproducibility and Prognosis of Quantitative Features Extracted from CT Images12

    PubMed Central

    Balagurunathan, Yoganand; Gu, Yuhua; Wang, Hua; Kumar, Virendra; Grove, Olya; Hawkins, Sam; Kim, Jongphil; Goldgof, Dmitry B; Hall, Lawrence O; Gatenby, Robert A; Gillies, Robert J

    2014-01-01

    We study the reproducibility of quantitative imaging features that are used to describe tumor shape, size, and texture from computed tomography (CT) scans of non-small cell lung cancer (NSCLC). CT images are dependent on various scanning factors. We focus on characterizing image features that are reproducible in the presence of variations due to patient factors and segmentation methods. Thirty-two NSCLC nonenhanced lung CT scans were obtained from the Reference Image Database to Evaluate Response data set. The tumors were segmented using both manual (radiologist expert) and ensemble (software-automated) methods. A set of features (219 three-dimensional and 110 two-dimensional) was computed, and quantitative image features were statistically filtered to identify a subset of reproducible and nonredundant features. The variability in the repeated experiment was measured by the test-retest concordance correlation coefficient (CCCTreT). The natural range in the features, normalized to variance, was measured by the dynamic range (DR). In this study, there were 29 features across segmentation methods found with CCCTreT and DR ≥ 0.9 and R2Bet ≥ 0.95. These reproducible features were tested for predicting radiologist prognostic score; some texture features (run-length and Laws kernels) had an area under the curve of 0.9. The representative features were tested for their prognostic capabilities using an independent NSCLC data set (59 lung adenocarcinomas), where one of the texture features, run-length gray-level nonuniformity, was statistically significant in separating the samples into survival groups (P ≤ .046). PMID:24772210

  9. Compact programmable photonic variable delay devices

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1999-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  10. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  11. A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.

    PubMed

    Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K

    2014-05-01

    Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.

  12. Segmentation of Retinal Blood Vessels Based on Cake Filter

    PubMed Central

    Bao, Xi-Rong; Ge, Xin; She, Li-Huang; Zhang, Shi

    2015-01-01

    Segmentation of retinal blood vessels is significant to diagnosis and evaluation of ocular diseases like glaucoma and systemic diseases such as diabetes and hypertension. The retinal blood vessel segmentation for small and low contrast vessels is still a challenging problem. To solve this problem, a new method based on cake filter is proposed. Firstly, a quadrature filter band called cake filter band is made up in Fourier field. Then the real component fusion is used to separate the blood vessel from the background. Finally, the blood vessel network is got by a self-adaption threshold. The experiments implemented on the STARE database indicate that the new method has a better performance than the traditional ones on the small vessels extraction, average accuracy rate, and true and false positive rate. PMID:26636095

  13. Bidirectional negative differential thermal resistance in three-segment Frenkel-Kontorova lattices.

    PubMed

    Ou, Ya-Li; Lu, Shi-Cai; Hu, Cai-Tian; Ai, Bao-Quan

    2016-12-14

    By coupling three nonlinear 1D lattice segments, we demonstrate a thermal insulator model, where the system acts like an insulator for large temperature bias and a conductor for very small temperature bias. We numerically investigate the parameter range of the thermal insulator and find that the nonlinear response (the role of on-site potential), the weakly coupling interaction between each segment, and the small system size collectively contribute to the appearance of bidirectional negative differential thermal resistance (BNDTR). The corresponding exhibition of BNDTR can be explained in terms of effective phonon-band shifts. Our results can provide a new perspective for understanding the microscopic mechanism of negative differential thermal resistance and also would be conducive to further developments in designing and fabricating thermal devices and functional materials.

  14. Relation of Heart Rate and its Variability during Sleep with Age, Physical Activity, and Body Composition in Young Children

    PubMed Central

    Herzig, David; Eser, Prisca; Radtke, Thomas; Wenger, Alina; Rusterholz, Thomas; Wilhelm, Matthias; Achermann, Peter; Arhab, Amar; Jenni, Oskar G.; Kakebeeke, Tanja H.; Leeger-Aschmann, Claudia S.; Messerli-Bürgy, Nadine; Meyer, Andrea H.; Munsch, Simone; Puder, Jardena J.; Schmutz, Einat A.; Stülb, Kerstin; Zysset, Annina E.; Kriemler, Susi

    2017-01-01

    Background: Recent studies have claimed a positive effect of physical activity and body composition on vagal tone. In pediatric populations, there is a pronounced decrease in heart rate with age. While this decrease is often interpreted as an age-related increase in vagal tone, there is some evidence that it may be related to a decrease in intrinsic heart rate. This factor has not been taken into account in most previous studies. The aim of the present study was to assess the association between physical activity and/or body composition and heart rate variability (HRV) independently of the decline in heart rate in young children. Methods: Anthropometric measurements were taken in 309 children aged 2–6 years. Ambulatory electrocardiograms were collected over 14–18 h comprising a full night and accelerometry over 7 days. HRV was determined of three different night segments: (1) over 5 min during deep sleep identified automatically based on HRV characteristics; (2) during a 20 min segment starting 15 min after sleep onset; (3) over a 4-h segment between midnight and 4 a.m. Linear models were computed for HRV parameters with anthropometric and physical activity variables adjusted for heart rate and other confounding variables (e.g., age for physical activity models). Results: We found a decline in heart rate with increasing physical activity and decreasing skinfold thickness. HRV parameters decreased with increasing age, height, and weight in HR-adjusted regression models. These relationships were only found in segments of deep sleep detected automatically based on HRV or manually 15 min after sleep onset, but not in the 4-h segment with random sleep phases. Conclusions: Contrary to most previous studies, we found no increase of standard HRV parameters with age, however, when adjusted for heart rate, there was a significant decrease of HRV parameters with increasing age. Without knowing intrinsic heart rate correct interpretation of HRV in growing children is impossible. PMID:28286485

  15. Relation of Heart Rate and its Variability during Sleep with Age, Physical Activity, and Body Composition in Young Children.

    PubMed

    Herzig, David; Eser, Prisca; Radtke, Thomas; Wenger, Alina; Rusterholz, Thomas; Wilhelm, Matthias; Achermann, Peter; Arhab, Amar; Jenni, Oskar G; Kakebeeke, Tanja H; Leeger-Aschmann, Claudia S; Messerli-Bürgy, Nadine; Meyer, Andrea H; Munsch, Simone; Puder, Jardena J; Schmutz, Einat A; Stülb, Kerstin; Zysset, Annina E; Kriemler, Susi

    2017-01-01

    Background: Recent studies have claimed a positive effect of physical activity and body composition on vagal tone. In pediatric populations, there is a pronounced decrease in heart rate with age. While this decrease is often interpreted as an age-related increase in vagal tone, there is some evidence that it may be related to a decrease in intrinsic heart rate. This factor has not been taken into account in most previous studies. The aim of the present study was to assess the association between physical activity and/or body composition and heart rate variability (HRV) independently of the decline in heart rate in young children. Methods: Anthropometric measurements were taken in 309 children aged 2-6 years. Ambulatory electrocardiograms were collected over 14-18 h comprising a full night and accelerometry over 7 days. HRV was determined of three different night segments: (1) over 5 min during deep sleep identified automatically based on HRV characteristics; (2) during a 20 min segment starting 15 min after sleep onset; (3) over a 4-h segment between midnight and 4 a.m. Linear models were computed for HRV parameters with anthropometric and physical activity variables adjusted for heart rate and other confounding variables (e.g., age for physical activity models). Results: We found a decline in heart rate with increasing physical activity and decreasing skinfold thickness. HRV parameters decreased with increasing age, height, and weight in HR-adjusted regression models. These relationships were only found in segments of deep sleep detected automatically based on HRV or manually 15 min after sleep onset, but not in the 4-h segment with random sleep phases. Conclusions: Contrary to most previous studies, we found no increase of standard HRV parameters with age, however, when adjusted for heart rate, there was a significant decrease of HRV parameters with increasing age. Without knowing intrinsic heart rate correct interpretation of HRV in growing children is impossible.

  16. Hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection for non-small cell lung cancer.

    PubMed

    Li, Shuben; Chai, Huiping; Huang, Jun; Zeng, Guangqiao; Shao, Wenlong; He, Jianxing

    2014-04-01

    The purpose of the current study is to present the clinical and surgical results in patients who underwent hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection. Thirty-one patients, 27 men and 4 women, underwent segmental-main bronchial sleeve anastomoses for non-small cell lung cancer between May 2004 and May 2011. Twenty-six (83.9%) patients had squamous cell carcinoma, and 5 patients had adenocarcinoma. Six patients were at stage IIB, 24 patients at stage IIIA, and 1 patient at stage IIIB. Secondary sleeve anastomosis was performed in 18 patients, and Y-shaped multiple sleeve anastomosis was performed in 8 patients. Single segmental bronchiole anastomosis was performed in 5 cases. The average time for chest tube removal was 5.6 days. The average length of hospital stay was 11.8 days. No anastomosis fistula developed in any of the patients. The 1-, 2-, and 3-year survival rates were 83.9%, 71.0%, and 41.9%, respectively. Hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection is a complex technique that requires training and experience, but it is an effective and safe operation for selected patients.

  17. Three-dimensional murine airway segmentation in micro-CT images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.

    2007-03-01

    Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.

  18. TED: A Tolerant Edit Distance for segmentation evaluation.

    PubMed

    Funke, Jan; Klein, Jonas; Moreno-Noguer, Francesc; Cardona, Albert; Cook, Matthew

    2017-02-15

    In this paper, we present a novel error measure to compare a computer-generated segmentation of images or volumes against ground truth. This measure, which we call Tolerant Edit Distance (TED), is motivated by two observations that we usually encounter in biomedical image processing: (1) Some errors, like small boundary shifts, are tolerable in practice. Which errors are tolerable is application dependent and should be explicitly expressible in the measure. (2) Non-tolerable errors have to be corrected manually. The effort needed to do so should be reflected by the error measure. Our measure is the minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles another segmentation within specified tolerance bounds. This is in contrast to other commonly used measures like Rand index or variation of information, which integrate small, but tolerable, differences. Additionally, the TED provides intuitive numbers and allows the localization and classification of errors in images or volumes. We demonstrate the applicability of the TED on 3D segmentations of neurons in electron microscopy images where topological correctness is arguable more important than exact boundary locations. Furthermore, we show that the TED is not just limited to evaluation tasks. We use it as the loss function in a max-margin learning framework to find parameters of an automatic neuron segmentation algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher segmentation accuracy compared to other learning methods. Copyright © 2016. Published by Elsevier Inc.

  19. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.

    PubMed

    Roth, Holger R; Lu, Le; Lay, Nathan; Harrison, Adam P; Farag, Amal; Sohn, Andrew; Summers, Ronald M

    2018-04-01

    Accurate and automatic organ segmentation from 3D radiological scans is an important yet challenging problem for medical image analysis. Specifically, as a small, soft, and flexible abdominal organ, the pancreas demonstrates very high inter-patient anatomical variability in both its shape and volume. This inhibits traditional automated segmentation methods from achieving high accuracies, especially compared to the performance obtained for other organs, such as the liver, heart or kidneys. To fill this gap, we present an automated system from 3D computed tomography (CT) volumes that is based on a two-stage cascaded approach-pancreas localization and pancreas segmentation. For the first step, we localize the pancreas from the entire 3D CT scan, providing a reliable bounding box for the more refined segmentation step. We introduce a fully deep-learning approach, based on an efficient application of holistically-nested convolutional networks (HNNs) on the three orthogonal axial, sagittal, and coronal views. The resulting HNN per-pixel probability maps are then fused using pooling to reliably produce a 3D bounding box of the pancreas that maximizes the recall. We show that our introduced localizer compares favorably to both a conventional non-deep-learning method and a recent hybrid approach based on spatial aggregation of superpixels using random forest classification. The second, segmentation, phase operates within the computed bounding box and integrates semantic mid-level cues of deeply-learned organ interior and boundary maps, obtained by two additional and separate realizations of HNNs. By integrating these two mid-level cues, our method is capable of generating boundary-preserving pixel-wise class label maps that result in the final pancreas segmentation. Quantitative evaluation is performed on a publicly available dataset of 82 patient CT scans using 4-fold cross-validation (CV). We achieve a (mean  ±  std. dev.) Dice similarity coefficient (DSC) of 81.27 ± 6.27% in validation, which significantly outperforms both a previous state-of-the art method and a preliminary version of this work that report DSCs of 71.80 ± 10.70% and 78.01 ± 8.20%, respectively, using the same dataset. Copyright © 2018. Published by Elsevier B.V.

  20. SAR image segmentation using skeleton-based fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Cao, Yun Yi; Chen, Yan Qiu

    2003-06-01

    SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.

  1. Probabilistic atlas and geometric variability estimation to drive tissue segmentation.

    PubMed

    Xu, Hao; Thirion, Bertrand; Allassonnière, Stéphanie

    2014-09-10

    Computerized anatomical atlases play an important role in medical image analysis. While an atlas usually refers to a standard or mean image also called template, which presumably represents well a given population, it is not enough to characterize the observed population in detail. A template image should be learned jointly with the geometric variability of the shapes represented in the observations. These two quantities will in the sequel form the atlas of the corresponding population. The geometric variability is modeled as deformations of the template image so that it fits the observations. In this paper, we provide a detailed analysis of a new generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. Our atlas contains both an estimation of probability maps of each tissue (called class) and the deformation metric. We use a stochastic algorithm for the estimation of the probabilistic atlas given a dataset. This atlas is then used for atlas-based segmentation method to segment the new images. Experiments are shown on brain T1 MRI datasets. Copyright © 2014 John Wiley & Sons, Ltd.

  2. GPU accelerated fuzzy connected image segmentation by using CUDA.

    PubMed

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  3. Medical image segmentation using 3D MRI data

    NASA Astrophysics Data System (ADS)

    Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.

    2017-05-01

    Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.

  4. Geometric Hitting Set for Segments of Few Orientations

    DOE PAGES

    Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...

    2016-01-13

    Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

  5. Method for assessing the need for case-specific hemodynamics: application to the distribution of vascular permeability.

    PubMed

    Hazel, A L; Friedman, M H

    2000-01-01

    A common approach to understanding the role of hemodynamics in atherogenesis is to seek relationships between parameters of the hemodynamic environment, and the distribution of tissue variables thought to be indicative of early disease. An important question arising in such investigations is whether the distributions of tissue variables are sufficiently similar among cases to permit them to be described by an ensemble average distribution. If they are, the hemodynamic environment needs be determined only once, for a nominal representative geometry; if not, the hemodynamic environment must be obtained for each case. A method for classifying distributions from multiple cases to answer this question is proposed and applied to the distributions of the uptake of Evans blue dye labeled albumin by the external iliac arteries of swine in response to a step increase in flow. It is found that the uptake patterns in the proximal segment of the arteries, between the aortic trifurcation and the ostium of the circumflex iliac artery, show considerable case-to-case variability. In the distal segment, extending to the deep femoral ostium, many cases show very little spatial variation, and the patterns in those that do are similar among the cases. Thus the response of the distal segment may be understood with fewer simulations, but the proximal segment has more information to offer.

  6. Consumer preferences for general practitioner services.

    PubMed

    Morrison, Mark; Murphy, Tom; Nalder, Craig

    2003-01-01

    This study focuses on segmenting the market for General Practitioner services in a regional setting. Using factor analysis, five main service attributes are identified. These are clear communication, ongoing doctor-patient relationship, same gender as the patient, provides advice to the patient, and empowers the patient to make his/her own decisions. These service attributes are used as a basis for market segmentation, using both socio-demographic variables and cluster analysis. Four distinct market segments are identified, with varying degrees of viability in terms of target marketing.

  7. Posterior microphthalmos pigmentary retinopathy syndrome.

    PubMed

    Pehere, Niranjan; Jalali, Subhadra; Deshmukh, Himanshu; Kannabiran, Chitra

    2011-04-01

    Posterior Microphthalmos Pigmentary Retinopathy Syndrome (PMPRS). Posterior microphthalmos (PM) is a relatively infrequent type of microphthalmos where posterior segment is predominantly affected with normal anterior segment measurements. Herein, we report two siblings with posterior microphthalmos retinopathy syndrome with postulated autosomal recessive mode of inheritance. A 13-year-old child had PM and retinitis pigmentosa (RP) and his 7-year-old sister had PM, RP, and foveoschisis. The genetics of this syndrome and variable phenotype is discussed. Importance of being aware of posterior microphthalmos and its posterior segment associations is highlighted.

  8. High frequency magnetostrictive transducers for waveguide applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua Earl; Taylor, Steven Cheney; Rempe, Joy Lynn

    A high frequency magnetostrictive transducer includes a magnetostrictive rod or wire inserted co-axially into a driving coil, wherein the driving coil includes a coil arrangement with a plurality of small coil segments along the magnetostrictive rod or wire; wherein frequency operation of the high frequency magnetostrictive transducer is controlled by a length of the small coil segments and a material type of the magnetostrictive rod or wire. This design of the high frequency magnetostrictive transducer retains the beneficial aspects of the magnetostrictive design, while reducing its primary drawback, lower frequency operation.

  9. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    PubMed

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.

  10. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.

    PubMed

    Li, Yuhong; Jia, Fucang; Qin, Jing

    2016-10-01

    Accurately segmenting and quantifying brain gliomas from magnetic resonance (MR) images remains a challenging task because of the large spatial and structural variability among brain tumors. To develop a fully automatic and accurate brain tumor segmentation algorithm, we present a probabilistic model of multimodal MR brain tumor segmentation. This model combines sparse representation and the Markov random field (MRF) to solve the spatial and structural variability problem. We formulate the tumor segmentation problem as a multi-classification task by labeling each voxel as the maximum posterior probability. We estimate the maximum a posteriori (MAP) probability by introducing the sparse representation into a likelihood probability and a MRF into the prior probability. Considering the MAP as an NP-hard problem, we convert the maximum posterior probability estimation into a minimum energy optimization problem and employ graph cuts to find the solution to the MAP estimation. Our method is evaluated using the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013) and obtained Dice coefficient metric values of 0.85, 0.75, and 0.69 on the high-grade Challenge data set, 0.73, 0.56, and 0.54 on the high-grade Challenge LeaderBoard data set, and 0.84, 0.54, and 0.57 on the low-grade Challenge data set for the complete, core, and enhancing regions. The experimental results show that the proposed algorithm is valid and ranks 2nd compared with the state-of-the-art tumor segmentation algorithms in the MICCAI BRATS 2013 challenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.

  12. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    PubMed Central

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  13. Validity of the Polar V800 monitor for measuring heart rate variability in mountain running route conditions.

    PubMed

    Caminal, Pere; Sola, Fuensanta; Gomis, Pedro; Guasch, Eduard; Perera, Alexandre; Soriano, Núria; Mont, Lluis

    2018-03-01

    This study was conducted to test, in mountain running route conditions, the accuracy of the Polar V800™ monitor as a suitable device for monitoring the heart rate variability (HRV) of runners. Eighteen healthy subjects ran a route that included a range of running slopes such as those encountered in trail and ultra-trail races. The comparative study of a V800 and a Holter SEER 12 ECG Recorder™ included the analysis of RR time series and short-term HRV analysis. A correction algorithm was designed to obtain the corrected Polar RR intervals. Six 5-min segments related to different running slopes were considered for each subject. The correlation between corrected V800 RR intervals and Holter RR intervals was very high (r = 0.99, p < 0.001), and the bias was less than 1 ms. The limits of agreement (LoA) obtained for SDNN and RMSSD were (- 0.25 to 0.32 ms) and (- 0.90 to 1.08 ms), respectively. The effect size (ES) obtained in the time domain HRV parameters was considered small (ES < 0.2). Frequency domain HRV parameters did not differ (p > 0.05) and were well correlated (r ≥ 0.96, p < 0.001). Narrow limits of agreement, high correlations and small effect size suggest that the Polar V800 is a valid tool for the analysis of heart rate variability in athletes while running high endurance events such as marathon, trail, and ultra-trail races.

  14. Comparing Demographic, Health Status and Psychosocial Strategies of Audience Segmentation to Promote Physical Activity

    ERIC Educational Resources Information Center

    Boslaugh, Sarah E.; Kreuter, Matthew W.; Nicholson, Robert A.; Naleid, Kimberly

    2005-01-01

    The goal of audience segmentation is to identify population subgroups that are homogeneous with respect to certain variables associated with a given outcome or behavior. When such groups are identified and understood, targeted intervention strategies can be developed to address their unique characteristics and needs. This study compares the…

  15. The development and evaluation of accident predictive models

    NASA Astrophysics Data System (ADS)

    Maleck, T. L.

    1980-12-01

    A mathematical model that will predict the incremental change in the dependent variables (accident types) resulting from changes in the independent variables is developed. The end product is a tool for estimating the expected number and type of accidents for a given highway segment. The data segments (accidents) are separated in exclusive groups via a branching process and variance is further reduced using stepwise multiple regression. The standard error of the estimate is calculated for each model. The dependent variables are the frequency, density, and rate of 18 types of accidents among the independent variables are: district, county, highway geometry, land use, type of zone, speed limit, signal code, type of intersection, number of intersection legs, number of turn lanes, left-turn control, all-red interval, average daily traffic, and outlier code. Models for nonintersectional accidents did not fit nor validate as well as models for intersectional accidents.

  16. Optimal Design of Grid-Stiffened Panels and Shells With Variable Curvature

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin

    2001-01-01

    A design strategy for optimal design of composite grid-stiffened structures with variable curvature subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. Stiffening configuration is herein defined as a design variable that indicates the combination of axial, transverse and diagonal stiffeners in the stiffened panel. The design optimization process is adapted to identify the lightest-weight stiffening configuration and stiffener spacing for grid-stiffened composite panels given the overall panel dimensions. in-plane design loads, material properties. and boundary conditions of the grid-stiffened panel or shell.

  17. A Coastal Hazards Data Base for the U.S. West Coast (1997) (NDP-043C)

    DOE Data Explorer

    Gomitz, Vivien M. [Columbia Univ., New York, NY (United States); Beaty, Tammy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daniels, Richard C. [The University of Tennessee, Knoville, TN (United States)

    1997-01-01

    This data base integrates point, line, and polygon data for the U.S. West Coast into 0.25 degree latitude by 0.25 degree longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data bases. Each coastal grid cell and line segment contains data variables from the following seven data sets: elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. One variable from each data set was classified according to its susceptibility to sea-level rise and/or erosion to form 7 relative risk variables. These risk variables range in value from 1 to 5 and may be used to calculate a Coastal Vulnerability Index (CVI). Algorithms used to calculate several CVIs are listed within this text.

  18. A human visual based binarization technique for histological images

    NASA Astrophysics Data System (ADS)

    Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos

    2017-05-01

    In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.

  19. A novel magnet based 3D printed marker wand as basis for repeated in-shoe multi segment foot analysis: a proof of concept.

    PubMed

    Eerdekens, Maarten; Staes, Filip; Pilkington, Thomas; Deschamps, Kevin

    2017-01-01

    Application of in-shoe multi-segment foot kinematic analyses currently faces a number of challenges, including: (i) the difficulty to apply regular markers onto the skin, (ii) the necessity for an adequate shoe which fits various foot morphologies and (iii) the need for adequate repeatability throughout a repeated measure condition. The aim of this study therefore was to design novel magnet based 3D printed markers for repeated in-shoe measurements while using accordingly adapted modified shoes for a specific multi-segment foot model. Multi-segment foot kinematics of ten participants were recorded and kinematics of hindfoot, midfoot and forefoot were calculated. Dynamic trials were conducted to check for intra and inter-session repeatability when combining novel markers and modified shoes in a repeated measures design. Intraclass correlation coefficients were calculated to determine reliability. Both repeatability and reliability were proven to be good to excellent with maximum joint angle deviations of 1.11° for intra-session variability and 1.29° for same-day inter-session variability respectively and ICC values of >0.91. The novel markers can be reliably used in future research settings using in-shoe multi-segment foot kinematic analyses with multiple shod conditions.

  20. Role of the Middle Lumbar Fascia on Spinal Mechanics: A Human Biomechanical Assessment.

    PubMed

    Ranger, Tom A; Newell, Nicolas; Grant, Caroline A; Barker, Priscilla J; Pearcy, Mark J

    2017-04-15

    Biomechanical experiment. The aims of the present study were to test the effect of fascial tension on lumbar segmental axial rotation and lateral flexion and the effect of the angle of fascial attachment. Tension in the middle layer of lumbar fascia has been demonstrated to affect mechanical properties of lumbar segmental flexion and extension in the neutral zone. The effect of tension on segmental axial rotation and lateral flexion has, however, not been investigated. Seven unembalmed lumbar spines were divided into segments and mounted for testing. A 6 degree-of-freedom robotic testing facility was used to displace the segments in each anatomical plane (flexion-extension, lateral bending, and axial rotation) with force and moment data recorded by a load cell positioned beneath the test specimen. Tests were performed with and without a 20 N fascia load and the subsequent forces and moments were compared. In addition, forces and moments were compared when the specimens were held in a set position and the fascia loading angle was varied. A fascial tension of 20 N had no measurable effect on the forces or moments measured when the specimens were displaced in any plane of motion (P > 0.05). When 20 N of fascial load were applied to motion segments in a set position small segmental forces and moments were measured. Changing the angle of the fascial load did not significantly alter these measurements. Application of a 20 N fascial load did not produce a measureable effect on the mechanics of a motion segment, even though it did produce small measurable forces and moments on the segments when in a fixed position. Results from the present study are inconsistent with previous studies, suggesting that further investigation using multiple testing protocols and different loading conditions is required to determine the effects of fascial loading on spinal segment behavior. N/A.

  1. X chromosome origin of a supernumerary-like segment in Blatella germanica.

    PubMed

    Ross, M H

    1986-12-01

    An extraneous heterochromatic segment was discovered in a strain selected for a large-body trait. Derivation from the X chromosome is indicated by its behavior at metaphase I and association with the X and nucleolus in early prophase I. The segment does not pair with the X. Association with a mid-length bivalent is attributed to fusion of heterochromatin. Centromeric activity of small fragments, independent of, but apparently derived from, the X, is also reported.

  2. Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome.

    PubMed

    Miller, Ross H; Meardon, Stacey A; Derrick, Timothy R; Gillette, Jason C

    2008-08-01

    Previous research has proposed that a lack of variability in lower extremity coupling during running is associated with pathology. The purpose of the study was to evaluate lower extremity coupling variability in runners with and without a history of iliotibial band syndrome (ITBS) during an exhaustive run. Sixteen runners ran to voluntary exhaustion on a motorized treadmill while a motion capture system recorded reflective marker locations. Eight runners had a history of ITBS. At the start and end of the run, continuous relative phase (CRP) angles and CRP variability between strides were calculated for key lower extremity kinematic couplings. The ITBS runners demonstrated less CRP variability than controls in several couplings between segments that have been associated with knee pain and ITBS symptoms, including tibia rotation-rearfoot motion and rearfoot motion-thigh ad/abduction, but more variability in knee flexion/extension-foot ad/abduction. The ITBS runners also demonstrated low variability at heel strike in coupling between rearfoot motion-tibia rotation. The results suggest that runners prone to ITBS use abnormal segmental coordination patterns, particular in couplings involving thigh ad/abduction and tibia internal/external rotation. Implications for variability in injury etiology are suggested.

  3. Spatial and Temporal Variations in the Moment Tensor Solutions of the 2008 Wenchuan Earthquake Aftershocks and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Lin, X.; Dreger, D.; Ge, H.; Xu, P.; Wu, M.; Chiang, A.; Zhao, G.; Yuan, H.

    2018-03-01

    Following the mainshock of the 2008 M8 Wenchuan Earthquake, there were more than 300 ML ≥ 4.0 aftershocks that occurred between 12 May 2008 and 8 September 2010. We analyzed the broadband waveforms for these events and found 160 events with sufficient signal-to-noise levels to invert for seismic moment tensors. Considering the length of the activated fault and the distances to the recording stations, four velocity models were employed to account for variability in crustal structure. The moment tensor solutions show considerable variations with a mixture of mainly reverse and strike-slip mechanisms and a small number of normal events and ambiguous events. We analyzed the spatial and temporal distribution of the aftershocks and their mechanism types to characterize the structure and the deformation occurring in the Longmen Shan fold and thrust belt. Our results suggest that the stress is very complex at the Longmen Shan fault zone. The moment tensors have both a spatial segmentation with two major categories of the moment tensor of thrust and strike slip; and a temporal pattern that the majority of the aftershocks gradually migrated to thrust-type events. The variability of aftershock mechanisms is a strong indication of significant tectonic release and stress reorganization that activated numerous small faults in the system.

  4. Random forest feature selection approach for image segmentation

    NASA Astrophysics Data System (ADS)

    Lefkovits, László; Lefkovits, Szidónia; Emerich, Simina; Vaida, Mircea Florin

    2017-03-01

    In the field of image segmentation, discriminative models have shown promising performance. Generally, every such model begins with the extraction of numerous features from annotated images. Most authors create their discriminative model by using many features without using any selection criteria. A more reliable model can be built by using a framework that selects the important variables, from the point of view of the classification, and eliminates the unimportant once. In this article we present a framework for feature selection and data dimensionality reduction. The methodology is built around the random forest (RF) algorithm and its variable importance evaluation. In order to deal with datasets so large as to be practically unmanageable, we propose an algorithm based on RF that reduces the dimension of the database by eliminating irrelevant features. Furthermore, this framework is applied to optimize our discriminative model for brain tumor segmentation.

  5. Multidimensional joint coupling: a case study visualisation approach to movement coordination and variability.

    PubMed

    Irwin, Gareth; Kerwin, David G; Williams, Genevieve; Van Emmerik, Richard E A; Newell, Karl M; Hamill, Joseph

    2018-06-18

    A case study visualisation approach to examining the coordination and variability of multiple interacting segments is presented using a whole-body gymnastic skill as the task example. One elite male gymnast performed 10 trials of 10 longswings whilst three-dimensional locations of joint centres were tracked using a motion analysis system. Segment angles were used to define coupling between the arms and trunk, trunk and thighs and thighs and shanks. Rectified continuous relative phase profiles for each interacting couple for 80 longswings were produced. Graphical representations of coordination couplings are presented that include the traditional single coupling, followed by the relational dynamics of two couplings and finally three couplings simultaneously plotted. This method highlights the power of visualisation of movement dynamics and identifies properties of the global interacting segmental couplings that a more formal analysis may not reveal. Visualisation precedes and informs the appropriate qualitative and quantitative analysis of the dynamics.

  6. Analysis of simulated angiographic procedures. Part 2: extracting efficiency data from audio and video recordings.

    PubMed

    Duncan, James R; Kline, Benjamin; Glaiberman, Craig B

    2007-04-01

    To create and test methods of extracting efficiency data from recordings of simulated renal stent procedures. Task analysis was performed and used to design a standardized testing protocol. Five experienced angiographers then performed 16 renal stent simulations using the Simbionix AngioMentor angiographic simulator. Audio and video recordings of these simulations were captured from multiple vantage points. The recordings were synchronized and compiled. A series of efficiency metrics (procedure time, contrast volume, and tool use) were then extracted from the recordings. The intraobserver and interobserver variability of these individual metrics was also assessed. The metrics were converted to costs and aggregated to determine the fixed and variable costs of a procedure segment or the entire procedure. Task analysis and pilot testing led to a standardized testing protocol suitable for performance assessment. Task analysis also identified seven checkpoints that divided the renal stent simulations into six segments. Efficiency metrics for these different segments were extracted from the recordings and showed excellent intra- and interobserver correlations. Analysis of the individual and aggregated efficiency metrics demonstrated large differences between segments as well as between different angiographers. These differences persisted when efficiency was expressed as either total or variable costs. Task analysis facilitated both protocol development and data analysis. Efficiency metrics were readily extracted from recordings of simulated procedures. Aggregating the metrics and dividing the procedure into segments revealed potential insights that could be easily overlooked because the simulator currently does not attempt to aggregate the metrics and only provides data derived from the entire procedure. The data indicate that analysis of simulated angiographic procedures will be a powerful method of assessing performance in interventional radiology.

  7. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  8. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  9. Models of antimicrobial pressure on intestinal bacteria of the treated host populations.

    PubMed

    Volkova, V V; Cazer, C L; Gröhn, Y T

    2017-07-01

    Antimicrobial drugs are used to treat pathogenic bacterial infections in animals and humans. The by-stander enteric bacteria of the treated host's intestine can become exposed to the drug or its metabolites reaching the intestine in antimicrobially active form. We consider which processes and variables need to be accounted for to project the antimicrobial concentrations in the host's intestine. Those include: the drug's fraction (inclusive of any active metabolites) excreted in bile; the drug's fractions and intestinal segments of excretion via other mechanisms; the rates and intestinal segments of the drug's absorption and re-absorption; the rates and intestinal segments of the drug's abiotic and biotic degradation in the intestine; the digesta passage time through the intestinal segments; the rates, mechanisms, and reversibility of the drug's sorption to the digesta and enteric microbiome; and the volume of luminal contents in the intestinal segments. For certain antimicrobials, the antimicrobial activity can further depend on the aeration and chemical conditions in the intestine. Model forms that incorporate the inter-individual variation in those relevant variables can support projections of the intestinal antimicrobial concentrations in populations of treated host, such as food animals. To illustrate the proposed modeling framework, we develop two examples of treatments of bovine respiratory disease in beef steers by oral chlortetracycline and injectable third-generation cephalosporin ceftiofur. The host's diet influences the digesta passage time, volume, and digesta and microbiome composition, and may influence the antimicrobial loss due to degradation and sorption in the intestine. We consider two diet compositions in the illustrative simulations. The examples highlight the extent of current ignorance and need for empirical data on the variables influencing the selective pressures imposed by antimicrobial treatments on the host's intestinal bacteria.

  10. Generalized pixel profiling and comparative segmentation with application to arteriovenous malformation segmentation.

    PubMed

    Babin, D; Pižurica, A; Bellens, R; De Bock, J; Shang, Y; Goossens, B; Vansteenkiste, E; Philips, W

    2012-07-01

    Extraction of structural and geometric information from 3-D images of blood vessels is a well known and widely addressed segmentation problem. The segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, with a special application in diagnostics and surgery on arteriovenous malformations (AVM). However, the techniques addressing the problem of the AVM inner structure segmentation are rare. In this work we present a novel method of pixel profiling with the application to segmentation of the 3-D angiography AVM images. Our algorithm stands out in situations with low resolution images and high variability of pixel intensity. Another advantage of our method is that the parameters are set automatically, which yields little manual user intervention. The results on phantoms and real data demonstrate its effectiveness and potentials for fine delineation of AVM structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Incorporating User Input in Template-Based Segmentation

    PubMed Central

    Vidal, Camille; Beggs, Dale; Younes, Laurent; Jain, Sanjay K.; Jedynak, Bruno

    2015-01-01

    We present a simple and elegant method to incorporate user input in a template-based segmentation method for diseased organs. The user provides a partial segmentation of the organ of interest, which is used to guide the template towards its target. The user also highlights some elements of the background that should be excluded from the final segmentation. We derive by likelihood maximization a registration algorithm from a simple statistical image model in which the user labels are modeled as Bernoulli random variables. The resulting registration algorithm minimizes the sum of square differences between the binary template and the user labels, while preventing the template from shrinking, and penalizing for the inclusion of background elements into the final segmentation. We assess the performance of the proposed algorithm on synthetic images in which the amount of user annotation is controlled. We demonstrate our algorithm on the segmentation of the lungs of Mycobacterium tuberculosis infected mice from μCT images. PMID:26146532

  12. Statistical evaluation of manual segmentation of a diffuse low-grade glioma MRI dataset.

    PubMed

    Ben Abdallah, Meriem; Blonski, Marie; Wantz-Mezieres, Sophie; Gaudeau, Yann; Taillandier, Luc; Moureaux, Jean-Marie

    2016-08-01

    Software-based manual segmentation is critical to the supervision of diffuse low-grade glioma patients and to the optimal treatment's choice. However, manual segmentation being time-consuming, it is difficult to include it in the clinical routine. An alternative to circumvent the time cost of manual segmentation could be to share the task among different practitioners, providing it can be reproduced. The goal of our work is to assess diffuse low-grade gliomas' manual segmentation's reproducibility on MRI scans, with regard to practitioners, their experience and field of expertise. A panel of 13 experts manually segmented 12 diffuse low-grade glioma clinical MRI datasets using the OSIRIX software. A statistical analysis gave promising results, as the practitioner factor, the medical specialty and the years of experience seem to have no significant impact on the average values of the tumor volume variable.

  13. Sequential pattern formation governed by signaling gradients

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  14. An Algorithm to Automate Yeast Segmentation and Tracking

    PubMed Central

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  15. [Medical image segmentation based on the minimum variation snake model].

    PubMed

    Zhou, Changxiong; Yu, Shenglin

    2007-02-01

    It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.

  16. Active appearance model and deep learning for more accurate prostate segmentation on MRI

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Roth, Holger R.; Lu, Le; Wang, Shijun; Turkbey, Baris; Gandler, William; McCreedy, Evan S.; Agarwal, Harsh K.; Choyke, Peter; Summers, Ronald M.; McAuliffe, Matthew J.

    2016-03-01

    Prostate segmentation on 3D MR images is a challenging task due to image artifacts, large inter-patient prostate shape and texture variability, and lack of a clear prostate boundary specifically at apex and base levels. We propose a supervised machine learning model that combines atlas based Active Appearance Model (AAM) with a Deep Learning model to segment the prostate on MR images. The performance of the segmentation method is evaluated on 20 unseen MR image datasets. The proposed method combining AAM and Deep Learning achieves a mean Dice Similarity Coefficient (DSC) of 0.925 for whole 3D MR images of the prostate using axial cross-sections. The proposed model utilizes the adaptive atlas-based AAM model and Deep Learning to achieve significant segmentation accuracy.

  17. Integrating Compact Constraint and Distance Regularization with Level Set for Hepatocellular Carcinoma (HCC) Segmentation on Computed Tomography (CT) Images

    NASA Astrophysics Data System (ADS)

    Gui, Luying; He, Jian; Qiu, Yudong; Yang, Xiaoping

    2017-01-01

    This paper presents a variational level set approach to segment lesions with compact shapes on medical images. In this study, we investigate to address the problem of segmentation for hepatocellular carcinoma which are usually of various shapes, variable intensities, and weak boundaries. An efficient constraint which is called the isoperimetric constraint to describe the compactness of shapes is applied in this method. In addition, in order to ensure the precise segmentation and stable movement of the level set, a distance regularization is also implemented in the proposed variational framework. Our method is applied to segment various hepatocellular carcinoma regions on Computed Tomography images with promising results. Comparison results also prove that the proposed method is more accurate than other two approaches.

  18. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population.

    PubMed

    Severin, Anna C; Burkett, Brendan J; McKean, Mark R; Wiegand, Aaron N; Sayers, Mark G L

    2017-01-01

    Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr.) performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz) recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI) throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as they appear to improve the technique without compromising movement depth.

  19. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population

    PubMed Central

    2017-01-01

    Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr.) performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz) recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI) throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as they appear to improve the technique without compromising movement depth. PMID:28767683

  20. Multimedia Learning and Individual Differences: Mediating the Effects of Working Memory Capacity with Segmentation

    ERIC Educational Resources Information Center

    Lusk, Danielle L.; Evans, Amber D.; Jeffrey, Thomas R.; Palmer, Keith R.; Wikstrom, Chris S.; Doolittle, Peter E.

    2009-01-01

    Research in multimedia learning lacks an emphasis on individual difference variables, such as working memory capacity (WMC). The effects of WMC and the segmentation of multimedia instruction were examined by assessing the recall and application of low (n = 66) and high (n = 67) working memory capacity students randomly assigned to either a…

  1. Lung segment geometry study: simulation of largest possible tumours that fit into bronchopulmonary segments.

    PubMed

    Welter, S; Stöcker, C; Dicken, V; Kühl, H; Krass, S; Stamatis, G

    2012-03-01

    Segmental resection in stage I non-small cell lung cancer (NSCLC) has been well described and is considered to have similar survival rates as lobectomy but with increased rates of local tumour recurrence due to inadequate parenchymal margins. In consequence, today segmentectomy is only performed when the tumour is smaller than 2 cm. Three-dimensional reconstructions from 11 thin-slice CT scans of bronchopulmonary segments were generated, and virtual spherical tumours were placed over the segments, respecting all segmental borders. As a next step, virtual parenchymal safety margins of 2 cm and 3 cm were subtracted and the size of the remaining tumour calculated. The maximum tumour diameters with a 30-mm parenchymal safety margin ranged from 26.1 mm in right-sided segments 7 + 8 to 59.8 mm in the left apical segments 1-3. Using a three-dimensional reconstruction of lung CT scans, we demonstrated that segmentectomy or resection of segmental groups should be feasible with adequate margins, even for larger tumours in selected cases. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Discriminative parameter estimation for random walks segmentation.

    PubMed

    Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan

    2013-01-01

    The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.

  3. The Mid-atlantic Ridge (31°S-34°30'S): Temporal and spatial variations of accretionary processes

    NASA Astrophysics Data System (ADS)

    Fox, P. J.; Grindlay, N. R.; MacDonald, K. C.

    1991-02-01

    The ridge located between 31° S and 34°30'S is spreading at a rate of 35 mm yr-1, a transitional velocity between the very slow (≤20 mm yr-1) opening rates of the North Atlantic and Southwest Indian Oceans, and the intermediate rates (60 mm yr-1) of the northern limb of the East Pacific Rise, and the Galapagos and Juan de Fuca Ridges. A synthesis of multi-narrow beam, magnetics and gravity data document that in this area the ridge represents a dynamically evolving system. Here the ridge is partitioned into an ensemble of six distinct segments of variable lengths (12 to 100 km) by two transform faults (first-order discontinuities) and three small offset (< 30 km) discontinuities (second-order discontinuities) that behave non-rigidly creating complex and heterogeneous morphotectonic patterns that are not parallel to flow lines. The offset magnitudes of both the first and second-order discontinuities change in response to differential asymmetric spreading. In addition, along the fossil trace of second-order discontinuities, the lengths of abyssal hills located to either side of a discordant zone are observed to lengthen and shorten creating a saw-toothed pattern. Although the spreading rate remains the same along the length of the ridge studied, the morphology of the spreading segments varies from a deep median valley with characteristics analogous to the rift segments of the North Atlantic to a gently rifted axial bulge that is indistinguishable from the shape and relief of the intermediate rate spreading centers of the East Pacific Rise (i.e., 21°N). Like other carefully surveyed ridge segments at slow and fast rates of accretion, the along-axis profiles of each ridge segment are distinctly convex upwards, and exhibit along-strike changes in relief of 500m to 1500 between the shallowest portion of the segment (approximate center) and the segment ends. Such spatial variations create marked along-axis changes in the morphology and relief of each segment. A relatively low mantle Bouguer anomaly is known to be associated with the ridge segment characterized by a gently rifted axial bulge and is interpreted to indicate the presence of focused mantle upwelling (Kuo and Forsyth, 1988). Moreover, the terrain at the ends of each segment are known to be highly magnetized compared to the centers of each segment (Carbotte et al, 1990). Taken together, these data clearly establish that these profound spatial variations in ridge segment properties between adjoining segments, and along and across each segment, indicate that the upper mantle processes responsible for the formation of this contrasting architecture are not solely related to passive upwelling of the asthenosphere beneath the ridge axis. Rather, there must be differences in the thermal and mechanical structure of the crust and upper mantle between and along the ridge segments to explain these spatial variations in axial topography, crustal structure and magnetization. These results are consistent with the results of investigations from other parts of the ridge and suggest that the emplacement of magma is highly focused along segments and positioned beneath the depth minimum of a given segment. The profound differences between segments indicate that the processes governing the behavior of upwelling mantle are decoupled and the variations in the patterns of axis flanking morphology and rate of accretion indicate that processes controlling upwelling and melt production vary markedly in time as well. At this spreading rate and in this area, the accretionary processes are clearly three-dimensional. In addition, the morphology of a ridge segment is not governed so much by opening rate as by the thermal structure of the mantle which underlies the segment.

  4. Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice.

    PubMed

    Losada-Eaton, D M; Uzal, F A; Fernández Miyakawa, M E

    2008-06-01

    Clostridium perfringens epsilon toxin is a potent toxin responsible for a rapidly fatal enterotoxaemia in several animal species. The pathogenesis of epsilon toxin includes toxicity to endothelial cells and neurons. Although epsilon toxin is absorbed from the gastrointestinal tract, the intestinal regions where the toxin is absorbed and the conditions favoring epsilon toxin absorption are unknown. The aim of this paper was to determine the toxicity of epsilon toxin absorbed from different gastrointestinal segments of mice and to evaluate the influence of the intestinal environment in the absorption of this toxin. Epsilon toxin diluted in one of several different saline solutions was surgically introduced into ligated stomach or intestinal segments of mice. Comparison of the toxicity of epsilon toxin injected in different sections of the gastrointestinal tract showed that this toxin can be absorbed from the small and the large intestine but not from the stomach of mice. The lethality of epsilon toxin was higher when this toxin was injected in the colon than in the small intestine. Low pH, and Na(+) and glucose added to the saline solution increased the toxicity of epsilon toxin injected into the small intestine. This study shows that absorption of epsilon toxin can occur in any intestinal segment of mice and that the physicochemical characteristics of the intestinal content can affect the absorption of this toxin.

  5. [Space-time organization of systems of membrane hydrolysis and transport in rat small intestine].

    PubMed

    Loginov, G I

    1977-05-01

    Glucose transport by the concentration gradient with the incubation for 90 min in 0.2% glucose and soluble starch solutions was studied in Wistar rats in 5 segments of the small intestine by the "sac turned inside out" method. Serous fluid was completely replaced by a new portion of Ringer's solution every 15 or 30 min. Substrate load synchronized the enterocyte population and stabilized the transport systems. The changes of glucose absorption during the period of about an hour proved to differ in the 5 segments against the background of continuous and interrupted substrate load. These differences were due to the properties of the transported systems autocontrol and the reactivity level of the given enterocyte population. Areas with different reactivity were found to alternate along the intestine. Between the 8th and 16th hour (rats were sacrificed every 2 hours) starch glucose transport fell sharply in the proximal, and, to a lesser extent, in the middle segments. On the contrary, absorption between the 8th and the 12th hour was considerably intensified in the distal segments. The changes of the strach glucose transport during the period of about an hour along the intestine differed. The data obtained are discussed with consideration to the possible role of the undulating processes in the individual enterocyte population and in the small intestine as an integral system.

  6. OCT image segmentation of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-08-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.

  7. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  8. Benthic invertebrate fauna, small streams

    Treesearch

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  9. East Pacific Rise 18 deg-19 deg S: Asymmetric spreading and ridge reorientation by ultrafast migration of axial discontinuities

    NASA Astrophysics Data System (ADS)

    Cormier, Marie-Helene; MacDonald, Ken C.

    1994-01-01

    A detailed bathymetric, side scan, and magnetic survey of the East Pacific Rise out to a seafloor age of 1 Ma has been carried out between 18 deg and 19 deg S. It reveals that some left-stepping axial discontinuities have been migrating southward at rates an order of magnitude faster than the spreading rates (1000 mm/a or higher). These rapid migration events have left on the Nazca plate discordant features striking nearly parallel to the ridge axis. A discontinuity with an offset of several kilometers has migrated in two stages at around 0.45 and 0.3 Ma, and has left two large discordant zones consisting of a series of unfaulted, hummocky basins bounded to the east by short ridges oriented about N-S, oblique to the ambient 013 deg fabric. The morphology and reflectivity characteristics of these discordant zones are akin to the overlap basins and abandoned ridge tips which make up the migration trails of large, slowly-migrating overlapping spreading centers. Between 18 deg 35 min and 19 deg 03 min S, the ridge axis is flanked a few kilometers to the east by a prominent, sedimented ridge previously recognized as a recent abandoned ridge axis. The present ridge segment steadily deepens and narrows southward, which suggests the abandoned ridge has been rafted onto the Nazca plate during the ultrafast southward propagation of the ridge segment rather than by one discrete ridge jump. By transferring Pacific lithosphere to the Nazca plate, these migration events account for most of the asymmetric accretion observed (faster to the east). This process is consistent with the features common to asymmetric spreading, namely the sudden onset or demise of asymmetric spreading, and the ridge segment to ridge segment variablity. Because the discordant zones left by these rapid migration events are near-parallel to the ambient seafloor fabric, they are unlikely to be detected by conventional bathymetry or magnetic surveys, and so-called 'ridge-jumps' may actually often represent ultrafast propagation of a ridge segment. Variations in fault azimuth with age show there has not been any significant change in spreading direction over the past 0.8 m.y. Instead, the counterclockwise trend of the East Pacific Rise relative to the Brunhes/Matuyama reversal (0.78 Ma) mostly reflects that ultrafast propagation of ridge segments has transferred a large amount of the Pacific lithosphere to the Nazca plate at 18 deg S. than at 19 deg. In keeping with the regional features of the magnetic anomalies, we propose that an 8 to 10 km left-stepping discontinuity which was located between 17 deg and 17 deg 30 S at 0.78 Ma has been recently redistributed into the present staircase of small left-stepping discontinuities between 16 deg and 19 deg S. This smoothing of the ridge geometry probably occurred through repeated small lateral steps of the ridge segments inside of the discontinuities during ultra-fast propagation episodes, and may be the consequence of a significant replenishment of the magma reservoir between 17 deg and 17 deg 30 min S during the past 1 m.y.

  10. Neighborhood sampling: how many streets must an auditor walk?

    PubMed

    McMillan, Tracy E; Cubbin, Catherine; Parmenter, Barbara; Medina, Ashley V; Lee, Rebecca E

    2010-03-12

    This study tested the representativeness of four street segment sampling protocols using the Pedestrian Environment Data Scan (PEDS) in eleven neighborhoods surrounding public housing developments in Houston, TX. The following four street segment sampling protocols were used (1) all segments, both residential and arterial, contained within the 400 meter radius buffer from the center point of the housing development (the core) were compared with all segments contained between the 400 meter radius buffer and the 800 meter radius buffer (the ring); all residential segments in the core were compared with (2) 75% (3) 50% and (4) 25% samples of randomly selected residential street segments in the core. Analyses were conducted on five key variables: sidewalk presence; ratings of attractiveness and safety for walking; connectivity; and number of traffic lanes. Some differences were found when comparing all street segments, both residential and arterial, in the core to the ring. Findings suggested that sampling 25% of residential street segments within the 400 m radius of a residence sufficiently represents the pedestrian built environment. Conclusions support more cost effective environmental data collection for physical activity research.

  11. Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms.

    PubMed

    Wiesmann, Veit; Bergler, Matthias; Palmisano, Ralf; Prinzen, Martin; Franz, Daniela; Wittenberg, Thomas

    2017-03-18

    Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and display inter- and intra-observer variability which influence the validation results of automated cell segmentation pipelines. We present a new approach to simulate fluorescent cell micrographs that provides an objective ground truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation performances of that pipeline on real fluorescent cell micrographs. The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and reproducibly than it is possible on manually annotated real micrographs.

  12. Neighborhood sampling: how many streets must an auditor walk?

    PubMed Central

    2010-01-01

    This study tested the representativeness of four street segment sampling protocols using the Pedestrian Environment Data Scan (PEDS) in eleven neighborhoods surrounding public housing developments in Houston, TX. The following four street segment sampling protocols were used (1) all segments, both residential and arterial, contained within the 400 meter radius buffer from the center point of the housing development (the core) were compared with all segments contained between the 400 meter radius buffer and the 800 meter radius buffer (the ring); all residential segments in the core were compared with (2) 75% (3) 50% and (4) 25% samples of randomly selected residential street segments in the core. Analyses were conducted on five key variables: sidewalk presence; ratings of attractiveness and safety for walking; connectivity; and number of traffic lanes. Some differences were found when comparing all street segments, both residential and arterial, in the core to the ring. Findings suggested that sampling 25% of residential street segments within the 400 m radius of a residence sufficiently represents the pedestrian built environment. Conclusions support more cost effective environmental data collection for physical activity research. PMID:20226052

  13. Segmental and age differences in the elastin network, collagen, and smooth muscle phenotype in the tunica media of the porcine aorta.

    PubMed

    Tonar, Zbyněk; Kubíková, Tereza; Prior, Claudia; Demjén, Erna; Liška, Václav; Králíčková, Milena; Witter, Kirsti

    2015-09-01

    The porcine aorta is often used in studies on morphology, pathology, transplantation surgery, vascular and endovascular surgery, and biomechanics of the large arteries. Using quantitative histology and stereology, we estimated the area fraction of elastin, collagen, alpha-smooth muscle actin, vimentin, and desmin within the tunica media in 123 tissue samples collected from five segments (thoracic ascending aorta; aortic arch; thoracic descending aorta; suprarenal abdominal aorta; and infrarenal abdominal aorta) of porcine aortae from growing domestic pigs (n=25), ranging in age from 0 to 230 days. The descending thoracic aorta had the greatest elastin fraction, which decreased proximally toward the aortic arch as well as distally toward the abdominal aorta. Abdominal aortic segments had the highest fraction of actin, desmin, and vimentin positivity and all of these vascular smooth muscle markers were lower in the thoracic aortic segments. No quantitative differences were found when comparing the suprarenal abdominal segments with the infrarenal abdominal segments. The area fraction of actin within the media was comparable in all age groups and it was proportional to the postnatal growth. Thicker aortic segments had more elastin and collagen with fewer contractile cells. The collagen fraction decreased from ascending aorta and aortic arch toward the descending aorta. By revealing the variability of the quantitative composition of the porcine aorta, the results are suitable for planning experiments with the porcine aorta as a model, i.e. power test analyses and estimating the number of samples necessary to achieving a desirable level of precision. The complete primary morphometric data, in the form of continuous variables, are made publicly available for biomechanical modeling of site-dependent distensibility and compliance of the porcine aorta. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Essays on measurement and evaluation of demand side management programs in the electricity industry, and impacts of firm strategy on stock price in the biotechnology industry

    NASA Astrophysics Data System (ADS)

    Bandres Motola, Miguel A.

    Essay one estimates changes in small business customer energy consumption (kWh) patterns resulting from a seasonally differentiated pricing structure. Econometric analysis leverages cross-sectional time series data across the entire population of affected customers, from 2007 through the present. Observations include: monthly energy usage (kWh), relevant customer segmentations, local daily temperature, energy price, and region-specific economic conditions, among other variables. The study identifies the determinants of responsiveness to seasonal price differentiation. In addition, estimated energy consumption changes occurring during the 2010 summer season are reported for the average customer and in aggregate grouped by relevant customer segments, climate zone, and total customer base. Essay two develops an econometric modeling methodology to evaluate load impacts for short duration demand response events. The study analyzes time series data from a season of direct load control program tests aimed at integrating demand response into the wholesale electricity market. I have combined "fuzzy logic" with binary variables to create "fuzzy indicator variables" that allow for measurement of short duration events while using industry standard model specifications. Typically, binary variables for every hour are applied in load impact analysis of programs dispatched in hourly intervals. As programs evolve towards integration with the wholesale market, event durations become irregular and often occur for periods of only a few minutes. This methodology is innovative in that it conserves the degrees of freedom in the model while allowing for analysis of high frequency data using fixed effects. Essay three examines the effects of strategies, intangibles, and FDA news on the stocks of young biopharmaceutical firms. An event study methodology is used to explore those effects. This study investigates 20,839 announcements from 1990 to 2005. Announcements on drug development, alliances, publications, presentations, and FDA approval have a positive effect on the short-term performance of young biopharmaceutical firms. Announcements on goals not met, FDA drug approval denied, and changes in structural organizations have a negative effect on the short-term performance of young biopharmaceutical firms.

  15. Spinal Ischemia in Thoracic Aortic Procedures: Impact of Radiculomedullary Artery Distribution.

    PubMed

    Kari, Fabian A; Wittmann, Karin; Krause, Sonja; Saravi, Babak; Puttfarcken, Luisa; Förster, Katharina; Rylski, Bartosz; Maier, Sven; Göbel, Ulrich; Siepe, Matthias; Czerny, Martin; Beyersdorf, Friedhelm

    2017-12-01

    The aim of this study was to assess the influence of thoracic anterior radiculomedullary artery (tARMA) distribution on spinal cord perfusion in a thoracic aortic surgical model. Twenty-six pigs (34 ± 3 kg; study group, n = 20; sham group, n = 6) underwent ligation of the left subclavian artery and thoracic segmental arteries. End points were spinal cord perfusion pressure (SCPP), regional spinal cord blood flow (SCBF), and neurologic outcome with an observation time of 3 hours. tARMA distribution patterns tested for an effect on end points included (1) maximum distance between any 2 tARMAs within the treated aortic segment (0 or 1 segment = small-distance group; >1 segment = large-distance group) and (2) distance between the end of the treated aortic segment and the first distal tARMA (at the level of the distal simulated stent-graft end = group 0; gap of 1 or more segments = group ≥1). The number of tARMA ranged from 3 to 13 (mean, 8). In the large-distance group, SCBF dropped from 0.48 ± 0.16 mL/g/min to 0.3 ± 0.08 mL/g/min (p < 0.001). We observed no detectable SCBF drop in the small-distance group: 0.2 ± 0.05 mL/g/min at baseline to 0.23 ± 0.05 mL/g/min immediately after clamping (p = 0.147). SCBF increased from 0.201 ± 0.055 mL/g/min at baseline to 0.443 ± 0.051 mL/g/min at 3 hours postoperatively (p < 0.001) only in the small-distance group. We demonstrate experimental data showing that distribution patterns of tARMAs correlate with the degree of SCBF drop and insufficient reactive parenchymal hyperemia in aortic procedures. Individual ARMA distribution patterns along the treated aortic segment could help us predict the individual risk of spinal ischemia. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Amino acid sequence of the Fv region of a human monoclonal IgM (protein WEA) with antibody activity against 3,4-pyruvylated galactose in Klebsiella polysaccharides K30 and K33.

    PubMed Central

    Goñi, F; Frangione, B

    1983-01-01

    We have determined the amino acid sequence of the Fv [variable heavy (VH) and variable light (VL)] region of a human monoclonal IgM-kappa with antibody activity against 3,4-pyruvylated galactose, isolated from the plasma of patient WEA with Waldenström macroglobulinemia. The VH region has 114 residues, belongs to subgroup III, and has a very short third complementarity-determining region (CDR3), probably due to a small D segment/or an unusual D-J rearrangement (D, diversity; J, joining). The VL region has 108 residues and belongs to subgroup V kappa I. Compared to other members of the human VHIII and V kappa I families, WEA Fv does not appear to have significant differences within the framework residues but has unique CDRs that might be responsible for the particular antibody activity. Another IgM-kappa (GAL), which has an as-yet-undetermined antibody activity, shares a striking homology in V kappa with WEA, including an identical CDR1. PMID:6410398

  17. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  18. Lymphangioma of the jejunal mesentery and jejunal polyps presenting as an acute abdomen in a teenager.

    PubMed

    Jayasundara, Jasb; Perera, E; Chandu de Silva, M V; Pathirana, A A

    2017-03-01

    Cystic lymphangioma of the small bowel mesentery is a rare clinical entity, especially after childhood. Medical literature reveals a limited number of such cases presenting as acute abdomen due to bowel obstruction, small bowel volvulus and bleeding into the tumour. We present the management experience of an 18-year-old woman who presented with rapid onset diffuse peritonism and raised inflammatory markers. Computed tomography showed a mass in the small bowel mesentery with suspicion of segmental bowel ischaemia. Emergency laparotomy revealed a mass in the mid-jejunal mesentery close to the bowel wall with no bowel ischaemia. The patient made an uncomplicated recovery after segmental bowel resection and end-to-end anastomosis. Histology confirmed the mass as a cystic lymphangioma involving the jejunal mesentery and two small jejunal polyps. Lymphangioma could be considered in the differential diagnosis of an acute abdomen in a young adult when the presentation is atypical.

  19. A Peterson's hernia and subsequent small bowel volvulus: surgical reconstruction utilizing transverse colon as a new Roux-en-Y limb - 1 case.

    PubMed

    Jang, Jae Seong; Shin, Dong Gue

    2013-12-01

    Peterson's hernia is an internal hernia that can occur after Roux-en-Y anastomosis. It often accompanies small bowel volvulus and is prone to strangulation. Reconstruction of intestinal continuity after massive small bowel resection in a patient who undergoes near total gastrectomy and Roux-en-Y anastomosis can be difficult. A 74-year-old man who had undergone a near total gastrectomy and Roux-en-Y gastrojejunostomy for stomach cancer presented with abdominal pain. The preoperative computed tomography showed strangulated small bowel volvulus. During the emergent laparotomy, we found a strangulated Peterson's hernia with small bowel volvulus. After resection of the necrotized intestine, we made a new Roux-en-Y anastomosis connecting the remnant stomach and the jejunum with a transverse colon segment. We were safely able to connect the remnant stomach and the jejunum by making a new Roux-en-Y anastomosis utilizing a transverse colon segment as a new Roux-limb by two stage operation.

  20. Graph run-length matrices for histopathological image segmentation.

    PubMed

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  1. Progressive segmented health insurance: Colombian health reform and access to health services.

    PubMed

    Ruiz, Fernando; Amaya, Liliana; Venegas, Stella

    2007-01-01

    Equal access for poor populations to health services is a comprehensive objective for any health reform. The Colombian health reform addressed this issue through a segmented progressive social health insurance approach. The strategy was to assure universal coverage expanding the population covered through payroll linked insurance, and implementing a subsidized insurance program for the poorest populations, those not affiliated through formal employment. A prospective study was performed to follow-up health service utilization and out-of-pocket expenses using a cohort design. It was representative of four Colombian cities (Cendex Health Services Use and Expenditure Study, 2001). A four part econometric model was applied. The model related medical service utilization and medication with different socioeconomic, geographic, and risk associated variables. Results showed that subsidized health insurance improves health service utilization and reduces the financial burden for the poorest, as compared to those non-insured. Other social health insurance schemes preserved high utilization with variable out-of-pocket expenditures. Family and age conditions have significant effect on medical service utilization. Geographic variables play a significant role in hospital inpatient service utilization. Both, geographic and income variables also have significant impact on out-of-pocket expenses. Projected utilization rates and a simulation favor a dual policy for two-stage income segmented insurance to progress towards the universal insurance goal. Copyright (c) 2006 John Wiley & Sons, Ltd.

  2. Functional segmentation of dynamic PET studies: Open source implementation and validation of a leader-follower-based algorithm.

    PubMed

    Mateos-Pérez, José María; Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Desco, Manuel; Vaquero, Juan José

    2016-02-01

    We present a novel segmentation algorithm for dynamic PET studies that groups pixels according to the similarity of their time-activity curves. Sixteen mice bearing a human tumor cell line xenograft (CH-157MN) were imaged with three different (68)Ga-DOTA-peptides (DOTANOC, DOTATATE, DOTATOC) using a small animal PET-CT scanner. Regional activities (input function and tumor) were obtained after manual delineation of regions of interest over the image. The algorithm was implemented under the jClustering framework and used to extract the same regional activities as in the manual approach. The volume of distribution in the tumor was computed using the Logan linear method. A Kruskal-Wallis test was used to investigate significant differences between the manually and automatically obtained volumes of distribution. The algorithm successfully segmented all the studies. No significant differences were found for the same tracer across different segmentation methods. Manual delineation revealed significant differences between DOTANOC and the other two tracers (DOTANOC - DOTATATE, p=0.020; DOTANOC - DOTATOC, p=0.033). Similar differences were found using the leader-follower algorithm. An open implementation of a novel segmentation method for dynamic PET studies is presented and validated in rodent studies. It successfully replicated the manual results obtained in small-animal studies, thus making it a reliable substitute for this task and, potentially, for other dynamic segmentation procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Using maximum entropy to predict suitable habitat for the endangered dwarf wedgemussel in the Maryland Coastal Plain

    USGS Publications Warehouse

    Campbell, Cara; Hilderbrand, Robert H.

    2017-01-01

    Species distribution modelling can be useful for the conservation of rare and endangered species. Freshwater mussel declines have thinned species ranges producing spatially fragmented distributions across large areas. Spatial fragmentation in combination with a complex life history and heterogeneous environment makes predictive modelling difficult.A machine learning approach (maximum entropy) was used to model occurrences and suitable habitat for the federally endangered dwarf wedgemussel, Alasmidonta heterodon, in Maryland's Coastal Plain catchments. Landscape-scale predictors (e.g. land cover, land use, soil characteristics, geology, flow characteristics, and climate) were used to predict the suitability of individual stream segments for A. heterodon.The best model contained variables at three scales: minimum elevation (segment scale), percentage Tertiary deposits, low intensity development, and woody wetlands (sub-catchment), and percentage low intensity development, pasture/hay agriculture, and average depth to the water table (catchment). Despite a very small sample size owing to the rarity of A. heterodon, cross-validated prediction accuracy was 91%.Most predicted suitable segments occur in catchments not known to contain A. heterodon, which provides opportunities for new discoveries or population restoration. These model predictions can guide surveys toward the streams with the best chance of containing the species or, alternatively, away from those streams with little chance of containing A. heterodon.Developed reaches had low predicted suitability for A. heterodon in the Coastal Plain. Urban and exurban sprawl continues to modify stream ecosystems in the region, underscoring the need to preserve existing populations and to discover and protect new populations.

  4. Consensus for the Treatment of Varicose Vein with Radiofrequency Ablation

    PubMed Central

    Joh, Jin Hyun; Kim, Woo-Shik; Jung, In Mok; Park, Ki-Hyuk; Lee, Taeseung; Kang, Jin Mo

    2014-01-01

    The objective of this paper is to introduce the schematic protocol of radiofrequency (RF) ablation for the treatment of varicose veins. Indication: anatomic or pathophysiologic indication includes venous diameter within 2–20 mm, reflux time ≥0.5 seconds and distance from the skin ≥5 mm or subfascial location. Access: it is recommended to access at or above the knee joint for great saphenous vein and above the mid-calf for small saphenous vein. Catheter placement: the catheter tip should be placed 2.0 cm inferior to the saphenofemoral or saphenopopliteal junction. Endovenous heat-induced thrombosis ≥class III should be treated with low-molecular weight heparin. Tumescent solution: the composition of solution can be variable (e.g., 2% lidocaine 20 mL+500 mL normal saline+bicarbonate 2.5 mL with/without epinephrine). Infiltration can be done from each direction. Ablation: two cycles’ ablation for the first proximal segment of saphenous vein and the segment with the incompetent perforators is recommended. The other segments should be ablated one time. During RF energy delivery, it is recommended to apply external compression. Concomitant procedure: It is recommended to do simultaneously ambulatory phlebectomy. For sclerotherapy, it is recommended to defer at least 2 weeks. Post-procedural management: post-procedural ambulation is encouraged to reduce the thrombotic complications. Compression stocking should be applied for at least 7 days. Minor daily activity is not limited, but strenuous activities should be avoided for 2 weeks. It is suggested to take showers after 24 hours and tub baths, swimming, or soaking in water after 2 weeks. PMID:26217628

  5. DNA Motion Capture Reveals the Mechanical Properties of DNA at the Mesoscale

    PubMed Central

    Price, Allen C.; Pilkiewicz, Kevin R.; Graham, Thomas G.W.; Song, Dan; Eaves, Joel D.; Loparo, Joseph J.

    2015-01-01

    Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. PMID:25992731

  6. Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Ching; Yu, Jhih-An; Yang, Bang-Hung; Wu, Tung-Hsin

    2013-12-01

    We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kVp with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kVp HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kVp LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.

  7. Heart-Rate Variability During Deep Sleep in World-Class Alpine Skiers: A Time-Efficient Alternative to Morning Supine Measurements.

    PubMed

    Herzig, David; Testorelli, Moreno; Olstad, Daniela Schäfer; Erlacher, Daniel; Achermann, Peter; Eser, Prisca; Wilhelm, Matthias

    2017-05-01

    It is increasingly popular to use heart-rate variability (HRV) to tailor training for athletes. A time-efficient method is HRV assessment during deep sleep. To validate the selection of deep-sleep segments identified by RR intervals with simultaneous electroencephalography (EEG) recordings and to compare HRV parameters of these segments with those of standard morning supine measurements. In 11 world-class alpine skiers, RR intervals were monitored during 10 nights, and simultaneous EEGs were recorded during 2-4 nights. Deep sleep was determined from the HRV signal and verified by delta power from the EEG recordings. Four further segments were chosen for HRV determination, namely, a 4-h segment from midnight to 4 AM and three 5-min segments: 1 just before awakening, 1 after waking in supine position, and 1 in standing after orthostatic challenge. Training load was recorded every day. A total of 80 night and 68 morning measurements of 9 athletes were analyzed. Good correspondence between the phases selected by RR intervals vs those selected by EEG was found. Concerning root-mean-squared difference of successive RR intervals (RMSSD), a marker for parasympathetic activity, the best relationship with the morning supine measurement was found in deep sleep. HRV is a simple tool for approximating deep-sleep phases, and HRV measurement during deep sleep could provide a time-efficient alternative to HRV in supine position.

  8. Potential for La Crosse virus segment reassortment in nature

    PubMed Central

    Reese, Sara M; Blitvich, Bradley J; Blair, Carol D; Geske, Dave; Beaty, Barry J; Black, William C

    2008-01-01

    The evolutionary success of La Crosse virus (LACV, family Bunyaviridae) is due to its ability to adapt to changing conditions through intramolecular genetic changes and segment reassortment. Vertical transmission of LACV in mosquitoes increases the potential for segment reassortment. Studies were conducted to determine if segment reassortment was occurring in naturally infected Aedes triseriatus from Wisconsin and Minnesota in 2000, 2004, 2006 and 2007. Mosquito eggs were collected from various sites in Wisconsin and Minnesota. They were reared in the laboratory and adults were tested for LACV antigen by immunofluorescence assay. RNA was isolated from the abdomen of infected mosquitoes and portions of the small (S), medium (M) and large (L) viral genome segments were amplified by RT-PCR and sequenced. Overall, the viral sequences from 40 infected mosquitoes and 5 virus isolates were analyzed. Phylogenetic and linkage disequilibrium analyses revealed that approximately 25% of infected mosquitoes and viruses contained reassorted genome segments, suggesting that LACV segment reassortment is frequent in nature. PMID:19114023

  9. Validity and reliability of naturalistic driving scene categorization Judgments from crowdsourcing.

    PubMed

    Cabrall, Christopher D D; Lu, Zhenji; Kyriakidis, Miltos; Manca, Laura; Dijksterhuis, Chris; Happee, Riender; de Winter, Joost

    2018-05-01

    A common challenge with processing naturalistic driving data is that humans may need to categorize great volumes of recorded visual information. By means of the online platform CrowdFlower, we investigated the potential of crowdsourcing to categorize driving scene features (i.e., presence of other road users, straight road segments, etc.) at greater scale than a single person or a small team of researchers would be capable of. In total, 200 workers from 46 different countries participated in 1.5days. Validity and reliability were examined, both with and without embedding researcher generated control questions via the CrowdFlower mechanism known as Gold Test Questions (GTQs). By employing GTQs, we found significantly more valid (accurate) and reliable (consistent) identification of driving scene items from external workers. Specifically, at a small scale CrowdFlower Job of 48 three-second video segments, an accuracy (i.e., relative to the ratings of a confederate researcher) of 91% on items was found with GTQs compared to 78% without. A difference in bias was found, where without GTQs, external workers returned more false positives than with GTQs. At a larger scale CrowdFlower Job making exclusive use of GTQs, 12,862 three-second video segments were released for annotation. Infeasible (and self-defeating) to check the accuracy of each at this scale, a random subset of 1012 categorizations was validated and returned similar levels of accuracy (95%). In the small scale Job, where full video segments were repeated in triplicate, the percentage of unanimous agreement on the items was found significantly more consistent when using GTQs (90%) than without them (65%). Additionally, in the larger scale Job (where a single second of a video segment was overlapped by ratings of three sequentially neighboring segments), a mean unanimity of 94% was obtained with validated-as-correct ratings and 91% with non-validated ratings. Because the video segments overlapped in full for the small scale Job, and in part for the larger scale Job, it should be noted that such reliability reported here may not be directly comparable. Nonetheless, such results are both indicative of high levels of obtained rating reliability. Overall, our results provide compelling evidence for CrowdFlower, via use of GTQs, being able to yield more accurate and consistent crowdsourced categorizations of naturalistic driving scene contents than when used without such a control mechanism. Such annotations in such short periods of time present a potentially powerful resource in driving research and driving automation development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bit by Bit or All at Once? Splitting up the Inquiry Task to Promote Children's Scientific Reasoning

    ERIC Educational Resources Information Center

    Lazonder, Ard W.; Kamp, Ellen

    2012-01-01

    This study examined whether and why assigning children to a segmented inquiry task makes their investigations more productive. Sixty-one upper elementary-school pupils engaged in a simulation-based inquiry assignment either received a multivariable inquiry task (n = 21), a segmented version of this task that addressed the variables in successive…

  11. Trunk lean gait decreases multi-segmental coordination in the vertical direction.

    PubMed

    Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2017-11-01

    [Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.

  12. Hierarchical extraction of urban objects from mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen; Zhao, Gang; Dai, Wenxia

    2015-01-01

    Point clouds collected in urban scenes contain a huge number of points (e.g., billions), numerous objects with significant size variability, complex and incomplete structures, and variable point densities, raising great challenges for the automated extraction of urban objects in the field of photogrammetry, computer vision, and robotics. This paper addresses these challenges by proposing an automated method to extract urban objects robustly and efficiently. The proposed method generates multi-scale supervoxels from 3D point clouds using the point attributes (e.g., colors, intensities) and spatial distances between points, and then segments the supervoxels rather than individual points by combining graph based segmentation with multiple cues (e.g., principal direction, colors) of the supervoxels. The proposed method defines a set of rules for merging segments into meaningful units according to types of urban objects and forms the semantic knowledge of urban objects for the classification of objects. Finally, the proposed method extracts and classifies urban objects in a hierarchical order ranked by the saliency of the segments. Experiments show that the proposed method is efficient and robust for extracting buildings, streetlamps, trees, telegraph poles, traffic signs, cars, and enclosures from mobile laser scanning (MLS) point clouds, with an overall accuracy of 92.3%.

  13. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    PubMed

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  14. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  15. Body Segment Differences in Surface Area, Skin Temperature and 3D Displacement and the Estimation of Heat Balance during Locomotion in Hominins

    PubMed Central

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-01-01

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached. PMID:18560580

  16. Evaluating the role of river-floodplain connectivity in providing beneficial hydrologic services in mountain landscapes

    NASA Astrophysics Data System (ADS)

    Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.

    2017-12-01

    River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous hydrologic and ecologic benefits, understanding the dynamics and cumulative effects of disconnection is an important step toward improved water resource and ecosystem management.

  17. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    PubMed

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  18. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    USGS Publications Warehouse

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously unrecognized source of NO3− to karst groundwater or other oxic groundwater systems.

  19. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification

    PubMed Central

    Rutzinger, Martin; Höfle, Bernhard; Hollaus, Markus; Pfeifer, Norbert

    2008-01-01

    Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (>20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements directly, i.e. the acquired points. Gridding of the data is not necessary, a process which is inherently coupled to loss of data and precision. The 3D properties provide especially a good separability of buildings and terrain points respectively, if they are occluded by vegetation. PMID:27873771

  20. Californian demonstration and validation of automated agricultural field extraction from multi-temporal Landsat data

    NASA Astrophysics Data System (ADS)

    Yan, L.; Roy, D. P.

    2013-12-01

    The spatial distribution of agricultural fields is a fundamental description of rural landscapes and the location and extent of fields is important to establish the area of land utilized for agricultural yield prediction, resource allocation, and for economic planning. To date, field objects have not been extracted from satellite data over large areas because of computational constraints and because consistently processed appropriate resolution data have not been available or affordable. We present a fully automated computational methodology to extract agricultural fields from 30m Web Enabled Landsat data (WELD) time series and results for approximately 250,000 square kilometers (eleven 150 x 150 km WELD tiles) encompassing all the major agricultural areas of California. The extracted fields, including rectangular, circular, and irregularly shaped fields, are evaluated by comparison with manually interpreted Landsat field objects. Validation results are presented in terms of standard confusion matrix accuracy measures and also the degree of field object over-segmentation, under-segmentation, fragmentation and shape distortion. The apparent success of the presented field extraction methodology is due to several factors. First, the use of multi-temporal Landsat data, as opposed to single Landsat acquisitions, that enables crop rotations and inter-annual variability in the state of the vegetation to be accommodated for and provides more opportunities for cloud-free, non-missing and atmospherically uncontaminated surface observations. Second, the adoption of an object based approach, namely the variational region-based geometric active contour method that enables robust segmentation with only a small number of parameters and that requires no training data collection. Third, the use of a watershed algorithm to decompose connected segments belonging to multiple fields into coherent isolated field segments and a geometry based algorithm to detect and associate parts of circular fields together. Fourth, masking of non-agricultural vegetation using a recent WELD 30m percent tree-cover product and a multi-temporal spectral-angle mapping based grass extraction methodology. Implications and recommendations for algorithm refinement and application to decadal conterminous United States WELD data are discussed.

  1. Mantle uplift and exhumation caused by long-lived transpression at a major transform fault

    NASA Astrophysics Data System (ADS)

    Maia, Marcia; Sichel, Susanna; Briais, Anne; Brunelli, Daniele; Ligi, Marco; Campos, Thomas; Mougel, Bérengère; Hémond, Christophe

    2017-04-01

    Large portions of slow-spreading ridges have mantle-derived peridotites emplaced either on, or at shallow levels below the sea floor. Mantle and deep rock exposure in such contexts results from extension through low-angle detachment faults at oceanic core complexes or, along transform faults, to transtension due to small changes in spreading geometry. In the Equatorial Atlantic, a large body of ultramafic rocks at the large-offset St. Paul transform fault forms the archipelago of St. Peter & St. Paul. These islets are emplaced near the axis of the Mid-Atlantic Ridge (MAR), and have intrigued geologists since Darwin's time. They are made of variably serpentinized and mylonitized peridotites, and are presently being uplifted at a rate of 1.5 mm/yr, which suggests tectonic stresses. The existence of an abnormally cold upper mantle or cold lithosphere in the Equatorial Atlantic was, until now, the preferred explanation for the origin of these ultramafics. High-resolution geophysical data and rock samples acquired in 2013 show that the origin of the St. Peter & St. Paul archipelago is linked to compressive stresses along the transform fault. The islets represent the summit of a large push-up ridge formed by deformed mantle rocks, located in the center of a positive flower structure, where large portions of mylonitized mantle are uplifted. The transpressive stress field can be explained by the propagation of the northern MAR segment into the transform domain. The latter induced the overlap of ridge segments, resulting in the migration and segmentation of the transform fault and the creation of a series of restraining step-overs. A counterclockwise change in plate motion at 11 Ma initially generated extensive stresses in the transform domain, forming a flexural transverse ridge. Shortly after the plate reorganization, the MAR segment located on the northern side of the transform fault started to propagate southwards, adjusting to the new spreading direction. Enhanced melt supply at the ridge axis, possibly due to the Sierra Leone thermal anomaly, induced the robust response of this segment.

  2. Training the Trainers for Small Business.

    ERIC Educational Resources Information Center

    Gibb, Allan A.

    1990-01-01

    Training for small businesses requires an entrepreneurial rather than a conventional approach. Critical trainer competencies include profiling the business, segmenting the market, understanding the business development process, introducing the relevant environment, delivering enterprise skills training, and teaching across the board. (SK)

  3. Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization

    NASA Astrophysics Data System (ADS)

    Li, Li

    2018-03-01

    In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.

  4. Segmentation of images of abdominal organs.

    PubMed

    Wu, Jie; Kamath, Markad V; Noseworthy, Michael D; Boylan, Colm; Poehlman, Skip

    2008-01-01

    Abdominal organ segmentation, which is, the delineation of organ areas in the abdomen, plays an important role in the process of radiological evaluation. Attempts to automate segmentation of abdominal organs will aid radiologists who are required to view thousands of images daily. This review outlines the current state-of-the-art semi-automated and automated methods used to segment abdominal organ regions from computed tomography (CT), magnetic resonance imaging (MEI), and ultrasound images. Segmentation methods generally fall into three categories: pixel based, region based and boundary tracing. While pixel-based methods classify each individual pixel, region-based methods identify regions with similar properties. Boundary tracing is accomplished by a model of the image boundary. This paper evaluates the effectiveness of the above algorithms with an emphasis on their advantages and disadvantages for abdominal organ segmentation. Several evaluation metrics that compare machine-based segmentation with that of an expert (radiologist) are identified and examined. Finally, features based on intensity as well as the texture of a small region around a pixel are explored. This review concludes with a discussion of possible future trends for abdominal organ segmentation.

  5. Sampling effects on the identification of roadkill hotspots: Implications for survey design.

    PubMed

    Santos, Sara M; Marques, J Tiago; Lourenço, André; Medinas, Denis; Barbosa, A Márcia; Beja, Pedro; Mira, António

    2015-10-01

    Although locating wildlife roadkill hotspots is essential to mitigate road impacts, the influence of study design on hotspot identification remains uncertain. We evaluated how sampling frequency affects the accuracy of hotspot identification, using a dataset of vertebrate roadkills (n = 4427) recorded over a year of daily surveys along 37 km of roads. "True" hotspots were identified using this baseline dataset, as the 500-m segments where the number of road-killed vertebrates exceeded the upper 95% confidence limit of the mean, assuming a Poisson distribution of road-kills per segment. "Estimated" hotspots were identified likewise, using datasets representing progressively lower sampling frequencies, which were produced by extracting data from the baseline dataset at appropriate time intervals (1-30 days). Overall, 24.3% of segments were "true" hotspots, concentrating 40.4% of roadkills. For different groups, "true" hotspots accounted from 6.8% (bats) to 29.7% (small birds) of road segments, concentrating from <40% (frogs and toads, snakes) to >60% (lizards, lagomorphs, carnivores) of roadkills. Spatial congruence between "true" and "estimated" hotspots declined rapidly with increasing time interval between surveys, due primarily to increasing false negatives (i.e., missing "true" hotspots). There were also false positives (i.e., wrong "estimated" hotspots), particularly at low sampling frequencies. Spatial accuracy decay with increasing time interval between surveys was higher for smaller-bodied (amphibians, reptiles, small birds, small mammals) than for larger-bodied species (birds of prey, hedgehogs, lagomorphs, carnivores). Results suggest that widely used surveys at weekly or longer intervals may produce poor estimates of roadkill hotspots, particularly for small-bodied species. Surveying daily or at two-day intervals may be required to achieve high accuracy in hotspot identification for multiple species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less

  7. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound.

    PubMed

    Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M

    2014-02-01

    To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  8. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    PubMed Central

    Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.

    2014-01-01

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648

  9. Cluster-guided imaging-based CFD analysis of airflow and particle deposition in asthmatic human lungs

    NASA Astrophysics Data System (ADS)

    Choi, Jiwoong; Leblanc, Lawrence; Choi, Sanghun; Haghighi, Babak; Hoffman, Eric; Lin, Ching-Long

    2017-11-01

    The goal of this study is to assess inter-subject variability in delivery of orally inhaled drug products to small airways in asthmatic lungs. A recent multiscale imaging-based cluster analysis (MICA) of computed tomography (CT) lung images in an asthmatic cohort identified four clusters with statistically distinct structural and functional phenotypes associating with unique clinical biomarkers. Thus, we aimed to address inter-subject variability via inter-cluster variability. We selected a representative subject from each of the 4 asthma clusters as well as 1 male and 1 female healthy controls, and performed computational fluid and particle simulations on CT-based airway models of these subjects. The results from one severe and one non-severe asthmatic cluster subjects characterized by segmental airway constriction had increased particle deposition efficiency, as compared with the other two cluster subjects (one non-severe and one severe asthmatics) without airway constriction. Constriction-induced jets impinging on distal bifurcations led to excessive particle deposition. The results emphasize the impact of airway constriction on regional particle deposition rather than disease severity, demonstrating the potential of using cluster membership to tailor drug delivery. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837. XSEDE.

  10. Partial melting of amphibolites in the Eastern Segment of the Sveconorwegian orogen, southern Sweden.

    NASA Astrophysics Data System (ADS)

    Brophy, E.; Hansen, E. C.; Möller, C.; Huffman, M.

    2017-12-01

    Mafic migmatites with amphibolitic melanosome and tonalitic leucosome are a common feature in continental collision orogenic zones. However, the anatexis of mafic rocks has received much less attention than anatexis in felsic, intermediate or pelitic compositions. We examined mafic migmatites along a traverse within the Eastern Segment of the 1.14-0.9 Ga Sveconorwegian orogen, between Forsheda and Fegen southern Sweden. This traverse occurs in the center of a >150 km metamorphic transition from sub-greenschist facies in the east to high-pressure granulite and eclogite facies in the west (Möller and Andersson, unpublished metamorphic map). The Eastern Segment is a parautochthonous belt made up of rocks of the Fennoscandian shield that were deformed and metamorphosed during the Sveconorwegian orogeny. Within the traverse amphibolite bodies occur within migmatitic felsic to intermediate orthogneisses. The first appearance of tonalitic leucosome in amphibolite was observed towards the eastern edge of the traverse and continued to occur sporadically westward ranging in abundance (by outcrop area) from 0 to 25 %. The mineral assemblage in amphibolite is hbl + plag ( An30) + qtz + bt ± grt ± ilm ± ttn ± py ± SO2-rich scp. No examples of peritectic pyroxene associated with leucosome were found. The lack of peritectic pyroxene suggests that a water-rich phase was present at the onset of anatexis. The highly variable amount of leucosome further suggests that the amount of melt generated was determined by the amount of water available. Together these suggest that partial was driven by the local influx of a water-rich fluid. In the higher grade portions further west migmatitic amphibolite with tonalitic leucosome occurs in two varieties: one with peritectic pyroxene and relatively small amounts of leucosome, interpreted as forming by water-undersaturated dehydration melting, and another without peritectic pyroxene and with larger amounts of leucosome which is interpreted as having formed from water-fluxed melting (Hansen et al., Lithos, 2015). Thus, water-undersaturated melting in mafic rocks appears to have been limited to the higher-grade portions of the orogen. The variable amounts of leucosome produced by partial melting indicate that the presence of water-rich fluids was localized rather than penetrative.

  11. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non-small cell lung cancer.

    PubMed

    Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J

    2015-09-01

    Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.

  12. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments

    PubMed Central

    Wichgers Schreur, Paul J.; Kortekaas, Jeroen

    2016-01-01

    The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH), the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV) genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process. PMID:27548280

  13. TU-H-CAMPUS-JeP2-05: Can Automatic Delineation of Cardiac Substructures On Noncontrast CT Be Used for Cardiac Toxicity Analysis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y; Liao, Z; Jiang, W

    Purpose: To evaluate the feasibility of using an automatic segmentation tool to delineate cardiac substructures from computed tomography (CT) images for cardiac toxicity analysis for non-small cell lung cancer (NSCLC) patients after radiotherapy. Methods: A multi-atlas segmentation tool developed in-house was used to delineate eleven cardiac substructures including the whole heart, four heart chambers, and six greater vessels automatically from the averaged 4DCT planning images for 49 NSCLC patients. The automatic segmented contours were edited appropriately by two experienced radiation oncologists. The modified contours were compared with the auto-segmented contours using Dice similarity coefficient (DSC) and mean surface distance (MSD)more » to evaluate how much modification was needed. In addition, the dose volume histogram (DVH) of the modified contours were compared with that of the auto-segmented contours to evaluate the dosimetric difference between modified and auto-segmented contours. Results: Of the eleven structures, the averaged DSC values ranged from 0.73 ± 0.08 to 0.95 ± 0.04 and the averaged MSD values ranged from 1.3 ± 0.6 mm to 2.9 ± 5.1mm for the 49 patients. Overall, the modification is small. The pulmonary vein (PV) and the inferior vena cava required the most modifications. The V30 (volume receiving 30 Gy or above) for the whole heart and the mean dose to the whole heart and four heart chambers did not show statistically significant difference between modified and auto-segmented contours. The maximum dose to the greater vessels did not show statistically significant difference except for the PV. Conclusion: The automatic segmentation of the cardiac substructures did not require substantial modification. The dosimetric evaluation showed no statistically significant difference between auto-segmented and modified contours except for the PV, which suggests that auto-segmented contours for the cardiac dose response study are feasible in the clinical practice with a minor modification to the PV vessel.« less

  14. A robust and fast active contour model for image segmentation with intensity inhomogeneity

    NASA Astrophysics Data System (ADS)

    Ding, Keyan; Weng, Guirong

    2018-04-01

    In this paper, a robust and fast active contour model is proposed for image segmentation in the presence of intensity inhomogeneity. By introducing the local image intensities fitting functions before the evolution of curve, the proposed model can effectively segment images with intensity inhomogeneity. And the computation cost is low because the fitting functions do not need to be updated in each iteration. Experiments have shown that the proposed model has a higher segmentation efficiency compared to some well-known active contour models based on local region fitting energy. In addition, the proposed model is robust to initialization, which allows the initial level set function to be a small constant function.

  15. Comparison of three-dimensional multi-segmental foot models used in clinical gait laboratories.

    PubMed

    Nicholson, Kristen; Church, Chris; Takata, Colton; Niiler, Tim; Chen, Brian Po-Jung; Lennon, Nancy; Sees, Julie P; Henley, John; Miller, Freeman

    2018-05-16

    Many skin-mounted three-dimensional multi-segmented foot models are currently in use for gait analysis. Evidence regarding the repeatability of models, including between trial and between assessors, is mixed, and there are no between model comparisons of kinematic results. This study explores differences in kinematics and repeatability between five three-dimensional multi-segmented foot models. The five models include duPont, Heidelberg, Oxford Child, Leardini, and Utah. Hind foot, forefoot, and hallux angles were calculated with each model for ten individuals. Two physical therapists applied markers three times to each individual to assess within and between therapist variability. Standard deviations were used to evaluate marker placement variability. Locally weighted regression smoothing with alpha-adjusted serial T tests analysis was used to assess kinematic similarities. All five models had similar variability, however, the Leardini model showed high standard deviations in plantarflexion/dorsiflexion angles. P-value curves for the gait cycle were used to assess kinematic similarities. The duPont and Oxford models had the most similar kinematics. All models demonstrated similar marker placement variability. Lower variability was noted in the sagittal and coronal planes compared to rotation in the transverse plane, suggesting a higher minimal detectable change when clinically considering rotation and a need for additional research. Between the five models, the duPont and Oxford shared the most kinematic similarities. While patterns of movement were very similar between all models, offsets were often present and need to be considered when evaluating published data. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Fine-grained recognition of plants from images.

    PubMed

    Šulc, Milan; Matas, Jiří

    2017-01-01

    Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition "in the wild". We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition "in the wild". The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition "in the wild" where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.

  17. In silico segmentations of lentivirus envelope sequences

    PubMed Central

    Boissin-Quillon, Aurélia; Piau, Didier; Leroux, Caroline

    2007-01-01

    Background The gene encoding the envelope of lentiviruses exhibits a considerable plasticity, particularly the region which encodes the surface (SU) glycoprotein. Interestingly, mutations do not appear uniformly along the sequence of SU, but they are clustered in restricted areas, called variable (V) regions, which are interspersed with relatively more stable regions, called constant (C) regions. We look for specific signatures of C/V regions, using hidden Markov models constructed with SU sequences of the equine, human, small ruminant and simian lentiviruses. Results Our models yield clear and accurate delimitations of the C/V regions, when the test set and the training set were made up of sequences of the same lentivirus, but also when they were made up of sequences of different lentiviruses. Interestingly, the models predicted the different regions of lentiviruses such as the bovine and feline lentiviruses, not used in the training set. Models based on composite training sets produce accurate segmentations of sequences of all these lentiviruses. Conclusion Our results suggest that each C/V region has a specific statistical oligonucleotide composition, and that the C (respectively V) regions of one of these lentiviruses are statistically more similar to the C (respectively V) regions of the other lentiviruses, than to the V (respectively C) regions of the same lentivirus. PMID:17376229

  18. Deducing the form factors for shear used in the calculus of the displacements based on strain energy methods. Mathematical approach for currently used shapes

    NASA Astrophysics Data System (ADS)

    Constantinescu, E.; Oanta, E.; Panait, C.

    2017-08-01

    The paper presents an initial study concerning the form factors for shear, for a rectangular and for a circular cross section, being used an analytical method and a numerical study. The numerical study considers a division of the cross section in small areas and uses the power of the definitions in order to compute the according integrals. The accurate values of the form factors are increasing the accuracy of the displacements computed by the use of the strain energy methods. The knowledge resulted from this study will be used for several directions of development: calculus of the form factors for a ring-type cross section of variable ratio of the inner and outer diameters, calculus of the geometrical characteristics of an inclined circular segment and, using a Bool algebra that operates with geometrical shapes, for an inclined circular ring segment. These shapes may be used to analytically define the geometrical model of a complex composite section, i.e. a ship hull cross section. The according calculus relations are also useful for the development of customized design commands in CAD commercial applications. The paper is a result of the long run development of original computer based instruments in engineering of the authors.

  19. Altered phenotypic expression of immunoglobulin heavy-chain variable-region (VH) genes in Alicia rabbits probably reflects a small deletion in the VH genes closest to the joining region.

    PubMed

    Allegrucci, M; Newman, B A; Young-Cooper, G O; Alexander, C B; Meier, D; Kelus, A S; Mage, R G

    1990-07-01

    Rabbits of the Alicia strain have a mutation (ali) that segregates with the immunoglobulin heavy-chain (lgh) locus and has a cis effect upon the expression of heavy-chain variable-region (VH) genes encoding the a2 allotype. In heterozygous a1/ali or a3/ali rabbits, serum immunoglobulins are almost entirely the products of the normal a1 or a3 allele and only traces of a2 immunoglobulin are detectable. Adult homozygous ali/ali rabbits likewise have normal immunoglobulin levels resulting from increased production of a-negative immunoglobulins and some residual ability to produce the a2 allotype. By contrast, the majority of the immunoglobulins of wild-type a2 rabbits are a2-positive and only a small percentage are a-negative. Genomic DNAs from homozygous mutant and wild-type animals were indistinguishable by Southern analyses using a variety of restriction enzyme digests and lgh probes. However, when digests with infrequently cutting enzymes were analyzed by transverse alternating-field electrophoresis, the ali DNA fragments were 10-15 kilobases smaller than the wild type. These fragments hybridized to probes both for VH and for a region of DNA a few kilobases downstream of the VH genes nearest the joining region. We suggest that this relatively small deletion affects a segment containing 3' VH genes with important regulatory functions, the loss of which leads to the ali phenotype. These results, and the fact that the 3' VH genes rearrange early in B-cell development, indicate that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression.

  20. Altered phenotypic expression of immunoglobulin heavy-chain variable-region (VH) genes in Alicia rabbits probably reflects a small deletion in the VH genes closest to the joining region.

    PubMed Central

    Allegrucci, M; Newman, B A; Young-Cooper, G O; Alexander, C B; Meier, D; Kelus, A S; Mage, R G

    1990-01-01

    Rabbits of the Alicia strain have a mutation (ali) that segregates with the immunoglobulin heavy-chain (lgh) locus and has a cis effect upon the expression of heavy-chain variable-region (VH) genes encoding the a2 allotype. In heterozygous a1/ali or a3/ali rabbits, serum immunoglobulins are almost entirely the products of the normal a1 or a3 allele and only traces of a2 immunoglobulin are detectable. Adult homozygous ali/ali rabbits likewise have normal immunoglobulin levels resulting from increased production of a-negative immunoglobulins and some residual ability to produce the a2 allotype. By contrast, the majority of the immunoglobulins of wild-type a2 rabbits are a2-positive and only a small percentage are a-negative. Genomic DNAs from homozygous mutant and wild-type animals were indistinguishable by Southern analyses using a variety of restriction enzyme digests and lgh probes. However, when digests with infrequently cutting enzymes were analyzed by transverse alternating-field electrophoresis, the ali DNA fragments were 10-15 kilobases smaller than the wild type. These fragments hybridized to probes both for VH and for a region of DNA a few kilobases downstream of the VH genes nearest the joining region. We suggest that this relatively small deletion affects a segment containing 3' VH genes with important regulatory functions, the loss of which leads to the ali phenotype. These results, and the fact that the 3' VH genes rearrange early in B-cell development, indicate that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression. Images PMID:2115171

  1. Novel chip coating approaches to improve white LED technology

    NASA Astrophysics Data System (ADS)

    Hartmann, Paul; Schweighart, Marko; Sommer, Christian; Wenzl, Franz-P.; Zinterl, Ernst; Hoschopf, Hans; Pachler, Peter; Tasch, Stefan

    2008-02-01

    Key market requirements for white LEDs, especially in the general lighting and automotive headlamp segments call for improved concepts and performance of white LEDs based on phosphor conversion. Major challenges are small emission areas, highest possible intensities, long-term color stability, and spatial homogeneity of color coordinates. On the other hand, the increasingly high radiation power of the blue LEDs poses problems for all involved materials. Various thick film coating technologies are widely used for applying the color conversion layer to the semiconductor chip. We present novel concepts based on Silicate phosphors with high performance in terms of spatial homogeneity of the emission and variability of the color temperature. Numerical calculation of the optical properties with the help of state-of-the-art simulation tools was used as a basis for the practical optimization of the layer geometries.

  2. A semi-automated image analysis procedure for in situ plankton imaging systems.

    PubMed

    Bi, Hongsheng; Guo, Zhenhua; Benfield, Mark C; Fan, Chunlei; Ford, Michael; Shahrestani, Suzan; Sieracki, Jeffery M

    2015-01-01

    Plankton imaging systems are capable of providing fine-scale observations that enhance our understanding of key physical and biological processes. However, processing the large volumes of data collected by imaging systems remains a major obstacle for their employment, and existing approaches are designed either for images acquired under laboratory controlled conditions or within clear waters. In the present study, we developed a semi-automated approach to analyze plankton taxa from images acquired by the ZOOplankton VISualization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When compared to images under laboratory controlled conditions or clear waters, images from highly turbid waters are often of relatively low quality and more variable, due to the large amount of objects and nonlinear illumination within each image. We first customized a segmentation procedure to locate objects within each image and extracted them for classification. A maximally stable extremal regions algorithm was applied to segment large gelatinous zooplankton and an adaptive threshold approach was developed to segment small organisms, such as copepods. Unlike the existing approaches for images acquired from laboratory, controlled conditions or clear waters, the target objects are often the majority class, and the classification can be treated as a multi-class classification problem. We customized a two-level hierarchical classification procedure using support vector machines to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histograms of oriented gradients feature descriptors were constructed for the segmented objects. In the first step all non-target and target objects were classified into different groups: arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-specific classifier to remove most non-target objects. After the object was classified, an expert or non-expert then manually removed the non-target objects that could not be removed by the procedure. The procedure was tested on 89,419 images collected in Chesapeake Bay, and results were consistent with visual counts with >80% accuracy for all three groups.

  3. A Semi-Automated Image Analysis Procedure for In Situ Plankton Imaging Systems

    PubMed Central

    Bi, Hongsheng; Guo, Zhenhua; Benfield, Mark C.; Fan, Chunlei; Ford, Michael; Shahrestani, Suzan; Sieracki, Jeffery M.

    2015-01-01

    Plankton imaging systems are capable of providing fine-scale observations that enhance our understanding of key physical and biological processes. However, processing the large volumes of data collected by imaging systems remains a major obstacle for their employment, and existing approaches are designed either for images acquired under laboratory controlled conditions or within clear waters. In the present study, we developed a semi-automated approach to analyze plankton taxa from images acquired by the ZOOplankton VISualization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When compared to images under laboratory controlled conditions or clear waters, images from highly turbid waters are often of relatively low quality and more variable, due to the large amount of objects and nonlinear illumination within each image. We first customized a segmentation procedure to locate objects within each image and extracted them for classification. A maximally stable extremal regions algorithm was applied to segment large gelatinous zooplankton and an adaptive threshold approach was developed to segment small organisms, such as copepods. Unlike the existing approaches for images acquired from laboratory, controlled conditions or clear waters, the target objects are often the majority class, and the classification can be treated as a multi-class classification problem. We customized a two-level hierarchical classification procedure using support vector machines to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histograms of oriented gradients feature descriptors were constructed for the segmented objects. In the first step all non-target and target objects were classified into different groups: arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-specific classifier to remove most non-target objects. After the object was classified, an expert or non-expert then manually removed the non-target objects that could not be removed by the procedure. The procedure was tested on 89,419 images collected in Chesapeake Bay, and results were consistent with visual counts with >80% accuracy for all three groups. PMID:26010260

  4. Estimating A Reference Standard Segmentation With Spatially Varying Performance Parameters: Local MAP STAPLE

    PubMed Central

    Commowick, Olivier; Akhondi-Asl, Alireza; Warfield, Simon K.

    2012-01-01

    We present a new algorithm, called local MAP STAPLE, to estimate from a set of multi-label segmentations both a reference standard segmentation and spatially varying performance parameters. It is based on a sliding window technique to estimate the segmentation and the segmentation performance parameters for each input segmentation. In order to allow for optimal fusion from the small amount of data in each local region, and to account for the possibility of labels not being observed in a local region of some (or all) input segmentations, we introduce prior probabilities for the local performance parameters through a new Maximum A Posteriori formulation of STAPLE. Further, we propose an expression to compute confidence intervals in the estimated local performance parameters. We carried out several experiments with local MAP STAPLE to characterize its performance and value for local segmentation evaluation. First, with simulated segmentations with known reference standard segmentation and spatially varying performance, we show that local MAP STAPLE performs better than both STAPLE and majority voting. Then we present evaluations with data sets from clinical applications. These experiments demonstrate that spatial adaptivity in segmentation performance is an important property to capture. We compared the local MAP STAPLE segmentations to STAPLE, and to previously published fusion techniques and demonstrate the superiority of local MAP STAPLE over other state-of-the- art algorithms. PMID:22562727

  5. Respondent-driven sampling and the recruitment of people with small injecting networks.

    PubMed

    Paquette, Dana; Bryant, Joanne; de Wit, John

    2012-05-01

    Respondent-driven sampling (RDS) is a form of chain-referral sampling, similar to snowball sampling, which was developed to reach hidden populations such as people who inject drugs (PWID). RDS is said to reach members of a hidden population that may not be accessible through other sampling methods. However, less attention has been paid as to whether there are segments of the population that are more likely to be missed by RDS. This study examined the ability of RDS to capture people with small injecting networks. A study of PWID, using RDS, was conducted in 2009 in Sydney, Australia. The size of participants' injecting networks was examined by recruitment chain and wave. Participants' injecting network characteristics were compared to those of participants from a separate pharmacy-based study. A logistic regression analysis was conducted to examine the characteristics independently associated with having small injecting networks, using the combined RDS and pharmacy-based samples. In comparison with the pharmacy-recruited participants, RDS participants were almost 80% less likely to have small injecting networks, after adjusting for other variables. RDS participants were also more likely to have their injecting networks form a larger proportion of those in their social networks, and to have acquaintances as part of their injecting networks. Compared to those with larger injecting networks, individuals with small injecting networks were equally likely to engage in receptive sharing of injecting equipment, but less likely to have had contact with prevention services. These findings suggest that those with small injecting networks are an important group to recruit, and that RDS is less likely to capture these individuals.

  6. The method for detecting small lesions in medical image based on sliding window

    NASA Astrophysics Data System (ADS)

    Han, Guilai; Jiao, Yuan

    2016-10-01

    At present, the research on computer-aided diagnosis includes the sample image segmentation, extracting visual features, generating the classification model by learning, and according to the model generated to classify and judge the inspected images. However, this method has a large scale of calculation and speed is slow. And because medical images are usually low contrast, when the traditional image segmentation method is applied to the medical image, there is a complete failure. As soon as possible to find the region of interest, improve detection speed, this topic attempts to introduce the current popular visual attention model into small lesions detection. However, Itti model is mainly for natural images. But the effect is not ideal when it is used to medical images which usually are gray images. Especially in the early stages of some cancers, the focus of a disease in the whole image is not the most significant region and sometimes is very difficult to be found. But these lesions are prominent in the local areas. This paper proposes a visual attention mechanism based on sliding window, and use sliding window to calculate the significance of a local area. Combined with the characteristics of the lesion, select the features of gray, entropy, corner and edge to generate a saliency map. Then the significant region is segmented and distinguished. This method reduces the difficulty of image segmentation, and improves the detection accuracy of small lesions, and it has great significance to early discovery, early diagnosis and treatment of cancers.

  7. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  8. Comparison of segmentation algorithms for fluorescence microscopy images of cells.

    PubMed

    Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L

    2011-07-01

    The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.

  9. Atlas-based liver segmentation and hepatic fat-fraction assessment for clinical trials.

    PubMed

    Yan, Zhennan; Zhang, Shaoting; Tan, Chaowei; Qin, Hongxing; Belaroussi, Boubakeur; Yu, Hui Jing; Miller, Colin; Metaxas, Dimitris N

    2015-04-01

    Automated assessment of hepatic fat-fraction is clinically important. A robust and precise segmentation would enable accurate, objective and consistent measurement of hepatic fat-fraction for disease quantification, therapy monitoring and drug development. However, segmenting the liver in clinical trials is a challenging task due to the variability of liver anatomy as well as the diverse sources the images were acquired from. In this paper, we propose an automated and robust framework for liver segmentation and assessment. It uses single statistical atlas registration to initialize a robust deformable model to obtain fine segmentation. Fat-fraction map is computed by using chemical shift based method in the delineated region of liver. This proposed method is validated on 14 abdominal magnetic resonance (MR) volumetric scans. The qualitative and quantitative comparisons show that our proposed method can achieve better segmentation accuracy with less variance comparing with two other atlas-based methods. Experimental results demonstrate the promises of our assessment framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Adolescents and alcohol: an explorative audience segmentation analysis

    PubMed Central

    2012-01-01

    Background So far, audience segmentation of adolescents with respect to alcohol has been carried out mainly on the basis of socio-demographic characteristics. In this study we examined whether it is possible to segment adolescents according to their values and attitudes towards alcohol to use as guidance for prevention programmes. Methods A random sample of 7,000 adolescents aged 12 to 18 was drawn from the Municipal Basic Administration (MBA) of 29 Local Authorities in the province North-Brabant in the Netherlands. By means of an online questionnaire data were gathered on values and attitudes towards alcohol, alcohol consumption and socio-demographic characteristics. Results We were able to distinguish a total of five segments on the basis of five attitude factors. Moreover, the five segments also differed in drinking behavior independently of socio-demographic variables. Conclusions Our investigation was a first step in the search for possibilities of segmenting by factors other than socio-demographic characteristics. Further research is necessary in order to understand these results for alcohol prevention policy in concrete terms. PMID:22950946

  11. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    NASA Technical Reports Server (NTRS)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  12. [Comparative analysis of variable regions in the genomes of variola virus].

    PubMed

    Babkin, I V; Nepomniashchikh, T S; Maksiutov, R A; Gutorov, V V; Babkina, I N; Shchelkunov, S N

    2008-01-01

    Nucleotide sequences of two extended segments of the terminal variable regions in variola virus genome were determined. The size of the left segment was 13.5 kbp and of the right, 10.5 kbp. Totally, over 540 kbp were sequenced for 22 variola virus strains. The conducted phylogenetic analysis and the data published earlier allowed us to find the interrelations between 70 variola virus isolates, the character of their clustering, and the degree of intergroup and intragroup variations of the clusters of variola virus strains. The most polymorphic loci of the genome segments studied were determined. It was demonstrated that that these loci are localized to either noncoding genome regions or to the regions of destroyed open reading frames, characteristic of the ancestor virus. These loci are promising for development of the strategy for genotyping variola virus strains. Analysis of recombination using various methods demonstrated that, with the only exception, no statistically significant recombinational events in the genomes of variola virus strains studied were detectable.

  13. The Ties that Bind (the Igh Locus).

    PubMed

    Krangel, Michael S

    2016-05-01

    Immunoglobulin heavy-chain locus V(D)J recombination requires a 3D chromatin organization which permits widely distributed variable (V) gene segments to contact distant diversity (D) and joining (J) gene segments. A recent study has identified key nodes in the locus interactome, paving the way for new molecular insights into how the locus is configured for recombination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Segmentation and Analysis of Stereophotometric Body Surface Data.

    DTIC Science & Technology

    1982-04-01

    each anterior superior iliac spine. Anthropometry : Study of the physical dimensions of the human body. Articulated Total Body Model: Computer...X2 ) (x- xl ) + YI’ 0) (A.l) with x variable. Let the segmenting plane they are being compared to have a normal vector with components (nI , n2, n3...gives n3 ( z) ( Xl -X 2 ) + nX(XX + Xn 2 (Y-y 2 ) + n2 (Z -Y1 ) ( Xl -X 2 ) (A.3b) n 1 n(X 1-X 2 + n 2(Yl-y 2) Note that since the segmenting plane passes

  15. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review

    NASA Astrophysics Data System (ADS)

    van Rikxoort, Eva M.; van Ginneken, Bram

    2013-09-01

    Computed tomography (CT) is the modality of choice for imaging the lungs in vivo. Sub-millimeter isotropic images of the lungs can be obtained within seconds, allowing the detection of small lesions and detailed analysis of disease processes. The high resolution of thoracic CT and the high prevalence of lung diseases require a high degree of automation in the analysis pipeline. The automated segmentation of pulmonary structures in thoracic CT has been an important research topic for over a decade now. This systematic review provides an overview of current literature. We discuss segmentation methods for the lungs, the pulmonary vasculature, the airways, including airway tree construction and airway wall segmentation, the fissures, the lobes and the pulmonary segments. For each topic, the current state of the art is summarized, and topics for future research are identified.

  16. Differential segmentation responses to an alcohol social marketing program.

    PubMed

    Dietrich, Timo; Rundle-Thiele, Sharyn; Schuster, Lisa; Drennan, Judy; Russell-Bennett, Rebekah; Leo, Cheryl; Gullo, Matthew J; Connor, Jason P

    2015-10-01

    This study seeks to establish whether meaningful subgroups exist within a 14-16 year old adolescent population and if these segments respond differently to the Game On: Know Alcohol (GOKA) intervention, a school-based alcohol social marketing program. This study is part of a larger cluster randomized controlled evaluation of the GOKA program implemented in 14 schools in 2013/2014. TwoStep cluster analysis was conducted to segment 2,114 high school adolescents (14-16 years old) on the basis of 22 demographic, behavioral, and psychographic variables. Program effects on knowledge, attitudes, behavioral intentions, social norms, alcohol expectancies, and drinking refusal self-efficacy of identified segments were subsequently examined. Three segments were identified: (1) Abstainers, (2) Bingers, and (3) Moderate Drinkers. Program effects varied significantly across segments. The strongest positive change effects post-participation were observed for Bingers, while mixed effects were evident for Moderate Drinkers and Abstainers. These findings provide preliminary empirical evidence supporting the application of social marketing segmentation in alcohol education programs. Development of targeted programs that meet the unique needs of each of the three identified segments will extend the social marketing footprint in alcohol education. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.

    2018-02-01

    Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.

  18. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  19. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images.

    PubMed

    Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida

    2016-09-01

    Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study.

    PubMed

    Pérez-Beteta, Julián; Martínez-González, Alicia; Molina, David; Amo-Salas, Mariano; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Claramonte, Marta; Barcia, Juan A; Iglesias, Lidia; Avecillas, Josué; Albillo, David; Navarro, Miguel; Villanueva, José M; Paniagua, Juan C; Martino, Juan; Velásquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Delgado, María Del Carmen; Del Valle, Ana; Falkov, Anthony; Schucht, Philippe; Arana, Estanislao; Pérez-Romasanta, Luis; Pérez-García, Víctor M

    2017-03-01

    The potential of a tumour's volumetric measures obtained from pretreatment MRI sequences of glioblastoma (GBM) patients as predictors of clinical outcome has been controversial. Mathematical models of GBM growth have suggested a relation between a tumour's geometry and its aggressiveness. A multicenter retrospective clinical study was designed to study volumetric and geometrical measures on pretreatment postcontrast T1 MRIs of 117 GBM patients. Clinical variables were collected, tumours segmented, and measures computed including: contrast enhancing (CE), necrotic, and total volumes; maximal tumour diameter; equivalent spherical CE width and several geometric measures of the CE "rim". The significance of the measures was studied using proportional hazards analysis and Kaplan-Meier curves. Kaplan-Meier and univariate Cox survival analysis showed that total volume [p = 0.034, Hazard ratio (HR) = 1.574], CE volume (p = 0.017, HR = 1.659), spherical rim width (p = 0.007, HR = 1.749), and geometric heterogeneity (p = 0.015, HR = 1.646) were significant parameters in terms of overall survival (OS). Multivariable Cox analysis for OS provided the later two parameters as age-adjusted predictors of OS (p = 0.043, HR = 1.536 and p = 0.032, HR = 1.570, respectively). Patients with tumours having small geometric heterogeneity and/or spherical rim widths had significantly better prognosis. These novel imaging biomarkers have a strong individual and combined prognostic value for GBM patients. • Three-dimensional segmentation on magnetic resonance images allows the study of geometric measures. • Patients with small width of contrast enhancing areas have better prognosis. • The irregularity of contrast enhancing areas predicts survival in glioblastoma patients.

  1. Gravitational collapse of conventional polytropic cylinder

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2017-07-01

    In reference to general polytropic and conventional polytropic hydrodynamic cylinders of infinite length with axial uniformity and axisymmetry under self-gravity, the dynamic evolution of central collapsing mass string in free-fall dynamic accretion phase is re-examined in details. We compare the central mass accretion rate and the envelope mass infall rate at small radii. Among others, we correct mistakes and typos of Kawachi & Hanawa (KH hereafter) and in particular prove that their key asymptotic free-fall solution involving polytropic index γ in the two power exponents is erroneous by analytical analyses and numerical tests. The correct free-fall asymptotic solutions at sufficiently small \\hat{r} (the dimensionless independent self-similar variable) scale as {˜ } -|ln \\hat{r}|^{1/2} in contrast to KH's ˜ -|ln \\hat{r}|^{(2-γ )/2} for the reduced bulk radial flow velocity and as {˜ } \\hat{r}^{-1}|ln \\hat{r}|^{-1/2} in contrast to KH's {˜ } \\hat{r}^{-1} |ln \\hat{r}|^{-(2-γ )/2} for the reduced mass density. We offer consistent scenarios for numerical simulation code testing and theoretical study on dynamic filamentary structure formation and evolution as well as pertinent stability properties. Due to unavoidable Jeans instabilities along the cylinder, such collapsing massive filaments or strings can further break up into clumps and segments of various lengths as well as clumps embedded within segments and evolve into chains of gravitationally collapsed objects (such as gaseous planets, brown dwarfs, protostars, white dwarfs, neutron stars, black holes in a wide mass range, globular clusters, dwarf spheroidals, galaxies, galaxy clusters and even larger mass reservoirs etc.) in various astrophysical and cosmological contexts as articulated by Lou & Hu recently. As an example, we present a model scheme for comparing with observations of molecular filaments for forming protostars, brown dwarfs and gaseous planets and so forth.

  2. Age and sex influences on running mechanics and coordination variability.

    PubMed

    Boyer, Katherine A; Freedman Silvernail, Julia; Hamill, Joseph

    2017-11-01

    The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s -1 . A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex-age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh-shank transverse plane couple but greater coordination variability for the shank rotation-foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.

  3. LANDSAT-4 horizon scanner full orbit data averages

    NASA Technical Reports Server (NTRS)

    Stanley, J. P.; Bilanow, S.

    1983-01-01

    Averages taken over full orbit data spans of the pitch and roll residual measurement errors of the two conical Earth sensors operating on the LANDSAT 4 spacecraft are described. The variability of these full orbit averages over representative data throughtout the year is analyzed to demonstrate the long term stability of the sensor measurements. The data analyzed consist of 23 segments of sensor measurements made at 2 to 4 week intervals. Each segment is roughly 24 hours in length. The variation of full orbit average as a function of orbit within a day as a function of day of year is examined. The dependence on day of year is based on association the start date of each segment with the mean full orbit average for the segment. The peak-to-peak and standard deviation values of the averages for each data segment are computed and their variation with day of year are also examined.

  4. Using movement and intentions to understand human activity.

    PubMed

    Zacks, Jeffrey M; Kumar, Shawn; Abrams, Richard A; Mehta, Ritesh

    2009-08-01

    During perception, people segment continuous activity into discrete events. They do so in part by monitoring changes in features of an ongoing activity. Characterizing these features is important for theories of event perception and may be helpful for designing information systems. The three experiments reported here asked whether the body movements of an actor predict when viewers will perceive event boundaries. Body movements were recorded using a magnetic motion tracking system and compared with viewers' segmentation of his activity into events. Changes in movement features were strongly associated with segmentation. This was more true for fine-grained than for coarse-grained boundaries, and was strengthened when the stimulus displays were reduced from live-action movies to simplified animations. These results suggest that movement variables play an important role in the process of segmenting activity into meaningful events, and that the influence of movement on segmentation depends on the availability of other information sources.

  5. Individual muscle segmentation in MR images: A 3D propagation through 2D non-linear registration approaches.

    PubMed

    Ogier, Augustin; Sdika, Michael; Foure, Alexandre; Le Troter, Arnaud; Bendahan, David

    2017-07-01

    Manual and automated segmentation of individual muscles in magnetic resonance images have been recognized as challenging given the high variability of shapes between muscles and subjects and the discontinuity or lack of visible boundaries between muscles. In the present study, we proposed an original algorithm allowing a semi-automatic transversal propagation of manually-drawn masks. Our strategy was based on several ascending and descending non-linear registration approaches which is similar to the estimation of a Lagrangian trajectory applied to manual masks. Using several manually-segmented slices, we have evaluated our algorithm on the four muscles of the quadriceps femoris group. We mainly showed that our 3D propagated segmentation was very accurate with an averaged Dice similarity coefficient value higher than 0.91 for the minimal manual input of only two manually-segmented slices.

  6. Satellite switched FDMA advanced communication technology satellite program

    NASA Technical Reports Server (NTRS)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  7. 76 FR 52269 - Safety Zone; Port Huron Float Down, St. Clair River, Port Huron, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... various social-media sites in which a large number of persons may float down a segment of the St. Clair... rule would have a significant economic impact on a substantial number of small entities. The term ``small entities'' comprises small businesses, not-for-profit organizations that are independently owned...

  8. The geometrical precision of virtual bone models derived from clinical computed tomography data for forensic anthropology.

    PubMed

    Colman, Kerri L; Dobbe, Johannes G G; Stull, Kyra E; Ruijter, Jan M; Oostra, Roelof-Jan; van Rijn, Rick R; van der Merwe, Alie E; de Boer, Hans H; Streekstra, Geert J

    2017-07-01

    Almost all European countries lack contemporary skeletal collections for the development and validation of forensic anthropological methods. Furthermore, legal, ethical and practical considerations hinder the development of skeletal collections. A virtual skeletal database derived from clinical computed tomography (CT) scans provides a potential solution. However, clinical CT scans are typically generated with varying settings. This study investigates the effects of image segmentation and varying imaging conditions on the precision of virtual modelled pelves. An adult human cadaver was scanned using varying imaging conditions, such as scanner type and standard patient scanning protocol, slice thickness and exposure level. The pelvis was segmented from the various CT images resulting in virtually modelled pelves. The precision of the virtual modelling was determined per polygon mesh point. The fraction of mesh points resulting in point-to-point distance variations of 2 mm or less (95% confidence interval (CI)) was reported. Colour mapping was used to visualise modelling variability. At almost all (>97%) locations across the pelvis, the point-to-point distance variation is less than 2 mm (CI = 95%). In >91% of the locations, the point-to-point distance variation was less than 1 mm (CI = 95%). This indicates that the geometric variability of the virtual pelvis as a result of segmentation and imaging conditions rarely exceeds the generally accepted linear error of 2 mm. Colour mapping shows that areas with large variability are predominantly joint surfaces. Therefore, results indicate that segmented bone elements from patient-derived CT scans are a sufficiently precise source for creating a virtual skeletal database.

  9. A randomized controlled trial investigating the effects of craniosacral therapy on pain and heart rate variability in fibromyalgia patients.

    PubMed

    Castro-Sánchez, Adelaida María; Matarán-Peñarrocha, Guillermo A; Sánchez-Labraca, Nuria; Quesada-Rubio, José Manuel; Granero-Molina, José; Moreno-Lorenzo, Carmen

    2011-01-01

    Fibromyalgia is a prevalent musculoskeletal disorder associated with widespread mechanical tenderness, fatigue, non-refreshing sleep, depressed mood and pervasive dysfunction of the autonomic nervous system: tachycardia, postural intolerance, Raynaud's phenomenon and diarrhoea. To determine the effects of craniosacral therapy on sensitive tender points and heart rate variability in patients with fibromyalgia. A randomized controlled trial. Ninety-two patients with fibromyalgia were randomly assigned to an intervention group or placebo group. Patients received treatments for 20 weeks. The intervention group underwent a craniosacral therapy protocol and the placebo group received sham treatment with disconnected magnetotherapy equipment. Pain intensity levels were determined by evaluating tender points, and heart rate variability was recorded by 24-hour Holter monitoring. After 20 weeks of treatment, the intervention group showed significant reduction in pain at 13 of the 18 tender points (P < 0.05). Significant differences in temporal standard deviation of RR segments, root mean square deviation of temporal standard deviation of RR segments and clinical global impression of improvement versus baseline values were observed in the intervention group but not in the placebo group. At two months and one year post therapy, the intervention group showed significant differences versus baseline in tender points at left occiput, left-side lower cervical, left epicondyle and left greater trochanter and significant differences in temporal standard deviation of RR segments, root mean square deviation of temporal standard deviation of RR segments and clinical global impression of improvement. Craniosacral therapy improved medium-term pain symptoms in patients with fibromyalgia.

  10. One size (never) fits all: segment differences observed following a school-based alcohol social marketing program.

    PubMed

    Dietrich, Timo; Rundle-Thiele, Sharyn; Leo, Cheryl; Connor, Jason

    2015-04-01

    According to commercial marketing theory, a market orientation leads to improved performance. Drawing on the social marketing principles of segmentation and audience research, the current study seeks to identify segments to examine responses to a school-based alcohol social marketing program. A sample of 371 year 10 students (aged: 14-16 years; 51.4% boys) participated in a prospective (pre-post) multisite alcohol social marketing program. Game On: Know Alcohol (GO:KA) program included 6, student-centered, and interactive lessons to teach adolescents about alcohol and strategies to abstain or moderate drinking. A repeated measures design was used. Baseline demographics, drinking attitudes, drinking intentions, and alcohol knowledge were cluster analyzed to identify segments. Change on key program outcome measures and satisfaction with program components were assessed by segment. Three segments were identified; (1) Skeptics, (2) Risky Males, (3) Good Females. Segments 2 and 3 showed greatest change in drinking attitudes and intentions. Good Females reported highest satisfaction with all program components and Skeptics lowest program satisfaction with all program components. Three segments, each differing on psychographic and demographic variables, exhibited different change patterns following participation in GO:KA. Post hoc analysis identified that satisfaction with program components differed by segment offering opportunities for further research. © 2015, American School Health Association.

  11. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    PubMed Central

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  12. Segments from red blood cell units should not be used for quality testing.

    PubMed

    Kurach, Jayme D R; Hansen, Adele L; Turner, Tracey R; Jenkins, Craig; Acker, Jason P

    2014-02-01

    Nondestructive testing of blood components could permit in-process quality control and reduce discards. Tubing segments, generated during red blood cell (RBC) component production, were tested to determine their suitability as a sample source for quality testing. Leukoreduced RBC components were produced from whole blood (WB) by two different methods: WB filtration and buffy coat (BC). Components and their corresponding segments were tested on Days 5 and 42 of hypothermic storage (HS) for spun hematocrit (Hct), hemoglobin (Hb) content, percentage hemolysis, hematologic indices, and adenosine triphosphate concentration to determine whether segment quality represents unit quality. Segment samples overestimated hemolysis on Days 5 and 42 of HS in both BC- and WB filtration-produced RBCs (p < 0.001 for all). Hct and Hb levels in the segments were also significantly different from the units at both time points for both production methods (p < 0.001 for all). Indeed, for all variables tested different results were obtained from segment and unit samples, and these differences were not consistent across production methods. The quality of samples from tubing segments is not representative of the quality of the corresponding RBC unit. Segments are not suitable surrogates with which to assess RBC quality. © 2013 American Association of Blood Banks.

  13. Appearance Constrained Semi-Automatic Segmentation from DCE-MRI is Reproducible and Feasible for Breast Cancer Radiomics: A Feasibility Study.

    PubMed

    Veeraraghavan, Harini; Dashevsky, Brittany Z; Onishi, Natsuko; Sadinski, Meredith; Morris, Elizabeth; Deasy, Joseph O; Sutton, Elizabeth J

    2018-03-19

    We present a segmentation approach that combines GrowCut (GC) with cancer-specific multi-parametric Gaussian Mixture Model (GCGMM) to produce accurate and reproducible segmentations. We evaluated GCGMM using a retrospectively collected 75 invasive ductal carcinoma with ERPR+ HER2- (n = 15), triple negative (TN) (n = 9), and ER-HER2+ (n = 57) cancers with variable presentation (mass and non-mass enhancement) and background parenchymal enhancement (mild and marked). Expert delineated manual contours were used to assess the segmentation performance using Dice coefficient (DSC), mean surface distance (mSD), Hausdorff distance, and volume ratio (VR). GCGMM segmentations were significantly more accurate than GrowCut (GC) and fuzzy c-means clustering (FCM). GCGMM's segmentations and the texture features computed from those segmentations were the most reproducible compared with manual delineations and other analyzed segmentation methods. Finally, random forest (RF) classifier trained with leave-one-out cross-validation using features extracted from GCGMM segmentation resulted in the best accuracy for ER-HER2+ vs. ERPR+/TN (GCGMM 0.95, expert 0.95, GC 0.90, FCM 0.92) and for ERPR + HER2- vs. TN (GCGMM 0.92, expert 0.91, GC 0.77, FCM 0.83).

  14. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters.

    PubMed

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.

  15. Using Market Research to Characterize College Students and Identify Potential Targets for Influencing Health Behaviors

    PubMed Central

    Berg, Carla J.; Ling, Pamela M.; Guo, Hongfei; Windle, Michael; Thomas, Janet L.; Ahluwalia, Jasjit S.; An, Lawrence C.

    2013-01-01

    Marketing campaigns, such as those developed by the tobacco industry, are based on market research, which defines segments of a population by assessing psychographic characteristics (i.e., attitudes, interests). This study uses a similar approach to define market segments of college smokers, to examine differences in their health behaviors (smoking, drinking, binge drinking, exercise, diet), and to determine the validity of these segments. A total of 2,265 undergraduate students aged 18–25 years completed a 108-item online survey in fall 2008 assessing demographic, psychographic (i.e., attitudes, interests), and health-related variables. Among the 753 students reporting past 30-day smoking, cluster analysis was conducted using 21 psychographic questions and identified three market segments – Stoic Individualists, Responsible Traditionalists, and Thrill-Seeking Socializers. We found that segment membership was related to frequency of alcohol use, binge drinking, and limiting dietary fat. We then developed three messages targeting each segment and conducted message testing to validate the segments on a subset of 73 smokers representing each segment in spring 2009. As hypothesized, each segment indicated greater relevance and salience for their respective message. These findings indicate that identifying qualitatively different subgroups of young adults through market research may inform the development of engaging interventions and health campaigns targeting college students. PMID:25264429

  16. Using Market Research to Characterize College Students and Identify Potential Targets for Influencing Health Behaviors.

    PubMed

    Berg, Carla J; Ling, Pamela M; Guo, Hongfei; Windle, Michael; Thomas, Janet L; Ahluwalia, Jasjit S; An, Lawrence C

    2010-12-01

    Marketing campaigns, such as those developed by the tobacco industry, are based on market research, which defines segments of a population by assessing psychographic characteristics (i.e., attitudes, interests). This study uses a similar approach to define market segments of college smokers, to examine differences in their health behaviors (smoking, drinking, binge drinking, exercise, diet), and to determine the validity of these segments. A total of 2,265 undergraduate students aged 18-25 years completed a 108-item online survey in fall 2008 assessing demographic, psychographic (i.e., attitudes, interests), and health-related variables. Among the 753 students reporting past 30-day smoking, cluster analysis was conducted using 21 psychographic questions and identified three market segments - Stoic Individualists, Responsible Traditionalists, and Thrill-Seeking Socializers. We found that segment membership was related to frequency of alcohol use, binge drinking, and limiting dietary fat. We then developed three messages targeting each segment and conducted message testing to validate the segments on a subset of 73 smokers representing each segment in spring 2009. As hypothesized, each segment indicated greater relevance and salience for their respective message. These findings indicate that identifying qualitatively different subgroups of young adults through market research may inform the development of engaging interventions and health campaigns targeting college students.

  17. Patient-specific dose estimation for pediatric chest CT

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-01-01

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9–18.2kg) were created based on the patients’ actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120kVp, 70 or 75mA, 0.4s gantry rotation period, pitch of 1.375, 20mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7–5.3mSv∕100mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4–12.6mGy∕100mAs and 11.2–13.3mGy∕100mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%–18%) and for partially or indirectly exposed organs (11%–77%). Normalized effective dose correlated weakly with body weight (correlation coefficient:r=−0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=−0.99, heart: r=−0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols. PMID:19175138

  18. Patient-specific dose estimation for pediatric chest CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiang; Samei, Ehsan; Segars, W. Paul

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structuresmore » were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols.« less

  19. AgRISTARS: Foreign commodity production forecasting. The 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Payne, R. W. (Principal Investigator)

    1981-01-01

    The crop identification procedures used performed were for spring small grains and are conducive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology; however, the crop calendars require additional development and refinements prior to integration into automated area estimation technology. The integrated technology is capable of producing accurate and consistent spring small grains proportion estimates. Barley proportion estimation technology was not satisfactorily evaluated because LANDSAT sample segment data was not available for high density barley of primary importance in foreign regions and the low density segments examined were not judged to give indicative or unequvocal results. Generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analysis to a variety of agricultural and meteorological conditions representative of the global environment.

  20. Segmentation of anatomical branching structures based on texture features and conditional random field

    NASA Astrophysics Data System (ADS)

    Nuzhnaya, Tatyana; Bakic, Predrag; Kontos, Despina; Megalooikonomou, Vasileios; Ling, Haibin

    2012-02-01

    This work is a part of our ongoing study aimed at understanding a relation between the topology of anatomical branching structures with the underlying image texture. Morphological variability of the breast ductal network is associated with subsequent development of abnormalities in patients with nipple discharge such as papilloma, breast cancer and atypia. In this work, we investigate complex dependence among ductal components to perform segmentation, the first step for analyzing topology of ductal lobes. Our automated framework is based on incorporating a conditional random field with texture descriptors of skewness, coarseness, contrast, energy and fractal dimension. These features are selected to capture the architectural variability of the enhanced ducts by encoding spatial variations between pixel patches in galactographic image. The segmentation algorithm was applied to a dataset of 20 x-ray galactograms obtained at the Hospital of the University of Pennsylvania. We compared the performance of the proposed approach with fully and semi automated segmentation algorithms based on neural network classification, fuzzy-connectedness, vesselness filter and graph cuts. Global consistency error and confusion matrix analysis were used as accuracy measurements. For the proposed approach, the true positive rate was higher and the false negative rate was significantly lower compared to other fully automated methods. This indicates that segmentation based on CRF incorporated with texture descriptors has potential to efficiently support the analysis of complex topology of the ducts and aid in development of realistic breast anatomy phantoms.

  1. Object-Based Random Forest Classification of Land Cover from Remotely Sensed Imagery for Industrial and Mining Reclamation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.

    2018-04-01

    The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.

  2. Lung tumor segmentation in PET images using graph cuts.

    PubMed

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. The segment as the minimal planning unit in speech production and reading aloud: evidence and implications.

    PubMed

    Kawamoto, Alan H; Liu, Qiang; Kello, Christopher T

    2015-01-01

    Speech production and reading aloud studies have much in common, especially the last stages involved in producing a response. We focus on the minimal planning unit (MPU) in articulation. Although most researchers now assume that the MPU is the syllable, we argue that it is at least as small as the segment based on negative response latencies (i.e., response initiation before presentation of the complete target) and longer initial segment durations in a reading aloud task where the initial segment is primed. We also discuss why such evidence was not found in earlier studies. Next, we rebut arguments that the segment cannot be the MPU by appealing to flexible planning scope whereby planning units of different sizes can be used due to individual differences, as well as stimulus and experimental design differences. We also discuss why negative response latencies do not arise in some situations and why anticipatory coarticulation does not preclude the segment MPU. Finally, we argue that the segment MPU is also important because it provides an alternative explanation of results implicated in the serial vs. parallel processing debate.

  4. Vulnerability Analysis and Passenger Source Prediction in Urban Rail Transit Networks

    PubMed Central

    Wang, Junjie; Li, Yishuai; Liu, Jingyu; He, Kun; Wang, Pu

    2013-01-01

    Based on large-scale human mobility data collected in San Francisco and Boston, the morning peak urban rail transit (URT) ODs (origin-destination matrix) were estimated and the most vulnerable URT segments, those capable of causing the largest service interruptions, were identified. In both URT networks, a few highly vulnerable segments were observed. For this small group of vital segments, the impact of failure must be carefully evaluated. A bipartite URT usage network was developed and used to determine the inherent connections between urban rail transits and their passengers' travel demands. Although passengers' origins and destinations were easy to locate for a large number of URT segments, a few show very complicated spatial distributions. Based on the bipartite URT usage network, a new layer of the understanding of a URT segment's vulnerability can be achieved by taking the difficulty of addressing the failure of a given segment into account. Two proof-of-concept cases are described here: Possible transfer of passenger flow to the road network is here predicted in the cases of failures of two representative URT segments in San Francisco. PMID:24260355

  5. Mathematical Analysis of Space Radiator Segmenting for Increased Reliability and Reduced Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2001-01-01

    Spacecraft for long duration deep space missions will need to be designed to survive micrometeoroid bombardment of their surfaces some of which may actually be punctured. To avoid loss of the entire mission the damage due to such punctures must be limited to small, localized areas. This is especially true for power system radiators, which necessarily feature large surface areas to reject heat at relatively low temperature to the space environment by thermal radiation. It may be intuitively obvious that if a space radiator is composed of a large number of independently operating segments, such as heat pipes, a random micrometeoroid puncture will result only in the loss of the punctured segment, and not the entire radiator. Due to the redundancy achieved by independently operating segments, the wall thickness and consequently the weight of such segments can be drastically reduced. Probability theory is used to estimate the magnitude of such weight reductions as the number of segments is increased. An analysis of relevant parameter values required for minimum mass segmented radiators is also included.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueegsegger, Michael B.; Bach Cuadra, Meritxell; Pica, Alessia

    Purpose: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. Methods and Materials: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3Dmore » statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. Results: Cross-validation revealed a dice similarity of 95% {+-} 2% for the sclera and cornea and 91% {+-} 2% for the lens. Overall, mean segmentation error was found to be 0.3 {+-} 0.1 mm. Average segmentation time was 14 {+-} 2 s on a standard personal computer. Conclusions: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.« less

  7. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species. PMID:27873799

  8. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  9. Comparison of MRI segmentation techniques for measuring liver cyst volumes in autosomal dominant polycystic kidney disease.

    PubMed

    Farooq, Zerwa; Behzadi, Ashkan Heshmatzadeh; Blumenfeld, Jon D; Zhao, Yize; Prince, Martin R

    To compare MRI segmentation methods for measuring liver cyst volumes in autosomal dominant polycystic kidney disease (ADPKD). Liver cyst volumes in 42 ADPKD patients were measured using region growing, thresholding and cyst diameter techniques. Manual segmentation was the reference standard. Root mean square deviation was 113, 155, and 500 for cyst diameter, thresholding and region growing respectively. Thresholding error for cyst volumes below 500ml was 550% vs 17% for cyst volumes above 500ml (p<0.001). For measuring volume of a small number of cysts, cyst diameter and manual segmentation methods are recommended. For severe disease with numerous, large hepatic cysts, thresholding is an acceptable alternative. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Automatic knee cartilage delineation using inheritable segmentation

    NASA Astrophysics Data System (ADS)

    Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.

    2008-03-01

    We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.

  11. Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images

    NASA Astrophysics Data System (ADS)

    Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim

    2014-04-01

    Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.

  12. 3-D segmentation of articular cartilages by graph cuts using knee MR images from osteoarthritis initiative

    NASA Astrophysics Data System (ADS)

    Shim, Hackjoon; Lee, Soochan; Kim, Bohyeong; Tao, Cheng; Chang, Samuel; Yun, Il Dong; Lee, Sang Uk; Kwoh, Kent; Bae, Kyongtae

    2008-03-01

    Knee osteoarthritis is the most common debilitating health condition affecting elderly population. MR imaging of the knee is highly sensitive for diagnosis and evaluation of the extent of knee osteoarthritis. Quantitative analysis of the progression of osteoarthritis is commonly based on segmentation and measurement of articular cartilage from knee MR images. Segmentation of the knee articular cartilage, however, is extremely laborious and technically demanding, because the cartilage is of complex geometry and thin and small in size. To improve precision and efficiency of the segmentation of the cartilage, we have applied a semi-automated segmentation method that is based on an s/t graph cut algorithm. The cost function was defined integrating regional and boundary cues. While regional cues can encode any intensity distributions of two regions, "object" (cartilage) and "background" (the rest), boundary cues are based on the intensity differences between neighboring pixels. For three-dimensional (3-D) segmentation, hard constraints are also specified in 3-D way facilitating user interaction. When our proposed semi-automated method was tested on clinical patients' MR images (160 slices, 0.7 mm slice thickness), a considerable amount of segmentation time was saved with improved efficiency, compared to a manual segmentation approach.

  13. A novel single-ended readout depth-of-interaction PET detector fabricated using sub-surface laser engraving.

    PubMed

    Uchida, H; Sakai, T; Yamauchi, H; Hakamata, K; Shimizu, K; Yamashita, T

    2016-09-21

    We propose a novel scintillation detector design for positron emission tomography (PET), which has depth of interaction (DOI) capability and uses a single-ended readout scheme. The DOI detector contains a pair of crystal bars segmented using sub-surface laser engraving (SSLE). The two crystal bars are optically coupled to each other at their top segments and are coupled to two photo-sensors at their bottom segments. Initially, we evaluated the performance of different designs of single crystal bars coupled to photomultiplier tubes at both ends. We found that segmentation by SSLE results in superior performance compared to the conventional method. As the next step, we constructed a crystal unit composed of a 3  ×  3  ×  20 mm 3 crystal bar pair, with each bar containing four layers segmented using the SSLE. We measured the DOI performance by changing the optical conditions for the crystal unit. Based on the experimental results, we then assessed the detector performance in terms of the DOI capability by evaluating the position error, energy resolution, and light collection efficiency for various crystal unit designs with different bar sizes and a different number of layers (four to seven layers). DOI encoding with small position error was achieved for crystal units composed of a 3  ×  3  ×  20 mm 3 LYSO bar pair having up to seven layers, and with those composed of a 2  ×  2  ×  20 mm 3 LYSO bar pair having up to six layers. The energy resolution of the segment in the seven-layer 3  ×  3  ×  20 mm 3 crystal bar pair was 9.3%-15.5% for 662 keV gamma-rays, where the segments closer to the photo-sensors provided better energy resolution. SSLE provides high geometrical accuracy at low production cost due to the simplicity of the crystal assembly. Therefore, the proposed DOI detector is expected to be an attractive choice for practical small-bore PET systems dedicated to imaging of the brain, breast, and small animals.

  14. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  15. A Segment Level Study of Defense Industry Capital Investment.

    DTIC Science & Technology

    1985-12-01

    examines the econcinic factors that are influencial for encouraging capital investment in the defense industry. A group of candidate variables are...and disguises useful information that is available from the data. The reduced average data for first year group included 130 segments from 34...individually against capital expendi- Ie tures, using the averaged data for the same first year group , the coef- ficient was positive. This indicates

  16. Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota

    Treesearch

    Eric Rowell; Carl Selelstad; Lee Vierling; Lloyd Queen; Wayne Sheppard

    2006-01-01

    The success of a local maximum (LM) tree detection algorithm for detecting individual trees from lidar data depends on stand conditions that are often highly variable. A laser height variance and percent canopy cover (PCC) classification is used to segment the landscape by stand condition prior to stem detection. We test the performance of the LM algorithm using canopy...

  17. Analysis of Activity Patterns and Performance in Polio Survivors

    DTIC Science & Technology

    2006-10-01

    variable were inspected for asymmetry and long-tailedness and normality. When appropriate, transformations (e.g. log function) were made. Data were...thighs and a combined pelvis -HAT segment was used for our analyses. The ankles were modeled as universal joints, the knees as revolutes, and the...segment, lumped pelvis + HAT, universal ankle, revolute knee, spherical hip; pin at CP entire stance Stance sagittal knee and frontal hip

  18. Refining the tobacco dependence phenotype using the Wisconsin Inventory of Smoking Dependence Motives (WISDM)

    PubMed Central

    Piper, Megan E.; Bolt, Daniel M.; Kim, Su-Young; Japuntich, Sandra J.; Smith, Stevens S.; Niederdeppe, Jeff; Cannon, Dale S.; Baker, Timothy B.

    2008-01-01

    The construct of tobacco dependence is important from both scientific and public health perspectives, but it is poorly understood. The current research integrates person-centered analyses (e.g., latent profile analysis) and variable-centered analyses (e.g., exploratory factor analysis) to understand better the latent structure of dependence and to guide distillation of the phenotype. Using data from four samples of smokers (including treatment and non-treatment samples), latent profiles were derived using the Wisconsin Inventory of Smoking Dependence Motives (WISDM) subscale scores. Across all four samples, results revealed a unique latent profile that had relative elevations on four dependence motive subscales (Automaticity, Craving, Loss of Control, and Tolerance). Variable-centered analyses supported the uniqueness of these four subscales both as measures of a common factor distinct from that underlying the other nine subscales, and as the strongest predictors of relapse, withdrawal and other dependence criteria. Conversely, the remaining nine motives carried little unique predictive validity regarding dependence. Applications of a factor mixture model further support the presence of a unique class of smokers in relation to a common factor underlying the four subscales. The results illustrate how person-centered analyses may be useful as a supplement to variable-centered analyses for uncovering variables that are necessary and/or sufficient predictors of disorder criteria, as they may uncover small segments of a population in which the variables are uniquely distributed. The results also suggest that severe dependence is associated with a pattern of smoking that is heavy, pervasive, automatic and relatively unresponsive to instrumental contingencies. PMID:19025223

  19. Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints

    NASA Technical Reports Server (NTRS)

    Jaunky, N.; Ambur, D. R.; Knight, N. F., Jr.

    1998-01-01

    A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and strength constraints was developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory was used for the global analysis. Local buckling of skin segments were assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments were also assessed. Constraints on the axial membrane strain in the skin and stiffener segments were imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study were the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence and stiffening configuration, where stiffening configuration is a design variable that indicates the combination of axial, transverse and diagonal stiffener in the grid-stiffened cylinder. The design optimization process was adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configurations.

  20. Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints

    NASA Technical Reports Server (NTRS)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1998-01-01

    A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and, strength constraints is developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory is used for the global analysis. Local buckling of skin segments are assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments are also assessed. Constraints on the axial membrane strain in the skin and stiffener segments are imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study are the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence, and stiffening configuration, where herein stiffening configuration is a design variable that indicates the combination of axial, transverse, and diagonal stiffener in the grid-stiffened cylinder. The design optimization process is adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads, and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configuration.

  1. Automatic segmentation of white matter hyperintensities robust to multicentre acquisition and pathological variability

    NASA Astrophysics Data System (ADS)

    Samaille, T.; Colliot, O.; Cuingnet, R.; Jouvent, E.; Chabriat, H.; Dormont, D.; Chupin, M.

    2012-02-01

    White matter hyperintensities (WMH), commonly seen on FLAIR images in elderly people, are a risk factor for dementia onset and have been associated with motor and cognitive deficits. We present here a method to fully automatically segment WMH from T1 and FLAIR images. Iterative steps of non linear diffusion followed by watershed segmentation were applied on FLAIR images until convergence. Diffusivity function and associated contrast parameter were carefully designed to adapt to WMH segmentation. It resulted in piecewise constant images with enhanced contrast between lesions and surrounding tissues. Selection of WMH areas was based on two characteristics: 1) a threshold automatically computed for intensity selection, 2) main location of areas in white matter. False positive areas were finally removed based on their proximity with cerebrospinal fluid/grey matter interface. Evaluation was performed on 67 patients: 24 with amnestic mild cognitive impairment (MCI), from five different centres, and 43 with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoaraiosis (CADASIL) acquired in a single centre. Results showed excellent volume agreement with manual delineation (Pearson coefficient: r=0.97, p<0.001) and substantial spatial correspondence (Similarity Index: 72%+/-16%). Our method appeared robust to acquisition differences across the centres as well as to pathological variability.

  2. Improving the clinical correlation of multiple sclerosis black hole volume change by paired-scan analysis.

    PubMed

    Tam, Roger C; Traboulsee, Anthony; Riddehough, Andrew; Li, David K B

    2012-01-01

    The change in T 1-hypointense lesion ("black hole") volume is an important marker of pathological progression in multiple sclerosis (MS). Black hole boundaries often have low contrast and are difficult to determine accurately and most (semi-)automated segmentation methods first compute the T 2-hyperintense lesions, which are a superset of the black holes and are typically more distinct, to form a search space for the T 1w lesions. Two main potential sources of measurement noise in longitudinal black hole volume computation are partial volume and variability in the T 2w lesion segmentation. A paired analysis approach is proposed herein that uses registration to equalize partial volume and lesion mask processing to combine T 2w lesion segmentations across time. The scans of 247 MS patients are used to compare a selected black hole computation method with an enhanced version incorporating paired analysis, using rank correlation to a clinical variable (MS functional composite) as the primary outcome measure. The comparison is done at nine different levels of intensity as a previous study suggests that darker black holes may yield stronger correlations. The results demonstrate that paired analysis can strongly improve longitudinal correlation (from -0.148 to -0.303 in this sample) and may produce segmentations that are more sensitive to clinically relevant changes.

  3. Production of primary mirror segments for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Allen, R. G.; Burge, J. H.; Davis, J. M.; Davison, W. B.; Johns, M.; Kim, D. W.; Kingsley, J. S.; Law, K.; Lutz, R. D.; Strittmatter, P. A.; Su, P.; Tuell, M. T.; West, S. C.; Zhou, P.

    2014-07-01

    Segment production for the Giant Magellan Telescope is well underway, with the off-axis Segment 1 completed, off-axis Segments 2 and 3 already cast, and mold construction in progress for the casting of Segment 4, the center segment. All equipment and techniques required for segment fabrication and testing have been demonstrated in the manufacture of Segment 1. The equipment includes a 28 m test tower that incorporates four independent measurements of the segment's figure and geometry. The interferometric test uses a large asymmetric null corrector with three elements including a 3.75 m spherical mirror and a computer-generated hologram. For independent verification of the large-scale segment shape, we use a scanning pentaprism test that exploits the natural geometry of the telescope to focus collimated light to a point. The Software Configurable Optical Test System, loosely based on the Hartmann test, measures slope errors to submicroradian accuracy at high resolution over the full aperture. An enhanced laser tracker system guides the figuring through grinding and initial polishing. All measurements agree within the expected uncertainties, including three independent measurements of radius of curvature that agree within 0.3 mm. Segment 1 was polished using a 1.2 m stressed lap for smoothing and large-scale figuring, and a set of smaller passive rigid-conformal laps on an orbital polisher for deterministic small-scale figuring. For the remaining segments, the Mirror Lab is building a smaller, orbital stressed lap to combine the smoothing capability with deterministic figuring.

  4. Automatic right ventricle (RV) segmentation by propagating a basal spatio-temporal characterization

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Zuluaga, María. A.; Martínez, Fabio; Romero, Eduardo

    2015-12-01

    An accurate right ventricular (RV) function quantification is important to support the evaluation, diagnosis and prognosis of several cardiac pathologies and to complement the left ventricular function assessment. However, expert RV delineation is a time consuming task with high inter-and-intra observer variability. In this paper we present an automatic segmentation method of the RV in MR-cardiac sequences. Unlike atlas or multi-atlas methods, this approach estimates the RV using exclusively information from the sequence itself. For so doing, a spatio-temporal analysis segments the heart at the basal slice, segmentation that is then propagated to the apex by using a non-rigid-registration strategy. The proposed approach achieves an average Dice Score of 0:79 evaluated with a set of 48 patients.

  5. Depth of intrastromal corneal ring segments by OCT.

    PubMed

    Naftali, Modi; Jabaly-Habib, Haneen

    2013-01-01

    To compare the depth of intrastromal corneal ring segments (ICRS) with the expected depth value using optical coherence tomography (OCT). This was a retrospective comparative study in an ophthalmic unit in a government hospital, the Baruch Padeh Medical Center, Poriya, Israel. Ten eyes of 8 patients with 18 ICRS were reviewed. Eleven segments were Intacs (Addition Technology, Inc.) and 7 Kerarings (Mediphacos). Using anterior segment OCT (OPKO OTI) the shortest distance from the epithelium to the segment at 3 points was measured for each segment. The 3 points are proximal, middle, and distal to the incision. The mean depth of the 18 segments was 360±68 µm. The mean maximal and minimal depths were 383±70 and 336±72 µm, respectively. The mean depths of the distal, central, and proximal point measurements of all ICRS were 358±79, 361±77, and 362±59 µm, respectively; no significant difference was found. No part of the segments tended to be more superficial than others (p=0.98). There was no significant difference between Intacs and Kerarings depths (p=0.43). There was a significant difference between the expected ICRS depth and the OCT measurements (mean 480±20) and 360±68), respectively. The ICRS actual depth was less than expected. There was mild variability in segment depth, both between segments and along the same segment. No significant difference was found between the depth of Intacs and Kerarings.

  6. Delineation and validation of river network spatial scales for water resources and fisheries management.

    PubMed

    Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul

    2012-11-01

    Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.

  7. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  8. Trunk-pelvis coordination during turning: A cross sectional study of young adults with and without a history of low back pain.

    PubMed

    Smith, Jo Armour; Kulig, Kornelia

    2016-07-01

    During steady-state locomotion, symptomatic individuals with low back pain demonstrate reduced ability to modulate coordination between the trunk and the pelvis in the axial plane. It is unclear if this is also true during functional locomotor perturbations such as changing direction, or if this change in coordination adaptability persists between symptomatic episodes. The purpose of this study was to compare trunk-pelvis coordination during walking turns in healthy individuals and asymptomatic individuals with a history of low back pain. Participants performed multiple ipsilateral turns. Axial plane inter-segmental coordination and stride-to-stride coordination variability were quantified using the vector coding technique. Frequency of coordination mode and amplitude of coordination variability was compared between groups using Wilcoxon signed-rank tests and paired t-tests respectively. During stance phase of the turn, there was no significant difference in either inter-segmental coordination or coordination variability between groups. Inter-segmental coordination between the trunk and the pelvis was predominantly inphase during this part of the turn. During swing phase, patterns of coordination were more diversified, and individuals with a history of low back pain had significantly greater trunk phase coordination than healthy controls. Coordination variability was the same in both groups. Changes in trunk-pelvis coordination are evident between symptomatic episodes in individuals with a history of low back pain. However, previously demonstrated decreases in coordination variability were not found between symptomatic episodes in individuals with recurrent low back pain and therefore may represent a response to concurrent pain rather than a persistent change in motor control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  10. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  11. Volcanoes Distribution in Linear Segmentation of Mariana Arc

    NASA Astrophysics Data System (ADS)

    Andikagumi, H.; Macpherson, C.; McCaffrey, K. J. W.

    2016-12-01

    A new method has been developed to describe better volcanoes distribution pattern within Mariana Arc. A previous study assumed the distribution of volcanoes in the Mariana Arc is described by a small circle distribution which reflects the melting processes in a curved subduction zone. The small circle fit to this dataset used in the study, comprised 12 -mainly subaerial- volcanoes from Smithsonian Institute Global Volcanism Program, was reassessed by us to have a root-mean-square misfit of 2.5 km. The same method applied to a more complete dataset from Baker et al. (2008), consisting 37 subaerial and submarine volcanoes, resulted in an 8.4 km misfit. However, using the Hough Transform method on the larger dataset, lower misfits of great circle segments were achieved (3.1 and 3.0 km) for two possible segments combination. The results indicate that the distribution of volcanoes in the Mariana Arc is better described by a great circle pattern, instead of small circle. Variogram and cross-variogram analysis on volcano spacing and volume shows that there is spatial correlation between volcanoes between 420 and 500 km which corresponds to the maximum segmentation lengths from Hough Transform (320 km). Further analysis of volcano spacing by the coefficient of variation (Cv), shows a tendency toward not-random distribution as the Cv values are closer to zero than one. These distributions are inferred to be associated with the development of normal faults at the back arc as their Cv values also tend towards zero. To analyse whether volcano spacing is random or not, Cv values were simulated using a Monte Carlo method with random input. Only the southernmost segment has allowed us to reject the null hypothesis that volcanoes are randomly spaced at 95% confidence level by 0.007 estimated probability. This result shows infrequent regularity in volcano spacing by chance so that controlling factor in lithospheric scale should be analysed with different approach (not from random number generator). Sunda Arc which has been studied to have en enchelon segmentation and larger number of volcanoes will be further studied to understand particular upper plate influence in volcanoes distribution.

  12. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels in this region.

  13. What Controls Subduction Earthquake Size and Occurrence?

    NASA Astrophysics Data System (ADS)

    Ruff, L. J.

    2008-12-01

    There is a long history of observational studies on the size and recurrence intervals of the large underthrusting earthquakes in subduction zones. In parallel with this documentation of the variability in both recurrence times and earthquake sizes -- both within and amongst subduction zones -- there have been numerous suggestions for what controls size and occurrence. In addition to the intrinsic scientific interest in these issues, there are direct applications to hazards mitigation. In this overview presentation, I review past progress, consider current paradigms, and look toward future studies that offer some resolution of long- standing questions. Given the definition of seismic moment, earthquake size is the product of overall static stress drop, down-dip fault width, and along-strike fault length. The long-standing consensus viewpoint is that for the largest earthquakes in a subduction zone: stress-drop is constant, fault width is the down-dip extent of the seismogenic portion of the plate boundary, but that along-strike fault length can vary from one large earthquake to the next. While there may be semi-permanent segments along a subduction zone, successive large earthquakes can rupture different combinations of segments. Many investigations emphasize the role of asperities within the segments, rather than segment edges. Thus, the question of earthquake size is translated into: "What controls the along-strike segmentation, and what determines which segments will rupture in a particular earthquake cycle?" There is no consensus response to these questions. Over the years, the suggestions for segmentation control include physical features in the subducted plate, physical features in the over-lying plate, and more obscure -- and possibly ever-changing -- properties of the plate interface such as the hydrologic conditions. It seems that the full global answer requires either some unforeseen breakthrough, or the long-term hard work of falsifying all candidate hypotheses except one. This falsification process requires both concentrated multidisciplinary efforts and patience. Large earthquake recurrence intervals in the same subduction zone segment display a significant, and therefore unfortunate, variability. Over the years, many of us have devised simple models to explain this variability. Of course, there are also more complicated explanations with many additional model parameters. While there has been important observational progress as both historical and paleo-seismological studies continue to add more data pairs of fault length and recurrence intervals, there has been a frustrating lack of progress in elimination of candidate models or processes that explain recurrence time variability. Some of the simple models for recurrence times offer a probabilistic or even deterministic prediction of future recurrence times - and have been used for hazards evaluation. It is important to know if these models are correct. Since we do not have the patience to wait for a strict statistical test, we must find other ways to test these ideas. For example, some of the simple deterministic models for along-strike segment interaction make predictions for variation in tectonic stress state that can be tested during the inter-seismic period. We have seen how some observational discoveries in the past decade (e.g., the episodic creep events down-dip of the seismogenic zone) give us additional insight into the physical processes in subduction zones; perhaps multi-disciplinary studies of subduction zones will discover a new way to reliably infer large-scale shear stresses on the plate interface?

  14. Sequential segmental terminal lenticular side-cut dissection for safe and effective small-incision lenticule extraction in thin lenticules.

    PubMed

    Jacob, Soosan; Agarwal, Amar; Mazzotta, Cosimo; Agarwal, Athiya; Raj, John Michael

    2017-04-01

    Small-incision lenticule extraction may be associated with complications such as partial lenticular dissection, torn lenticule, lenticular adherence to cap, torn cap, and sub-cap epithelial ingrowth, some of which are more likely to occur during low-myopia corrections. We describe sequential segmental terminal lenticular side-cut dissection to facilitate minimally traumatic and smooth lenticular extraction. Anterior lamellar dissection is followed by central posterior lamellar dissection, leaving a thin peripheral rim and avoiding the lenticular side cut. This is followed by sequential segmental dissection of the lenticular side cut in a manner that fixates the lenticule and provides sufficient resistance for smooth and complete dissection of the posterior lamellar cut without undesired movements of the lenticule. The technique is advantageous in thin lenticules, where the risk for complications is high, but can also be used in thick lenticular dissection using wider sweeps to separate the lenticular side cut sequentially. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. DNA motion capture reveals the mechanical properties of DNA at the mesoscale.

    PubMed

    Price, Allen C; Pilkiewicz, Kevin R; Graham, Thomas G W; Song, Dan; Eaves, Joel D; Loparo, Joseph J

    2015-05-19

    Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. [Acute abdomen caused by eosinophilic enteritis: six observations].

    PubMed

    Martínez-Ubieto, Fernando; Bueno-Delgado, Alvaro; Jiménez-Bernadó, Teresa; Santero Ramírez, María Pilar; Arribas-Del Amo, Dolores; Martínez-Ubieto, Javier

    2013-01-01

    Eosinophilic enteritis is a rather rare condition characterized by infiltration of the gastrointestinal tract by eosinophils; as a casue of acute abdomen it is really exceptional. The etiology is unclear and its description in the literature is sparse, but associations have been made with collagen vascular disease, inflammatory bowel disease, food allergy and parasitic infections as it was confirmed in one of our pathologic studies. From 1997 to 2011 six cases of eosinophilic enteritis that involved a small bowel segment were diagnosed. A partial resection by an irreversible necrosis was necessary in three of them; in the other three only a biopsy was necessary due to the inflammatory aspect of the affected loop causing the acute abdomen. Eosinophilic enteritis can originate acute abdomen processes where an urgent surgical treatment is necessary. The intraoperative aspect can be from a segment of small bowel with inflammatory signs up to a completely irrecoverable loop, where removing of the affected segment is the correct treatment, which can be done laparoscopically.

  17. Monolithic stationary phases with a longitudinal gradient of porosity.

    PubMed

    Urban, Jiří; Hájek, Tomáš; Svec, Frantisek

    2017-04-01

    The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer-based monolithic stationary phases. Segments of five columns hypercrosslinked for 30-360 min were coupled via zero-volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small-molecule alkylbenzenes and high-molar-mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size-exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two-dimensional liquid chromatography of polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Management of necrotising appendicitis associated with widespread necrotising enterocolitis of the small and large bowel and perforated duodenal ulcer.

    PubMed

    Gupta, Vaibhav; Zani, Augusto; Jackson, Paul; Singh, Shailinder

    2015-06-08

    A 7-year-old boy presented in septic shock secondary to appendicitis with generalised peritonitis. Following crystalloid resuscitation, he underwent surgery. Faecopurulent contamination and free air were found. This was secondary to a perforated and gangrenous appendix, multiple large and small bowel segments with perforations, patches of necrosis, interspersed with healthy bowel and segments of questionable viability. There was also a perforated duodenal ulcer. Necrotic segments were resected using a 'clip-and-drop' technique to shorten operative duration and guide resection to preserve bowel length. After six laparotomies and multiple bowel resections, the child was discharged home with an ileostomy that was subsequently reversed. He is currently on a normal diet and pursuing all activities appropriate for his age. Perforated appendicitis can be associated with widespread bowel necrosis and multiple perforations. A conservative damage limitation approach using the 'clip-and-drop' technique and relook laparotomies is useful in the management of extensive bowel necrosis in children. 2015 BMJ Publishing Group Ltd.

  19. Creation of Rift Valley Fever Viruses with Four-Segmented Genomes Reveals Flexibility in Bunyavirus Genome Packaging

    PubMed Central

    Oreshkova, Nadia; Moormann, Rob J. M.; Kortekaas, Jeroen

    2014-01-01

    ABSTRACT Bunyavirus genomes comprise a small (S), a medium (M), and a large (L) RNA segment of negative polarity. Although the untranslated regions have been shown to comprise signals required for transcription, replication, and encapsidation, the mechanisms that drive the packaging of at least one S, M, and L segment into a single virion to generate infectious virus are largely unknown. One of the most important members of the Bunyaviridae family that causes devastating disease in ruminants and occasionally humans is the Rift Valley fever virus (RVFV). We studied the flexibility of RVFV genome packaging by splitting the glycoprotein precursor gene, encoding the (NSm)GnGc polyprotein, into two individual genes encoding either (NSm)Gn or Gc. Using reverse genetics, six viruses with a segmented glycoprotein precursor gene were rescued, varying from a virus comprising two S-type segments in the absence of an M-type segment to a virus consisting of four segments (RVFV-4s), of which three are M-type. Despite that all virus variants were able to grow in mammalian cell lines, they were unable to spread efficiently in cells of mosquito origin. Moreover, in vivo studies demonstrated that RVFV-4s is unable to cause disseminated infection and disease in mice, even in the presence of the main virulence factor NSs, but induced a protective immune response against a lethal challenge with wild-type virus. In summary, splitting bunyavirus glycoprotein precursor genes provides new opportunities to study bunyavirus genome packaging and offers new methods to develop next-generation live-attenuated bunyavirus vaccines. IMPORTANCE Rift Valley fever virus (RVFV) causes devastating disease in ruminants and occasionally humans. Virions capable of productive infection comprise at least one copy of the small (S), medium (M), and large (L) RNA genome segments. The M segment encodes a glycoprotein precursor (GPC) protein that is cotranslationally cleaved into Gn and Gc, which are required for virus entry and fusion. We studied the flexibility of RVFV genome packaging and developed experimental live-attenuated vaccines by applying a unique strategy based on the splitting of the GnGc open reading frame. Several RVFV variants, varying from viruses comprising two S-type segments to viruses consisting of four segments (RVFV-4s), of which three are M-type, could be rescued and were shown to induce a rapid protective immune response. Altogether, the segmentation of bunyavirus GPCs provides a new method for studying bunyavirus genome packaging and facilitates the development of novel live-attenuated bunyavirus vaccines. PMID:25008937

  20. Creation of Rift Valley fever viruses with four-segmented genomes reveals flexibility in bunyavirus genome packaging.

    PubMed

    Wichgers Schreur, Paul J; Oreshkova, Nadia; Moormann, Rob J M; Kortekaas, Jeroen

    2014-09-01

    Bunyavirus genomes comprise a small (S), a medium (M), and a large (L) RNA segment of negative polarity. Although the untranslated regions have been shown to comprise signals required for transcription, replication, and encapsidation, the mechanisms that drive the packaging of at least one S, M, and L segment into a single virion to generate infectious virus are largely unknown. One of the most important members of the Bunyaviridae family that causes devastating disease in ruminants and occasionally humans is the Rift Valley fever virus (RVFV). We studied the flexibility of RVFV genome packaging by splitting the glycoprotein precursor gene, encoding the (NSm)GnGc polyprotein, into two individual genes encoding either (NSm)Gn or Gc. Using reverse genetics, six viruses with a segmented glycoprotein precursor gene were rescued, varying from a virus comprising two S-type segments in the absence of an M-type segment to a virus consisting of four segments (RVFV-4s), of which three are M-type. Despite that all virus variants were able to grow in mammalian cell lines, they were unable to spread efficiently in cells of mosquito origin. Moreover, in vivo studies demonstrated that RVFV-4s is unable to cause disseminated infection and disease in mice, even in the presence of the main virulence factor NSs, but induced a protective immune response against a lethal challenge with wild-type virus. In summary, splitting bunyavirus glycoprotein precursor genes provides new opportunities to study bunyavirus genome packaging and offers new methods to develop next-generation live-attenuated bunyavirus vaccines. Rift Valley fever virus (RVFV) causes devastating disease in ruminants and occasionally humans. Virions capable of productive infection comprise at least one copy of the small (S), medium (M), and large (L) RNA genome segments. The M segment encodes a glycoprotein precursor (GPC) protein that is cotranslationally cleaved into Gn and Gc, which are required for virus entry and fusion. We studied the flexibility of RVFV genome packaging and developed experimental live-attenuated vaccines by applying a unique strategy based on the splitting of the GnGc open reading frame. Several RVFV variants, varying from viruses comprising two S-type segments to viruses consisting of four segments (RVFV-4s), of which three are M-type, could be rescued and were shown to induce a rapid protective immune response. Altogether, the segmentation of bunyavirus GPCs provides a new method for studying bunyavirus genome packaging and facilitates the development of novel live-attenuated bunyavirus vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Moore, Laura J.; Griggs, Gary B.

    2002-01-01

    Quantification of cliff retreat rates for the southern half of Santa Cruz County, CA, USA, located within the Monterey Bay National Marine Sanctuary, using the softcopy/geographic information system (GIS) methodology results in average cliff retreat rates of 7–15 cm/yr between 1953 and 1994. The coastal dunes at the southern end of Santa Cruz County migrate seaward and landward through time and display net accretion between 1953 and 1994, which is partially due to development. In addition, three critically eroding segments of coastline with high average erosion rates ranging from 20 to 63 cm/yr are identified as erosion ‘hotspots’. These locations include: Opal Cliffs, Depot Hill and Manresa. Although cliff retreat is episodic, spatially variable at the scale of meters, and the factors affecting cliff retreat vary along the Santa Cruz County coastline, there is a compensation between factors affecting retreat such that over the long-term the coastline maintains a relatively smooth configuration. The softcopy/GIS methodology significantly reduces errors inherent in the calculation of retreat rates in high-relief areas (e.g. erosion rates generated in this study are generally correct to within 10 cm) by removing errors due to relief displacement. Although the resulting root mean squared error for erosion rates is relatively small, simple projections of past erosion rates are inadequate to provide predictions of future cliff position. Improved predictions can be made for individual coastal segments by using a mean erosion rate and the standard deviation as guides to future cliff behavior in combination with an understanding of processes acting along the coastal segments in question. This methodology can be applied on any high-relief coast where retreat rates can be measured.

  2. Scaling and the frequency dependence of Nyquist plot maxima of the electrical impedance of the human thigh.

    PubMed

    Shiffman, Carl

    2017-11-30

    To define and elucidate the properties of reduced-variable Nyquist plots. Non-invasive measurements of the electrical impedance of the human thigh. A retrospective analysis of the electrical impedances of 154 normal subjects measured over the past decade shows that 'scaling' of the Nyquist plots for human thigh muscles is a property shared by healthy thigh musculature, irrespective of subject and the length of muscle segment. Here the term scaling signifies the near and sometimes 'perfect' coalescence of the separate X versus R plots into one 'reduced' Nyquist plot by the simple expedient of dividing R and X by X m , the value of X at the reactance maximum. To the extent allowed by noise levels one can say that there is one 'universal' reduced Nyquist plot for the thigh musculature of healthy subjects. There is one feature of the Nyquist curves which is not 'universal', however, namely the frequency f m at which the maximum in X is observed. That is found to vary from 10 to 100 kHz. depending on subject and segment length. Analysis shows, however, that the mean value of 1/f m is an accurately linear function of segment length, though there is a small subject-to-subject random element as well. Also, following the recovery of an otherwise healthy victim of ankle fracture demonstrates the clear superiority of measurements above about 800 kHz, where scaling is not observed, in contrast to measurements below about 400 kHz, where scaling is accurately obeyed. The ubiquity of 'scaling' casts new light on the interpretation of impedance results as they are used in electrical impedance myography and bioelectric impedance analysis.

  3. Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle

    PubMed Central

    Kao, Chiu-Yen; Richdale, Kathryn; Sinnott, Loraine T.; Ernst, Lauren E.; Bailey, Melissa D.

    2011-01-01

    Purpose To development and evaluate a semi-automatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante™ Anterior Segment Optical Coherence Tomography images. Methods Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semi-automatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients (ICC) and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection versus biological variability. Results The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared to the variance due to biological difference across subjects (80%). Using the mean of measurements from three images achieved an estimated ICC of 0.85. Conclusions The semi-automatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semi-automatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets. PMID:21169877

  4. Variable Selection for Road Segmentation in Aerial Images

    NASA Astrophysics Data System (ADS)

    Warnke, S.; Bulatov, D.

    2017-05-01

    For extraction of road pixels from combined image and elevation data, Wegner et al. (2015) proposed classification of superpixels into road and non-road, after which a refinement of the classification results using minimum cost paths and non-local optimization methods took place. We believed that the variable set used for classification was to a certain extent suboptimal, because many variables were redundant while several features known as useful in Photogrammetry and Remote Sensing are missed. This motivated us to implement a variable selection approach which builds a model for classification using portions of training data and subsets of features, evaluates this model, updates the feature set, and terminates when a stopping criterion is satisfied. The choice of classifier is flexible; however, we tested the approach with Logistic Regression and Random Forests, and taylored the evaluation module to the chosen classifier. To guarantee a fair comparison, we kept the segment-based approach and most of the variables from the related work, but we extended them by additional, mostly higher-level features. Applying these superior features, removing the redundant ones, as well as using more accurately acquired 3D data allowed to keep stable or even to reduce the misclassification error in a challenging dataset.

  5. Membrane cholesterol effect on the 5-HT2A receptor: Insights into the lipid-induced modulation of an antipsychotic drug target.

    PubMed

    Ramírez-Anguita, Juan Manuel; Rodríguez-Espigares, Ismael; Guixà-González, Ramon; Bruno, Agostino; Torrens-Fontanals, Mariona; Varela-Rial, Alejandro; Selent, Jana

    2018-01-01

    The serotonin 5-hydroxytryptamine 2A (5-HT 2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT 2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. PIF4-controlled auxin pathway contributes to hybrid vigor in Arabidopsis thaliana.

    PubMed

    Wang, Li; Wu, Li Min; Greaves, Ian K; Zhu, Anyu; Dennis, Elizabeth S; Peacock, W James

    2017-04-25

    F1 hybrids in Arabidopsis and crop species are uniform and high yielding. The F2 generation loses much of the yield advantage and the plants have heterogeneous phenotypes. We generated pure breeding hybrid mimic lines by recurrent selection and also selected a pure breeding small phenotype line. The hybrid mimics are almost completely homozygous with chromosome segments from each parent. Four particular chromosomal segments from C24 and 8 from L er were present in all of the hybrid mimic lines, whereas in the F6 small phenotype line, the 12 segments were each derived from the alternative parent. Loci critical for promoting hybrid vigor may be contained in each of these 12 conserved segments. We have identified genes with similar altered expression in hybrid mimics and F1 plants but not in the small phenotype line. These genes may be critical for the generation of hybrid vigor. Analysis of transcriptomes indicated that increased expression of the transcription factor PHYTOCHROME-INTERACTING FACTOR (PIF4) may contribute to hybrid vigor by targeting the auxin biosynthesis gene YUCCA8 and the auxin signaling gene IAA29 A number of auxin responsive genes promoting leaf growth were up-regulated in the F1 hybrids and hybrid mimics, suggesting that increased auxin biosynthesis and signaling contribute to the hybrid phenotype. The hybrid mimic seeds had earlier germination as did the seeds of the F1 hybrids, indicating cosegregation of the genes for rosette size and the germination trait. Early germination may be an indicator of vigorous hybrids.

  7. PIF4-controlled auxin pathway contributes to hybrid vigor in Arabidopsis thaliana

    PubMed Central

    Wang, Li; Wu, Li Min; Greaves, Ian K.; Zhu, Anyu; Dennis, Elizabeth S.; Peacock, W. James

    2017-01-01

    F1 hybrids in Arabidopsis and crop species are uniform and high yielding. The F2 generation loses much of the yield advantage and the plants have heterogeneous phenotypes. We generated pure breeding hybrid mimic lines by recurrent selection and also selected a pure breeding small phenotype line. The hybrid mimics are almost completely homozygous with chromosome segments from each parent. Four particular chromosomal segments from C24 and 8 from Ler were present in all of the hybrid mimic lines, whereas in the F6 small phenotype line, the 12 segments were each derived from the alternative parent. Loci critical for promoting hybrid vigor may be contained in each of these 12 conserved segments. We have identified genes with similar altered expression in hybrid mimics and F1 plants but not in the small phenotype line. These genes may be critical for the generation of hybrid vigor. Analysis of transcriptomes indicated that increased expression of the transcription factor PHYTOCHROME-INTERACTING FACTOR (PIF4) may contribute to hybrid vigor by targeting the auxin biosynthesis gene YUCCA8 and the auxin signaling gene IAA29. A number of auxin responsive genes promoting leaf growth were up-regulated in the F1 hybrids and hybrid mimics, suggesting that increased auxin biosynthesis and signaling contribute to the hybrid phenotype. The hybrid mimic seeds had earlier germination as did the seeds of the F1 hybrids, indicating cosegregation of the genes for rosette size and the germination trait. Early germination may be an indicator of vigorous hybrids. PMID:28396418

  8. Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics

    PubMed Central

    Yu, Yuguo; Shu, Yousheng; McCormick, David A.

    2008-01-01

    Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous axonal and somatic recordings and computational simulations, we demonstrate that the initiation of action potentials in the axon initial segment followed by backpropagation of these spikes throughout the neuron results in a distortion of the relationship between the timing of synaptic and action potential events. In addition, this backpropagation also results in an unusually high rate of rise of membrane potential at the foot of the action potential. The distortion of the relationship between the amplitude time course of synaptic inputs and action potential output caused by spike back-propagation results in the appearance of high spike threshold variability at the level of the soma. At the point of spike initiation, the axon initial segment, threshold variability is considerably less. Our results indicate that spike generation in cortical neurons is largely as expected by Hodgkin—Huxley theory and is more precise than previously thought. PMID:18632930

  9. Dynamic Segmentation Of Behavior Patterns Based On Quantity Value Movement Using Fuzzy Subtractive Clustering Method

    NASA Astrophysics Data System (ADS)

    Sangadji, Iriansyah; Arvio, Yozika; Indrianto

    2018-03-01

    to understand by analyzing the pattern of changes in value movements that can dynamically vary over a given period with relative accuracy, an equipment is required based on the utilization of technical working principles or specific analytical method. This will affect the level of validity of the output that will occur from this system. Subtractive clustering is based on the density (potential) size of data points in a space (variable). The basic concept of subtractive clustering is to determine the regions in a variable that has high potential for the surrounding points. In this paper result is segmentation of behavior pattern based on quantity value movement. It shows the number of clusters is formed and that has many members.

  10. Segmentation Control on Crustal Accretion: Insights From the Chile Ridge

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Karsten, J. L.; Milman, M. S.; Klein, E. M.

    2002-12-01

    Controls on crustal accretion at mid-ocean ridges include spreading rate and mantle temperature and composition. Less studied is the effect of the segmentation geometry, although it has been known for some time that large offset transforms have significant effects on the extent of melting and lava compositions produced by ridges in their vicinity. The PANORAMA 4 expedition surveyed the Chile Ridge between 36°-43°S in order to examine the effects of ridge segmentation on crustal accretion. This section of the ridge is spreading uniformly at intermediate rates (~53 mm/yr) and rock sampling and regional data indicate a largely uniform mantle composition with no systematic changes in mantle thermal structure. Thus the segmentation geometry is the primary crustal accretion variable. The survey mapped and sampled 19 first order ridge segments and their transform offsets. The ridges range from 130 to 10 km in length with mapped transform offsets from 168 to 19 km. The segments primarily have axial valley morphology, with segments longer than ~65 km typically displaying central highs deepening toward segment ends. Mantle Bouguer anomalies (MBAs) show that these segments also have bulls eye lows associated with the central highs indicating thicker crust than at segment ends. Overall the mapped segments displays a trend of increasing depth and MBA, implying diminishing crustal production, with decreasing segment length and increasing transform offset. We examine the cause of this trend by modeling the mantle flow pattern generated by finite length ridge segments using the Phipps-Morgan and Forsyth (1988) algorithm. The results indicate that at a constant spreading rate mantle upwelling rates are greatest and extend deeper near the segment center, and that for segments that are significantly offset, upwelling rates decrease overall with decreasing segment length. The modeling implies that segmentation itself, even without cooling and lithospheric relief at transforms has a strong influence on mantle advection and therefore on crustal production.

  11. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    NASA Astrophysics Data System (ADS)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  12. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    PubMed

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-21

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians' manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  13. Use of market segmentation to identify untapped consumer needs in vision correction surgery for future growth.

    PubMed

    Loarie, Thomas M; Applegate, David; Kuenne, Christopher B; Choi, Lawrence J; Horowitz, Diane P

    2003-01-01

    Market segmentation analysis identifies discrete segments of the population whose beliefs are consistent with exhibited behaviors such as purchase choice. This study applies market segmentation analysis to low myopes (-1 to -3 D with less than 1 D cylinder) in their consideration and choice of a refractive surgery procedure to discover opportunities within the market. A quantitative survey based on focus group research was sent to a demographically balanced sample of myopes using contact lenses and/or glasses. A variable reduction process followed by a clustering analysis was used to discover discrete belief-based segments. The resulting segments were validated both analytically and through in-market testing. Discontented individuals who wear contact lenses are the primary target for vision correction surgery. However, 81% of the target group is apprehensive about laser in situ keratomileusis (LASIK). They are nervous about the procedure and strongly desire reversibility and exchangeability. There exists a large untapped opportunity for vision correction surgery within the low myope population. Market segmentation analysis helped determine how to best meet this opportunity through repositioning existing procedures or developing new vision correction technology, and could also be applied to identify opportunities in other vision correction populations.

  14. Prostate segmentation in MR images using discriminant boundary features.

    PubMed

    Yang, Meijuan; Li, Xuelong; Turkbey, Baris; Choyke, Peter L; Yan, Pingkun

    2013-02-01

    Segmentation of the prostate in magnetic resonance image has become more in need for its assistance to diagnosis and surgical planning of prostate carcinoma. Due to the natural variability of anatomical structures, statistical shape model has been widely applied in medical image segmentation. Robust and distinctive local features are critical for statistical shape model to achieve accurate segmentation results. The scale invariant feature transformation (SIFT) has been employed to capture the information of the local patch surrounding the boundary. However, when SIFT feature being used for segmentation, the scale and variance are not specified with the location of the point of interest. To deal with it, the discriminant analysis in machine learning is introduced to measure the distinctiveness of the learned SIFT features for each landmark directly and to make the scale and variance adaptive to the locations. As the gray values and gradients vary significantly over the boundary of the prostate, separate appearance descriptors are built for each landmark and then optimized. After that, a two stage coarse-to-fine segmentation approach is carried out by incorporating the local shape variations. Finally, the experiments on prostate segmentation from MR image are conducted to verify the efficiency of the proposed algorithms.

  15. 3D Multi-segment foot kinematics in children: A developmental study in typically developing boys.

    PubMed

    Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Christel; Hermans, Cedric; Matricali, Giovanni Arnoldo; Lobet, Sebastien

    2017-02-01

    The relationship between age and 3D rotations objectivized with multisegment foot models has not been quantified until now. The purpose of this study was therefore to investigate the relationship between age and multi-segment foot kinematics in a cross-sectional database. Barefoot multi-segment foot kinematics of thirty two typically developing boys, aged 6-20 years, were captured with the Rizzoli Multi-segment Foot Model. One-dimensional statistical parametric mapping linear regression was used to examine the relationship between age and 3D inter-segment rotations of the dominant leg during the full gait cycle. Age was significantly correlated with sagittal plane kinematics of the midfoot and the calcaneus-metatarsus inter-segment angle (p<0.0125). Age was also correlated with the transverse plane kinematics of the calcaneus-metatarsus angle (p<0.0001). Gait labs should consider age related differences and variability if optimal decision making is pursued. It remains unclear if this is of interest for all foot models, however, the current study highlights that this is of particular relevance for foot models which incorporate a separate midfoot segment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Extracting stationary segments from non-stationary synthetic and cardiac signals

    NASA Astrophysics Data System (ADS)

    Rodríguez, María. G.; Ledezma, Carlos A.; Perpiñán, Gilberto; Wong, Sara; Altuve, Miguel

    2015-01-01

    Physiological signals are commonly the result of complex interactions between systems and organs, these interactions lead to signals that exhibit a non-stationary behaviour. For cardiac signals, non-stationary heart rate variability (HRV) may produce misinterpretations. A previous work proposed to divide a non-stationary signal into stationary segments by looking for changes in the signal's properties related to changes in the mean of the signal. In this paper, we extract stationary segments from non-stationary synthetic and cardiac signals. For synthetic signals with different signal-to-noise ratio levels, we detect the beginning and end of the stationary segments and the result is compared to the known values of the occurrence of these events. For cardiac signals, RR interval (cardiac cycle length) time series, obtained from electrocardiographic records during stress tests for two populations (diabetic patients with cardiovascular autonomic neuropathy and control subjects), were divided into stationary segments. Results on synthetic signals reveal that the non-stationary sequence is divided into more stationary segments than needed. Additionally, due to HRV reduction and exercise intolerance reported on diabetic cardiovascular autonomic neuropathy patients, non-stationary RR interval sequences from these subjects can be divided into longer stationary segments compared to the control group.

  17. Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study.

    PubMed

    Dolz, Jose; Betrouni, Nacim; Quidet, Mathilde; Kharroubi, Dris; Leroy, Henri A; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien

    2016-09-01

    Delineation of organs at risk (OARs) is a crucial step in surgical and treatment planning in brain cancer, where precise OARs volume delineation is required. However, this task is still often manually performed, which is time-consuming and prone to observer variability. To tackle these issues a deep learning approach based on stacking denoising auto-encoders has been proposed to segment the brainstem on magnetic resonance images in brain cancer context. Additionally to classical features used in machine learning to segment brain structures, two new features are suggested. Four experts participated in this study by segmenting the brainstem on 9 patients who underwent radiosurgery. Analysis of variance on shape and volume similarity metrics indicated that there were significant differences (p<0.05) between the groups of manual annotations and automatic segmentations. Experimental evaluation also showed an overlapping higher than 90% with respect to the ground truth. These results are comparable, and often higher, to those of the state of the art segmentation methods but with a considerably reduction of the segmentation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Restoring Wood-Rich Hotspots in Mountain Stream Networks

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2016-12-01

    Mountain streams commonly include substantial longitudinal variability in valley and channel geometry, alternating repeatedly between steep, narrow and relatively wide, low gradient segments. Segments that are wider and lower gradient than neighboring steeper sections are hotspots with respect to: retention of large wood (LW) and finer sediment and organic matter; uptake of nutrients; and biomass and biodiversity of aquatic and riparian organisms. These segments are also more likely to be transport-limited with respect to floodplain and instream LW. Management designed to protect and restore riverine LW and the physical and ecological processes facilitated by the presence of LW is likely to be most effective if focused on relatively low-gradient stream segments. These segments can be identified using a simple, reach-scale gradient analysis based on high-resolution DEMs, with field visits to identify factors that potentially limit or facilitate LW recruitment and retention, such as forest disturbance history or land use. Drawing on field data from the western US, this presentation outlines a procedure for mapping relatively low-gradient segments in a stream network and for identifying those segments where LW reintroduction or retention is most likely to balance maximizing environmental benefits derived from the presence of LW while minimizing hazards associated with LW.

  19. Abdomen and spinal cord segmentation with augmented active shape models.

    PubMed

    Xu, Zhoubing; Conrad, Benjamin N; Baucom, Rebeccah B; Smith, Seth A; Poulose, Benjamin K; Landman, Bennett A

    2016-07-01

    Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC.

  20. Automatic liver segmentation on Computed Tomography using random walkers for treatment planning

    PubMed Central

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin

    2016-01-01

    Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91. PMID:28096782

  1. Multi-atlas segmentation for abdominal organs with Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-03-01

    Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.

  2. Bayesian automated cortical segmentation for neonatal MRI

    NASA Astrophysics Data System (ADS)

    Chou, Zane; Paquette, Natacha; Ganesh, Bhavana; Wang, Yalin; Ceschin, Rafael; Nelson, Marvin D.; Macyszyn, Luke; Gaonkar, Bilwaj; Panigrahy, Ashok; Lepore, Natasha

    2017-11-01

    Several attempts have been made in the past few years to develop and implement an automated segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation remains challenging in this population because of the low signal-to-noise ratio, large partial volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-weighted images. We trained our algorithm using a neonatal dataset composed of 3 fullterm and 4 preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST algorithm from the FSL library software and a Bayesian segmentation approach to create a threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows promising results with our pilot training set. In both preterm and full-term neonates, automated Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, while successfully removing the subcortical structure and cleaning the edges of the cortical grey matter. This method show promising refinement of the FAST segmentation by considerably reducing manual input and editing required from the user, and further improving reliability and processing time of neonatal MR images. Further improvement will include a larger dataset of training images acquired from different manufacturers.

  3. Automatic segmentation of the bone and extraction of the bone cartilage interface from magnetic resonance images of the knee

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2007-03-01

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.

  4. Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed

    USGS Publications Warehouse

    Petty, J.T.; Lamothe, P.J.; Mazik, P.M.

    2005-01-01

    We quantified the watershed-scale spatial population dynamics of brook trout Salvelinus fontinalis in the Second Fork, a third-order tributary of Shavers Fork in eastern West Virginia. We used visual surveys, electrofishing, and mark-recapture techniques to quantify brook trout spawning intensity, population density, size structure, and demographic rates (apparent survival and immigration) throughout the watershed. Our analyses produced the following results. Spawning by brook trout was concentrated in streams with small basin areas (i.e., segments draining less than 3 km2), relatively high alkalinity (>10 mg CaCO3/L), and high amounts of instream cover. The spatial distribution of juvenile and small-adult brook trout within the watershed was relatively stable and was significantly correlated with spawning intensity. However, no such relationship was observed for large adults, which exhibited highly variable distribution patterns related to seasonally important habitat features, including instream cover, stream depth and width, and riparian canopy cover. Brook trout survival and immigration rates varied seasonally, spatially, and among size-classes. Differential survival and immigration tended to concentrate juveniles and small adults in small, alkaline streams, whereas dispersal tended to redistribute large adults at the watershed scale. Our results suggest that spatial and temporal variations in spawning, survival, and movement interact to determine the distribution, abundance, and size structure of brook trout populations at a watershed scale. These results underscore the importance of small tributaries for the persistence of brook trout in this watershed and the need to consider watershed-scale processes when designing management plans for Appalachian brook trout populations. ?? Copyright by the American Fisheries Society 2005.

  5. A System for Adaptive High-Variability Segmental Perceptual Training: Implementation, Effectiveness, Transfer

    ERIC Educational Resources Information Center

    Qian, Manman; Chukharev-Hudilainen, Evgeny; Levis, John

    2018-01-01

    Many types of L2 phonological perception are often difficult to acquire without instruction. These difficulties with perception may also be related to intelligibility in production. Instruction on perception contrasts is more likely to be successful with the use of phonetically variable input made available through computer-assisted pronunciation…

  6. Using Statistical Process Control Charts to Study Stuttering Frequency Variability during a Single Day

    ERIC Educational Resources Information Center

    Karimi, Hamid; O'Brian, Sue; Onslow, Mark; Jones, Mark; Menzies, Ross; Packman, Ann

    2013-01-01

    Purpose: Stuttering varies between and within speaking situations. In this study, the authors used statistical process control charts with 10 case studies to investigate variability of stuttering frequency. Method: Participants were 10 adults who stutter. The authors counted the percentage of syllables stuttered (%SS) for segments of their speech…

  7. Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy

    ERIC Educational Resources Information Center

    von Eye, Alexander; Wiedermann, Wolfgang

    2015-01-01

    Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…

  8. A coastal hazards data base for the U.S. West Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gornitz, V.M.; Beaty, T.W.; Daniels, R.C.

    1997-12-01

    This document describes the contents of a digital data base that may be used to identify coastlines along the US West Coast that are at risk to sea-level rise. This data base integrates point, line, and polygon data for the US West Coast into 0.25{degree} latitude by 0.25{degree} longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data bases. Each coastal grid cell and line segment contains data variables from the following seven data sets: elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion),more » tidal ranges, and wave heights. One variable from each data set was classified according to its susceptibility to sea-level rise and/or erosion to form 7 relative risk variables. These risk variables range in value from 1 to 5 and may be used to calculate a Coastal Vulnerability Index (CVI). Algorithms used to calculate several CVIs are listed within this text.« less

  9. Morphing Wing Weight Predictors and Their Application in a Template-Based Morphing Aircraft Sizing Environment II. Part 2; Morphing Aircraft Sizing via Multi-level Optimization

    NASA Technical Reports Server (NTRS)

    Skillen, Michael D.; Crossley, William A.

    2008-01-01

    This report presents an approach for sizing of a morphing aircraft based upon a multi-level design optimization approach. For this effort, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and/or increasing aspect ratio by as much as 200% from the lowest possible value. The top-level optimization problem seeks to minimize the gross weight of the aircraft by determining a set of "baseline" variables - these are common aircraft sizing variables, along with a set of "morphing limit" variables - these describe the maximum shape change for a particular morphing strategy. The sub-level optimization problems represent each segment in the morphing aircraft's design mission; here, each sub-level optimizer minimizes fuel consumed during each mission segment by changing the wing planform within the bounds set by the baseline and morphing limit variables from the top-level problem.

  10. Hobby-Eberly Telescope: commissioning experience and observing plans

    NASA Astrophysics Data System (ADS)

    Glaspey, John W.; Adams, M. T.; Booth, John A.; Cornell, Mark E.; Fowler, James R.; Krabbendam, Victor L.; Ramsey, Lawrence W.; Ray, Frank B.; Ricklefs, Randall L.; Spiesman, W. J.

    1998-07-01

    Experience in bringing into operation the 91-segment primary mirror alignment and control system, the focal plane tracker system, and other critical subsystems of the HET will be described. Particular attention is given to the tracker, which utilizes three linear and three rotational degrees of freedom to follow sidereal targets. Coarse time-dependent functions for each axis are downloaded to autonomous PMAC controllers that provide the precise motion drives to the two linear stages and the hexapod system. Experience gained in aligning the sperate mirrors and then maintaining image quality in a variable thermal environments will also be described. Because of the fixed elevation of the primary optical axis, only a limited amount of time is available for observing objects in the 12 degrees wide observing band. With a small core HET team working with McDonald Observatory staff, efficient, reliable, uncomplicated methodologies are required in all aspects of the observing operations.

  11. Holographic photolysis of caged neurotransmitters

    PubMed Central

    Lutz, Christoph; Otis, Thomas S.; DeSars, Vincent; Charpak, Serge; DiGregorio, David A.; Emiliani, Valentina

    2009-01-01

    Stimulation of light-sensitive chemical probes has become a powerful tool for the study of dynamic signaling processes in living tissue. Classically, this approach has been constrained by limitations of lens–based and point-scanning illumination systems. Here we describe a novel microscope configuration that incorporates a nematic liquid crystal spatial light modulator (LC-SLM) to generate holographic patterns of illumination. This microscope can produce illumination spots of variable size and number and patterns shaped to precisely match user-defined elements in a specimen. Using holographic illumination to photolyse caged glutamate in brain slices, we demonstrate that shaped excitation on segments of neuronal dendrites and simultaneous, multi-spot excitation of different dendrites enables precise spatial and rapid temporal control of glutamate receptor activation. By allowing the excitation volume shape to be tailored precisely, the holographic microscope provides an extremely flexible method for activation of various photosensitive proteins and small molecules. PMID:19160517

  12. TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.

    PubMed

    Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D

    2018-05-08

    Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.

  13. Visible Light Image-Based Method for Sugar Content Classification of Citrus

    PubMed Central

    Wang, Xuefeng; Wu, Chunyan; Hirafuji, Masayuki

    2016-01-01

    Visible light imaging of citrus fruit from Mie Prefecture of Japan was performed to determine whether an algorithm could be developed to predict the sugar content. This nondestructive classification showed that the accurate segmentation of different images can be realized by a correlation analysis based on the threshold value of the coefficient of determination. There is an obvious correlation between the sugar content of citrus fruit and certain parameters of the color images. The selected image parameters were connected by addition algorithm. The sugar content of citrus fruit can be predicted by the dummy variable method. The results showed that the small but orange citrus fruits often have a high sugar content. The study shows that it is possible to predict the sugar content of citrus fruit and to perform a classification of the sugar content using light in the visible spectrum and without the need for an additional light source. PMID:26811935

  14. Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation

    PubMed Central

    Parmar, Chintan; Blezek, Daniel; Estepar, Raul San Jose; Pieper, Steve; Kim, John; Aerts, Hugo J. W. L.

    2017-01-01

    Purpose Accurate segmentation of lung nodules is crucial in the development of imaging biomarkers for predicting malignancy of the nodules. Manual segmentation is time consuming and affected by inter-observer variability. We evaluated the robustness and accuracy of a publically available semiautomatic segmentation algorithm that is implemented in the 3D Slicer Chest Imaging Platform (CIP) and compared it with the performance of manual segmentation. Methods CT images of 354 manually segmented nodules were downloaded from the LIDC database. Four radiologists performed the manual segmentation and assessed various nodule characteristics. The semiautomatic CIP segmentation was initialized using the centroid of the manual segmentations, thereby generating four contours for each nodule. The robustness of both segmentation methods was assessed using the region of uncertainty (δ) and Dice similarity index (DSI). The robustness of the segmentation methods was compared using the Wilcoxon-signed rank test (pWilcoxon<0.05). The Dice similarity index (DSIAgree) between the manual and CIP segmentations was computed to estimate the accuracy of the semiautomatic contours. Results The median computational time of the CIP segmentation was 10 s. The median CIP and manually segmented volumes were 477 ml and 309 ml, respectively. CIP segmentations were significantly more robust than manual segmentations (median δCIP = 14ml, median dsiCIP = 99% vs. median δmanual = 222ml, median dsimanual = 82%) with pWilcoxon~10−16. The agreement between CIP and manual segmentations had a median DSIAgree of 60%. While 13% (47/354) of the nodules did not require any manual adjustment, minor to substantial manual adjustments were needed for 87% (305/354) of the nodules. CIP segmentations were observed to perform poorly (median DSIAgree≈50%) for non-/sub-solid nodules with subtle appearances and poorly defined boundaries. Conclusion Semi-automatic CIP segmentation can potentially reduce the physician workload for 13% of nodules owing to its computational efficiency and superior stability compared to manual segmentation. Although manual adjustment is needed for many cases, CIP segmentation provides a preliminary contour for physicians as a starting point. PMID:28594880

  15. Evaluation of the procedure for separating barley from other spring small grains. [North Dakota, South Dakota, Minnesota and Montana

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1980-01-01

    The success of the Transition Year procedure to separate and label barley and the other small grains was assessed. It was decided that developers of the procedure would carry out the exercise in order to prevent compounding procedural problems with implementation problems. The evaluation proceeded by labeling the sping small grains first. The accuracy of this labeling was, on the average, somewhat better than that in the Transition Year operations. Other departures from the original procedure included a regionalization of the labeling process, the use of trend analysis, and the removal of time constraints from the actual processing. Segment selection, ground truth derivation, and data available for each segment in the analysis are discussed. Labeling accuracy is examined for North Dakota, South Dakota, Minnesota, and Montana as well as for the entire four-state area. Errors are characterized.

  16. Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae.

    PubMed

    Gorlani, A; Hulsik, D Lutje; Adams, H; Vriend, G; Hermans, P; Verrips, T

    2012-01-01

    Variable domains of llama heavy-chain antibodies (VHH) are becoming a potent tool for a wide range of biotechnological and medical applications. Because of structural features typical of their single-domain nature, they are relatively easy to produce in lower eukaryotes, but it is not uncommon that some molecules have poor secretion efficiency. We therefore set out to study the production yield of VHH. We computationally identified five key residues that are crucial for folding and secretion, and we validated their importance with systematic site-directed mutations. The observation that all key residues were localised in the V segment, in proximity of the J segment of VHH, led us to study the importance of J segment in secretion efficiency. Intriguingly, we found that the use of specific J segments in VHH could strongly influence the production yield. Sequence analysis and expression experiments strongly suggested that interactions with chaperones, especially with the J segment, are a crucial aspect of the production yield of VHH.

  17. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection.

    PubMed

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-11-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    PubMed Central

    Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    ABSTRACT The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera. IMPORTANCE This work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10. PMID:26339065

  19. Machine learning in a graph framework for subcortical segmentation

    NASA Astrophysics Data System (ADS)

    Guo, Zhihui; Kashyap, Satyananda; Sonka, Milan; Oguz, Ipek

    2017-02-01

    Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 +/- 0.03) and the putamen (0.89 +/- 0.03).

  20. Fast approximation for joint optimization of segmentation, shape, and location priors, and its application in gallbladder segmentation.

    PubMed

    Saito, Atsushi; Nawano, Shigeru; Shimizu, Akinobu

    2017-05-01

    This paper addresses joint optimization for segmentation and shape priors, including translation, to overcome inter-subject variability in the location of an organ. Because a simple extension of the previous exact optimization method is too computationally complex, we propose a fast approximation for optimization. The effectiveness of the proposed approximation is validated in the context of gallbladder segmentation from a non-contrast computed tomography (CT) volume. After spatial standardization and estimation of the posterior probability of the target organ, simultaneous optimization of the segmentation, shape, and location priors is performed using a branch-and-bound method. Fast approximation is achieved by combining sampling in the eigenshape space to reduce the number of shape priors and an efficient computational technique for evaluating the lower bound. Performance was evaluated using threefold cross-validation of 27 CT volumes. Optimization in terms of translation of the shape prior significantly improved segmentation performance. The proposed method achieved a result of 0.623 on the Jaccard index in gallbladder segmentation, which is comparable to that of state-of-the-art methods. The computational efficiency of the algorithm is confirmed to be good enough to allow execution on a personal computer. Joint optimization of the segmentation, shape, and location priors was proposed, and it proved to be effective in gallbladder segmentation with high computational efficiency.

  1. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    PubMed

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Tissue Probability Map Constrained 4-D Clustering Algorithm for Increased Accuracy and Robustness in Serial MR Brain Image Segmentation

    PubMed Central

    Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen

    2010-01-01

    The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399

  3. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  4. A systematic review of definitions and classification systems of adjacent segment pathology.

    PubMed

    Kraemer, Paul; Fehlings, Michael G; Hashimoto, Robin; Lee, Michael J; Anderson, Paul A; Chapman, Jens R; Raich, Annie; Norvell, Daniel C

    2012-10-15

    Systematic review. To undertake a systematic review to determine how "adjacent segment degeneration," "adjacent segment disease," or clinical pathological processes that serve as surrogates for adjacent segment pathology are classified and defined in the peer-reviewed literature. Adjacent segment degeneration and adjacent segment disease are terms referring to degenerative changes known to occur after reconstructive spine surgery, most commonly at an immediately adjacent functional spinal unit. These can include disc degeneration, instability, spinal stenosis, facet degeneration, and deformity. The true incidence and clinical impact of degenerative changes at the adjacent segment is unclear because there is lack of a universally accepted classification system that rigorously addresses clinical and radiological issues. A systematic review of the English language literature was undertaken and articles were classified using the Grades of Recommendation Assessment, Development, and Evaluation criteria. RESULTS.: Seven classification systems of spinal degeneration, including degeneration at the adjacent segment, were identified. None have been evaluated for reliability or validity specific to patients with degeneration at the adjacent segment. The ways in which terms related to adjacent segment "degeneration" or "disease" are defined in the peer-reviewed literature are highly variable. On the basis of the systematic review presented in this article, no formal classification system for either cervical or thoracolumbar adjacent segment disorders currently exists. No recommendations regarding the use of current classification of degeneration at any segments can be made based on the available literature. A new comprehensive definition for adjacent segment pathology (ASP, the now preferred terminology) has been proposed in this Focus Issue, which reflects the diverse pathology observed at functional spinal units adjacent to previous spinal reconstruction and balances detailed stratification with clinical utility. A comprehensive classification system is being developed through expert opinion and will require validation as well as peer review. Strength of Statement: Strong.

  5. Alveolar Molding Effect in Infants With Unilateral Cleft Lip and Palate: Comparison of Two- and Three-Dimensional Measurements.

    PubMed

    Lim, Won Hee; Park, Eun Woo; Chae, Hwa Sung; Kwon, Soon Man; Jung, Hoi-In; Baek, Seung-Hak

    2017-06-01

    The purpose of this study was to compare the results of two- (2D) and three-dimensional (3D) measurements for the alveolar molding effect in patients with unilateral cleft lip and palate. The sample consisted of 23 unilateral cleft lip and palate infants treated with nasoalveolar molding (NAM) appliance. Dental models were fabricated at initial visit (T0; mean age, 23.5 days after birth) and after alveolar molding therapy (T1; mean duration, 83 days). For 3D measurement, virtual models were constructed using a laser scanner and 3D software. For 2D measurement, 1:1 ratio photograph images of dental models were scanned by a scanner. After setting of common reference points and lines for 2D and 3D measurements, 7 linear and 5 angular variables were measured at the T0 and T1 stages, respectively. Wilcoxon signed rank test and Bland-Altman analysis were performed for statistical analysis. The alveolar molding effect of the maxilla following NAM treatment was inward bending of the anterior part of greater segment, forward growth of the lesser segment, and decrease in the cleft gap in the greater segment and lesser segment. Two angular variables showed difference in statistical interpretation of the change by NAM treatment between 2D and 3D measurements (ΔACG-BG-PG and ΔACL-BL-PL). However, Bland-Altman analysis did not exhibit significant difference in the amounts of change in these variables between the 2 measurements. These results suggest that the data from 2D measurement could be reliably used in conjunction with that from 3D measurement.

  6. Prospective comparison of speckle tracking longitudinal bidimensional strain between two vendors.

    PubMed

    Castel, Anne-Laure; Szymanski, Catherine; Delelis, François; Levy, Franck; Menet, Aymeric; Mailliet, Amandine; Marotte, Nathalie; Graux, Pierre; Tribouilloy, Christophe; Maréchaux, Sylvestre

    2014-02-01

    Speckle tracking is a relatively new, largely angle-independent technique used for the evaluation of myocardial longitudinal strain (LS). However, significant differences have been reported between LS values obtained by speckle tracking with the first generation of software products. To compare LS values obtained with the most recently released equipment from two manufacturers. Systematic scanning with head-to-head acquisition with no modification of the patient's position was performed in 64 patients with equipment from two different manufacturers, with subsequent off-line post-processing for speckle tracking LS assessment (Philips QLAB 9.0 and General Electric [GE] EchoPAC BT12). The interobserver variability of each software product was tested on a randomly selected set of 20 echocardiograms from the study population. GE and Philips interobserver coefficients of variation (CVs) for global LS (GLS) were 6.63% and 5.87%, respectively, indicating good reproducibility. Reproducibility was very variable for regional and segmental LS values, with CVs ranging from 7.58% to 49.21% with both software products. The concordance correlation coefficient (CCC) between GLS values was high at 0.95, indicating substantial agreement between the two methods. While good agreement was observed between midwall and apical regional strains with the two software products, basal regional strains were poorly correlated. The agreement between the two software products at a segmental level was very variable; the highest correlation was obtained for the apical cap (CCC 0.90) and the poorest for basal segments (CCC range 0.31-0.56). A high level of agreement and reproducibility for global but not for basal regional or segmental LS was found with two vendor-dependent software products. This finding may help to reinforce clinical acceptance of GLS in everyday clinical practice. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. [Presence and spatio-temporal habitat characterization of Dermatemys mawii (Testudines: Dermatemydidae) in the Grijalva-Usumacinta watershed, Tabasco, Mexico].

    PubMed

    Zenteno Ruiz, Claudia Elena; Barba Macias, Everardo; Bello-Gutiérrez, Joaquín; Ochoa-Gaona, Susana

    2010-12-01

    The Central American River Turtle (Dermatemys mawii) is an endangered species that has been poorly studied. There are no reports on their population status, habitat condition, and the species distribution area is still unknown. This study analyzes the seasonal and spatial variations of their habitat and the presence/absence of D. mawii in three rivers within the Pantanos de Centla Biosphere Reserve (Tabasco, Mexico). For habitat characterization, natural segmentation of rivers was used and three sites per segment were identified, 9 in each rivers (Grijalva and Usumacinta) and 6 in Tabasquillo. Additionally, the evaluation of 11 environmental variables such as water hydrological, physicochemical characteristics and riparian and hydrophytic vegetation were carried out during two different seasons (dry and rainy). The presence/absence of species was assessed with eight fike nets that were set per segment, with a capture effort of 384 hours per trap. The capture per unit effort (CPUE) was used as an indicator of relative abundance. The results indicated spatio-temporal variations in habitat characteristics and the presence of environmental gradients. The principal components analysis (PCA) applied allowed us to determine that the first three components explained 67.8% of the environmental variability. The species presence was confirmed in all rivers, however significant differences exists in their relative abundance: the highest was registered in the Tabasquillo River where the species was present in both seasons and in all segments. Of the 11 environmental variables analyzed, the gradient, shelter and depth were the most indicative of species presence. The obtained results evidenced the importance of riparian vegetation as habitat for Dermatemys. This represents the first approach towards an action plan for a species and its habitat protection within the Pantanos de Centla Biosphere Reserve.

  8. A model to identify high crash road segments with the dynamic segmentation method.

    PubMed

    Boroujerdian, Amin Mirza; Saffarzadeh, Mahmoud; Yousefi, Hassan; Ghassemian, Hassan

    2014-12-01

    Currently, high social and economic costs in addition to physical and mental consequences put road safety among most important issues. This paper aims at presenting a novel approach, capable of identifying the location as well as the length of high crash road segments. It focuses on the location of accidents occurred along the road and their effective regions. In other words, due to applicability and budget limitations in improving safety of road segments, it is not possible to recognize all high crash road segments. Therefore, it is of utmost importance to identify high crash road segments and their real length to be able to prioritize the safety improvement in roads. In this paper, after evaluating deficiencies of the current road segmentation models, different kinds of errors caused by these methods are addressed. One of the main deficiencies of these models is that they can not identify the length of high crash road segments. In this paper, identifying the length of high crash road segments (corresponding to the arrangement of accidents along the road) is achieved by converting accident data to the road response signal of through traffic with a dynamic model based on the wavelet theory. The significant advantage of the presented method is multi-scale segmentation. In other words, this model identifies high crash road segments with different lengths and also it can recognize small segments within long segments. Applying the presented model into a real case for identifying 10-20 percent of high crash road segment showed an improvement of 25-38 percent in relative to the existing methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. DEWS (DEep White matter hyperintensity Segmentation framework): A fully automated pipeline for detecting small deep white matter hyperintensities in migraineurs.

    PubMed

    Park, Bo-Yong; Lee, Mi Ji; Lee, Seung-Hak; Cha, Jihoon; Chung, Chin-Sang; Kim, Sung Tae; Park, Hyunjin

    2018-01-01

    Migraineurs show an increased load of white matter hyperintensities (WMHs) and more rapid deep WMH progression. Previous methods for WMH segmentation have limited efficacy to detect small deep WMHs. We developed a new fully automated detection pipeline, DEWS (DEep White matter hyperintensity Segmentation framework), for small and superficially-located deep WMHs. A total of 148 non-elderly subjects with migraine were included in this study. The pipeline consists of three components: 1) white matter (WM) extraction, 2) WMH detection, and 3) false positive reduction. In WM extraction, we adjusted the WM mask to re-assign misclassified WMHs back to WM using many sequential low-level image processing steps. In WMH detection, the potential WMH clusters were detected using an intensity based threshold and region growing approach. For false positive reduction, the detected WMH clusters were classified into final WMHs and non-WMHs using the random forest (RF) classifier. Size, texture, and multi-scale deep features were used to train the RF classifier. DEWS successfully detected small deep WMHs with a high positive predictive value (PPV) of 0.98 and true positive rate (TPR) of 0.70 in the training and test sets. Similar performance of PPV (0.96) and TPR (0.68) was attained in the validation set. DEWS showed a superior performance in comparison with other methods. Our proposed pipeline is freely available online to help the research community in quantifying deep WMHs in non-elderly adults.

  10. Volumetric multimodality neural network for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  11. High-resolution inverse synthetic aperture radar imaging for large rotation angle targets based on segmented processing algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan

    2017-01-01

    In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.

  12. Active Contours Driven by Multi-Feature Gaussian Distribution Fitting Energy with Application to Vessel Segmentation.

    PubMed

    Wang, Lei; Zhang, Huimao; He, Kan; Chang, Yan; Yang, Xiaodong

    2015-01-01

    Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and 'vesselness values' from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.

  13. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    NASA Astrophysics Data System (ADS)

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-01

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  14. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data.

    PubMed

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-21

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  15. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.

    PubMed

    Dalmış, Mehmet Ufuk; Litjens, Geert; Holland, Katharina; Setio, Arnaud; Mann, Ritse; Karssemeijer, Nico; Gubern-Mérida, Albert

    2017-02-01

    Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task. However, applicability of these methods is usually limited by the characteristics of the images used in the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a challenging task to develop a robust breast and FGT segmentation method using traditional approaches. Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net." We used a dataset of 66 breast MRI's randomly selected from our scientific archive, which includes five different MRI acquisition protocols and breasts from four breast density categories in a balanced distribution. To prepare reference segmentations, we manually segmented breast and FGT for all images using an in-house developed workstation. We experimented with the application of U-net in two different ways for breast and FGT segmentation. In the first method, following the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast, and FGT inside the breast. For comparison, we applied two existing and published methods to our dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient (DSC) to measure the performances of the automated methods, with respect to the manual segmentations. Additionally, we computed Pearson's correlation between the breast density values computed based on manual and automated segmentations. The average DSC values for breast segmentation were 0.933, 0.944, 0.863, and 0.848 obtained from 3C U-net, 2C U-nets, atlas-based method, and sheetness-based method, respectively. The average DSC values for FGT segmentation obtained from 3C U-net, 2C U-nets, and atlas-based methods were 0.850, 0.811, and 0.671, respectively. The correlation between breast density values based on 3C U-net and manual segmentations was 0.974. This value was significantly higher than 0.957 as obtained from 2C U-nets (P < 0.0001, Steiger's Z-test with Bonferoni correction) and 0.938 as obtained from atlas-based method (P = 0.0016). In conclusion, we applied a deep-learning method, U-net, for segmenting breast and FGT in MRI in a dataset that includes a variety of MRI protocols and breast densities. Our results showed that U-net-based methods significantly outperformed the existing algorithms and resulted in significantly more accurate breast density computation. © 2016 American Association of Physicists in Medicine.

  16. Environmentally Sound Small-Scale Water Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Tillman, Gus

    This manual is the second volume in a series of publications on community development programs. Guidelines are suggested for small-scale water projects that would benefit segments of the world's urban or rural poor. Strategies in project planning, implementation and evaluation are presented that emphasize environmental conservation and promote…

  17. Calculation of the small scale self-focusing ripple gain spectrum for the CYCLOPS laser system: a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleck, J.A. Jr.; Morris, J.R.; Thompson, P.F.

    1976-10-01

    The FLAC code (Fourier Laser Amplifier Code) was used to simulate the CYCLOPS laser system up to the third B-module and to calculate the maximum ripple gain spectrum. The model of this portion of CYCLOPS consists of 33 segments that correspond to 20 optical elements (simulation of the cell requires 2 segments and 12 external air spaces). (MHR)

  18. Liver segment IV hypoplasia as a risk factor for bile duct injury.

    PubMed

    Mercado, Miguel Angel; Franssen, Bernardo; Arriola, Juan Carlos; Garcia-Badiola, Artemio; Arámburo, Rigoberto; Elnecavé, Alejandro; Cortés-González, Rubén

    2011-09-01

    Bile duct injury remains constant in the era of laparoscopic cholecystectomy and misidentification of structures remains one of the most common causes of such injuries. Abnormalities in liver segment IV, which is fully visible during laparoscopic cholecystectomy, may contribute to misidentification as proposed herein. We describe the case of a 36-year-old female who had a bile duct injury during a laparoscopic cholecystectomy where the surgeon noticed an unusually small distance between the gallbladder and the round ligament. We define hypoplasia of liver segment IV as well as describe the variation of the biliary anatomy in the case. We also intend to fit it in a broader spectrum of developmental anomalies that have both hyopoplasia of some portion of the liver and variations in gallbladder and bile duct anatomy that may contribute to bile duct injury. To our knowledge, hypoplasia of liver segment IV has not been suggested in the literature as a risk factor for bile duct injury except in the extreme case of a left-sided gallbladder. Surgeons should be vigilant during laparoscopic cholecystectomy when they become aware of an unusually small distance between the gallbladder bed and the round ligament prior to beginning their dissection, variations in the common bile duct and cystic duct should be expected.

  19. Investigations of spectral separability of small grains, early season wheat detection, and multicrop inventory planning. [North Dakota and Kansas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Gleason, J. M.

    1977-01-01

    The author has identified the following significant results. LANDSAT data from seven 5 by 6 segments having crop type information were analyzed to determine the potential for spectral separation of spring wheat from other small grains as an alternative to the primary LACIE procedure for estimating spring wheat acreage. Within segment field-center, classification accuracies for spring wheat vs. barley tended to be best in mid-July when crop color changes were in progress. When correlations were made for differences in atmospheric haze, data from several segments could be aggregated, and results that approached within segment accuracies were obtained for selected dates. LACIE field measurement spectral reflectance data provided information on both wheat development patterns and the importance of various agronomic factors on wheat reflectance, the most important being availability of soil moisture. To investigate early season detection for winter wheat, reflectance of developing wheat patterns was simulated through reflectance modeling and was analyzed along with field measured reflectance from a Kansas site. The green component development of the wheat field was analyzed as a function of data throughout the season. A selected threshold was not crossed by all fields until mid-April. These reflectance data were shown to be consistent actual LANDSAT data.

  20. A Fast Superpixel Segmentation Algorithm for PolSAR Images Based on Edge Refinement and Revised Wishart Distance

    PubMed Central

    Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng

    2016-01-01

    The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385

Top