Sample records for small wave numbers

  1. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  2. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects

    NASA Astrophysics Data System (ADS)

    Zhen, Ya-Xin

    2017-02-01

    In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.

  3. Detection of the presence of Chlamydia trachomatis bacteria using diffusing wave spectroscopy with a small number of scatterers

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Ulianova, Onega; Filonova, Nadezhda; Moiseeva, Yulia; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Kalduzova, Irina; Larionova, Olga; Utz, Sergey; Feodorova, Valentina

    2018-04-01

    Theory of diffusing wave spectroscopy has been firstly adapted to the problem of rapid detection of Chlamydia trachomatis bacteria in blood samples of Chlamydia patients. Formula for correlation function of temporal fluctuations of speckle intensity is derived for the case of small number of scattering events. Dependence of bandwidth of spectrum on average number of scatterers is analyzed. Set-up for detection of the presence of C. trachomatis cells in aqueous suspension is designed. Good agreement between theoretical results and experimental data is shown. Possibility of detection of the presence of C. trachomatis cells in probing volume using diffusing wave spectroscopy with a small number of scatterers is successfully demonstrated for the first time.

  4. Experimental quantification of nonlinear time scales in inertial wave rotating turbulence

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Salhov, Alon; Sharon, Eran

    2017-12-01

    We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.

  5. Revisiting linear plasma waves for finite value of the plasma parameter

    NASA Astrophysics Data System (ADS)

    Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren

    2010-11-01

    We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.

  6. A research about characteristics of longitudinal variations of ES layers irregularities based on CHAMP occultation measurements

    NASA Astrophysics Data System (ADS)

    Liao, Sunmin

    2018-04-01

    Based on the data of CHAMP occultation measurements, this paper makes a preliminary analysis of the longitudinal variations of ES irregular structure by using Fourier decomposition and reconstruction technique. It is found that the longitudinal variations of the ES irregular structure show the features of multiple wave-numbers, which is dominated by the wave number 1 to the wave number 5 components, and decrease from the amplitudes of the wave number 6 components. The features of wave number structures are very different in different DIP latitude and different seasons. The number of crests in summer and autumn is mostly 3 or 4 crest structures, while the number of crests in spring achieves 5 at DIP 15°N with small fluctuates, the crests number of winter is the least. In the multiple wave-numbers structure, the wave number 4 component shows a significant dependence on the season, mainly in the summer and autumn, particularly obvious from July to October.

  7. Numerical simulation of the supersonic boundary layer interaction with arbitrary oriented acoustic waves

    NASA Astrophysics Data System (ADS)

    Semenov, A. N.; Gaponov, S. A.

    2017-10-01

    Based the direct numerical simulation in the paper the supersonic flow around of the infinitely thin plate, which was perturbed by the acoustic wave, was investigated. Calculations carried out in the case of small perturbations at the Mach number M=2 and Reynold's numbers Re<600. It is established that the velocity perturbation amplitude within the boundary layer is greater than the amplitude of the external acoustic wave in several times, the maximum amplitude growth is reached 10. At the small sliding and incidence angles the velocity perturbations amplitude increased monotonously with Reynold's numbers. At rather great values of these angles there are maxima in dependences of the velocity perturbations amplitude on the Reynold's number. The oscillations exaltation in the boundary layer by the sound wave more efficiently if the plate is irradiated from above. At the fixed Reynolds's number and frequency there are critical values of the sliding and incidence angles (χ, φ) at which the disturbances excited by a sound wave are maxima. At M=2 it takes place at χ≈ φ ≈30°. The excitation efficiency of perturbations in the boundary layer increases with the Mach number, and it decreases with a frequency.

  8. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Xiao, C. Z.; Wang, Q.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; He, X. T.

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number k λD e is small, such as k λD e=0.1 , the fluid NFS dominates in the total NFS and will reach as large as nearly 15 % when the wave amplitude |e ϕ / Te|˜0.1 , which indicates that in the condition of small k λD e , the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large.

  9. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region.

    PubMed

    Feng, Q S; Xiao, C Z; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number kλ_{De} is small, such as kλ_{De}=0.1, the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude |eϕ/T_{e}|∼0.1, which indicates that in the condition of small kλ_{De}, the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large.

  10. A plane wave generation method by wave number domain point focusing.

    PubMed

    Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann

    2010-11-01

    A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590

    The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less

  12. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2015-02-15

    Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators. Copyright © 2015 the American Physiological Society.

  13. cBathy: A robust algorithm for estimating nearshore bathymetry

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holman, Rob; Holland, K. Todd

    2013-01-01

    A three-part algorithm is described and tested to provide robust bathymetry maps based solely on long time series observations of surface wave motions. The first phase consists of frequency-dependent characterization of the wave field in which dominant frequencies are estimated by Fourier transform while corresponding wave numbers are derived from spatial gradients in cross-spectral phase over analysis tiles that can be small, allowing high-spatial resolution. Coherent spatial structures at each frequency are extracted by frequency-dependent empirical orthogonal function (EOF). In phase two, depths are found that best fit weighted sets of frequency-wave number pairs. These are subsequently smoothed in time in phase 3 using a Kalman filter that fills gaps in coverage and objectively averages new estimates of variable quality with prior estimates. Objective confidence intervals are returned. Tests at Duck, NC, using 16 surveys collected over 2 years showed a bias and root-mean-square (RMS) error of 0.19 and 0.51 m, respectively but were largest near the offshore limits of analysis (roughly 500 m from the camera) and near the steep shoreline where analysis tiles mix information from waves, swash and static dry sand. Performance was excellent for small waves but degraded somewhat with increasing wave height. Sand bars and their small-scale alongshore variability were well resolved. A single ground truth survey from a dissipative, low-sloping beach (Agate Beach, OR) showed similar errors over a region that extended several kilometers from the camera and reached depths of 14 m. Vector wave number estimates can also be incorporated into data assimilation models of nearshore dynamics.

  14. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of absorption and dispersion and a stochastic model is constructed for ground-based acoustic signals in mountain environments.

  15. Integrated analysis of energy transfers in elastic-wave turbulence.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  16. Multi-scale structures of turbulent magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.

    2016-05-15

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in whichmore » modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.« less

  17. Multi-scale structures of turbulent magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.

    2016-05-01

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.

  18. Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction

    NASA Astrophysics Data System (ADS)

    Beckebanze, F.; Brouzet, C.; Sibgatullin, I. N.; Maas, L. R. M.

    2018-04-01

    The reflection of internal gravity waves at sloping boundaries leads to focusing or defocusing. In closed domains, focusing typically dominates and projects the wave energy onto 'wave attractors'. For small-amplitude internal waves, the projection of energy onto higher wave numbers by geometric focusing can be balanced by viscous dissipation at high wave numbers. Contrary to what was previously suggested, viscous dissipation in interior shear layers may not be sufficient to explain the experiments on wave attractors in the classical quasi-2D trapezoidal laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate description of the viscous dissipation in the interior shear layer, as well as at the rigid boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers consist of no more than 1% of the wall-to-wall distance, dissipation by lateral walls dominates at intermediate wave numbers. Our extended model for the spectrum of 3D wave attractors in equilibrium closes the gap between observations and theory by Hazewinkel et al. (2008).

  19. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

    NASA Astrophysics Data System (ADS)

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  20. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia.

    PubMed

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  1. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in small wave number region

    NASA Astrophysics Data System (ADS)

    Feng, Qingsong; Xiao, Chengzhuo; Wang, Qing; Zheng, Chunyang; Liu, Zhanjun; Cao, Lihua; He, Xiantu

    2016-10-01

    The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas has been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to theoretical result of multi-ion species plasmas. When the wave number kλDe is small, such as kλDe = 0.1 , the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude | eϕ / Te | 0.1 , which indicates that in the condition of small kλDe , the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large. National Natural Science Foundation of China (Grant Nos. 11575035, 11475030 and 11435011) and National Basic Research Program of China (Grant No. 2013CB834101).

  2. Nonlinear travelling waves in rotating Hagen–Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Govindarajan, Rama

    2018-03-01

    The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.

  3. Wave number selection in the presence of noise: Experimental results

    NASA Astrophysics Data System (ADS)

    Zhilenko, Dmitry; Krivonosova, Olga; Gritsevich, Maria; Read, Peter

    2018-05-01

    In this study, we consider how the wave number selection in spherical Couette flow, in the transition to azimuthal waves after the first instability, occurs in the presence of noise. The outer sphere was held stationary, while the inner sphere rotational speed was increased linearly from a subcritical flow to a supercritical one. In a supercritical flow, one of two possible flow states, each with different azimuthal wave numbers, can appear depending upon the initial and final Reynolds numbers and the acceleration value. Noise perturbations were added by introducing small disturbances into the rotational speed signal. With an increasing noise amplitude, a change in the dominant wave number from m to m ± 1 was found to occur at the same initial and final Reynolds numbers and acceleration values. The flow velocity measurements were conducted by using laser Doppler anemometry. Using these results, the role of noise as well as the behaviour of the amplitudes of the competing modes in their stages of damping and growth were determined.

  4. Viscous Analysis of Pulsating Hydrodynamic Instability and Thermal Coupling Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that, when the burning rate is realistically allowed to depend on temperature as well as pressure, sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes like pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wave numbers are sufficiently small. This analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wave number perturbations, the intrinsic pulsating instability for small wave numbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  5. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    PubMed Central

    Okasaka, Shozo; Weiler, Richard J.; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074

  6. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    PubMed

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-08-25

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  7. Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas

    NASA Astrophysics Data System (ADS)

    Liu, Yechi

    2018-06-01

    The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.

  8. CYLINDRICAL WAVES OF FINITE AMPLITUDE IN DISSIPATIVE MEDIUM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naugol'nykh, K.A.; Soluyan, S.I.; Khokhlov, R.V.

    1962-07-01

    Propagation of diverging and converging cylindrical waves in a nonlinear, viscous, heat conducting medium is analyzed using approximation methods. The KrylovBogolyubov method was used for small Raynold's numbers, and the method of S. I. Soluyan et al. (Vest. Mosk. Univ. ser. phys. and astronomy 3, 52-81, 1981), was used for large Raynold's numbers. The formation and dissipation of shock fronts and spatial dimensions of shock phenomena were analyzed. It is shown that the problem of finiteamplitude cylindrical wave propagation is identical to the problem of plane wave propagations in a medium with variable viscosity. (tr-auth)

  9. Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses

    NASA Astrophysics Data System (ADS)

    Penyazkov, O.; Skilandz, A.

    2018-03-01

    To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.

  10. Visualization of interaction of Mach waves with a bow shock

    NASA Astrophysics Data System (ADS)

    Pavlov, Al.; Golubev, M.; Kosinov, A.; Pavlov, A.

    2017-10-01

    The work presents results of investigation of couple weak waves with a bow shock at Mach number M = 2. The waves produced by a small 2D roughness installed on the nozzle inset or side wall of working section. Hot-wire measurements revealed profile of the waves to be similar to N-wave. The visualization was done by means of schlieren technique and interferential AVT SA method. The inclination angle change of the Mach waves at free-stream section and bow shock section was found.

  11. Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás

    2018-05-01

    In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.

  12. Parametric instability and wave turbulence driven by tidal excitation of internal waves

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael

    2018-04-01

    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  13. Damping of transient energy growth of three-dimensional perturbations in hydromagnetic pipe flow

    NASA Astrophysics Data System (ADS)

    Åkerstedt, Hans O.

    1995-05-01

    The stability of infinitesimal three-dimensional perturbations in hydromagnetic pipe flow where the applied magnetic field is in the streamwise direction is considered. The study is limited to the case of small magnetic Reynolds numbers and the main objective of the paper is to study the transient evolution of the kinetic energy. A general effect of the magnetic field is to increase the damping of the eigenvalues of the individual perturbation modes. For the case of infinitely long perturbations, which in the non-magnetic case has been found to have the largest transient growth, the magnetic field perturbations are decoupled from the flow and there is no effect on the stability properties of the flow. For shorter waves, and for moderate values of the interaction parameter ( I = RmA2 ≈ 1-3) the hydromagnetic damping effect on the transient energy growth is, however, substantial, especially for small azimuthal mode numbers n. (Here Rm is the magnetic Reynolds number and A is the Alfvén number.) This parameter range has been found in experiments to give significantly higher transitional Reynolds numbers (Fraim and Heiser, 1968). Since the hydromagnetic damping effect is weak for long waves and large for shorter waves, the implications of the results to ordinary pipe flow is that the energy growth found for short waves may be more crucial as a mechanism for transition than the corresponding growth for longer waves.

  14. A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Schmiedecke, Christian

    2017-03-01

    We consider an inverse scattering problem for time-harmonic acoustic or electromagnetic waves with sparse multifrequency far field data-sets. The goal is to localize several small penetrable objects embedded inside an otherwise homogeneous background medium from observations of far fields of scattered waves corresponding to incident plane waves with one fixed incident direction but several different frequencies. We assume that the far field is measured at a few observation directions only. Taking advantage of the smallness of the scatterers with respect to wavelength we utilize an asymptotic representation formula for the far field to design and analyze a MUSIC-type reconstruction method for this setup. We establish lower bounds on the number of frequencies and receiver directions that are required to recover the number and the positions of an ensemble of scatterers from the given measurements. Furthermore we briefly sketch a possible application of the reconstruction method to the practically relevant case of multifrequency backscattering data. Numerical examples are presented to document the potentials and limitations of this approach.

  15. Subcritical collisionless shock waves. [in earth space plasma

    NASA Technical Reports Server (NTRS)

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  16. Leptogenesis from Gravitational Waves and CP Violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, S

    2004-03-05

    We present a new mechanism for creating the observed cosmic matter-antimatter asymmetry which satisfies all three Sakharov conditions from one common thread, gravitational waves. We generate lepton number through the gravitational anomaly in the lepton number current. The source term comes from elliptically polarizated gravity waves that are produced during inflation if the inflaton field contains a CP-odd component. In simple inflationary scenarios, the generated matter asymmetry is very small. We describe some special conditions in which our mechanism can give a matter asymmetry of realistic size.

  17. The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2017-10-01

    We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ < Δω / 2 and decay instability for Γ > Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.

  18. Cosmological perturbations in the (1 + 3 + 6)-dimensional space-times

    NASA Astrophysics Data System (ADS)

    Tomita, K.

    2014-12-01

    Cosmological perturbations in the (1+3+6)-dimensional space-times including photon gas without viscous processes are studied on the basis of Abbott et al.'s formalism [R. B. Abbott, B. Bednarz, and S. D. Ellis, Phys. Rev. D 33, 2147 (1986)]. Space-times consist of outer space (the 3-dimensional expanding section) and inner space (the 6-dimensional section). The inner space expands initially and later contracts. Abbott et al. derived only power-type solutions, which appear at the final stage of the space-times, in the small wave-number limit. In this paper, we derive not only small wave-number solutions, but also large wave-number solutions. It is found that the latter solutions depend on the two wave-numbers k_r and k_R (which are defined in the outer and inner spaces, respectively), and that the k_r-dependent and k_R-dependent parts dominate the total perturbations when (k_r/r(t))/(k_R/R(t)) ≫ 1 or ≪ 1, respectively, where r(t) and R(t) are the scale-factors in the outer and inner spaces. By comparing the behaviors of these perturbations, moreover, changes in the spectrum of perturbations in the outer space with time are discussed.

  19. Linear temporal and spatio-temporal stability analysis of a binary liquid film flowing down an inclined uniformly heated plate

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Hadid, Hamda Ben; Henry, Daniel; Mojtabi, Abdelkader

    Temporal and spatio-temporal instabilities of binary liquid films flowing down an inclined uniformly heated plate with Soret effect are investigated by using the Chebyshev collocation method to solve the full system of linear stability equations. Seven dimensionless parameters, i.e. the Kapitza, Galileo, Prandtl, Lewis, Soret, Marangoni, and Biot numbers (Ka, G, Pr, L, ) are used to control the flow system. In the case of pure spanwise perturbations, thermocapillary S- and P-modes are obtained. It is found that the most dangerous modes are stationary for positive Soret numbers (0), and oscillatory for =0 remains so for >0 and even merges with the long-wave S-mode. In the case of streamwise perturbations, a long-wave surface mode (H-mode) is also obtained. From the neutral curves, it is found that larger Soret numbers make the film flow more unstable as do larger Marangoni numbers. The increase of these parameters leads to the merging of the long-wave H- and S-modes, making the situation long-wave unstable for any Galileo number. It also strongly influences the short-wave P-mode which becomes the most critical for large enough Galileo numbers. Furthermore, from the boundary curves between absolute and convective instabilities (AI/CI) calculated for both the long-wave instability (S- and H-modes) and the short-wave instability (P-mode), it is shown that for small Galileo numbers the AI/CI boundary curves are determined by the long-wave instability, while for large Galileo numbers they are determined by the short-wave instability.

  20. Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge

    NASA Astrophysics Data System (ADS)

    Zavadsky, A.; Shemer, L.

    2017-05-01

    Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.

  1. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emadi, E.; Zahed, H.

    2016-08-15

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantummore » diffraction parameter H can lead to the creation of compressive solitary waves.« less

  2. Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Müller, Björn

    2018-01-01

    We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.

  3. Biological effects of two successive shock waves focused on liver tissues and melanoma cells.

    PubMed

    Benes, J; Sunka, P; Králová, J; Kaspar, J; Poucková, P

    2007-01-01

    A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes.

  4. Instabilities in rapid directional solidification under weak flow

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Davis, Stephen H.; Voorhees, Peter W.

    2017-12-01

    We examine a rapidly solidifying binary alloy under directional solidification with nonequilibrium interfacial thermodynamics viz. the segregation coefficient and the liquidus slope are speed dependent and attachment-kinetic effects are present. Both of these effects alone give rise to (steady) cellular instabilities, mode S , and a pulsatile instability, mode P . We examine how weak imposed boundary-layer flow of magnitude |V | affects these instabilities. For small |V | , mode S becomes a traveling and the flow stabilizes (destabilizes) the interface for small (large) surface energies. For small |V | , mode P has a critical wave number that shifts from zero to nonzero giving spatial structure. The flow promotes this instability and the frequencies of the complex conjugate pairs each increase (decrease) with flow for large (small) wave numbers. These results are obtained by regular perturbation theory in powers of V far from the point where the neutral curves cross, but requires a modified expansion in powers of V1 /3 near the crossing. A uniform composite expansion is then obtained valid for all small |V | .

  5. Reynolds number of transition and self-organized criticality of strong turbulence.

    PubMed

    Yakhot, Victor

    2014-10-01

    A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k>Λf, where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf

  6. Reynolds number of transition and self-organized criticality of strong turbulence

    NASA Astrophysics Data System (ADS)

    Yakhot, Victor

    2014-10-01

    A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k >Λf , where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf

  7. Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves

    NASA Technical Reports Server (NTRS)

    Bodonyi, R. J.; Duck, P. W.

    1992-01-01

    A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.

  8. Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves

    NASA Technical Reports Server (NTRS)

    Bodonyi, R. J.; Duck, P. W.

    1990-01-01

    A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.

  9. Small-scale seismic inversion using surface waves extracted from noise cross correlation.

    PubMed

    Gouédard, Pierre; Roux, Philippe; Campillo, Michel

    2008-03-01

    Green's functions can be retrieved between receivers from the correlation of ambient seismic noise or with an appropriate set of randomly distributed sources. This principle is demonstrated in small-scale geophysics using noise sources generated by human steps during a 10-min walk in the alignment of a 14-m-long accelerometer line array. The time-domain correlation of the records yields two surface wave modes extracted from the Green's function between each pair of accelerometers. A frequency-wave-number Fourier analysis yields each mode contribution and their dispersion curve. These dispersion curves are then inverted to provide the one-dimensional shear velocity of the near surface.

  10. Effects of refraction by means flow velocity gradients on the standing wave pattern in three-dimensional, rectangular waveguides

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.

    1979-01-01

    The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.

  11. An asymptotic model in acoustics: acoustic drift equations.

    PubMed

    Vladimirov, Vladimir A; Ilin, Konstantin

    2013-11-01

    A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.

  12. Experimental wave attenuation study over flexible plants on a submerged slope

    NASA Astrophysics Data System (ADS)

    Yin, Zegao; Yang, Xiaoyu; Xu, Yuanzhao; Ding, Meiling; Lu, Haixiang

    2017-12-01

    Using plants is a kind of environmentally-friendly coastal protection to attenuate wave energy. In this paper, a set of experiments were conducted to investigate the wave attenuation performance using flexible grasses on a submerged slope, and the wave attenuation coefficient for these experiments was calculated for different still water depths, slope and grass configurations. It was found that the slope plays a significant role in wave attenuation. The wave attenuation coefficient increases with increasing relative row number and relative density. For a small relative row number, the two configurations from the slope top to its toe and from the slope toe to its top performed equally to a large extent. For a medium relative row number, the configuration from the slope toe to its top performed more poorly than that from the slope top to its toe; however, it performed better than that from the slope top to its toe for a high relative row number. With a single row of grasses close to the slope top from the slope toe, the wave attenuation coefficient shows double peaks. With increasing grass rows or still water depth, the grass location corresponding to the maximum wave attenuation coefficient is close to the slope top. The dimensional analysis and the least square method were used to derive an empirical equation of the wave attenuation coefficient considering the effect of relative density, the slope, the relative row number and the relative location of the middle row, and the equation was validated to experimental data.

  13. Model for small arms fire muzzle blast wave propagation in air

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  14. On large-scale dynamo action at high magnetic Reynolds number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattaneo, F.; Tobias, S. M., E-mail: smt@maths.leeds.ac.uk

    2014-07-01

    We consider the generation of magnetic activity—dynamo waves—in the astrophysical limit of very large magnetic Reynolds number. We consider kinematic dynamo action for a system consisting of helical flow and large-scale shear. We demonstrate that large-scale dynamo waves persist at high Rm if the helical flow is characterized by a narrow band of spatial scales and the shear is large enough. However, for a wide band of scales the dynamo becomes small scale with a further increase of Rm, with dynamo waves re-emerging only if the shear is then increased. We show that at high Rm, the key effect ofmore » the shear is to suppress small-scale dynamo action, allowing large-scale dynamo action to be observed. We conjecture that this supports a general 'suppression principle'—large-scale dynamo action can only be observed if there is a mechanism that suppresses the small-scale fluctuations.« less

  15. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    DTIC Science & Technology

    2015-09-30

    seas within and in the waters adjoining MIZs, using a conservative, multiple wave scattering approach in a medium with random geometrical properties...relating to wave-ice interactions have been collected since the MIZEX campaign of the 1980s, aside from a small number of ad hoc field experiments. This...from the better technology and analysis tools now available, including those related to the field experiments supported by an intensive remote sensing

  16. Improved microseismic event locations through large-N arrays and wave-equation imaging and inversion

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2016-12-01

    The recent increased focus on small-scale seismicity, Mw < 4 has come about primarily for two reasons. First, there is an increase in induced seismicity related to injection operations primarily for wastewater disposal and hydraulic fracturing for oil and gas recovery and for geothermal energy production. While the seismicity associated with injection is sometimes felt, it is more often weak. Some weak events are detected on current sparse arrays; however, accurate location of the events often requires a larger number of (multi-component) sensors. This leads to the second reason for an increased focus on small magnitude seismicity: a greater number of seismometers are being deployed in large N-arrays. The greater number of sensors decreases the detection threshold and therefore significantly increases the number of weak events found. Overall, these two factors bring new challenges and opportunities. Many standard seismological location and inversion techniques are geared toward large, easily identifiable events recorded on a sparse number of stations. However, with large-N arrays we can detect small events by utilizing multi-trace processing techniques, and increased processing power equips us with tools that employ more complete physics for simultaneously locating events and inverting for P- and S-wave velocity structure. We present a method that uses large-N arrays and wave-equation-based imaging and inversion to jointly locate earthquakes and estimate the elastic velocities of the earth. The technique requires no picking and is thus suitable for weak events. We validate the methodology through synthetic and field data examples.

  17. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.

    PubMed

    Zhang, Chao; Chen, Dong; Jiang, Xuefeng

    2017-11-13

    An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.

  18. Non-axisymmetric α2Ω-dynamo waves in thin stellar shells

    NASA Astrophysics Data System (ADS)

    Bassom, Andrew P.; Kuzanyan, Kirill M.; Sokoloff, Dmitry; Soward, Andrew M.

    2005-04-01

    Linear α2Ω-dynamo waves are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified one-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo waves in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85-133) considered the modulation of dynamo waves, linked to a latitudinal-dependent local α-effect and radial gradient of the zonal shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers Rαf(θ) and RΩg(θ). The modulated Parker wave, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent zonal flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo waves with azimuthal wave number m. We find that the critical dynamo number Dc = RαRΩ is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα ≠ 0 there may exist a band of wave numbers 0 < m < m† for which the non-axisymmetric modes have a smaller Dc than in the axisymmetric case. Here m† is regarded as a continuous function of Rα with the property m†→0 as Rα→0 and the band is only non-empty when m† >1, which happens for sufficiently large Rα. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker wave of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω*(θp). Since the critical dynamo number Dc = RαRΩ is O (1) for small Rα, the condition m† > 1 for non-axisymmetric mode preference imposes an upper limit on the size of |dΩ*/dθ|.

  19. Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2016-10-01

    We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV Δω /2. In contrast, at higher temperatures, the mz = 2 wave is more unstable. The instability threshold is reduced from the cold fluid prediction as the plasma temperature is increased, which is in qualitative agreement with Vlasov simulations, but is not yet understood theoretically. Supported by DOE/HEDLP Grant DE-SC0008693 and DOE Fusion Energy Science Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education.

  20. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-15

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equationmore » has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.« less

  1. Ion-impact-induced multifragmentation of liquid droplets★

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Verkhovtsev, Alexey; Solov'yov, Andrey V.

    2017-11-01

    An instability of a liquid droplet traversed by an energetic ion is explored theoretically. This instability is brought about by the predicted shock wave induced by the ion. An observation of multifragmentation of small droplets traversed by ions with high linear energy transfer is suggested to demonstrate the existence of shock waves. A number of effects are analysed in effort to find the conditions for such an experiment to be signifying. The presence of shock waves crucially affects the scenario of radiation damage with ions since the shock waves significantly contribute to the thermomechanical damage of biomolecules as well as the transport of reactive species. While the scenario has been upheld by analyses of biological experiments, the shock waves have not yet been observed directly, regardless of a number of ideas of experiments to detect them were exchanged at conferences. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  2. Low-Frequency Waves in Cold Three-Component Plasmas

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong

    2016-09-01

    The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS

  3. Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases

    NASA Astrophysics Data System (ADS)

    Morifuji, Masato

    2018-01-01

    We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.

  4. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Betti, R.; Gopalaswamy, V.

    Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily destabilized in 3D than in 2D. In conclusion, it is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble densitymore » increases with the wave number and small scale bubbles carry a larger mass flux of mixed material.« less

  5. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers

    DOE PAGES

    Zhang, H.; Betti, R.; Gopalaswamy, V.; ...

    2018-01-16

    Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily destabilized in 3D than in 2D. In conclusion, it is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble densitymore » increases with the wave number and small scale bubbles carry a larger mass flux of mixed material.« less

  6. A Semi-implicit Method for Resolution of Acoustic Waves in Low Mach Number Flows

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Pierce, Charles D.; Moin, Parviz

    2002-09-01

    A semi-implicit numerical method for time accurate simulation of compressible flow is presented. By extending the low Mach number pressure correction method, a Helmholtz equation for pressure is obtained in the case of compressible flow. The method avoids the acoustic CFL limitation, allowing a time step restricted only by the convective velocity, resulting in significant efficiency gains. Use of a discretization that is centered in both time and space results in zero artificial damping of acoustic waves. The method is attractive for problems in which Mach numbers are low, and the acoustic waves of most interest are those having low frequency, such as acoustic combustion instabilities. Both of these characteristics suggest the use of time steps larger than those allowable by an acoustic CFL limitation. In some cases it may be desirable to include a small amount of numerical dissipation to eliminate oscillations due to small-wavelength, high-frequency, acoustic modes, which are not of interest; therefore, a provision for doing this in a controlled manner is included in the method. Results of the method for several model problems are presented, and the performance of the method in a large eddy simulation is examined.

  7. The Role of Instability Waves in Predicting Jet Noise

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Leib, S. J.

    2004-01-01

    There has been an ongoing debate about the role of linear instability waves in the prediction of jet noise. Parallel mean flow models, such as the one proposed by Lilley, usually neglect these waves because they cause the solution to become infinite. The resulting solution is then non-causal and can, therefore, be quite different from the true causal solution for the chaotic flows being considered here. The present paper solves the relevant acoustic equations for a non-parallel mean flow by using a vector Green s function approach and assuming the mean flow to be weakly non-parallel, i.e., assuming the spread rate to be small. It demonstrates that linear instability waves must be accounted for in order to construct a proper causal solution to the jet noise problem. . Recent experimental results (e.g., see Tam, Golebiowski, and Seiner,1996) show that the small angle spectra radiated by supersonic jets are quite different from those radiated at larger angles (say, at 90deg) and even exhibit dissimilar frequency scalings (i.e., they scale with Helmholtz number as opposed to Strouhal number). The present solution is (among other things )able to explain this rather puzzling experimental result.

  8. Perturbations of the Richardson number field by gravity waves

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Sharman, R. D.

    1985-01-01

    An analytic solution is presented for a stratified fluid of arbitrary constant Richardson number. By computer aided analysis the perturbation fields, including that of the Richardson number can be calculated. The results of the linear analytic model were compared with nonlinear simulations, leading to the following conclusions: (1) the perturbations in the Richardson number field, when small, are produced primarily by the perturbations of the shear; (2) perturbations of in the Richardson number field, even when small, are not symmetric, the increase being significantly larger than the decrease (the linear analytic solution and the nonlinear simulations both confirm this result); (3) as the perturbations grow, this asymmetry increases, but more so in the nonlinear simulations than in the linear analysis; (4) for large perturbations of the shear flow, the static stability, as represented by N2, is the dominating mechanism, becoming zero or negative, and producing convective overturning; and (5) the convectional measure of linearity in lee wave theory, NH/U, is no longer the critical parameter (it is suggested that (H/u sub 0) (du sub 0/dz) takes on this role in a shearing flow).

  9. Numerical simulation of the transonic flow past the blunted wedge in the diverging channel

    NASA Astrophysics Data System (ADS)

    Ryabinin, Anatoly

    2018-05-01

    Positions of shock waves in the 2D channel with a blunted wedge are studied numerically. Solutions of the Euler equations are obtained with finite-volume solver SU2 for 15 variants of channel geometry. Numerical simulations reveal a considerable hysteresis in the shock wave position versus the supersonic Mach number given at the inlet. In the certain range of inlet Mach number, there are asymmetrical solutions of the equations. Small change in the geometry of the channel leads to shift of boundaries of the hysteresis range.

  10. Statistical properties of nonlinear one-dimensional wave fields

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2005-06-01

    A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  11. Oscillation of satellite droplets in an Oldroyd-B viscoelastic liquid jet

    NASA Astrophysics Data System (ADS)

    Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen

    2017-01-01

    A one-dimensional numerical simulation is carried out to study the oscillation characteristics of satellite droplets in the beads-on-a-string structure of an Oldroyd-B viscoelastic liquid jet. The oscillation of satellite droplets is compared with the linear oscillation of a single viscoelastic droplet. It is found that, contrary to the predictions of linear theory, the period of oscillation of satellite droplets decreases with time, despite the increase in droplet volume. The mechanism may lie in the existence of the filament, which exerts an extra resistance on droplets. On the other hand, the oscillation of droplets does not influence very much the thinning of the filament. The influence of the axial wave number, viscosity, and elasticity on the oscillation of satellite droplets is examined. Increasing the wave number may result in the decrease in the period and the increase in the decay rate of oscillation, while increasing viscosity may lead to the increase in both the period and the decay rate of oscillation. Elasticity is shown to suppress the oscillation at large wave numbers, but its influence is limited at small wave numbers.

  12. A multiple scattering theory for EM wave propagation in a dense random medium

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Wong, K. W.

    1985-01-01

    For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.

  13. Diffusion approximation with polarization and resonance effects for the modelling of seismic waves in strongly scattering small-scale media

    NASA Astrophysics Data System (ADS)

    Margerin, Ludovic

    2013-01-01

    This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.

  14. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for the STS, and from 8.3 to 25 Mt yield for Novaya Zemlya Test Site region. The peculiarities of the wave pattern and spectral content of the acoustic wave records, and relation regularities of acoustic wave amplitude and periods with explosion yield and distance were investigated. The created database can be applied in different monitoring tasks, such as infrasound stations calibration, discrimination of nuclear explosions, precision of nuclear explosions parameters, determination of the explosion yield etc.

  15. Numerical modeling of planetary-scale waves on Jupiter

    NASA Astrophysics Data System (ADS)

    Cosentino, Richard; Morales-Juberias, Raul; Simon, Amy

    2014-11-01

    The atmosphere of Jupiter has multiple alternating east-wind wind jets with different cloud morphologies some of which can be explained by the presence of atmospheric waves. One jet feature observed by Cassini and HST at 30N, called the Jovian Ribbon for its similarity to Saturn's Ribbon, displays chaotic cloud morphology caused by multiple wave components with dominating planetary scale wave-numbers ranging from 13 to 30. Both the cloud morphology and the dominant wave numbers observed change as a function of time and correlate to changes in the jet's speed. The average speed of the westward jet where this Jovian Ribbon is found is small compared to other notable jets that display wave behavior, namely the high velocity eastward jets at 7N (hot spots) and 7S (chevrons). We present the results of numerical simulations that show how attributes like jet speed, location, vertical shear and other background properties of the atmosphere (e.g. static stability) contribute to the development and evolution of wave structures in jets similar to those observed. Additionally, we explore the effects of local convective events and other atmospheric disturbances such as spots, on the morphology of these jets and waves. This work was supported by NASA PATM grant number NNX14AH47G. Computing resources for this research were provided by NMT and Yellowstone at CISL.

  16. A numerical study of the interaction between unsteady free-stream disturbances and localized variations in surface geometry

    NASA Technical Reports Server (NTRS)

    Bodonyi, R. J.; Tadjfar, M.; Welch, W. J. C.; Duck, P. W.

    1989-01-01

    A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite-difference and spectral methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T-S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves.

  17. Numerical Study of Mixed Convective Peristaltic Flow through Vertical Tube with Heat Generation for Moderate Reynolds and Wave Numbers

    NASA Astrophysics Data System (ADS)

    Javed, Tariq; Ahmed, B.; Sajid, M.

    2018-04-01

    The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.

  18. A wide angle and high Mach number parabolic equation.

    PubMed

    Lingevitch, Joseph F; Collins, Michael D; Dacol, Dalcio K; Drob, Douglas P; Rogers, Joel C W; Siegmann, William L

    2002-02-01

    Various parabolic equations for advected acoustic waves have been derived based on the assumptions of small Mach number and narrow propagation angles, which are of limited validity in atmospheric acoustics. A parabolic equation solution that does not require these assumptions is derived in the weak shear limit, which is appropriate for frequencies of about 0.1 Hz and above for atmospheric acoustics. When the variables are scaled appropriately in this limit, terms involving derivatives of the sound speed, density, and wind speed are small but can have significant cumulative effects. To obtain a solution that is valid at large distances from the source, it is necessary to account for linear terms in the first derivatives of these quantities [A. D. Pierce, J. Acoust. Soc. Am. 87, 2292-2299 (1990)]. This approach is used to obtain a scalar wave equation for advected waves. Since this equation contains two depth operators that do not commute with each other, it does not readily factor into outgoing and incoming solutions. An approximate factorization is obtained that is correct to first order in the commutator of the depth operators.

  19. Effect of turbulence on the dissipation of the space-charge wave in a bounded turbulent plasma column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less

  20. Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer

    NASA Technical Reports Server (NTRS)

    Messiter, A. F.

    1995-01-01

    For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.

  1. Increased smoker recognition of a national quitline number following introduction of improved pack warnings: ITC Project New Zealand.

    PubMed

    Wilson, Nick; Weerasekera, Deepa; Hoek, Janet; Li, Judy; Edwards, Richard

    2010-10-01

    We examined how recognition of a national quitline number changed after new health warnings were required on tobacco packaging in New Zealand (NZ). The NZ arm of the International Tobacco Control Policy Evaluation Survey (ITC Project) is a cohort study that surveyed smokers in two waves (N = 1,376 and N = 923). Wave 1 respondents were exposed to text-based warnings with a quitline number but no wording to indicate that it was the "Quitline" number. Wave 2 respondents were exposed to pictorial health warnings (PHWs) that included the word "Quitline" beside the number as well as a cessation message featuring the Quitline number and repeating the word "Quitline." The introduction of the new PHWs was associated with a 24 absolute percentage point between-wave increase in Quitline number recognition (from 37% to 61%, p < .001). Recognition increased from a minority of respondents to a majority for all age groups, genders, deprivation levels (using small area and individual measures), financial stress (two measures), and ethnic groups (e.g., the level for Maori in Wave 2: 62%, Pacific peoples: 61%, and European/other: 62%). There was also an equalizing effect on previous differences in Quitline recognition by gender, ethnic group, and for both deprivation measures. This study provides some evidence for the value of clearly identifying quitline numbers on tobacco packaging as part of PHWs. While this finding is consistent with previously published studies, the finding that this intervention appeared to benefit all sociodemographic groups is novel.

  2. On the Propagation of Small Perturbations in Two Simple Aeroelastic Systems

    NASA Technical Reports Server (NTRS)

    Iollo, Angelo; Salas, Manuel D.

    1998-01-01

    In this paper we investigate the wave propagation patterns for two simple flow-structure problems. We focus on the study of the propagation speeds of the waves in the fluid and in the structure, as the rigidity of the structure and the Mach number of the undisturbed flow are changing. Some implications concerning the sound emission by inhomogeneities eventually present in the structure are discussed.

  3. Marangoni effect on small-amplitude capillary waves in viscous fluids

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    We derive a general integro-differential equation for the transient behavior of small-amplitude capillary waves on the planar surface of a viscous fluid in the presence of the Marangoni effect. The equation is solved for an insoluble surfactant solution in concentration below the critical micelle concentration undergoing convective-diffusive surface transport. The special case of a diffusion-driven surfactant is considered near the the critical damping wavelength. The Marangoni effect is shown to contribute to the overall damping mechanism, and a first-order term correction to the critical wavelength with respect to the surfactant concentration difference and the Schmidt number is proposed.

  4. On Pulsating and Cellular Forms of Hydrodynamic Instability in Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1998-01-01

    An extended Landau-Levich model of liquid-propellant combustion, one that allows for a local dependence of the burning rate on the (gas) pressure at the liquid-gas interface, exhibits not only the classical hydrodynamic cellular instability attributed to Landau but also a pulsating hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the gas-to-liquid density ratio p, analytical formulas for both neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of p in each of three distinguished wave-number regimes. In particular, composite analytical expressions are derived for the neutral stability boundaries A(sub p)(k), where A, is the pressure sensitivity of the burning rate and k is the wave number of the disturbance. For the cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wave numbers for negative values of A(sub p), which is characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension effects but is more sensitive to the effects of liquid viscosity because, for typical nonzero values of the latter, the pulsating boundary decreases to larger negative values of A(sub p) as k increases through O(l) values. Thus, liquid-propellant combustion is predicted to be stable (that is, steady and planar) only for a range of negative pressure sensitivities that lie below the cellular boundary that exists for sufficiently small negative values of A(sub p) and above the pulsating boundary that exists for larger negative values of this parameter.

  5. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Huang, Long; Wang, Chun-Ni; Pu, Zhong-Sheng

    2013-02-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio xNa (and xK), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio xNa (and xK) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered.

  6. A Note on the Wave Action Density of a Viscous Instability Mode on a Laminar Free-shear Flow

    NASA Technical Reports Server (NTRS)

    Balsa, Thomas F.

    1994-01-01

    Using the assumptions of an incompressible and viscous flow at large Reynolds number, we derive the evolution equation for the wave action density of an instability wave traveling on top of a laminar free-shear flow. The instability is considered to be viscous; the purpose of the present work is to include the cumulative effect of the (locally) small viscous correction to the wave, over length and time scales on which the underlying base flow appears inhomogeneous owing to its viscous diffusion. As such, we generalize our previous work for inviscid waves. This generalization appears as an additional (but usually non-negligible) term in the equation for the wave action. The basic structure of the equation remains unaltered.

  7. An investigation of small scales of turbulence in a boundary layer at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Wallace, James M.; Ong, L.; Balint, J.-L.

    1993-01-01

    The assumption that turbulence at large wave-numbers is isotropic and has universal spectral characteristics which are independent of the flow geometry, at least for high Reynolds numbers, has been a cornerstone of closure theories as well as of the most promising recent development in the effort to predict turbulent flows, viz. large eddy simulations. This hypothesis was first advanced by Kolmogorov based on the supposition that turbulent kinetic energy cascades down the scales (up the wave-numbers) of turbulence and that, if the number of these cascade steps is sufficiently large (i.e. the wave-number range is large), then the effects of anisotropies at the large scales are lost in the energy transfer process. Experimental attempts were repeatedly made to verify this fundamental assumption. However, Van Atta has recently suggested that an examination of the scalar and velocity gradient fields is necessary to definitively verify this hypothesis or prove it to be unfounded. Of course, this must be carried out in a flow with a sufficiently high Reynolds number to provide the necessary separation of scales in order unambiguously to provide the possibility of local isotropy at large wave-numbers. An opportunity to use our 12-sensor hot-wire probe to address this issue directly was made available at the 80'x120' wind tunnel at the NASA Ames Research Center, which is normally used for full-scale aircraft tests. An initial report on this high Reynolds number experiment and progress toward its evaluation is presented.

  8. Theory of nonreciprocal spin-wave excitations in spin Hall oscillators with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Zivieri, R.; Giordano, A.; Verba, R.; Azzerboni, B.; Carpentieri, M.; Slavin, A. N.; Finocchio, G.

    2018-04-01

    A two-dimensional analytical model for the description of the excitation of nonreciprocal spin waves by spin current in spin Hall oscillators in the presence of the interfacial Dzyaloshinskii-Moriya interaction (i -DMI) is developed. The theory allows one to calculate the threshold current for the excitation of spin waves, as well as the frequencies and spatial profiles of the excited spin-wave modes. It is found that the frequency of the excited spin waves exhibits a quadratic redshift with the i -DMI strength. At the same time, in the range of small and moderate values of the i -DMI constant, the averaged wave number of the excited spin waves is almost independent of the i -DMI, which results in a rather weak dependence on the i -DMI of the threshold current of the spin-wave excitation. The obtained analytical results are confirmed by the results of micromagnetic simulations.

  9. Aspects of wave turbulence in preheating

    NASA Astrophysics Data System (ADS)

    Crespo, José A.; de Oliveira, H. P.

    2014-06-01

    In this work we have studied the nonlinear preheating dynamics of several inflationary models. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since the matter contents are fields instead of usual fluids. Turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the scalar fields. We present relevant aspects of wave turbulence such as the Kolmogorov-Zakharov spectrum in frequency and wave number that indicates the energy transfer through scales. From the power spectrum of the matter energy density we were able to estimate the temperature of the thermalized system.

  10. Steady-state turbulence with a narrow inertial range

    NASA Technical Reports Server (NTRS)

    Weatherall, J. C.; Nicholson, D. R.; Goldman, M. V.

    1983-01-01

    Coupled two-dimensional wave equations are solved on a computer to model Langmuir wave turbulence excited by a weak electron beam. The model includes wave growth due to beam-plasma interaction, and dissipation by Landau damping. The inertial range is limited to a relatively small number of modes such as could occur when the ratio of masses between the negative and positive ions is larger than in a hydrogen plasma, or when there is damping in long wavelength Langmuir waves. A steady state is found consisting of quasistable, collapsed wave packets. The effects of different beam parameters and the assumed narrow inertial range are considered. The results may be relevant to plasma turbulence observed in connection with type III solar bursts.

  11. Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.

  12. Sound and fluctuating disturbance measurements in the settling chamber and test section of a small, Mach 5 wind tunnel

    NASA Technical Reports Server (NTRS)

    Anders, J. B.; Stainback, P. C.; Beckwith, I. E.; Keefe, L. R.

    1975-01-01

    Disturbance measurements were made using a hot-wire anemometer and piezoelectric pressure transducers in the settling chamber and free stream of a small Mach 5 wind tunnel. Results from the two instruments are compared and acoustical disturbances in the settling chamber are discussed. The source of the test-section noise is identified as nozzle-wall waviness at low Reynolds numbers and as eddy-Mach-wave radiation from the turbulent boundary layer on the nozzle wall at high Reynolds numbers.

  13. Development of a Detonation Diffuser

    DTIC Science & Technology

    2014-03-27

    detonation frequency is adjustable from 8 Hz to 40 Hz, and the ignition can be set to operate in “burst mode” firing for a predetermined number of cycles... resistance were tried, but the strain on the windows caused the coating to fracture. Without a scratch- resistant coating, the windows regularly suffered... abrasion from the Shock wave Strain waves 35 test articles. The heat from local explosions did burn away a small amount of the window surface

  14. Tracking kidney stones with sound during shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Kracht, Jonathan M.

    The prevalence of kidney stones has increased significantly over the past decades. One of the primary treatments for kidney stones is shock wave lithotripsy which focuses acoustic shock waves onto the stone in order to fragment it into pieces that are small enough to pass naturally. This typically requires a few thousand shock waves delivered at a rate of about 2 Hz. Although lithotripsy is the only non-invasive treatment option for kidney stories, both acute and chronic complications have been identified which could be reduced if fewer shock waves were used. One factor that could be used to reduce the number of shock waves is accounting for the motion of the stone which causes a portion of the delivered shock waves to miss the stone, yielding no therapeutic benefit. Therefore identifying when the stone is not in focus would allow tissue to be spared without affecting fragmentation. The goal of this thesis is to investigate acoustic methods to track the stone in real-time during lithotripsy in order to minimize poorly-targeted shock waves. A relatively small number of low frequency ultrasound transducers were used in pulse-echo mode and a novel optimization routine based on time-of-flight triangulation is used to determine stone location. It was shown that the accuracy of the localization may be estimated without knowing the true stone location. This method performed well in preliminary experiments but the inclusion of tissue-like aberrating layers reduced the accuracy of the localization. Therefore a hybrid imaging technique employing DORT (Decomposition of the Time Reversal Operator) and the MUSIC (Multiple Signal Classification) algorithm was developed. This method was able to localize kidney stories to within a few millimeters even in the presence of an aberrating layer. This would be sufficient accuracy for targeting lithotripter shock waves. The conclusion of this work is that tracking kidney stones with low frequency ultrasound should be effective clinically.

  15. Wave number determination of Pc 1-2 mantle waves considering He++ ions: A Cluster study

    NASA Astrophysics Data System (ADS)

    Grison, B.; Escoubet, C. P.; Santolík, O.; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.

    2014-09-01

    The present case study concerns narrowband electromagnetic emission detected in the distant cusp region simultaneously with upgoing plasma flows. The wave properties match the usual properties of the Pc 1-2 mantle waves: small angle between the wave vector and the magnetic field line, left-hand polarization, and propagation toward the ionosphere. We report here the first direct wave vector measurement of these waves (about 1.2 × 10- 2 rad/km) through multi spacecraft analysis using the three magnetic components and, at the same time, through single spacecraft analysis based on the refractive index analysis using the three magnetic components and two electric components. The refractive index analysis offers a simple way to estimate wave numbers in this frequency range. Numerical calculations are performed under the observed plasma conditions. The obtained results show that the ion distribution functions are unstable to ion cyclotron instability at the observed wave vector value, due to the large ion temperature anisotropy. We thus show that these electromagnetic ion cyclotron (EMIC) waves are amplified in the distant cusp region. The Poynting flux of the waves is counterstreaming with respect to the plasma flow. This sense of propagation is consistent with the time necessary to amplify the emissions to the observed level. We point out the role of the wave damping at the He++ gyrofrequency to explain that such waves cannot be observed from the ground at the cusp foot print location.

  16. Instabilities and subharmonic resonances of subsonic heated round jets, volume 2. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ng, Lian Lai

    1990-01-01

    When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.

  17. The soliton transform and a possible application to nonlinear Alfven waves in space

    NASA Technical Reports Server (NTRS)

    Hada, T.; Hamilton, R. L.; Kennel, C. F.

    1993-01-01

    The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.

  18. Shock conditions and shock wave structures in a steady flow in a dissipative fluid

    NASA Technical Reports Server (NTRS)

    Germain, P.; Guiraud, J. P.

    1983-01-01

    More precisely, calling xi the reciprocal of the Reynolds number based on the shock wave curvature radius, the xi terms of the first order are systematically taken into account. The most important result is a system of formulas giving a correction of order xi for the various RANKINE-HUGONIOT conditions. The suggested formulas may for instance have to be used instead of the conventional ones to evaluate the loss of the total pressure across the detached shock wave which is found at the nose of a very small probe in supersonic flow.

  19. Shocklike soliton because of an impinge of protons and electrons solar particles with Venus ionosphere

    NASA Astrophysics Data System (ADS)

    Moslem, W. M.; Rezk, S.; Abdelsalam, U. M.; El-Labany, S. K.

    2018-04-01

    This paper introduces an investigation of shocklike soliton or small amplitude Double Layers (DLs) in a collisionless plasma, consisting of positive and negative ions, nonthermal electrons, as well as solar wind streaming protons and electrons. Gardner equation is derived and its shocklike soliton solution is obtained. The model is employed to recognize a possible nonlinear wave at Venus ionosphere. The results indicate that the number densities and velocities of the streaming particles play crucial role to determine the polarity and characteristic features (amplitude and width) of the shocklike soliton waves. An electron streaming speed modifies a negative shocklike wave profile, while an ion streaming speed modulates a positive shocklike wave characteristic.

  20. Asymptotic boundary conditions for dissipative waves: General theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  1. Fluid dynamics of liquids on Titans surface

    NASA Astrophysics Data System (ADS)

    Ori, Gian Gabriele; Marinangeli, Lucia; Baliva, Antonio; Bressan, Mario; Strom, Robert G.

    1998-10-01

    On the surface of Titan liquids can be present in three types of environments : (i) oceans, (ii) seas and lakes, and (iii) fluvial channels. The liquid in these environments will be affected by several types of motion: progressive (tidal) waves, wind-generated waves and unidirectional currents. The physical parameters of the liquid on Titans surface can be reconstructed using the Peng-Robinson equation of state. The total energy of the waves, both tidal and wind, depends on the gravity and liquid density ; both values are lower on Titan than on Earth. Thus, the same total energy will produce larger waves on Titan. This is also valid also for the progressive waves, as it is confirmed by the physical relationship between horizontal velocity, wave amplitude, and depth of the liquid. Wind-driven waves also will tend to be larger, because the viscosity of the liquid (which is lower on Titan) controls the deformation of the liquid under shear stress. Wind-generated waves would be rather large, but the dimension of the liquid basin limits the size of the waves ; in small lakes or seas the wave power cannot reach large values. Unidirectional currents are also affected by the liquid properties. Both the relations from driving and resting forces and the Reynolds number suggests that the flows exhibit a large erosional capacity and that, theoretically, a true fluvial network could be formed. However, caution should be exercised, because the cohesion of the sedimentary interface can armour bottom and induce laterally extensive, unchanelled sheet flows with small erosional capacity.

  2. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke

    2016-11-01

    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makesmore » a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.« less

  3. A scaling law for the mixing efficiency in weakly rotating unforced stratified turbulence in the atmosphere and the oceans based on the slowing down of energy transfer to the small scales because of waves

    NASA Astrophysics Data System (ADS)

    Pouquet, A.; Marino, R.; Rosenberg, D. L.; Herbert, C.

    2017-12-01

    We present a simple model for the scaling properties of the flux Richardson number R_f (the ratio of buoyancy flux B to total momentum flux B/[B+ɛ_V]) in weakly rotating unforced stratified flows characterized by their Rossby, Froude and Reynolds numbers Ro, Fr and Re. The model is based on: (i) quasi-equipartition between kinetic and potential modes, because of gravity waves and statistical equilibria; (ii) sub-dominant vertical velocity compared to the rms value of the velocity, U, due to the dominance of two-dimensional modes and the incompressibility condition; and (iii) slowing-down and weakening of the energy transfer to small scales due to eddy-wave interactions in a weak-turbulence temporal framework where the transfer time τ_{transf} is lengthened by the inverse Froude number, namely τ_{transf}=τ_{NL}^2/τ_{w}, τ_{NL}=L/U and τ_{w}=1/N being respectively the eddy turn-over time and the wave (Brunt Vaissala) period, with L a charaacteristic scale. Three regimes in Fr, as for stratified flows, are observed using a large data base: dominant waves, eddy-wave interactions and strong turbulence. In terms of the turbulence intensity (or buoyancy Reynolds number) R_I=ɛ_V/[νN^2], with ν the viscosity and ɛ_V the kinetic energy dissipation rate, these regimes are delimited by R_I˜0.1 and R_I˜280. In the intermediate regime, the phenomenology predicts and the numerical data confirms that a linear growth in Fr is obtained for the effective kinetic energy transfer when compared to its dimensional evaluation U^3/L. Defining the mixing efficiency as Γ_f=R_f/[1-R_f], the model allows for the prediction of the scaling Γ_f˜R_I^{-1/2}, observed previously at high Froude number, but which we also find for the intermediate regime. Thus, Γ_f is not constant, contrary to the classical Osborn model, as also found in several studies without rotation. As turbulence strengthens, smaller buoyancy fluxes point to a decoupling of the velocity and temperature fluctuations, the latter becoming passive and independent of U, and one can recover the same R_I^{-1/2} scaling in the strong turbulence regime as well.

  4. The Temporal Configuration of Airline Networks

    NASA Technical Reports Server (NTRS)

    Burghouwt, Guillaume; deWit, Jaap

    2003-01-01

    The deregulation of US aviation in 1978 resulted in the reconfiguration of airline networks into hub-and-spoke systems, spatially concentrated around a small number of central airports or 'hubs' through which an airline operates a number of daily waves of flights. A hub-and-spoke network requires a concentration of traffic in both space and time. In contrast to the U.S. airlines, European airlines had entered the phase of spatial network concentration long before deregulation. Bilateral negotiation of traffic fights between governments forced European airlines to focus their networks spatially on small number of 'national' airports. In general, these star-shaped networks were not coordinated in time. Transfer opportunities at central airports were mostly created 'by accident'. With the deregulation of the EU air transport market from 1988 on, a second phase of airline network concentration started. European airlines concentrated their networks in time by adopting or intensifying wave-system structures in their flight schedules. Temporal concentration may increase the competitive position of the network in a deregulated market because of certain cost and demand advantages.

  5. Relativistic cosmic-ray spectra in the fully nonlinear theory of shock acceleration

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Eichler, D.

    1985-01-01

    The non-linear theory of shock acceleration was generalized to include wave dynamics. In the limit of rapid wave damping, it is found that a finite wave velocity tempers the acceleration of high Mach number shocks and limits the maximum compression ratio even when energy loss is important. For a given spectrum, the efficiency of relativistic particle production is essentially independent of v sub Ph. For the three families shown, the percentage of kinetic energy flux going into relativistic particles is (1) 72 percent, (2) 44 percent, and (3) 26 percent (this includes the energy loss at the upper energy cutoff). Even small v sub ph, typical of the HISM, produce quasi-universal spectra that depend only weakly on the acoustic Mach number. These spectra should be close enough to e(-2) to satisfy cosmic ray source requirements.

  6. Transport of inertial anisotropic particles under surface gravity waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas

    2016-11-01

    The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.

  7. s -wave scattering length of a Gaussian potential

    NASA Astrophysics Data System (ADS)

    Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim

    2018-04-01

    We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.

  8. Structural Health Monitoring of M1114 High Mobility Multipurpose Wheeled Vehicle Armor System

    DTIC Science & Technology

    2012-03-01

    compressional waves or compression waves (Russell, 1999). Pulse Echo Pulse echo method uses the transducer to perform both the sending and the...monolithic system of pure steel will not be sufficient because it would become too heavy and compromise its maneuverability and nimbleness. In order to...produce a limited number of M1114’s with hardened steel armor with bullet-resistant glass for the passenger cabinet against small arms fire. Even with its

  9. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    PubMed Central

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2014-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360

  10. Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu

    2011-10-01

    The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.

  11. Typology of nonlinear activity waves in a layered neural continuum.

    PubMed

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  12. A unified large/small-scale dynamo in helical turbulence

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel

    2016-09-01

    We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.

  13. Imaging across the interface of small-scale breaking waves

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra H.; Belden, Jesse L.

    2007-11-01

    Flow characteristics on both the air and water side of small scale spilling and plunging waves are investigated using fully time-resolved particle image velocimetry (PIV). PIV at 1000 frames per second (fps) is used to capture the flow field in both the air and water for waves generated by shoaling. Reynolds number of the waves is on the order of Re = 9x10^4 to 2x10^6, where Re = ρ√g 3̂μ, ρ is fluid density, μ is fluid dynamic viscosity, g is gravity, and λ is the characteristic wavelength of the breaking wave before breaking. Isopropyl alcohol is mixed with the distilled water in the tank to reduce surface tension and thus achieve plunging breakers on this scale. Flow in the water is seeded using conventional silver-coated hollow glass spheres, whereas the quiescent air side (i.e. no wind) is seeded using micro-air balloons with high stokes drag and thus long settling times. Imaging of both the air and water are performed simultaneously and advanced image processing is performed to determine the water surface location and to avoid surface tracking during PIV processing. Repeatable, coherent vortical structures are revealed on the air-side of the waves and are considered mechanisms for energy transfer across the interface.

  14. Reconstruction of the temperature field for inverse ultrasound hyperthermia calculations at a muscle/bone interface.

    PubMed

    Liauh, Chihng-Tsung; Shih, Tzu-Ching; Huang, Huang-Wen; Lin, Win-Li

    2004-02-01

    An inverse algorithm with Tikhonov regularization of order zero has been used to estimate the intensity ratios of the reflected longitudinal wave to the incident longitudinal wave and that of the refracted shear wave to the total transmitted wave into bone in calculating the absorbed power field and then to reconstruct the temperature distribution in muscle and bone regions based on a limited number of temperature measurements during simulated ultrasound hyperthermia. The effects of the number of temperature sensors are investigated, as is the amount of noise superimposed on the temperature measurements, and the effects of the optimal sensor location on the performance of the inverse algorithm. Results show that noisy input data degrades the performance of this inverse algorithm, especially when the number of temperature sensors is small. Results are also presented demonstrating an improvement in the accuracy of the temperature estimates by employing an optimal value of the regularization parameter. Based on the analysis of singular-value decomposition, the optimal sensor position in a case utilizing only one temperature sensor can be determined to make the inverse algorithm converge to the true solution.

  15. An analysis of short pulse and dual frequency radar techniques for measuring ocean wave spectra from satellites

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1980-01-01

    Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.

  16. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzit, Omar; Tribeche, Mouloud

    2015-10-15

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic onemore » (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.« less

  17. Modelling coupled turbulence - dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell.

    PubMed

    Chatelain, Mathieu; Guizien, Katell

    2010-03-01

    A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (

  18. Improved distorted wave theory with the localized virial conditions

    NASA Astrophysics Data System (ADS)

    Hahn, Y. K.; Zerrad, E.

    2009-12-01

    The distorted wave theory is operationally improved to treat the full collision amplitude, such that the corrections to the distorted wave Born amplitude can be systematically calculated. The localized virial conditions provide the tools necessary to test the quality of successive approximations at each stage and to optimize the solution. The details of the theoretical procedure are explained in concrete terms using a collisional ionization model and variational trial functions. For the first time, adjustable parameters associated with an approximate scattering solution can be fully determined by the theory. A small number of linear parameters are introduced to examine the convergence property and the effectiveness of the new approach.

  19. Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2X Quantum Computer.

    PubMed

    Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A

    2017-07-01

    The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.

  20. On the generation and evolution of internal gravity waves

    NASA Technical Reports Server (NTRS)

    Lansing, F. S.; Maxworthy, T.

    1984-01-01

    The tidal generation and evolution of internal gravity waves is investigated experimentally and theoretically using a two-dimensional two-layer model. Time-dependent flow is created by moving a profile of maximum submerged depth 7.7 cm through a total stroke of 29 cm in water above a freon-kerosene mixture in an 8.6-m-long 30-cm-deep 20-cm-wide transparent channel, and the deformation of the fluid interface is recorded photographically. A theoretical model of the interface as a set of discrete vortices is constructed numerically; the rigid structures are represented by a source distribution; governing equations in Lagrangian form are obtained; and two integrodifferential equations relating baroclinic vorticity generation and source-density generation are derived. The experimental and computed results are shown in photographs and graphs, respectively, and found to be in good agreement at small Froude numbers. The reasons for small discrepancies in the position of the maximum interface displacement at large Froude numbers are examined.

  1. Weibel instability for a streaming electron, counterstreaming e-e, and e-p plasmas with intrinsic temperature anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbanalilu, M.; Physics Department, Azarbaijan Shahid Madani University, Tabriz; Sadegzadeh, S.

    2014-05-15

    The existence of Weibel instability for a streaming electron, counterstreaming electron-electron (e-e), and electron-positron (e-p) plasmas with intrinsic temperature anisotropy is investigated. The temperature anisotropy is included in the directions perpendicular and parallel to the streaming direction. It is shown that the beam mean speed changes the instability mode, for a streaming electron beam, from the classic Weibel to the Weibel-like mode. The analytical and numerical solutions approved that Weibel-like modes are excited for both counterstreaming e-e and e-p plasmas. The growth rates of the instabilities in e-e and e-p plasmas are compared. The growth rate is larger for e-pmore » plasmas if the thermal anisotropy is small and the opposite is true for large thermal anisotropies. The analytical and numerical solutions are in good agreement only in the small parallel temperature and wave number limits, when the instability growth rate increases linearly with normalized wave number kc∕ω{sub p}.« less

  2. Remote recoil: a new wave mean interaction effect

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the atmosphere and may be important for the development of future gravity-wave parametrization schemes in numerical models of the global atmospheric circulation. At present, all such schemes neglect remote-recoil effects caused by horizontally inhomogeneous mean flows. Taking these effects into account should make the parametrization schemes significantly more accurate.

  3. Focusing of Shear Shock Waves

    NASA Astrophysics Data System (ADS)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  4. Influence of Mean-Density Gradient on Small-Scale Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2000-01-01

    A physics-based methodology is described to predict jet-mixing noise due to small-scale turbulence. Both self- and shear-noise source teens of Lilley's equation are modeled and the far-field aerodynamic noise is expressed as an integral over the jet volume of the source multiplied by an appropriate Green's function which accounts for source convection and mean-flow refraction. Our primary interest here is to include transverse gradients of the mean density in the source modeling. It is shown that, in addition to the usual quadrupole type sources which scale to the fourth-power of the acoustic wave number, additional dipole and monopole sources are present that scale to lower powers of wave number. Various two-point correlations are modeled and an approximate solution to noise spectra due to multipole sources of various orders is developed. Mean flow and turbulence information is provided through RANS-k(epsilon) solution. Numerical results are presented for a subsonic jet at a range of temperatures and Mach numbers. Predictions indicated a decrease in high frequency noise with added heat, while changes in the low frequency noise depend on jet velocity and observer angle.

  5. Nonlinear Excitation of the Ablative Rayleigh-Taylor Instability for All Wave Numbers

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Betti, R.; Gopalaswamy, V.; Aluie, H.; Yan, R.

    2017-10-01

    Small-scale modes of the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2-D and 3-D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations. Compared to 2-D, linearly stable ARTI modes are more easily destabilized in 3-D and the penetrating bubbles have a higher density because of enhanced vorticity. It is shown that for conditions found in laser fusion targets, short-wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material. This work was supported by the Office of Fusion Energy Sciences Nos. DE-FG02-04ER54789, DE-SC0014318, the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, the Ministerio de Ciencia e Innovacion of Spain (Grant No. ENE2011-28489), and the NANL LDRD program through Project Number 20150568ER.

  6. Inertia critical layers and their impacts on nongeostrophic baroclinic instability

    NASA Astrophysics Data System (ADS)

    Shen, Bo-Wen

    We investigate the effects of critical levels (CLs) on a baroclinic flow over mountains, nongeostrophic (NG) inertia critical layer instability, and NG baroclinic instability (BI) in a three-layer atmosphere with a small Richardson number (Ri) in the middle layer. We develop a numerical wave decomposition method in Chapter 2, which is found to be useful in determining the reflection coefficient (Ref) numerically when the flow system is too complicated to obtain Ref analytically. Effects of CLs on flow over mountains are studied both analytically and numerically in Chapter 3. We define the effective inertia critical level (ICL) as the height above which inertia-gravity waves attenuate significantly. Based on numerical simulations with a broad range of Rossby number (Ro) and Ri, four wave regimes are found: (a) Regime I: inertia- gravity waves. The flow behaves like unsheared inertia- gravity waves and the effective lower ICL plays a similar role as the classical critical level (CCL) does in a nonrotating flow. (b) Regime II: combined inertia-gravity waves and baroclinic lee waves. These waves behave like those in Regime I below the lower effective ICL, and like baroclinic lee waves near the CCL. (c) Regime III: combined evanescent and baroclinic lee waves. These waves still behave like baroclinic lee waves near the CCL, but are trapped near the surface. (d) Regime IV: transient waves. NG baroclinic instability exists, as evidenced by the positive domain-averaged north-south heat flux. Wave regime IV is further investigated in Chapter 5. We identify the NG baroclinic instability in Chapter 3 as an inertia critical layer (ICLY) instability. The role of the upper inertia critical level in this instability has been studied by choosing a periodic mountain. When only the CCL and upper ICL are present in the domain, the mesoscale ICLY instability tends to occur. For a periodic mountain ridge, the ICLY instability selects the mountain's tvavelength as its wavelength of maximum growth. For an isolated mountain ridge, the NG baroclinic lee wave is established in the beginning for flows with small Ri, which then develops its own upper ICL. The stability of Lindzen and Tung's (1976, hereafter LT76) type of three-layer nonrotating/rotating atmosphere is discussed in Chapter 6. We first investigate the transient dynamics of wave ducting by a numerical model. The adjustment time for waves to be ducted depends on the atmospheric structure and horizontal wavelength. Second, we study the effects of Coriolis force on LT76's wave ducting mechanism, and show that a wave with wavelength on the order of 100 km is hardly ducted. (Abstract shortened by UMI.)

  7. Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    1992-10-01

    The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.

  8. Transonic flow past a wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1952-01-01

    A theoretical study has been made of the aerodynamic characteristics at zero angle of attack of a thin, doubly symmetrical double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis utilizes the equations of the transonic small-disturbance theory and involves no assumptions beyond those implicit in this theory. The mixed flow about the front half of the profile is calculated by relaxation solution of boundary conditions along the shock polar and sonic line. The purely subsonic flow about the rear of the profile is found by means of the method of characteristics specialized to the transonic small-disturbance theory. Complete calculations were made for four values of the transonic similarity parameter. These were found sufficient to bridge the gap between the previous results of Guderley and Yoshihara at a Mach number of 1 and the results which are readily obtained when the bow wave is attached and the flow is completely supersonic.

  9. [Study on predicting sugar content and valid acidity of apples by near infrared diffuse reflectance technique].

    PubMed

    Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping

    2005-11-01

    The nondestructive method for quantifying sugar content (SC) and available acid (VA) of intact apples using diffuse near infrared reflectance and optical fiber sensing techniques were explored in the present research. The standard sample sets and prediction models were established by partial least squares analysis (PLS). A total of 120 Shandong Fuji apples were tested in the wave number of 12,500 - 4000 cm(-1) using Fourier transform near infrared spectroscopy. The results of the research indicated that the nondestructive quantification of SC and VA, gave a high correlation coefficient 0.970 and 0.906, a low root mean square error of prediction (RMSEP) 0.272 and 0.056 2, a low root mean square error of calibration (RMSEC) 0.261 and 0.0677, and a small difference between RMSEP and RMSEC 0.011 a nd 0.0115. It was suggested that the diffuse nearinfrared reflectance technique be feasible for nondestructive determination of apple sugar content in the wave number range of 10,341 - 5461 cm(-1) and for available acid in the wave number range of 10,341 - 3818 cm(-1).

  10. The Burden of Repeated Mood Episodes in Bipolar I Disorder: Results From the National Epidemiological Survey on Alcohol and Related Conditions.

    PubMed

    Peters, Amy T; West, Amy E; Eisner, Lori; Baek, Jihyun; Deckersbach, Thilo

    2016-02-01

    The aim of this study was to examine the association between previous mood episodes and clinical course/functioning in a community sample (National Epidemiological Survey on Alcohol and Related Conditions [NESARC]). Subjects (n = 909) met Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, criteria for bipolar I disorder and provided data on number of previous episode recurrences. Number of previous mood episodes was used to predict outcomes at wave 1 and wave 2 of the NESARC. Previous mood episodes accounted for small but unique variance in outcomes. Recurrence was associated with poorer functioning, psychiatric and medical comorbidity, and increased odds of suicidality, disability, unemployment, and hospitalization at wave 1. Recurrences were associated with greater risk for new onset suicidality, psychiatric comorbidity, disability, unemployment, and poor functioning by wave 2. The course of bipolar disorder does worsen with progressive mood episodes but is attenuated in community, relative to clinical samples. Interventions to prevent future relapse may be particularly important to implement early in the course of illness.

  11. Nonlinear evolution of the first mode supersonic oblique waves in compressible boundary layers. Part 1: Heated/cooled walls

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1993-01-01

    The nonlinear stability of an oblique mode propagating in a two-dimensional compressible boundary layer is considered under the long wave-length approximation. The growth rate of the wave is assumed to be small so that the concept of unsteady nonlinear critical layers can be used. It is shown that the spatial/temporal evolution of the mode is governed by a pair of coupled unsteady nonlinear equations for the disturbance vorticity and density. Expressions for the linear growth rate show clearly the effects of wall heating and cooling and in particular how heating destabilizes the boundary layer for these long wavelength inviscid modes at O(1) Mach numbers. A generalized expression for the linear growth rate is obtained and is shown to compare very well for a range of frequencies and wave-angles at moderate Mach numbers with full numerical solutions of the linear stability problem. The numerical solution of the nonlinear unsteady critical layer problem using a novel method based on Fourier decomposition and Chebychev collocation is discussed and some results are presented.

  12. Thermal noise from optical coatings in gravitational wave detectors.

    PubMed

    Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D

    2006-03-01

    Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.

  13. Scattering of matter waves in spatially inhomogeneous environments

    DOE PAGES

    Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; ...

    2015-03-30

    In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numericallymore » and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed.« less

  14. A space-time discretization procedure for wave propagation problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1989-01-01

    Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.

  15. Semiclassical approach to atomic decoherence by gravitational waves

    NASA Astrophysics Data System (ADS)

    Quiñones, D. A.; Varcoe, B. T. H.

    2018-01-01

    A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.

  16. The strong nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flow

    NASA Technical Reports Server (NTRS)

    Bennett, J.; Hall, P.; Smith, F. T.

    1988-01-01

    Viscous fluid flows with curved streamlines can support both centrifugal and viscous traveling wave instabilities. Here the interaction of these instabilities in the context of the fully developed flow in a curved channel is discussed. The viscous (Tollmein-Schlichting) instability is described asymptotically at high Reynolds numbers and it is found that it can induce a Taylor-Goertler flow even at extremely small amplitudes. In this interaction, the Tollmein-Schlichting wave can drive a vortex state with wavelength either comparable with the channel width or the wavelength of lower branch viscous modes. The nonlinear equations which describe these interactions are solved for nonlinear equilibrium states.

  17. The structure of cosmic ray shocks

    NASA Astrophysics Data System (ADS)

    Axford, W. I.; Leer, E.; McKenzie, J. F.

    1982-07-01

    The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).

  18. Calculation of Linear Stability of a Stratified Gas-Liquid Flow in an Inclined Plane Channel

    NASA Astrophysics Data System (ADS)

    Trifonov, Yu. Ya.

    2018-01-01

    Linear stability of liquid and gas counterflows in an inclined channel is considered. The full Navier-Stokes equations for both phases are linearized, and the dynamics of periodic disturbances is determined by means of solving a spectral problem in wide ranges of Reynolds numbers for the liquid and vapor velocity. Two unstable modes are found in the examined ranges: surface mode (corresponding to the Kapitsa waves at small velocities of the gas) and shear mode in the gas phase. The wave length and the phase velocity of neutral disturbances of both modes are calculated as functions of the Reynolds number for the liquid. It is shown that these dependences for the surface mode are significantly affected by the gas velocity.

  19. Seismic waves in rocks with fluids and fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracturemore » parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.« less

  20. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk; Diamessis, Peter J.

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes driftmore » cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.« less

  1. T-SENSE a millimeter wave scanner for letters

    NASA Astrophysics Data System (ADS)

    Nüßler, Dirk; Heinen, Sven; Sprenger, Thorsten; Hübsch, Daniel; Würschmidt, Tobais

    2013-10-01

    Letter bombs are an increasing problem for public authorities, companies and public persons. Nowadays every big company uses in his headquarters inspection system to check the incoming correspondence. Generally x-ray systems are used to inspect complete baskets or bags of letters. This concept which works very fine in big company with a large postal center is not usable for small companies or private persons. For an office environment with a small number of letters x-ray systems are too expensive and oversized. X-ray systems visualize the wires and electric circuits inside the envelope. If a letter contains no metallic components but hazard materials or drugs, the dangerous content is invisible for the most low-cost x-ray systems. Millimeter wave imagining systems offer the potential to close this gap.

  2. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes are developed that provide low-loss, hermetic enclosure for enhanced monolithic microwave and millimeter-wave integrated circuits. These package schemes are based on a fused quartz substrate material offering improved RF performance through 44 GHz. The small size and weight of the packages make them useful for a number of applications, including phased array antenna systems. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices.

  3. A Consistent Wave Impact Load Model for Studying Structure, Equipment Ruggedness, Shock Isolation Seats, and Human Comfort in Small High Speed Craft

    DTIC Science & Technology

    2016-11-01

    acceleration at a cross-section was used as a measure of the wave impact load in units of g. Later developments included publication of the envelope...Republic, 4 – 7 October 2004. PICKFORD, E.V., MAHONE, R.R., WOLK, H.L. (1975). Slam/Shock Isolation Pedestal, United States Patent Number, 3,912,248, 14...accelerations. The rigid body peak acceleration is a measure of the impact load in units of g. In the following plots the data corresponds to head-sea

  4. Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.

  5. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2 H – NbSe 2

    DOE PAGES

    Arguello, C. J.; Rosenthal, E. P.; Andrade, E. F.; ...

    2015-01-21

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe₂ that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe₂. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiologymore » and the interactions. In 2H-NbSe₂, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.« less

  6. Wave field and evanescent waves produced by a sound beam incident on a simulated sediment

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.; Marston, Philip L.; Morse, Scot F.

    2005-09-01

    When a sound beam in water is incident on a sediment at a sufficiently small grazing angle, the resulting wave field in the sediment is complicated, even for the case of flat, fluidlike sediments. The wave field in the sediment for a sound beam from a simple, unshaded, finite transducer has an evanescent component and diffractive components. These components can interfere to produce a series of nulls outside the spatial region dominated by the evanescent wave field. This situation has been experimentally simulated by using a combination of previously described immiscible liquids [Osterhoudt et al., J. Acoust. Soc. Am. 117, 2483 (2005)]. The spacing between the observed nulls is similar to that seen in a wave-number-integration-based synthesis (using OASES) for a related problem. An analysis of a dephasing distance for evanescent and algebraically decaying components [T .J. Matula and P. L. Marston, J. Acoust. Soc. Am. 97, 1389-1398 (1995)] explains the spacing of the nulls. [Work supported by ONR.

  7. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2.

    PubMed

    Arguello, C J; Rosenthal, E P; Andrade, E F; Jin, W; Yeh, P C; Zaki, N; Jia, S; Cava, R J; Fernandes, R M; Millis, A J; Valla, T; Osgood, R M; Pasupathy, A N

    2015-01-23

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe2 that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe2. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiology and the interactions. In 2H-NbSe2, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.

  8. On the upper ocean turbulent dissipation rate due to microscale breakers and small whitecaps

    NASA Astrophysics Data System (ADS)

    Banner, Michael L.; Morison, Russel P.

    2018-06-01

    In ocean wave modelling, accurately computing the evolution of the wind-wave spectrum depends on the source terms and the spectral bandwidth used. The wave dissipation rate source term which spectrally quantifies wave breaking and other dissipative processes remains poorly understood, including the spectral bandwidth needed to capture the essential model physics. The observational study of Sutherland and Melville (2015a) investigated the relative dissipation rate contributions of breaking waves, from large-scale whitecaps to microbreakers. They concluded that a large fraction of wave energy was dissipated by microbreakers. However, in strong contrast with their findings, our analysis of their data and other recent data sets shows that for young seas, microbreakers and small whitecaps contribute only a small fraction of the total breaking wave dissipation rate. For older seas, we find microbreakers and small whitecaps contribute a large fraction of the breaking wave dissipation rate, but this is only a small fraction of the total dissipation rate, which is now dominated by non-breaking contributions. Hence, for all the wave age conditions observed, microbreakers make an insignificant contribution to the total wave dissipation rate in the wave boundary layer. We tested the sensitivity of the results to the SM15a whitecap analysis methodology by transforming the SM15a breaking data using our breaking crest processing methodology. This resulted in the small-scale breaking waves making an even smaller contribution to the total wave dissipation rate, and so the result is independent of the breaker processing methodology. Comparison with other near-surface total TKE dissipation rate observations also support this conclusion. These contributions to the spectral dissipation rate in ocean wave models are small and need not be explicitly resolved.

  9. Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.

    1998-01-01

    A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.

  10. Double-Diffusive Convection at Low Prandtl Number

    NASA Astrophysics Data System (ADS)

    Garaud, Pascale

    2018-01-01

    This work reviews present knowledge of double-diffusive convection at low Prandtl number obtained using direct numerical simulations, in both the fingering regime and the oscillatory regime. Particular emphasis is given to modeling the induced turbulent mixing and its impact in various astrophysical applications. The nonlinear saturation of fingering convection at low Prandtl number usually drives small-scale turbulent motions whose transport properties can be predicted reasonably accurately using a simple semi-analytical model. In some instances, large-scale internal gravity waves can be excited by a collective instability and eventually cause layering. The nonlinear saturation of oscillatory double-diffusive convection exhibits much more complex behavior. Weakly stratified systems always spontaneously transition into layered convection associated with very efficient mixing. More strongly stratified systems remain dominated by weak wave turbulence unless they are initialized into a layered state. The effects of rotation, shear, lateral gradients, and magnetic fields are briefly discussed.

  11. Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    2016-01-15

    Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than bymore » a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed.« less

  12. Shock wave structure in rarefied polyatomic gases with large relaxation time for the dynamic pressure

    NASA Astrophysics Data System (ADS)

    Taniguchi, Shigeru; Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru

    2018-05-01

    The shock wave structure in rarefied polyatomic gases is analyzed based on extended thermodynamics (ET). In particular, the case with large relaxation time for the dynamic pressure, which corresponds to large bulk viscosity, is considered by adopting the simplest version of extended thermodynamics with only 6 independent fields (ET6); the mass density, the velocity, the temperature and the dynamic pressure. Recently, the validity of the theoretical predictions by ET was confirmed by the numerical analysis based on the kinetic theory in [S Kosuge and K Aoki: Phys. Rev. Fluids, Vol. 3, 023401 (2018)]. It was shown that numerical results using the polyatomic version of ellipsoidal statistical model agree with the theoretical predictions by ET for small or moderately large Mach numbers. In the present paper, first, we compare the theoretical predictions by ET6 with the ones by kinetic theory for large Mach number under the same assumptions, that is, the gas is polytropic and the bulk viscosity is proportional to the temperature. Second, the shock wave structure for large Mach number in a non-polytropic gas is analyzed with the particular interest in the effect of the temperature dependence of specific heat and the bulk viscosity on the shock wave structure. Through the analysis of the case of a rarefied carbon dioxide (CO2) gas, it is shown that these temperature dependences play important roles in the precise analysis of the structure for strong shock waves.

  13. On the nonlinear stability of viscous modes within the Rayleigh problem on an infinite flat plate

    NASA Technical Reports Server (NTRS)

    Webb, J. C.; Otto, S. R.; Lilley, G. M.

    1994-01-01

    The stability has been investigated of the unsteady flow past an infinite flat plate when it is moved impulsively from rest, in its own plane. For small times the instantaneous stability of the flow depends on the linearized equations of motion which reduce in this problem to the Orr-Sommerfeld equation. It is known that the flow for certain values of Reynolds number, frequency and wave number is unstable to Tollmien-Schlichting waves, as in the case of the Blasius boundary layer flow past a flat plate. With increase in time, the unstable waves only undergo growth for a finite time interval, and this growth rate is itself a function of time. The influence of finite amplitude effects is studied by solving the full Navier-Stokes equations. It is found that the stability characteristics are markedly changed both by the consideration of the time evolution of the flow, and by the introduction of finite amplitude effects.

  14. Monte Carlo simulation for kinetic chemotaxis model: An application to the traveling population wave

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo

    2017-02-01

    A Monte Carlo simulation of chemotactic bacteria is developed on the basis of the kinetic model and is applied to a one-dimensional traveling population wave in a microchannel. In this simulation, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to calculate the macroscopic transport of the chemical cues in the environment. The simulation method can successfully reproduce the traveling population wave of bacteria that was observed experimentally and reveal the microscopic dynamics of bacterium coupled with the macroscopic transports of the chemical cues and bacteria population density. The results obtained by the Monte Carlo method are also compared with the asymptotic solution derived from the kinetic chemotaxis equation in the continuum limit, where the Knudsen number, which is defined by the ratio of the mean free path of bacterium to the characteristic length of the system, vanishes. The validity of the Monte Carlo method in the asymptotic behaviors for small Knudsen numbers is numerically verified.

  15. Radiative Amplification of Acoustic Waves in Hot Stars

    NASA Technical Reports Server (NTRS)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  16. Six Impossible Things: Fractional Charge From Laughlin's Wave Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Keshav N.

    2010-12-23

    The Laughlin's wave function is found to be the zero-energy ground state of a {delta}-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian.more » (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in {psi}{sub m} can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.« less

  17. Electron Beam Transport in Advanced Plasma Wave Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams weremore » generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.« less

  18. Stability of Viscous St. Venant Roll Waves: From Onset to Infinite Froude Number Limit

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin

    2017-02-01

    We study the spectral stability of roll wave solutions of the viscous St. Venant equations modeling inclined shallow water flow, both at onset in the small Froude number or "weakly unstable" limit F→ 2^+ and for general values of the Froude number F, including the limit F→ +∞ . In the former, F→ 2^+, limit, the shallow water equations are formally approximated by a Korteweg-de Vries/Kuramoto-Sivashinsky (KdV-KS) equation that is a singular perturbation of the standard Korteweg-de Vries (KdV) equation modeling horizontal shallow water flow. Our main analytical result is to rigorously validate this formal limit, showing that stability as F→ 2^+ is equivalent to stability of the corresponding KdV-KS waves in the KdV limit. Together with recent results obtained for KdV-KS by Johnson-Noble-Rodrigues-Zumbrun and Barker, this gives not only the first rigorous verification of stability for any single viscous St. Venant roll wave, but a complete classification of stability in the weakly unstable limit. In the remainder of the paper, we investigate numerically and analytically the evolution of the stability diagram as Froude number increases to infinity. Notably, we find transition at around F=2.3 from weakly unstable to different, large- F behavior, with stability determined by simple power-law relations. The latter stability criteria are potentially useful in hydraulic engineering applications, for which typically 2.5≤ F≤ 6.0.

  19. Numerical simulation of small-scale thermal convection in the atmosphere

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1973-01-01

    A Boussinesq system is integrated numerically in three dimensions and time in a study of nonhydrostatic convection in the atmosphere. Simulation of cloud convection is achieved by the inclusion of parametrized effects of latent heat and small-scale turbulence. The results are compared with the cell structure observed in Rayleigh-Benard laboratory conversion experiments in air. At a Rayleigh number of 4000, the numerical model adequately simulates the experimentally observed evolution, including some prominent transients of a flow from a randomly perturbed initial conductive state into the final state of steady large-amplitude two-dimensional rolls. At Rayleigh number 9000, the model reproduces the experimentally observed unsteady equilibrium of vertically coherent oscillatory waves superimposed on rolls.

  20. The characters of ion acoustic rogue waves in nonextensive plasma

    NASA Astrophysics Data System (ADS)

    Du, Hai-su; Lin, Mai-mai; Gong, Xue; Duan, Wen-shan

    2017-10-01

    Several well-known nonlinear waves in the rational solutions of the nonlinear Schrödinger equation are studied in two-component plasmas consisting of ions fluid and nonextensive electrons, such as Kuznetsov-Ma breather (K-M), bright soliton, rogue wave (RW), Akhmediev breather (AB) and dark soliton, and so on. In this paper, we have investigated the characteristics of K-M, AB, and RW's propagation in plasma with nonextensive electron distribution, and the dependence of amplitude and width for ion acoustic rogue waves in this system. It is found that K-M' triplet is appearance-disappearance-appearance-disappearance. AB solitons only appear once and RW is a single wave that appears from nowhere and then disappears. It is also noted that the wave number and nonextensive parameter of electrons have a significant influence on the maximum envelope amplitude, but, the influence of the width was not significant. At the same time, the effects of the small parameter, which represent the nonlinear strength, on the amplitude and width of ion acoustic rogue waves are also being highlighted.

  1. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  2. Long-range intercellular Ca2+ wave patterns

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Maïna, I.; Mohamadou, A.; Ekobena, H. P. F.; Kofané, T. C.

    2015-10-01

    Modulational instability is utilized to investigate intercellular Ca2+ wave propagation in an array of diffusively coupled cells. Cells are supposed to be connected via paracrine signaling, where long-range effects, due to the presence of extracellular messengers, are included. The multiple-scale expansion is used to show that the whole dynamics of Ca2+ waves, from the endoplasmic reticulum to the cytosol, can be reduced to a single differential-difference nonlinear equation whose solutions are assumed to be plane waves. Their linear stability analysis is studied, with emphasis on the impact of long-range coupling, via the range parameter s. It is shown that s, as well as the number of interacting cells, importantly modifies the features of modulational instability, as small values of s imply a strong coupling, and increasing its value rather reduces the problem to a first-neighbor one. Our theoretical findings are numerically tested, as the generic equations are fully integrated, leading to the emergence of nonlinear patterns of Ca2+ waves. Strong long-range coupling is pictured by extended trains of breather-like structures whose frequency decreases with increasing s. We also show numerically that the number of interacting cells plays on the spatio-temporal formation of Ca2+ patterns, whilst the quasi-perfect intercellular communication depends on the paracrine coupling parameter.

  3. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep

    PubMed Central

    Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling

    2016-01-01

    Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves, medium waves included 13 downregulated miRNAs that had regulatory effects on 64 upregulated genes and 4 upregulated miRNAs, which in turn had regulatory effects on 22 downregulated genes. Compared to medium waves, large waves consisted of 13 upregulated miRNAs that had regulatory effects on 48 downregulated genes. These differentially expressed miRNAs and genes may play a significant role in forming different patterns, and provide evidence for the molecular mechanisms underlying the formation of hair follicles of varying patterns. PMID:27404636

  4. Shear-wave velocity profiling according to three alternative approaches: A comparative case study

    NASA Astrophysics Data System (ADS)

    Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.

    2016-11-01

    The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.

  5. Laboratory Observations of Sand Ripple Evolution in a Small Oscillatory Flow Tunnel

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Palmsten, M. L.; Chu, J.; Landry, B. J.; Penko, A.

    2014-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Six different monochromatic oscillatory forcings, three with velocity asymmetry and three without, were used to investigate sand ripple dynamics using a unimodal grain size distribution with D50=0.65 mm. The experiments represent an extension of previous work using bimodal grain size distributions. A DSLR camera with a 180-degree fisheye lens collected images of the sediment bed profile every 2 seconds to resolve changes in ripple geometries and migration rates resulting from the different flow conditions for over 127 hours (229,388 images). Matlab © algorithms undistorted the fisheye images and quantified the ripple geometries, wavelengths, heights, and migration rates as a function of flow forcing. The mobility number was kept nearly constant by increasing and decreasing the semi-excursion amplitude and the wave frequency, respectively. We observed distinct changes in ripple geometry and migration rate for the pair of oscillatory forcings having nearly identical mobility numbers. The results suggested that the commonly used mobility number might not be appropriate to characterize ripple geometry or migration rates.

  6. SHEAR-DRIVEN DYNAMO WAVES IN THE FULLY NONLINEAR REGIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pongkitiwanichakul, P.; Nigro, G.; Cattaneo, F.

    2016-07-01

    Large-scale dynamo action is well understood when the magnetic Reynolds number ( Rm ) is small, but becomes problematic in the astrophysically relevant large Rm limit since the fluctuations may control the operation of the dynamo, obscuring the large-scale behavior. Recent works by Tobias and Cattaneo demonstrated numerically the existence of large-scale dynamo action in the form of dynamo waves driven by strongly helical turbulence and shear. Their calculations were carried out in the kinematic regime in which the back-reaction of the Lorentz force on the flow is neglected. Here, we have undertaken a systematic extension of their work tomore » the fully nonlinear regime. Helical turbulence and large-scale shear are produced self-consistently by prescribing body forces that, in the kinematic regime, drive flows that resemble the original velocity used by Tobias and Cattaneo. We have found four different solution types in the nonlinear regime for various ratios of the fluctuating velocity to the shear and Reynolds numbers. Some of the solutions are in the form of propagating waves. Some solutions show large-scale helical magnetic structure. Both waves and structures are permanent only when the kinetic helicity is non-zero on average.« less

  7. Turbulence and dissipation in a computational model of Luzon Strait

    NASA Astrophysics Data System (ADS)

    Jalali, Masoud; Sarkar, Sutanu

    2014-11-01

    Generation sites for topographic internal gravity waves can also be sites of intense turbulence. Bottom-intensified flow at critical slopes leads to convective instability and turbulent overturns [Gayen & Sarkar (2011)]. A steep ridge with small excursion number, Ex , but large super criticality can lead to nonlinear features according to observations [Klymak et al. (2008)] and numerical simulations [Legg & Klymak (2008)]. The present work uses high resolution 3-D LES to simulate flow over a model with multiscale topography patterned after a cross-section of Luzon Strait, a double-ridge generation site which was the subject of the recent IWISE experiment. A 1:100 scaling of topography was employed and environmental parameters were chosen to match the slope criticality and Fr number in the field. Several turbulent zones were identified including breaking lee waves, critical slope boundary layer, downslope jets, internal wave beams, and vortical valley flows. The multiscale model topography has subridges where a local Ex may be defined. Wave breaking and turbulence at these subridges can be understood if the local value of Ex is employed when using the Ex -based regimes identified by Jalali et al. (2014) in their DNS of oscillating flow over a single triangular obstacle.

  8. On dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gyroscopic waves. Problems of stability and quantization

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-03-01

    Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.

  9. Stability of the fluid interface in a Hele-Shaw cell subjected to horizontal vibrations

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Lyubimov, D. V.; Sadilov, E. S.; Popov, D. M.

    2017-07-01

    The stability of the horizontal interface of two immiscible viscous fluids in a Hele-Shaw cell subject to gravity and horizontal vibrations is studied. The problem is reduced to the generalized Hill equation, which is solved analytically by the multiple scale method and numerically. The long-wave instability, the resonance (parametric resonance) excitation of waves at finite frequencies of vibrations (for the first three resonances), and the limit of high-frequency vibrations are studied analytically under the assumption of small amplitudes of vibrations and small viscosity. For finite amplitudes of vibrations, finite wave numbers, and finite viscosity, the study is performed numerically. The influence of the specific natural control parameters and physical parameters of the system on its instability threshold is discussed. The results provide extension to other results [J. Bouchgl, S. Aniss, and M. Souhar, Phys. Rev. E 88, 023027 (2013), 10.1103/PhysRevE.88.023027], where the authors considered a similar problem but took into account viscosity in the basic state and did not consider it in the equations for perturbations.

  10. Approximation of traveling wave solutions in wall-bounded flows using resolvent modes

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley; Graham, Michael; Moarref, Rashad; Park, Jae Sung; Sharma, Ati; Willis, Ashley

    2014-11-01

    Significant recent attention has been devoted to computing and understanding exact traveling wave solutions of the Navier-Stokes equations. These solutions can be interpreted as the state-space skeleton of turbulence and are attractive benchmarks for studying low-order models of wall turbulence. Here, we project such solutions onto the velocity response (or resolvent) modes supplied by the gain-based resolvent analysis outlined by McKeon & Sharma (JFM, 2010). We demonstrate that in both pipe (Pringle et al., Phil. Trans. R. Soc. A, 2009) and channel (Waleffe, JFM, 2001) flows, the solutions can be well-described by a small number of resolvent modes. Analysis of the nonlinear forcing modes sustaining these solutions reveals the importance of small amplitude forcing, consistent with the large amplifications admitted by the resolvent operator. We investigate the use of resolvent modes as computationally cheap ``seeds'' for the identification of further traveling wave solutions. The support of AFOSR under Grants FA9550-09-1-0701, FA9550-12-1-0469, FA9550-11-1-0094 and FA9550-14-1-0042 (program managers Rengasamy Ponnappan, Doug Smith and Gregg Abate) is gratefully acknowledged.

  11. Radially localized helicon modes in nonuniform plasma

    PubMed

    Breizman; Arefiev

    2000-04-24

    A radial density gradient in an axisymmetric cylindrical plasma column forms a potential well for nonaxisymmetric helicon modes ( m not equal0). This paper presents an analytic description of such modes in the limit of small longitudinal wave numbers. The corresponding mode equation indicates the possibility of efficient resonant absorption of rf power in helicon discharges at unusually low frequencies.

  12. A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons, 1. Planetary scales

    NASA Astrophysics Data System (ADS)

    Vial, F.; Hertzog, A.; Mechoso, C. R.; Basdevant, C.; Cocquerez, P.; Dubourg, V.; Nouel, F.

    2001-10-01

    In the late southern winter of 1998, Center National d'Études Spatiales (CNES), the French Space Agency, released six 10-m-diameter, superpressure balloons from a location near Quito, Ecuador. Three balloons collapsed soon after launching, but the remaining three drifted westward for a few weeks at altitudes between 19 and 20 km. Two of those balloons crossed the Pacific Ocean before falling above the ``maritime continent,'' while the other completed a revolution around the Earth and crossed the Pacific for a second time before its final fall. Despite the small number and the relatively short duration of the flights, the balloons provided a unique in situ data set for the lower equatorial stratosphere. This part 1 of a two-part paper describes this data set and analyzes outstanding features in the planetary scales. Part 2 focuses on gravity-wave scale. It is argued that balloon trajectories over the Pacific are primarily determined by the westward drift during the easterly phase of the equatorial quasi-biennial oscillation (QBO) and the meridional velocity field of a mixed Rossby-gravity (Yanai) wave with an apparent period of 4 days and zonal wave number 4. This wave appears to have two episodes of amplification during the balloon flights. It is also argued that the balloons show evidence of oscillations with periods between 2 and 4 days and of a Kelvin wave with an apparent period close to 10 days and zonal wave number 1. In this way, the balloon behavior provided a pictorial view of air parcel trajectory in the equatorial lower stratosphere. It is stated that larger balloon campaigns can provide excellent in situ data sets for studies on the dynamics and composition of the middle atmosphere.

  13. Class of exactly solvable scattering potentials in two dimensions, entangled-state pair generation, and a grazing-angle resonance effect

    NASA Astrophysics Data System (ADS)

    Loran, Farhang; Mostafazadeh, Ali

    2017-12-01

    We provide an exact solution of the scattering problem for the potentials of the form v (x ,y ) =χa(x ) [v0(x ) +v1(x ) ei α y] , where χa(x ) :=1 for x ∈[0 ,a ] , χa(x ) :=0 for x ∉[0 ,a ] , vj(x ) are real or complex-valued functions, χa(x ) v0(x ) is an exactly solvable scattering potential in one dimension, and α is a positive real parameter. If α exceeds the wave number k of the incident wave, the scattered wave does not depend on the choice of v1(x ) . In particular, v (x ,y ) is invisible if v0(x ) =0 and k <α . For k >α and v1(x ) ≠0 , the scattered wave consists of a finite number of coherent plane-wave pairs ψn± with wave vector: kn=(±√{k2-[nα ] 2 },n α ) , where n =0 ,1 ,2 ,...

  14. Impact-generated Tsunamis: An Over-rated Hazard

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    2003-01-01

    A number of authors have suggested that oceanic waves (tsunami) created by the impact of relatively small asteroids into the Earth's oceans might cause widespread devastation to coastal cities. If correct, this suggests that asteroids > 100 m in diameter may pose a serious hazard to humanity and could require a substantial expansion of the current efforts to identify earth-crossing asteroids > 1 km in diameter. The debate on this hazard was recently altered by the release of a document previously inaccessible to the scientific community. In 1968 the US Office of Naval Research commissioned a summary of several decades of research into the hazard proposed by waves generated by nuclear explosions in the ocean. Authored by tsunami expert William Van Dorn, this 173-page report entitled Handbook of Explosion-Generated Water Waves affords new insight into the process of impact wave formation, propagation, and run up onto the shoreline.

  15. Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Karami, Behrouz; Shahsavari, Davood; Li, Li

    2018-03-01

    A size-dependent model is developed for the hygrothermal wave propagation analysis of an embedded viscoelastic single layer graphene sheet (SLGS) under the influence of in-plane magnetic field. The bi-Helmholtz nonlocal strain gradient theory involving three small scale parameters is introduced to account for the size-dependent effects. The size-dependent model is deduced based on Hamilton's principle. The closed-form solution of eigenfrequency relation between wave number and phase velocity is achieved. By studying the size-dependent effects on the flexural wave of SLGS, the dispersion relation predicted by the developed size-dependent model can show a good match with experimental data. The influence of in-plane magnetic field, temperature and moisture of environs, structural damping, damped substrate, lower and higher order nonlocal parameters and the material characteristic parameter on the phase velocity of SLGS is explored.

  16. Ground Measurements of Airplane Shock-Wave Noise at Mach Numbers to 2.0 and at Altitudes to 60,000 Feet

    NASA Technical Reports Server (NTRS)

    Lina, Lindsay J.; Maglieri, Domenic J.

    1960-01-01

    The intensity of shock-wave noise at the ground resulting from flights at Mach numbers to 2.0 and altitudes to 60,000 feet was measured. Meagurements near the ground track for flights of a supersonic fighter and one flight of a supersonic bomber are presented. Level cruising flight at an altitude of 60,000 feet and a Mach number of 2.0 produced sonic booms which were considered to be tolerable, and it is reasonable t o expect that cruising flight at higher altitudes will produce booms of tolerable intensity for airplanes of the size and weight of the test airplanes. The measured variation of sonic-boom intensity with altitude was in good agreement with the variation calculated by an equation given in NASA Technical Note D-48. The effect of Mach number on the ground overpressure is small between Mach numbers of 1.4 and 2.0, a result in agreement with the theory. No amplification of the shock-wave overpressures due to refraction effects was apparent near the cutoff Mach number. A method for estimating the effect of fligh-path angle on cutoff Mach number is shown. Experimental results indicate agreement with the method, since a climb maneuver produced booms of a much decreased intensity as compared with the intensity of those measured in level flight at about the same altitude and Mach number. Comparison of sound pressure levels for the fighter and bomber airp lanes indicated little effect of either airplane size or weight at an altitude of 40,000 feet.

  17. Small Moon Makes Big Waves

    NASA Image and Video Library

    2012-12-31

    Saturn small moon Daphnis is caught in the act of raising waves on the edges of the Keeler gap, which is the thin dark band in the left half of the image. Waves like these allow scientists to locate small moons in gaps and measure their masses.

  18. Wave excitations of drifting two-dimensional electron gas under strong inelastic scattering

    NASA Astrophysics Data System (ADS)

    Korotyeyev, V. V.; Kochelap, V. A.; Varani, L.

    2012-10-01

    We have analyzed low-temperature behavior of two-dimensional electron gas in polar heterostructures subjected to a high electric field. When the optical phonon emission is the fastest relaxation process, we have found existence of collective wave-like excitations of the electrons. These wave-like excitations are periodic in time oscillations of the electrons in both real and momentum spaces. The excitation spectra are of multi-branch character with considerable spatial dispersion. There are one acoustic-type and a number of optical-type branches of the spectra. Their small damping is caused by quasi-elastic scattering of the electrons and formation of relevant space charge. Also there exist waves with zero frequency and finite spatial periods—the standing waves. The found excitations of the electron gas can be interpreted as synchronous in time and real space manifestation of well-known optical-phonon-transient-time-resonance. Estimates of parameters of the excitations for two polar heterostructures, GaN/AlGaN and ZnO/MgZnO, have shown that excitation frequencies are in THz-frequency range, while standing wave periods are in sub-micrometer region.

  19. Modeling Tsunami Wave Generation Using a Two-layer Granular Landslide Model

    NASA Astrophysics Data System (ADS)

    Ma, G.; Kirby, J. T., Jr.; Shi, F.; Grilli, S. T.; Hsu, T. J.

    2016-12-01

    Tsunamis can be generated by subaerial or submarine landslides in reservoirs, lakes, fjords, bays and oceans. Compared to seismogenic tsunamis, landslide or submarine mass failure (SMF) tsunamis are normally characterized by relatively shorter wave lengths and stronger wave dispersion, and potentially may generate large wave amplitudes locally and high run-up along adjacent coastlines. Due to a complex interplay between the landslide and tsunami waves, accurate simulation of landslide motion as well as tsunami generation is a challenging task. We develop and test a new two-layer model for granular landslide motion and tsunami wave generation. The landslide is described as a saturated granular flow, accounting for intergranular stresses governed by Coulomb friction. Tsunami wave generation is simulated by the three-dimensional non-hydrostatic wave model NHWAVE, which is capable of capturing wave dispersion efficiently using a small number of discretized vertical levels. Depth-averaged governing equations for the granular landslide are derived in a slope-oriented coordinate system, taking into account the dynamic interaction between the lower-layer granular landslide and upper-layer water motion. The model is tested against laboratory experiments on impulsive wave generation by subaerial granular landslides. Model results illustrate a complex interplay between the granular landslide and tsunami waves, and they reasonably predict not only the tsunami wave generation but also the granular landslide motion from initiation to deposition.

  20. Gas-grain energy transfer in solar nebula shock waves: Implications for the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Horanyi, M.

    1993-01-01

    Meteoritic chondrules provide evidence for the occurrence of rapid transient heating events in the protoplanetary nebula. Astronomical evidence suggests that gas dynamic shock waves are likely to be excited in protostellar accretion disks by processes such as protosolar mass ejections, nonaxisymmetric structures in an evolving disk, and impact on the nebula surface of infalling 'clumps' of circumstellar gas. Previous detailed calculations of gas-grain energy and momentum transfer have supported the possibility that such shock waves could have melted pre-existing chondrule-sized grains. The main requirement for grains to reach melting temperatures in shock waves with plausibly low Mach numbers is that grains existed in dust-rich zones (optical depth greater than 1) where radiative cooling of a given grain can be nearly balanced by radiation from surrounding grains. Localized dust-rich zones also provide a means of explaining the apparent small spatial scale of heating events. For example, the scale size of at least some optically thick dust-rich zones must have been relatively small (less than 10 kilometers) to be consistent with petrologic evidence for accretion of hot material onto cold chondrules. The implied number density of mm-sized grains for these zones would be greater than 30 m(exp -3). In this paper, we make several improvements of our earlier calculations to include radiation self-consistently in the shock jump conditions, and we include heating of grains due to radiation from the shocked gas. In addition, we estimate the importance of momentum feedback of dust concentrations onto the shocked gas which would tend to reduce the efficiency of gas dynamic heating of grains in the center of the dust cloud.

  1. Absorption of inertia-gravity waves in vertically sheared rotating stratified flows

    NASA Astrophysics Data System (ADS)

    Millet, C.; Lott, F.

    2012-12-01

    It is well established that gravity waves have a substantial role on the large-scale atmospheric circulation, particularly in the middle atmosphere. In the present work, we re-examine the reflection and transmission of gravity waves through a critical layer surrounded by two inertial levels for the case of a constant vertically sheared flow. In this configuration, the vertical structure of the disturbance can be described as quasi-geostrophic from the critical layer up to the inertial levels, at which the Doppler-shifted frequency is equal to the Coriolis parameter. Near and beyond these levels, the balanced approximations do not apply and there is a transition from the quasi-geostrophic solution to propagating gravity waves. The three-dimensional disturbance solution is obtained analytically using both an exact method, in terms of hypergeometric functions, and a WKB approximation valid for large Richardson numbers; the latter includes an exponentially small term which captures the radiation feedback in the region between the inertial levels. We first focused on the homogeneous part of the disturbance equations, under the assumption of an unbounded domain. In contrast with past studies which show that there is a finite reflection and did not analyze the transmission (Yamanaka and Tanaka, 1984), we find that the reflection coefficient is too small to be significant and that the transmission coefficient is exactly like in the much simpler non-rotating case analyzed by Booker and Bretherton (1966). Our theoretical predictions are found to be in very good agreement with those obtained by numerically integrating the complete hydrostatic-Boussinesq equations with a small Rayleigh damping. The discrepancies between our results and those in Yamanaka and Tanaka (1984) are related to the fact that the solutions are given in term of multivalued functions and the values of the reflection and transmission coefficients are exponentially small, e.g. quite difficult to cross check numerically. More specifically, we suspect that the differences come from their treatment of the analytic continuations in the matching regions (e.g. the inertial layers). Our results are useful to study the evolution of initial disturbances. As an illustration, we consider the problem of gravity waves generated by potential-vorticity anomalies, a problem that was recently studied in Lott et al. (2013) for an unbounded atmosphere. The vertical structure of the potential-vorticity anomaly is represented by a Dirac distribution localized at the critical level. The disturbance field can be deduced from the homogeneous solutions above and below the critical level, by using suitable jump conditions. It is shown how the inclusion of a boundary condition within the problem, below the potential-vorticity anomaly, changes the amplitude of the radiated gravity wave, especially when the Richardson number is not too large. This process may be related to the occurrence of radiative instability waves in sheared rotating stratified flows.

  2. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    NASA Astrophysics Data System (ADS)

    Tsvelodub, O. Yu; Bocharov, A. A.

    2017-09-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.

  3. Long-wave instabilities of two interlaced helical vortices

    NASA Astrophysics Data System (ADS)

    Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.

    2016-09-01

    We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.

  4. A rejection method for selection of scattered states

    NASA Astrophysics Data System (ADS)

    Lawson, William S.

    1994-05-01

    A rejection method is presented that sidesteps much of the labor necessary in the usual techniques for choosing a scattered state after an electron-phonon collision with full band structure. The phonon wave number is chosen randomly, then tested to see if the resultant collision will satisfy energy conservation to within some accuracy. If not, the collision is rejected, and if so, then the wave number is adjusted in order to enforce energy conservation more precisely. The price one pays is in a high rejection rate. If the cost of a rejection is small, however, this rejection rate can be tolerated. This method will not compete with analytical models (near valley minima), but may outperform the more usual techniques. Accuracies of a few percent are practical. Simulations were preformed with the first conduction band of gallium arsenide.

  5. Convective wave breaking in the KdV equation

    NASA Astrophysics Data System (ADS)

    Brun, Mats K.; Kalisch, Henrik

    2018-03-01

    The KdV equation is a model equation for waves at the surface of an inviscid incompressible fluid, and it is well known that the equation describes the evolution of unidirectional waves of small amplitude and long wavelength fairly accurately if the waves fall into the Boussinesq regime. The KdV equation allows a balance of nonlinear steepening effects and dispersive spreading which leads to the formation of steady wave profiles in the form of solitary waves and cnoidal waves. While these wave profiles are solutions of the KdV equation for any amplitude, it is shown here that there for both the solitary and the cnoidal waves, there are critical amplitudes for which the horizontal component of the particle velocity matches the phase velocity of the wave. Solitary or cnoidal solutions of the KdV equation which surpass these amplitudes feature incipient wave breaking as the particle velocity exceeds the phase velocity near the crest of the wave, and the model breaks down due to violation of the kinematic surface boundary condition. The condition for breaking can be conveniently formulated as a convective breaking criterion based on the local Froude number at the wave crest. This breaking criterion can also be applied to time-dependent situations, and one case of interest is the development of an undular bore created by an influx at a lateral boundary. It is shown that this boundary forcing leads to wave breaking in the leading wave behind the bore if a certain threshold is surpassed.

  6. The reflection and diffraction of internal waves from the junction of a slit and a half-space, with application to submarine canyons

    NASA Astrophysics Data System (ADS)

    Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.

    1985-07-01

    We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.

  7. Nonplanar electrostatic shock waves in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2010-02-15

    Two-dimensional quantum ion acoustic shock waves (QIASWs) are studied in an unmagnetized plasma consisting of electrons and ions. In this regard, a nonplanar quantum Kadomtsev-Petviashvili-Burgers (QKPB) equation is derived using the small amplitude perturbation expansion method. Using the tangent hyperbolic method, an analytical solution of the planar QKPB equation is obtained and subsequently used as the initial profile to numerically solve the nonplanar QKPB equation. It is observed that the increasing number density (and correspondingly the quantum Bohm potential) and kinematic viscosity affect the propagation characteristics of the QIASW. The temporal evolution of the nonplanar QIASW is investigated both inmore » Cartesian and polar planes and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of propagation of small amplitude localized electrostatic shock structures in dense astrophysical environments.« less

  8. Structure of the Mimas 5:3 Bending Wave in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Sega, Daniel D.; Colwell, Josh E.

    2016-10-01

    Saturn's moon Mimas is on an inclined orbit with several strong vertical orbital resonances in Saturn's rings. The 5:3 inner vertical resonance with Mimas lies in the outer A ring and produces a prominent spiral bending wave (BW) that propagates away from Mimas. While dozens of density waves in Saturn's rings have been analyzed to determine local surface mass densities and viscosities, the number of bending waves is limited by the requirement for a moon on an inclined orbit and because, unlike the Lindblad resonances that excite density waves, there can be no first order vertical resonances. The Mimas 5:3 BW is the most prominent in the ring system. Bending wave theory was initially developed by Shu et al. (1983, Icarus, 53, 185-206) following the Voyager encounters with Saturn. Later, Gresh et al. (1986, Icarus, 68, 481-502) modeled radio science occultation data of the Mimas 5:3 BW with an imperfect fit to the theory. The multitude of high resolution stellar occultations observed by Cassini UVIS provides an opportunity to reconstruct the full three-dimensional structure of this wave and learn more about local ring properties. Occultations at high elevation angles out of the ring plane are insensitive to the wave structure due to the small angles of the vertical warping of the rings in the wave. They thus reveal the underlying structure in the wave region. There is a symmetric increase in optical depth throughout the Mimas 5:3 BW region. This may be due to an increase in the abundance of small particles without a corresponding increase in surface mass density. We include this feature in a ray-tracing model of the vertical structure of the wave and fit it to multiple UVIS occultations. The observed amplitude of the wave and its damping behavior of are not well-described by the Shu et al. model, which assumes a fluid-like damping mechanism. A different damping behavior of the ring, perhaps radially varying across the wave region due to differences in the particle size distribution and/or structure of the self-gravity wakes in the ring, is needed to match observations.

  9. Analytic Wave Functions for the Half-Filled Lowest Landau Level

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    We consider a two-dimensional strongly correlated electronic system in a strong perpendicular magnetic field at half-filling of the lowest Landau level (LLL). We seek to build a wave function that, by construction, lies entirely in the Hilbert space of the LLL. Quite generally, a wave function of this nature can be built as a linear combination of all possible Slater determinants formed by using the complete set of single-electron states that belong to the LLL. However, due to the vast number of Slater determinant states required to form such basis functions, the expansion is impractical for any but the smallest systems. Thus, in practice, the expansion must be truncated to a small number of Slater determinants. Among many possible LLL Slater determinant states, we note a particular special class of such wave functions in which electrons occupy either only even, or only odd angular momentum states. We focus on such a class of wave functions and obtain analytic expressions for various quantities of interest. Results seem to suggest that these special wave functions, while interesting and physically appealing, are unlikely to be a very good approximation for the exact ground state at half-filling factor. The overall quality of the description can be improved by including other additional LLL Slater determinant states. It is during this process that we identify another special family of suitable LLL Slater determinant states to be used in an enlarged expansion.

  10. Forced wave induced by an atmospheric pressure disturbance moving towards shore

    NASA Astrophysics Data System (ADS)

    Chen, Yixiang; Niu, Xiaojing

    2018-05-01

    Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.

  11. Geometric Limitations Of Ultrasonic Measurements

    NASA Astrophysics Data System (ADS)

    von Nicolai, C.; Schilling, F.

    2006-12-01

    Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.

  12. The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares

    NASA Technical Reports Server (NTRS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  13. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    NASA Astrophysics Data System (ADS)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  14. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The effect of small-wave modulation on the electromagnetic bias

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin; Martin, Jan M.

    1992-01-01

    The effect of the modulation of small ocean waves by large waves on the physical mechanism of the EM bias is examined by conducting a numerical scattering experiment which does not assume the applicability of geometric optics. The modulation effect of the large waves on the small waves is modeled using the principle of conservation of wave action and includes the modulation of gravity-capillary waves. The frequency dependence and magnitude of the EM bias is examined for a simplified ocean spectral model as a function of wind speed. These calculations make it possible to assess the validity of previous assumptions made in the theory of the EM bias, with respect to both scattering and hydrodynamic effects. It is found that the geometric optics approximation is inadequate for predictions of the EM bias at typical radar altimeter frequencies, while the improved scattering calculations provide a frequency dependence of the EM bias which is in qualitative agreement with observation. For typical wind speeds, the EM bias contribution due to small-wave modulation is of the same order as that due to modulation by the nonlinearities of the large-scale waves.

  16. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  17. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less

  18. Experiments on waves under impulsive wind forcing in view of the Phillips (1957) theory

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Zavadsky, Andrey

    2016-11-01

    Only limited information is currently available on the initial stages of wind-waves growth from rest under sudden wind forcing; the mechanisms leading to the appearance of waves are still not well understood. In the present work, waves emerging in a small-scale laboratory facility under the action of step-like turbulent wind forcing are studied using capacitance and laser slope gauges. Measurements are performed at a number of fetches and for a range of wind velocities. Taking advantage of the fully automated experimental procedure, at least 100 independent realizations are recorded for each wind velocity at every fetch. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters as a function of time elapsed from the blower activation. The accumulated results on the temporal variation of wind-wave field initially at rest allow quantitative comparison with the theory of Phillips (1957). Following Phillips, appearance of the initial detectable ripples was considered first, while the growth of short gravity waves at later times was analyzed separately. Good qualitative and partial quantitative agreement between the Phillips predictions and the measurements was obtained for both those stages of the initial wind-wave field evolution.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence J.

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler,more » closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.« less

  20. Shear-driven dynamo waves at high magnetic Reynolds number.

    PubMed

    Tobias, S M; Cattaneo, F

    2013-05-23

    Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.

  1. Effects of Magnetic field on Peristalsis transport of a Carreau Fluid in a tapered asymmetric channel

    NASA Astrophysics Data System (ADS)

    Prakash, J.; Balaji, N.; Siva, E. P.; Kothandapani, M.; Govindarajan, A.

    2018-04-01

    The paper is concerned with effects of a uniform applied magnetic field on a Carreau fluid flow in a tapered asymmetric channel with peristalsis. The channel non-uniform & asymmetry are formed by choosing the peristaltic wave train on the tapered walls to have different amplitude and phase (ϕ). The governing equations of the Carreau model in two - dimensional peristaltic flow phenomena are constructed under assumptions of long wave length and low Reynolds number approximations. The simplified non - linear governing equations are solved by regular perturbation method. The expressions for pressure rise, frictional force, velocity and stream function are determined and the effects of different parameters like non-dimensional amplitudes walls (a and b), non - uniform parameter (m), Hartmann number (M), phase difference (ϕ),power law index (n) and Weissenberg numbers (We) on the flow characteristics are discussed. It is viewed that the rheological parameter for large (We), the curves of the pressure rise are not linear but it behaves like a Newtonian fluid for very small Weissenberg number.

  2. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves.

    PubMed

    Paraskevov, A V; Zendrikov, D K

    2017-03-23

    We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.

  3. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves

    NASA Astrophysics Data System (ADS)

    Paraskevov, A. V.; Zendrikov, D. K.

    2017-04-01

    We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.

  4. Adjoint-based sensitivity analysis of low-order thermoacoustic networks using a wave-based approach

    NASA Astrophysics Data System (ADS)

    Aguilar, José G.; Magri, Luca; Juniper, Matthew P.

    2017-07-01

    Strict pollutant emission regulations are pushing gas turbine manufacturers to develop devices that operate in lean conditions, with the downside that combustion instabilities are more likely to occur. Methods to predict and control unstable modes inside combustion chambers have been developed in the last decades but, in some cases, they are computationally expensive. Sensitivity analysis aided by adjoint methods provides valuable sensitivity information at a low computational cost. This paper introduces adjoint methods and their application in wave-based low order network models, which are used as industrial tools, to predict and control thermoacoustic oscillations. Two thermoacoustic models of interest are analyzed. First, in the zero Mach number limit, a nonlinear eigenvalue problem is derived, and continuous and discrete adjoint methods are used to obtain the sensitivities of the system to small modifications. Sensitivities to base-state modification and feedback devices are presented. Second, a more general case with non-zero Mach number, a moving flame front and choked outlet, is presented. The influence of the entropy waves on the computed sensitivities is shown.

  5. Gravitational waves in cold dark matter

    NASA Astrophysics Data System (ADS)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  6. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Yang, Li-Jian; Wu, Ying; Zhang, Cai-Rong

    2010-09-01

    The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.

  7. Effects of Nose Bluntness on Stability of Hypersonic Boundary Layers over Blunt Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2007-01-01

    Receptivity and stability of hypersonic boundary layers are numerically investigated for boundary layer flows over a 5-degree straight cone at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves, we solve the Navier-Stokes equations in axisymmetric coordinates. The governing equations are solved using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations are performed for a cone with nose radii of 0.001, 0.05 and 0.10 inches that give Reynolds numbers based on the nose radii ranging from 650 to 130,000. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of axisymmetric boundary layers. The transition Reynolds number for a cone with the nose Reynolds number of 65,000 is increased by a factor of 1.82 compared to that for a sharp cone. The receptivity coefficient for a sharp cone is about 4.23 and it is very small, approx.10(exp -3), for large bluntness.

  8. Wake of inertial waves of a horizontal cylinder in horizontal translation

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanaël; Labarre, Vincent; Voisin, Bruno; Moisy, Frédéric; Cortet, Pierre-Philippe

    2018-03-01

    We analyze theoretically and experimentally the wake behind a horizontal cylinder of diameter d horizontally translated at constant velocity U in a fluid rotating about the vertical axis at a rate Ω . Using particle image velocimetry measurements in the rotating frame, we show that the wake is stabilized by rotation for Reynolds number Re =U d /ν much larger than in a nonrotating fluid. Over the explored range of parameters, the limit of stability is Re ≃(275 ±25 )/Ro , with Ro =U /2 Ω d the Rossby number, indicating that the stabilizing process is governed by the Ekman pumping in the boundary layer. At low Rossby number, the wake takes the form of a stationary pattern of inertial waves, similar to the wake of surface gravity waves behind a ship. We compare this steady wake pattern to a model, originally developed by Johnson [E. R. Johnson, J. Fluid Mech. 120, 359 (1982), 10.1017/S0022112082002808], assuming a free-slip boundary condition and a weak streamwise perturbation. Our measurements show quantitative agreement with this model for Ro ≲0.3 . At larger Rossby number, the phase pattern of the wake is close to the prediction for an infinitely small line object. However, the wake amplitude and phase origin are not correctly described by the weak-streamwise-perturbation model, calling for an alternative model for the boundary condition at moderate rotation rate.

  9. On the finite length-scale of compressible shock-waves formed in free-surface flows of dry granular materials down a slope

    NASA Astrophysics Data System (ADS)

    Faug, Thierry

    2017-04-01

    The Rankine-Hugoniot jump conditions traditionally describe the theoretical relationship between the equilibrium state on both sides of a shock-wave. They are based on the crucial assumption that the length-scale needed to adjust the equilibrium state upstream of the shock to downstream of it is too small to be of significance to the problem. They are often used with success to describe the shock-waves in a number of applications found in both fluid and solid mechanics. However, the relations based on jump conditions at singular surfaces may fail to capture some features of the shock-waves formed in complex materials, such as granular matter. This study addresses the particular problem of compressible shock-waves formed in flows of dry granular materials down a slope. This problem is for instance relevant to full-scale geophysical granular flows in interaction with natural obstacles or man-made structures, such as topographical obstacles or mitigation dams respectively. Steady-state jumps formed in granular flows and travelling shock-waves produced at the impact of a granular avalanche-flow with a rigid wall are considered. For both situations, new analytical relations which do not consider that the granular shock-wave shrinks into a singular surface are derived, by using balance equations in their depth-averaged forms for mass and momentum. However, these relations need additional inputs that are closure relations for the size and the shape of the shock-wave, and a relevant constitutive friction law. Small-scale laboratory tests and numerical simulations based on the discrete element method are shortly presented and used to infer crucial information needed for the closure relations. This allows testing some predictive aspects of the simple analytical approach proposed for both steady-state and travelling shock-waves formed in free-surface flows of dry granular materials down a slope.

  10. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    2016-08-15

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.

  11. On a solution of the nonlinear differential equation for transonic flow past a wave-shaped wall

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1952-01-01

    The Prandtl-Busemann small-perturbation method is utilized to obtain the flow of a compressible fluid past an infinitely long wave-shaped wall. When the essential assumption for transonic flow (that all Mach numbers in the region of flow are nearly unity) is introduced, the expression for the velocity potential takes the form of a power series in the transonic similarity parameter. On the basis of this form of the solution, an attempt is made to solve the nonlinear differential equation for transonic flow past the wavy wall. The analysis utilized exhibits clearly the difficulties inherent in nonlinear-flow problems.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuji, Hiroshi, E-mail: h.nakatsuji@qcri.or.jp; Nakashima, Hiroyuki

    The Schrödinger equation (SE) and the antisymmetry principle constitute the governing principle of chemistry. A general method of solving the SE was presented before as the free complement (FC) theory, which gave highly accurate solutions for small atoms and molecules. We assume here to use the FC theory starting from the local valence bond wave function. When this theory is applied to larger molecules, antisymmetrizations of electronic wave functions become time-consuming and therefore, an additional breakthrough is necessary concerning the antisymmetry principle. Usually, in molecular calculations, we first construct the wave function to satisfy the antisymmetry rule, “electronic wave functionsmore » must be prescribed to be antisymmetric for all exchanges of electrons, otherwise bosonic interference may disturb the basis of the science.” Starting from determinantal wave functions is typical. Here, we give an antisymmetrization theory, called inter-exchange (iExg) theory, by dividing molecular antisymmetrizations to those within atoms and between atoms. For the electrons belonging to distant atoms in a molecule, only partial antisymmetrizations or even no antisymmetrizations are necessary, depending on the distance between the atoms. So, the above antisymmetry rule is not necessarily followed strictly to get the results of a desired accuracy. For this and other reasons, the necessary parts of the antisymmetrization operations become very small as molecules become larger, leading finally to the operation counts of lower orders of N, the number of electrons. This theory creates a natural antisymmetrization method that is useful for large molecules.« less

  13. Solving the Schrödinger equation of molecules by relaxing the antisymmetry rule: Inter-exchange theory.

    PubMed

    Nakatsuji, Hiroshi; Nakashima, Hiroyuki

    2015-05-21

    The Schrödinger equation (SE) and the antisymmetry principle constitute the governing principle of chemistry. A general method of solving the SE was presented before as the free complement (FC) theory, which gave highly accurate solutions for small atoms and molecules. We assume here to use the FC theory starting from the local valence bond wave function. When this theory is applied to larger molecules, antisymmetrizations of electronic wave functions become time-consuming and therefore, an additional breakthrough is necessary concerning the antisymmetry principle. Usually, in molecular calculations, we first construct the wave function to satisfy the antisymmetry rule, "electronic wave functions must be prescribed to be antisymmetric for all exchanges of electrons, otherwise bosonic interference may disturb the basis of the science." Starting from determinantal wave functions is typical. Here, we give an antisymmetrization theory, called inter-exchange (iExg) theory, by dividing molecular antisymmetrizations to those within atoms and between atoms. For the electrons belonging to distant atoms in a molecule, only partial antisymmetrizations or even no antisymmetrizations are necessary, depending on the distance between the atoms. So, the above antisymmetry rule is not necessarily followed strictly to get the results of a desired accuracy. For this and other reasons, the necessary parts of the antisymmetrization operations become very small as molecules become larger, leading finally to the operation counts of lower orders of N, the number of electrons. This theory creates a natural antisymmetrization method that is useful for large molecules.

  14. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.

    PubMed

    Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the existence of nonreciprocal wave interaction phenomena in the form of irreversible targeted energy transfers from L waves to NL pulses during collisions of these two types of waves. Additional nonreciprocal acoustics are found in the form of complex "cascading processes, as well as nonreciprocal interactions between L waves and stationary discrete breathers. The computational studies confirm the theoretically predicted transition of the lattice dynamics to a low-energy state of nonlinear acoustic vacum with strong nonlocality.

  15. Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.

    PubMed

    Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C

    2017-02-01

    Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components, while at small scales (V_{A}k/N≫1), the ratio S_{p}(k,t)/S_{κ}(k,t) behaves like k^{-1} and S_{κ}(k,t)/S_{m}(k,t)=1. Also, for MAC weak wave turbulence, it is shown that, at small scales (V_{A}k/sqrt[N^{2}+f^{2}]≫1), the ratio S_{p}(k,t)/S_{κ}(t) behaves like k^{-1} and S_{κ}(k,t)/S_{m}(k,t)=1.

  16. Lamb waves increase sensitivity in nondestructive testing

    NASA Technical Reports Server (NTRS)

    Di Novi, R.

    1967-01-01

    Lamb waves improve sensitivity and resolution in the detection of small defects in thin plates and small diameter, thin-walled tubing. This improvement over shear waves applies to both longitudinal and transverse flaws in the specimens.

  17. Modulational instability of finite-amplitude, circularly polarized Alfven waves

    NASA Technical Reports Server (NTRS)

    Derby, N. F., Jr.

    1978-01-01

    The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.

  18. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  19. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    PubMed

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  20. Model test study on propagation law of plane stress wave in jointed rock mass under different in-situ stresses

    NASA Astrophysics Data System (ADS)

    Dong, Qian

    2017-12-01

    The study of propagation law of plane stress wave in jointed rock mass under in-situ stress has important significance for safety excavation of underground rock mass engineering. A model test of the blasting stress waves propagating in the intact rock and jointed rock mass under different in-situ stresses was carried out, and the influencing factors on the propagation law, such as the scale of static loads and the number of joints were studied respectively. The results show that the transmission coefficient of intact rock is larger than that of jointed rock mass under the same loading condition. With the increase of confining pressure, the transmission coefficients of intact rock and jointed rock mass both show an trend of increasing first and then decreasing, and the variation of transmission coefficients in intact rock is smaller than that of jointed rock mass. Transmission coefficient of jointed rock mass decreases with the increase of the number of joints under the same loading condition, when the confining pressure is relatively small, the reduction of transmission coefficients decreases with the increasing of the number of joints, and the variation law of the reduction of transmission coefficients is contrary when the confining pressure is large.

  1. Active doublet method for measuring small changes in physical properties

    DOEpatents

    Roberts, Peter M.; Fehler, Michael C.; Johnson, Paul A.; Phillips, W. Scott

    1994-01-01

    Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.

  2. On the Scattering of Sound by a Rectilinear Vortex

    NASA Astrophysics Data System (ADS)

    HOWE, M. S.

    1999-11-01

    A re-examination is made of the two-dimensional interaction of a plane, time-harmonic sound wave with a rectilinear vortex of small core diameter at low Mach number. Sakov [1] and Ford and Smith [2] have independently resolved the “infinite forward scatter” paradox encountered in earlier applications of the Born approximation to this problem. The first order scattered field (Born approximation) has nulls in the forward and back scattering directions, but the interaction of the wave with non-acoustically compact components of the vortex velocity field causes wavefront distortion, and the phase of the incident wave to undergo a significant variation across a parabolic domain whose axis extends along the direction of forward scatter from the vortex core. The transmitted wave crests of the incident wave become concave and convex, respectively, on opposite sides of the axis of the parabola, and focusing and defocusing of wave energy produces corresponding increases and decreases in wave amplitude. Wave front curvature decreases with increasing distance from the vortex core, with the result that the wave amplitude and phase are asymptotically equal to the respective values they would have attained in the absence of the vortex. The transverse acoustic dipole generated by translational motion of the vortex at the incident wave acoustic particle velocity, and the interaction of the incident wave with acoustically compact components of the vortex velocity field, are responsible for a system of cylindrically spreading, scattered waves outside the parabolic domain.

  3. Obliquely propagating low frequency electromagnetic shock waves in two dimensional quantum magnetoplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.

    2009-04-15

    Linear and nonlinear propagation characteristics of low frequency magnetoacoustic waves in quantum magnetoplasmas are studied employing the quantum magnetohydrodynamic model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation in the fast and slow magnetoacoustic shock profiles with the quantum Bohm potential via increasing number density, obliqueness angle {theta}, magnetic field, and the resistivity are also investigated. It is observed that themore » aforementioned plasma parameters significantly modify the propagation characteristics of nonlinear magnetoacoustic shock waves in quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  4. Numerical simulation of detonation reignition in H 2-O 2 mixtures in area expansions

    NASA Astrophysics Data System (ADS)

    Jones, D. A.; Kemister, G.; Tonello, N. A.; Oran, E. S.; Sichel, M.

    Time-dependent, two-dimensional, numerical simulations of a transmitted detonation show reignition occuring by one of two mechanisms. The first mechanism involves the collision of triple points as they expand along a decaying shock front. In the second mechanism ignition results from the coalescence of a number of small, relatively high pressure regions left over from the decay of weakened transverse waves. The simulations were performed using an improved chemical kinetic model for stoichiometric H 2-O 2 mixtures. The initial conditions were a propagating, two-dimensional detonation resolved enough to show transverse wave structure. The calculations provide clarification of the reignition mechanism seen in previous H 2-O 2-Ar simulations, and again demonstrate that the transverse wave structure of the detonation front is critical to the reignition process.

  5. FT-IR spectrum of grape seed oil and quantum models of fatty acids triglycerides

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Antonova, E. M.; Shagautdinova, I. T.; Chernavina, M. L.; Dvoretskiy, K. N.; Grechukhina, O. N.; Vasilyeva, L. M.; Rybakov, A. V.; Likhter, A. M.

    2018-04-01

    FT-IR spectra of grape seed oil and glycerol were registered in the 650-4000 cm-1 range. Molecular models of glycerol and some fatty acids that compose the oil under study - linoleic, oleic, palmitic and stearic acids - as well as their triglycerides were developed within B3LYP/6-31G(d) density functional model. A vibrating FT-IR spectrum of grape seed oil was modeled on the basis of calculated values of vibrating wave numbers and IR intensities of the fatty acids triglycerides and with regard to their percentage. Triglyceride spectral bands that were formed by glycerol linkage vibrations were revealed. It was identified that triglycerol linkage has a small impact on the structure of fatty acids and, consequently, on vibrating wave numbers. The conducted molecular modeling became a basis for theoretical interpretation on 10 experimentally observed absorption bands in FT-IR spectrum of grape seed oil.

  6. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  7. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    NASA Astrophysics Data System (ADS)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  8. Do inertial wave interactions control the rate of energy dissipation of rotating turbulence?

    NASA Astrophysics Data System (ADS)

    Cortet, Pierre-Philippe; Campagne, Antoine; Machicoane, Nathanael; Gallet, Basile; Moisy, Frederic

    2015-11-01

    The scaling law of the energy dissipation rate, ɛ ~U3 / L (with U and L the characteristic velocity and lengthscale), is one of the most robust features of fully developed turbulence. How this scaling is affected by a background rotation is still a controversial issue with importance for geo and astrophysical flows. At asymptotically small Rossby numbers Ro = U / ΩL , i.e. in the weakly nonlinear limit, wave-turbulence arguments suggest that ɛ should be reduced by a factor Ro . Such scaling has however never been evidenced directly, neither experimentally nor numerically. We report here direct measurements of the injected power, and therefore of ɛ, in an experiment where a propeller is rotating at a constant rate in a large volume of fluid rotating at Ω. In co-rotation, we find a transition between the wave-turbulence scaling at small Ro and the classical Kolmogorov law at large Ro . The transition between these two regimes is characterized from experiments varying the propeller and tank dimensions. In counter-rotation, the scenario is much richer with the observation of an additional peak of dissipation, similar to the one found in Taylor-Couette experiments.

  9. Boulder Dislodgment Reloaded: New insights from boulder transport and dislodgement by tsunamis and storms from three-dimensional numerical simulations with GPUSPH

    NASA Astrophysics Data System (ADS)

    Weiss, R.; Zainali, A.

    2014-12-01

    Boulders can be found on many coastlines around the globe. They are generally thought to be moved either during coastal storms or tsunamis because they are too heavy to be moved by more common marine or coastal processes. To understand storm and tsunami risk at given coastline, the event histories of both events need to be separated to produce a robust event statistics for quantitative risk analyses. Because boulders are most likely only moved by coastal storms or tsunamis, they are very suitable to produce the data basis for such event statistics. Boulder transport problem has been approached by comparing the driving with resisting forces acting on a boulder. However, we argue that this approach is not sufficient because the comparison of resisting and driving forces only constitutes boulder motion, but not for boulder dislodgment. Boulder motion means that the boulder starts to move out of its pocket. However, this motion does not guarantee that the boulder will reach the critical dislodgment position. Boulder dislodgment is a necessary condition to identify whether or not a boulder has moved. For boulder dislodgement, an equation of motion is needed, and that equation is Newtons Second Law of Motion (NSL). We perform fully coupled three-dimensional numerical simulation of boulders moved by waves where the boulders move according to NSL. Our numerical simulations are the first of their kind applied to tsunami and storm boulder motion. They show how storm and tsunami waves interact with boulders in a more realistic physical setting, and highlight the importance of submergence. Based on our simulations we perform a dimensional analysis that identifies the Froude number as important parameter, which can be considered large only in the front of tsunami waves, but small in the rest of tsunami wave and also generally small in storm waves. From a general point of view, our results indicate that the boulder transport problem is more complex than recently considered, and more variables need to be considered in inversions of the wave characteristics from moved boulders. However, numerical simulations are an incredible powerful and flexible tool with which more robust and more correct techniques to invert wave characteristics from moved boulders can be developed. Our analyses of the Froude number and submergence are positive indicators.

  10. Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

    NASA Technical Reports Server (NTRS)

    Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven

    2016-01-01

    This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

  11. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1988-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  12. On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully-developed flows

    NASA Technical Reports Server (NTRS)

    Bennett, James; Hall, Philip

    1986-01-01

    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.

  13. Characterising a holographic modal phase mask for the detection of ocular aberrations

    NASA Astrophysics Data System (ADS)

    Corbett, A. D.; Leyva, D. Gil; Diaz-Santana, L.; Wilkinson, T. D.; Zhong, J. J.

    2005-12-01

    The accurate measurement of the double-pass ocular wave front has been shown to have a broad range of applications from LASIK surgery to adaptively corrected retinal imaging. The ocular wave front can be accurately described by a small number of Zernike circle polynomials. The modal wave front sensor was first proposed by Neil et al. and allows the coefficients of the individual Zernike modes to be measured directly. Typically the aberrations measured with the modal sensor are smaller than those seen in the ocular wave front. In this work, we investigated a technique for adapting a modal phase mask for the sensing of the ocular wave front. This involved extending the dynamic range of the sensor by increasing the pinhole size to 2.4mm and optimising the mask bias to 0.75λ. This was found to decrease the RMS error by up to a factor of three for eye-like aberrations with amplitudes up to 0.2μm. For aberrations taken from a sample of real-eye measurements a 20% decrease in the RMS error was observed.

  14. The Influence of depth and surface waves on marine current turbine performance

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Flack, Karen; Luznik, Luksa; van Benthem, Max; Walker, Jessica

    2013-11-01

    Performance characteristics are presented for a 1/25th scale marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17°. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent for lift in the operational range (ReC = 2 - 4 × 105) . The experiments were performed in the 116 m tow-tank at the United States Naval Academy at depths of 0.8D and 1.75D measured from the blade tip to the mean free surface. Overall average values for power and thrust coefficient were found to be insensitive to wave form and weakly sensitive to turbine depth. Waves yield a small increase in turbine performance which can be explained by Stokes drift. Variations on performance parameters are on the same order of magnitude as the average value especially near the mean free surface and in the presence of high energy waves. Office of Naval Research.

  15. On the interaction of small-scale linear waves with nonlinear solitary waves

    NASA Astrophysics Data System (ADS)

    Xu, Chengzhu; Stastna, Marek

    2017-04-01

    In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow interaction in a fully nonlinear framework.

  16. Changes in divergence-free grid turbulence interacting with a weak spherical shock wave

    NASA Astrophysics Data System (ADS)

    Kitamura, T.; Nagata, K.; Sakai, Y.; Sasoh, A.; Ito, Y.

    2017-06-01

    The characteristics of divergence-free grid turbulence interacting with a weak spherical shock wave with a Mach number of 1.05 are experimentally investigated. Turbulence-generating grids are used to generate nearly isotropic, divergence-free turbulence. The turbulent Reynolds number based on the Taylor microscale R eλ and the turbulent Mach number Mt are 49 ≤R eλ≤159 and 0.709 × 1 0-3≤Mt≤2.803 ×1 0-3, respectively. A spherical shock wave is generated by a diaphragmless shock tube. The instantaneous streamwise velocity before and after the interaction is measured by a hot wire probe. The results show that the root-mean-square value of streamwise velocity fluctuations (r.m.s velocity) increases and the streamwise integral length scale decreases after the interaction. The changes in the r.m.s velocity become small with the increase in R eλ and Mt for the same strength of the shock wave. This tendency is similar to that of the streamwise integral length scale. The continuous wavelet analysis shows that high intensity appears mainly in the low-frequency region and positive and negative wavelet coefficients appear periodically in time before the interaction, whereas such high intensity appears in both the low- and high-frequency regions after the interaction. The spectral analysis reveals that the energy at high wavenumbers increases after the interaction. The change in turbulence after the interaction is explained from the viewpoint of the initial turbulent Mach number. It is suggested that the change is more significant for initial divergence-free turbulence than for curl-free turbulence.

  17. Excitation of ship waves by a submerged object: New solution to the classical problem

    NASA Astrophysics Data System (ADS)

    Arzhannikov, A. V.; Kotelnikov, I. A.

    2016-08-01

    We have proposed a new method for solving the problem of ship waves excited on the surface of a nonviscous liquid by a submerged object that moves at a variable speed. As a first application of this method, we have obtained a new solution to the classic problem of ship waves generated by a submerged ball that moves rectilinearly with constant velocity parallel to the equilibrium surface of the liquid. For this example, we have derived asymptotic expressions describing the vertical displacement of the liquid surface in the limit of small and large values of the Froude number. The exact solution is presented in the form of two terms, each of which is reduced to one-dimensional integrals. One term describes the "Bernoulli hump" and another term the "Kelvin wedge." As a second example, we considered vertical oscillation of the submerged ball. In this case, the solution leads to the calculation of one-dimensional integral and describes surface waves propagating from the epicenter above the ball.

  18. Excitation of ship waves by a submerged object: New solution to the classical problem.

    PubMed

    Arzhannikov, A V; Kotelnikov, I A

    2016-08-01

    We have proposed a new method for solving the problem of ship waves excited on the surface of a nonviscous liquid by a submerged object that moves at a variable speed. As a first application of this method, we have obtained a new solution to the classic problem of ship waves generated by a submerged ball that moves rectilinearly with constant velocity parallel to the equilibrium surface of the liquid. For this example, we have derived asymptotic expressions describing the vertical displacement of the liquid surface in the limit of small and large values of the Froude number. The exact solution is presented in the form of two terms, each of which is reduced to one-dimensional integrals. One term describes the "Bernoulli hump" and another term the "Kelvin wedge." As a second example, we considered vertical oscillation of the submerged ball. In this case, the solution leads to the calculation of one-dimensional integral and describes surface waves propagating from the epicenter above the ball.

  19. Linear analysis of ion cyclotron interaction in a multicomponent plasma

    NASA Technical Reports Server (NTRS)

    Gendrin, R.; Ashour-Abdalla, M.; Omura, Y.; Quest, K.

    1984-01-01

    The mechanism by which hot anisotropic protons generate electromagnetic ion cyclotron waves in a plasma containing cold H(+) and He(+) ions is quantitatively studied. Linear growth rates (both temporal and spatial) are computed for different plasma parameters: concentration, temperature,and anisotropy of cold He(+) ions and of hot protons. It is shown that: (1) for parameters typical of the geostationary altitude the maximum growth rates are not drastically changed when a small proportion (about 1 to 20 percent) of cold He(+) ions is present; (2) because of the important cyclotron absorption by thermal He(+) ions in the vicinity of the He(+) gyrofrequency, waves which could resonate with the bulk of the He(+) distribution cannot be generated. Therefore quasi-linear effects, in a homogeneous medium at least, cannot be responsible for the heating of He(+) ions which is often observed in conjunction with ion cyclotron waves. The variation of growth rate versus wave number is also studied for its importance in selecting suitable parameters in numerical simulation experiments.

  20. Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration

    PubMed Central

    Drumm, Bernard T.; Hennig, Grant W.; Battersby, Matthew J.; Sung, Tae Sik

    2017-01-01

    Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl− channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thus, mechanisms of Ca2+ regulation in ICC are fundamental to the motor patterns of the bowel. Here, we characterize the nature of Ca2+ transients in ICC-MY within intact muscles, using mice expressing a genetically encoded Ca2+ sensor, GCaMP3, in ICC. Ca2+ transients in ICC-MY display a complex firing pattern caused by localized Ca2+ release events arising from multiple sites in cell somata and processes. Ca2+ transients are clustered within the time course of slow waves but fire asynchronously during these clusters. The durations of Ca2+ transient clusters (CTCs) correspond to slow wave durations (plateau phase). Simultaneous imaging and intracellular electrical recordings revealed that the upstroke depolarization of slow waves precedes clusters of Ca2+ transients. Summation of CTCs results in relatively uniform Ca2+ responses from one slow wave to another. These Ca2+ transients are caused by Ca2+ release from intracellular stores and depend on ryanodine receptors as well as amplification from IP3 receptors. Reduced extracellular Ca2+ concentrations and T-type Ca2+ channel blockers decreased the number of firing sites and firing probability of Ca2+ transients. In summary, the fundamental electrical events of small intestinal muscles generated by ICC-MY depend on asynchronous firing of Ca2+ transients from multiple intracellular release sites. These events are organized into clusters by Ca2+ influx through T-type Ca2+ channels to sustain activation of ANO1 channels and generate the plateau phase of slow waves. PMID:28592421

  1. Nonlinear reflection of shock shear waves in soft elastic media.

    PubMed

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  2. An upper limit on the stochastic gravitational-wave background of cosmological origin.

    PubMed

    Abbott, B P; Abbott, R; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brand, J F J van den; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Van Den Broeck, C; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J-P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; Debra, D; Degallaix, J; Del Prete, M; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J-C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J-D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gobler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Sancho de la Jordana, L; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Krishnan, B; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Laval, M; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mackowski, J-M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Mossavi, K; Mours, B; Mowlowry, C; Mueller, G; Muhammad, D; Mühlen, H Zur; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pagliaroli, G; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameshwaraiah, V; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Pichot, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Punken, O; Punturo, M; Puppo, P; Putten, S van der; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radkins, H; Raffai, P; Raics, Z; Rainer, N; Rakhmanov, M; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Rehbein, H; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Rivera, B; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Russell, P; Ryan, K; Sakata, S; Salemi, F; Sandberg, V; Sannibale, V; Santamaría, L; Saraf, S; Sarin, P; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; van der Sluys, M V; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, A; Stein, L C; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Swinkels, B L; Szokoly, G P; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Terenzi, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Ugolini, D; Ulmen, J; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; van Veggel, A A; Veitch, J; Veitch, P; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J-Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Was, M; Weidner, A; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yvert, M; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2009-08-20

    A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 x 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.

  3. Simple analytical relations for ship bow waves

    NASA Astrophysics Data System (ADS)

    Noblesse, Francis; Delhommeau, G.?Rard; Guilbaud, Michel; Hendrix, Dane; Yang, Chi

    Simple analytical relations for the bow wave generated by a ship in steady motion are given. Specifically, simple expressions that define the height of a ship bow wave, the distance between the ship stem and the crest of the bow wave, the rise of water at the stem, and the bow wave profile, explicitly and without calculations, in terms of the ship speed, draught, and waterline entrance angle, are given. Another result is a simple criterion that predicts, also directly and without calculations, when a ship in steady motion cannot generate a steady bow wave. This unsteady-flow criterion predicts that a ship with a sufficiently fine waterline, specifically with waterline entrance angle 2, may generate a steady bow wave at any speed. However, a ship with a fuller waterline (25E) can only generate a steady bow wave if the ship speed is higher than a critical speed, defined in terms of αE by a simple relation. No alternative criterion for predicting when a ship in steady motion does not generate a steady bow wave appears to exist. A simple expression for the height of an unsteady ship bow wave is also given. In spite of their remarkable simplicity, the relations for ship bow waves obtained in the study (using only rudimentary physical and mathematical considerations) are consistent with experimental measurements for a number of hull forms having non-bulbous wedge-shaped bows with small flare angle, and with the authors' measurements and observations for a rectangular flat plate towed at a yaw angle.

  4. Waiting for 21-Lutetia "Rosetta" images as a final proof of structurizing force of inertia-gravity waves

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    The 100 km long flattened asteroid 21-Lutetia will be imaged by the "Rosetta' spacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia-gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies' accelerations imply inertia-gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four directions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising strongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) makes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the essentially dichotomous simplest Plato's figure. In this polyhedron always there is an opposition of extension (a face) to contraction (a vertex). The first overtone wave2 (long πR) makes tectonic sectors, also risen and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes and is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the main sequence and the individual wave (also long 2πR) are in the strongest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - «orbits make structures». [1] Kochemasov G.G. (1999) "Diamond" and "dumb-bells"-like shapes of celestial bodies induced by inertia-gravity waves // 30th Vernadsky-Brown microsymposium on comparative planetology, Abstracts, Moscow, Vernadsky Inst., 49-50. [2] -"- (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22. [3] -"- (2006) The wave planetology illustrated - I: dichotomy, sectoring // 44th Vernadsky-Brown microsymposium "Topics in Comparative Planetology", Oct. 9-11, 2006, Moscow, Vernadsky Inst., Abstr. m44_39, CD-ROM; [4] -"- (2006) Theorems of the wave planetology imprinted in small bodies // Geophys. Res. Abstracts, Vol. 8, EGU06-A-01098, CD-ROM. [5] -"- (2007) Plato's polyhedra in space // EPSC Abstracts, Vol. 2, EPSC2007-A-00014, 2007. [6] -"-(2007) Wave shaping of small saturnian satellites and wavy granulation of saturnian rings // Geophys. Res. Abstracts, Vol. 9, EGU2007-A-01594, CD-ROM. [7] -"- (2007) Plato's polyhedra as shapes of small satellites in the outer Solar system // New Concepts in Global Tectonics Newsletter, # 44, 43-45. [8] -"- (2008) Plato' polyhedra as shapes of small icy satellites // Geophys. Res. Abstracts, Vol. 10, EGU2008-A-01271, CD-ROM. [9] -"- (2008) A wave geometrization of small heavenly bodies // GRA, Vol. 10, EGU2008-A-01275, CD-ROM.

  5. Time reversal for photoacoustic tomography based on the wave equation of Nachman, Smith, and Waag

    NASA Astrophysics Data System (ADS)

    Kowar, Richard

    2014-02-01

    One goal of photoacoustic tomography (PAT) is to estimate an initial pressure function φ from pressure data measured at a boundary surrounding the object of interest. This paper is concerned with a time reversal method for PAT that is based on the dissipative wave equation of Nachman, Smith, and Waag [J. Acoust. Soc. Am. 88, 1584 (1990), 10.1121/1.400317]. This equation is a correction of the thermoviscous wave equation such that its solution has a finite wave front speed and, in contrast, it can model several relaxation processes. In this sense, it is more accurate than the thermoviscous wave equation. For simplicity, we focus on the case of one relaxation process. We derive an exact formula for the time reversal image I, which depends on the relaxation time τ1 and the compressibility κ1 of the dissipative medium, and show I (τ1,κ1)→φ for κ1→0. This implies that I =φ holds in the dissipation-free case and that I is similar to φ for sufficiently small compressibility κ1. Moreover, we show for tissue similar to water that the small wave number approximation I0 of the time reversal image satisfies I0=η0*xφ with accent="true">η̂0(|k|)≈const. for |k|≪1/c0τ1, where φ denotes the initial pressure function. For such tissue, our theoretical analysis and numerical simulations show that the time reversal image I is very similar to the initial pressure function φ and that a resolution of σ ≈0.036mm is feasible (for exact measurement data).

  6. Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.

    2003-01-01

    For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude in the summer hemisphere to approach magnitudes as large as 50 m/s.

  7. Mapping the upper mantle beneath North American continent with joint inversion of surface-wave phase and amplitude

    NASA Astrophysics Data System (ADS)

    Yoshizawa, K.; Hamada, K.

    2017-12-01

    A new 3-D S-wave model of the North American upper mantle is constructed from a large number of inter-station phase and amplitude measurements of surface waves. A fully nonlinear waveform fitting method by Hamada and Yoshizawa (2015, GJI) is applied to USArray for measuring inter-station phase speeds and amplitude ratios of the fundamental-mode Rayleigh and Love waves. We employed the seismic events from 2007 - 2014 with Mw 6.0 or greater, and collected a large-number of inter-station phase speed data (about 130,000 for Rayleigh and 85,000 for Love waves) and amplitude ratio data (about 75,000 for Rayleigh waves) in a period range from 30 to 130 s for fundamental-mode surface waves. Typical inter-station distances are mostly in a range between 300 and 800 km, which can be of help in enhancing the lateral resolution of a regional tomography model. We first invert Rayleigh-wave phase speeds and amplitudes simultaneously for phase speed maps as well as local amplification factors at receiver locations. The isotropic 3-D S-wave model constructed from these phase speed maps incorporating both phase and amplitude data exhibits better recovery of the strength of velocity perturbations. In particular, local tectonic features characterized by strong velocity gradients, such as Rio Grande Rift, Colorado Plateau and New Madrid Seismic Zone, are more enhanced than conventional models derived from phase information only. The results indicate that surface-wave amplitude, which is sensitive to the second derivative of phase speeds, can be of great help in retrieving small-scale heterogeneity in the upper mantle. We also obtain a radial anisotropy model from the simultaneous inversions of Rayleigh and Love waves (without amplitude information). The model has shown faster SH wave speed anomalies than SV above the depth of 100 km, particularly in tectonically active regions in the western and central U.S., representing the effects of current and former tectonic processes on anisotropic properties in the continental lithosphere.

  8. A low-order model for long-range infrasound propagation in random atmospheric waveguides

    NASA Astrophysics Data System (ADS)

    Millet, C.; Lott, F.

    2014-12-01

    In numerical modeling of long-range infrasound propagation in the atmosphere, the wind and temperature profiles are usually obtained as a result of matching atmospheric models to empirical data. The atmospheric models are classically obtained from operational numerical weather prediction centers (NOAA Global Forecast System or ECMWF Integrated Forecast system) as well as atmospheric climate reanalysis activities and thus, do not explicitly resolve atmospheric gravity waves (GWs). The GWs are generally too small to be represented in Global Circulation Models, and their effects on the resolved scales need to be parameterized in order to account for fine-scale atmospheric inhomogeneities (for length scales less than 100 km). In the present approach, the sound speed profiles are considered as random functions, obtained by superimposing a stochastic GW field on the ECMWF reanalysis ERA-Interim. The spectral domain is binned by a large number of monochromatic GWs, and the breaking of each GW is treated independently from the others. The wave equation is solved using a reduced-order model, starting from the classical normal mode technique. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime (for which the coupling between the wave and the medium is weak), with a fixed number of propagating modes that can be obtained by rearranging the eigenvalues by decreasing Sobol indices. The most important feature of the stochastic approach lies in the fact that the model order (i.e. the number of relevant eigenvalues) can be computed to satisfy a given statistical accuracy whatever the frequency. As the low-order model preserves the overall structure of waveforms under sufficiently small perturbations of the profile, it can be applied to sensitivity analysis and uncertainty quantification. The gain in CPU cost provided by the low-order model is essential for extracting statistical information from simulations. The statistics of a transmitted broadband pulse are computed by decomposing the original pulse into a sum of modal pulses that propagate with different phase speeds and can be described by a front pulse stabilization theory. The method is illustrated on two large-scale infrasound calibration experiments, that were conducted at the Sayarim Military Range, Israel, in 2009 and 2011.

  9. Develop and Test Coupled Physical Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM

    DTIC Science & Technology

    2013-09-30

    Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM W. Erick Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529...Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  10. Millimeter-wave micro-Doppler measurements of small UAVs

    NASA Astrophysics Data System (ADS)

    Rahman, Samiur; Robertson, Duncan A.

    2017-05-01

    This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.

  11. Effect of reflected ions on the formation of the structure of interplanetary quasi-perpendicular shocks for Mach numbers lower than the first critical mach number

    NASA Astrophysics Data System (ADS)

    Eselevich, V. G.; Borodkova, N. L.; Sapunova, O. V.; Zastenker, G. N.; Yermolaev, Yu. I.

    2017-11-01

    Based on the data of the BMSW instrument installed on the of SPEKTR-R spacecraft, as well as according to the data of instruments of the WIND spacecraft, etc., using two examples, the paper has studied the role of ions reflected from the front and associated structural features of quasi-perpendicular interplanetary shocks (IS) with the Alfvén Mach number M A lower than the first critical Mach number M c1 . It has been shown that BSs with the finite parameter 0.1 < β1 < 1 contain a small fraction of reflected protons, which play a significant role in forming the front structure (β1 is the ratio of gas-to-magnetic pressure before the shock front). In particular, in the case of a perpendicular shock recorded on August 24, 2013 (the angle between the magnetic field direction and the normal to the front θBn ≈ 85°), an IS with a small Mach number ( M A ≈ 1.4) and small β1 ≈ 0.2 is shown that the interactions of reflected ions with inflowing solar wind may result in the collisionless heating of ions in front of and behind it. The case of the oblique (θBn = 63°) IS on April 19, 2014 with a small Mach number ( M A ≈ 1.2) and small β1 ≈ 0.5 has been investigated. It has been found that, before the front, there is a sequence of trains of magnetosonic waves, the amplitude of which decreases to zero upon increasing their distance from the front. The mechanism of their formation is associated with the development of instability caused by the ions reflected from the front.

  12. Time and space analysis of turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Mordant, Nicolas; Aubourg, Quentin; Viboud, Samuel; Sommeria, Joel

    2016-11-01

    Wave turbulence is a statistical state made of a very large number of nonlinearly interacting waves. The Weak Turbulence Theory was developed to describe such a situation in the weakly nonlinear regime. Although, oceanic data tend to be compatible with the theory, laboratory data fail to fulfill the theoretical predictions. A space-time resolved measurement of the waves have proven to be especially fruitful to identify the mechanism at play in turbulence of gravity-capillary waves. We developed an image processing algorithm to measure the motion of the surface of water with both space and time resolution. We first seed the surface with slightly buoyant polystyrene particles and use 3 cameras to reconstruct the surface. Our stereoscopic algorithm is coupled to PIV so that to obtain both the surface deformation and the velocity of the water surface. Such a coupling is shown to improve the sensitivity of the measurement by one order of magnitude. We use this technique to probe the existence of weakly nonlinear turbulence excited by two small wedge wavemakers in a 13-m diameter wave flume. We observe a truly weakly nonlinear regime of isotropic wave turbulence. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 647018-WATU).

  13. Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.

    A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.

  14. An evaluation of HEMT potential for millimeter-wave signal sources using interpolation and harmonic balance techniques

    NASA Technical Reports Server (NTRS)

    Kwon, Youngwoo; Pavlidis, Dimitris; Tutt, Marcel N.

    1991-01-01

    A large-signal analysis method based on an harmonic balance technique and a 2-D cubic spline interpolation function has been developed and applied to the prediction of InP-based HEMT oscillator performance for frequencies extending up to the submillimeter-wave range. The large-signal analysis method uses a limited number of DC and small-signal S-parameter data and allows the accurate characterization of HEMT large-signal behavior. The method has been validated experimentally using load-pull measurement. Oscillation frequency, power performance, and load requirements are discussed, with an operation capability of 300 GHz predicted using state-of-the-art devices (fmax is approximately equal to 450 GHz).

  15. Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy

    NASA Astrophysics Data System (ADS)

    Montaldo, Gabriel; Roux, Philippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias

    2002-02-01

    The building of high-power ultrasonic sources from piezoelectric ceramics is limited by the maximum voltage that the ceramics can endure. We have conceived a device that uses a small number of piezoelectric transducers fastened to a cylindrical metallic waveguide. A one-bit time- reversal operation transforms the long-lasting low-level dispersed wave forms into a sharp pulse, thus taking advantage of dispersion to generate high-power ultrasound. The pressure amplitude that is generated at the focus is found to be 15 times greater than that achieved with comparable standard techniques. Applications to lithotripsy are discussed and the destructive efficiency of the system is demonstrated on pieces of chalk.

  16. Hypersonic boundary-layer transition measurements at Mach 10 on a large seven-degree cone at angle of attack

    NASA Astrophysics Data System (ADS)

    Moraru, Ciprian G.

    The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate that freestream noise likely has a significant influence on initial second-mode amplitudes.

  17. Effect of settling particles on the stability of a particle-laden flow in a vertical plane channel

    NASA Astrophysics Data System (ADS)

    Boronin, S. A.; Osiptsov, A. N.

    2018-03-01

    The stability of a viscous particle-laden flow in a vertical plane channel in the presence of the gravity force is studied. The flow is described using a two-fluid "dusty-gas" model with negligibly small volume fraction of fines and two-way coupling of the phases. Two different profiles of the particle number density in the main flow are considered: homogeneous and non-homogeneous in the form of two layers symmetric about the channel axis. The novel element of the linear-stability problem formulation is a particle velocity slip in the main flow caused by the gravity-induced settling of the dispersed phase. The eigenvalue problem for a linearized system of governing equations is solved using the orthonormalization and QZ algorithms. For a uniform particle number density distribution, it is found that there exists a domain in the plane of Froude and Stokes numbers, in which the two-phase flow in a vertical channel is stable for an arbitrary Reynolds number. This stability domain corresponds to relatively small-inertia particles and large velocity-slip in the main flow. In contrast to the flow with a uniform particle number density distribution, the stratified dusty-gas flow in a vertical channel is unstable over a wide range of governing parameters. The instability at small Reynolds numbers is determined by the gravitational mode characterized by small wavenumbers (long-wave instability), while at larger Reynolds numbers the instability is dominated by the shear mode with the time-amplification factor larger than that of the gravitational mode. The results of the study can be used for optimization of a large number of technological processes, including those in riser reactors, pneumatic conveying in pipeline systems, hydraulic fracturing, and well cementing.

  18. Galaxy Strategy for Ligo-Virgo Gravitational Wave Counterpart Searches

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.; Kanner, Jonah; Kasliwal, Mansi M.; Nissanke, Samaya; Singer, Leo P.

    2016-01-01

    In this work we continue a line of inquiry begun in Kanner et al. which detailed a strategy for utilizing telescopes with narrow fields of view, such as the Swift X-Ray Telescope (XRT), to localize gravity wave (GW) triggers from LIGO (Laser Interferometer Gravitational-Wave Observatory) / Virgo. If one considers the brightest galaxies that produce 50 percent of the light, then the number of galaxies inside typical GW error boxes will be several tens. We have found that this result applies both in the early years of Advanced LIGO when the range is small and the error boxes large, and in the later years when the error boxes will be small and the range large. This strategy has the beneficial property of reducing the number of telescope pointings by a factor 10 to 100 compared with tiling the entire error box. Additional galaxy count reduction will come from a GW rapid distance estimate which will restrict the radial slice in search volume. Combining the bright galaxy strategy with a convolution based on anticipated GW localizations, we find that the searches can be restricted to about 18 plus or minus 5 galaxies for 2015, about 23 plus or minus 4 for 2017, and about 11 plus or minus for 2020. This assumes a distance localization at the putative neutron star-neutron star (NS-NS) merger range mu for each target year, and these totals are integrated out to the range. Integrating out to the horizon would roughly double the totals. For localizations with r (rotation) greatly less than mu the totals would decrease. The galaxy strategy we present in this work will enable numerous sensitive optical and X-ray telescopes with small fields of view to participate meaningfully in searches wherein the prospects for rapidly fading afterglow place a premium on a fast response time.

  19. Laboratory modeling of edge wave generation over a plane beach by breaking waves

    NASA Astrophysics Data System (ADS)

    Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim

    2015-04-01

    Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential growth rate index on the amplitude of surface wave is found. On the plane of parameters (amplitude - frequency) of surface wave we have found a region corresponding parametric instability leading to excitation of edge waves. It is shown that for small super criticalities, the amplitude of edge wave grows with amplitude of surface wave. For large amplitude of surface wave, wave breaking appears and parametric instability is suppressed. Such suppression of instability is caused by increasing of turbulent viscosity in near shore zone. It was shown that parametric excitation of edge wave can increase significantly (up to two times) the maximal run-up. Theoretical model is developed to explain suppression of instability due to turbulent viscosity. This theoretical model is based on nonlinear mode amplitude equation including terms responsible for parametric forcing, frequency detuning, nonlinear detuning, linear and nonlinear edge wave damping. Dependence of coefficients on turbulent viscosity is discussed.

  20. Linear mode stability of the Kerr-Newman black hole and its quasinormal modes.

    PubMed

    Dias, Óscar J C; Godazgar, Mahdi; Santos, Jorge E

    2015-04-17

    We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational ℓ=m=2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and ℓ measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with ℓ=m approach Reω=mΩH(ext) and Imω=0 at extremality; this is a universal property for any field of arbitrary spin |s|≤2 propagating on a KNBH background (ω is the wave frequency and ΩH(ext) the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement.

  1. Acoustics of swirling flow in a variable area pipe

    NASA Astrophysics Data System (ADS)

    Peake, Nigel; Cooper, Alison

    2000-11-01

    We consider the propagation of small-amplitude waves through swirling steady flow conveyed by a circular pipe whose cross-sectional area varies slowly in the axial direction. The unsteady flow is decomposed into vortical and irrotational components, and the steady vorticity means that unlike in standard rapid distortion theory these components are coupled, as in recent work by Atassi, Tam and co-workers. The coupling leads to separate families of modes, driven by compressibility or by the swirl, which must be treated separately. We consider the practically important case in which the swirl Mach numbers are comparable to those of the steady axial flow. WKB analysis is applied using ɛ, the mean axial gradient of the cylinder walls, as the small parameter. At O(1) we determine local wave numbers according to the parallel-flow theory of Atassi, while at O(ɛ) a secularity condition yields the variaition of the modal amplitudes along the axis. We demonstrate that the presence of swirl can significantly reduce the amplitude of acoustic modes in the pipe. This is of practical significnance for the prediction of noise generation by turbomachinery, since rotating blade rows can produce significant mean swirl downstream. Similar analysis for a compressible swirling jet, in which the axial variation is provided by viscous effects, will also be described.

  2. Interactions between finite amplitude small and medium-scale waves in the MLT region.

    NASA Astrophysics Data System (ADS)

    Heale, C. J.; Snively, J. B.

    2016-12-01

    Small-scale gravity waves can propagate high into the thermosphere and deposit significant momentum and energy into the background flow [e.g., Yamada et al., 2001, Fritts et al., 2014]. However, their propagation, dissipation, and spectral evolution can be significantly altered by other waves and dynamics and the nature of these complex interactions are not yet well understood. While many ray-tracing and time-dependent modeling studies have been performed to investigate interactions between waves of varying scales [e.g., Eckermann and Marks .1996, Sartelet. 2003, Liu et al. 2008, Vanderhoff et al., 2008, Senf and Achatz., 2011, Heale et al., 2015], the majority of these have considered waves of larger (tidal) scales, or have simplified one of the waves to be an imposed "background" and discount (or limit) the nonlinear feedback mechanisms between the two waves. In reality, both waves will influence each other, especially at finite amplitudes when nonlinear effects become important or dominant. We present a study of fully nonlinear interactions between small-scale 10s km, 10 min period) and medium-scale wave packets at finite amplitudes, which include feedback between the two waves and the ambient atmosphere. Time-dependence of the larger-scale wave has been identified as an important factor in reducing reflection [Heale et al., 2015] and critical level effects [Sartelet, 2003, Senf and Achatz, 2011], we choose medium-scale waves of different periods, and thus vertical scales, to investigate how this influences the propagation, filtering, and momentum and energy deposition of the small-scale waves, and in turn how these impacts affect the medium-scale waves. We also consider the observable features of these interactions in the mesosphere and lower thermosphere.

  3. Mach-like capillary-gravity wakes.

    PubMed

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  4. High Contrast Ultrafast Imaging of the Human Heart

    PubMed Central

    Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael

    2014-01-01

    Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135

  5. Heat-transfer characteristics of the R113 annular two-phase closed thermosyphon - Heat transfer in the condenser

    NASA Astrophysics Data System (ADS)

    Maezawa, Saburo; Tsuchida, Akira; Takuma, Masao

    1988-08-01

    Visual observation of flow patterns in the condenser and heat transfer measurements were conducted for heat transfer rate ranges of 18-800 W using a vertical annular device with various quantities of R113 as a working fluid. As a result of visual observations, it was shown that ripples (interfacial waves) were generated on the condensate film surface when the condensate film Reynolds number exceeded approximately 20, and the condensation heat transfer was prompted. A simple theoretical analysis was presented in which the effects of interfacial waves and vapor drag were both considered. This analysis agreed very well with experimental results when the working fluid quantity was small enough so that the two-phase mixture generated by boiling the working fluid did not reach the condenser. The effects of interfacial waves and vapor drag on condensation heat transfer were also investigated theoretically.

  6. Solar-flare-induced Forbush decreases - Dependence on shock wave geometry

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Gall, R.

    1984-01-01

    It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.

  7. Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres.

    PubMed

    Apai, D; Karalidi, T; Marley, M S; Yang, H; Flateau, D; Metchev, S; Cowan, N B; Buenzli, E; Burgasser, A J; Radigan, J; Artigau, E; Lowrance, P

    2017-08-18

    Brown dwarfs are massive analogs of extrasolar giant planets and may host types of atmospheric circulation not seen in the solar system. We analyzed a long-term Spitzer Space Telescope infrared monitoring campaign of brown dwarfs to constrain cloud cover variations over a total of 192 rotations. The infrared brightness evolution is dominated by beat patterns caused by planetary-scale wave pairs and by a small number of bright spots. The beating waves have similar amplitudes but slightly different apparent periods because of differing velocities or directions. The power spectrum of intermediate-temperature brown dwarfs resembles that of Neptune, indicating the presence of zonal temperature and wind speed variations. Our findings explain three previously puzzling behaviors seen in brown dwarf brightness variations. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Dielectric-loaded waveguide circulator for cryogenically cooled and cascaded maser waveguide structures

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Quinn, R. B. (Inventor)

    1980-01-01

    A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.

  9. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  10. Helicon wave coupling in KSTAR plasmas for off-axis current drive in high electron pressure plasmas

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Wi, H. H.; Kim, H. J.; Kim, J.; Jeong, J. H.; Kwak, J. G.

    2017-04-01

    A helicon wave current drive is proposed as an efficient off-axis current drive in the high electron β plasmas that are expected in fusion reactors. A high frequency helicon wave coupling was analyzed using the surface impedance at a plasma boundary. A slow wave coupling, which may compete with the helicon wave coupling at a frequency of 500 MHz, is estimated to be lower than the fast wave coupling by an order of magnitude in the KSTAR edge plasma density and in practical Faraday shield misalignment with the magnetic pitch. A traveling wave antenna, which is a two port combline antenna, was analyzed using a simplified lumped element model. The results show that the traveling wave antenna provides load resiliency because of its insensitivity to loading resistance, provided that the loading resistance at a radiating element is limited within a practical range. The combline antenna is attractive because it does not require a matching system and exhibits a high selectivity of parallel refractive index. Based on the analysis, a seven element combline antenna was fabricated and installed at an off-mid-plane offset of 30 cm from the mid-plane in KSTAR. The low power RF characteristics measured during several plasma discharges showed no evidence of slow wave coupling. This is consistent with the expectation made through the surface impedance analysis which predicted low slow wave coupling. The wave coupling to the plasma is easily controlled by a radial outer-gap control and gas puffing. No plasma confinement degradation was observed during the radial outer-gap control of up to 3 cm in H-mode discharges. In a ELMy plasmas, only a small reflection peak was observed during a very short portion of the ELM bursting period. If the number of radiating elements is increased for high power operation, then complete load resiliency can be expected. A very large coupling can be problematic for maintaining a parallel refractive index, although this issue can be mitigated by increasing the number of elements.

  11. Propagation of large-amplitude waves on dielectric liquid sheets in a tangential electric field: exact solutions in three-dimensional geometry.

    PubMed

    Zubarev, Nikolay M; Zubareva, Olga V

    2010-10-01

    Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.

  12. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part I: Gravity Wave Forcing.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.

  13. Shear wave anisotropy from aligned inclusions: ultrasonic frequency dependence of velocity and attenuation

    NASA Astrophysics Data System (ADS)

    de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.

    2013-04-01

    To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.

  14. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity

    PubMed Central

    Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P

    2013-01-01

    Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749

  15. Sound waves in hadronic matter

    NASA Astrophysics Data System (ADS)

    Wilk, Grzegorz; Włodarczyk, Zbigniew

    2018-01-01

    We argue that recent high energy CERN LHC experiments on transverse momenta distributions of produced particles provide us new, so far unnoticed and not fully appreciated, information on the underlying production processes. To this end we concentrate on the small (but persistent) log-periodic oscillations decorating the observed pT spectra and visible in the measured ratios R = σdata(pT) / σfit (pT). Because such spectra are described by quasi-power-like formulas characterised by two parameters: the power index n and scale parameter T (usually identified with temperature T), the observed logperiodic behaviour of the ratios R can originate either from suitable modifications of n or T (or both, but such a possibility is not discussed). In the first case n becomes a complex number and this can be related to scale invariance in the system, in the second the scale parameter T exhibits itself log-periodic oscillations which can be interpreted as the presence of some kind of sound waves forming in the collision system during the collision process, the wave number of which has a so-called self similar solution of the second kind. Because the first case was already widely discussed we concentrate on the second one and on its possible experimental consequences.

  16. Wave propagation in elastic and damped structures with stabilized negative-stiffness components

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    2017-09-01

    Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.

  17. Acoustic device and method for measuring gas densities

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor); Back, Lloyd (Inventor)

    1992-01-01

    Density measurements can be made in a gas contained in a flow through enclosure by measuring the sound pressure level at a receiver or microphone located near a dipole sound source which is driven at constant velocity amplitude at low frequencies. Analytical results, which are provided in terms of geometrical parameters, wave numbers, and sound source type for systems of this invention, agree well with published data. The relatively simple designs feature a transmitter transducer at the closed end of a small tube and a receiver transducer on the circumference of the small tube located a small distance away from the transmitter. The transmitter should be a dipole operated at low frequency with the kL value preferable less that about 0.3.

  18. Three-Dimensional Structure of the Circulation Induced by a Shoaling Topographic Wave

    NASA Astrophysics Data System (ADS)

    Mizuta, G.; Hogg, N. G.

    2003-12-01

    Rectification of Rossby wave energy has been proposed as a mechanism for the maintenance of the recirculation cell of the Gulf Stream (Hogg 1988; Rizzoli et al. 1995). We investigated the three-dimensional structure of potential-vorticity flux and a mean flow induced by a topographic wave incident over a bottom slope analytically and numerically, focusing on the limit that bottom friction is the dominant dissipation process. In this limit it is shown that the topographic wave cannot be a steady source of the potential vorticity outside the bottom Ekman layer. Instead, the distribution of potential vorticity is determined from the initial transient of the topographic wave. This potential vorticity and the heat flux by the topographic wave at the bottom determine the mean flow, and give a relation between the horizontal and vertical scales of the mean flow. When the horizontal scale of the mean flow is larger than the internal deformation radius, the mean flow is almost constant with depth independent of whether or not the topographic wave is trapped near the bottom. Then the mean flow at the bottom is proportional to the divergence of vertically integrated Reynolds stress ∫ -D0 /line{u'v'} dz. This divergence, which is caused by bottom friction, is large when the group velocity, cg and the vertical scale, μ -1 of the wave motion are small. Thus the mean flow tends to be large where cg and μ -1 become small, and decreases as the topographic wave is dissipated by bottom friction. Since bottom friction also dissipates the mean flow, the mean flow asymptotes to a constant value as the friction becomes zero. These features of the potential-vorticity flux and the mean flow are reproduced in numerical experiments. It is also shown from the numerical experiment that the distribution of the mean flow depends on the amplitude of the wave because of the Doppler shift of the wave by the mean flow. These feature of the mean flow are preserved when we used stratification and bottom topography resembling to those over the continental slope near the Gulf Stream. The transport of the mean flow is about 20 Sv when the wave amplitude is about 2 cm/s. These numbers are similiar to those observed in the Gulf Stream region.

  19. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2015-03-07

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  20. Effects of wave energy converters on the surrounding soft-bottom macrofauna (west coast of Sweden).

    PubMed

    Langhamer, O

    2010-06-01

    Offshore wave energy conversion is expected to develop, thus contributing to an increase in submerged constructions on the seabed. An essential concern related to the deployment of wave energy converters (WECs) is their possible impact on the surrounding soft-bottom habitats. In this study, the macrofaunal assemblages in the seabed around the wave energy converters in the Lysekil research site on the Swedish west coast and a neighbouring reference site were examined yearly during a period of 5 years (2004-2008). Macrobenthic communities living in the WECs' surrounding seabed were mainly composed by organisms typical for the area and depth off the Swedish west coast. At both sites the number of individuals, number of species and biodiversity were low, and were mostly small, juvenile organisms. The species assemblages during the first years of sampling were significantly different between the Lysekil research site and the nearby reference site with higher species abundance in the research site. The high contribution to dissimilarities was mostly due to polychaetes. Sparse macrofaunal densities can be explained by strong hydrodynamic forces and/or earlier trawling. WECs may alter the surrounding seabed with an accumulation of organic matter inside the research area. This indicates that the deployment of WECs in the Lysekil research site tends to have rather minor direct ecological impacts on the surrounding benthic community relative to the natural high variances.

  1. Seismic imaging of Q structures by a trans-dimensional coda-wave analysis

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu

    2017-04-01

    Wave scattering and intrinsic attenuation are important processes to describe incoherent and complex wave trains of high frequency seismic wave (>1Hz). The multiple lapse time window analysis (MLTWA) has been used to estimate scattering and intrinsic Q values by assuming constant Q in a study area (e.g., Hoshiba 1993). This study generalizes this MLTWA to estimate lateral variations of Q values under the Bayesian framework in dimension variable space. Study area is partitioned into small areas by means of the Voronoi tessellation. Scattering and intrinsic Q in each small area are constant. We define a misfit function for spatiotemporal variations of wave energy as with the original MLTWA, and maximize the posterior probability with changing not only Q values but the number and spatial layout of the Voronoi cells. This maximization is conducted by means of the reversible jump Markov chain Monte Carlo (rjMCMC) (Green 1995) since the number of unknown parameters (i.e., dimension of posterior probability) is variable. After a convergence to the maximum posterior, we estimate Q structures from the ensemble averages of MCMC samples around the maximum posterior probability. Synthetic tests showed stable reconstructions of input structures with reasonable error distributions. We applied this method for seismic waveform data recorded by ocean bottom seismograms at the outer-rise area off Tohoku, and estimated Q values at 4-8Hz, 8-16Hz and 16-32Hz. Intrinsic Q are nearly constant at all frequency bands, and scattering Q shows two distinct strong scattering regions at petit spot area and high seismicity area. These strong scattering are probably related to magma inclusions and fractured structure, respectively. Difference between these two areas becomes clear at high frequencies. It means that scale dependences of inhomogeneities or smaller scale inhomogeneity is important to discuss medium property and origins of structural variations. While the generalized MLTWA is based on a classical waveform modeling in constant Q medium, this method can be a fundamental basis for Q structure imaging in the crust.

  2. Low-drag events in transitional wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  3. Comment on "the one dimensional acoustic field with arbitrary mean axial temperature gradient and mean flow" (J.Li and A.S.Morgans, Journal of Sound and Vibration 400 (2017) 248-269)

    NASA Astrophysics Data System (ADS)

    Dokumaci, Erkan

    2017-12-01

    In a recent study, Li and Morgans [1] present an ingenious WKB approximation for the acoustic plane wave field in a straight uniform duct with mean temperature gradient and mean flow. The authors state that the previous solutions are limited to small linear mean temperature gradients and low mean flow Mach numbers and claim that their solution applies for arbitrary mean temperature profiles and moderate-to-large mean flow velocity Mach numbers at both low and high frequencies.

  4. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE PAGES

    Harrison, Neil

    2016-08-16

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  5. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Neil

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  6. Chemical Bonding: The Orthogonal Valence-Bond View

    PubMed Central

    Sax, Alexander F.

    2015-01-01

    Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476

  7. Finite-Difference Modeling of Seismic Wave Scattering in 3D Heterogeneous Media: Generation of Tangential Motion from an Explosion Source

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Pitarka, A.; Mellors, R. J.

    2015-12-01

    Evan Hirakawa, Arben Pitarka, and Robert Mellors One challenging task in explosion seismology is development of physical models for explaining the generation of S-waves during underground explosions. Pitarka et al. (2015) used finite difference simulations of SPE-3 (part of Source Physics Experiment, SPE, an ongoing series of underground chemical explosions at the Nevada National Security Site) and found that while a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography are necessary to better match the data. Large-scale features in the velocity model used in the SPE simulations are well constrained, however, small-scale heterogeneity is poorly constrained. In our study we used a stochastic representation of small-scale variability in order to produce additional high-frequency scattering. Two methods for generating the distributions of random scatterers are tested. The first is done in the spatial domain by essentially smoothing a set of random numbers over an ellipsoidal volume using a Gaussian weighting function. The second method consists of filtering a set of random numbers in the wavenumber domain to obtain a set of heterogeneities with a desired statistical distribution (Frankel and Clayton, 1986). This method is capable of generating distributions with either Gaussian or von Karman autocorrelation functions. The key parameters that affect scattering are the correlation length, the standard deviation of velocity for the heterogeneities, and the Hurst exponent, which is only present in the von Karman media. Overall, we find that shorter correlation lengths as well as higher standard deviations result in increased tangential motion in the frequency band of interest (0 - 10 Hz). This occurs partially through S-wave refraction, but mostly by P-S and Rg-S waves conversions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  8. Nonequilibrium, large-amplitude MHD fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron; Wiltberger, Michael J.

    1995-01-01

    Compressible MHD simulations in one dimension with three-dimensional vectors are used to investigate a number of processes relevant to problems in interplanetary physics. The simulations indicate that a large-amplitude nonequilibrium (e.g., linearly polarized) Alfvenic wave, which always starts with small relative fluctuations in the magnitude B of the magnetic field, typically evolves to flatten the magnetic profile in most regions. Under a wide variety of conditions B and the density rho become anticorrelated on average. If the mean magnetic field is allowed to decrease in time, the point where the transverse magnetic fluctuation amplitude delta B(sub T) is greater than the mean field B(sub 0) is not special, and large values of delta B(sub T)/B(sub 0) do not cause the compressive thermal energy to increase remarkably or the wave energy to dissipate at an unusually high rate. Nor does the 'backscatter' of the waves that occurs when the sound speed is less than the Alfven speed result, in itself, in substantial energy dissipation, but rather primarily in a phase change between the magnetic and velocity fields. For isolated wave packets the backscatter does not occur for any of the parameters examined; an initial radiation of acoustic waves away from the packet establishes a stable traveling structure. Thus these simulations, although greatly idealized compared to reality, suggest a picture in which the interplanetary fluctuations should have small deltaB and increasingly quasi-pressure balanced compressive fluctuations, as observed, and in which the dissipation and 'saturation' at delta B(sub T)/B(sub 0) approximately = 1 required by some theories of wave acceleration of the solar wind do not occur. The simulations also provide simple ways to understand the processes of nonlinear steepening and backscattering of Alfven waves and demonstrate the existence of previously unreported types of quasi-steady MHD states.

  9. Experiment to investigate current drive by fast Alfven waves in a small tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gahl, J.; Ishihara, O.; Wong, K.

    1985-07-01

    An experiment has been carried out to study current generation by Doppler shifted cyclotron resonance heating of minority ions with a unidirectional wave in the small tokamak at Texas Tech University. One of the objectives of the experiment is to understand in detail the wave-particle interactions through which fast (compressional) Alfven waves in the ion cyclotron range of frequencies drive currents in toroidal devices.

  10. Anticorrelation of X-ray bright points with sunspot number, 1970-1978

    NASA Technical Reports Server (NTRS)

    Golub, L.; Davis, J. M.; Krieger, A. S.

    1979-01-01

    Soft X-ray observations of the solar corona over the period 1970-1978 show that the number of small short-lived bipolar magnetic features (X-ray bright points) varies inversely with the sunspot index. During the entire period from 1973 to 1978 most of the magnetic flux emerging at the solar surface appeared in the form of bright points. In 1970, near the peak of solar cycle 20, the contributions from bright points and from active regions appear to be approximately equal. These observations strongly support an earlier suggestion that the solar cycle may be characterized as an oscillator in wave-number space with relatively little variation in the average total rate of flux emergence.

  11. On the nonlinear interaction of Goertler vortices and Tollmien-Schlichting waves in curved channel flows at finite Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Daudpota, Q. Isa; Zang, Thomas A.; Hall, Philip

    1988-01-01

    The flow in a two-dimensional curved channel driven by an azimuthal pressure gradient can become linearly unstable due to axisymmetric perturbations and/or nonaxisymmetric perturbations depending on the curvature of the channel and the Reynolds number. For a particular small value of curvature, the critical neighborhood of this curvature value and critical Reynolds number, nonlinear interactions occur between these perturbations. The Stuart-Watson approach is used to derive two coupled Landau equations for the amplitudes of these perturbations. The stability of the various possible states of these perturbations is shown through bifurcation diagrams. Emphasis is given to those cases which have relevance to external flows.

  12. On the nonlinear interaction of Gortler vortices and Tollmien-Schlichting waves in curved channel flows at finite Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Daudpota, Q. Isa; Hall, Philip; Zang, Thomas A.

    1987-01-01

    The flow in a two-dimensional curved channel driven by an azimuthal pressure gradient can become linearly unstable due to axisymmetric perturbations and/or nonaxisymmetric perturbations depending on the curvature of the channel and the Reynolds number. For a particular small value of curvature, the critical neighborhood of this curvature value and critical Reynolds number, nonlinear interactions occur between these perturbations. The Stuart-Watson approach is used to derive two coupled Landau equations for the amplitudes of these perturbations. The stability of the various possible states of these perturbations is shown through bifurcation diagrams. Emphasis is given to those cases which have relevance to external flows.

  13. Pressure-distribution measurements on a transonic low-aspect ratio wing

    NASA Technical Reports Server (NTRS)

    Keener, E. R.

    1985-01-01

    Experimental surface pressure distributions and oil flow photographs are presented for a 0.90 m semispan model of NASA/Lockheed Wing C, a generic transonic, supercritical, low aspect ratio, highly 3-dimensional configuration. This wing was tested at the design angle of attack of 5 deg over a Mach number range from 0.25 to 0.96, and a Reynolds number range from 3.4 x 1,000,000 to 10 x 1,000,000. Pressures were measured with both the tunnel floor and ceiling suction slots open for most of the tests but taped closed for some tests to simulate solid walls. A comparison is made with the measured pressures from a small model in high Reynolds number facility and with predicted pressures using two three dimesional, transonic full potential flow wing codes: design code FLO22 (nonconservative) and TWING code (conservative). At the given design condition, a small region of flow separation occurred. At a Mach number of 0.82 the flow was unseparated and the surface flow angles were less than 10 deg, indicating that the boundary layer flow was not 3-D. Evidence indicate that wings that are optimized for mild shock waves and mild pressure recovery gradients generally have small 3-D boundary layer flow at design conditions for unseparated flow.

  14. An immersed boundary method for direct and large eddy simulation of stratified flows in complex geometry

    NASA Astrophysics Data System (ADS)

    Rapaka, Narsimha R.; Sarkar, Sutanu

    2016-10-01

    A sharp-interface Immersed Boundary Method (IBM) is developed to simulate density-stratified turbulent flows in complex geometry using a Cartesian grid. The basic numerical scheme corresponds to a central second-order finite difference method, third-order Runge-Kutta integration in time for the advective terms and an alternating direction implicit (ADI) scheme for the viscous and diffusive terms. The solver developed here allows for both direct numerical simulation (DNS) and large eddy simulation (LES) approaches. Methods to enhance the mass conservation and numerical stability of the solver to simulate high Reynolds number flows are discussed. Convergence with second-order accuracy is demonstrated in flow past a cylinder. The solver is validated against past laboratory and numerical results in flow past a sphere, and in channel flow with and without stratification. Since topographically generated internal waves are believed to result in a substantial fraction of turbulent mixing in the ocean, we are motivated to examine oscillating tidal flow over a triangular obstacle to assess the ability of this computational model to represent nonlinear internal waves and turbulence. Results in laboratory-scale (order of few meters) simulations show that the wave energy flux, mean flow properties and turbulent kinetic energy agree well with our previous results obtained using a body-fitted grid (BFG). The deviation of IBM results from BFG results is found to increase with increasing nonlinearity in the wave field that is associated with either increasing steepness of the topography relative to the internal wave propagation angle or with the amplitude of the oscillatory forcing. LES is performed on a large scale ridge, of the order of few kilometers in length, that has the same geometrical shape and same non-dimensional values for the governing flow and environmental parameters as the laboratory-scale topography, but significantly larger Reynolds number. A non-linear drag law is utilized in the large-scale application to parameterize turbulent losses due to bottom friction at high Reynolds number. The large scale problem exhibits qualitatively similar behavior to the laboratory scale problem with some differences: slightly larger intensification of the boundary flow and somewhat higher non-dimensional values for the energy fluxed away by the internal wave field. The phasing of wave breaking and turbulence exhibits little difference between small-scale and large-scale obstacles as long as the important non-dimensional parameters are kept the same. We conclude that IBM is a viable approach to the simulation of internal waves and turbulence in high Reynolds number stratified flows over topography.

  15. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    NASA Astrophysics Data System (ADS)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  16. Application of the Solubility Parameter Concept to the Design of Chemiresistor Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, M.P.; Hughes, R.C.; Jenkins, M.W.

    1999-01-11

    Arrays of unheated chemically sensitive resistors (chemiresistors) can serve as extremely small, low-power-consumption sensors with simple read-out electronics. We report here results on carbon-loaded polymer composites, as well as polymeric ionic conductors, as chemiresistor sensors. We use the volubility parameter concept to understand and categorize the chemiresistor responses and, in particular, we compare chemiresistors fabricated from polyisobutylene (PIB) to results from PIB-coated acoustic wave sensors. One goal is to examine the possibility that a small number of diverse chemiresistors can sense all possible solvents-the "Universal Solvent Sensor Array". keywords: chemiresistor, volubility parameter, chemical sensor

  17. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  18. MESSENGER Observations of ULF Waves in Mercury's Foreshock Region

    NASA Technical Reports Server (NTRS)

    Le, Guan; Chi, Peter J.; Bardsen, Scott; Blanco-Cano, Xochitl; Slavin, James A.; Korth, Haje

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth s is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury s bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury s foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury s foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the 1-Hz waves in the Earth s foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth s foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  19. a Study of Ultrasonic Wave Propagation Through Parallel Arrays of Immersed Tubes

    NASA Astrophysics Data System (ADS)

    Cocker, R. P.; Challis, R. E.

    1996-06-01

    Tubular array structures are a very common component in industrial heat exchanging plant and the non-destructive testing of these arrays is essential. Acoustic methods using microphones or ultrasound are attractive but require a thorough understanding of the acoustic properties of tube arrays. This paper details the development and testing of a small-scale physical model of a tube array to verify the predictions of a theoretical model for acoustic propagation through tube arrays developed by Heckl, Mulholland, and Huang [1-5] as a basis for the consideration of small-scale physical models in the development of non-destructive testing procedures for tube arrays. Their model predicts transmission spectra for plane waves incident on an array of tubes arranged in straight rows. Relative transmission is frequency dependent with bands of high and low attenuation caused by resonances within individual tubes and between tubes in the array. As the number of rows in the array increases the relative transmission spectrum becomes more complex, with increasingly well-defined bands of high and low attenuation. Diffraction of acoustic waves with wavelengths less than the tube spacing is predicted and appears as step reductions in the transmission spectrum at frequencies corresponding to integer multiples of the tube spacing. Experiments with the physical model confirm the principle features of the theoretical treatment.

  20. Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves

    NASA Astrophysics Data System (ADS)

    Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent

    2018-03-01

    Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.

  1. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. High speed point derivative microseismic detector

    DOEpatents

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    1998-06-30

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

  3. High speed point derivative microseismic detector

    DOEpatents

    Uhl, James Eugene; Warpinski, Norman Raymond; Whetten, Ernest Blayne

    1998-01-01

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

  4. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Ngo, H. D.

    1990-01-01

    This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.

  5. Aeronautical Knowledge (Selected Articles),

    DTIC Science & Technology

    1983-04-11

    distribution unlimited. THIS TRANSLATION IS A RENDITION OF THE ORIGI. NAL FOREIGN TEXT WITH4OUT ANY ANALYTICAL ORt EDITORIAL COMMENT. STATEMENTS ORt THEORIES...An operator busily touched a row of milky white switches on a computer . Groups of vermilion number codes incessantly flickered on a light blue display...On a Surface Observation Ship in the Launch Sea Area Blue sky and azure sea with light breeze and small waves were scenes of the launch sea area. In

  6. [Renal hematomas after extracorporeal shock-wave lithotripsy (ESWL)].

    PubMed

    Pastor Navarro, Héctor; Carrión López, Pedro; Martínez Ruiz, Jesús; Pastor Guzmán, José Ma; Martínez Martín, Mariano; Virseda Rodríguez, Julio A

    2009-03-01

    The use of fragmentation due to shock- waves as a treatment of urinary stone was one of the most important therapeutics findings in the history of urology. It's the first election treatment for most of the calculus at renal and urethral location due to the fact that it is a low invasive treatment and it has a few number of complications, but this method also has a few negative side effects, it can caused a more or less important traumatic lesion at the organs which crosses the shock-waves, including the kidney where it can caused a small contusion or renal hematoma with different resolution and treatment. We reviewed 4815 extracorporeal shock-wave lithotripsy that we performed in our department in which we found six cases with subcapsular and perirenal hematoma which we followed up and treated. After the urological complications (pain, obstruction and infection) the renal and perirenal hematic collections are the most frequent adverse effects of shock-waves used in lithotripsy, these are related to the power of energy used and patient age. Between the years 1992-2007 we performed 4.815 extracorporeal shock-wave lithotripsy finding seven cases of severe hematoma, less then 1%. Treatment of these complications is usually not aggressive though sometimes it is necessary to perform surgical drainage and even nephrectomy.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silin, D.; Goloshubin, G.

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients ofmore » the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.« less

  8. Rod-cone interaction in light adaptation

    PubMed Central

    Latch, M.; Lennie, P.

    1977-01-01

    1. The increment-threshold for a small test spot in the peripheral visual field was measured against backgrounds that were red or blue. 2. When the background was a large uniform field, threshold over most of the scotopic range depended exactly upon the background's effect upon rods. This confirms Flamant & Stiles (1948). But when the background was small, threshold was elevated more by a long wave-length than a short wave-length background equated for its effect on rods. 3. The influence of cones was explored in a further experiment. The scotopic increment-threshold was established for a short wave-length test spot on a large, short wave-length background. Then a steady red circular patch, conspicuous to cones, but below the increment-threshold for rod vision, was added to the background. When it was small, but not when it was large, this patch substantially raised the threshold for the test. 4. When a similar experiment was made using, instead of a red patch, a short wave-length one that was conspicuous in rod vision, threshold varied similarly with patch size. These results support the notion that the influence of small backgrounds arises in some size-selective mechanism that is indifferent to the receptor system in which visual signals originate. Two corollaries of this hypothesis were tested in further experiments. 5. A small patch was chosen so as to lift scotopic threshold substantially above its level on a uniform field. This threshold elevation persisted for minutes after extinction of the patch, but only when the patch was small. A large patch made bright enough to elevate threshold by as much as the small one gave rise to no corresponding after-effect. 6. Increment-thresholds for a small red test spot, detected through cones, followed the same course whether a large uniform background was long- or short wave-length. When the background was small, threshold upon the short wave-length one began to rise for much lower levels of background illumination, suggesting the influence of rods. This was confirmed by repeating the experiment after a strong bleach when the cones, but not rods, had fully recovered their sensitivity. Increment-thresholds upon small backgrounds of long or short wave-lengths then followed the same course. PMID:894602

  9. Unpinning of spiral waves from rectangular obstacles by stimulated wave trains

    NASA Astrophysics Data System (ADS)

    Ponboonjaroenchai, Benjamas; Srithamma, Panatda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn

    2017-09-01

    Pinned spiral waves are exhibited in many excitable media. In cardiology, lengthened tachycardia correspond to propagating action potential in forms of spiral waves pinned to anatomical obstacles including veins and scares. Thus, elimination such waves is important particularly in medical treatments. We present study of unpinning of a spiral wave by a wave train initiated by periodic stimuli at a given location. The spiral wave is forced to leave the rectangular obstacle when the period of the wave train is shorter than a threshold Tunpin. For small obstacles, Tunpin decreases when the obstacle size is increased. Furthermore, Tunpin depends on the obstacle orientation with respect to the wave train propagation. For large obstacles, Tunpin is independent to the obstacle size. It implies that the orientation of the obstacle plays an important role in the unpinning of the spiral wave, especially for small rectangular obstacles.

  10. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    The small scale ocean-atmosphere interaction at the water-air interface is one of the most important factors determining the processes of heat, mass, and energy exchange in the boundary layers of both geospheres. Another important aspect of the air-sea interaction is excitation of surface waves. One of the most debated open questions of wave modeling is concerned with the wind input in the wave field, especially for the case of steep and breaking waves. Two physical mechanisms are suggested to describe the excitation of finite amplitude waves. The first one is based on the treatment of the wind-wave interaction in quasi-linear approximation in the frameworks of semi-empirical models of turbulence of the low atmospheric boundary layer. An alternative mechanism is associated with separation of wind flow at the crests of the surface waves. The "separating" and "non-separating" mechanisms of wave generation lead to different dependences of the wind growth rate on the wave steepness: the latter predicts a decrease in the increment with wave steepness, and the former - an increase. In this paper the mechanism of the wind-wave interaction is investigated basing on physical and numerical experiments. In the physical experiment, turbulent airflow over waves was studied using the video-PIV method, based on the application of high-speed video photography. Alternatively to the classical PIV technique this approach provides the statistical ensembles of realizations of instantaneous velocity fields. Experiments were performed in a round wind-wave channel at Institute of Applied Physics, Russian Academy of Sciences. A fan generated the airflow with the centerline velocity 4 m/s. The surface waves were generated by a programmed wave-maker at the frequency of 2.5 Hz with the amplitudes of 0.65 cm, 1.4 cm, and 2 cm. The working area (27.4 × 10.7 cm2) was at a distance of 3 m from the fan. To perform the measurements of the instantaneous velocity fields, spherical polyamide particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the wave slope was retrieved from the DNS results. Similar to the physical experiment the wave growth rate weakly decreased with the wave steepness. The results of physical and numerical experiments were compared with the calculations within the theoretical model of a turbulent boundary layer based on the system of Reynolds equations with the first-order closing hypothesis. Within the model the wind-wave interaction is considered within the quasi-linear approximation and the mean airflow over waves within the model is treated as a non-separated. The calculations within the model represents well profiles of the mean wind velocity, turbulent stress, amplitude and phase of the main harmonics of the wave-induced velocity components and also wave-induced pressure fluctuations and wind wave growth rate obtained both in the physical experiment and DNS. Applicability of the non-separating quasi-linear theory for description of average fields in the airflow over steep and even breaking waves, when the effect of separation is manifested in the instantaneous flow images, can possibly be explained qualitatively by the strongly non-stationary character of the separation process with the typical time being much less than the wave period, and by the small scale of flow heterogeneity in the area of separation. In such a situation small-scale vortices produced within the separation bubble affect the mean flow and wind-induced disturbances as eddy viscosity. Then, the flow turbulence affects the averaged fields as a very viscous fluid, where the effective Reynolds number for the average fields determined by the eddy viscosity was small even for steep waves. It follows from this assumption that strongly nonlinear effects, such as flow separations should not be expected in the flow averaged over turbulent fluctuations, and the main harmonics of the wave-induced disturbances of the averaged flow, which determine the energy flux to surface waves, can be described in the weakly-nonlinear approximation. This paper was supported by a grant from the Government of the Russian Federation under Contract no. 11.G34.31.0048; the European Research Council Advanced Grant, FP7-IDEAS, 227915; RFBF grant 13-05-00865-а, 13-05-12093-ofi-m,15-05-91767.

  11. Dynamics of the axisymmetric core-annular flow. II. The less viscous fluid in the core, saw tooth waves

    NASA Astrophysics Data System (ADS)

    Kouris, Charalampos; Tsamopoulos, John

    2002-03-01

    The nonlinear dynamics of the concentric, two-phase flow of two immiscible fluids in a circular tube is studied when the viscosity ratio of the fluid in the annulus to that in the core of the tube, μ, is larger than or equal to unity. For these values of the viscosity ratio the perfect core-annular flow (CAF) is linearly unstable and it is necessary to keep the ratio of the thickness of the annulus to the radius of the tube small so that the solutions remain uniformly bounded. The simulations are based on a pseudospectral numerical method while special care has been taken in order to minimize as far as possible the effect of the boundary conditions imposed in the axial direction allowing for multiple waves of different lengths to develop and interact. The time integration originates with the analytical solution for the pressure driven, perfect CAF or the perfect CAF seeded with either the most unstable mode or random disturbances. Quite regular wave patterns are predicted in the first two cases, whereas multiple unstable modes grow and remain even after saturation of the instability in the last case. The resulting waves generally travel in the same direction and faster than the undisturbed interface, except for the case with μ=1 for which they are stationary with respect to it. Depending on parameter values, waves move with the same velocity or interact with each other exchanging their amplitudes or merge and split giving rise to either chaotic or organized solutions. For fluids of equal viscosities and densities (μ=ρ=1) and for a Reynolds number, Re(≡Λρ̂1R̂2Ŵ0/μ̂1)=0.0275 and an inverse Weber number, W(≡T̂/(ρ̂1Ŵ02R̂2))=145.4, both based on the properties of the inner fluid, the tube radius, R̂2, and the average flow velocity, Ŵ0, small amplitude waves are predicted. The increase of μ by almost two orders of magnitude does not affect their amplitudes, but increases their temporal period linearly. Varying W by more than three orders of magnitude increases their amplitudes proportionately, while their period increases with the logarithm of W. Similar to that is the effect of increasing Re. The present analysis confirms and extends results based on long wave expansions, which lead to the Kuramoto-Sivashinsky equation and modifications of it.

  12. Source phase shift - A new phenomenon in wave propagation due to anelasticity. [in free oscillations of earth model

    NASA Technical Reports Server (NTRS)

    Buland, R.; Yuen, D. A.; Konstanty, K.; Widmer, R.

    1985-01-01

    The free oscillations of an anelastic earth model due to earthquakes were calculated directly by means of the correspondence principle from wave propagation theory. The formulation made it possible to find the source phase which is not predictable using first order perturbation theory. The predicted source phase was largest for toroidal modes with source components proportional to the radial strain scalar instead of the radial displacement scalar. The source phase increased in relation to the overtone number. In addition, large relative differences were found in the excitation modulus and the phase when the elastic excitation was small. The effect was sufficient to bias estimates of source properties and elastic structure.

  13. Upper mantle P velocity structure beneath the Baikal Rift from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Brazier, Richard A.; Nyblade, Andrew A.

    2003-02-01

    Uppermost mantle P wave velocity structure beneath the Baikal rift and southern margin of the Siberian Platform has been investigated by using a grid search method to model Pnl waveforms from two moderate earthquakes recorded by station TLY at the southwestern end of Lake Baikal. The results yielded a limited number of successful models which indicate the presence of upper mantle P wave velocities beneath the rift axis and the margin of the platform that are 2-5% lower than expected. The magnitude of the velocity anomalies and their location support the presence of a thermal anomaly that extends laterally beyond the rift proper, possibly created by small-scale convection or a plume-like, thermal upwelling.

  14. Black Hole Coalescence: The Gravitational Wave Driven Phase

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2011-01-01

    When two supermassive black holes (SMBHS) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.

  15. High-frequency lunar teleseismic events

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.; Latham, G.

    1974-01-01

    A small number of seismic signals, including some of the strongest observed to date, have been identified as representing a fourth principal category of natural lunar seismic events with characteristics distinct from those produced by normal meteoroid impacts, deep moonquakes, and thermal moonquakes. These signals are much richer in high frequencies than other events observed at comparable distances, and display relatively impulsive P- and S-wave beginnings, indicating negligible seismic-wave scattering near the source. Source depths of these events may range between 0 and perhaps 300 km. These and other characteristics could represent either (1) meteoroids impacting upon outcrops of competent lunar crystal rock, (2) rare impacting objects that penetrate to competent rock below a scattering zone, or (3) shallow tectonic moonquakes.

  16. Trapped electron losses by interactions with coherent VLF waves

    NASA Astrophysics Data System (ADS)

    Walt, M.; Inan, U. S.; Voss, H. D.

    1996-07-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population.

  17. Almost analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2017-11-01

    We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).

  18. Rings and Waves

    NASA Image and Video Library

    2013-09-30

    Saturn A ring is decorated with several kinds of waves. NASA Cassini spacecraft has captured a host of density waves, a bending wave, and the edge waves on the edge of the Keeler gap caused by the small moon Daphnis.

  19. Solving the relativistic inverse stellar problem through gravitational waves observation of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Abdelsalhin, Tiziano; Maselli, Andrea; Ferrari, Valeria

    2018-04-01

    The LIGO/Virgo Collaboration has recently announced the direct detection of gravitational waves emitted in the coalescence of a neutron star binary. This discovery allows, for the first time, to set new constraints on the behavior of matter at supranuclear density, complementary with those coming from astrophysical observations in the electromagnetic band. In this paper we demonstrate the feasibility of using gravitational signals to solve the relativistic inverse stellar problem, i.e., to reconstruct the parameters of the equation of state (EoS) from measurements of the stellar mass and tidal Love number. We perform Bayesian inference of mock data, based on different models of the star internal composition, modeled through piecewise polytropes. Our analysis shows that the detection of a small number of sources by a network of advanced interferometers would allow to put accurate bounds on the EoS parameters, and to perform a model selection among the realistic equations of state proposed in the literature.

  20. Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Steinbock, Oliver

    2016-05-01

    Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.

  1. Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate

    NASA Astrophysics Data System (ADS)

    Issokolo, Remi J. Noumana; Dikandé, Alain M.

    2018-05-01

    A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.

  2. Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia

    NASA Astrophysics Data System (ADS)

    Littel, G.; Thomas, A.; Baltay, A.

    2017-12-01

    In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated metropolitan areas such as Vancouver, Seattle and Portland.

  3. Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Oimatsu, Satoshi; Nosé, Masahito; Min, Kyungguk; Claudepierre, Seth G.; Chan, Anthony; Wygant, John; Kim, Hyomin

    2018-01-01

    Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (˜10 mHz) were also observed in the energy (W) range 50-300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ˜-200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ˜ 120 keV. This feature is explained by drift-bounce resonance (mωd ˜ ωb) of ˜120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density (FH+) exhibits a bump-on-tail structure with ∂FH+/∂W>0 occurring in the 1-10 keV energy range. This FH+ is unstable and can excite P2 waves through bounce resonance (ω ˜ ωb), where ω is the wave frequency.

  4. A climatology of gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin

    2017-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.

  5. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.

    2011-01-01

    The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.

  6. Slow wave contraction frequency plateaus in the small intestine are composed of discrete waves of interval increase associated with dislocations.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2018-06-03

    What is the central question of this study? What is the nature of slow wave driven contraction frequency gradients in the small intestine? What is the main finding and its importance? Frequency plateaus are composed of discrete waves of increased interval, each wave associated with a contraction dislocation. Smooth frequency gradients are generated by localised neural modulation of wave frequency, leading to functionally important wave turbulence. Both patterns are emergent properties of a network of coupled oscillators, the interstitial cells of Cajal. A gut-wide network of interstitial cells of Cajal (ICC) generate electrical oscillations (slow waves) that orchestrate waves of muscle contraction. In the small intestine there is a gradient in slow wave frequency from high at the duodenum to low at the terminal ileum. Time-averaged measurements of frequency have suggested either a smooth or stepped (plateaued) gradient. We measured individual contraction intervals from diameter maps of the mouse small intestine to create interval maps (IMaps). IMaps showed that each frequency plateau was composed of discrete waves of increased interval. Each interval wave originated at a terminating contraction wave, a "dislocation", at the plateau's proximal boundary. In a model chain of coupled phase oscillators, interval wave frequency increased as coupling decreased or as the natural frequency gradient or noise increased. Injuring the intestine at a proximal point to destroy coupling, suppressed distal steps which then reappeared with gap junction block by carbenoxolone. This lent further support to our previous hypothesis that lines of dislocations were fixed by points of low coupling strength. Dislocations induced by electrical field pulses in the intestine and by equivalent phase shift in the model, were associated with interval waves. When the enteric nervous system was active, IMaps showed a chaotic, turbulent pattern of interval change with no frequency steps or plateaus. This probably resulted from local, stochastic release of neurotransmitters. Plateaus, dislocations, interval waves and wave turbulence arise from a dynamic interplay between natural frequency and coupling in the ICC network. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Seismic shear waves as Foucault pendulum

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  8. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that themore » chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.« less

  9. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region

    NASA Astrophysics Data System (ADS)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre

    2016-07-01

    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  10. Modifiying shallow-water equations as a model for wave-vortex turbulence

    NASA Astrophysics Data System (ADS)

    Mohanan, A. V.; Augier, P.; Lindborg, E.

    2017-12-01

    The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.

  11. On the interaction of stationary crossflow vortices and Tollmien-Schlichting waves in the boundary layer on a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Hall, Philip

    1989-01-01

    There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete among themselves. The interaction is considered of two types of instability mode (at an asymptotically large Reynolds number) which can occur in the flow above a rotating disc. In particular, the interaction is examined between lower branch Tollmien-Schlichting (TS) waves and the upper branch, stationary, inviscid crossflow vortex whose asymptotic structure has been described by Hall (1986). This problem is studied in the context of investigating the effect of the vortex on the stability characteristics of a small TS wave. Essentially, it is found that the primary effect is felt through the modification to the mean flow induced by the presence of the vortex. Initially, the TS wave is taken to be linear in character and it is shown (for the cases of both a linear and a nonlinear stationary vortex) that the vortex can exhibit both stabilizing and destabilizing effects on the TS wave and the nature of this influence is wholly dependent upon the orientation of this latter instability. Further, the problem is examined with a larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in its own right. An amplitude equation for the evolution of the TS wave is derived which admits solutions corresponding to finite amplitude, stable, traveling waves.

  12. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  13. Signal-averaged P wave in patients with paroxysmal atrial fibrillation.

    PubMed

    Rosenheck, S

    1997-10-01

    The theoretical and experimental rational of atrial signal-averaged ECG in patients with AF is delay in the intra-atrial and interatrial conduction. Similar to the ventricular signal-averaged ECG, the atrial signal-averaged ECG is an averaging of a high number of consecutive P waves that match the template created earlier P wave triggering is preferred over QRS triggering because of more accurate aligning. However, the small amplitude of the atrial ECG and its gradual increase from the isoelectric line may create difficulties in defining the start point if P wave triggering is used. Studies using P wave triggering and those using QRS triggering demonstrate a prolonged P wave duration in patients with paroxysmal AF. The negative predictive value of this test is relatively high at 60%-80%. The positive predictive value of atrial signal-averaged ECGs in predicting the risk of AF is considerably lower than the negative predictive value. All the data accumulated prospectively on the predictive value of P wave signal-averaging was determined only in patients undergoing coronary bypass surgery or following MI; its value in other patients with paroxysmal AF is still not determined. The clinical role of frequency-domain analysis (alone or added to time-domain analysis) remains undefined. Because of this limited knowledge on the predictive value of P wave signal-averaging, it is still not clinical medicine, and further research is needed before atrial signal-averaged ECG will be part of clinical testing.

  14. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    PubMed

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  15. Ion dynamics during the parametric instabilities of a left-hand polarized Alfvén wave in a proton-electron-alpha plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xinliang; Lu, Quanming; Hao, Yufei

    2014-01-01

    The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of themore » backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.« less

  16. The relation between number of smoking friends, and quit intentions, attempts, and success: findings from the International Tobacco Control (ITC) Four Country Survey.

    PubMed

    Hitchman, Sara C; Fong, Geoffrey T; Zanna, Mark P; Thrasher, James F; Laux, Fritz L

    2014-12-01

    Smokers who inhabit social contexts with a greater number of smokers may be exposed to more positive norms toward smoking and more cues to smoke. This study examines the relation between number of smoking friends and changes in number of smoking friends, and smoking cessation outcomes. Data were drawn from Wave 1 (2002) and Wave 2 (2003) of the International Tobacco Control (ITC) Project Four Country Survey, a longitudinal cohort survey of nationally representative samples of adult smokers in Australia, Canada, United Kingdom, and United States (N = 6,321). Smokers with fewer smoking friends at Wave 1 were more likely to intend to quit at Wave 1 and were more likely to succeed in their attempts to quit at Wave 2. Compared with smokers who experienced no change in their number of smoking friends, smokers who lost smoking friends were more likely to intend to quit at Wave 2, attempt to quit between Wave 1 and Wave 2, and succeed in their quit attempts at Wave 2. Smokers who inhabit social contexts with a greater number of smokers may be less likely to successfully quit. Quitting may be particularly unlikely among smokers who do not experience a loss in the number of smokers in their social context.

  17. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A Small Business Innovation Research (SBIR) contract resulted in a series of commercially available lasers, which have application in fiber optic communications, difference frequency generation, fiber optic sensing and general laboratory use. Developed under a Small Business Innovation Research (SBIR) contract, the Phase Doppler Particles Analyzer is a non-disruptive, highly accurate laser-based method of determining particle size, number density, trajectory, turbulence and other information about particles passing through a measurement probe volume. The system consists of an optical transmitter and receiver, signal processor and computer with data acquisition and analysis software. A variety of systems are offered for applications including spray characterization for paint, and agricultural and other sprays. The Microsizer, a related product, is used in medical equipment manufacturing and analysis of contained flows. High frequency components and subsystems produced by Millitech Corporation are marketed for both research and commercial use. These systems, which operate in the upper portion of the millimeter wave, resulted from a number of Small Business Innovation Research (SBIR) projects. By developing very high performance mixers and multipliers, the company has advanced the state of the art in sensitive receiver technology. Components are used in receivers and transceivers for monitoring chlorine monoxides, ozone, in plasma characterization and in material properties characterization.

  18. Quantifying Electromagnetic Wave Propagation Environment Using Measurements From A Small Buoy

    DTIC Science & Technology

    2017-06-01

    ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A SMALL BUOY by Andrew E. Sweeney June 2017 Thesis Advisor: Qing Wang...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE QUANTIFYING ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A...the Coupled Air Sea Processes and Electromagnetic (EM) ducting Research (CASPER), to understand air-sea interaction processes and their representation

  19. When is the Anelastic Approximation a Valid Model for Compressible Convection?

    NASA Astrophysics Data System (ADS)

    Alboussiere, T.; Curbelo, J.; Labrosse, S.; Ricard, Y. R.; Dubuffet, F.

    2017-12-01

    Compressible convection is ubiquitous in large natural systems such Planetary atmospheres, stellar and planetary interiors. Its modelling is notoriously more difficult than the case when the Boussinesq approximation applies. One reason for that difficulty has been put forward by Ogura and Phillips (1961): the compressible equations generate sound waves with very short time scales which need to be resolved. This is why they introduced an anelastic model, based on an expansion of the solution around an isentropic hydrostatic profile. How accurate is that anelastic model? What are the conditions for its validity? To answer these questions, we have developed a numerical model for the full set of compressible equations and compared its solutions with those of the corresponding anelastic model. We considered a simple rectangular 2D Rayleigh-Bénard configuration and decided to restrict the analysis to infinite Prandtl numbers. This choice is valid for convection in the mantles of rocky planets, but more importantly lead to a zero Mach number. So we got rid of the question of the interference of acoustic waves with convection. In that simplified context, we used the entropy balances (that of the full set of equations and that of the anelastic model) to investigate the differences between exact and anelastic solutions. We found that the validity of the anelastic model is dictated by two conditions: first, the superadiabatic temperature difference must be small compared with the adiabatic temperature difference (as expected) ɛ = Δ TSA / delta Ta << 1, and secondly that the product of ɛ with the Nusselt number must be small.

  20. Effect of focused and radial extracorporeal shock wave therapy on equine bone microdamage.

    PubMed

    Da Costa Gómez, Támara M; Radtke, Catherine L; Kalscheur, Vicki L; Swain, Carol A; Scollay, Mary C; Edwards, Ryland B; Santschi, Elizabeth M; Markel, Mark D; Muir, Peter

    2004-01-01

    To determine whether bone microcracks are altered after application of focused and radial extracorporeal shock wave therapy (ESWT) to the equine distal limb. An ex vivo experimental model. A contralateral limb specimen was obtained from 11 Thoroughbred racehorses with a unilateral catastrophic injury. Distal limb specimens were also obtained from 5 non-racing horses. Three separate skin-covered bone segments were obtained from the mid-diaphysis of the metacarpus (MC3) or metatarsus (MT3). Focused (9,000 shockwaves, 0.15 mJ/mm2, 4 Hz) and radial (9,000 shockwaves, 0.175 mJ/mm2, 4 Hz) ESWT treatments were randomized to the proximal and distal segments and the middle segment was used as a treatment control for pre-existing microcracks. After treatment, bone specimens were bulk-stained with basic fuchsin and microcracks were quantified in transverse calcified bone sections. ESWT had small but significant effects on microcracks. Microcrack density (Cr.Dn) and microcrack surface density (Cr.S.Dn) were increased after focused ESWT, whereas Cr.Le was increased after radial ESWT. In racing Thoroughbreds, Cr.Le increased with increased number of races undertaken. Cr.Dn and Cr.S.Dn were not significantly influenced by the number of races undertaken. ESWT has small but significant effects on bone microcracking ex vivo. These preliminary data suggest that ESWT has the potential to increase bone microcracking in equine distal limb bone in vivo. Such effects may be more pronounced in Thoroughbreds that are actively being raced, because in vivo microcracking increases with increased number of races undertaken.

  1. Aero-Hydroacoustics for Ships. Volume 1

    DTIC Science & Technology

    1984-06-01

    as 10 and bubble radii as small as 20 t.m. Thl’ use of acoustic a) sorption (it is also possible to measure the reduction of 5-,L’nd sJ L~d in bubbly... pFA -(2,0 1 0 12 3 456 km V’,r~ (20") *Figure 6.20 -Wave Number Locus for 1.5 x 0.6 x 0.0254 Meter Panel at f= 4180 Hertz; Half-Integer Modes are those

  2. Multi-hadron spectroscopy in a large physical volume

    NASA Astrophysics Data System (ADS)

    Bulava, John; Hörz, Ben; Morningstar, Colin

    2018-03-01

    We demonstrate the effcacy of the stochastic LapH method to treat all-toall quark propagation on a Nf = 2 + 1 CLS ensemble with large linear spatial extent L = 5:5 fm, allowing us to obtain the benchmark elastic isovector p-wave pion-pion scattering amplitude to good precision already on a relatively small number of gauge configurations. These results hold promise for multi-hadron spectroscopy at close-to-physical pion mass with exponential finite-volume effects under control.

  3. Interaction of Gortler vortices and Tollmien-Schlichting waves in curved channel flow

    NASA Technical Reports Server (NTRS)

    Daudpota, Q. Isa; Zang, Thomas A.; Hall, Philip

    1987-01-01

    The flow in a two-dimensional curved channel driven by an azimuthal pressure gradient can become linearly unstable due to axisymmetric perturbations and/or nonaxisymmetric perturbations depending on the curvature of the channel and the Reynolds number. For a particular small value of curvature, the critical Reynolds number for both these perturbations becomes identical. In the neighborhood of this curvature value and critical Reynolds number, nonlinear interactions occur between these perturbations. The Stuart-Watson approach is used to derive two coupled Landau equations for the amplitudes of these perturbations. The stability of the various possible states of these perturbations is shown through bifurcation diagrams. Emphasis is given to those cases which have relevance to external flows.

  4. Statistical models of power-combining circuits for O-type traveling-wave tube amplifiers

    NASA Astrophysics Data System (ADS)

    Kats, A. M.; Klinaev, Iu. V.; Gleizer, V. V.

    1982-11-01

    The design outlined here allows for imbalances in the power of the devices being combined and for differences in phase. It is shown that the coefficient of combination is described by a beta distribution of the first type when a small number of devices are being combined and that the coefficient is asymptotically normal in relation to both the number of devices and the phase variance of the tube's output signals. Relations are derived that make it possible to calculate the efficiency of a power-combining circuit and the reproducibility of the design parameters when standard devices are used.

  5. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    PubMed

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  6. Process for making diamonds

    NASA Technical Reports Server (NTRS)

    Rasquin, J. R.; Estes, M. F. (Inventor)

    1973-01-01

    A description is given of a device and process for making industrial diamonds. The device is composed of an exponential horn tapering from a large end to a small end, with a copper plate against the large end. A magnetic hammer abuts the copper plate. The copper plate and magnetic hammer function together to create a shock wave at the large end of the horn. As the wave propagates to the small end, the extreme pressure and temperature caused by the wave transforms the graphite, present in an anvil pocket at the small end, into diamonds.

  7. Observations of Martian surface winds at the Viking Lander 1 site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.R.; Leovy, C.B.; Tillman, J.E.

    1990-08-30

    Partial failure of the wind instrumentation on the Viking Lander 1 (VL1) in the Martian subtropics (22.5{degree}N) has limited previous analyses of meteorological data for this site. The authors describe a method for reconstructing surface winds using data from the partially failed sensor and present and analyze a time series of wind, pressure, and temperature at the site covering 350 Mars days (sols). At the beginning of the mission during early summer, winds were controlled by regional topography, but they soon underwent a transition to a regime controlled by the Hadley circulation. Diurnal and semidiurnal wind oscillations and synoptic variationsmore » have been analyzed and compared with the corresponding variations at the Viking Lander 2 middle latitude site (48{degree}N). Diurnal wind oscillations were controlled primarily by regional topography and boundary layer forcing, although a global mode may have been influencing them during two brief episodes. Semidiurnal wind oscillations were controlled by the westward propagating semidiurnal tide from sol 210 onward. Comparison of the synoptic variations at the two sites suggests that the same eastward propagating wave trains were present at both sites, at least following the first 1977 great dust storm, but discordant inferred zonal wave numbers and phase speeds at the two sites cast doubt on the zonal wave numbers deduced from analyses of combined wind and pressure data, particularly at the VL1 site where the signal to noise ratio of the dominant synoptic waves is relatively small.« less

  8. On the use of infrasound for constraining global climate models

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David

    2017-11-01

    Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.

  9. Growth rates of new parametric instabilities occurring in a plasma with streaming He(2+)

    NASA Technical Reports Server (NTRS)

    Jayanti, V.; Hollweg, Joseph V.

    1994-01-01

    We consider parametic instabilities of a circularly polarized pump Alfven wave, which propagates parallel to the ambient magnetic field; the daughter waves are also parallel-propagating. We follow Hollweg et al. (1993) and consider several new instabilites that owe their existence to the presence of streaming alpha particles. One of the new instabilites is similar to the famililar decay instability, but the daughter waves are a forward going alpha sound wave and a backward going Alfven wave. The growth rate of this instability is usually small if the alpha abundance is small. The other three new instabilities occur at high frequencies and small wavelengths. We find that the new instability which involves the proton cyclotron wave and alpha sound (i.e., the +f, - alpha) instability, which involves both the proton and alpha cycltron resonances, but if the pump wave must have low frequency and large amplitude. These instabilities may be a means of heating and accelerating alpha particles in the solar wind, but this claim is unproven until a fully kinetic study is carried out.

  10. Fast-to-Alfvén Mode Conversion in the Presence of Ambipolar Diffusion

    NASA Astrophysics Data System (ADS)

    Cally, Paul S.; Khomenko, Elena

    2018-03-01

    It is known that fast magnetohydrodynamic waves partially convert to upward and/or downward propagating Alfvén waves in a stratified atmosphere where Alfvén speed increases with height. This happens around the fast wave reflection height, where the fast wave’s horizontal phase speed equals the Alfvén speed (in a low-β plasma). Typically, this takes place in the mid to upper solar chromosphere for low-frequency waves in the few-millihertz band. However, this region is weakly ionized and thus susceptible to nonideal MHD processes. In this article, we explore how ambipolar diffusion in a zero-β plasma affects fast waves injected from below. Classical ambipolar diffusion is far too weak to have any significant influence at these low frequencies, but if enhanced by turbulence (in the quiet-Sun chromosphere but not in sunspot umbrae) or the production of sufficiently small-scale structure, can substantially absorb waves for turbulent ambipolar Reynolds numbers of around 20 or less. In that case, it is found that the mode conversion process is not qualitatively altered from the ideal case, though conversion to Alfvén waves is reduced because the fast wave flux reaching the conversion region is degraded. It is also found that any upward propagating Alfvén waves generated in this process are almost immune to further ambipolar attenuation, thereby reducing local ambipolar heating compared to cases without mode conversion. In that sense, mode conversion provides a form of “Alfvén cooling.”

  11. Wave rotor-enhanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.

    1995-01-01

    The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.

  12. Multiple scroll wave chimera states

    NASA Astrophysics Data System (ADS)

    Maistrenko, Volodymyr; Sudakov, Oleksandr; Osiv, Oleksiy; Maistrenko, Yuri

    2017-06-01

    We report the appearance of three-dimensional (3D) multiheaded chimera states that display cascades of self-organized spatiotemporal patterns of coexisting coherence and incoherence. We demonstrate that the number of incoherent chimera domains can grow additively under appropriate variations of the system parameters generating thereby head-adding cascades of the scroll wave chimeras. The phenomenon is derived for the Kuramoto model of N 3 identical phase oscillators placed in the unit 3D cube with periodic boundary conditions, parameters being the coupling radius r and phase lag α. To obtain the multiheaded chimeras, we perform the so-called `cloning procedure' as follows: choose a sample single-headed 3D chimera state, make appropriate scale transformation, and put some number of copies of them into the unit cube. After that, start numerical simulations with slightly perturbed initial conditions and continue them for a sufficiently long time to confirm or reject the state existence and stability. In this way it is found, that multiple scroll wave chimeras including those with incoherent rolls, Hopf links and trefoil knots admit this sort of multiheaded regeneration. On the other hand, multiple 3D chimeras without spiral rotations, like coherent and incoherent balls, tubes, crosses, and layers appear to be unstable and are destroyed rather fast even for arbitrarily small initial perturbations.

  13. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Haq, Mahmoodul; Udpa, Lalita

    2018-01-01

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions (EOC). To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations. We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a different segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using Monte-Carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate. We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all EOC, while the latter does not and leverages the fact that EOC vary slowly over time and can be modeled as a Gaussian process.

  14. Competition of density waves and quantum multicritical behavior in Dirac materials from functional renormalization

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.

    2016-03-01

    We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.

  15. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents.

    PubMed

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-11

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers' health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002-2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies.

  16. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    PubMed Central

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-01

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies. PMID:28085067

  17. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changingmore » the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.« less

  18. The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Yue, Chao; An, Xin; Bortnik, Jacob; Ma, Qianli; Li, Wen; Thorne, Richard M.; Reeves, Geoffrey D.; Gkioulidou, Matina; Mitchell, Donald G.; Kletzing, Craig A.

    2016-08-01

    Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with β∥e≳0.025 and (ii) relatively small-amplitude, oblique waves with β∥e≲0.025. The upper band chorus waves also have enhanced amplitudes close to the instability threshold, with large-amplitude waves being quasi-parallel whereas small-amplitude waves being oblique. These results provide important insight for studying the excitation of whistler mode chorus waves.

  19. Stratification and energy fluxes in the anelastic convection model

    NASA Astrophysics Data System (ADS)

    Hejda, Pavel; Reshetnyak, Maxim

    2013-04-01

    Convection in the planetary cores is usually connected with the geostrophic state. At the onset of convection, the ratio of horizontal scale to the scale along the axis of rotation is proportional to the cube root of the Ekman number, which characterises the ratio of the viscous forces to the Coriolis force. The Ekman number is extremely small in the liquid cores, which is a source of strong anisotropy. Even if further increase of the heat sources leads to decrease of anisotropy, the final state is still highly anisotropic. The influence of the rapid rotation on the structure of the flows in the physical space is also manifested by a substantial change of the spectral properties of the turbulence in the core (Reshetnyak and Hejda, 2008; Hejda and Reshetnyak, 2009). If for the non-rotating flow the kinetic energy in the wave space propagates from the large scales to the small dissipative scales (the so-called direct Richardson-Kolmogorov cascade), then in presence of rotation the turbulence degenerates to the quasi two-dimensional state and the inverse cascade of the kinetic energy is observed. Having in mind that Cartesian and spherical geometries exhibit similar results and reproduce the inverse cascades of the kinetic energy (Reshetnyak and Hejda, 2012), there is an open question how this cascade contributes to the more general energy balance, which includes the heat flux equation. As the heat energy definition in the Boussinesq model is quite questionable, we consider the anelastic model, where the heat fluxes can be compared with the kinetic energy fluxes in the adequate way. Here we consider the spherical geometry model in the shell that limits our study to the cascades in the azimuthal wave-number. As the self-consistent anelastic model includes new term, the adiabatic cooling, which produces "stratification" in the outer part of the core, we consider its influence on convection in the physical and wave spaces. We show that even small cooling can change the convection substantially, shifting maximum of convection to the inner part of the liquid core. Similar to the Boussinesq model the both direct and inverse cascades of the kinetic energy as well as the direct cascade of the specific entropy in the wave space occur. Reshetnyak, M. and Hejda, P., 2008. Direct and inverse cascades in the geodynamo. Nonlin. Proc. Geophys. 15, 873-880. Hejda, P. and Reshetnyak, M., 2009. Effect of anisotropy in the geostrophic turbulence. Phys. Earth Planet. Inter. 177, 152-160, doi: 10.1016/j.pepi.2009.08.006. Reshetnyak, M. and Hejda, P., 2012. Kinetic energy cascades in quasi-geostrophic convection in a spherical shell. Physica Scripta 86, article No. 018408, doi: 10.1088/0031-8949/86/01/018408.

  20. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  1. From mesoscale eddies to small-scale turbulence in the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Naveira Garabato, A.; Brearley, J. A.; Sheen, K. L.; Waterman, S. N.

    2012-12-01

    A foremost question in physical oceanography is that of how the oceanic mesoscale dissipates. The Antarctic Circumpolar Current (ACC), in the Southern Ocean, is forced strongly by the wind and hosts a vigorous mesoscale eddy field. It has been recently suggested that substantial dampening of mesoscale flows in the region may occur through interactions with topography, on the basis of a number of indirect approaches. Here, we present the first direct evidence of a transfer of energy between mesoscale eddies and small-scale turbulence in the ACC, via the radiation, instability and breaking of internal waves generated as mesoscale flows impinge on rough topography. The evidence is provided by analysis of two data sets gathered by the DIMES (Diapycnal and Isopycnal Experiment in the Southern Ocean) experiment: (1) the observations of a mooring cluster, specifically designed to measure dynamical exchanges between the mesoscale eddy and internal wave fields in Drake Passage over a 2-year deployment; and (2) an extensive fine- and microstructure survey of the region. The physical mechanisms implicated in the cascade of energy across scales will be discussed.

  2. Reverse flow events and small-scale effects in the cusp ionosphere

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Ilyasov, A. A.; Miloch, W. J.; Chernyshov, A. A.; Clausen, L. B. N.; Moen, J. I.; Abe, T.; Saito, Y.

    2016-10-01

    We report in situ measurements of plasma irregularities associated with a reverse flow event (RFE) in the cusp F region ionosphere. The Investigation of Cusp Irregularities 3 (ICI-3) sounding rocket, while flying through a RFE, encountered several regions with density irregularities down to meter scales. We address in detail the region with the most intense small-scale fluctuations in both the density and in the AC electric field, which were observed on the equatorward edge of a flow shear, and coincided with a double-humped jet of fast flow. Due to its long-wavelength and low-frequency character, the Kelvin-Helmholtz instability (KHI) alone cannot be the source of the observed irregularities. Using ICI-3 data as inputs, we perform a numerical stability analysis of the inhomogeneous energy-density-driven instability (IEDDI) and demonstrate that it can excite electrostatic ion cyclotron waves in a wide range of wave numbers and frequencies for the electric field configuration observed in that region, which can give rise to the observed small-scale turbulence. The IEDDI can seed as a secondary process on steepened vortices created by a primary KHI. Such an interplay between macroprocesses and microprocesses could be an important mechanism for ion heating in relation to RFEs.

  3. The Mesoscale Predictability of Terrain Induced Flows

    DTIC Science & Technology

    2009-09-30

    simulations, we focus on assessing the predictability of winds, mountain waves and clear air turbulence ( CAT ) in the lee of the Sierra Nevada...complete description of the sensitivity of mountain waves, CAT and downslope to small variations in the initial conditions. WORK COMPLETED We...completed the analysis of the sensitivity of mountain waves, CAT and downslope winds to small perturbations in the upstream conditions. We also

  4. Evaluation of small-diameter timber for value-added manufacturing : a stress wave approach

    Treesearch

    Xiping Wang; Robert J. Ross; John Punches; R. James Barbour; John W. Forsman; John R. Erickson

    2003-01-01

    The objective of this research was to investigate the use of a stress wave technology to evaluate the structural quality of small-diameter timber before harvest. One hundred and ninety-two Douglas-fir and ponderosa pine trees were sampled from four stands in southwestern Oregon and subjected to stress wave tests in the field. Twelve of the trees, six Douglas-fir and...

  5. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  6. SAW properties in quartz-like α-GeO2 single crystal

    NASA Astrophysics Data System (ADS)

    Taziev, R. M.

    2018-05-01

    The paper investigates numerically the properties of surface acoustic waves (SAW) in a new α-GeO2 single crystal of trigonal crystal symmetry (32). It is shown that the SAW has a maximum value of electromechanical coupling coefficient ≈0.14% on Z+120°, X –cut of a crystal with a zero power flow deflection angle. For the case of Z+140°X+25°-cut, the SAW electromechanical coupling coefficient equals 0.17 %, but the power flow deflection angle is not zero. Calculations are made of the frequency dependence of the conductance of SAW interdigital transducers (IDT), which electrode number equals 100 and wavelength is 20 microns on Z+120°,X –cut crystal. The excitations of bulk acoustic waves are absent in this cut case. Leaky acoustic wave, generated by IDT on Z+120°,X –cut of crystal, has a small electromechanical coupling coefficient, which is 4 times less than that for SAW.

  7. Determination of two-stroke engine exhaust noise by the method of characteristics

    NASA Technical Reports Server (NTRS)

    Jones, A. D.; Brown, G. L.

    1981-01-01

    A computational technique was developed for the method of characteristics solution of a one-dimensional flow in a duct as applied to the wave action in an engine exhaust system. By using the method, it was possible to compute the unsteady flow in both straight pipe and tuned expansion chamber exhaust systems as matched to the flow from the cylinder of a small two-stroke engine. The radiated exhaust noise was then determined by assuming monopole radiation from the tailpipe outlet. Very good agreement with experiment on an operation engine was achieved in the calculation of both the third octave radiated noise and the associated pressure cycles at several locations in the different exhaust systems. Of particular interest is the significance of nonlinear behavior which results in wave steepening and shock wave formation. The method computes the precise paths on the x-t plane of a finite number of C(sub +), C(sub -) and P characteristics, thereby obtaining high accuracy in determining the tailpipe outlet velocity and the radiated noise.

  8. Determination of two-stroke engine exhaust noise by the method of characteristics

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Brown, G. L.

    1981-06-01

    A computational technique was developed for the method of characteristics solution of a one-dimensional flow in a duct as applied to the wave action in an engine exhaust system. By using the method, it was possible to compute the unsteady flow in both straight pipe and tuned expansion chamber exhaust systems as matched to the flow from the cylinder of a small two-stroke engine. The radiated exhaust noise was then determined by assuming monopole radiation from the tailpipe outlet. Very good agreement with experiment on an operation engine was achieved in the calculation of both the third octave radiated noise and the associated pressure cycles at several locations in the different exhaust systems. Of particular interest is the significance of nonlinear behavior which results in wave steepening and shock wave formation. The method computes the precise paths on the x-t plane of a finite number of C(sub +), C(sub -) and P characteristics, thereby obtaining high accuracy in determining the tailpipe outlet velocity and the radiated noise.

  9. Density matrix embedding in an antisymmetrized geminal power bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2015-07-14

    Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlationmore » energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.« less

  10. Radio and Plasma Wave Observations During Cassini's Grand Finale

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Bostrom, R.; Canu, P.; Cecconi, B.; Cornilleau-Wehrlin, N.; Farrell, W. M.; Fischer, G.; Galopeau, P. H. M.; Gurnett, D. A.; Gustafsson, G.; Hospodarsky, G. B.; Lamy, L.; Lecacheux, A.; Louarn, P.; MacDowall, R. J.; Menietti, J. D.; Modolo, R.; Morooka, M.; Pedersen, A.; Persoon, A. M.; Sulaiman, A. H.; Wahlund, J. E.; Ye, S.; Zarka, P. M.

    2017-12-01

    Cassini ends its 13-year exploration of the Saturnian system in 22 high inclination Grand Finale orbits with perikrones falling between the inner edge of the D ring and the upper limits of Saturn's atmosphere. The Cassini Radio and Plasma Wave Science (RPWS) instrument makes a variety of observations in these unique orbits including Saturn kilometric radiation, plasma waves such as auroral hiss associated with Saturn's auroras, dust via impacts with Cassini, and the upper reaches of Saturn's ionosphere. This paper will provide an overview of the RPWS results from this final phase of the Cassini mission with the unique opportunities afforded by the orbit. Based on early Grand Finale orbits, we can already say that the spacecraft has passed through cyclotron maser source regions of the Saturn kilometric radiation a number of times, found only small amounts of micron-sized dust in the equatorial region, and observed highly variable densities of cold plasma of order 1000 cm-3 in the ionosphere at altitudes of a few thousand km.

  11. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    NASA Astrophysics Data System (ADS)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  12. The expected spins of gravitational wave sources with isolated field binary progenitors

    NASA Astrophysics Data System (ADS)

    Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.

    2018-01-01

    We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.

  13. Dynamical criterion for a marginally unstable, quasi-linear behavior in a two-layer model

    NASA Technical Reports Server (NTRS)

    Ebisuzaki, W.

    1988-01-01

    A two-layer quasi-geostrophic flow forced by meridional variations in heating can be in regimes ranging from radiative equilibrium to forced geostrophic turbulence. Between these extremes is a regime where the time-mean (zonal) flow is marginally unstable. Using scaling arguments, it is concluded that such a marginally unstable state should occur when a certain parameter, measuring the strength of wave-wave interactions relative to the beta effect and advection by the thermal wind, is small. Numerical simulations support this proposal. A transition from the marginally unstable regime to a more nonlinear regime is then examined through numerical simulations with different radiative forcings. It is found that transition is not caused by secondary instability of waves in the marginally unstable regime. Instead, the time-mean flow can support a number of marginally unstable normal modes. These normal modes interact with each other, and if they are of sufficient amplitude, the flow enters a more nonlinear regime.

  14. Wave cancellation small waterplane multihull ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, C.C.; Wilson, M.B.

    1994-12-31

    A new patented wave cancellation multihull ship concept (Hsu, 1993) is presented. Such ships consist of various arrangements of tapered hull elements. The tapered hull design provides a small waterplane area for enhanced seakeeping while producing smaller surface disturbances. In addition, proper arrangement of hull elements provides favorable wave interference effects. The saving in effective horsepower with a realistic wave cancellation tri-hull arrangement, was found to be about 30 percent compared to small waterplane area twin-hull ships. Power reductions of this magnitude translate to considerably fuel consumptions and improved range. Applications to several ship types, such as for fast ferries,more » cruise and container ships, appear promising, wherever good seakeeping, large deck space and high speed in the design.« less

  15. The Relation Between Number of Smoking Friends, and Quit Intentions, Attempts, and Success: Findings from the International Tobacco Control (ITC) Four Country Survey

    PubMed Central

    Hitchman, Sara C.; Fong, Geoffrey T.; Zanna, Mark P.; Thrasher, James F.; Laux, Fritz L.

    2014-01-01

    Smokers who inhabit social contexts with a greater number of smokers may be exposed to more positive norms towards smoking and more cues to smoke. This study examines the relation between number of smoking friends and changes in number of smoking friends, and smoking cessation outcomes. Data were drawn from Wave 1 (2002) and Wave 2 (2003) of the International Tobacco Control (ITC) Project Four Country Survey, a longitudinal cohort survey of nationally representative samples of adult smokers in Australia, Canada, United Kingdom, and United States (N=6,321). Smokers with fewer smoking friends at Wave 1 were more likely to intend to quit at Wave 1 and were more likely to succeed in their attempts to quit at Wave 2. Compared to smokers who experienced no change in their number of smoking friends, smokers who lost smoking friends were more likely to intend to quit at Wave 2, attempt to quit between Wave 1 and Wave 2, and succeed in their quit attempts at Wave 2. Smokers who inhabit social contexts with a greater number of smokers may be less likely to successfully quit. Quitting may be particularly unlikely among smokers who do not experience a loss in the number of smokers in their social context. PMID:24841185

  16. Eco-geomorphic processes that maintain a small coral reef island: Ballast Island in the Ryukyu Islands, Japan

    NASA Astrophysics Data System (ADS)

    Kayanne, Hajime; Aoki, Kenji; Suzuki, Takuya; Hongo, Chuki; Yamano, Hiroya; Ide, Yoichi; Iwatsuka, Yuudai; Takahashi, Kenya; Katayama, Hiroyuki; Sekimoto, Tsunehiro; Isobe, Masahiko

    2016-10-01

    Landform changes in Ballast Island, a small coral reef island in the Ryukyu Islands, were investigated by remote sensing analysis and a field survey. The area of the island almost doubled after a mass coral bleaching event in 1998. Coral branches generated by the mass mortality and broken by waves were delivered and stocked on a reef flat and accumulated to expand the area of the island. In 2012 high waves generated by typhoons also changed the island's topography. Overall, the island moved in the downdrift direction of the higher waves. Waves impacting both sides of the island piled up a large volume of coral gravels above the high-tide level. Eco-geomorphic processes, including a supply of calcareous materials from the corals on the same reef especially during stormy wave conditions, were key factors in maintaining the dynamic topographic features of this small coral reef island.

  17. Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.; Cheng, B.

    1996-01-01

    For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.

  18. The Dissipation Range of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Buffo, J. J.

    2013-06-01

    Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.

  19. Helicon modes in uniform plasmas. I. Low m modes

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2015-09-01

    Helicons are whistler modes with azimuthal wave numbers. They arise in bounded gaseous and solid state plasmas, but the present work shows that very similar modes also exist in unbounded uniform plasmas. The antenna properties determine the mode structure. A simple antenna is a magnetic loop with dipole moment aligned either along or across the ambient background magnetic field B0. For such configurations, the wave magnetic field has been measured in space and time in a large and uniform laboratory plasma. The observed wave topology for a dipole along B0 is similar to that of an m = 0 helicon mode. It consists of a sequence of alternating whistler vortices. For a dipole across B0, an m = 1 mode is excited which can be considered as a transverse vortex which rotates around B0. In m = 0 modes, the field lines are confined to each half-wavelength vortex while for m = 1 modes they pass through the entire wave train. A subset of m = 1 field lines forms two nested helices which rotate in space and time like corkscrews. Depending on the type of the antenna, both m = + 1 and m = -1 modes can be excited. Helicons in unbounded plasmas also propagate transverse to B0. The transverse and parallel wave numbers are about equal and form oblique phase fronts as in whistler Gendrin modes. By superimposing small amplitude fields of several loop antennas, various antenna combinations have been created. These include rotating field antennas, helical antennas, and directional antennas. The radiation efficiency is quantified by the radiation resistance. Since helicons exist in unbounded laboratory plasmas, they can also arise in space plasmas.

  20. Forced magnetohydrodynamic turbulence in a uniform external magnetic field

    NASA Technical Reports Server (NTRS)

    Hossain, M.; Vahala, G.; Montgomery, D.

    1985-01-01

    Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx, ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.

  1. Calculation of oblique-shock-wave laminar-boundary-layer interaction on a flat plate

    NASA Technical Reports Server (NTRS)

    Goldberg, U.; Reshotko, E.

    1980-01-01

    A finite difference solution to the problem of the interaction between an impinging oblique shock wave and the laminar boundary layer on a flat plate is presented. The boundary layer equations coupled with the Prandtl-Meyer relation for the external flow are used to calculate the flow field. A method for the calculation of the separated flow region is presented and discussed. Comparisons between this theory and the experimental results of other investigators show fairly good agreement. Results are presented for the case of a cooled wall with an oncoming flow at Mach number 2.0 without and with suction. The results show that a small amount of suction greatly reduces the extent of the separated region in the vicinity of the shock impingement location.

  2. Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model

    NASA Astrophysics Data System (ADS)

    Lvov, Yuri V.; Onorato, Miguel

    2018-04-01

    We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.

  3. Forced MHD turbulence in a uniform external magnetic field

    NASA Technical Reports Server (NTRS)

    Hossain, M.; Vahala, G.; Montgomery, D.

    1985-01-01

    Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx' ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.

  4. Spaced-based search coil magnetometers

    NASA Astrophysics Data System (ADS)

    Hospodarsky, George B.

    2016-12-01

    Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.

  5. Current drive by helicon waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Manash Kumar; Bora, Dhiraj; ITER Organization, Cadarache Centre-building 519, 131008 St. Paul-Lez-Durance

    2009-01-01

    Helicity in the dynamo field components of helicon wave is examined during the novel study of wave induced helicity current drive. Strong poloidal asymmetry in the wave magnetic field components is observed during helicon discharges formed in a toroidal vacuum chamber of small aspect ratio. High frequency regime is chosen to increase the phase velocity of helicon waves which in turn minimizes the resonant wave-particle interactions and enhances the contribution of the nonresonant current drive mechanisms. Owing to the strong poloidal asymmetry in the wave magnetic field structures, plasma current is driven mostly by the dynamo-electric-field, which arise due tomore » the wave helicity injection by helicon waves. Small, yet finite contribution from the suppressed wave-particle resonance cannot be ruled out in the operational regime examined. A brief discussion on the parametric dependence of plasma current along with numerical estimations of nonresonant components is presented. A close agreement between the numerical estimation and measured plasma current magnitude is obtained during the present investigation.« less

  6. Transition of torque pattern in undulatory locomotion due to wave number variation in resistive force dominated media

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Ming, Tingyu

    2016-11-01

    In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).

  7. Observation of frequency cutoff for self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  8. High speed point derivative microseismic detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event.more » The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.« less

  9. Metastatic potential of lung squamous cell carcinoma associated with HSPC300 through its interaction with WAVE2.

    PubMed

    Cai, Xiongwei; Xiao, Ting; James, Sharon Y; Da, Jiping; Lin, Dongmei; Liu, Yu; Zheng, Yang; Zou, Shuangmei; Di, Xuebing; Guo, Suping; Han, Naijun; Lu, Yong-Jie; Cheng, Shujun; Gao, Yanning; Zhang, Kaitai

    2009-09-01

    The small protein, HSPC300 (haematopoietic stem/progenitor cell protein 300), is associated with reorganization of actin filaments and cell movement, but its activity has not been reported in human cancer cells. Here, we investigated the association of HSPC300 expression with clinical features of lung squamous cell carcinoma. High levels of HSPC300 protein were detected in 84.1% of tumour samples, and in 30.8% of adjacent morphologically normal tissues. The number of primary tumours with elevated HSPC300 levels was significantly higher in primary tumours with lymph node metastases as opposed to those without, and also in tumours from patients with more advanced disease. HSPC300 modulates the morphology and motility of cells, as siRNA knockdown caused the reorganization of actin filaments, decreased the formation of pseudopodia, and inhibited the migration of a lung cancer cell line. We further showed that HSPC300 interacted with the WAVE2 protein, and HSPC300 silencing resulted in the degradation of WAVE2 in vitro. HSPC300 and WAVE2 were co-expressed in approximately 85.7% of primary tumours with lymph node metastases. We hypothesize that HSPC300 is associated with metastatic potential of lung squamous cell carcinoma through its interaction with WAVE2.

  10. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    NASA Astrophysics Data System (ADS)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  11. Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2015-11-01

    We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.

  12. Mesospheric gravity-wave climatology at Adelaide

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.

    1986-01-01

    The MF Adelaide partial-reflection radar has been operating continuously since November 1983. This has enabled a climatology of gravity-wave activity to be constructed for the mesosphere. The data have been analyzed for a medium-period range of 1 to 8 hr. and a longer period range between 8 and 24 hr. covering the inertio-period waves. The tidal motions have been filtered out prior to analysis. For the data analyses so far (Nov. 1983 to Dec. 1984), a number of interesting features emerged. Firstly, the wave activity at heights above 80 km shows a small seimannual variation with season with the activity being strongest in summer and winter. At heights below 80 km however, there is a similar but more marked variation with the weakest amplitudes occurring at the time of the changeovers in the prevailing circulation. If breaking gravity waves are responsible for much of the turbulence in the mesosphere, then the periods March to April and September to October might also be expected to be periods of weak turbulence. The wave field appears to be partially polarized. The meridional amplitudes are larger than the zonal amplitudes, especially in water. It is found that the degree of polarization is about 15% in summer and 30% in winter. The polarized component is found to propagate in the opposite direction to the background flow in the stratosphere, which suggests that the polarization arises through directional filtering of the waves as they propagate up from below.

  13. A ground-base Radar network to access the 3D structure of MLT winds

    NASA Astrophysics Data System (ADS)

    Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.

    2016-12-01

    The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.

  14. Steady and unsteady transonic pressure measurements on a clipped delta wing for pitching and control-surface oscillations

    NASA Technical Reports Server (NTRS)

    Hess, Robert W.; Cazier, F. W., Jr.; Wynne, Eleanor C.

    1986-01-01

    Steady and unsteady pressures were measured on a clipped delta wing with a 6-percent circular-arc airfoil section and a leading-edge sweep angle of 50.40 deg. The model was oscillated in pitch and had an oscillating trailing-edge control surface. Measurements were concentrated over a Mach number range from 0.88 to 0.94; less extensive measurements were made at Mach numbers of 0.40, 0.96, and 1.12. The Reynolds number based on mean chord was approximately 10 x 10 to the 6th power. The interaction of wing or control-surface deflection with the formation of shock waves and with a leading-edge vortex generated complex pressure distributions that were sensitive to frequency and to small changes in Mach number at transonic speeds.

  15. Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Lam; Department of Physics, Columbia University, New York, New York 10027; Institute of Theoretical Physics, Chinese University of Hong Kong

    2008-03-15

    In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e.more » impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.« less

  16. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube.

    PubMed

    Painter, Page R

    2008-07-29

    The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield predictions that do not appear to be correct. Contrary to the theory used for more than fifty years to predict the PWV, it speeds up as arteries become smaller and smaller. Furthermore, an increase in the PWV in some cases may be due to decreasing force of myocardial contraction rather than arterial stiffness.

  17. Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Atakturk, Serhad S.

    1992-01-01

    Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of breaking crests obtained in our previous study was reported at 8.6 percent for a short record obtained at U(sub 10N) of about 6 m/s. Typical values in the current study for similar conditions are 6 percent, which is consistent with the previous study in view of the scatter. In that study we did not have a video recording system, so the observed breaking may include more of the micro-scaic breaking events, and the value, 8.6 percent, is well within the range of highly probable sampling variability.

  18. Tidal Love numbers of neutron and self-bound quark stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.

    Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shiftmore » due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M{sub {center_dot}}are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M{sub {center_dot}}are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M{sub {center_dot},} the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.« less

  19. Scaling laws for mixing and dissipation in unforced rotating stratified turbulence

    NASA Astrophysics Data System (ADS)

    Pouquet, A.; Rosenberg, D.; Marino, R.; Herbert, C.

    2018-06-01

    We present a model for the scaling of mixing in weakly rotating stratified flows characterized by their Rossby, Froude and Reynolds numbers Ro, Fr, Re. It is based on quasi-equipartition between kinetic and potential modes, sub-dominant vertical velocity and lessening of the energy transfer to small scales as measured by the ratio rE of kinetic energy dissipation to its dimensional expression. We determine their domains of validity for a numerical study of the unforced Boussinesq equations mostly on grids of 10243 points, with Ro/Fr> 2.5 and with 1600< Re<1.9x104; the Prandtl number is one, initial conditions are either isotropic and at large scale for the velocity, and zero for the temperature {\\theta}, or in geostrophic balance. Three regimes in Fr are observed: dominant waves, eddy-wave interactions and strong turbulence. A wave-turbulence balance for the transfer time leads to rE growing linearly with Fr in the intermediate regime, with a saturation at ~0.3 or more, depending on initial conditions for larger Froude numbers. The Ellison scale is also found to scale linearly with Fr, and the flux Richardson number Rf transitions for roughly the same parameter values as well. Putting together the 3 relationships of the model allows for the prediction of mixing efficiency scaling as Fr-2~RB-1 in the low and intermediate regimes, whereas for higher Fr, it scales as RB-1/2, as already observed: as turbulence strengthens, rE~1, the velocity is isotropic and smaller buoyancy fluxes altogether correspond to a decoupling of velocity and temperature fluctuations, the latter becoming passive.

  20. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    PubMed

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  1. Direct Measurement of Wave Kernels in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.

    2006-01-01

    Solar f-mode waves are surface-gravity waves which propagate horizontally in a thin layer near the photosphere with a dispersion relation approximately that of deep water waves. At the power maximum near 3 mHz, the wavelength of 5 Mm is large enough for various wave scattering properties to be observable. Gizon and Birch (2002,ApJ,571,966)h ave calculated kernels, in the Born approximation, for the sensitivity of wave travel times to local changes in damping rate and source strength. In this work, using isolated small magnetic features as approximate point-sourc'e scatterers, such a kernel has been measured. The observed kernel contains similar features to a theoretical damping kernel but not for a source kernel. A full understanding of the effect of small magnetic features on the waves will require more detailed modeling.

  2. Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-06-01

    Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.

  3. Very small IF resonator filters using reflection of shear horizontal wave at free edges of substrate.

    PubMed

    Kadota, Michio; Ago, Junya; Horiuchi, Hideya; Ikeura, Mamoru

    2002-09-01

    A shear horizontal (SH) wave has the characteristic of complete reflection at the free edges of a substrate with a large dielectric constant. A conventional surface acoustic wave (SAW) resonator filter requires reflectors consisting of numerous grating fingers on both sides of interdigital transducers (IDTs). On the contrary, it is considered that small-sized and low loss resonator filters without reflectors consisting of grating fingers can be realized by exploiting this characteristic of the SH wave or the Bleustein-Gulyaev-Shimizu (BGS) wave. There are two types of resonator filters: transversely coupled and longitudinally coupled. No transversely coupled filters (neither conventional nor edge-reflection) using the SH wave on a single-crystal substrate have been realized until now, because two transverse modes (symmetrical and asymmetrical modes) are not easily coupled. However, the authors have realized small low loss transversely coupled resonator filters in the range of 25 to 52 MHz using edge reflections of the BGS wave on piezoelectric ceramic (PZT: Pb(Zr,Ti)O3) substrates for the first time by developing methods by which the two transverse modes could be coupled. On the other hand, longitudinally coupled resonator filters using edge reflection of the SH or BGS wave always have large spurious responses because of the even modes in the out-of-band range, because the frequencies of even modes do not coincide with the nulls of the frequency spectra of the IDTs. Consequently, longitudinally coupled resonator filters using the edge reflection of the SH wave have not been realized. By developing a method of reducing the spurious responses without increasing of the insertion loss, the authors have realized small low loss longitudinally coupled resonator filters in the range of 40 to 190 MHz using edge reflection of BGS or SH waves on PZT or 36 degrees-rotated-Y X-propagation LiTaO3 substrates for the first time. Despite being intermediate frequency (IF) filters, their package (3 x 3 x 1.03 mm3) sizes are as small as those of radio frequency (RF) SAW filters.

  4. Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.

    PubMed

    Suh, D M; Kim, W W; Chung, J G

    1999-01-01

    Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.

  5. On the stability of lumps and wave collapse in water waves.

    PubMed

    Akylas, T R; Cho, Yeunwoo

    2008-08-13

    In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.

  6. Small vs. Large Convective Cloud Objects from CERES Aqua Observations: Where are the Intraseasonal Variation Signals?

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2016-01-01

    During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.

  7. The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Chao; An, Xin; Bortnik, Jacob

    Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β ∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with β ∥e ≳0:025 andmore » (ii) relatively small-amplitude, oblique waves with β ∥e ≲0:025. The upper band chorus waves also have enhanced amplitudes close to the instability threshold, with large-amplitude waves being quasi-parallel whereas small-amplitude waves being oblique. These results provide important insight for studying the excitation of whistler mode chorus waves.« less

  8. The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes

    DOE PAGES

    Yue, Chao; An, Xin; Bortnik, Jacob; ...

    2016-08-04

    Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β ∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with β ∥e ≳0:025 andmore » (ii) relatively small-amplitude, oblique waves with β ∥e ≲0:025. The upper band chorus waves also have enhanced amplitudes close to the instability threshold, with large-amplitude waves being quasi-parallel whereas small-amplitude waves being oblique. These results provide important insight for studying the excitation of whistler mode chorus waves.« less

  9. Comparison of infrared and Raman wave numbers of neat molecular liquids: Which is the correct infrared wave number to use?

    NASA Astrophysics Data System (ADS)

    Bertie, John E.; Michaelian, Kirk H.

    1998-10-01

    This paper is concerned with the peak wave number of very strong absorption bands in infrared spectra of molecular liquids. It is well known that the peak wave number can differ depending on how the spectrum is measured. It can be different, for example, in a transmission spectrum and in an attenuated total reflection spectrum. This difference can be removed by transforming both spectra to the real, n, and imaginary, k, refractive index spectra, because both spectra yield the same k spectrum. However, the n and k spectra can be transformed to spectra of any other intensity quantity, and the peak wave numbers of strong bands may differ by up to 6 cm-1 in the spectra of the different quantities. The question which then arises is "which infrared peak wave number is the correct one to use in the comparison of infrared wave numbers of molecular liquids with wave numbers in other spectra?" For example, infrared wave numbers in the gas and liquid phase are compared to observe differences between the two phases. Of equal importance, the wave numbers of peaks in infrared and Raman spectra of liquids are compared to determine whether the infrared-active and Raman-active vibrations coincide, and thus are likely to be the same, or are distinct. This question is explored in this paper by presenting the experimental facts for different intensity quantities. The intensity quantities described are macroscopic properties of the liquid, specifically the absorbance, attenuated total reflectance, imaginary refractive index, k, imaginary dielectric constant, ɛ″, and molar absorption coefficient, Em, and one microscopic property of a molecule in the liquid, specifically the imaginary molar polarizability, αm″, which is calculated under the approximation of the Lorentz local field. The main experimental observations are presented for the strongest band in the infrared spectrum of each of the liquids methanol, chlorobenzene, dichloromethane, and acetone. Particular care was paid to wave number calibration of both infrared and Raman spectra. Theoretical arguments indicate that the peak wave number in the αm″ spectrum is the correct one to use, because it is the only one that reflects the properties of molecules in their local environment in the liquid free from predictable long-range resonant dielectric effects. However, it is found that the comparison with Raman wave numbers is confused when the anisotropic local intermolecular forces and configuration in the liquid are significant. In these cases, the well known noncoincidence of the isotropic and anisotropic Raman scattering is observed, and the same factors lead to noncoincidence of the infrared and Raman bands.

  10. Correspondence between discrete and continuous models of excitable media: trigger waves

    NASA Technical Reports Server (NTRS)

    Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.

    1997-01-01

    We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.

  11. Complex inner core of the Earth: The last frontier of global seismology

    NASA Astrophysics Data System (ADS)

    Tkalčić, Hrvoje

    2015-03-01

    The days when the Earth's inner core (IC) was viewed as a homogeneous solid sphere surrounded by the liquid outer core (OC) are now behind us. Due to a limited number of data sampling the IC and a lack of experimentally controlled conditions in the deep Earth studies, it has been difficult to scrutinize competitive hypotheses in this active area of research. However, a number of new concepts linking IC structure and dynamics has been proposed lately to explain different types of seismological observations. A common denominator of recent observational work on the IC is increased complexity seen in IC physical properties such as its isotropic and anisotropic structure, attenuation, inner core boundary (ICB) topography, and its rotational dynamics. For example, small-scale features have been observed to exist as a widespread phenomenon in the uppermost inner core, probably superimposed on much longer-scale features. The characterization of small-scale features sheds light on the nature of the solidification process and helps in understanding seismologically observed hemispherical dichotomy of the IC. The existence of variations in the rate and level of solidification is a plausible physical outcome in an environment where vigorous compositional convection in the OC and variations in heat exchange across the ICB may control the process of crystal growth. However, further progress is hindered by the fact that the current traveltime data of PKIKP waves traversing the IC do not allow discriminating between variations in isotropic P wave velocity and velocity anisotropy. Future studies of attenuation in the IC might provide crucial information about IC structure, although another trade-off exists—that of the relative contribution of scattering versus viscoelastic attenuation and the connection with the material properties. Future installations of dense arrays, cross paths of waves that sample the IC, and corresponding array studies will be a powerful tool to image and clearly distinguish between viscoelastic and scattering attenuation, and isotropic- and anisotropic-heterogeneity related effects on traveltimes of core-sensitive body waves. This will then inevitably contribute to a better understanding of what the IC is made of, how it solidifies and how it contributes to the generation and dynamics of the geomagnetic field.

  12. Incentive and Architecture of Multi-Band Enabled Small Cell and UE for Up-/Down-Link and Control-/User-Plane Splitting for 5G Mobile Networks

    NASA Astrophysics Data System (ADS)

    Saha, Rony Kumer; Aswakul, Chaodit

    2017-01-01

    In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.

  13. POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L.; Reinhart, Felix

    2012-01-01

    Waves apply significant forces to small boats, in particular when such vessels are moving at a high speed in severe sea conditions. In addition, small high-speed boats run the risk of diving with the bow into the next wave crest during operations in the wavelengths and wave speeds that are typical for shallow water. In order to mitigate the issues of autonomous navigation in rough water, a hybrid controller called POSTMAN combines the concept of POS (point of sail) tack planning from the sailing domain with a standard PID (proportional-integral-derivative) controller that implements reliable target reaching for the motorized small boat control task. This is an embedded, adaptive software controller that uses look-ahead sensing in a closed loop method to perform path planning for safer navigation in rough waters. State-of-the-art controllers for small boats are based on complex models of the vessel's kinematics and dynamics. They enable the vessel to follow preplanned paths accurately and can theoretically control all of the small boat s six degrees of freedom. However, the problems of bow diving and other undesirable incidents are not addressed, and it is questionable if a six-DOF controller with basically a single actuator is possible at all. POSTMAN builds an adaptive capability into the controller based on sensed wave characteristics. This software will bring a muchneeded capability to unmanned small boats moving at high speeds. Previously, this class of boat was limited to wave heights of less than one meter in the sea states in which it could operate. POSTMAN is a major advance in autonomous safety for small maritime craft.

  14. THE EFFECTS OF KINETIC INSTABILITIES ON SMALL-SCALE TURBULENCE IN EARTH’S MAGNETOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuillard, H.; Yordanova, E.; Vaivads, A.

    2016-09-20

    The Earth's magnetosheath is the region delimited by the bow shock and the magnetopause. It is characterized by highly turbulent fluctuations covering all scales from MHD down to kinetic scales. Turbulence is thought to play a fundamental role in key processes such as energy transport and dissipation in plasma. In addition to turbulence, different plasma instabilities are generated in the magnetosheath because of the large anisotropies in plasma temperature introduced by its boundaries. In this study we use high-quality magnetic field measurements from Cluster spacecraft to investigate the effects of such instabilities on the small-scale turbulence (from ion down tomore » electron scales). We show that the steepening of the power spectrum of magnetic field fluctuations in the magnetosheath occurs at the largest characteristic ion scale. However, the spectrum can be modified by the presence of waves/structures at ion scales, shifting the onset of the small-scale turbulent cascade toward the smallest ion scale. This cascade is therefore highly dependent on the presence of kinetic instabilities, waves, and local plasma parameters. Here we show that in the absence of strong waves the small-scale turbulence is quasi-isotropic and has a spectral index α ≈ −2.8. When transverse or compressive waves are present, we observe an anisotropy in the magnetic field components and a decrease in the absolute value of α . Slab/2D turbulence also develops in the presence of transverse/compressive waves, resulting in gyrotropy/non-gyrotropy of small-scale fluctuations. The presence of both types of waves reduces the anisotropy in the amplitude of fluctuations in the small-scale range.« less

  15. Effect of electron temperature on small-amplitude electron acoustic solitary waves in non-planar geometry

    NASA Astrophysics Data System (ADS)

    Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh

    2018-04-01

    Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.

  16. Role of S waves and Love waves in coseismic permeability enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Chi-yuen; Chia, Yeeping; Wang, Pei-ling; Dreger, Douglas

    2009-05-01

    The 2008 M7.9 Wenchuan earthquake in Sichuan, China, caused water level to oscillate and undergo sustained changes in Taiwan, ˜2000 km away from the epicenter. Here we use the responses in three wells recorded at high sampling rate (1 Hz) and the broadband seismograms from a nearby station to document, for the first time, that the major water-level responses associated with Rayleigh waves were preceded by small oscillations that occurred concurrently with S waves and Love waves. We also show that the groundwater flow associated with these small oscillations may be strong enough to remove blockades from sediment pores to enhance aquifer permeability and to facilitate the later major responses.

  17. Lutetia: an example of prediction of polyhedra in shapes of small cosmic bodies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    The following prediction based on rules of the wave planetology [1-12] was published before the Rosetta spacecraft imaged asteroid Lutetia [13]. "A 100 km long flattened asteroid 21-Lutetia will be imaged by the "Ros etta' s pacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia -gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies 'accelerations imply inertia -gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four direct ions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising s trongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) ma kes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the ess entially dichotomous s imp les t Plato's figure. In this polyhedron always there is an oppos ition of extension (a face) to contraction (a vertex). The firs t overtone wave2 (long πR) ma kes tectonic s ectors , als o ris en and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes a nd is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the ma in s equence and the individual wave (a ls o long 2π R) a re in the s tron gest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - "orbits make s tructures ." [13]. Below are some examples of cosmic polyhedra belonging to small bodies of various classes (asteroids, satellites, comets), s izes and compos itions . Thus , the prediction of Lutetia' s hape (s trengthened by the later Tempel's images ) was bas ed on rathe r representative observations.

  18. Implementation of a boundary element method to solve for the near field effects of an array of WECs

    NASA Astrophysics Data System (ADS)

    Oskamp, J. A.; Ozkan-Haller, H. T.

    2010-12-01

    When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.

  19. Scattering of plane evanescent waves by cylindrical shells and wave vector coupling conditions for exciting flexural waves

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of flexural waves on buried shells by acoustic evanescent waves, the partial wave series for the scattering is found for cylindrical shells at normal incidence in an unbounded medium. The formulation uses the simplifications of thin-shell dynamics. In the case of ordinary waves incident on a shell, a ray formulation is available to describe the coupling to subsonic flexural waves [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. When the incident wave is evanescent, the distance between propagating plane wavefronts is smaller than the ordinary acoustical wavelength at the same frequency and the coupling condition for the excitation of flexural waves on shells or plates is modified. Instead of matching the flexural wave number with the propagating part of the acoustic wave number only at the coincidence frequency, a second low-frequency wave number matching condition is found for highly evanescent waves. Numerical evaluation of the modified partial-wave-series appropriate for an evanescent wave is used to investigate the low-frequency coupling of evanescent waves with flexural wave resonances of shells.

  20. Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator

    NASA Astrophysics Data System (ADS)

    Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.

    A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.

  1. Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment

    NASA Astrophysics Data System (ADS)

    Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.

    2016-02-01

    Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.

  2. Instabilities of thin layers of conducting fluids produced by time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Burguete, Javier

    2011-11-01

    We present the recent results of an experiment where thin layers of conducting fluids are forced by time-dependent magnetic fields perpendicular to their surface. We use as conducting fluid an In-Ga-Sn alloy, immersed in a 5% hydrocloric acid solution to prevent oxidation. The conducting layers have a circular shape, and are placed inside a set-up that produces the vertical magnetic field. Due to MHD effects, the competition between the Lorentz force and gravity triggers an instability of the free surface. The shape of this surface can adopt many different configurations, with a very rich dynamics, presenting azimuthal wave numbers between 3 and 8 for the explored parameters. The magnetic field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects and with a magnitude up to 0.1 T. Different resonant regions have been observed, for narrow windows of the forcing frequency. We have analysed the existence of thresholds for these instabilities, depending on the wave number and experimental parameters. These results are compared with others present in the literature.

  3. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    NASA Astrophysics Data System (ADS)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R < 20. A realistic IBC is then employed, derived via an inverse Helmholtz solver analysis of an ultrasonically absorbing carbon-fiber-reinforced carbon ceramic sample used in recent hypersonic transition experiments by Dr. Wagner and co-workers at DLR-Göttingen.

  4. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    NASA Astrophysics Data System (ADS)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  5. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  6. Waves and tides responsible for the intermittent closure of the entrance of a small, sheltered tidal wetland at San Francisco, CA

    USGS Publications Warehouse

    Hanes, D.M.; Ward, K.; Erikson, L.H.

    2011-01-01

    Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel. ?? 2011.

  7. Non-diffusive ignition of a gaseous reactive mixture following time-resolved, spatially distributed energy deposition

    NASA Astrophysics Data System (ADS)

    Kassoy, D. R.

    2014-01-01

    Systematic asymptotic methods are applied to the compressible conservation and state equations for a reactive gas, including transport terms, to develop a rational thermomechanical formulation for the ignition of a chemical reaction following time-resolved, spatially distributed thermal energy addition from an external source into a finite volume of gas. A multi-parameter asymptotic analysis is developed for a wide range of energy deposition levels relative to the initial internal energy in the volume when the heating timescale is short compared to the characteristic acoustic timescale of the volume. Below a quantitatively defined threshold for energy addition, a nearly constant volume heating process occurs, with a small but finite internal gas expansion Mach number. Very little added thermal energy is converted to kinetic energy. The gas expelled from the boundary of the hot, high-pressure spot is the source of mechanical disturbances (acoustic and shock waves) that propagate away into the neighbouring unheated gas. When the energy addition reaches the threshold value, the heating process is fully compressible with a substantial internal gas expansion Mach number, the source of blast waves propagating into the unheated environmental gas. This case corresponds to an extremely large non-dimensional hot-spot temperature and pressure. If the former is sufficiently large, a high activation energy chemical reaction is initiated on the short heating timescale. This phenomenon is in contrast to that for more modest levels of energy addition, where a thermal explosion occurs only after the familiar extended ignition delay period for a classical high activation reaction. Transport effects, modulated by an asymptotically small Knudsen number, are shown to be negligible unless a local gradient in temperature, concentration or velocity is exceptionally large.

  8. Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells

    NASA Astrophysics Data System (ADS)

    Uchikata, Nami; Yoshida, Shijun; Pani, Paolo

    2016-09-01

    The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.

  9. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  10. Acoustic Guided Wave Testing of Pipes of Small Diameters

    NASA Astrophysics Data System (ADS)

    Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.

    2017-10-01

    Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.

  11. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    NASA Technical Reports Server (NTRS)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  12. Potential to kinetic energy conversion in wave number domain for the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Huang, H.-J.; Vincent, D. G.

    1984-01-01

    Preliminary results of a wave number study conducted for the South Pacific Convergence Zone (SPCZ) using FGGE data for the period January 10-27, 1979 are reported. In particular, three variables (geomagnetic height, z, vertical p-velocity, omega, and temperature, T) and one energy conversion quantity, omega-alpha (where alpha is the specific volume), are shown. It is demonstrated that wave number 4 plays an important role in the conversion from available potential energy to kinetic energy in the Southern Hemisphere tropics, particularly in the vicinity of the SPCZ. It is therefore suggested that the development and movement of wave number 4 waves be carefully monitored in making forecasts for the South Pacific region.

  13. An Artificial Particle Precipitation Technique Using HAARP-Generated VLF Waves

    DTIC Science & Technology

    2006-11-02

    AFRL-VS-HA-TR-2007-1021 An Artificial Particle Precipitation Technique Using HAARP -Generated VLF Waves O o o r- Q M. J. Kosch T. Pedersen J...Artificial Particle Precipitation Technique Using HAARP Generated VLF Waves. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62101F...model. The frequency-time modulated VLF wave patterns have been successfully implemented at the HAARP ionospheric modification facility in Alaska

  14. Smoothed particle hydrodynamics model for Landau-Lifshitz Navier-Stokes and advection-diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.

    2014-12-14

    We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation ofmore » the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.« less

  15. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  16. Google Wave: Have CTSA-Minded Institutions Caught It?

    PubMed

    Donahue, Amy

    2010-01-01

    BACKGROUND: Google Wave was touted as the next big communication tool-combining e-mail, social networking, and chat within a single "wave"-with the potential to create a new world for collaboration. Information professionals who are knowledgeable of this tool and its capabilities could become uniquely situated to use it, evaluate it, and teach it. This seemed especially true for those working within Clinical and Translational Science Award (CTSA)-minded institutions, given the promise of interdisciplinary collaboration between investigators and the potential for creating new authorship models. This case study on Google Wave users who are affiliated with CTSA-minded institutions, was designed for and presented at the Evidence-Based Scholarly Communication Conference held by the University of New Mexico Health Sciences Library and Information Center. It provides an early evidence based evaluation of Google Wave's potential. METHODS: Two "waves" were created. The first consisted of five survey questions designed to collect demographic data on the respondents' roles, a general impression of Wave, the specific tools within Wave that might be useful, and potential collaborators with whom the respondents might use Wave. The second wave was a private, guided discussion on Wave's collaboration potential. Individuals from CTSA-minded institutions were invited to participate with messages on Twitter, forums, blogs, and electronic mail lists, although there were difficulties reaching out to these institutions as a group. RESULTS: By the conclusion of the study, only a small number of people (n=11, with a viable n=9) had responded to the survey. Given this small result set, it made sense to group the responses by the respondents' roles (CTSA staff and researchers, support staff, medical librarian, or general public) and to treat them as individual cases. Most of the respondents were librarians and support staff who felt that Wave might have potential for collaboration; there were no CTSA researcher respondents. For the second part of the study, the discussion wave, only one participant explicitly expressed interest in joining. All were invited to join, but there was no participation in the discussion wave at the conclusion of the study. CONCLUSIONS: The results of this study implied that Google Wave was not on the forefront of CTSA-minded institutions' communication strategies. However, it was being used, and it did demonstrate new collaboration and authorship capabilities. Being generally aware of these capabilities may be useful to information professionals who seek to be current and informed regarding developing technology and to those interested in scholarly communication practices. In addition, the difficulties encountered during this case study in attempting to reach out to CTSA-minded institutions raised the question of how members currently communicate with each other as institutions and as individuals. There was a lesson learned in the usefulness of doing case-study research to evaluate new technologies; the cost in terms of time was relatively low, and knowledge about the technology itself was gained while establishing a base level of evidence to potentially build on in the future.

  17. Permittivity of water at millimeter wave-lengths

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1976-01-01

    Work performed on the permittivity of seawater and ice at 100 GHz was described. Measurements on water covered the temperature range from 0 to 50 C, while the measurements on ice were taken near - 10 C. In addition, a small number of measurements were made on the reflectivity of absorber materials used in a previous program on research in millimeter wave techniques. Normal incidence reflectivity was measured, and the result was used to obtain the index of refraction. For the case of normal incidence, reflectivity at a fixed temperature was reproducible to 1% for values near 40%. For reflectivity measurements on ice, the lack of attenuation leads to reflection from the back surface of the sample; this complication was circumvented by using a wedge shaped sample and freezing the water in a container lined with absorber material.

  18. Wave theory in rotating systems: Schrödinger equations bridge the gaps between the equatorial β-plane and the spherical earth

    NASA Astrophysics Data System (ADS)

    Paldor, N.

    2017-12-01

    The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966

  19. On the propagation and multiple reflections of a blast wave travelling through a dusty gas in a closed box

    NASA Astrophysics Data System (ADS)

    Lappa, Marcello; Drikakis, Dimitris; Kokkinakis, Ioannis

    2017-03-01

    This paper concerns the propagation of shock waves in an enclosure filled with dusty gas. The main motivation for this problem is to probe the effect on such dynamics of solid particles dispersed in the fluid medium. This subject, which has attracted so much attention over recent years given its important implications in the study of the structural stability of systems exposed to high-energy internal detonations, is approached here in the framework of a hybrid numerical two-way coupled Eulerian-Lagrangian methodology. In particular, insights are sought by considering a relatively simple archetypal setting corresponding to a shock wave originating from a small spherical region initialized on the basis of available analytic solutions. The response of the system is explored numerically with respect to several parameters, including the blast intensity (via the related value of the initial shock Mach number), the solid mass fraction (mass load), and the particle size (Stokes number). Results are presented in terms of pressure-load diagrams. Beyond practical applications, it is shown that a kaleidoscope of fascinating patterns is produced by the "triadic" relationships among multiple shock reflection events and particle-fluid and particle-wall interaction dynamics. These would be of great interest to researchers and scientists interested in fundamental problems relating to the general theory of pattern formation in complex nonlinear multiphase systems.

  20. Fast prediction and evaluation of eccentric inspirals using reduced-order models

    NASA Astrophysics Data System (ADS)

    Barta, Dániel; Vasúth, Mátyás

    2018-06-01

    A large number of theoretically predicted waveforms are required by matched-filtering searches for the gravitational-wave signals produced by compact binary coalescence. In order to substantially alleviate the computational burden in gravitational-wave searches and parameter estimation without degrading the signal detectability, we propose a novel reduced-order-model (ROM) approach with applications to adiabatic 3PN-accurate inspiral waveforms of nonspinning sources that evolve on either highly or slightly eccentric orbits. We provide a singular-value decomposition-based reduced-basis method in the frequency domain to generate reduced-order approximations of any gravitational waves with acceptable accuracy and precision within the parameter range of the model. We construct efficient reduced bases comprised of a relatively small number of the most relevant waveforms over three-dimensional parameter-space covered by the template bank (total mass 2.15 M⊙≤M ≤215 M⊙ , mass ratio 0.01 ≤q ≤1 , and initial orbital eccentricity 0 ≤e0≤0.95 ). The ROM is designed to predict signals in the frequency band from 10 Hz to 2 kHz for aLIGO and aVirgo design sensitivity. Beside moderating the data reduction, finer sampling of fiducial templates improves the accuracy of surrogates. Considerable increase in the speedup from several hundreds to thousands can be achieved by evaluating surrogates for low-mass systems especially when combined with high-eccentricity.

  1. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions. To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations.We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a differentmore » segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using monte-carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate.We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all environmental and operating conditions, while the latter does not and leverages the fact that environmental and operating conditions vary slowly over time and can be modeled as a Gaussian process.« less

  2. Inhomogeneous distribution of water droplets in cloud turbulence

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Park, Yongnam; Harduf, Roei; Lee, Changhoon

    2015-09-01

    We consider sedimentation of small particles in the turbulent flow where fluid accelerations are much smaller than acceleration of gravity g . The particles are dragged by the flow by linear friction force. We demonstrate that the pair-correlation function of particles' concentration diverges with decreasing separation as a power law with negative exponent. This manifests fractal distribution of particles in space. We find that the exponent is proportional to ratio of integral of energy spectrum of turbulence times the wave number over g . The proportionality coefficient is a universal number independent of particle size. We derive the spectrum of Lyapunov exponents that describes the evolution of small patches of particles. It is demonstrated that particles separate dominantly in the horizontal plane. This provides a theory for the recently observed vertical columns formed by the particles. We confirm the predictions by direct numerical simulations of Navier-Stokes turbulence. The predictions include conditions that hold for water droplets in warm clouds thus providing a tool for the prediction of rain formation.

  3. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm

    USGS Publications Warehouse

    Gedan, Keryn B.; Kirwan, Matthew L.; Wolanski, Eric; Barbier, Edward B.; Silliman, Brian R.

    2011-01-01

    For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline protection.

  4. P and S wave Coda Calibration in Central Asia and South Korea

    NASA Astrophysics Data System (ADS)

    Kim, D.; Mayeda, K.; Gok, R.; Barno, J.; Roman-Nieves, J. I.

    2017-12-01

    Empirically derived coda source spectra provide unbiased, absolute moment magnitude (Mw) estimates for events that are normally too small for accurate long-period waveform modeling. In this study, we obtain coda-derived source spectra using data from Central Asia (Kyrgyzstan networks - KN and KR, and Tajikistan - TJ) and South Korea (Korea Meteorological Administration, KMA). We used a recently developed coda calibration module of Seismic WaveForm Tool (SWFT). Seismic activities during this recording period include the recent Gyeongju earthquake of Mw=5.3 and its aftershocks, two nuclear explosions from 2009 and 2013 in North Korea, and a small number of construction and mining-related explosions. For calibration, we calculated synthetic coda envelopes for both P and S waves based on a simple analytic expression that fits the observed narrowband filtered envelopes using the method outlined in Mayeda et al. (2003). To provide an absolute scale of the resulting source spectra, path and site corrections are applied using independent spectral constraints (e.g., Mw and stress drop) from three Kyrgyzstan events and the largest events of the Gyeongju sequence in Central Asia and South Korea, respectively. In spite of major tectonic differences, stable source spectra were obtained in both regions. We validated the resulting spectra by comparing the ratio of raw envelopes and source spectra from calibrated envelopes. Spectral shapes of earthquakes and explosions show different patterns in both regions. We also find (1) the source spectra derived from S-coda is more robust than that from the P-coda at low frequencies; (2) unlike earthquake events, the source spectra of explosions have a large disagreement between P and S waves; and (3) similarity is observed between 2016 Gyeongju and 2011 Virginia earthquake sequence in the eastern U.S.

  5. Onset of oscillatory Rayleigh-Bénard magnetoconvection with rigid horizontal boundaries

    NASA Astrophysics Data System (ADS)

    Mondal, Hiya; Das, Alaka; Kumar, Krishna

    2018-01-01

    We present the results of linear stability analysis of oscillatory Rayleigh-Bénard magnetoconvection with rigid and thermally conducting boundaries. We have investigated two types of horizontal surfaces: (i) electrically conducting and (ii) boundaries which do not allow any outward current normal to the surface (magnetic vacuum conditions). For the case of electrically conducting boundaries, the critical Rayleigh number R ao(Q ,P r ,P m ) , the critical wave number ko(Q ,P r ,P m ) , and the frequency at the instability onset ω(Q ,P r ,P m ) increase as the Chandrasekhar number Q is raised for fixed non-zero values of thermal Prandtl Pr and magnetic Prandtl number Pm. For small values of Pr, the frequency of oscillation ω at the primary instability shows a rapid increase with Pm for very small values of Pm followed by a decrease at relatively larger values of Pm. In the limit of P r →0 , Rao and ko are found to be independent of Q. However, the frequency ω increases with Q, but decreases with Pm in this limit. The oscillatory instability is possible at the onset of magnetoconvection if and only if Chandrasekhar's criterion is valid (i.e., Pm > Pr) and Q is raised above a critical value Qc(P r ,P m ) such that the product P m *Qc≈91 for large Pm. For the stellar interior of an astrophysical body ( P m ≈10-4 and P r ≈10-8 ), the value of this product P m *Qc≈230 . The boundary conditions for magnetic vacuum change the critical values of Rayleigh number, wave number, and frequency of oscillation at the onset. The oscillatory magnetoconvection occurs in this case, if Q >Qc , where P m *Qc≈42 for large Pm. For steller interior, this value is approximately 64. A low-dimensional model is also constructed to study various patterns near the onset of oscillatory convection for rigid, thermally and electrically conducting boundaries. The model shows standing and drifting fluid patterns in addition to flow reversal close to the onset of magnetoconvection.

  6. Wave Journal Bearing. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  7. Linear instability of compound liquid threads in the presence of surfactant

    NASA Astrophysics Data System (ADS)

    Ye, Han-yu; Yang, Li-jun; Fu, Qing-fei

    2017-08-01

    This paper investigates the linear instability of compound liquid threads in the presence of surfactant. The limitation of the one-dimensional approximation in previous work [Craster, Matar, and Papageorgiou, Phys. Fluids 15, 3409 (2003), 10.1063/1.1611879] is removed; hence the radial dependence of the axial velocity can be taken into account. Therefore both the stretching and the squeezing modes can be investigated. The disturbance growth rate is reduced with an increase of the dimensionless surface-tension gradient (whether in the stretching or squeezing mode). For the parameter range investigated, it is found that the squeezing mode is much more sensitive to the Marangoni effect than the stretching mode. The disturbance axial velocity and disturbance surfactant concentration for a typical case is investigated. It is found that the disturbance axial velocity is close to uniform in the stretching mode when the dimensionless surface-tension gradient and the wave number are small. In contrast, for wave numbers close to cutoff, or a large dimensionless surface-tension gradient, or in the squeezing mode, the disturbance axial velocity is not uniform. Analytical relations between growth rate and wave number valid in the long-wave limit are derived. In the stretching mode, the flow moves from an extension-dominated regime to a shear-dominated regime when β1+R σ β2 increases through 1 +R σ , where β1 and β2 are the dimensionless surface-tension gradient of the inner and outer interface, respectively, R is the radius ratio, and σ is the surface tension ratio. In the squeezing mode, whatever the values of β1 and β2, the flow is always in the shear-dominated regime. The expressions of the leading-order axial perturbation velocity in the long-wave limit are derived and they explain the applicability of one-dimensional models. It is found that the leading-order axial velocity in the extension-dominated regime is always uniform and one-dimensional models work well in this regime. For the shear-dominated regime, the leading-order axial velocity can be either nonuniform or close to uniform, depending on the ratio between the dimensionless surfactant diffusivity d1 and the Laplace number La : when d1≫La the velocity profile is close to uniform and one-dimensional models work well; otherwise the velocity profile is nonuniform and one-dimensional models fail.

  8. Disentangling the triadic interactions in Navier-Stokes equations.

    PubMed

    Sahoo, Ganapati; Biferale, Luca

    2015-10-01

    We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m). Changing k(m) to be above or below the forcing scale, k(f), we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.

  9. Antarctic NAT PSC Belt of June 2003: Observational Validation of the Mountain Wave Seeding Hypothesis

    NASA Technical Reports Server (NTRS)

    Eckermann, S. D.; Hoffmann, L.; Hoepfner, M.; Wu, D. L.; Alexander, M. J.

    2009-01-01

    Satellite observations of polar stratospheric clouds (PSCs) over Antarctica in June 2003 revealed small nitric acid trihydrate (NAT) particles forming suddenly along the vortex edge. Models suggest the trigger was mountain waves over the Antarctic Peninsula (AP) forming ice for NAT nucleation. We test this hypothesis by analyzing perturbations in stratospheric radiances from the Atmospheric Infrared Sounder (AIRS). AIRS data show mountain waves over the AP on 10-14 June, with no resolved wave activity before or after. Peak wave temperature amplitudes derived from independent 40 hPa channels all return values of 10-12 K, in agreement with values used to model this NAT event. These observations support a NAT wake from a small region of mountain wave activity over the AP as the source of this circumpolar NAT outbreak.

  10. Wave-Powered Unmanned Surface Vehicle as a Station-Keeping Gateway Node for Undersea Distributed Networks

    DTIC Science & Technology

    2012-09-01

    the vehicles has the same payload in order to determine performance differences and changes in ocean conditions between the Wave Gliders as they transit...and different materials for the vehicle, engineers were able to determine some characteristics of a wave-powered vehicle. The intended use of this wave...small waves, a pressure difference is created, making the wave larger and larger. The waves then coalesce with each other creating longer waves that

  11. Motion and Seasickness of Fast Warships

    DTIC Science & Technology

    2004-10-01

    Motion and Seasickness of Fast Warships Riola J.M. (1), Esteban S. (2), Giron-Sierra J.M. (2) & Aranda J. (3) (1) Canal de Experiencias ...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Canal de Experiencias Hidrodinámicas de ...Bretschneider Sp bability Density of Waves /λ, with H being the wave height (twice the wave a in a seakeeping basin Canal de Experiencias Hid r waves with

  12. A generalized invariant imbedding for wave propagation

    NASA Astrophysics Data System (ADS)

    Ayoubi, I. S.; Nelson, P.

    1984-04-01

    The initial-value problems for reflection and transmission coefficients (imbeddings) obtained by Bellman and Wing are critically reviewed. It is shown in detail how the two reduce to a common form when both are valid. A simultaneous generalization of these two imbeddings is obtained. The generalized imbedding involves incidence onto an intermediate region of continuous wave number, from a region of smooth wave number, but with no requirement concerning the manner in which the wave numbers join at the interface.

  13. Wave Activity and Its Changes in the Troposphere and Stratosphere of the Northern Hemisphere in Winters of 1979-2016

    NASA Astrophysics Data System (ADS)

    Guryanov, V. V.; Eliseev, A. V.; Mokhov, I. I.; Perevedentsev, Yu. P.

    2018-03-01

    An analysis of spectra of wave disturbances with zonal wave numbers 1 ≤ k ≤ 10 is carried out using winter (November to March) ERA-Interim reanalysis geopotential data in the troposphere and stratosphere for 1979-2016. Contributions of eastward-traveling ( E), westward-traveling ( W), and stationary ( S) waves are estimated. The intensification of wave activity is observed in the tropical troposphere and stratosphere and in the upper stratosphere of the entire Northern Hemisphere. The intensification of wave activity in the tropics and subtropics is noted for waves of all types ( E, W, and S), while in the middle and higher latitudes it is related mainly to stationary and eastward waves. Near the subtropical tropopause, the energy of stationary waves has increased in recent decades. In addition, in the tropical and subtropical troposphere and in the subtropical lower stratosphere, the energy of the eastward-traveling waves in El Niño years may be one and a half times or twice the energy in La Niña years. The spectrally weighted zonal wave numbers for waves of all types ( E, W, and S) are the largest in the upper subtropical troposphere. The spectrally weighted zonal wave number for W and S waves is correlated with the Atlantic Multidecadal Oscillation index and varies by 15% in 1979-2016 (on an interdecadal time scale). The spectrally weighted wave period is larger in the stratosphere than in the troposphere. It is maximal in the middle extratropical stratosphere. The spectrally weighted wave periods correlate with the activity of sudden stratospheric warmings. The sign of this correlation depends on the latitude, atmospheric layer, and zonal wave number.

  14. One-Hertz Waves at Mars: MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, Suranga; Halekas, J. S.; Espley, J. R.; Eparvier, F.; Brain, D.; Mazelle, C.; Harada, Y.; DiBraccio, G. A.; Thiemann, E. M. B.; Larson, D. E.; Mitchell, D. L.; Jakosky, B. M.; Sulaiman, A. H.

    2018-05-01

    We perform a survey of 1-Hz waves at Mars utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observations for a Martian year. We find that the 1-Hz wave occurrence rate shows an apparent variation caused by masking of the waves by background turbulence during the times when the background turbulence levels are high. To correct for this turbulence masking, we select waves that occur in time intervals where the background turbulence levels are low. We find that the extreme ultraviolet flux does not affect the wave occurrence rate significantly, suggesting that the newly born pickup ions originating in the Mars's exosphere contribute minimally to the 1-Hz wave generation. We find that the wave occurrence rates are higher for low Mach numbers and low beta values than for high Mach numbers and high beta values. Further, we find that a high percentage of 1-Hz waves satisfy the group-standing condition, which suggests that a high percentage of the waves seen as monochromatic waves in the spacecraft frame can be broadband waves in the solar wind frame that have group velocities nearly equal and opposite to the solar wind velocity. We infer that the wave occurrence rate trends with the Mach number and proton beta are a consequence of how the Mach numbers and beta values influence the wave generation and damping or how those parameters affect the group-standing condition. Finally, we find that the 1-Hz waves are equally likely to be found in both the quasi-parallel and the quasi-perpendicular foreshock regions.

  15. Short-Period Surface Wave Based Seismic Event Relocation

    NASA Astrophysics Data System (ADS)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  16. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    DOE PAGES

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; ...

    2017-02-24

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves aremore » a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.« less

  17. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves aremore » a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.« less

  18. Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow

    NASA Astrophysics Data System (ADS)

    Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi

    2017-11-01

    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.

  19. Helicon modes in uniform plasmas. III. Angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B{sub 0}. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excitedmore » in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B{sub 0}. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B{sub 0} are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work will be contrasted to the research on helicon plasma sources.« less

  20. Stability of post-fertilization traveling waves

    NASA Astrophysics Data System (ADS)

    Flores, Gilberto; Plaza, Ramón G.

    This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.

  1. Hydroelastic analysis of surface wave interaction with concentric porous and flexible cylinder systems

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Datta, N.; Sahoo, T.

    2013-10-01

    The present study deals with the hydroelastic analysis of gravity wave interaction with concentric porous and flexible cylinder systems, in which the inner cylinder is rigid and the outer cylinder is porous and flexible. The problems are analyzed in finite water depth under the assumption of small amplitude water wave theory and structural response. The cylinder configurations in the present study are namely (a) surface-piercing truncated cylinders, (b) bottom-touching truncated cylinders and (c) complete submerged cylinders extended from free surface to bottom. As special cases of the concentric cylinder system, wave diffraction by (i) porous flexible cylinder and (ii) flexible floating cage with rigid bottom are analyzed. The scattering potentials are evaluated using Fourier-Bessel series expansion method and the least square approximation method. The convergence of the double series is tested numerically to determine the number of terms in the Fourier-Bessel series expansion. The effects of porosity and flexibility of the outer cylinder, in attenuating the hydrodynamic forces and dynamic overturning moments, are analyzed for various cylinder configurations and wave characteristics. A parametric study with respect to wave frequency, ratios of inner-to-outer cylinder radii, annular spacing between the two cylinders and porosities is done. In order to understand the flow distribution around the cylinders, contour plots are provided. The findings of the present study are likely to be of immense help in the design of various types of marine structures which can withstand the wave loads of varied nature in the marine environment. The theory can be easily extended to deal with a large class of problems associated with acoustic wave interaction with flexible porous structures.

  2. Kelvin-wave cascade in the vortex filament model

    NASA Astrophysics Data System (ADS)

    Baggaley, Andrew W.; Laurie, Jason

    2014-01-01

    The small-scale energy-transfer mechanism in zero-temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves (KWs) transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting KWs to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with the nonlocal six-wave KW interactions as proposed by L'vov and Nazarenko.

  3. High-frequency sound waves to eliminate a horizon in the mixmaster universe.

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.

    1972-01-01

    From the linear wave equation for small-amplitude sound waves in a curved space-time, there is derived a geodesiclike differential equation for sound rays to describe the motion of wave packets. These equations are applied in the generic, nonrotating, homogeneous closed-model universe (the 'mixmaster universe,' Bianchi type IX). As for light rays described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the universe near the singularity to remove particle horizons only for a small class of these models and in special directions. Although these results parallel those of DN, different Hamiltonian methods are used for treating the Einstein equations.

  4. Helicity, geostrophic balance and mixing in rotating stratified turbulence: a multi-scale problem

    NASA Astrophysics Data System (ADS)

    Pouquet, A.; Marino, R.; Mininni, P.; Rorai, C.; Rosenberg, D. L.

    2012-12-01

    Helicity, geostrophic balance and mixing in rotating stratified turbulence: a multi-scale problem A. Pouquet, R. Marino, P. D. Mininni, C. Rorai & D. Rosenberg, NCAR Interactions between winds and waves have important roles in planetary and oceanic boundary layers, affecting momentum, heat and CO2 transport. Within the Abyssal Southern Ocean at Mid latitude, this may result in a mixed layer which is too shallow in climate models thereby affecting the overall evolution because of poor handling of wave breaking as in Kelvin-Helmoltz instabilities: gravity waves couple nonlinearly on slow time scales and undergo steepening through resonant interactions, or due to the presence of shear. In the oceans, sub-mesoscale frontogenesis and significant departure from quasi-geostrophy can be seen as turbulence intensifies. The ensuing anomalous vertical dispersion may not be simply modeled by a random walk, due to intermittent structures, wave propagation and to their interactions. Conversely, the energy and seeds required for such intermittent events to occur, say in the stable planetary boundary layer, may come from the wave field that is perturbed, or from winds and the effect of topography. Under the assumption of stationarity, weak nonlinearities, dissipation and forcing, one obtains large-scale geostrophic balance linking pressure gradient, gravity and Coriolis force. The role of helicity (velocity-vorticity correlations) has not received as much attention, outside the realm of astrophysics when considering the growth of large-scale magnetic fields. However, it is measured routinely in the atmosphere in order to gauge the likelihood of supercell convective storms to strengthen, and it may be a factor to consider in the formation of hurricanes. In this context, we examine the transition from a wave-dominated regime to an isotropic small-scale turbulent one in rotating flows with helical forcing. Using a direct numerical simulation (DNS) on a 3072^3 grid with Rossby and Reynolds numbers of 0.07 and 27000, one can resolve both the Zeman scale at which the inertial and eddy turn-over times equalize, and the dissipation scale. We show that fully helical vertical columns dominate at intermediate scales, presumably self-similar and shrouded by a sea of small-scale vortex filaments as in Kolmogorov turbulence. Helicity has a profound effect on the structures of the flow, and a previously developed model that includes a helical component in its eddy viscosity and eddy noise shows a measurable improvement. Indeed, if dimensionless parameters for inertial and gravity waves are reachable numerically, the Reynolds number is too low in DNS for geophysics unless one uses parametrizations of small scale interactions. For spin-down stably-stratified flows, energy and helicity undergo a substantially slower decay than in the unstratified case, and a type of large-scale cyclostrophic balance is invoked to explain this behavior. The decay rate is similar to that occurring in the unstratified rotating case, as modeled by taking into account the quasi-conservation of helicity. We finally mention helicity production when rotation and stratification are both combined. In conclusion, much remains to be done, e.g. examining transport properties of rotating stratified turbulence, such as the effect of helicity on mixing in geophysical flows that can be studied with high-performance computing allowing multi-scale interactions and intermittency to develop.

  5. How wind turbines affect the performance of seismic monitoring stations and networks

    NASA Astrophysics Data System (ADS)

    Neuffer, Tobias; Kremers, Simon

    2017-12-01

    In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.

  6. Salt Neutrino Detector for Ultrahigh-Energy Neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiba, M.; Yasuda, O.; Kamijo, T.

    2004-11-01

    Rock salt and limestone are studied to determine their suitability for use as a radio-wave transmission medium in an ultrahigh energy (UHE) cosmic neutrino detector. A sensible radio wave would be emitted by the coherent Cherenkov radiation from negative excess charges inside an electromagnetic shower upon interaction of a UHE neutrino in a high-density medium (Askar'yan effect). If the attenuation length for the radio wave in the material is large, a relatively small number of radio-wave sensors could detect the interaction occurring in the massive material. We measured the complex permittivity of the rock salt and limestone by the perturbedmore » cavity resonator method at 9.4 and 1 GHz to good precision. We obtained new results of measurements at the frequency at 1.0 GHz. The measured value of the radio-wave attenuation length of synthetic rock salt samples is 1080 m. The samples from the Hockley salt mine in the United States show attenuation length of 180 m at 1 GHz, and then we estimate it by extrapolation to be as long as 900 m at 200 MHz. The results show that there is a possibility of utilizing natural massive deposits of rock salt for a UHE neutrino detector. A salt neutrino detector with a size of 2 x 2 x 2 km would detect 10 UHE neutrino/yr generated through the GZK process.« less

  7. Finite difference elastic wave modeling with an irregular free surface using ADER scheme

    NASA Astrophysics Data System (ADS)

    Almuhaidib, Abdulaziz M.; Nafi Toksöz, M.

    2015-06-01

    In numerical modeling of seismic wave propagation in the earth, we encounter two important issues: the free surface and the topography of the surface (i.e. irregularities). In this study, we develop a 2D finite difference solver for the elastic wave equation that combines a 4th- order ADER scheme (Arbitrary high-order accuracy using DERivatives), which is widely used in aeroacoustics, with the characteristic variable method at the free surface boundary. The idea is to treat the free surface boundary explicitly by using ghost values of the solution for points beyond the free surface to impose the physical boundary condition. The method is based on the velocity-stress formulation. The ultimate goal is to develop a numerical solver for the elastic wave equation that is stable, accurate and computationally efficient. The solver treats smooth arbitrary-shaped boundaries as simple plane boundaries. The computational cost added by treating the topography is negligible compared to flat free surface because only a small number of grid points near the boundary need to be computed. In the presence of topography, using 10 grid points per shortest shear-wavelength, the solver yields accurate results. Benchmark numerical tests using several complex models that are solved by our method and other independent accurate methods show an excellent agreement, confirming the validity of the method for modeling elastic waves with an irregular free surface.

  8. Shock-induced compaction of nanoparticle layers into nanostructured coating

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander E.; Ebel, Andrei A.

    2017-10-01

    A new process of shock wave consolidation of nanoparticles into a nanocrystalline coating is theoretically considered. In the proposed scheme, the nanoparticle layers, which are attached to the substrate surface by adhesion, are compacted by plane ultra-short shock waves coming from the substrate. The initial adhesion is self-arisen at any contact between the nanoparticles without a pre-compression. The absence of the nanoparticle ejections due to the shock wave action is connected with the strong adhesive forces, which allow nanoparticles to be attached to each other and to substrate while they are being compacted; this should be valid for small enough nanoparticles. Severe plastic deformation of the nanoparticles and the increased temperature due to collapse of voids between them facilitate their compaction into the monolithic nanocrystalline layer. We consider the examples of Cu and Ni nanoparticles on Al substrate using molecular dynamic simulations. We show the efficiency of the action of multiple shock waves with the duration in the range 2-20 ps and the amplitude in the range 4-12 GPa for sequential layerwise compaction of nanoparticles. A series of shock waves can be created by a repetitive powerful pulsed laser irradiation of the opposite surface of the substrate. The method offers the challenge for the formation of nanostructured coatings of various compositions. The thickness of the compacted nanocrystalline coating can be locally varied and controlled by the number of acting pulses.

  9. A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data.

    PubMed

    Petculescu, Andi; Achi, Peter

    2012-05-01

    Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.

  10. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    NASA Astrophysics Data System (ADS)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied. Comparison between the turbulence structures measured during the wind wave initiation period and those obtained during the growing period was presented. Significant wave effects on near surface turbulence were found. A universal scaling law was proposed to parameterize turbulent dissipation rate immediately below the air-water interface with friction velocity, significant wave height and wave age. Finally, the gas transfer velocity was measured with a floating chamber (FC) system, along with simultaneously FPIV measurements. Turbulent dissipation rate both at the interface and at a short distance away from the interface (~ 10 cm) were analyzed and used to examine the small scale eddy model. The model coefficient was found to be dependent on the level of turbulence, instead of being a constant. An empirical relationship between the model coefficient and turbulent dissipation rate was provided, which improved the accuracy of the gas transfer velocity estimation by more than 100% for data acquired. Other data from the literature also supported this empirical relation. Furthermore, the relationship between model coefficient and turbulent Reynolds number was also investigated. In addition to physical control of gas exchange, the disturbance on near surface hydrodynamics by the FC was also discussed. Turbulent dissipation rates are enhanced at the short distance away from the interface, while the surface dissipation rates do not change significantly.

  11. A waved journal bearing concept with improved steady-state and dynamic performance

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1994-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  12. P wave dispersion in patients with hypochondriasis.

    PubMed

    Atmaca, Murad; Korkmaz, Hasan; Korkmaz, Sevda

    2010-11-26

    P wave dispersion (Pd), defined as the difference between the maximum and the minimum P wave duration, has been associated with anxiety. Thus, we wondered whether Pd in hypochondriasis which is associated with anxiety differed from that in healthy controls. Pd was measured in 30 hypochondriac patients and same number of physically and mentally healthy age- and gender-matched controls. Hamilton Depression Rating (HDRS) and Hamilton Anxiety Rating Scales (HARS) were scored. The heart rate and left atrium (LA) sizes were not significantly different between groups. However, both Pmax and Pmin values of the patients were significantly higher than those of healthy controls. As for the main variable investigated in the present study, the corrected Pd was significantly longer in the patient group compared to control group. On the basis of this study, we can conclude that Pd may be related to hypochondriasis though our sample is too small to allow us to obtain a clear conclusion. Future studies with larger sample evaluating the effects of treatment are required. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Helicons, History, High Technology and Heliacs

    NASA Astrophysics Data System (ADS)

    Boswell, Rod

    1998-11-01

    Helicon waves depend basically on the Hall effect and propagate between the ion and electron gyro frequencies: they are whistlers masquerading under another name hence their history goes back to the great war and subsequently involved such people as Appleton, Hartree and Storey. Considerable experimental and theoretical research was carried out on linear propagation during the 1960's and at the end of the decade it was discovered that the wave could actually heat the plasma electrons and increase the ionisation rate considerably. Nothing much happened during the 1970's but in the early 1980's it was realised that this high density source could be used for processing thin films and an increasing number of papers were published, which continues to this day. The first experiments on using helicons to create and heat toroidal plasmas were carried out at the end of the 1980's in a small heliac. Recent experiments with helicon excitation in the large heliac H1 at the ANU have shown that the ion temperature increases with the wave power. This mystery is being actively investigated.

  14. The use of underwater high-voltage discharges to improve the efficiency of Jatropha curcas L. biodiesel production.

    PubMed

    Maroušek, Josef; Itoh, Shigeru; Higa, Osamu; Kondo, Yoshikazu; Ueno, Masami; Suwa, Ryuichi; Komiya, Yasuaki; Tominaga, Jun; Kawamitsu, Yoshinobu

    2012-01-01

    Underwater high-voltage discharges (3.5 kV) resulting in 4.9 kJ shock waves (50-60 MPa) were studied at the laboratory scale as a Jatropha curcas L. seed disintegration method. Grinding and macerating in an excess of methanol (3.5:1) was advantageous because methanol acts both as a liquid carrier for the pressure shock waves and as a solvent that increases the efficiency of oil extraction while remaining usable for esterification. The influence of the number of shock waves and the intensity of methanol maceration on the heat values of the pressed cake are stated in detail. Soxhlet extraction demonstrated that a greater than 94% oil extraction was achieved. The increased disintegration of vacuoles rich in oil was documented by surface area analysis, mineralization kinetics analysis, and electron microscopy. The working volumes were small, and the proportion of energy inadequate compared to the yields released; however, much can be improved by upgrading the process. © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  15. Radiating dispersive shock waves in non-local optical media

    PubMed Central

    El, Gennady A.

    2016-01-01

    We consider the step Riemann problem for the system of equations describing the propagation of a coherent light beam in nematic liquid crystals, which is a general system describing nonlinear wave propagation in a number of different physical applications. While the equation governing the light beam is of defocusing nonlinear Schrödinger (NLS) equation type, the dispersive shock wave (DSW) generated from this initial condition has major differences from the standard DSW solution of the defocusing NLS equation. In particular, it is found that the DSW has positive polarity and generates resonant radiation which propagates ahead of it. Remarkably, the velocity of the lead soliton of the DSW is determined by the classical shock velocity. The solution for the radiative wavetrain is obtained using the Wentzel–Kramers–Brillouin approximation. It is shown that for sufficiently small initial jumps the nematic DSW is asymptotically governed by a Korteweg–de Vries equation with the fifth-order dispersion, which explicitly shows the resonance generating the radiation ahead of the DSW. The constructed asymptotic theory is shown to be in good agreement with the results of direct numerical simulations. PMID:27118911

  16. Theory of finite disturbances in a centrifugal compression system with a vaneless radial diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1990-01-01

    A previous small perturbation analysis of circumferential waves in circumferential compression systems, assuming inviscid flow, is shown to be consistent with observations that narrow diffusers are more stable than wide ones, when boundary layer displacement effect is included. The Moore-Greitzer analysis for finite strength transients containing both surge and rotating stall in axial machines is adapted for a centrifugal compression system. Under certain assumptions, and except for a new second order swirl, the diffuser velocity field, including resonant singularities, can be carried over from the previous inviscid linear analysis. Nonlinear transient equations are derived and applied in a simple example to show that throttling through a resonant value of flow coefficient must occur in a sudden surge-like drop, accompanied by a transient rotating wave. This inner solution is superseded by an outer surge response on a longer time scale. Surge may occur purely as result of circumferential wave resonance. Numerical results are shown for various parametric choices relating to throttle schedule and the characteristic slope. A number of circumferential modes considered simultaneously is briefly discussed.

  17. A Study of Fundamental Shock Noise Mechanisms

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1997-01-01

    This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.

  18. Alfven Waves observed in Polar Jets

    NASA Astrophysics Data System (ADS)

    Cirtain, J.

    2007-12-01

    Data collected on X-ray jets during a polar coronal hole observation campaign has revealed that some events have two distinct velocity components, one near the Alfv\\acute{e}n speed (~ 800 km sec-1) and the other near the sound speed (200 km sec-1). Previous reports indicate the incidence of jet formation to be only a few per day, with average radial speeds of 200 km sec-1. With the X-Ray Telescope (XRT) we detect an average of 10 events per hour. These jets are approximately 2 × 103 - 2 × 104 km wide and than 1 × 105 km long. The jet lifetimes range from 100 - 2500 secs. A large percentage of these jets are associated with small footpoint flares (1). The large number of events, coupled with the high velocities of the apparent outflows, indicate that these jets may contribute significantly to the high-speed solar wind from coronal holes. These observations provide unique and important evidence for the generation of Alfvén waves during reconnection and are possibly the first evidence of Alfv´n wave observations driving the high speed solar wind.

  19. Geometric Mechanics for Continuous Swimmers on Granular Material

    NASA Astrophysics Data System (ADS)

    Dai, Jin; Faraji, Hossein; Schiebel, Perrin; Gong, Chaohui; Travers, Matthew; Hatton, Ross; Goldman, Daniel; Choset, Howie; Biorobotics Lab Collaboration; LaboratoryRobotics; Applied Mechanics (LRAM) Collaboration; Complex Rheology; Biomechanics Lab Collaboration

    Animal experiments have shown that Chionactis occipitalis(N =10) effectively undulating on granular substrates exhibits a particular set of waveforms which can be approximated by a sinusoidal variation in curvature, i.e., a serpenoid wave. Furthermore, all snakes tested used a narrow subset of all available waveform parameters, measured as the relative curvature equal to 5.0+/-0.3, and number of waves on the body equal to1.8+/-0.1. We hypothesize that the serpenoid wave of a particular choice of parameters offers distinct benefit for locomotion on granular material. To test this hypothesis, we used a physical model (snake robot) to empirically explore the space of serpenoid motions, which is linearly spanned with two independent continuous serpenoid basis functions. The empirically derived height function map, which is a geometric mechanics tool for analyzing movements of cyclic gaits, showed that displacement per gait cycle increases with amplitude at small amplitudes, but reaches a peak value of 0.55 body-lengths at relative curvature equal to 6.0. This work signifies that with shape basis functions, geometric mechanics tools can be extended for continuous swimmers.

  20. Analysis of the safety profile of treatment with a large number of shock waves per session in extracorporeal lithotripsy.

    PubMed

    Budía Alba, A; López Acón, J D; Polo-Rodrigo, A; Bahílo-Mateu, P; Trassierra-Villa, M; Boronat-Tormo, F

    2015-06-01

    To assess the safety of increasing the number of waves per session in the treatment of urolithiasis using extracorporeal lithotripsy. Prospective, comparative, nonrandomized parallel study of patients with renoureteral lithiasis and an indication for extracorporeal lithotripsy who were consecutively enrolled between 2009 and 2010. We compared group I (160 patients) treated on schedule with a standard number of waves/session (mean 2858,3±302,8) using a Dornier lithotripter U/15/50 against group II (172 patients) treated with an expanded number of waves/session (mean, 6728,9±889,6) using a Siemens Modularis lithotripter. The study variables were age, sex, location, stone size, number of waves/session and total number of waves to resolution, stone-free rate (SFR) and rate of complications (Clavien-Dindo classification). Student's t-test and the chi-squared test were employed for the statistical analysis. The total rate of complications was 11.9% and 10.46% for groups I and II, respectively (P=.39). All complications were minor (Clavien-Dindo grade I). The most common complications were colic pain and hematuria in groups I and II, respectively, with a similar treatment intolerance rate (P>.05). The total number of waves necessary was lower in group II than in group I (P=.001), with SFRs of 96.5% and 71.5%, respectively (P=.001). Treatment with an expanded number of waves per session in extracorporeal lithotripsy does not increase the rate of complications or their severity. However, it could increase the overall effectiveness of the treatment. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Blood flow analysis with considering nanofluid effects in vertical channel

    NASA Astrophysics Data System (ADS)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  2. Modal processing for acoustic communications in shallow water experiment.

    PubMed

    Morozov, Andrey K; Preisig, James C; Papp, Joseph

    2008-09-01

    Acoustical array data from the Shallow Water Acoustics experiment was processed to show the feasibility of broadband mode decomposition as a preprocessing method to reduce the effective channel delay spread and concentrate received signal energy in a small number of independent channels. The data were collected by a vertical array designed at the Woods Hole Oceanographic Institution. Phase-shift Keying (PSK) m-sequence modulated signals with different carrier frequencies were transmitted at a distance 19.2 km from the array. Even during a strong internal waves activity a low bit error rate was achieved.

  3. Ground Wave Emergency Network Final Operational Capability: Environmental Assessment for Northwestern Nebraska Relay Node, Site Number RN 8C930NE

    DTIC Science & Technology

    1993-02-19

    some of the small elm trees that comprise the remains of an old shelterbelt. Access would be from School Road. Thirty-seven feet of access road would...low but very rugged cliffs known as the Pine Ridge Escarpment. This extends along the southern and eastern edges of the SSA, represented in Figure 1.1...sandstone occur on the steeper slopes just below the Pine Ridge Escarpment; silty soils derived from loess occur on the broad, gentle slopes between the

  4. Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Joyce, G.; Montgomery, D.

    1976-01-01

    Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing, a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wave numbers simultaneously with a cascade of mean square vector potential to lower wave numbers, leading to an omni-directional magnetic energy spectrum which varies as 1/k 3 at lower wave numbers, simultaneously with a buildup of magnetic excitation at the lowest wave number of the system. Equipartition of kinetic and magnetic energies is expected at the highest wave numbers in the system.

  5. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  6. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  7. Strain Imaging Using Terahertz Waves and Metamaterials

    DTIC Science & Technology

    2016-11-01

    TECHNICAL REPORT RDMR-WD-16-48 STRAIN IMAGING USING TERAHERTZ WAVES AND METAMATERIALS Henry O. Everitt and Martin S...TITLE AND SUBTITLE Strain Imaging Using Terahertz Waves and Metamaterials 5. FUNDING NUMBERS 6. AUTHOR(S) Henry O. Everitt, Martin S...predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves , Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY

  8. Evolution and transition mechanisms of internal swirling flows with tangential entry

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Wang, Xingjian; Yang, Vigor

    2018-01-01

    The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.

  9. Measurement of the electron beam mode in earth's foreshock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Holzworth, R. H.

    1990-01-01

    High frequency electric field measurements from the AMPTE IRM plasma wave receiver are used to identify three simultaneously excited electrostatic wave modes in the earth's foreshock region: the electron beam mode, the Langmuir mode, and the ion acoustic mode. A technique is developed which allows the rest frame frequecy and wave number of the electron beam waves to be determined. It is shown that the experimentally determined rest frame frequency and wave number agree well with the most unstable frequency and wave number predicted by linear homogeneous Vlasov theory for a plasma with Maxwellian background electrons and a Lorentzian electron beam. From a comparison of the experimentally determined and theoretical values, approximate limits are put on the electron foreshock beam temperatures. A possible generation mechanism for ion acoustic waves involving mode coupling between the electron beam and Langmuir modes is also discussed.

  10. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    NASA Astrophysics Data System (ADS)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  11. Attenuation of seismic waves obtained by coda waves analysis in the West Bohemia earthquake swarm region

    NASA Astrophysics Data System (ADS)

    Bachura, Martin; Fischer, Tomas

    2014-05-01

    Seismic waves are attenuated by number of factors, including geometrical spreading, scattering on heterogeneities and intrinsic loss due the anelasticity of medium. Contribution of the latter two processes can be derived from the tail part of the seismogram - coda (strictly speaking S-wave coda), as these factors influence the shape and amplitudes of coda. Numerous methods have been developed for estimation of attenuation properties from the decay rate of coda amplitudes. Most of them work with the S-wave coda, some are designed for the P-wave coda (only on teleseismic distances) or for the whole waveforms. We used methods to estimate the 1/Qc - attenuation of coda waves, methods to separate scattering and intrinsic loss - 1/Qsc, Qi and methods to estimate attenuation of direct P and S wave - 1/Qp, 1/Qs. In this study, we analyzed the S-wave coda of local earthquake data recorded in the West Bohemia/Vogtland area. This region is well known thanks to the repeated occurrence of earthquake swarms. We worked with data from the 2011 earthquake swarm, which started late August and lasted with decreasing intensity for another 4 months. During the first week of swarm thousands of events were detected with maximum magnitudes ML = 3.6. Amount of high quality data (including continuous datasets and catalogues with an abundance of well-located events) is available due to installation of WEBNET seismic network (13 permanent and 9 temporary stations) monitoring seismic activity in the area. Results of the single-scattering model show seismic attenuations decreasing with frequency, what is in agreement with observations worldwide. We also found decrease of attenuation with increasing hypocentral distance and increasing lapse time, which was interpreted as a decrease of attenuation with depth (coda waves on later lapse times are generated in bigger depths - in our case in upper lithosphere, where attenuations are small). We also noticed a decrease of frequency dependence of 1/Qc with depth, where 1/Qc seems to be frequency independent in depth range of upper lithosphere. Lateral changes of 1/Qc were also reported - it decreases in the south-west direction from the Novy Kostel focal zone, where the attenuation is the highest. Results from more advanced methods that allow for separation of scattering and intrinsic loss show that intrinsic loss is a dominant factor for attenuating of seismic waves in the region. Determination of attenuation due to scattering appears ambiguous due to small hypocentral distances available for the analysis, where the effects of scattering in frequency range from 1 to 24 Hz are not significant.

  12. Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra

    NASA Astrophysics Data System (ADS)

    Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro

    2018-05-01

    Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.

  13. Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.

    2012-12-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [4] P. Yoon and T. Fang, Plasma Phys. Control. Fusion 50 (2008). This work was performed at UCLA's Basic Plasma Science Facility, which is jointly supported by the U.S. DoE and NSF.

  14. Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio

    NASA Astrophysics Data System (ADS)

    Hoffman, Aaron; Wright, J. Douglas

    2017-11-01

    Consider an infinite chain of masses, each connected to its nearest neighbors by a (nonlinear) spring. This is a Fermi-Pasta-Ulam-Tsingou lattice. We prove the existence of traveling waves in the setting where the masses alternate in size. In particular we address the limit where the mass ratio tends to zero. The problem is inherently singular and we find that the traveling waves are not true solitary waves but rather ;nanopterons;, which is to say, waves which are asymptotic at spatial infinity to very small amplitude periodic waves. Moreover, we can only find solutions when the mass ratio lies in a certain open set. The difficulties in the problem all revolve around understanding Jost solutions of a nonlocal Schrödinger operator in its semi-classical limit.

  15. View of atmospheric wave patterns by effect of island on wind currents

    NASA Image and Video Library

    1973-12-14

    SL4-137-3632 (February 1974) --- A photograph taken from the Skylab space station in Earth orbit illustrating an atmospheric wave pattern by the affect of a small mountainous island on wind currents. Various patterns can be seen downwind of small islands. Often a Von Karmon vortex can be seen which appears as a spiral pattern. Multiple vortices have been photographed on previous missions. This photograph illustrates a "bow wave" pattern which extends for hundreds of miles downwind from the island. The island itself is often clear when a wave pattern is formed downstream. This particular pattern is very symmetrical. These wave patterns are most common in the South Pacific. This picture was taken by a Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. Photo credit: NASA

  16. The elevation, slope, and curvature spectra of a wind roughened sea surface

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.; Stacy, R. A.

    1973-01-01

    The elevation, slope and curvature spectra are defined as a function of wave number and depend on the friction velocity. There are five wave number ranges of definition called the gravity wave-gravity equilibrium range, the isotropic turbulence range, the connecting range due to Leykin Rosenberg, the capillary range, and the viscous cutoff range. The higher wave number ranges are strongly wind speed dependent, and there is no equilibrium (or saturated) capillary range, at least for winds up to 30 meters/sec. Some properties of the angular variation of the spectra are also found. For high wave numbers, especially in the capillary range, the results are shown to be consistent with the Rayleigh-Rice backscattering theory (Bragg scattering), and certain properties of the angular variation are deduced from backscatter measurements.

  17. A first-order statistical smoothing approximation for the coherent wave field in random porous random media

    NASA Astrophysics Data System (ADS)

    Müller, Tobias M.; Gurevich, Boris

    2005-04-01

    An important dissipation mechanism for waves in randomly inhomogeneous poroelastic media is the effect of wave-induced fluid flow. In the framework of Biot's theory of poroelasticity, this mechanism can be understood as scattering from fast into slow compressional waves. To describe this conversion scattering effect in poroelastic random media, the dynamic characteristics of the coherent wavefield using the theory of statistical wave propagation are analyzed. In particular, the method of statistical smoothing is applied to Biot's equations of poroelasticity. Within the accuracy of the first-order statistical smoothing an effective wave number of the coherent field, which accounts for the effect of wave-induced flow, is derived. This wave number is complex and involves an integral over the correlation function of the medium's fluctuations. It is shown that the known one-dimensional (1-D) result can be obtained as a special case of the present 3-D theory. The expression for the effective wave number allows to derive a model for elastic attenuation and dispersion due to wave-induced fluid flow. These wavefield attributes are analyzed in a companion paper. .

  18. Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids

    NASA Astrophysics Data System (ADS)

    Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo

    2012-09-01

    Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.

  19. Large-eddy simulation of the passage of a shock wave through homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Braun, N. O.; Pullin, D. I.; Meiron, D. I.

    2017-11-01

    The passage of a nominally plane shockwave through homogeneous, compressible turbulence is a canonical problem representative of flows seen in supernovae, supersonic combustion engines, and inertial confinement fusion. The interaction of isotropic turbulence with a stationary normal shockwave is considered at inertial range Taylor Reynolds numbers, Reλ = 100 - 2500 , using Large Eddy Simulation (LES). The unresolved, subgrid terms are approximated by the stretched-vortex model (Kosovic et al., 2002), which allows self-consistent reconstruction of the subgrid contributions to the turbulent statistics of interest. The mesh is adaptively refined in the vicinity of the shock to resolve small amplitude shock oscillations, and the implications of mesh refinement on the subgrid modeling are considered. Simulations are performed at a range of shock Mach numbers, Ms = 1.2 - 3.0 , and turbulent Mach numbers, Mt = 0.06 - 0.18 , to explore the parameter space of the interaction at high Reynolds number. The LES shows reasonable agreement with linear analysis and lower Reynolds number direct numerical simulations. LANL Subcontract 305963.

  20. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.

    2017-04-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are alsomore » obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s{sup −1} and 31 ± 2 km s{sup −1}, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.« less

Top