Sample records for small wind research

  1. Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories

    DTIC Science & Technology

    2016-04-01

    ARL-TR-7642 ● APR 2016 US Army Research Laboratory Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms... Wind Profiles and Modeling Their Effects on Small-Arms Trajectories by Timothy A Fargus Weapons and Materials Research Directorate, ARL...Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  2. Small Wind Research Turbine: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  3. National Wind Technology Center | NREL

    Science.gov Websites

    . Wind Energy Research Wind turbine blade Wind energy research at the NWTC allows for validation and verification of large and small components and wind turbine systems. Photo by Dennis Schroeder / NREL 40935 Wind energy research at the NWTC has pioneered wind turbine components, systems, and modeling methods

  4. A summary of impacts of wind power integration on power system small-signal stability

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Wang, Kewen

    2017-05-01

    Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.

  5. A Comprehensive Structural Study of Offshore Wind Turbine Foundation and Non-Model Based Damage Detection using Effective Mass with Application to Small Components/ Cables and a Truss Wind Turbine Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A.

    This research has two areas of focus. The first area is to investigate offshore wind turbine (OWT) designs, for use in the Maryland offshore wind area (MOWA), using intensive modeling techniques. The second focus area is to investigate a way to detect damage in wind turbine towers and small electrical components.

  6. The California Central Coast Research Partnership: Building Relationships, Partnerships and Paradigms for University-Industry Collaboration

    DTIC Science & Technology

    2013-03-25

    funded project, sensors and a control system have been installed onto the 3 kW capacity wind turbine of the Cal Poly Wind Power Research Center, which is...to full operation. This wind turbine is used to educate students for careers in the wind energy industry and related professional fields and to...conduct research into the application of advanced wind turbine technologies from large turbines onto small tur- bines. In this project, a control system

  7. Wind Power Today and Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describemore » the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.« less

  8. Distributed Wind Research | Wind | NREL

    Science.gov Websites

    evaluation, and improve wind turbine and wind power plant performance. A photo of a snowy road leading to a single wind turbine surrounded by snow-covered pine trees against blue sky. Capabilities NREL's power plant and small wind turbine development. Algorithms and programs exist for simulating, designing

  9. Thirteenth Annual Acquisition Research Symposium. Acquisition Research: Creating Synergy for Informed Change. Volume 1

    DTIC Science & Technology

    2016-04-30

    renewable energy projects with a focus on novel onshore/offshore and small/large scale wind turbine designs for expanding their operational range and...ROA to estimate the values of maintenance options created by the implementation of PHM in wind turbines . When an RUL is predicted for a subsystem...predicted for the system. The section titled Example— Wind Turbine With an Outcome-Based Contract presents a case study for a PHM enabled wind

  10. Aerodynamic design and analysis of small horizontal axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tang, Xinzi

    This work investigates the aerodynamic design and analysis of small horizontal axis wind turbine blades via the blade element momentum (BEM) based approach and the computational fluid dynamics (CFD) based approach. From this research, it is possible to draw a series of detailed guidelines on small wind turbine blade design and analysis. The research also provides a platform for further comprehensive study using these two approaches. The wake induction corrections and stall corrections of the BEM method were examined through a case study of the NREL/NASA Phase VI wind turbine. A hybrid stall correction model was proposed to analyse wind turbine power performance. The proposed model shows improvement in power prediction for the validation case, compared with the existing stall correction models. The effects of the key rotor parameters of a small wind turbine as well as the blade chord and twist angle distributions on power performance were investigated through two typical wind turbines, i.e. a fixed-pitch variable-speed (FPVS) wind turbine and a fixed-pitch fixed-speed (FPFS) wind turbine. An engineering blade design and analysis code was developed in MATLAB to accommodate aerodynamic design and analysis of the blades.. The linearisation for radial profiles of blade chord and twist angle for the FPFS wind turbine blade design was discussed. Results show that, the proposed linearisation approach leads to reduced manufacturing cost and higher annual energy production (AEP), with minimal effects on the low wind speed performance. Comparative studies of mesh and turbulence models in 2D and 3D CFD modelling were conducted. The CFD predicted lift and drag coefficients of the airfoil S809 were compared with wind tunnel test data and the 3D CFD modelling method of the NREL/NASA Phase VI wind turbine were validated against measurements. Airfoil aerodynamic characterisation and wind turbine power performance as well as 3D flow details were studied. The detailed flow characteristics from the CFD modelling are quantitatively comparable to the measurements, such as blade surface pressure distribution and integrated forces and moments. It is confirmed that the CFD approach is able to provide a more detailed qualitative and quantitative analysis for wind turbine airfoils and rotors..

  11. Kansas Wind Energy Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend themore » renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.« less

  12. Effect of blade flutter and electrical loading on small wind turbine noise

    USDA-ARS?s Scientific Manuscript database

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  13. State estimation for autopilot control of small unmanned aerial vehicles in windy conditions

    NASA Astrophysics Data System (ADS)

    Poorman, David Paul

    The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non-zero mean error that increases when gyro bias is increased. The second method is shown to not exhibit any steady state error in the tested scenarios that is inherent to its design. The second method can correct for attitude errors that arise from both integration error and gyro bias states, but it suffers from lack of attitude error observability. The attitude errors are shown to be more observable in wind, but increased integration error in wind outweighs the increase in attitude corrections that such increased observability brings, resulting in larger attitude errors in wind. Overall, this work highlights many technical deficiencies of both of these methods of state estimation that could be improved upon in the future to enhance state estimation for small UAVs in windy conditions.

  14. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    NASA Astrophysics Data System (ADS)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake sensing data using UAVs in formation flight. This has been achieved and well documented before in manned aircraft but very little work has been done on UAV wake sensing especially during flight testing. This document describes the development and flight testing of small unmanned aerial system (UAS) for wind and wake sensing purpose including a Ground Control Station (GCS) and UAVs. This research can be stated in four major components. Firstly, formation flight was obtained by integrating a formation flight controller on the WVU Phastball Research UAV aircraft platform from the Flight Control Systems Laboratory (FCSL) at West Virginia University (WVU). Second, a new approach to wind estimation using an Unscented Kalman filter (UKF) is discussed along with results from flight data. Third, wake modeling within a simulator and wake sensing during formation flight is shown. Finally, experimental results are used to discuss the "sweet spot" for energy harvesting in formation flight, a novel approach to cooperative wind estimation, and gust suppression control for a follower aircraft in formation flight.

  15. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    NASA Astrophysics Data System (ADS)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  16. Supersonic Research Display for Tour

    NASA Image and Video Library

    1946-03-21

    On March 22, 1946, 250 members of the Institute of Aeronautical Science toured the NACA’s Aircraft Engine Research Laboratory. NACA Chairman Jerome Hunsaker and Secretary John Victory were on hand to brief the attendees in the Administration Building before the visited the lab’s test facilities. At each of the twelve stops, researchers provided brief presentations on their work. Topics included axial flow combustors, materials for turbine blades, engine cooling, icing prevention, and supersonic flight. The laboratory reorganized itself in October 1945 as World War II came to an end to address newly emerging technologies such as the jet engine, rockets, and high-speed flight. While design work began on what would eventually become the 8- by 6-Foot Supersonic Wind Tunnel, NACA Lewis quickly built several small supersonic tunnels. These small facilities utilized the Altitude Wind Tunnel’s massive air handling equipment to generate high-speed airflow. The display seen in this photograph was set up in the building that housed the first of these wind tunnels. Eventually the building would contain three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951. The small tunnels were used until the early 1960s to study the aerodynamic characteristics of supersonic inlets and exits.

  17. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  18. AmeriFlux US-Wrc Wind River Crane Site

    DOE Data Explorer

    Bible, Ken [University of Washington; Wharton, Sonia [Lawrence Livermore National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.

  19. Performance of a small wind powered water pumping system

    USDA-ARS?s Scientific Manuscript database

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  20. Michigan/Air Force Research Laboratory (AFRL) Collaborative Center in Aeronautical Sciences (MACCAS)

    DTIC Science & Technology

    2013-09-01

    Interactions - PIV Database for the Second SBLI Workshop”  “Design of a Glass Supersonic Wind Tunnel Experiment for Mixed Compression Inlet Investigations...or small-scale wind tunnel tests. Some of the discipline components have also been compared against well-established numerical solutions (e.g...difficult to test in a wind tunnel environment. The choice of construction, materials, and geometry were such that they allow accurate characterization of

  1. Benchmarking U.S. Small Wind Costs with the Distributed Wind Taxonomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Poehlman, Eric A.

    The objective of this report is to benchmark costs for small wind projects installed in the United States using a distributed wind taxonomy. Consequently, this report is a starting point to help expand the U.S. distributed wind market by informing potential areas for small wind cost-reduction opportunities and providing a benchmark to track future small wind cost-reduction progress.

  2. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    NASA Astrophysics Data System (ADS)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion systems and energy storage in electric power systems and provide useful input to the managerial decision process.

  3. Development and comparisons of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2012-12-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  4. Comparison and application of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2013-07-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    Suzanne Tegen made this presentation at the 2017 Small Wind Conference in Bloomington, Minnesota. It provides an overview of DOE-sponsored small wind products, testing, and support; an example of a Regional Resource Center defending distributed wind; the recently published Distributed Wind Taxonomy; the dWind model and recent results; and other recent DOE and NREL publications related to small and distributed wind.

  6. The Control Principles of the Wind Energy Based DC Microgrid

    NASA Astrophysics Data System (ADS)

    Zaleskis, G.; Rankis, I.

    2018-04-01

    According to the strategical objectives of the use of the renewable energy sources, it is important to minimise energy consumption of conventional power grid by effective use of the renewable energy sources and provi-ding stable operation of the consumers. The main aim of research is to develop technical solutions that can provide effective operation of the wind generators in the small power DC microgrids, which also means wind energy conversion at as wider generator speed range as possible.

  7. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to leadmore » to turbine certification through testing to industry-recognized wind turbine performance and safety standards.« less

  8. Differential recovery of habitat use by birds after wind farm installation: A multi-year comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfán, M.A., E-mail: mafarfanaguilar@hotmail.com; Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga; Duarte, J., E-mail: jddofitecma@gmail.com

    Onshore wind farms remain one of the most widely used technologies for the production of renewable energy. These are known to affect birds through disturbance or collision. Most research focus on the impact of wind farms on raptors or other large bird species, especially those of conservation concern. However, limited information exists on the effect of wind farms on small birds. Recovery of large versus small bird populations impacted by wind farms is also largely unstudied. A reason for this is the lack of long-term datasets based on standardized, systematic assessments. We monitored birds in the vicinity of a windmore » farm in an upland habitat in southern Spain (Malaga province), immediately after installation and 6.5 years post-construction. During both study periods, we observed 11 raptor and 38 non-raptor species (including 30 passerines). We found differences in recovery rates between raptors and non-raptors. Raptors showed an upturn in numbers but non-raptor abundance fell significantly. Greater attention should be paid to the recovery of wildlife after initial impact assessments than at present. This study confirms that regulatory authorities and developers should consider the likely impacts of wind farms on small bird populations. Mitigation measures focused particularly on non-raptor species should be considered and implemented as a means to reduce these negative effects.« less

  9. Study of dispersed small wind systems interconnected with a utility distribution system

    NASA Astrophysics Data System (ADS)

    Curtice, D.; Patton, J.; Bohn, J.; Sechan, N.

    1980-03-01

    Operating problems for various penetrations of small wind systems connected to the distribution system on a utility are defined. Protection equipment, safety hazards, feeder voltage regulation, line losses, and voltage flicker problems are studied, assuming different small wind systems connected to an existing distribution system. To identify hardware deficiencies, possible solutions provided by off-the-shelf hardware and equipment are assessed. Results of the study indicate that existing techniques are inadequate for detecting isolated operation of a small wind system. Potential safety hazards posed by small wind systems are adequately handled by present work procedures although these procedures require a disconnect device at synchronous generator and self commutated inverter small wind systems.

  10. Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Riddell, Kevin Donald Alexander

    The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .

  11. Design and development of nautilus whorl-wind turbine

    NASA Astrophysics Data System (ADS)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  12. Robert Preus | NREL

    Science.gov Websites

    | 303-384-7284 Robert's expertise is in design and manufacture of small and midsized wind generators certification support for small wind manufacturers. Robert has 28 years of experience in wind energy. He led the section for wind in the National Electrical Code. In 2010, Robert received the Small Wind Advocate award

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, Larry

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  14. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems

    PubMed Central

    Brunelli, Davide

    2016-01-01

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm3. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions. PMID:26959018

  15. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems.

    PubMed

    Brunelli, Davide

    2016-03-04

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm³. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions.

  16. Wind energy developments in the 20th century

    NASA Technical Reports Server (NTRS)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  17. Publications of the U.S. Army Engineer Research and Development Center: October 1999-December 2015

    DTIC Science & Technology

    2017-01-01

    Ebeling, R.W. Strom, J.E. Hite Jr., R.W. Haskins, and J.A. Evans ADA582963 ERDC TR-13-4 Aug 2013 Small Wind Turbine Installation Compatibility...M.W. Tubman ADA469604 ERDC/CHL TR-07-4 Jul 2007 Laboratory Study of Wind Effect on Runup over Fringing Reefs. Report 1, Data Report, by Z...Extratropical Storm Wind , Wave, and Water Level Climatology for the Offshore Mid-Atlantic, by M.F. Forte and J.L. Hanson ADA621324 ERDC/CHL TR

  18. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  19. WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Thuillier, G.; Gault, W. A.; Solheim, B. H.; Hersom, C.; Alunni, J. M.; Brun, J.-F.; Brune, S.; Charlot, P.; Cogger, L. L.

    1993-01-01

    The WIND imaging interferometer (WINDII) was launched on the Upper Atmosphere Research Satellite (UARS) on September 12, 1991. This joint project, sponsored by the Canadian Space Agency and the French Centre National d'Etudes Spatiales, in collaboration with NASA, has the responsibility of measuring the global wind pattern at the top of the altitude range covered by UARS. WINDII measures wind, temperature, and emission rate over the altitude range 80 to 300 km by using the visible region airglow emission from these altitudes as a target and employing optical Doppler interferometry to measure the small wavelength shifts of the narrow atomic and molecular airglow emission lines induced by the bulk velocity of the atmosphere carrying the emitting species. The instrument used is an all-glass field-widened achromatically and thermally compensated phase-stepping Michelson interferometer, along with a bare CCD detector that images the airglow limb through the interferometer. A sequence of phase-stepped images is processed to derive the wind velocity for two orthogonal view directions, yielding the vector horizontal wind. The process of data analysis, including the inversion of apparent quantities to vertical profiles, is described.

  20. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  1. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support othermore » NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.« less

  2. Using transonic small disturbance theory for predicting the aeroelastic stability of a flexible wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA - Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from previous AFW wind tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and air. The resultant flutter boundaries for both gases are also presented. The effects of viscous damping and angle-of-attack, on the flutter boundary in air, are presented as well.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Tim; Preus, Robert

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  4. Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, Edward I; McCabe, Kevin; Sigrin, Benjamin O

    Stakeholders in the small and distributed wind space require access to better tools and data for more informed decisions on high-impact topics, including project planning, policymaking, and funding allocation. A major challenge in obtaining improved information is in the identification of favorable sites - namely, the intersection of sufficient wind resource with economic parameters such as retail rates, incentives, and other policies. This presentation made at the AWEA WINDPOWER Conference and Exhibition in Chicago in 2018 explores the researchers' objective: To understand the spatial variance of key distributed wind parameters and identify where they intersect to form pockets of favorablemore » areas in Colorado, Minnesota, and New York.« less

  5. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project n° 284461, www.eheroes.eu).

  6. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliablemore » or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.« less

  7. Investigation of Solar Wind Correlations and Solar Wind Modifications Near Earth by Multi-Spacecraft Observations: IMP 8, WIND and INTERBALL-1

    NASA Technical Reports Server (NTRS)

    Paularena, Karolen I.; Richardson, John D.; Zastenker, Georgy N.

    2002-01-01

    The foundation of this Project is use of the opportunity available during the ISTP (International Solar-Terrestrial Physics) era to compare solar wind measurements obtained simultaneously by three spacecraft - IMP 8, WIND and INTERBALL-1 at wide-separated points. Using these data allows us to study three important topics: (1) the size and dynamics of near-Earth mid-scale (with dimension about 1-10 million km) and small-scale (with dimension about 10-100 thousand km) solar wind structures; (2) the reliability of the common assumption that solar wind conditions at the upstream Lagrangian (L1) point accurately predict the conditions affecting Earth's magnetosphere; (3) modification of the solar wind plasma and magnetic field in the regions near the Earth magnetosphere, the foreshock and the magnetosheath. Our Project was dedicated to these problems. Our research has made substantial contributions to the field and has lead others to undertake similar work.

  8. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    NASA Astrophysics Data System (ADS)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  9. Energy aware path planning in complex four dimensional environments

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Anjan

    This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.

  10. Wind Powering America State Outreach. Final Technical Report: Washington State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearns, Tim

    2013-09-30

    The Washington Department of Commerce, via a U.S. Department of Energy grant, supported research into siting and permitting processes for wind projects by Skagit County, Washington. The goal was to help a local government understand key issues, consider how other areas have addressed wind siting, and establish a basis for enacting permitting and zoning ordinances that provided a more predictable permitting path and process for landowners, citizens, government and developers of small and community wind projects. The County?s contractor developed a report that looked at various approaches to wind siting, interviewed stakeholders, and examined technology options. The contractor outlined keymore » issues and recommended the adoption of a siting process. The Skagit County Commission considered the report and directed the Skagit County Planning & Development Services Department to add development of wind guidelines to its work plan for potential changes to development codes.« less

  11. Black start research of the wind and storage system based on the dual master-slave control

    NASA Astrophysics Data System (ADS)

    Leng, Xue; Shen, Li; Hu, Tian; Liu, Li

    2018-02-01

    Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.

  12. Numerical evaluation of the scale problem on the wind flow of a windbreak

    PubMed Central

    Liu, Benli; Qu, Jianjun; Zhang, Weimin; Tan, Lihai; Gao, Yanhong

    2014-01-01

    The airflow field around wind fences with different porosities, which are important in determining the efficiency of fences as a windbreak, is typically studied via scaled wind tunnel experiments and numerical simulations. However, the scale problem in wind tunnels or numerical models is rarely researched. In this study, we perform a numerical comparison between a scaled wind-fence experimental model and an actual-sized fence via computational fluid dynamics simulations. The results show that although the general field pattern can be captured in a reduced-scale wind tunnel or numerical model, several flow characteristics near obstacles are not proportional to the size of the model and thus cannot be extrapolated directly. For example, the small vortex behind a low-porosity fence with a scale of 1:50 is approximately 4 times larger than that behind a full-scale fence. PMID:25311174

  13. Evaluation of wind-induced internal pressure in low-rise buildings: A multi scale experimental and numerical approach

    NASA Astrophysics Data System (ADS)

    Tecle, Amanuel Sebhatu

    Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30--40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30--40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.

  14. Air Force Officers Visit Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A group of 60 Army Air Forces officers visited the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 27, 1945. The laboratory enacted strict security regulations throughout World War II. During the final months of the war, however, the NACA began opening its doors to groups of writers, servicemen, and aviation industry leaders. These events were the first exposure of the new engine laboratory to the outside world. Grandstands were built alongside the Altitude Wind Tunnel specifically for group photographs. George Lewis, Raymond Sharp, and Addison Rothrock (right to left) addressed this group of officers in the Administration Building auditorium. Lewis was the NACA’s Director of Aeronautical Research, Sharp was the lab’s manager, and Rothrock was the lab’s chief of research. Abe Silverstein, Jesse Hall and others watch from the rear of the room. The group toured several facilities after the talks, including the Altitude Wind Tunnel and a new small supersonic wind tunnel. The visit concluded with a NACA versus Army baseball game and cookout.

  15. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  16. Laser angle sensor

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.

    1985-01-01

    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.

  17. Ramjet Testing in the NACA's Altitude Wind Tunnel

    NASA Image and Video Library

    1946-02-21

    A 20-inch diameter ramjet installed in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Altitude Wind Tunnel was used in the 1940s to study early ramjet configurations. Ramjets provide a very simple source of propulsion. They are basically a tube which takes in high-velocity air, ignites it, and then expels the expanded airflow at a significantly higher velocity for thrust. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore a turbojet or rocket was needed to launch the vehicle. This NACA-designed 20-inch diameter ramjet was installed in the Altitude Wind Tunnel in May 1945. The ramjet was mounted under a section of wing in the 20-foot diameter test section with conditioned airflow ducted directly to the engine. The mechanic in this photograph was installing instrumentation devices that led to the control room. NACA researchers investigated the ramjet’s overall performance at simulated altitudes up to 47,000 feet. Thrust measurements from these runs were studied in conjunction with drag data obtained during small-scale studies in the laboratory’s small supersonic tunnels. An afterburner was attached to the ramjet during the portions of the test program. The researchers found that an increase in altitude caused a reduction in the engine’s horsepower. They also determined the optimal configurations for the flameholders, which provided the engine’s ignition source.

  18. Aerodynamic study of a stall regulated horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Constantinescu, S. G.; Crunteanu, D. E.; Niculescu, M. L.

    2013-10-01

    The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of small stall regulated wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. During the running stall regulated wind turbines, due to the extremely broad range of the wind velocity, the angle of attack can reach high values and some regions of the blade will show stall and post-stall behavior. This paper deals with stall and post-stall regimes because they can induce significant vibrations, fatigue and even the wind turbine failure.

  19. Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation

    NASA Astrophysics Data System (ADS)

    Morris, M.; Ruf, C. S.

    2016-12-01

    A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.

  20. Propulsion simulator for magnetically-suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Goldey, C. L.; Sacco, G. P.; Lawing, Pierce L.

    1991-01-01

    The objective of phase two of a current investigation sponsored by NASA Langley Research Center is to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust gases, in magnetic suspension and balance system (MSBS) wind tunnels. Two propulsion simulator models are being developed: a small-scale and a large-scale unit, both employing compressed, liquified carbon dioxide as propellant. The small-scale unit was designed, fabricated, and statically-tested at Physical Sciences Inc. (PSI). The large-scale simulator is currently in the preliminary design stage. The small-scale simulator design/development is presented, and the data from its static firing on a thrust stand are discussed. The analysis of this data provides important information for the design of the large-scale unit. A description of the preliminary design of the device is also presented.

  1. Mercury Capsule Model in the 1- by 1-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1959-10-21

    National Aeronautics and Space Administration (NASA) researchers install a small-scale model of the capsule for Project Mercury in the 1- by 1-Foot Supersonic Wind Tunnel at the Lewis Research Center. NASA Lewis conducted a variety of tests for Project Mercury, including retrorocket calibration, escape tower engine performance, and separation of the capsule from simulated Atlas and Redstone boosters. The test of this capsule and escape tower model in the 1- by 1-foot tunnel were run in January and February 1960. The 1-by 1-Foot Supersonic Wind Tunnel had a 15-inch long test section, seen here, that was one foot wide and one foot high. The sides were made of glass to allow cameras to capture the supersonic air flow over the models. The tunnel could generate air flows from Mach 1.3 to 3.0. At the time, it was one of nine small supersonic wind tunnels at Lewis. These tunnels used the exhauster and compressor equipment of the larger facilities. The 1- by 1 tunnel, which began operating in the early 1950s, was built inside a test cell in the expansive Engine Research Building. During the 1950s the 1- by 1 was used to study a variety of inlets, nozzles, and cones for missiles and scramjets. The Mercury capsule tests were among the last at the facility for many years. The tunnel was mothballed in 1960. The 1- by 1 was briefly restored in 1972, then brought back online for good in 1979. The facility has maintained a brisk operating schedule ever since.

  2. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.

    PubMed

    Ma, Ping; Lien, Fue-Sang; Yee, Eugene

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.

  3. Small UAV Research and Evolution in Long Endurance Electric Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Chu, Julio; Motter, Mark A.; Carter, Dennis L.; Ol, Michael; Zeune, Cale

    2007-01-01

    This paper describes recent research into the advancement of small, electric powered unmanned aerial vehicle (UAV) capabilities. Specifically, topics include the improvements made in battery technology, design methodologies, avionics architectures and algorithms, materials and structural concepts, propulsion system performance prediction, and others. The results of prototype vehicle designs and flight tests are discussed in the context of their usefulness in defining and validating progress in the various technology areas. Further areas of research need are also identified. These include the need for more robust operating regimes (wind, gust, etc.), and continued improvement in payload fraction vs. endurance.

  4. Wind-waves interactions in the Gulf of Eilat

    NASA Astrophysics Data System (ADS)

    Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team

    2017-11-01

    The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.

  5. Research of low cost wind generator rotors

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Ross, R. S.

    1978-01-01

    A feasibility program determined that it would be possible to significantly reduce the cost of manufacturing wind generator rotors by making them of cast urethane. Several high modulus urethanes which were structurally tested were developed. A section of rotor was also cast and tested showing the excellent aerodynamic surface which results. A design analysis indicated that a cost reduction of almost ten to one can be achieved with a small weight increase to achieve the same structural integrity as expected of current rotor systems.

  6. NASA Agricultural Aircraft Research Program in the Langley Vortex Research Facility and the Langley Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.

    1978-01-01

    The current status of aerial applications technology research at the Langley's Vortex Research Facility and Full-Scale Wind Tunnel is reviewed. Efforts have been directed mainly toward developing and validating the required experimental and theoretical research tools. A capability to simulate aerial dispersal of materials from agricultural airplanes with small-scale airplane models, numerical methods, and dynamically scaled test particles was demonstrated. Tests on wake modification concepts have proved the feasibility of tailoring wake properties aerodynamically to produce favorable changes in deposition and to provide drift control. An aerodynamic evaluation of the Thrush Commander 800 agricultural airplane with various dispersal systems installed is described. A number of modifications intended to provide system improvement to both airplane and dispersal system are examined, and a technique for documenting near-field spray characteristics is evaluated.

  7. Wind Tunnel Complex at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    This aerial photograph shows the entire original wind tunnel complex at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The large Altitude Wind Tunnel (AWT) at the center of the photograph dominates the area. The Icing Research Tunnel to the right was incorporated into the lab’s design to take advantage of the AWT’s powerful infrastructure. The laboratory’s first supersonic wind tunnel was added to this complex just prior to this September 1945 photograph. The AWT was the nation’s only wind tunnel capable of studying full-scale engines in simulated flight conditions. The AWT’s test section and control room were within the two-story building near the top of the photograph. The exhauster equipment used to thin the airflow and the drive motor for the fan were in the building to the right of the tunnel. The unique refrigeration equipment was housed in the structure to the left of the tunnel. The Icing Research Tunnel was an atmospheric tunnel that used the AWT’s refrigeration equipment to simulate freezing rain inside its test section. A spray bar system inside the tunnel was originally used to create the droplets. The 18- by 18-inch supersonic wind tunnel was built in the summer of 1945 to take advantage of the AWT’s powerful exhaust system. It was the lab’s first supersonic tunnel and could reach Mach 1.91. Eventually the building would house three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951.

  8. Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holenemser, K.H.

    1995-10-01

    This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including thosemore » done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.« less

  9. Research on the space-borne coherent wind lidar technique and the prototype experiment

    NASA Astrophysics Data System (ADS)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  10. Arlinda Huskey | NREL

    Science.gov Websites

    | 303-384-6987 Arlinda joined NREL in 1995. Her activities include field testing of small and large wind for small wind turbines. She also is the secretary of the IEC maintenance team for the wind turbine

  11. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines

    PubMed Central

    Lien, Fue-Sang

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz. PMID:28378012

  12. Active Robust Control of Elastic Blade Element Containing Magnetorheological Fluid

    NASA Astrophysics Data System (ADS)

    Sivrioglu, Selim; Cakmak Bolat, Fevzi

    2018-03-01

    This research study proposes a new active control structure to suppress vibrations of a small-scale wind turbine blade filled with magnetorheological (MR) fluid and actuated by an electromagnet. The aluminum blade structure is manufactured using the airfoil with SH3055 code number which is designed for use on small wind turbines. An interaction model between MR fluid and the electromagnetic actuator is derived. A norm based multi-objective H2/H∞ controller is designed using the model of the elastic blade element. The H2/H∞ controller is experimentally realized under the impact and steady state aerodynamic load conditions. The results of experiments show that the MR fluid is effective for suppressing vibrations of the blade structure.

  13. A Summary of the Experimental Results for a Generic Tractor-Trailer in the Ames Research Center 7- by 10-Foot and 12-Foot Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Satran, Dale R.; Heineck, James T.; Walker, Stephen M.

    2006-01-01

    Experimental measurements of a generic tractor-trailer were obtained in two wind tunnels at Ames Research Center. After a preliminary study at atmospheric conditions in the 7- by 10-Foot Wind Tunnel, additional testing was conducted at Reynolds numbers corresponding to full-scale highway speeds in the 12-Foot Pressure Wind Tunnel. To facilitate computational modeling, the 1:8-scale geometry, designated the Generic Conventional Model, included a simplified underbody and omitted many small-scale details. The measurements included overall and component forces and moments, static and dynamic surface pressures, and three-component particle image velocimetry. This summary report highlights the effects of numerous drag reduction concepts and provides details of the model installation in both wind tunnels. To provide a basis for comparison, the wind-averaged drag coefficient was tabulated for all configurations tested. Relative to the baseline configuration representative of a modern class-8 tractor-trailer, the most effective concepts were the trailer base flaps and trailer belly box providing a drag-coefficient reduction of 0.0855 and 0.0494, respectively. Trailer side skirts were less effective yielding a drag reduction of 0.0260. The database of this experimental effort is publicly available for further analysis.

  14. Flow interaction of diffuser augmented wind turbines

    NASA Astrophysics Data System (ADS)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  15. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  16. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-06-01

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connectmore » a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less

  17. A magnetic tether system to investigate visual and olfactory mediated flight control in Drosophila.

    PubMed

    Duistermars, Brian J; Frye, Mark

    2008-11-21

    It has been clear for many years that insects use visual cues to stabilize their heading in a wind stream. Many animals track odors carried in the wind. As such, visual stabilization of upwind tracking directly aids in odor tracking. But do olfactory signals directly influence visual tracking behavior independently from wind cues? Also, the recent deluge of research on the neurophysiology and neurobehavioral genetics of olfaction in Drosophila has motivated ever more technically sophisticated and quantitative behavioral assays. Here, we modified a magnetic tether system originally devised for vision experiments by equipping the arena with narrow laminar flow odor plumes. A fly is glued to a small steel pin and suspended in a magnetic field that enables it to yaw freely. Small diameter food odor plumes are directed downward over the fly's head, eliciting stable tracking by a hungry fly. Here we focus on the critical mechanics of tethering, aligning the magnets, devising the odor plume, and confirming stable odor tracking.

  18. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  19. Review of the Need for a Large-scale Test Facility for Research on the Effects of Extreme Winds on Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. G. Little

    1999-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), through the US Department of Energy (DOE), has proposed that a large-scale wind test facility (LSWTF) be constructed to study, in full-scale, the behavior of low-rise structures under simulated extreme wind conditions. To determine the need for, and potential benefits of, such a facility, the Idaho Operations Office of the DOE requested that the National Research Council (NRC) perform an independent assessment of the role and potential value of an LSWTF in the overall context of wind engineering research. The NRC established the Committee to Review the Need for a Large-scale Testmore » Facility for Research on the Effects of Extreme Winds on Structures, under the auspices of the Board on Infrastructure and the Constructed Environment, to perform this assessment. This report conveys the results of the committee's deliberations as well as its findings and recommendations. Data developed at large-scale would enhanced the understanding of how structures, particularly light-frame structures, are affected by extreme winds (e.g., hurricanes, tornadoes, sever thunderstorms, and other events). With a large-scale wind test facility, full-sized structures, such as site-built or manufactured housing and small commercial or industrial buildings, could be tested under a range of wind conditions in a controlled, repeatable environment. At this time, the US has no facility specifically constructed for this purpose. During the course of this study, the committee was confronted by three difficult questions: (1) does the lack of a facility equate to a need for the facility? (2) is need alone sufficient justification for the construction of a facility? and (3) would the benefits derived from information produced in an LSWTF justify the costs of producing that information? The committee's evaluation of the need and justification for an LSWTF was shaped by these realities.« less

  20. Computational examination of utility scale wind turbine wake interactions

    DOE PAGES

    Okosun, Tyamo; Zhou, Chenn Q.

    2015-07-14

    We performed numerical simulations of small, utility scale wind turbine groupings to determine how wakes generated by upstream turbines affect the performance of the small turbine group as a whole. Specifically, various wind turbine arrangements were simulated to better understand how turbine location influences small group wake interactions. The minimization of power losses due to wake interactions certainly plays a significant role in the optimization of wind farms. Since wind turbines extract kinetic energy from the wind, the air passing through a wind turbine decreases in velocity, and turbines downstream of the initial turbine experience flows of lower energy, resultingmore » in reduced power output. Our study proposes two arrangements of turbines that could generate more power by exploiting the momentum of the wind to increase velocity at downstream turbines, while maintaining low wake interactions at the same time. Furthermore, simulations using Computational Fluid Dynamics are used to obtain results much more quickly than methods requiring wind tunnel models or a large scale experimental test.« less

  1. Exploring the Power Output of Small Wind Turbines in Urban San Antonio, Texas

    NASA Astrophysics Data System (ADS)

    Casillas, Jose; Sperduti, Stephanie; Cardenas, Rosa

    2015-03-01

    The means of transporting power from a centralized power plant by transmission lines has several disadvantages. Electricity transmission and distribution networks are costly, require long planning processes and are unsightly to residents. These networks are also susceptible to natural disasters creating massive disruptions to consumers. For these reasons distributed power sources such as solar panels and small wind turbines are becoming a more desirable and viable means of energy production. We report on the status of a study to determine the maximum output power of small wind turbines in urban San Antonio, Texas. Wind speed data along with power measurements from small wind turbines in urban San Antonio will be reported. U.S. Department of Education Title V HSI-STEM and Articulation Award No. P031C110145.

  2. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  3. Wind potential assessment in urban area of Surakarta city

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Halomoan, Arnold Thamrin; Wibowo, Andreas; Himawanto, Dwi Aries; Wicaksono, Yoga Arob

    2018-02-01

    Wind energy is one of the promising energy resource in urban area that has not been deeply explored in Indonesia. Generally the wind velocity in Indonesia is relatively low, however on the roof top of the high rise building in urban area the wind velocity is high enough to be converted for supporting the energy needs of the building. In this research a feasibility study of wind energy in urban area of Surakarta was done. The analysis of the wind energy potential on the height of 50 m was done by using Weibull distribution. The wind data based on the daily wind speed taken from 2011-2015. From the result of the wind speed analysis, a wind map in Surakarta was developed for helping to determine the places that have good potential in wind energy. The result showed that in five years the city of Surakarta had mean energy density (ED) of 139.43 W/m2, yearly energy available (EI) of 1221.4 kWh/m2/year, the most frequent wind velocity (VFmax) of 4.79 m/s, and the velocity contributing the maximum energy (VEmax) of 6.97 m/s. The direction of the wind was mostly from south, with frequency of 38%. The south and west area of the city had higher wind velocity than the other parts of the city. Also in those areas there are many high rise buildings, which are appropriate for installation of small wind turbine on the roof top (building mounted wind turbine/ BMWT).

  4. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  5. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  6. Development of a light-weight, wind-turbine-rotor-based data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, D.E.; Rumsey, M.; Robertson, P.

    1997-12-01

    Wind-energy researchers at Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) are developing a new, light-weight, modular system capable of acquiring long-term, continuous time-series data from current-generation small or large, dynamic wind-turbine rotors. Meetings with wind-turbine research personnel at NREL and SNL resulted in a list of the major requirements that the system must meet. Initial attempts to locate a commercial system that could meet all of these requirements were not successful, but some commercially available data acquisition and radio/modem subsystems that met many of the requirements were identified. A time synchronization subsystem and a programmable logicmore » device subsystem to integrate the functions of the data acquisition, the radio/modem, and the time synchronization subsystems and to communicate with the user have been developed at SNL. This paper presents the data system requirements, describes the four major subsystems comprising the system, summarizes the current status of the system, and presents the current plans for near-term development of hardware and software.« less

  7. 75 FR 17161 - Job Corps: Preliminary Finding of No Significant Impact (FONSI) for the Installation of a Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Impact (FONSI) for the Installation of a Small Wind Turbine at the Pine Ridge Job Corps Center Located at...: Preliminary Finding of No Significant Impact (FONSI) for a small Wind Turbine Installation to be located at... prepared for a proposed Wind Turbine Installation to be located at the Pine Ridge Job Corps Center, 15710...

  8. Self energized air core superconducting (SEAC) motor

    NASA Astrophysics Data System (ADS)

    Hilal, M. A.; Huang, X.; Lloyd, J. D.; Crapo, A. D.

    1991-03-01

    The SEAC motor described utilizes superconductive windings both for the stator and the rotor and operates the same way as a conventional motor by supplying power to the stator. The rotor of a simple SEAC motor has a small and a large winding and two switches. The axes of the two rotor windings are normal to each other. The rotor is initially stationary, and the windings are exposed to the rotating stator field. Flux pumping is employed to charge the rotor windings. As the field rotates by 180 deg from being parallel to the axis of the small winding of the rotor, a switch connected in series with the windings automatically opens, allowing the magnetic flux to penetrate the winding. The switch is closed during most of the other half of the cycle. The flux trapped in the small winding is partially transferred to the larger rotor winding by opening another switch, which results in series connection of the two windings. This results in charging the large winding and in accelerating the rotor to reach the rotating field angular velocity. Current decay will not take place, since it will automatically trigger flux pumping and recharging of the windings. The use of superconductive windings will also make it feasible to operate at high magnetic field, thus eliminating the need for using iron laminations to magnetically link the rotor and the stator windings.

  9. Sistemas Eolicos Pequenos para Generacion de Electridad (Spanish version of Small Wind Electric Systems: A U.S. Consumer's Guide) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-07-01

    This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  10. Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.

    2012-06-01

    This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.

  11. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of absorption and dispersion and a stochastic model is constructed for ground-based acoustic signals in mountain environments.

  12. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  13. A case study of the thermospheric neutral wind response to geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Jiang, Guoying; Zhang, Shunrong; Wang, Wenbin; Yuan, Wei; Wu, Qian; Xu, Jiyao

    A minor geomagnetic storm (Kp=5) occurred on March 27-28, 2012. The response of the thermospheric neutral wind at ~ 250 km to this storm was investigated by the 630.0 nm nightglow measurements of Fabry-Perot interferometers (FPIs) over Xinglong (geographic location: 40.2N, 117.4E; geomagnetic location: 29.8N, 193.2E) and Millstone Hill (geographic location: 42.6N, 71.5W; geomagnetic location: 53.1N, 65.1W). Our results show that the minor storm on March 27-28, 2012 obviously effected on the thermospheric neutral winds over Xinglong and Millstone Hill, especially Millstone Hill had larger response because of its higher geomagnetic latitude. Another interesting result is that a small variation in geomagnetic activity (Kp=2.7) could enough introduce a clear disturbance in the nighttime thermospheric neutral wind over Millstone hill. NCAR-TIME-GCM (National Center for Atmospheric Research-Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model) was employed to study the evolution and mechanism of the thermospheric neutral wind response.

  14. 7 CFR Appendix A to Part 4280 - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  15. 7 CFR Appendix A to Part 4280 - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  16. Turbulent convection in geostrophic circulation with wind and buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Sohail, Taimoor; Gayen, Bishakhdatta; Hogg, Andy

    2017-11-01

    We conduct a direct numerical simulation of geostrophic circulation forced by surface wind and buoyancy to model a circumpolar ocean. The imposed buoyancy forcing (represented by Rayleigh number) drives a zonal current and supports small-scale convection in the buoyancy destabilizing region. In addition, we observe eddy activity which transports heat southward, supporting a large amount of heat uptake. Increasing wind stress enhances the meridional buoyancy gradient, triggering more eddy activity inside the boundary layer. Therefore, heat uptake increases with higher wind stress. The majority of dissipation is confined within the surface boundary layer, while mixing is dominant inside the convective plume and the buoyancy destabilizing region of the domain. The relative strength of the mixing and dissipation in the system can be expressed by mixing efficiency. This study finds that mixing is much greater than viscous dissipation, resulting in higher values of mixing efficiency than previously used. Supported by Australian Research Council Grant DP140103706.

  17. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, A.; Ferguson, T.

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysismore » and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.« less

  18. Emulating avian orographic soaring with a small autonomous glider.

    PubMed

    Fisher, Alex; Marino, Matthew; Clothier, Reece; Watkins, Simon; Peters, Liam; Palmer, Jennifer L

    2015-12-17

    This paper explores a method by which an unpowered, fixed-wing micro air vehicle (MAV) may autonomously gain height by utilising orographic updrafts in urban environments. These updrafts are created when wind impinges on both man-made and natural obstacles, and are often highly turbulent and very localised. Thus in contrast to most previous autonomous soaring research, which have focused on large thermals and ridges, we use a technique inspired by kestrels known as 'wind-hovering', in order to maintain unpowered flight within small updrafts. A six-degree-of-freedom model of a MAV was developed based on wind-tunnel tests and vortex-lattice calculations, and the model was used to develop and test a simple cascaded control system designed to hold the aircraft on a predefined trajectory within an updraft. The wind fields around two typical updraft locations (a building and a hill) were analysed, and a simplified trajectory calculation method was developed by which trajectories for height gain can be calculated on-board the aircraft based on a priori knowledge of the wind field. The results of simulations are presented, demonstrating the behaviour of the system in both smooth and turbulent flows. Finally, the results from a series of flight tests are presented. Flight tests at the hill were consistently successful, while flights around the building could not be sustained for periods of more than approximately 20 s. The difficulty of operating near a building is attributable to significant levels of low-frequency unsteadiness (gustiness) in the oncoming wind during the flight tests, effectively resulting in a loss of updraft for sustained periods.

  19. Small and Shaping the Future Energy Eco-house System

    NASA Astrophysics Data System (ADS)

    Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki

    2010-11-01

    The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.

  20. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  1. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  2. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  3. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden

    NASA Astrophysics Data System (ADS)

    Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid

    2017-05-01

    This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.

  4. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    NASA Astrophysics Data System (ADS)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on individual wind turbines. The information is utilized by several technologies including: a) the Weather Research and Forecasting (WRF) model, which generates finely detailed simulations of future atmospheric conditions, b) the Real-Time Four-Dimensional Data Assimilation System (RTFDDA), which performs continuous data assimilation providing the WRF model with continuous updates of the initial atmospheric state, 3) the Dynamic Integrated Forecast System (DICast®), which statistically optimizes the forecasts using all predictors, and 4) a suite of wind-to-power algorithms that convert wind speed to power for a wide range of wind farms with varying real-time data availability capabilities. In addition to these core wind energy prediction capabilities, NCAR implemented a high-resolution (10 km grid increment) 30-member ensemble RTFDDA prediction system that provides information on the expected range of wind power over a 72-hour forecast period covering Xcel Energy’s service areas. This talk will include descriptions of these capabilities and report on several topics including initial results of next-day forecasts and nowcasts of wind energy ramp events, influence of local observations on forecast skill, and overall lessons learned to date.

  5. Gas transfer velocities in small forested ponds

    NASA Astrophysics Data System (ADS)

    Holgerson, Meredith A.; Farr, Emily R.; Raymond, Peter A.

    2017-05-01

    Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small (<250 m2) ponds by using a propane (C3H8) gas injection. When estimated across 12 h periods, the average k600 ranged from 0.19 to 0.72 m d-1 across the ponds. We also estimated k600 at 2 to 3 h intervals during the day and evaluated the relationship with environmental conditions. The average daytime k600 ranged from 0.33 to 1.83 m d-1 across the ponds and was best predicted by wind speed and air or air-water temperature; however, the explanatory power was weak (R2 < 0.27) with high variability within and among ponds. To compare our results to larger water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters.

  6. Analysis of the dynamics of movement of the landing vehicle with an inflatable braking device on the final trajectory under the influence of wind load

    NASA Astrophysics Data System (ADS)

    Koryanov, V.; Kazakovtsev, V.; Harri, A.-M.; Heilimo, J.; Haukka, H.; Aleksashkin, S.

    2015-10-01

    This research work is devoted to analysis of angular motion of the landing vehicle (LV) with an inflatable braking device (IBD), taking into account the influence of the wind load on the final stage of the movement. Using methods to perform a calculation of parameters of angular motion of the landing vehicle with an inflatable braking device based on the availability of small asymmetries, which are capable of complex dynamic phenomena, analyzes motion of the landing vehicle at the final stage of motion in the atmosphere.

  7. Application of infrared radiometers for airborne detection of clear air turbulence and low level wind shear, airborne infrared low level wind shear detection test

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.

    1985-01-01

    The feasibility of infrared optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with infrared detectors and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, infrared transmitting (KRS-5) window through which signals would reach the detector. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present infrared detectors and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the infrared detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.

  8. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    NASA Astrophysics Data System (ADS)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  9. High Work, High-Efficiency Turbines for Uninhabited Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2013-09-01

    controlling highly loaded LP turbine blades have been demonstrated in a low speed linear cascade at the AFRL Low Speed Wind Tunnel (LSWT) facility that...34, pp. 1570-1577. [34] Selig M. S. and Mcgranahan, B. D., “ Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines .” National...aerodynamic flows is of interest in many design domains such as air vehicles, turbomachinery, and wind turbines . Micro-air-vehicles (MAV) which have small

  10. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion

    DOE PAGES

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...

    2016-07-28

    Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less

  11. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.

    Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less

  12. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  13. Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.; Sladky, J. F., Jr.

    This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

  14. Automation of Some Operations of a Wind Tunnel Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Buggele, Alvin E.

    1996-01-01

    Artificial neural networks were used successfully to sequence operations in a small, recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings and mach numbers for conditions occurring shortly after startup and extending to fully developed flow. Artificial neural networks were trained and tested for estimating: sensor readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle exit. These results support the thesis that artificial neural networks can be combined with current workstation technology to automate wind tunnel operations.

  15. Experience from one year of operating a boundary-layer profiler in the center of a large city

    NASA Astrophysics Data System (ADS)

    Rogers, R. R.; Cohn, S. A.; Ecklund, W. L.; Wilson, J. S.; Carter, D. A.

    1994-06-01

    Since May 1992 a small, 915-MHz profiler has been operated continuously in downtown Montreal. It is a five-beam system employing a microstrip array antenna, located atop a 14-story office building that houses several academic departments of McGill University. The data are used for research on precipitation physics and the clear-air reflectivity in addition to wind profiling. We are especially interested in situations in which the reflectivities of the clear air and the precipitation are comparable. This permits the study of interactions between the precipitation and the clear air, a new area of research made possible by wind profilers. On clear days in the summer, 30-min consensus winds can often be measured to an altitude of 3 km, but ground clutter in the antenna sidelobes interferes with measurements below 600 m. Rain when present often permits wind profiling down to 100 m and up to 6 km or higher. On cold winter days there are some periods when the reflectivity is too weak at all levels to permit wind estimation. Falling snow, however, provides readily detectable echoes and serves as a good tracer of the wind and so allows profiling over its full altitude extent. The best conditions for observing interactions between precipitation and the clear air are when light rain falls through a reflective layer associated with a frontal surface or inversion. Unexpectedly, flocks of migrating birds sometimes completely dominate the signal at night in the spring and fall seasons.

  16. Two methods for estimating limits to large-scale wind power generation

    PubMed Central

    Miller, Lee M.; Brunsell, Nathaniel A.; Mechem, David B.; Gans, Fabian; Monaghan, Andrew J.; Vautard, Robert; Keith, David W.; Kleidon, Axel

    2015-01-01

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way. PMID:26305925

  17. Modeling circulation patterns induced by spatial cross-shore wind variability in a small-size coastal embayment

    NASA Astrophysics Data System (ADS)

    Cerralbo, Pablo; Espino, Manuel; Grifoll, Manel

    2016-08-01

    This contribution shows the importance of the cross-shore spatial wind variability in the water circulation in a small-sized micro-tidal bay. The hydrodynamic wind response at Alfacs Bay (Ebro River delta, NW Mediterranean Sea) is investigated with a numerical model (ROMS) supported by in situ observations. The wind variability observed in meteorological measurements is characterized with meteorological model (WRF) outputs. From the hydrodynamic simulations of the bay, the water circulation response is affected by the cross-shore wind variability, leading to water current structures not observed in the homogeneous-wind case. If the wind heterogeneity response is considered, the water exchange in the longitudinal direction increases significantly, reducing the water exchange time by around 20%. Wind resolutions half the size of the bay (in our case around 9 km) inhibit cross-shore wind variability, which significantly affects the resultant circulation pattern. The characteristic response is also investigated using idealized test cases. These results show how the wind curl contributes to the hydrodynamic response in shallow areas and promotes the exchange between the bay and the open sea. Negative wind curl is related to the formation of an anti-cyclonic gyre at the bay's mouth. Our results highlight the importance of considering appropriate wind resolution even in small-scale domains (such as bays or harbors) to characterize the hydrodynamics, with relevant implications in the water exchange time and the consequent water quality and ecological parameters.

  18. Techbelt Energy Innovation Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marie, Hazel; Nestic, Dave; Hripko, Michael

    This project consisted of three main components 1) The primary goal of the project was to renovate and upgrade an existing commercial building to the highest possible environmentally sustainable level for the purpose of creating an energy incubator. This initiative was part of the Infrastructure Technologies Program, through which a sustainable energy demonstration facility was to be created and used as a research and community outreach base for sustainable energy product and process incubation; 2) In addition, fundamental energy related research on wind energy was performed; a shrouded wind turbine on the Youngstown State University campus was commissioned; and educationalmore » initiatives were implemented; and 3) The project also included an education and outreach component to inform and educate the public in sustainable energy production and career opportunities. Youngstown State University and the Tech Belt Energy Innovation Center (TBEIC) renovated a 37,000 square foot urban building which is now being used as a research and development hub for the region’s energy technology innovation industry. The building houses basic research facilities and business development in an incubator format. In addition, the TBEIC performs community outreach and education initiatives in advanced and sustainable energy. The building is linked to a back warehouse which will eventually be used as a build-out for energy laboratory facilities. The projects research component investigated shrouded wind turbines, and specifically the “Windcube” which was renamed the “Wind Sphere” during the course of the project. There was a specific focus on the development in the theory of shrouded wind turbines. The goal of this work was to increase the potential efficiency of wind turbines by improving the lift and drag characteristics. The work included computational modeling, scale models and full-sized design and construction of a test turbine. The full-sized turbine was built on the YSU campus as a grid-tie system that supplies the YSU research facility. Electrical power meters and weather monitors were installed to record the power generated and aid in continued study. In addition, an education/outreach component to help elicit creative engineering and design from amongst area students, faculty, entrepreneurs, and small business in the energy related fields was performed.« less

  19. Numerical investigation of the optimum wind turbine sitting for domestic flat roofs

    NASA Astrophysics Data System (ADS)

    Ishfaq, Salman Muhammad; Chaudhry, Hassam Nasarullah

    2018-05-01

    The power capacity of roof mounted wind turbines is dependent on several factors which influence its energy yield. In this paper, an investigation has been carried out using Computational Fluid Dynamics (CFD) to determine flow distribution and establish an optimum mounting location for a small wind turbine on a domestic flat roof. The realisable k-ɛ and SST k-ω turbulence models were compared to establish their consistency with one another with respect to the physical domain. Nine mounting locations were considered for a pole mounted wind turbine. Three windward positions on the upwind side of the flat surfaced building were considered as viable locations for mounting the small wind turbine. Out of the three windward locations, the central upwind (1,0) mounting position was seen to be producing the highest velocity of 5.3 m/s from the available ambient velocity which was 4 m/s. Therefore, this mounting location provided the highest extractable power for the wind turbine. Conclusively, wind properties along with the mounting locations can play a significant role in either enhancing or diminishing the small wind turbine's performance on a domestic flat roof.

  20. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    PubMed

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.

  1. EDITORIAL: Wind energy

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake A Jimenez, A Crespo, E Migoya and J Garcia How to improve the estimation of power curves for wind turbines Julia Gottschall and Joachim Peinke

  2. A three degree of freedom manipulator used for store separation wind tunnel test

    NASA Astrophysics Data System (ADS)

    Wei, R.; Che, B.-H.; Sun, C.-B.; Zhang, J.; Lu, Y.-Q.

    2018-06-01

    A three degree of freedom manipulator is presented, which is used for store separation wind tunnel test. It is a kind of mechatronics product, have small volume and large moment of torque. The paper researched the design principle of wind tunnel test equipment, also introduced the transmission principle design, physical design, control system design, drive element selection calculation and verification, dynamics computation and static structural computation of the manipulator. To satisfy the design principle of wind tunnel test equipment, some optimization design are made include optimizes the structure of drive element and cable, fairing configuration, overall dimension so that to make the device more suitable for the wind tunnel test. Some tests are made to verify the parameters of the manipulator. The results show that the device improves the load from 100 Nm to 250 Nm, control accuracy from 0.1°to 0.05°in pitch and yaw, also improves load from 10 Nm to 20 Nm, control accuracy from 0.1°to 0.05°in roll.

  3. Local diurnal wind-driven variabiity and upwelling in a small coastal embayment

    NASA Astrophysics Data System (ADS)

    Walter, R. K.; Reid, E. C.; Davis, K. A.; Armenta, K. J.; Merhoff, K.; Nidzieko, N.

    2017-12-01

    The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.

  4. Local diurnal wind-driven variability and upwelling in a small coastal embayment

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Reid, Emma C.; Davis, Kristen A.; Armenta, Kevin J.; Merhoff, Kevin; Nidzieko, Nicholas J.

    2017-02-01

    The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.

  5. Wind Turbine Research Validation | Wind | NREL

    Science.gov Websites

    Wind Turbine Research Validation Wind Turbine Research Validation Photo of a large wind turbine operators with turbine and component research validation that ensures performance and reliability. Prototype research is especially important to capture manufacturing flaws. The NWTC staff conducts research on

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it'smore » possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  7. FEM Simulation of Small Wind Power Generating System Using PMSG

    NASA Astrophysics Data System (ADS)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  8. ARES I Aerodynamic Testing at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Wilcox, Floyd J.

    2011-01-01

    Small-scale force and moment and pressure models based on the outer mold lines of the Ares I design analysis cycle crew launch vehicle were tested in the NASA Langley Research Center Unitary Plan Wind Tunnel from May 2006 to September 2009. The test objectives were to establish supersonic ascent aerodynamic databases and to obtain force and moment, surface pressure, and longitudinal line-load distributions for comparison to computational predictions. Test data were obtained at low through high supersonic Mach numbers for ranges of the Reynolds number, angle of attack, and roll angle. This paper focuses on (1) the sensitivity of the supersonic aerodynamic characteristics to selected protuberances, outer mold line changes, and wind tunnel boundary layer transition techniques, (2) comparisons of experimental data to computational predictions, and (3) data reproducibility. The experimental data obtained in the Unitary Plan Wind Tunnel captured the effects of evolutionary changes to the Ares I crew launch vehicle, exhibited good agreement with predictions, and displayed satisfactory within-test and tunnel-to-tunnel data reproducibility.

  9. Evidence of Tropospheric 90 Day Oscillations in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Hagan, M. E.; Zhao, Y.

    2017-10-01

    In the last decade evidence demonstrated that terrestrial weather greatly impacts the dynamics and mean state of the thermosphere via small-scale gravity waves and global-scale solar tidal propagation and dissipation effects. While observations have shown significant intraseasonal variability in the upper mesospheric mean winds, relatively little is known about this variability at satellite altitudes (˜250-400 km). Using cross-track wind measurements from the Challenging Minisatellite Payload and Gravity field and steady-state Ocean Circulation Explorer satellites, winds from a Modern-Era Retrospective Analysis for Research and Applications/Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model simulation, and outgoing longwave radiation data, we demonstrate the existence of a prominent and global-scale 90 day oscillation in the thermospheric zonal mean winds and in the diurnal eastward propagating tide with zonal wave number 3 (DE3) during 2009-2010 and present evidence of its connection to variability in tropospheric convective activity. This study suggests that strong coupling between the troposphere and the thermosphere occurs on intraseasonal timescales.

  10. Influence of small-scale turbulence on cup anemometer calibrations

    NASA Astrophysics Data System (ADS)

    Marraccini, M.; Bak-Kristensen, K.; Horn, A.; Fifield, E.; Hansen, S. O.

    2017-11-01

    The paper presents and discusses the calibration results of cup anemometers under different levels of small-scale turbulence. Small-scale turbulence is known to govern the curvature of shear layers around structures and is not related to the traditional under and over speeding of cup anemometers originating from large-scale turbulence components. The paper has shown that the small-scale turbulence has a significant effect on the calibration results obtained for cup anemometers. At 10m/s the rotational speed seems to change by approx. 0.5% due to different simulations of the small-scale turbulence. The work which this paper is based on, is part of the TrueWind research project, aiming to increase accuracy of mast top-mounted cup anemometer measurements.

  11. Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool |

    Science.gov Websites

    News | NREL Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool April 1, 2016 Before the Energy Department's that researchers all over the world could embrace. Now, the winds of change are blowing. SOWFA is a

  12. Market Acceleration | Wind | NREL

    Science.gov Websites

    model of a shrouded wind turbine at the 2016 Collegiate Wind Competition. Workforce Development and accurate information that articulates the potential impacts and benefits of wind and water power on education, rural economic development, public power partnerships, and small wind systems. An

  13. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  14. News on the X-ray emission from hot subdwarf stars

    NASA Astrophysics Data System (ADS)

    Palombara, Nicola La; Mereghetti, Sandro

    2017-12-01

    In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to themore » utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less

  16. [Influences of land using patterns on the anti-wind erosion of meadow grassland].

    PubMed

    Zhou, Yao-Zhi; Wang-Xu; Yang, Gui-Xia; Xin, Xiao-Ping

    2008-05-01

    In order to analyse the effects of the human disturbances to the ability of anti-wind erosion of the Hulunbuir meadow grassland, the methods of vegetation investigation and the wind tunnel experiment were made to research the changes of vegetation and the abilities of anti-wind erosion of meadow grassland under different using patterns of meadow grassland. The results indicate that, under different grazing intensities of meadow grassland, the critical wind velocity of soil erosion (v) changes with the vegetation cover according to the relation of second power function. Along with the grazing intensities increasing and the vegetation cover reducing, the velocity of soil erosion rapidly increased on the condition of similar wind velocity which is speedier than the critical wind velocity of soil erosion. When the meadow grassland is mildly grazed which the vegetation cover maintains 63%, the velocity of soil erosion is small even there is gale that the wind velocity reach 25 m/s. When the vegetation cover of meadow grassland reduced to less than 35%, the velocity of soil erosion rapidly increased with the vegetation cover's reducing on the condition of the wind velocity is among 20-25 m/s. And owing to the no-tillage cropland of meadow grassland is completely far from the protection of the vegetation, the soil wind erosion quantity achieves 682.1 kg/hm2 in a minute when the wind velocity is 25 m/s, which approaches the average formation quantity of soil (1 000 kg/hm2) in a year.

  17. Wind energy education projects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, P.; Conlon, T.R.; Arcadi, T.

    Two projects under DOE's Small-Scale Appropriate Energy Technology Grants Program have educated the public in a hands on way about wind energy systems. The first was awarded to Peter Ziegler of Berkeley, California, to design and build a walk-through exhibition structure powered by an adjoining wind-generator. This Wind Energy Pavilion was erected at Fort Funston in the Golden Gate National Recreation Area. It currently serves both as an enclosure for batteries and a variety of monitoring instruments, and as a graphic environment where the public can learn about wind energy. The second project, entitled Wind and Kid Power, involved anmore » educational program for a classroom of first through third grades in the Vallejo, Unified School District. The students studied weather, measured wind speeds and built small models of wind machines. They also built a weather station, and learned to use weather instruments. The grant funds enabled them to actually build and erect a Savonius wind machine at the Loma Vista Farm School.« less

  18. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting

    PubMed Central

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-01-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518

  19. Establishment of a National Wind Energy Center at University of Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Su Su

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturingmore » technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design, composite materials, integrated manufacturing, and structural reliability and integrity. The educational program have trained many graduate and undergraduate students and post-doctoral level researchers to learn critical science and engineering of wind energy production systems through graduate-level courses and research, and participating in various projects in center’s large multi-disciplinary research. These students and researchers are now employed by the wind industry, national labs and universities to support the US and international wind energy industry. The national offshore wind turbine blade research facility developed in the project has been used to support the technical and training tasks planned in the program to accomplish their goals, and it is a national asset which is available for used by domestic and international researchers in the wind energy arena.« less

  20. Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements.

    PubMed

    Arvidsson, Tommy; Bergström, Lars; Kreuger, Jenny

    2011-06-01

    In this study, the collecting efficiency of different samplers of airborne drift was compared both in wind tunnel and in field experiments. The aim was to select an appropriate sampler for collecting airborne spray drift under field conditions. The wind tunnel study examined three static samplers and one dynamic sampler. The dynamic sampler had the highest overall collecting efficiency. Among the static samplers, the pipe cleaner collector had the highest efficiency. These two samplers were selected for evaluation in the subsequent field study. Results from 29 individual field experiments showed that the pipe cleaner collector on average had a 10% lower collecting efficiency than the dynamic sampler. However, the deposits on the pipe cleaners generally were highest at the 0.5 m level, and for the dynamic sampler at the 1 m level. It was concluded from the wind tunnel part of the study that the amount of drift collected on the static collectors had a more strongly positive correlation with increasing wind speed compared with the dynamic sampler. In the field study, the difference in efficiency between the two types of collector was fairly small. As the difference in collecting efficiency between the different types of sampler was small, the dynamic sampler was selected for further measurements of airborne drift under field conditions owing to its more well-defined collecting area. This study of collecting efficiency of airborne spray drift of static and dynamic samplers under field conditions contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry.

  1. FINAL Report LTC-DOE DE-EE0000537

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Michelle

    2013-02-28

    At the time of LTC’s application we were home to a small / mid-sized Wind Energy Research and Teaching Center, funded in part by We Energies, and offered the state of Wisconsin’s first Associate of Applied Science (A.A.S.) Degree in Wind Energy Technology. With President Obama promising investment in wind, LTC and its partners were uniquely situated to meet the challenge through an organized career pathways approach that utilized industry drivers and occupationally verified curriculum to train the workers who “transform our energy sector.” LTC’s employer partners validated the findings of the “20% Wind Energy by 2030: Increasing Wind Energy'smore » Contribution to U.S. Electricity Supply” report by the US Department of Energy which recognized programs like LTC’s as an “excellent beginning,” noting that many more like them are necessary to meet the challenges of the 20% Wind scenario.One of the focuses of the study was the lack of trained technicians to work on installation and maintenance of renewables (and more specifically for our grant application wind turbines). LTC’s goal, made possible with the funding provided in this grant, was to increase the number of skilled graduates to help meet this national objective. LTC was already a leader in wind for the state of Wisconsin but wanted to upscale from a single school to a statewide (and potentially regional) center for wind energy. LTC planned to leverage our facilities, curriculum, and faculty expertise to meet this goal.« less

  2. Structure and sources of solar wind in the growing phase of 24th solar cycle

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  3. Damage severity assessment in wind turbine blade laboratory model through fuzzy finite element model updating

    NASA Astrophysics Data System (ADS)

    Turnbull, Heather; Omenzetter, Piotr

    2017-04-01

    The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Spanish version of the popular Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a systemmore » to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  6. Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flowers, L.; Baring-Gould, I.

    2010-04-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.

  7. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2015-06-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  8. Small wind systems field evaluation. Volume I. Program description. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, D.M.; Liske, C.

    1982-07-01

    A Field Evaluation Program (FEP) was developed in 1978 to assist in the commercialization process for small wind systems. The program is described, and a description is provided of the institutional issues and barriers encountered and measures taken to assist the state and local governments in resolving them. Barriers were found to involve not only government regulations, but also the distribution of costs and benefits of wind technology and the rate of diffusion of knowledge about wind technology. The availability of capital to finance the production and purchase of wind machines, and the training of qualified dealers and service personnelmore » were also considerable problem areas. (LEW)« less

  9. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined inmore » terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.« less

  10. Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2011-03-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

  11. Renewable energy projects in the Dominican Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viani, B.

    1997-12-01

    This paper describes a US/Dominican Republic program to develop renewable energy projects in the country. The objective is to demonstrate the commercial viability of renewable energy generation projects, primarily small-scale wind and hydropower. Preliminary studies are completed for three micro-hydro projects with a total capacity of 262 kWe, and two small wind power projects for water pumping. In addition wind resource assessment is ongoing, and professional training and technical assistance to potential investors is ongoing. Projects goals include not less than ten small firms actively involved in installation of such systems by September 1998.

  12. Wind noise spectra in small Reynolds number turbulent flows.

    PubMed

    Zhao, Sipei; Cheng, Eva; Qiu, Xiaojun; Burnett, Ian; Liu, Jacob Chia-Chun

    2017-11-01

    Wind noise spectra caused by wind from fans in indoor environments have been found to be different from those measured in outdoor atmospheric conditions. Although many models have been developed to predict outdoor wind noise spectra under the assumption of large Reynolds number [Zhao, Cheng, Qiu, Burnett, and Liu (2016). J. Acoust. Soc. Am. 140, 4178-4182, and the references therein], they cannot be applied directly to the indoor situations because the Reynolds number of wind from fans in indoor environments is usually much smaller than that experienced in atmospheric turbulence. This paper proposes a pressure structure function model that combines the energy-containing and dissipation ranges so that the pressure spectrum for small Reynolds number turbulent flows can be calculated. The proposed pressure structure function model is validated with the experimental results in the literature, and then the obtained pressure spectrum is verified with the numerical simulation and experiment results. It is demonstrated that the pressure spectrum obtained from the proposed pressure structure function model can be utilized to estimate wind noise spectra caused by turbulent flows with small Reynolds numbers.

  13. Overview of magnetic suspension research at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1992-01-01

    An overview of research in small- and large-gap magnetic suspension systems at LaRC is presented. The overview is limited to systems which have been built as laboratory models or engineering models. Small-gap systems applications include the Annular Momentum Control Device (AMCD), which is a momentum storage device for the stabilization and control of spacecraft, and the Annular Suspension and Pointing System (ASPS), which is a general purpose pointing mount designed to provide orientation, mechanical isolation, and fine pointing space experiments. These devices are described and control and linearization approaches for the magnetic suspension systems for these devices are discussed. Large-gap systems applications at LaRC have been almost exclusively wind tunnel magnetic suspension systems. A brief description of these efforts is also presented.

  14. A Comprehensive Analysis of Small-Passerine Fatalities from Collision with Turbines at Wind Energy Facilities

    PubMed Central

    Erickson, Wallace P.; Wolfe, Melissa M.; Bay, Kimberly J.; Johnson, Douglas H.; Gehring, Joelle L.

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species). PMID:25222738

  15. A comprehensive analysis of small-passerine fatalities from collisions with turbines at wind energy facilities

    USGS Publications Warehouse

    Erickson, Wallace P.; Wolfe, Melissa M.; Bay, Kimberly J.; Johnson, Douglas H.; Gehring, Joelle L.

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 39 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).

  16. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.

    PubMed

    Erickson, Wallace P; Wolfe, Melissa M; Bay, Kimberly J; Johnson, Douglas H; Gehring, Joelle L

    2014-01-01

    Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).

  17. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    Wind energy is investigated as a source of energy. The wind energy program that is managed by the NASA-Lewis Research Center is described. The Lewis Research Center's Wind Power Office, its organization, plans, and status are discussed. Major elements of the wind power project included are: an experimental 100 kW wind-turbine generator; first generation industry-built and user-operated wind turbine generators; and supporting research and technology tasks.

  18. On Electron-Scale Whistler Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.

    2016-01-01

    For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.

  19. Daedalia Planum Windstreak

    NASA Image and Video Library

    2016-10-26

    The "tail" behind the crater at the top of this VIS image is called a windstreak. This feature is formed by winds blowing over/in and around the crater. Turbulence in the wind will erode or deposit fine materials, creating the windstreak. Windstreaks form on the down wind side of the crater, and indicate winds from the ESE. The small hills below the windstreak are small volcanic constructs. This image is located in the extensive lava plains called Daedalia Planum. Orbit Number: 65310 Latitude: -10.2729 Longitude: 226.476 Instrument: VIS Captured: 2016-09-03 11:24 http://photojournal.jpl.nasa.gov/catalog/PIA21151

  20. Aerodynamic study of a blade with sine variation of chord length along the height for Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Crunteanu, D. E.; Constantinescu, S. G.; Niculescu, M. L.

    2013-10-01

    The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. In contrast to these wind turbines, the Darrieus wind turbines are simpler and their price is lower. Unfortunately, their blades run at high variations of angles of attack, in stall and post-stall regimes, which can induce significant vibrations, fatigue and even the wind turbine failure. For this reason, the present paper deals with a blade with sine variation of chord length along the height because it has better behavior in stall and post-stall regimes than the classic blade with constant chord length.

  1. Meteor Impact Model in the new Space Power Chambers

    NASA Image and Video Library

    1962-09-21

    S-65 Meteor Impact Model set up in the former Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center just days after the September 12, 1962 rededication of the facility as the Space Power Chamber. Although larger test chambers would later be constructed, the rapid conversion of the wind tunnel into two space tanks allowed the facility to play a vital role in the early years of the space program. The eastern section of the tunnel, seen here became a vacuum chamber capable of simulating 100 miles altitude. This space tank was envisioned for the study of small satellites like this one. The transfer of the Centaur Program to Lewis one month late, however, permanently changed this mission. NASA was undertaking an in depth study at the time on the effect of micrometeoroids on satellites. Large space radiators were particularly vulnerable to damage from the small particles of space debris. In order to determine the hazard from meteoroids researchers had to define the flux rate relative to the mass and the velocity distribution because the greater the mass or the velocity of a meteoroid the greater the damage.

  2. Aerodynamic parameters of High-Angle-of attack Research Vehicle (HARV) estimated from flight data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Ratvasky, Thomas R.; Cobleigh, Brent R.

    1990-01-01

    Aerodynamic parameters of the High-Angle-of-Attack Research Aircraft (HARV) were estimated from flight data at different values of the angle of attack between 10 degrees and 50 degrees. The main part of the data was obtained from small amplitude longitudinal and lateral maneuvers. A small number of large amplitude maneuvers was also used in the estimation. The measured data were first checked for their compatibility. It was found that the accuracy of air data was degraded by unexplained bias errors. Then, the data were analyzed by a stepwise regression method for obtaining a structure of aerodynamic model equations and least squares parameter estimates. Because of high data collinearity in several maneuvers, some of the longitudinal and all lateral maneuvers were reanalyzed by using two biased estimation techniques, the principal components regression and mixed estimation. The estimated parameters in the form of stability and control derivatives, and aerodynamic coefficients were plotted against the angle of attack and compared with the wind tunnel measurements. The influential parameters are, in general, estimated with acceptable accuracy and most of them are in agreement with wind tunnel results. The simulated responses of the aircraft showed good prediction capabilities of the resulting model.

  3. The Impact of Natural Hazards such as Turbulent Wind Gusts on the Wind Energy Conversion Process

    NASA Astrophysics Data System (ADS)

    Wächter, M.; Hölling, M.; Milan, P.; Morales, A.; Peinke, J.

    2012-12-01

    Wind turbines operate in the atmospheric boundary layer, where they are exposed to wind gusts and other types of natural hazards. As the response time of wind turbines is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. We show evidence that basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. Intermittent statistics include high probabilities of extreme events which can be related to wind gusts and other types of natural hazards. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features and quantify their effects on all stages of wind energy conversion.

  4. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    PubMed

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Wind for Schools: A National Data and Curricula Development Activity for Schools (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America?s Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community 'host' schools. 3) Implementing teacher training with interactive curricula at each host school.

  6. Use of 3D Printing for Custom Wind Tunnel Fabrication

    NASA Astrophysics Data System (ADS)

    Gagorik, Paul; Bates, Zachary; Issakhanian, Emin

    2016-11-01

    Small-scale wind tunnels for the most part are fairly simple to produce with standard building equipment. However, the intricate bell housing and inlet shape of an Eiffel type wind tunnel, as well as the transition from diffuser to fan in a rectangular tunnel can present design and construction obstacles. With the help of 3D printing, these shapes can be custom designed in CAD models and printed in the lab at very low cost. The undergraduate team at Loyola Marymount University has built a custom benchtop tunnel for gas turbine film cooling experiments. 3D printing is combined with conventional construction methods to build the tunnel. 3D printing is also used to build the custom tunnel floor and interchangeable experimental pieces for various experimental shapes. This simple and low-cost tunnel is a custom solution for specific engineering experiments for gas turbine technology research.

  7. Design and wind tunnel tests of winglets on a DC-10 wing

    NASA Technical Reports Server (NTRS)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  8. Wind Fins: Novel Lower-Cost Wind Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David C. Morris; Dr. Will D. Swearingen

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less

  9. Navy applications experience with small wind power systems

    NASA Astrophysics Data System (ADS)

    Pal, D.

    1985-05-01

    This report describes the experience gained and lesson learned from the ongoing field evaluations of seven small, 2-to 20-kW wind energy conversion systems (WECS) at Navy installations located in the Southern California desert, on San Nicolas Island, in California, and in Kaneohe Bay, Hawaii. The field tests show that the WECS's bearings and yaw slip-rings are prone to failure. The failures were attributed to the corrosive environment and poor design practices. Based upon the field tests, it is concluded that a reliable WECS must use a permanent magnet alternator without a gearbox and yaw slip-rings that are driven by a fixed pitch wind turbine rotor. The present state-of-the-art in small WECS technology, including environmental concerns, is reviewed. Also presented is how the technology is advancing to improve reliability and availability for effectively using wind power at Navy bases. The field evaluations are continuing on the small WECS in order to develop operation, maintenance, and reliability data.

  10. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  11. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  12. A new approach to wind energy: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Greer, Julia R.; Koseff, Jeffrey R.; Moin, Parviz; Peng, Jifeng

    2015-03-01

    Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource—which is 20 times greater than total global power consumption—and the limited penetration of existing wind energy technologies as a means for electricity generation worldwide. We describe an approach to wind energy harvesting that has the potential to resolve this disconnect by geographically distributing wind power generators in a manner that more closely mirrors the physical resource itself. To this end, technology development is focused on large arrays of small wind turbines that can harvest wind energy at low altitudes by using new concepts of biology-inspired engineering. This approach dramatically extends the reach of wind energy, as smaller wind turbines can be installed in many places that larger systems cannot, especially in built environments. Moreover, they have lower visual, acoustic, and radar signatures, and they may pose significantly less risk to birds and bats. These features can be leveraged to attain cultural acceptance and rapid adoption of this new technology, thereby enabling significantly faster achievement of state and national renewable energy targets than with existing technology alone. Favorable economics stem from an orders-of-magnitude reduction in the number of components in a new generation of simple, mass-manufacturable (even 3D-printable), vertical-axis wind turbines. However, this vision can only be achieved by overcoming significant scientific challenges that have limited progress over the past three decades. The following essay summarizes our approach as well as the opportunities and challenges associated with it, with the aim of motivating a concerted effort in basic and applied research in this area.

  13. Calculation of design load for the MOD-5A 7.3 mW wind turbine system

    NASA Technical Reports Server (NTRS)

    Mirandy, L.; Strain, J. C.

    1995-01-01

    Design loads are presented for the General Electric MOD-SA wind turbine. The MOD-SA system consists of a 400 ft. diameter, upwind, two-bladed, teetered rotor connected to a 7.3 mW variable-speed generator. Fatigue loads are specified in the form of histograms for the 30 year life of the machine, while limit (or maximum) loads have been derived from transient dynamic analysis at critical operating conditions. Loads prediction was accomplished using state of the art aeroelastic analyses developed at General Electric. Features of the primary predictive tool - the Transient Rotor Analysis Code (TRAC) are described in the paper. Key to the load predictions are the following wind models: (1) yearly mean wind distribution; (2) mean wind variations during operation; (3) number of start/shutdown cycles; (4) spatially large gusts; and (5) spatially small gusts (local turbulence). The methods used to develop statistical distributions from load calculations represent an extension of procedures used in past wind programs and are believed to be a significant contribution to Wind Turbine Generator analysis. Test/theory correlations are presented to demonstrate code load predictive capability and to support the wind models used in the analysis. In addition MOD-5A loads are compared with those of existing machines. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department, under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  14. An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.

    PubMed

    Łopucki, Rafał; Mróz, Iwona

    2016-02-01

    The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers.

  15. Reptiles and amphibians

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Joshua R.; Perrow, Martin

    2017-01-01

    Summary – We reviewed all the peer-reviewed scientific publications we could find on the known and potential effects of wind farm development, operation, maintenance, and decommissioning on reptiles and amphibians (collectively herpetofauna) worldwide. Both groups are declining globally due to a multitude of threats including energy development. Effect studies were limited to the long-term research by the authors on Agassiz’s Desert Tortoise ecology and behavior at single operational wind farm in California, US and an analysis of the effects of wind farm installation on species richness of vertebrates including reptiles and amphibians in northwestern Portugal. Research on Agassiz’s Desert Tortoise found few demonstrable differences in biological parameters between populations in the wind farm and those in more natural habitats. High reproductive output is due to the regional climate and not to the presence or operation of the wind farm. Site operations have resulted in death and injury to a small number of adult tortoises and over the long-term tortoises now appear to avoid the areas of greatest turbine concentration. Research in Portugal using models and simulations based on empirical data show that vertebrate species richness (including herpetofauna) decreased by almost 20% after the installation of only two large monopole turbines per 250 x 250 m plot. Knowledge of the known responses of herpetofauna to various disturbances allows identification of potential impacts from construction material acquisition in offsite areas, mortality and stress due to impacts of roads and related infrastructure, destruction and modification of habitat, habitat fragmentation and barriers to gene flow, noise, vibration, electromagnetic field generation, heat from buried high voltage transmission lines, alteration of local and regional climate, predator attraction, and increased risk of fire. Research on herpetofauna lags far behind what is needed and, in particular, before-after-control-impact studies are critically needed to identify cause and effect relationships in order to develop effective mitigation strategies for any negative impacts.

  16. Experimental Evaluation of Turning Vane Designs for High-speed and Coupled Fan-drive Corners of 0.1-scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.

    1987-01-01

    Two turning vane designs were experimentally evaluated for the fan-drive corner (corner 2) coupled to an upstream diffuser and the high-speed corner (corner 1) of the 0.1 scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel. For corner 2 both a controlled-diffusion vane design (vane A4) and a circular-arc vane design (vane B) were studied. The corner 2 total pressure loss coefficient was about 0.12 with either vane design. This was about 25 percent less loss than when corner 2 was tested alone. Although the vane A4 design has the advantage of 20 percent fewer vanes than the vane B design, its vane shape is more complex. The effects of simulated inlet flow distortion on the overall losses for corner 1 or 2 were small.

  17. An intelligent data acquisition system for fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  18. Constructing a Plastic Bottle Wind Turbine as a Practical Aid for Learning about Using Wind Energy to Generate Electricity

    ERIC Educational Resources Information Center

    Appleyard, S. J.

    2009-01-01

    A simple horizontal axis wind turbine can be easily constructed using a 1.5 l PET plastic bottle, a compact disc and a small dynamo. The turbine operates effectively at low wind speeds and has a rotational speed of 500 rpm at a wind speed of about 14 km h[superscript -1]. The wind turbine can be used to demonstrate the relationship between open…

  19. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kaoru

    1993-02-14

    This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less

  20. Sistemas Eolicos Pequenos para Generacion de Electricidad: Una guia para consumidores en Nuevo Mexico (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2007-09-01

    This Spanish version of the popular Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a systemmore » to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  1. Aerodynamic study of a small wind turbine with emphasis on laminar and transition flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Crunteanu, D. E.

    2016-06-01

    The wind energy is huge but unfortunately, wind turbines capture only a little part of this enormous green energy. Furthermore, it is impossible to put multi megawatt wind turbines in the cities because they generate a lot of noise and discomfort. Instead, it is possible to install small Darrieus and horizontal-axis wind turbines with low tip speed ratios in order to mitigate the noise as much as possible. Unfortunately, the flow around this wind turbine is quite complex because the run at low Reynolds numbers. Therefore, this flow is usually a mixture of laminar, transition and laminar regimes with bubble laminar separation that is very difficult to simulate from the numerical point of view. Usually, transition and laminar regimes with bubble laminar separation are ignored. For this reason, this paper deals with laminar and transition flows in order to provide some brightness in this field.

  2. Aerodynamics of small-scale vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  3. Drivers of Public Attitudes towards Small Wind Turbines in the UK

    PubMed Central

    Tatchley, Cerian; Paton, Heather; Robertson, Emma; Minderman, Jeroen; Hanley, Nicholas; Park, Kirsty

    2016-01-01

    Small Wind Turbines (SWTs) are a growing micro-generation industry with over 870,000 installed units worldwide. No research has focussed on public attitudes towards SWTs, despite evidence the perception of such attitudes are key to planning outcomes and can be a barrier to installations. Here we present the results of a UK wide mail survey investigating public attitudes towards SWTs. Just over half of our respondents, who were predominantly older, white males, felt that SWTs were acceptable across a range of settings, with those on road signs being most accepted and least accepted in hedgerows and gardens. Concern about climate change positively influenced how respondents felt about SWTs. Respondent comments highlight visual impacts and perceptions of the efficiency of this technology are particularly important to this sector of the UK public. Taking this into careful consideration, alongside avoiding locating SWTs in contentious settings such as hedgerows and gardens where possible, may help to minimise public opposition to proposed installations. PMID:27011356

  4. Drivers of Public Attitudes towards Small Wind Turbines in the UK.

    PubMed

    Tatchley, Cerian; Paton, Heather; Robertson, Emma; Minderman, Jeroen; Hanley, Nicholas; Park, Kirsty

    2016-01-01

    Small Wind Turbines (SWTs) are a growing micro-generation industry with over 870,000 installed units worldwide. No research has focussed on public attitudes towards SWTs, despite evidence the perception of such attitudes are key to planning outcomes and can be a barrier to installations. Here we present the results of a UK wide mail survey investigating public attitudes towards SWTs. Just over half of our respondents, who were predominantly older, white males, felt that SWTs were acceptable across a range of settings, with those on road signs being most accepted and least accepted in hedgerows and gardens. Concern about climate change positively influenced how respondents felt about SWTs. Respondent comments highlight visual impacts and perceptions of the efficiency of this technology are particularly important to this sector of the UK public. Taking this into careful consideration, alongside avoiding locating SWTs in contentious settings such as hedgerows and gardens where possible, may help to minimise public opposition to proposed installations.

  5. A New Forced Oscillation Capability for the Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Cleckner, Craig S.

    2002-01-01

    A new forced oscillation system has been installed and tested at NASA Langley Research Center's Transonic Dynamics Tunnel (TDT). The system is known as the Oscillating Turntable (OTT) and has been designed for the purpose of oscillating, large semispan models in pitch at frequencies up to 40 Hz to acquire high-quality unsteady pressure and loads data. Precisely controlled motions of a wind-tunnel model on the OTT can yield unsteady aerodynamic phenomena associated with flutter, limit cycle oscillations, shock dynamics, and non-linear aerodynamic effects on many vehicle configurations. This paper will discuss general design and components of the OTT and will present test data from performance testing and from research tests on two rigid semispan wind-tunnel models. The research tests were designed to challenge the OTT over a wide range of operating conditions while acquiring unsteady pressure data on a small rectangular supercritical wing and a large supersonic transport wing. These results will be presented to illustrate the performance capabilities, consistency of oscillations, and usefulness of the OTT as a research tool.

  6. Security Engineering Project

    DTIC Science & Technology

    2015-01-31

    from a wireless joystick console broadcasting at 2.4 GHz. Figure 6. GTRI Airborne Unmanned Sensor System As shown in Figure 7 the autopilot has a...generating wind turbines , and video reconnaissance systems on unmanned aerial vehicles (UAVs). The most basic decision problem in designing a...chosen test UAV case was the GTRI Aerial Unmanned Sensor System (GAUSS) aircraft. The GAUSS platform is a small research UAV with a widely used

  7. An experimental study of potential residential and commercial applications of small-scale hybrid power systems

    NASA Astrophysics Data System (ADS)

    Acosta, Michael Anthony

    The research presented in this thesis provides an understanding of small-scale hybrid power systems. Experiments were conducted to identify potential applications of renewable energy in residential and commercial applications in the Rio Grande Valley of Texas. Solar and wind energy converted into electric energy was stored in batteries and inverted to power common household and commercial appliances. Several small to medium size hybrid power systems were setup and utilized to conduct numerous tests to study renewable energy prospects and feasibility for various applications. The experimental results obtained indicate that carefully constructed solar power systems can provide people living in isolated communities with sufficient energy to consistently meet their basic power needs.

  8. Wind Streaks on Earth; Exploration and Interpretation

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit

    2015-04-01

    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in approximately 500 sites. Most terrestrial wind streaks are formed on a relatively young geological surface and are concentrated along the equator (± 30°). They are categorized by the combination of their planform and reflectance; with linear-bright and dark are the most common. A site-specific examination of remote-sensing effects on wind streaks identification has been conducted. The results thus far, indicate that in images with varying spatial and spectral specifications some wind streaks are actually composed of other aeolian bedforms, especially dunes. Specific regions of the Earth were then compared qualitatively to surface wind data extracted from a general circulation model. Understanding the mechanism and spatial and temporal distribution of wind streak formation is important not only for understanding surface modifications in the geomorphological context but also for shedding light on past and present climatic processes and atmospheric circulation on Earth. This study yields an explanation for wind streaks as a geomorphological feature. Moreover, it is in this planet-wide geomorphological research ability to lay down the foundations for comparative planetary research.

  9. A history of wind erosion prediction models in the United States Department of Agriculture prior to the Wind Erosion Prediction System

    NASA Astrophysics Data System (ADS)

    Tatarko, John; Sporcic, Michael A.; Skidmore, Edward L.

    2013-09-01

    The Great Plains experienced an influx of settlers in the late 1850s-1900. Periodic drought was hard on both settlers and the soil and caused severe wind erosion. The period known as the Dirty Thirties, 1931-1939, produced many severe windstorms, and the resulting dusty sky over Washington, DC helped Hugh Hammond Bennett gain political support for the Soil Conservation Act of 1937 that started the USDA Soil Conservation Service (SCS). Austin W. Zingg and William S. Chepil began wind erosion studies at a USDA laboratory at Kansas State University in 1947. Neil P. Woodruff and Francis H. Siddoway published the first widely used model for wind erosion in 1965, called the Wind Erosion Equation (WEQ). The WEQ was solved using a series of charts and lookup tables. Subsequent improvements to WEQ included monthly magnitudes of the total wind, a computer version of WEQ programmed in FORTRAN, small-grain equivalents for range grasses, tillage systems, effects of residue management, crop row direction, cloddiness, monthly climate factors, and the weather. The SCS and the Natural Resources Conservation Service (NRCS) produced several computer versions of WEQ with the goal of standardizing and simplifying it for field personnel including a standalone version of WEQ was developed in the late 1990s using Microsoft Excel. Although WEQ was a great advancement to the science of prediction and control of wind erosion on cropland, it had many limitations that prevented its use on many lands throughout the United States and the world. In response to these limitations, the USDA developed a process-based model know as the Wind Erosion Prediction System (WEPS). The USDA Agricultural Research Service has taken the lead in developing science and technology for wind erosion prediction.

  10. Assessment of wind energy potential in Poland

    NASA Astrophysics Data System (ADS)

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  11. Duration Test Report for the Entegrity EW50 Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.; Huskey, A.; Jager, D.

    2012-12-01

    This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  12. Radiometers Optimize Local Weather Prediction

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.

  13. Wind Power Innovation Enables Shift to Utility-Scale - Continuum Magazine

    Science.gov Websites

    the 1930s, a farmer in South Dakota built a small wind turbine on his farm, generating enough enough electricity to power thousands of homes. Aerial photo of large wind turbine with mountains in the background. Aerial view of the Siemens utility-scale wind turbine at the National Wind Technology Center

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Morris; Dennis Fitzpatrick

    This final report is issued for the "Supplemental power for the Town of Browning waste-water treatment facility" under the Field Verification Program for Small Wind Turbines Grant. The grant application was submitted on April 16, 1999 wherein the full description of this project is outlined. The project was initially designed to test the Bergy small wind turbines, 10 kW, applicability to residential and commercial applications. The objectives of the project were the following: 1. To verify the performance of the BWC Excel-S/E model wind turbine in an operational application in the fierce winds and severe weather conditions of the Classmore » V winds of the Blackfeet Indian Reservation of Northern Montana. 2. To open up the Blackfeet reservation and northern Montana, to government sponsored, regionally distributed wind generation programs. 3. To examine the natural partnership of wind/electric with water pumping and water purification applications whose requirements parallel the variably available nature of energy produced by wind. 4. To provide data and hands-on experience to citizens, scientists, political leaders, utility operators and Tribal planners with regard to the potential uses of small-capacity, distributed-array wind turbines on the Blackfeet Reservation and in other areas of northern Montana. This project has not been without a few, which were worked out and at the time of this report continue to be worked on with the installation of two new Trace Technologies invertors and a rebuilt one with new technology inside. For the most part when the system has worked it produced power that was used within the wastewater system as was the purpose of this project.« less

  15. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill

    NASA Astrophysics Data System (ADS)

    Truyen Luong, Hung; Goo, Nam Seo

    2012-02-01

    A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.

  16. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  17. Wind for Schools (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, andmore » Idaho.« less

  18. Wind River Watershed Restoration: Annual report April 2006 to March 2007

    USGS Publications Warehouse

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S.

    2007-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  19. Wind River Watershed Restoration, 2006-2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S.

    2008-11-04

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and themore » Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.« less

  20. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  1. Assessment Parameters and Matching between the Sites and Wind Turbines

    NASA Astrophysics Data System (ADS)

    Chermitti, A.; Bencherif, M.; Nakoul, Z.; Bibitriki, N.; Benyoucef, B.

    The objective of this paper is to introduce the assessment parameters of the wind energy production of sites and pairing between the sites and wind turbines. The exploration is made with the wind data gathered at 10 m high is based on the atlas of the wind of Algeria established by the National office of the Meteorology runs 37 stations of measures. The data is used for a feasibility analysis of optimum future utilization of Wind generator potentiality in five promising sites covering a part of landscape types and regions in Algeria. Detailed technical assessment for the ten most promising potential wind sites was made using the capacity factor and the site effectiveness approach. The investigation was performed assuming several models of small, medium and big size wind machines representing different ranges of characteristic speeds and rated power suitable for water pumping and electric supply. The results show that small wind turbines could be installed in some coast region and medium wind turbines could be installed in the high plateau and some desert regions and utilized for water supply and electrical power generation, the sites having an important wind deposit, in high plateau we find Tiaret site's but in the desert there is some sites for example Adrar, Timimoun and In Amenas, in these sites could be installed a medium and big size wind turbines.

  2. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  3. Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oteri, F.; Sinclair, K.

    This paper provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

  4. Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, K.; Oteri, F.

    This presentation provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

  5. Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, E.; Green, J.

    2002-01-01

    In this paper, we investigate three design options to minimize cogging torque: uniformity of air gap, pole width, and skewing. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.

  6. 77 FR 52754 - Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... include new and existing small-scale wind energy facilities, such as single-turbine demonstration projects, as well as large, multi-turbine commercial wind facilities. Covered Species The planning partners are...-FF03E00000] Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning...

  7. Microwave Limb Sounder/El Nino Watch - 1997 Research Data Reveal Clues about El Nino's Influence

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image displays wind measurements taken by the satellite-borne NASA Scatterometer (NSCAT) during the last 10 days of May 1997, showing the relationship between the ocean and the atmosphere at the onset of the 1997-98 El Nino condition. The data have helped scientists confirm that the event began as an unusual weakening of the trade winds that preceded an increase in sea surface temperatures. The arrows represent wind speed and direction while the colors indicate sea surface temperature. The sea surface temperatures were measured by the Advanced Very High Resolution Radiometer, a joint mission of NASA and the National Oceanographic and Atmospheric Administration (NOAA). The trade winds normally blow from east to west, but the small arrows in the center of the image show the winds have changed direction and are blowing in the opposite direction. The areas shown in red are above normal sea surface temperatures -- along the equator, off the west coast of the U.S., and along the west coast of Mexico. This image also shows an unusual low pressure system with cyclonic (counterclockwise) circulation near the western North American coast. NSCAT also observed that winds associated with this circulation pattern branched off from the equator, bypassed Hawaii, and brought heat and moisture from the tropical ocean towards San Francisco, in what is often called the 'pineapple express.'

  8. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    This report describes that portion of the national five-year wind energy program that is being managed by the NASA-Lewis Research Center for the ERDA. The Lewis Research Center's Wind Power Office, its organization and plans and status are briefly described. The three major elements of the wind energy project at Lewis are the experimental 100 kW wind-turbine generator; the first generation industry-built and user-operated wind turbine generators; and the supporting research and technology tasks which are each briefly described.

  9. NREL Researchers Play Integral Role in National Offshore Wind Strategy |

    Science.gov Websites

    News | NREL Researchers Play Integral Role in National Offshore Wind Strategy NREL Researchers Play Integral Role in National Offshore Wind Strategy December 16, 2016 A photo of three offshore wind turbines in turbulent water. Offshore wind energy in the United States is just getting started, with the

  10. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  11. STS-32 Earth observation of the southern Sand Sea, Namibia, Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Earth observation taken onboard Columbia, Orbiter Vehicle (OV) 102, is of the southern Sand Sea. Low sun angles on this south-looking view of the sand dunes of the southern Sand Sea (foreground) shows the many subtle patterns produced by winds. Along the coast very strong southerly winds have generated a zone of ribbed, transverse dunes. Further inland, different patterns appear, which may relate to present winds, or perhaps to winds which blew in different directions at times in the geological past. Strong Santa Ana-type winds blow from inland (left) during the winter which may explain the small patterns (center left). The small fishing port of Luderitz occupies the main bay on the coastline. Otherwise the area is empty of inhabitants on the very dry and windy coast. Railways connect the post with inland centers.

  12. Predicting wind-driven waves in small reservoirs

    USDA-ARS?s Scientific Manuscript database

    The earthen levees commonly used for irrigation reservoirs are subjected to significant embankment erosion due to wind-generated waves. The design of bank protection measures relies on adequate prediction of wave characteristics based on wind conditions and fetch length. Current formulations are ba...

  13. Estimation of wind regime from combination of RCM and NWP data in the Gulf of Riga (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Sile, T.; Sennikovs, J.; Bethers, U.

    2012-04-01

    Gulf of Riga is a semi-enclosed gulf located in the Eastern part of the Baltic Sea. Reliable wind climate data is crucial for the development of wind energy. The objective of this study is to create high resolution wind parameter datasets for the Gulf of Riga using climate and numerical weather prediction (NWP) models as an alternative to methods that rely on observations with the expectation of benefit from comparing different approaches. The models used for the estimation of the wind regime are an ensemble of Regional Climate Models (RCM, ENSEMBLES, 23 runs are considered) and high resolution NWP data. Future projections provided by RCM are of interest however their spatial resolution is unsatisfactory. We describe a method of spatial refinement of RCM data using NWP data to resolve small scale features. We apply the method of RCM bias correction (Sennikovs and Bethers, 2009) previously used for temperature and precipitation to wind data and use NWP data instead of observations. The refinement function is calculated using contemporary climate (1981- 2010) and later applied to RCM near future (2021 - 2050) projections to produce a dataset with the same resolution as NWP data. This method corrects for RCM biases that were shown to be present in the initial analysis and inter-model statistical analysis was carried out to estimate uncertainty. Using the datasets produced by this method the current and future projections of wind speed and wind energy density are calculated. Acknowledgments: This research is part of the GORWIND (The Gulf of Riga as a Resource for Wind Energy) project (EU34711). The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged.

  14. Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko. Observations and modelling

    NASA Astrophysics Data System (ADS)

    Behar, E.; Lindkvist, J.; Nilsson, H.; Holmström, M.; Stenberg-Wieser, G.; Ramstad, R.; Götz, C.

    2016-11-01

    Context. The first long-term in-situ observation of the plasma environment in the vicinity of a comet, as provided by the European Rosetta spacecraft. Aims: Here we offer characterisation of the solar wind flow near 67P/Churyumov-Gerasimenko (67P) and its long term evolution during low nucleus activity. We also aim to quantify and interpret the deflection and deceleration of the flow expected from ionization of neutral cometary particles within the undisturbed solar wind. Methods: We have analysed in situ ion and magnetic field data and combined this with hybrid modeling of the interaction between the solar wind and the comet atmosphere. Results: The solar wind deflection is increasing with decreasing heliocentric distances, and exhibits very little deceleration. This is seen both in observations and in modeled solar wind protons. According to our model, energy and momentum are transferred from the solar wind to the coma in a single region, centered on the nucleus, with a size in the order of 1000 km. This interaction affects, over larger scales, the downstream modeled solar wind flow. The energy gained by the cometary ions is a small fraction of the energy available in the solar wind. Conclusions: The deflection of the solar wind is the strongest and clearest signature of the mass-loading for a small, low-activity comet, whereas there is little deceleration of the solar wind.

  15. Commercial multicopter unmanned aircraft system as a tool for early stage forest survey after wind damage

    NASA Astrophysics Data System (ADS)

    Mokros, Martin; Vybostok, Jozef; Merganic, Jan; Tomastik, Julian; Cernava, Juraj

    2017-04-01

    In recent years unmanned aircraft systems (UAS) are objects of research in many areas. This trend can be seen also in forest research where researchers are focusing on height, diameter and tree crown measurements, monitoring of forest fire, forest gaps and health condition. Our research is focusing on the use of UAS for detecting areas disturbed by wind and deriving the volume of fallen trees for management purposes. This information is crucial after the wind damage happened. We used DJI Phantom 2 Vision+ and acquired the imagery of one forest stand (5.7 ha). The UAS is a quadcopter "all in one" solution. It has a built-in camera with gimbal and a remote controller. The camera is controlled through the application (android/ios). The built-in camera has an image resolution of 4384×3288 (14 megapixels). We have placed five crosses within the plot to be able to georeference the point cloud from UAS. Their positions were measured by Topcon Hiper GGD survey-grade GNSS receiver. We measured the border of damaged area by four different GNSS devices - GeoExplorer 6000, Trimble Nomad, Garmin GPSMAP 60 CSx and by smartphone Sony Xperia X. To process images from UAS we used Agisoft Photoscan Professional, while ArcGIS 10.2 was used to calculate and compare the areas . From the UAS point cloud we calculated DTM and DSM and deducted them. The areas where the difference was close to zero (-0.2 to 0.2) were signed as potentially wind damage areas. Then we filtered the areas that were not signed correctly (for example routes). The calculated area from UAS was 2.66 ha, GeoExplorer 6000 was 2.20 ha, Nomad was 2.06 ha, Garmin was 2.21 ha and from Xperia was the area 2.24 ha. The differences between UAS and GPS devices vary from 0.42 ha to 0.6 ha. The differences were mostly caused by inability to detect small spots of fallen trees on UAS data. These small spots are difficult to measure by GPS devices because the signal is very poor under tree crowns and also it is difficult to find such small spots within the area. Based on the derived area and per hectare volume of the most common tree specie from forest plan (Fagus sylvatica 83%) we calculated the volume of damaged trees and compared the result with data from forest district. The forest district harvested all damaged trees and measured their volume. The volume derived from UAS and forest plan data was 918 m3 and volume measured by forest district was 775 m3. The difference was 143 m3 (18%). The next step of our research is to verify the use of fixed wing UAS for larger areas.

  16. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Bothmore » turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.« less

  17. Edge technique lidar for high accuracy, high spatial resolution wind measurement in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Gentry, Bruce M.

    1995-01-01

    The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.

  18. Analyzing the dynamic response of rotating blades in small-scale wind turbines

    NASA Astrophysics Data System (ADS)

    Hsiung, Wan-Ying; Huang, Yu-Ting; Loh, Chin-Hsiung; Loh, Kenneth J.; Kamisky, Robert J.; Nip, Danny; van Dam, Cornelis

    2014-03-01

    The objective of this study was to validate modal analysis, system identification and damage detection of small-scale rotating wind turbine blades in the laboratory and in the field. Here, wind turbine blades were instrumented with accelerometers and strain gages, and data acquisition was achieved using a prototype wireless sensing system. In the first portion of this study conducted in the laboratory, sensors were installed onto metallic structural elements that were fabricated to be representative of an actual wind blade. In order to control the excitation (rotation of the wind blade), a motor was used to spin the blades at controlled angular velocities. The wind turbine was installed on a shaking table for testing under rotation of turbine blades. Data measured by the sensors were recorded while the blade was operated at different speeds. On the other hand, the second part of this study utilized a small-scale wind turbine system mounted on the rooftop of a building. The main difference, as compared to the lab tests, was that the field tests relied on actual wind excitations (as opposed to a controlled motor). The raw data from both tests were analyzed using signal processing and system identification techniques for deriving the model response of the blades. The multivariate singular spectrum analysis (MSSA) and covariance-driven stochastic subspace identification method (SSI-COV) were used to identify the dynamic characteristics of the system. Damage of one turbine blade (loose bolts connection) in the lab test was also conducted. The extracted modal properties for both undamaged and damage cases under different ambient or forced excitations (earthquake loading) were compared. These tests confirmed that dynamic characterization of rotating wind turbines was feasible, and the results will guide future monitoring studies planned for larger-scale systems.

  19. Distributed Wind Competitiveness Improvement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. Thismore » fact sheet describes the CIP and funding awarded as part of the project.ufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.« less

  20. First Views of North Polar Clouds and Circulation on Uranus

    NASA Astrophysics Data System (ADS)

    Sromovsky, Lawrence A.; Fry, P. M.; Hammel, H. B.; de Pater, I.; Rages, K. A.

    2012-10-01

    Post-equinox high S/N imaging of Uranus, by HST in 2009-10 and by Keck and Gemini telescopes in 2011, provide the first detailed views of its high northern latitudes. These images reveal numerous small cloud features from which we were able to extend the zonal wind profile of Uranus into its north polar region and accurately characterize its 60° N 250-m/s prograde jet. We also found a large N-S asymmetry in the morphology of polar cloud features (Sromovsky et al. 2012, Icarus 220, 694-712). The variation of wind speed with latitude in the north polar region is consistent with solid body rotation at a rate of 4.3°/h relative to the interior. When new measurements are combined with measurements from 1997 onward, there remains a small but significant asymmetry at middle latitudes, peaking near 35°, where southern hemisphere winds are 20 m/s more westward than corresponding northern hemisphere winds. The discovery of polar discrete cloud features is significant because of their possible connection to large scale meridional mass flows. Analysis of 2002 HST STIS spectra shows that the southern high latitudes are depleted of methane in the upper troposphere (Karkoschka & Tomasko 2009 Icarus 202 287-309; Sromovsky et al. 2011, Icarus 215, 292-312), suggesting an upper tropospheric downwelling in the south polar region that would tend to depress convective cloud formation there. Indeed, no comparable features have ever been seen in high southern latitudes. On the other hand, the existence of numerous small, possibly convective, features at high northern latitudes suggests that the predominant meridional flow there is not downwelling and that CH4 may not yet be depleted there. New HST STIS observations are expected to resolve this issue. This research was supported by grants from NASA Planetary Atmospheres and Astronomy programs, and from the Space Telescope Science Institute.

  1. Indonesian Rainfall Characteristic Based on the EAR and WPR Data Analysis

    NASA Astrophysics Data System (ADS)

    Hermawan, Eddy

    2010-05-01

    As one of the most real product of the joint research between RISH (Research Institute for Sustainable Humanosphere) of Kyoto University, Japan with the National Institute of Aeronautics and Space (LAPAN), is being applied the Equatorial Atmosphere Radar (EAR) at Kototabang, Bukittinggi, West Sumatera that has already operated since June, 2001. The other one, since March 2007, has also operated the other radar that called as WPR (Wind Profiling Radar) at Pontianak and Biak station under the JAMSTEC (Japan Marine Science Technology), Japan. Those radars give a good chance for the Indonesian young scientist to apply those data in applicable research for many people. One of them is the behavior of Indonesian rainfall variability over Kototabang, Pontianak, and Biak, respectively. This is very important, since rainfall is one of the most important parameter that has direct effect to daily living, not only in wet season (suspected related to flooding) or dry season (suspected related to drought) than normal condition. We understood that until now, no many significant result obtained from those data, especially from WPR, not only since that data is still new one, but also related well to the limitation of the other suppport data, facility (hardware and software), also the man power (reseracher) working on that data analysis. Based on this condition, the main purpose of this study is to investigate the Indonesian rainfall behavior, especially over Kototabang, Pontianak, and Biak, respectively. The others are we would like to investigate the pattern of zonal wind variation along the Indian Ocean passing away to Indonesia region, to investigate the MJO (Madden Julian Oscillation) phenomenon, and to investigate the relationship or correlation between rainfall and zonal wind variation. The results show that in the wet season (DJF=December-January-February), Kototabang and surrounded area is dominated by the Westerly wind that mostly contains of water vapor. While, in the dry season (JJA=June-July-August), the Easterly wind dominates this area. This condition, is a little bit different with Pontianak that mostly is dominated by the Westerly wind, both in wet and dry season. While, in Biak, the Easterly wind dominates, both in wet and dry season. We found also the zonal wind propagation over those cities, Kototabang, Pontianak, and Biak are about 45 days, 45 days, and 55 days oscillation. Although, we found a small positive correlation between the zonal wind variation with rainfall intensity over those area (below than 0.5), but it is still significant statistically. Keywords : EAR, WPR, HARIMAU, and Rainfall

  2. Experimental Aerodynamic Characteristics of a Joined-wing Research Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Stonum, Ronald K.

    1989-01-01

    A wind-tunnel test was conducted at Ames Research Center to measure the aerodynamic characteristics of a joined-wing research aircraft (JWRA). This aircraft was designed to utilize the fuselage and engines of the existing NASA AD-1 aircraft. The JWRA was designed to have removable outer wing panels to represent three different configurations with the interwing joint at different fractions of the wing span. A one-sixth-scale wind-tunnel model of all three configurations of the JWRA was tested in the Ames 12-Foot Pressure Wind Tunnel to measure aerodynamic performance, stability, and control characteristics. The results of these tests are presented. Longitudinal and lateral-directional characteristics were measured over an angle of attack range of -7 to 14 deg and over an angle of sideslip range of -5 to +2.5 deg at a Mach number of 0.35 and a Reynolds number of 2.2x10(6)/ft. Various combinations of deflected control surfaces were tested to measure the effectiveness and impact on stability of several control surface arrangements. In addition, the effects on stall and post-stall aerodynamic characteristics from small leading-edge devices called vortilons were measured. The results of these tests indicate that the JWRA had very good aerodynamic performance and acceptable stability and control throughout its flight envelope. The vortilons produced a profound improvement in the stall and post-stall characteristics with no measurable effects on cruise performance.

  3. Small-scale Pressure-balanced Structures Driven by Oblique Slow Mode Waves Measured in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  4. The effects of wind disturbance on temperate rain forest structure and dynamics of southeast Alaska.

    Treesearch

    Gregory J. Nowacki; Marc G. Kramer

    1998-01-01

    Wind disturbance plays a fundamental role in shaping forest dynamics in southeast Alaska. Recent studies have increased our appreciation for the effects of wind at both large and small scales. Current thinking is that wind disturbance characteristics change over a continuum dependent on landscape features (e.g., exposure, landscape position, topography). Data modeling...

  5. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotiropoulos, Fotis; Marr, Jeffrey D.G.; Milliren, Christopher

    In January 2010, the University of Minnesota, along with academic and industry project partners, began work on a four year project to establish new facilities and research in strategic areas of wind energy necessary to move the nation towards a goal of 20% wind energy by 2030. The project was funded by the U.S. Department of Energy with funds made available through the American Recovery and Reinvestment Act of 2009. $7.9M of funds were provided by DOE and $3.1M was provided through matching funds. The project was organized into three Project Areas. Project Area 1 focused on design and developmentmore » of a utility scale wind energy research facility to support research and innovation. The project commissioned the Eolos Wind Research Field Station in November of 2011. The site, located 20 miles from St. Paul, MN operates a 2.5MW Clipper Liberty C-96 wind turbine, a 130-ft tall sensored meteorological tower and a robust sensor and data acquisition network. The site is operational and will continue to serve as a site for innovation in wind energy for the next 15 years. Project Areas 2 involved research on six distinct research projects critical to the 20% Wind Energy by 2030 goals. The research collaborations involved faculty from two universities, over nine industry partners and two national laboratories. Research outcomes include new knowledge, patents, journal articles, technology advancements, new computational models and establishment of new collaborative relationships between university and industry. Project Area 3 focused on developing educational opportunities in wind energy for engineering and science students. The primary outcome is establishment of a new graduate level course at the University of Minnesota called Wind Engineering Essentials. The seminar style course provides a comprehensive analysis of wind energy technology, economics, and operation. The course is highly successful and will continue to be offered at the University. The vision of U.S. DOE to establish unique, open-access research facilities and creation of university-industry research collaborations in wind energy were achieved through this project. The University of Minnesota, through the establishment of the Eolos Wind Energy Consortium and the Eolos Wind Research Field Station continue to develop new research collaborations with industry partners.« less

  7. Applications of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Platis, Andreas; Tupman, David-James; Bange, Jens

    2015-04-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40~m and a total weight of 5-8~kg, depending on the battery- and payload. The standard meteorological payload consists of two temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. The sensors were optimized for the resolution of small-scale turbulence down to length scales in the sub-meter range. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Only take-off and landing are carried out by a human RC pilot. Since 2012, the system is operational and has since then been deployed in more than ten measurement campaigns, with more than 100 measurement flights. The fields of research that were tackled in these campaigns include sensor validation, fundamental boundary-layer research and wind-energy research. In 2014, for the first time, two MASC have been operated at the same time within a distance of a few kilometres, in order to investigate the wind field over an escarpment in the Swabian Alb. Furthermore, MASC was first deployed off-shore in October 2014, starting from the German island Heligoland in the North Sea, for the purpose of characterization of the marine boundary layer for offshore wind parks. Detailed descriptions of the experimental setup and first preliminary results will be presented.

  8. Piezoelectric wind turbine

    NASA Astrophysics Data System (ADS)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  9. Roadmap to the multidisciplinary design analysis and optimisation of wind energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Moreno, S. Sanchez; Zaaijer, M. B.; Bottasso, C. L.

    Here, a research agenda is described to further encourage the application of Multidisciplinary Design Analysis and Optimisation (MDAO) methodologies to wind energy systems. As a group of researchers closely collaborating within the International Energy Agency (IEA) Wind Task 37 for Wind Energy Systems Engineering: Integrated Research, Design and Development, we have identified challenges that will be encountered by users building an MDAO framework. This roadmap comprises 17 research questions and activities recognised to belong to three research directions: model fidelity, system scope and workflow architecture. It is foreseen that sensible answers to all these questions will enable to more easilymore » apply MDAO in the wind energy domain. Beyond the agenda, this work also promotes the use of systems engineering to design, analyse and optimise wind turbines and wind farms, to complement existing compartmentalised research and design paradigms.« less

  10. Roadmap to the multidisciplinary design analysis and optimisation of wind energy systems

    DOE PAGES

    Perez-Moreno, S. Sanchez; Zaaijer, M. B.; Bottasso, C. L.; ...

    2016-10-03

    Here, a research agenda is described to further encourage the application of Multidisciplinary Design Analysis and Optimisation (MDAO) methodologies to wind energy systems. As a group of researchers closely collaborating within the International Energy Agency (IEA) Wind Task 37 for Wind Energy Systems Engineering: Integrated Research, Design and Development, we have identified challenges that will be encountered by users building an MDAO framework. This roadmap comprises 17 research questions and activities recognised to belong to three research directions: model fidelity, system scope and workflow architecture. It is foreseen that sensible answers to all these questions will enable to more easilymore » apply MDAO in the wind energy domain. Beyond the agenda, this work also promotes the use of systems engineering to design, analyse and optimise wind turbines and wind farms, to complement existing compartmentalised research and design paradigms.« less

  11. Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime from Lander and Orbiter Data

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Kraft, Michael D.; Kuzmin, Ruslan O.; Bridges, Nathan T.

    2000-01-01

    Surface features related to the wind are observed in the vicinity of the Mars Pathfinder (MPR landing site data from the lander and in data from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions. One is inferred to represent winds from the northeast, which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions. A second wind blowing from the ESE was responsible for modifying the crater rims and cutting some of the ventifacts. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, and the original surface formed by sedimentary processes from Tiu and Ares Vallis flooding events has been modified by repeated burial and exhumation.

  12. Safety and Function Test Report for the Viryd CS8 Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-10-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Several turbines were selected for testing at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of the Small Wind Turbine Independent Testing project. Safety and function testing is one of up to five tests that may be performed on the turbines. Other tests include duration, power performance, acoustic noise, and power quality. Viryd Technologies, Inc.more » of Austin, Texas, was the recipient of the DOE grant and provided the turbine for testing.« less

  13. Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Matthaeus, William H.; Goldstein, Melvyn L.; Roberts, D. Aaron

    1990-01-01

    Assuming that the slab and isotropic models of solar wind turbulence need modification (largely due to the observed anisotropy of the interplanetary fluctuations and the results of laboratory plasma experiments), this paper proposes a model of the solar wind. The solar wind is seen as a fluid which contains both classical transverse Alfvenic fluctuations and a population of quasi-transverse fluctuations. In quasi-two-dimensional turbulence, the pitch angle scattering by resonant wave-particle interactions is suppressed, and the direction of minimum variance of interplanetary fluctuations is parallel to the mean magnetic field. The assumed incompressibility is consistent with the fact that the density fluctuations are small and anticorrelated, and that the total pressure at small scales is nearly constant.

  14. A Study on the Wind Environment and Effects of Wind Fences around the Jang-Bogo Antarctica Station

    NASA Astrophysics Data System (ADS)

    Wang, J. W.; Kim, J.; Choi, W.; Kwon, H.

    2017-12-01

    This study investigated the influence of Jang-Bogo Antarctic Research Station on detailed flow and the effectiveness of wind fences on the surrounding observation environment using a computational fluid dynamics (CFD) model. The data obtained from the computer aided design (CAD) drawing were used to construct the terrain and buildings around Jang-Bogo Antarctic Research Station. To investigate the flow characteristics altered by Jang-Bogo Antarctic Research Station, we conducted the simulations for 16 different inflow directions and, for each inflow direction, we compared the flow characteristics before and after the construction of Jang-Bogo Antarctic Research Station. The observation data of automatic weather system (AWS) were used for comparison. The wind rose analysis shows that the wind speed and direction after the construction of the Jang-Bogo Antarctic Research Station are quite different from those before the construction. We also investigated effects of wind fences on the reduction of wind speeds around Jang-Bogo Antarctic Research Station, as one of the studies to reduce potential damages caused by katabatic wind. For this, we changed systematically the distance between the fences and the Jang-Bogo Antarctic Research Station (2H 8H with the increment of 2H, H is fence of height) and porosity of fences (0%, 25%, 33%, 50%, 67% and 75%). In the affiliated westerly cases, the AWS was located at the downwind side of the Jang-Bogo Antarctic Research Station and the effect of the construction were maximized (in the west-north-westerly case, the maximum decrease in wind speed was 81% compared to the wind speeds before the construction). In the case that the distance between the wind fence and the Jang-Bogo Antarctic Research Station was shortest, the wind speed reduction was maximized. With the same distance, the fence with medium porosities (25 33%) maximized the wind speed reduction.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huskey, A.; Bowen, A.; Jager, D.

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certificationmore » requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.« less

  16. Measuring tropospheric wind with microwave sounders

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  17. On the lower altitude limit of the Venusian ionopause

    NASA Astrophysics Data System (ADS)

    Mahajan, K. K.; Mayr, H. G.; Brace, L. H.; Cloutier, P. A.

    1989-07-01

    It has been observed from the plasma experiments on the Pioneer Venus Orbiter that the altitude of the upper boundary of the ionosphere decreases in response to increasing solar wind dynamic pressure. However, at pressures above about 2.5 x 10 to the -8th dynes/sq cm, the further decrease in the ionopause height is rather small. Following the model of Cloutier et al. (1969), it is suggested that during high solar wind conditions, when the ionopause is formed at lower altitudes, the solar wind induces vertical and horizontal flows which sweep away the ionospheric plasma that is produced locally by photoionization. As a result, a disturbed photodynamical ionosphere is formed which has the scale height of the ionizable neutral constituent. It is shown that such a photodynamical ionosphere is observed at the subsolar ionopause under these conditions. As a consequence of this interaction, the ionopause altitude is observed to follow the small-scale height of the ionizable species, atomic oxygen, showing only small changes with solar wind pressure.

  18. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    NASA Astrophysics Data System (ADS)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  19. Wind and ecosystem response at the GLEES

    Treesearch

    Robert C. Musselman; Gene L. Wooldridge; William J. Massman; Richard A. Sommerfeld

    1995-01-01

    Research was conducted to determine wind patterns and snow deposition at a high elevation alpine/subalpine ecotone site using deformation response of trees to prevailing winds. The research has provided detailed maps of wind speed, wind direction, and snow depth as determined from tree deformation. The effects of prevailing wind on tree blowdown at the site have also...

  20. The resilience of Australian wind energy to climate change

    NASA Astrophysics Data System (ADS)

    Evans, Jason P.; Kay, Merlinde; Prasad, Abhnil; Pitman, Andy

    2018-02-01

    The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negligibly in the future in regions with significant existing installed capacity. Technological developments in wind energy generation more than compensate for projected small reductions in wind, decreasing the LCOE by around 30%. These developments ensure viability for existing wind farms, and enhance the economic viability of proposed wind farms in Western Australian and Tasmania. Wind energy is therefore a resilient source of electricity over most of Australia and technological innovation entering the market will open new regions for energy production in the future.

  1. Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime and Climate from Lander and Orbiter Data

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Kraft, M. D.; Kuzmin, R. O.; Bridges, N. T.

    1999-01-01

    Surface features related to the wind are observed in data from the Mars Pathfinder lander and from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions, one inferred to represent winds from the northeast which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions, and a second wind pattern oriented approx. 90 degrees to the first. This latter wind could be from the W-NW or from the E-SE and was responsible for cutting the ventifacts and modifying the crater rims. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, in which the original surface formed by sedimentary processes from Tiu and Ares Vallis events has been modified by repeated burial and exhumation.

  2. The effect of wind on the dispersal of a tropical small river plume

    NASA Astrophysics Data System (ADS)

    Zhao, Junpeng; Gong, Wenping; Shen, Jian

    2018-03-01

    Wanquan River is a small river located in Hainan, a tropical island in China. As the third largest river in Hainan, the river plume plays an important role in the regional terrigenous mass transport, coastal circulation, and the coral reef's ecosystem. Studies have shown that wind forcings significantly influence river plume dynamics. In this study, wind effects on the dispersal of the river plume and freshwater transport were examined numerically using a calibrated, unstructured, finite volume numerical model (FVCOM). Both wind direction and magnitude were determined to influence plume dispersal. Northeasterly (downwelling-favorable) winds drove freshwater down-shelf while southeasterly (onshore) winds drove water up-shelf (in the sense of Kelvin wave propagation), and were confined near the coast. Southwesterly (upwelling-favorable) and north-westerly (offshore) winds transport more freshwater offshore. The transport flux is decomposed into an advection, a vertical shear, and an oscillatory component. The advection flux dominates the freshwater transport in the coastal area and the vertical shear flux is dominant in the offshore area. For the upwelling-favorable wind, the freshwater transport becomes more controlled by the advection transport with an increase in wind stress, due to enhanced vertical mixing. The relative importance of wind forcing and buoyancy force was investigated. It was found that, when the Wedderburn number is larger than one, the plume was dominated by wind forcing, although the importance of wind varies in different parts of the plume. The water column stratification decreased as a whole under the prevailing southwesterly wind, with the exception of the up-shelf and offshore areas.

  3. Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.; Flowers, L.; Kelly, M.

    2009-05-01

    As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program'smore » objectives, goals, approach, and results.« less

  4. Altitude Wind Tunnel Control Room

    NASA Image and Video Library

    1945-05-21

    Researchers at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory monitor a ramjet's performance in the Altitude Wind Tunnel from the control room. The soundproof control room was just a few feet from the tunnel’s 20-foot-diameter test section. In the control room, the operators could control all aspects of the tunnel’s operation, including the air density, temperature, and speed. They also operated the engine or test article in the test section by controlling the angle-of-attack, speed, power, and other parameters. The men in this photograph are monitoring the engine’s thrust and lift. A NACA-designed 20-inch-diameter ramjet was installed in the tunnel in May 1945. Thrust figures from these runs were compared with drag data from tests of scale models in small supersonic tunnels to verify the ramjet’s feasibility. The tunnel was used to analyze the ramjet’s overall performance up to altitudes of 47,000 feet and speeds to Mach 1.84. The researchers found that an increase in altitude caused a reduction in the engine’s horsepower and identified optimal flameholder configurations.

  5. Array Effects in Large Wind Farms. Cooperative Research and Development Final Report, CRADA Number CRD-09-343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Patrick

    2016-02-23

    The effects of wind turbine wakes within operating wind farms have a substantial impact on the overall energy production from the farm. The current generation of models drastically underpredicts the impact of these wakes leading to non-conservative estimates of energy capture and financial losses to wind farm operators and developers. To improve these models, detailed research of operating wind farms is necessary. Rebecca Barthelmie of Indiana University is a world leader of wind farm wakes effects and would like to partner with NREL to help improve wind farm modeling by gathering additional wind farm data, develop better models and increasemore » collaboration with European researchers working in the same area. This is currently an active area of research at NREL and the capabilities of both parties should mesh nicely.« less

  6. Directional Characteristics of Inner Shelf Internal Tides

    DTIC Science & Technology

    2007-06-01

    Figure 18. YD 202-206 Current vector plot of significant events. Significant events include internal tidal bores, solibores, and solitons . The upper...Events (Bores, Solibores, and Solitons ): Upper column leading-edge cross-shore current velocity and cross-shore wind regression. The small ellipse...Significant Events (Bores, Solibores, and Solitons ): Upper column leading-edge along-shore current velocity and along-shore wind regression. The small

  7. Effect of natural inbreeding on variance structure in tests of wind pollination Douglas-fir progenies.

    Treesearch

    Frank C. Sorensen; T.L. White

    1988-01-01

    Studies of the mating habits of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) have shown that wind-pollination families contain a small proportion of very slow-growing natural inbreds.The effect of these very small trees on means, variances, and variance ratios was evaluated for height and diameter in a 16-year-old plantation by...

  8. Frequency of dry east winds over northwest Oregon and southwest Washington.

    Treesearch

    Owen P. Cramer

    1957-01-01

    There is a close relation between occurrences of severe easterly winds and large forest fires in northwest Oregon and southwest Washington. With the east winds comes the dreaded combination of low humidity and high wind that in the past has whipped small fires into conflagrations such as the Tillamook fire of 1933 and the fire that burned Bandon in 1936. These easterly...

  9. Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.

    2017-12-01

    To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.

  10. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  11. THE WIND ENERGY RESEARCH PROGRAM (WERP): DESIGN AND CONSTRUCTION OF A WIND TURBINE TO FACILITATE EDUCATION AND RESEARCH IN SUSTAINABLE TECHNOLOGIES

    EPA Science Inventory

    The United States currently generates a majority of its electrical power from finite natural resources: an unsustainable practice. The Wind Energy Research Program (WERP) seeks to expand knowledge and awareness of wind power while further decreasing the cost of implem...

  12. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  13. Genome-wide overlap in the binding location and function of chromatin-remodeling proteins | Center for Cancer Research

    Cancer.gov

    A single strand of DNA can stretch several meters. Yet dozens of these strands, which can be one-tenth as thin as a human hair, need to fit into the cell’s nucleus. To pack those strands into such a small space, DNA tightly winds itself around histone proteins, forming nucleosomes that are strung together into complexes called chromatin. Beyond efficiently packaging DNA,

  14. Numerical simulations of island effects on airflow and weather during the summer over the island of Oahu

    Treesearch

    Hiep Van Nguyen; Yie-Leng Chen; Francis Fujioka

    2010-01-01

    The high-resolution (1.5 km) nonhydrostatic fifth-generation Pennsylvania StateUniversity–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and an advanced land surface model (LSM) are used to study the island-induced airflow and weather for the island of Oahu, Hawaii, under summer trade wind conditions. Despite Oahu’s relatively small...

  15. Joint Offshore Wind Field Monitoring with Spaceborne SAR and Platform-Based Doppler LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Jacobsen, S.; Lehner, S.; Hieronimus, J.; Schneemann, J.; Kuhn, M.

    2015-04-01

    The increasing demand for renewable energy resources has promoted the construction of offshore wind farms e.g. in the North Sea. While the wind farm layout consists of an array of large turbines, the interrelation of wind turbine wakes with the remaining array is of substantial interest. The downstream spatial evolution of turbulent wind turbine wakes is very complex and depends on manifold parameters such as wind speed, wind direction and ambient atmospheric stability conditions. To complement and validate existing numerical models, corresponding observations are needed. While in-situ measurements with e.g. anemometers provide a time-series at the given location, the merits of ground-based and space- or airborne remote sensing techniques are indisputable in terms of spatial coverage. Active microwave devices, such as Scatterometer and Synthetic Aperture Radar (SAR), have proven their capabilities of providing sea surface wind measurements and particularly SAR images reveal wind variations at a high spatial resolution while retaining the large coverage area. Platform-based Doppler LiDAR can resolve wind fields with a high spatial coverage and repetition rates of seconds to minutes. In order to study the capabilities of both methods for the investigation of small scale wind field structures, we present a direct comparison of observations obtained by high resolution TerraSAR-X (TS-X) X-band SAR data and platform-based LiDAR devices at the North Sea wind farm alpha ventus. We furthermore compare the results with meteorological data from the COSMO-DE model run by the German Weather Service DWD. Our study indicates that the overall agreement between SAR and LiDAR wind fields is good and that under appropriate conditions small scale wind field variations compare significantly well.

  16. Soil tillage and windbreak effects on millet and cowpea: I. Wind speed, evaporation, and wind erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzhaf, J.; Leihner, D.E.; Buerkert, A.

    Deforestation, overgrazing, and declining soil regeneration periods have resulted in increased wind erosion problems in dry areas of the West African Sahel, but little is known about the bio-physical factors involved. This research was conducted to determine the effects of ridging and four different windbreak spacings on wind erosion, potential evaporation, and soil water reserves. A field trial was conducted from 1985 to 1987 on 12 ha of a Psammentic Paleustalf in Southern Niger. Millet, Pennisetum glaucum (L.), and cowpea, Vigna unguiculata (L.) Walp., were seeded in strips on flat and ridged soil. Windbreaks of savannah vegetation were spaced atmore » 6, 20, 40, and 90 m. The effects of ridging on wind speed, evaporation, and wind erosion were small and mostly non-significant. However, average wind speed at 0.3 m above ground in the center of cowpea and millet strips was significantly reduced from 2.8 to 2.1 m s[sup [minus]1] as windbreak distances narrowed from 90 to 6 m. As a consequence, potential evaporation declined by 15% and the amount of windblown soil particles by 50% in ridged and by 70% in flat treatments. Despite reduced potential evaporation, average subsoil water reserves were 14 mm smaller in the 6- than in the 20-m windbreak spacing indicating excessive water extraction by the windbreak vegetation. Thus, establishing windbreaks with natural savannah vegetation may require a careful consideration of the agronomic benefits and costs to competing crops. 21 refs., 5 figs.« less

  17. Stator for a rotating electrical machine having multiple control windings

    DOEpatents

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  18. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  19. Modifications to the 4x7 meter tunnel for acoustic research: Engineering feasibility study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The NASA-Langley Research Center 4 x 7 Meter Low Speed Wind Tunnel is currently being used for low speed aerodynamics, V/STOL aerodynamics and, to a limited extent, rotorcraft noise research. The deficiencies of this wind tunnel for both aerodynamics and aeroacoustics research have been recognized for some time. Modifications to the wind tunnel are being made to improve the test section flow quality and to update the model cart systems. A further modification of the 4 x 7 Meter Wind Tunnel to permit rotorcraft model acoustics research has been proposed. As a precursor to the design of the proposed modifications, NASA is conducted both in-house and contracted studies to define the acoustic environment within the wind tunnel and to provide recommendations or the reduction of the wind tunnel background noise to a level acceptable to acoustics researchers. One of these studies by an acoustics consultant, has produced the primary reference documents that define the wind tunnel noise sources and outline recommended solutions.

  20. To v∞ and beyond! The He I absorption variability across the 2014.6 periastron passage of η Carinae

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Madura, Thomas I.; St-Jean, Lucas; Moffat, Anthony F. J.; Gull, Theodore R.; Russell, Christopher M. P.; Damineli, Augusto; Teodoro, Mairan; Corcoran, Michael F.; Walter, Frederick M.; Clementel, Nicola; Groh, José H.; Hamaguchi, Kenji; Hillier, D. John

    2016-09-01

    We have monitored the massive binary star η Carinae with the CTIO/Small and Moderate Aperture Research Telescope System 1.5 m telescope and CHIRON spectrograph from the previous apastron passage of the system through the recent 2014.6 periastron passage. Our monitoring has resulted in a large, homogeneous data set with an unprecedented time-sampling, spectral resolving power, and signal to noise. This allowed us to investigate temporal variability previously unexplored in the system and discover a kinematic structure in the P Cygni absorption troughs of neutral helium wind lines. The features observed occurred prior to the periastron passage and are seen as we look through the trailing arm of the wind-wind collision shock cone. We show that the bulk of the variability is repeatable across the last five periastron passages, and that the absorption occurs in the inner 230 au of the system. In addition, we found an additional, high-velocity absorption component superimposed on the P Cygni absorption troughs that has been previously unobserved in these lines, but which bears resemblance to the observations of the He I λ10830 Å feature across previous cycles. Through a comparison of the current smoothed particle hydrodynamical simulations, we show that the observed variations are likely caused by instabilities in the wind-wind collision region in our line of sight, coupled with stochastic variability related to clumping in the winds.

  1. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  2. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale processes on interfacial transport and relate it to gas transfer. References [1] T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, and E. S. Saltzman. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. , 13:11073-11087, 2013. [2] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013.

  3. Modeling the drift of objects floating in the sea

    NASA Astrophysics Data System (ADS)

    Nof, D.; Girihagama, L. N.

    2016-02-01

    The question how buoyant objects drift and where are they ultimately washed ashore must have troubled humans since the beginning of civilization. A good summary of the observational aspect of the problem is given in Ebbesmeyer (2015) and the references given therein. It includes the journey of shoes originally housed in containers that were accidently swept from the deck of cargo ships to the ocean as well as the famous world war two case of a corpse released by the British Counter Intelligence agency near the Spanish Coast. Of practical modern importance is the question how did the flaperon, belonging to the Malaysian Airplane lost last year (supposedly over the Indian Ocean near Western Australia), travelled almost across the entire Indian Ocean in just 15 months (corresponding to the very high speed of six centimeters per-second, about three times the speed of most ocean currents away from boundaries). Traditionally, it has been thought that three processes affect the drift-ocean currents, surface waves and wind. Of these, the last two are usually regarded as small. The waves effect (Stokes drift) is nonlinear and is probably indeed very small in most cases because the amplitudes are small. It is not so easy to estimate the wind effect and we will argue here that it is not necessarily small though it is obviously close to zero in some cases. The wind speed is typically two orders of magnitude faster than the water (meters per second compared to centimeters per second) and the stress is proportional to the square of the wind speed implying that the wind is important even if only a very small portion of the object protrudes above the sea-level. It is argued that wind, rather than ocean current dominated the drift of both the WWII corpse and the modern day flaperon.

  4. Ionospheric plasma cloud dynamics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measurements of the thermospheric neutral wind and ionospheric drift made at Eglin AFB, Florida and Kwajalein Atoll are discussed. The neutral wind measurements at Eglin had little variation over a period of four years for moderate magnetic activity (Kp 4); the ionospheric drifts are small. Evidence is presented that indicates that increased magnetic activity has a significant effect on the neutral wind magnitude and direction at this midlatitude station. The neutral wind at dusk near the equator is generally small although in one case out of seven it was significantly larger. It is described how observations of large barium releases can be used to infer the degree of electrodynamic coupling of ion clouds to the background ionosphere. Evidence is presented that indicates that large barium releases are coupled to the conjugate ionosphere at midlatitudes.

  5. Case Studies for the Statistical Design of Experiments Applied to Powered Rotor Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.; Tanner, Philip E.; Martin, Preston B.; Commo, Sean A.

    2015-01-01

    The application of statistical Design of Experiments (DOE) to helicopter wind tunnel testing was explored during two powered rotor wind tunnel entries during the summers of 2012 and 2013. These tests were performed jointly by the U.S. Army Aviation Development Directorate Joint Research Program Office and NASA Rotary Wing Project Office, currently the Revolutionary Vertical Lift Project, at NASA Langley Research Center located in Hampton, Virginia. Both entries were conducted in the 14- by 22-Foot Subsonic Tunnel with a small portion of the overall tests devoted to developing case studies of the DOE approach as it applies to powered rotor testing. A 16-47 times reduction in the number of data points required was estimated by comparing the DOE approach to conventional testing methods. The average error for the DOE surface response model for the OH-58F test was 0.95 percent and 4.06 percent for drag and download, respectively. The DOE surface response model of the Active Flow Control test captured the drag within 4.1 percent of measured data. The operational differences between the two testing approaches are identified, but did not prevent the safe operation of the powered rotor model throughout the DOE test matrices.

  6. 2014 Distributed Wind Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted formore » nearly 80% of United States-based manufacturers' sales.« less

  7. Langley Wind Tunnel Data Quality Assurance-Check Standard Results

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Grubb, John P.; Krieger, William B.; Cler, Daniel L.

    2000-01-01

    A framework for statistical evaluation, control and improvement of wind funnel measurement processes is presented The methodology is adapted from elements of the Measurement Assurance Plans developed by the National Bureau of Standards (now the National Institute of Standards and Technology) for standards and calibration laboratories. The present methodology is based on the notions of statistical quality control (SQC) together with check standard testing and a small number of customer repeat-run sets. The results of check standard and customer repeat-run -sets are analyzed using the statistical control chart-methods of Walter A. Shewhart long familiar to the SQC community. Control chart results are presented for. various measurement processes in five facilities at Langley Research Center. The processes include test section calibration, force and moment measurements with a balance, and instrument calibration.

  8. A status report on NASA general aviation stall/spin flight testing

    NASA Technical Reports Server (NTRS)

    Patton, J. M., Jr.

    1980-01-01

    The NASA Langley Research Center has undertaken a comprehensive program involving spin tunnel, static and rotary balance wind tunnel, full-scale wind tunnel, free flight radio control model, flight simulation, and full-scale testing. Work underway includes aerodynamic definition of various configurations at high angles of attack, testing of stall and spin prevention concepts, definition of spin and spin recovery characteristics, and development of test techniques and emergency spin recovery systems. This paper presents some interesting results to date for the first aircraft (low-wing, single-engine) in the program, in the areas of tail design, wing leading edge design, mass distribution, center of gravity location, and small airframe changes, with associated pilot observations. The design philosophy of the spin recovery parachute system is discussed in addition to test techniques.

  9. Final Technical Report: Hawaii Energy and Environmental Technologies Initiative 2009 (HEET)

    DTIC Science & Technology

    2016-05-25

    environment. A second objective under this subtask was to install, test and evaluate small wind turbine technologies to determine the relative... wind turbines adjacent to, and connected with the test platforms located at the Crissy Field Center in the Presidio of San Francisco, a proven wind ...resource for collection of comparative wind energy data. Vertical axis technology, turbines manufactured by Venco Power, Windspire Energy and

  10. Radiometric correction of scatterometric wind measurements

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Use of a spaceborne scatterometer to determine the ocean-surface wind vector requires accurate measurement of radar backscatter from ocean. Such measurements are hindered by the effect of attenuation in the precipitating regions over sea. The attenuation can be estimated reasonably well with the knowledge of brightness temperatures observed by a microwave radiometer. The NASA SeaWinds scatterometer is to be flown on the Japanese ADEOS2. The AMSR multi-frequency radiometer on ADEOS2 will be used to correct errors due to attenuation in the SeaWinds scatterometer measurements. Here we investigate the errors in the attenuation corrections. Errors would be quite small if the radiometer and scatterometer footprints were identical and filled with uniform rain. However, the footprints are not identical, and because of their size one cannot expect uniform rain across each cell. Simulations were performed with the SeaWinds scatterometer (13.4 GHz) and AMSR (18.7 GHz) footprints with gradients of attenuation. The study shows that the resulting wind speed errors after correction (using the radiometer) are small for most cases. However, variations in the degree of overlap between the radiometer and scatterometer footprints affect the accuracy of the wind speed measurements.

  11. Dynamical behavior and Jacobi stability analysis of wound strings

    NASA Astrophysics Data System (ADS)

    Lake, Matthew J.; Harko, Tiberiu

    2016-06-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.

  12. The Mesoscale Predictability of Terrain Induced Flows

    DTIC Science & Technology

    2009-09-30

    simulations, we focus on assessing the predictability of winds, mountain waves and clear air turbulence ( CAT ) in the lee of the Sierra Nevada...complete description of the sensitivity of mountain waves, CAT and downslope to small variations in the initial conditions. WORK COMPLETED We...completed the analysis of the sensitivity of mountain waves, CAT and downslope winds to small perturbations in the upstream conditions. We also

  13. Navy Applications Experience with Small Wind Power Systems

    DTIC Science & Technology

    1985-05-01

    present state-of-the-art in small WECS technology, including environmental concerns, is reviewed. Also presented is how the technology is advancing to...environmental concerns, is reviewed. Also presented is how the technology is advancing to improve reliability and avail- ability for effectively using...VAWT technology is still in its early stages of development. The horizontal-axis wind turbine (HAWT) technology has advanced to third and fourth

  14. Modeling Languages Refine Vehicle Design

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Cincinnati, Ohio s TechnoSoft Inc. is a leading provider of object-oriented modeling and simulation technology used for commercial and defense applications. With funding from Small Business Innovation Research (SBIR) contracts issued by Langley Research Center, the company continued development on its adaptive modeling language, or AML, originally created for the U.S. Air Force. TechnoSoft then created what is now known as its Integrated Design and Engineering Analysis Environment, or IDEA, which can be used to design a variety of vehicles and machinery. IDEA's customers include clients in green industries, such as designers for power plant exhaust filtration systems and wind turbines.

  15. Composite Sandwich Technologies Lighten Components

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Leveraging its private resources with several Small Business Innovation Research (SBIR) contracts with both NASA and the U.S. Department of Defense, WebCore Technologies LLC, of Miamisburg, Ohio, developed a fiber-reinforced foam sandwich panel it calls TYCOR that can be used for a wide variety of industrial and consumer applications. Testing at Glenn Research Center?s Ballistic Impact Facility demonstrated that the technology was able to exhibit excellent damage localization and stiffness during impact. The patented and trademarked material has found use in many demanding applications, including marine, ground transportation, mobile shelters, bridges, and most notably, wind turbines.

  16. Business grants

    NASA Astrophysics Data System (ADS)

    Twelve small businesses who are developing equipment and computer programs for geophysics have won Small Business Innovative Research (SBIR) grants from the National Science Foundation for their 1989 proposals. The SBIR program was set up to encourage the private sector to undertake costly, advanced experimental work that has potential for great benefit.The geophysical research projects are a long-path intracavity laser spectrometer for measuring atmospheric trace gases, optimizing a local weather forecast model, a new platform for high-altitude atmospheric science, an advanced density logging tool, a deep-Earth sampling system, superconducting seismometers, a phased-array Doppler current profiler, monitoring mesoscale surface features of the ocean through automated analysis, krypton-81 dating in polar ice samples, discrete stochastic modeling of thunderstorm winds, a layered soil-synthetic liner base system to isolate buildings from earthquakes, and a low-cost continuous on-line organic-content monitor for water-quality determination.

  17. Thirty years of North American wind energy acceptance research: What have we learned?

    DOE PAGES

    Rand, Joseph; Hoen, Ben

    2017-05-25

    Thirty years of North American research on public acceptance of wind energy has produced important insights, yet knowledge gaps remain. This review synthesizes the literature, revealing the following lessons learned. (1) North American support for wind has been consistently high. (2) The NIMBY explanation for resistance to wind development is invalid. (3) Socioeconomic impacts of wind development are strongly tied to acceptance. (4) Sound and visual impacts of wind facilities are strongly tied to annoyance and opposition, and ignoring these concerns can exacerbate conflict. (5) Environmental concerns matter, though less than other factors, and these concerns can both help andmore » hinder wind development. (6) Issues of fairness, participation, and trust during the development process influence acceptance. (7) Distance from turbines affects other explanatory variables, but alone its influence is unclear. (8) Viewing opposition as something to be overcome prevents meaningful understandings and implementation of best practices. (9) Implementation of research findings into practice has been limited. The paper also identifies areas for future research on wind acceptance. With continued research efforts and a commitment toward implementing research findings into developer and policymaker practice, conflict and perceived injustices around proposed and existing wind energy facilities might be significantly lessened.« less

  18. Thirty years of North American wind energy acceptance research: What have we learned?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, Joseph; Hoen, Ben

    Thirty years of North American research on public acceptance of wind energy has produced important insights, yet knowledge gaps remain. This review synthesizes the literature, revealing the following lessons learned. (1) North American support for wind has been consistently high. (2) The NIMBY explanation for resistance to wind development is invalid. (3) Socioeconomic impacts of wind development are strongly tied to acceptance. (4) Sound and visual impacts of wind facilities are strongly tied to annoyance and opposition, and ignoring these concerns can exacerbate conflict. (5) Environmental concerns matter, though less than other factors, and these concerns can both help andmore » hinder wind development. (6) Issues of fairness, participation, and trust during the development process influence acceptance. (7) Distance from turbines affects other explanatory variables, but alone its influence is unclear. (8) Viewing opposition as something to be overcome prevents meaningful understandings and implementation of best practices. (9) Implementation of research findings into practice has been limited. The paper also identifies areas for future research on wind acceptance. With continued research efforts and a commitment toward implementing research findings into developer and policymaker practice, conflict and perceived injustices around proposed and existing wind energy facilities might be significantly lessened.« less

  19. 78 FR 73239 - Small Generator Interconnection Agreements and Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... distributed resources.\\35\\ Public Interest Organizations go on to state that: \\29\\ See, e.g., American Wind... Society and Wind on the Wires are referred to collectively as Public Interest Organizations in this Final...\\ Similarly, installed wind generation with a capacity of 20 MW or less has increased in the contiguous United...

  20. 75 FR 81265 - Idaho Wind Partners 1, LLC; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-12-000] Idaho Wind... 15, 2010, Idaho Wind Partners 1, LLC (Petitioner), pursuant to Rule 207 of the Federal Energy...) Violate any of the Commission's anti-manipulation rules, and (2) result in the loss of small power...

  1. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  2. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  3. Design of a magnetic force exciter for a small-scale windmill using a piezo-composite generating element

    NASA Astrophysics Data System (ADS)

    Luong, Hung Truyen; Goo, Nam Seo

    2011-03-01

    We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.

  4. Assessment of Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast

    NASA Astrophysics Data System (ADS)

    Wang, Y. H.; Walter, R. K.; Ruttenberg, B.; White, C.

    2017-12-01

    Offshore renewable energy along the central California coastline has gained significant interest in recent years. We present a comprehensive analysis of near-surface wind datasets available in this region to facilitate future estimates of wind power generation potential. The analyses are based on local NDBC buoys, satellite-based measurements (QuickSCAT and CCMP V2.0), reanalysis products (NARR and MERRA), and a regional climate model (WRF). There are substantial differences in the diurnal signal during different months among the various products (i.e., satellite-based, reanalysis, and modeled) relative to the local buoys. Moreover, the datasets tended to underestimate wind speed under light wind conditions and overestimate under strong wind conditions. In addition to point-to-point comparisons against local buoys, the spatial variations of bias and error in both the reanalysis products and WRF model data in this region were compared against satellite-based measurements. NARR's bias and root-mean-square-error were generally small in the study domain and decreased with distance from coastlines. Although its smaller spatial resolution is likely to be insufficient to reveal local effects, the small bias and error in near-surface winds, as well as the availability of wind data at the proposed turbine hub heights, suggests that NARR is an ideal candidate for use in offshore wind energy production estimates along the central California coast. The framework utilized here could be applied in other site-specific regions where offshore renewable energy is being considered.

  5. Modelling and control of a microgrid including photovoltaic and wind generation

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  6. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other remote wind sensors must operate.

  7. Coastal protection by a small scale river plume against oil spills in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kuitenbrouwer, Daan; Reniers, Ad; MacMahan, Jamie; Roth, Mathias K.

    2018-07-01

    The Deepwater Horizon oil spill damaged some beaches along the Northern Gulf of Mexico (NGoMex) coast more than others, possibly related to the presence of natural protection mechanisms. In order to optimize future mitigation efforts to protect the coast, these mechanisms should be understood. The NGoMex coast is characterized by relatively long stretches of sandy beach interrupted by tidal inlets creating ebb-tidal river plumes featuring frontal zones that may act as transport barriers. This research investigates to what extent these plumes are capable of protecting the adjacent coast. This is done by means of a combination of a 3D Eulerian flow model and a Lagrangian particle model to track oil pathways and visualize Lagrangian Coherent Structures located at the plume front. The models are verified with measurements from a field experiment adjacent to Destin Inlet, Florida. The effects of wind, tidal range and river discharge on the oil fate are discussed. It was found that wind is the dominant parameter. Offshore wind prevents oil from beaching. During onshore winds, oil is pushed to shore, but near the inlet the plume is effective in reducing the amount of oil washing ashore during the ebbing tide. In general, the plume redistributes the oil but is not capable of preventing oil from beaching. For strong winds, the influence of the plume is reduced.

  8. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling.more » Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.« less

  9. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  10. The problem of the second wind turbine - a note on a common but flawed wind power estimation method

    NASA Astrophysics Data System (ADS)

    Gans, F.; Miller, L. M.; Kleidon, A.

    2010-06-01

    Several recent wind power estimates suggest how this renewable resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. Here we show that this common methodology is flawed because it does not account for energy removal by the turbines that is necessary to ensure the conservation of energy. We will first illustrate the common but flawed methodology using parameters from a recent global quantification of wind power in a simple experimental setup. For a small number of turbines at small scales, the conservation of energy hardly results in a difference when compared to the common method. However, when applied at large to global scales, the ability of radiative gradients to generate a finite amount of kinetic energy needs to be taken into account. Using the same experimental setup, we use the simplest method to ensure the conservation of energy to show a non-negligble decrease in wind velocity after the first turbine that will successively result in lower extraction of the downwind turbines. We then show how the conservation of energy inevitably results in substantially lower estimates of wind power at the global scale. Because conservation of energy is fundamental, we conclude that ultimately environmental constraints set the upper limit for wind power availability at the larger scale rather than detailed engineering specifications of the wind turbine design and placement.

  11. Wind energy: A renewable energy option

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. S.

    1977-01-01

    Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.

  12. An aerodynamic study on flexed blades for VAWT applications

    NASA Astrophysics Data System (ADS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  13. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, S.; Damiani, R.; vanDam, J.

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelasticmore » model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.« less

  14. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    USDA-ARS?s Scientific Manuscript database

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the USDA Agricultural Research Service and Natural Resources Conservation Service, and USDI Bureau of Land Management, to address the need for a broad and coordinated research program to develop wind ...

  15. Assessment of the Performance of a Scanning Wind Doppler Lidar at an Urban-Mountain Site in Seoul

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, S. W.

    2017-12-01

    Winds in the planetary boundary layer (PBL) are important factors for accurate modelling of air quality, numerical weather prediction and conversion of satellite measurements to near-surface air quality information (Seibert et al., AE, 2000; Emeis et al., Meteorol. Z., 2008). In this study, we (1) evaluate wind speed (WS) and direction (WD) retrieved from Wind Doppler Lidar (WDL) measurements by two methods [so called, `sine-fitting (SF) method' and `singular value decomposition (SVD) method'] and (2) analyze the WDL data at Seoul National University (SNU), Seoul, to investigate the diurnal evolution of winds and aerosol characteristics in PBL. Evaluation of the two methods used in retrieving wind from radial velocity was done through comparison with radiosonde soundings from the same site. Winds retrieved using the SVD method from mean radial velocity of 15 minutes showed good agreement with radiosonde profiles (i.e., bias of 0.03 m s-1 and root mean square of 1.70 m s-1 in WS). However, the WDL was found to have difficulty retrieving signals under clean conditions (i.e., too small signal to noise ratio) or under the presence of near-surface optically-thick aerosol/cloud layer (i.e., strong signal attenuation). Despite this shortcoming, the WDL was able to successfully capture the diurnal variation of PBL wind. Two major wind patterns were observed at SNU; first of all, when convective boundary layer was strongly developed, thermally induced winds with large variation of vertical WS in the afternoon and a diurnal variation in WD showing characteristics of mountain and valley winds were observed. Secondly, small variation in WS and WD throughout the day was a major characteristic of cases when wind was largely influenced by the synoptic weather pattern.

  16. A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani

    2017-03-01

    A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.

  17. The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Fletcher, G. R.; Gramling, F. E.; Pace, W. B.

    1980-01-01

    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented.

  18. 3D Electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.

    2013-12-01

    Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons typically have gyroradii larger than the magnetic anomaly scale size) and magnetic field strength. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project 2633430, swiff.eu). Cut along the dipole axis of the lunar anomaly, showing the electron density structure.

  19. The future of wind tunnel technology in Germany

    NASA Technical Reports Server (NTRS)

    Ewald, B.

    1978-01-01

    The practical value of a wind tunnel which is not dependent solely on size or achievable Reynolds number was examined. Measurement, interpretative and evaluative procedures developed in small facilities were also studied.

  20. Quantifying and Understanding Effects from Wildlife, Radar, and Public Engagement on Future Wind Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    This presentation provides an overview of findings from a report published in 2016 by researchers at the National Renewable Energy Laboratory, An Initial Evaluation of Siting Considerations on Current and Future Wind Deployment. The presentation covers the background for research, the Energy Department's Wind Vision, research methods, siting considerations, the wind project deployment process, and costs associated with siting considerations.

  1. Quiet airfoils for small and large wind turbines

    DOEpatents

    Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  2. A Flight Dynamics Model for a Small Glider in Ambient Winds

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.

    2003-01-01

    In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find the aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.

  3. A Flight Dynamics Model for a Small Glider in Ambient Winds

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.

    2003-01-01

    In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.

  4. On the properties of energy transfer in solar wind turbulence.

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina

    2017-04-01

    Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.

  5. Yellow-Poplar and Oak Seedling Density Responses to Wind-Generated Gaps

    Treesearch

    Erik C. Berg; David H. Van Lear

    2004-01-01

    The effects of wind on upland hardwood forest structure and composition have been studied mostly in the context of either small "gap-phase" openings or in retrospective studies of ancient disturbances. Larger (> 0.1 ha) wind-created openings are common across Southern Appalachian landscapes, and can be impor tant in shaping understory colonization, growth...

  6. Wind erosion potential influenced by tillage in an irrigated potato-sweet corn rotation in the Columbia Basin

    USDA-ARS?s Scientific Manuscript database

    Wind erosion is a concern within the Columbia Basin of the Inland Pacific Northwest (PNW) United States due to the sandy texture of soils and small amount of residue retained on the soil surface after harvest of vegetable crops like potato. This study assessed potential wind erosion of an irrigated ...

  7. Wind speed affects prey-catching behaviour in an orb web spider.

    PubMed

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  8. Wind speed affects prey-catching behaviour in an orb web spider

    NASA Astrophysics Data System (ADS)

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  9. Validation of odor concentration from mechanical-biological treatment piles using static chamber and wind tunnel with different wind speed values.

    PubMed

    Szyłak-Szydłowski, Mirosław

    2017-09-01

    The basic principle of odor sampling from surface sources is based primarily on the amount of air obtained from a specific area of the ground, which acts as a source of malodorous compounds. Wind tunnels and flux chambers are often the only available, direct method of evaluating the odor fluxes from small area sources. There are currently no widely accepted chamber-based methods; thus, there is still a need for standardization of these methods to ensure accuracy and comparability. Previous research has established that there is a significant difference between the odor concentration values obtained using the Lindvall chamber and those obtained by a dynamic flow chamber. Thus, the present study compares sampling methods using a streaming chamber modeled on the Lindvall cover (using different wind speeds), a static chamber, and a direct sampling method without any screens. The volumes of chambers in the current work were similar, ~0.08 m 3 . This study was conducted at the mechanical-biological treatment plant in Poland. Samples were taken from a pile covered by the membrane. Measured odor concentration values were between 2 and 150 ou E /m 3 . Results of the study demonstrated that both chambers can be used interchangeably in the following conditions: odor concentration is below 60 ou E /m 3 , wind speed inside the Lindvall chamber is below 0.2 m/sec, and a flow value is below 0.011 m 3 /sec. Increasing the wind speed above the aforementioned value results in significant differences in the results obtained between those methods. In all experiments, the results of the concentration of odor in the samples using the static chamber were consistently higher than those from the samples measured in the Lindvall chamber. Lastly, the results of experiments were employed to determine a model function of the relationship between wind speed and odor concentration values. Several researchers wrote that there are no widely accepted chamber-based methods. Also, there is still a need for standardization to ensure full comparability of these methods. The present study compared the existing methods to improve the standardization of area source sampling. The practical usefulness of the results was proving that both examined chambers can be used interchangeably. Statistically similar results were achieved while odor concentration was below 60 ou E /m 3 and wind speed inside the Lindvall chamber was below 0.2 m/sec. Increasing wind speed over these values results in differences between these methods. A model function of relationship between wind speed and odor concentration value was determined.

  10. Proceedings of National Avian-Wind Power Planning Meeting IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  11. Wind Power Now!

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  12. Large-Scale Wind Turbine Testing in the NASA 24.4m (80) by 36.6m(120) Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Imprexia, Cliff (Technical Monitor)

    2000-01-01

    The 80- by 120-Foot Wind Tunnel at NASA Ames Research Center in California provides a unique capability to test large-scale wind turbines under controlled conditions. This special capability is now available for domestic and foreign entities wishing to test large-scale wind turbines. The presentation will focus on facility capabilities to perform wind turbine tests and typical research objectives for this type of testing.

  13. Development of Scatterometer-Derived Surface Pressures

    NASA Astrophysics Data System (ADS)

    Hilburn, K. A.; Bourassa, M. A.; O'Brien, J. J.

    2001-12-01

    SeaWinds scatterometer-derived wind fields can be used to estimate surface pressure fields. The method to be used has been developed and tested with Seasat-A and NSCAT wind measurements. The method involves blending two dynamically consistent values of vorticity. Geostrophic relative vorticity is calculated from an initial guess surface pressure field (AVN analysis in this case). Relative vorticity is calculated from SeaWinds winds, adjusted to a geostrophic value, and then blended with the initial guess. An objective method applied minimizes the differences between the initial guess field and scatterometer field, subject to regularization. The long-term goal of this project is to derive research-quality pressure fields from the SeaWinds winds for the Southern Ocean from the Antarctic ice sheet to 30 deg S. The intermediate goal of this report involves generation of pressure fields over the northern hemisphere for testing purposes. Specifically, two issues need to be addressed. First, the most appropriate initial guess field will be determined: the pure AVN analysis or the previously assimilated pressure field. The independent comparison data to be used in answering this question will involve data near land, ship data, and ice data that were not included in the AVN analysis. Second, the smallest number of pressure observations required to anchor the assimilated field will be determined. This study will use Neumann (derivative) boundary conditions on the region of interest. Such boundary conditions only determine the solution to within a constant that must be determined by a number of anchoring points. The smallness of the number of anchoring points will demonstrate the viability of the general use of the scatterometer as a barometer over the oceans.

  14. @NWTC Newsletter | Wind | NREL

    Science.gov Websites

    Mutually Beneficial NREL Researchers Play Integral Role in National Offshore Wind Strategy NWTC's Grid . More NREL Researchers Play Integral Role in National Offshore Wind Strategy The national energy

  15. Small is different: RPC observations of a small scale comet interacting with the solar wind

    NASA Astrophysics Data System (ADS)

    Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team

    2016-10-01

    Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind - comet atmosphere interaction region is smaller than the pickup ion gyroradius in the undisturbed solar wind.

  16. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  17. Incorporation of Outcome-Based Contract Requirements in a Real Options Approach for Maintenance Planning

    DTIC Science & Technology

    2016-04-30

    focus on novel onshore/offshore and small/large scale wind turbine designs for expanding their operational range and increasing their efficiency at...of maintenance options created by the implementation of PHM in wind turbines . When an RUL is predicted for a subsystem, there are multiple choices...The section titled Example— Wind Turbine With an Outcome-Based Contract presents a case study for a PHM enabled wind turbine with and without an

  18. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the water column is analyzed in the range 0.0016 - 0.0032. For the three main wind directions considered in this work, for a wind speed of 80 km/h, the complex current structure of the Berre lagoon is analysed. In the nearshore zones, strong alongshore downwind currents are generated, reaching values of the order of 1m/s (up to 1.5 m/s) at the free surface, and 0.5 - 0.6 m/s at the bottom. References Alekseenko E., B. Roux, A. Sukhinov, R. Kotarba, D. Fougere. Coastal hydrodynamics in a windy lagoon; submitted to Computers and Fluids, oct. 2012 Csanady G. T.: Large-scale motion in the Great Lakes, Journal of Geophysical Research, 72(16), 4151-4161, 1967. Csanady G. T. : Baroclinic boundary currents and long edge-waves in basins with sloping shores. J. Physical Oceanography 1(2):92-104, 1971. Hunter, J.R. and Hearn, C.J.: Lateral and vertical variations in the wind-driven circulations in long, shallow lakes, Journal of Geophysical Research, 92 (C12), 1987. Hearn, C.J. and Hunter, J.R.: A note on the equivalence of some two- and three-dimensional models of wind-driven barotropic flow in shallow seas, Applied Mathematical Modelling, 14, 553-556, 1990. Mathieu P.P., Deleersnijder E., Cushman-Roisin B., Beckers J.M. and Bolding K.: The role of topography in small well-mixed bays, with application to the lagoon of Mururoa. Continental Shelf research, 22(9), 1379-1395, 2002. A. Pérez-Ruzafa, C. Marcos, I.M. Pérez-Ruzafa (2011). Mediterranean coastal lagoons in an ecosystem and aquatic resources management context//Physics and Chemistry of the Earth, Parts A/B/C, Volume 36, Issues 5-6, 2011, Pages 160-166 Young I.R., Wind generated ocean waves. Ocean Engineering Series Editors. Elsevier, 1999, ISBN: 0-08-043317-0.

  19. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less

  20. Land-Based Wind Research | Wind | NREL

    Science.gov Websites

    blades. Technology Research Validation and Certification NREL engineers provide wind industry blades stacked on their sides in a large parking lot ready for shipment. Manufacturing and Supply Chain safety vests and hardhats standing near a land-based wind turbine shaft with its blades on the ground in

  1. Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinsik; Jang, Gilsoo; Muljadi, Eduard

    For the fixed-gain inertial control of wind power plants (WPPs), a large gain setting provides a large contribution to supporting system frequency control, but it may cause over-deceleration for a wind turbine generator that has a small amount of kinetic energy (KE). Further, if the wind speed decreases during inertial control, even a small gain may cause over-deceleration. This paper proposes a stable inertial control scheme using adaptive gains for a doubly fed induction generator (DFIG)-based WPP. The scheme aims to improve the frequency nadir (FN) while ensuring stable operation of all DFIGs, particularly when the wind speed decreases duringmore » inertial control. In this scheme, adaptive gains are set to be proportional to the KE stored in DFIGs, which is spatially and temporally dependent. To improve the FN, upon detecting an event, large gains are set to be proportional to the KE of DFIGs; to ensure stable operation, the gains decrease with the declining KE. The simulation results demonstrate that the scheme improves the FN while ensuring stable operation of all DFIGs in various wind and system conditions. Further, it prevents over-deceleration even when the wind speed decreases during inertial control.« less

  2. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  3. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation

    PubMed Central

    Rodriguez Salazar, Leopoldo; Cobano, Jose A.; Ollero, Anibal

    2016-01-01

    This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz. Predictions show a convergence time with a 95% confidence interval of approximately 30 s. PMID:28025531

  4. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation.

    PubMed

    Rodriguez Salazar, Leopoldo; Cobano, Jose A; Ollero, Anibal

    2016-12-23

    This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz . Predictions show a convergence time with a 95% confidence interval of approximately 30 s .

  5. Neil Armstrong in the 9-by 15-Foot Low Speed Wind Tunnel

    NASA Image and Video Library

    1970-02-21

    Astronaut Neil Armstrong examines a Vertical and Short Takeoff and Landing test setup in the 9- by 15-Foot Low Speed Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Armstrong spent February 6, 1970 at Lewis attending technical meetings and touring some facilities. Just six months after Armstrong had returned from the moon looming agency budget cuts were already a concern in his comments. He noted that NASA had to “find a balanced approach…and [make] aggressive use of available facilities.” Armstrong spent four months at the center as a research pilot in 1955. Armstrong had served as a Navy pilot during the Korean War then earned a degree in aeronautical engineering at Purdue University. He was recruited by Lewis while at Purdue and began at the center shortly after graduation. During his brief tenure in Cleveland Armstrong served as both a test pilot and research engineer, primarily involved with icing research. In his role as research pilot Armstrong also flew a North American F-82 Twin Mustang over the ocean near Wallops Island to launch small instrumented rockets from high altitudes down into the atmosphere to obtain high Mach numbers. After four months in Cleveland a position opened up at what is today the Dryden Flight Research Center. Armstrong’s career in Cleveland officially ended on June 30, 1955.

  6. Aerodynamic performance of a small vertical axis wind turbine using an overset grid method

    NASA Astrophysics Data System (ADS)

    Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten

    2017-08-01

    The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.

  7. Characteristics of Pressure Sensitive Paint Intrusiveness Effects on Aerodynamic Data

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.; Liu, Tianshu; Oglesby, Donald M.

    2001-01-01

    One effect of using pressure sensitive paint (PSP) is the potential intrusiveness to the aerodynamic characteristics of the model. The paint thickness and roughness may affect the pressure distribution, and therefore, the forces and moments on the wind tunnel model. A study of these potential intrusive effects was carried out at NASA Langley Research Center where a series of wind tunnel tests were conducted using the Modem Design of Experiments (MDOE) test approach. The PSP effects on the integrated forces were measured on two different models at different test conditions in both the Low Turbulence Pressure Tunnel (LTPT) and the Unitary Plan Wind Tunnel (UPWT) at Langley. The paint effect was found to be very small over a range of Reynolds numbers, Mach numbers and angles of attack. This is due to the very low surface roughness of the painted surface. The surface roughness, after applying the NASA Langley developed PSP, was lower than that of the clean wing. However, the PSP coating had a localized effects on the pressure taps, which leads to an appreciable decrease in the pressure tap reading.

  8. Airflow reversal and alternating corkscrew vortices in foredune wake zones during perpendicular and oblique offshore winds

    NASA Astrophysics Data System (ADS)

    Jackson, Derek W. T.; Beyers, Meiring; Delgado-Fernandez, Irene; Baas, Andreas C. W.; Cooper, Andrew J.; Lynch, Kevin

    2013-04-01

    On all sandy coastlines fringed by dunes, understanding localised air flow allows us to examine the potential sand transfer between the beach and dunes by wind-blown (Aeolian) action. Traditional thinking into this phenomenon had previously included only onshore winds as effective drivers of this transfer. Recent research by the authors, however, has shown that offshore air-flow too can contribute significantly, through lee-side back eddies, to the overall windblown sediment budget to coastal dunes. Under rising sea levels and increased erosion scenarios, this is an important process in any post-storm recovery of sandy beaches. Until now though, full visualisation in 3D of this newly recognised mechanism in offshore flows has not been achieved. Here, we show for the first time, this return flow eddy system using 3D computational fluid dynamics modelling, and reveal the presence of complex corkscrew vortices and other phenomena. The work highlights the importance of relatively small surface undulations in the dune crest which act to induce the spatial patterns of airflow (and transport) found on the adjacent beach.

  9. Experimental evaluation of honeycomb/screen configurations and short contraction section for NASA Lewis Research Center's altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Burley, Richard R.; Harrington, Douglas E.

    1987-01-01

    An experimental investigation was conducted in the high speed leg of the 0.1 scale model of the proposed Altitude Wind Tunnel to evaluate flow conditioner configurations in the settling chamber and their effect on the flow through the short contraction section. The lowest longitudinal turbulence intensity measured at the contraction-section entrance, 1.2%, was achieved with a honeycomb plus three fine-mesh screens. Turbulence intensity in the test section was estimated to be between 0.1 and 0.2% with the honeycomb plus three fine mesh screens in the settling chamber. Adding screens, however, adversely affected the total pressure profile, causing a small defect near the centerline at the contraction section entrance. No significant boundary layer separation was evident in the short contraction section.

  10. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  11. Is titin a 'winding filament'? A new twist on muscle contraction.

    PubMed

    Nishikawa, Kiisa C; Monroy, Jenna A; Uyeno, Theodore E; Yeo, Sang Hoon; Pai, Dinesh K; Lindstedt, Stan L

    2012-03-07

    Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.

  12. Is titin a ‘winding filament’? A new twist on muscle contraction

    PubMed Central

    Nishikawa, Kiisa C.; Monroy, Jenna A.; Uyeno, Theodore E.; Yeo, Sang Hoon; Pai, Dinesh K.; Lindstedt, Stan L.

    2012-01-01

    Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca2+-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a ‘winding filament’ mechanism for titin's role in active muscle. First, we hypothesize that Ca2+-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction. PMID:21900329

  13. The dune effect on sand-transporting winds on Mars.

    PubMed

    Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G

    2015-11-05

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.

  14. The dune effect on sand-transporting winds on Mars

    PubMed Central

    Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.

    2015-01-01

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669

  15. Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

    NASA Astrophysics Data System (ADS)

    Suppioni, Vinicius; P. Grilo, Ahda

    2013-10-01

    In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

  16. Renewable energy technology from underpinning physics to engineering application

    NASA Astrophysics Data System (ADS)

    Infield, D. G.

    2008-03-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the ''UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry''. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation.

  17. 77 FR 6549 - Notice of Availability for Public Comment of Interconnection Facilities Studies Prepared for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ...,250 megawatts of electric power produced from wind turbines to be located in the vicinity of La... States to Mexico, except for the small amount of electrical energy needed for wind turbine lubrication... connect a wind energy project to be built in the vicinity of La Rumorosa, Baja California, Mexico, to San...

  18. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Treesearch

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  19. The Wind Energy in Power Production and Its Importance in Geography Teaching

    ERIC Educational Resources Information Center

    Munkacsy, Bela

    2005-01-01

    Wind energy is an increasingly important factor of the power system in Europe. But it is still just a small part of the significant changes of the new millennium, namely the spreading of micro power and decentralisation of the whole energy system which are very important elements of sustainability. This paper shows the importance of wind power…

  20. 3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny

    2018-01-01

    We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.

  1. Mechanistic Drifting Forecast Model for A Small Semi-Submersible Drifter Under Tide-Wind-Wave Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin

    2018-03-01

    Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.

  2. The extent of wind-mediated dispersal of small metazoans, focusing nematodes.

    PubMed

    Ptatscheck, Christoph; Gansfort, Birgit; Traunspurger, Walter

    2018-05-01

    Wind-mediated transport is an important mechanism in the dispersal of small metazoans. Yet, concrete dispersal rates have hardly been examined. Here we present the results of an one-year field experiment investigating the composition and dispersal rates of aeroplankton. To gain insights into the dynamics of dispersal at the species level, we focused on nematodes, worldwide the most common metazoan taxon. Among the six taxa collected in this study (nematodes, rotifers, collembolans, tardigrades, mites, and thrips), nematodes had the highest dispersal rates (up to >3000 individuals m -2 in 4 weeks, 27 species identified) and represented >44% of aeroplankton. Only living nematodes, and no propagules, were dispersed. All taxa had a higher dispersal potential in environments linked to the source habitat, evidenced by the much higher deposition of organisms in funnels placed on the ground than on the rooftop of a ten-story building. Nematodes under conditions of high humidity and wind speed had the highest dispersal rates, while increasing temperatures and dryness had a significantly positive impact on the wind drift of mites and thrips. The results indicated that wind dispersal over long distances is possible. The notable organismal input by wind dispersal may contribute to biodiversity and ecosystem functions.

  3. Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    2015-07-30

    A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.

  4. Status of Sundstrand research

    NASA Technical Reports Server (NTRS)

    Bateman, Don

    1991-01-01

    Wind shear detection status is presented in the form of view-graphs. The following subject areas are covered: second generation detection (Q-bias, gamma bias, temperature biases, maneuvering flight modulation, and altitude modulation); third generation wind shear detection (use wind shear computation to augment flight path and terrain alerts, modulation of alert thresholds based on wind/terrain data base, incorporate wind shear/terrain alert enhancements from predictive sensor data); and future research and development.

  5. Companies Selected for Small Wind Turbine Project

    Science.gov Websites

    ) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-maintenance wind have to perform effectively and reliably over a long period of time without maintenance. The companies

  6. 2012 Market Report on Wind Technologies in Distributed Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  7. Kinetic Interactions Between the Solar Wind and Lunar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Fatemi, S.; Turner, D. L.; Holmstrom, M.

    2016-12-01

    Despite their relatively weak strength, small scale, and incoherence, lunar magnetic anomalies can affect the incoming solar wind flow. The plasma interaction with lunar magnetic fields drives significant compressions of the solar wind plasma and magnetic field, deflections of the incoming flow, and a host of plasma waves ranging from the ULF to the electrostatic range. Recent work suggests that the large-scale features of the solar wind-magnetic anomaly interactions may be driven by ion-ion instabilities excited by reflected ions, raising the possibility that they are analogous to ion foreshock phenomena. Indeed, despite their small scale, many of the phenomena observed near lunar magnetic anomalies appear to have analogues in the foreshock regions of terrestrial planets. We discuss the charged particle distributions, fields, and waves observed near lunar magnetic anomalies, and place them in a context with the foreshocks of the Earth, Mars, and other solar system objects.

  8. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars lander and perhaps find its own niche in terrestrial applications due to its potential low cost an small size.

  9. Social Acceptance of Wind: A Brief Overview (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.

    This presentation discusses concepts and trends in social acceptance of wind energy, profiles recent research findings, and discussions mitigation strategies intended to resolve wind power social acceptance challenges as informed by published research and the experiences of individuals participating in the International Energy Agencies Working Group on Social Acceptance of Wind Energy

  10. Simulation and experiment of a fuzzy logic based MPPT controller for a small wind turbine system

    NASA Astrophysics Data System (ADS)

    Petrila, Diana; Muntean, Nicolae

    2012-09-01

    This paper describes the development of a fuzzy logic based maximum power point tracking (MPPT) strategy for a variable speed wind turbine system (VSWT). For this scope, a fuzzy logic controller (FLC) was described, simulated and tested on a real time "hardware in the loop" wind turbine emulator. Simulation and experimental results show that the controller is able to track the maximum power point for various wind conditions and validate the proposed control strategy.

  11. ARC-2005-ACD05-0022-017

    NASA Image and Video Library

    2005-02-04

    Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Silica Sand (Oklahoma 90) particles used in vortex generatory and Mars Wind Tunnel

  12. ARC-2005-ACD05-0022-019

    NASA Image and Video Library

    2005-02-04

    Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Carbondale Red Clay dust used in vortex generatory and Mars Wind Tunnel

  13. Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences

    NASA Technical Reports Server (NTRS)

    Craeye, C.; Sobieski, P. W.; Bliven, L. F.

    1997-01-01

    Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.

  14. winderosionnetwork.org – Portal to the National Wind Erosion Research Network

    USDA-ARS?s Scientific Manuscript database

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the USDA Agricultural Research Service and Natural Resources Conservation Service, and USDI Bureau of Land Management, to address the need for standardized measurements of wind erosion and its control...

  15. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  16. Control of large wind turbine generators connected to utility networks

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1983-01-01

    This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.

  17. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the coast of Borkum, Germany, and consists of twelve 5-Megawatt wind power turbines. The retrieved results are validated by comparing with QuikSCAT measurements, the results of the German Weather Service (DWD) atmospheric model and in-situ measurements of wind speed and wind direction, obtained from the research platform FiNO1, installed 400 m west of Alpha Ventus. 4. Conclusion In the presented case study we quantify the wake characteristics of wake length, wake width, maximum velocity de?cit, wake merging and wake meandering. We show that SAR has the capability to map the sea surface two-dimensionally in high spatial resolution which provides a unique opportunity to observe spatial characteristics of offshore wind turbine wakes. The SAR derived information can support offshore wind farming with respect to optimal siting and design and help to estimate their effects on the environment.

  18. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Graf, P.; Scott, G.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less

  19. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  20. Sensor Systems Collect Critical Aerodynamics Data

    NASA Technical Reports Server (NTRS)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  1. An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  2. An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  3. Research Needs for Wind Resource Characterization

    NASA Astrophysics Data System (ADS)

    Schreck, S. J.; Lundquist, J. K.; Shaw, W. J.

    2008-12-01

    Currently, wind energy provides about 1 percent of U.S. electricity generation. A recent analysis by DOE, NREL, and AWEA showed the feasibility of expanding U.S. wind energy capacity to 20 percent, comprising approximately 300 gigawatts. Though not a prediction of the future, this represents a plausible scenario for U.S. wind energy. To exploit these opportunities, a workshop on Research Needs for Wind Resource Characterization was held during January 2008. This event was organized on behalf of two DOE organizations; the Office of Biological and Environmental Research and the Office of Energy Efficiency and Renewable Energy. Over 120 atmospheric science and wind energy researchers attended the workshop from industry, academia, and federal laboratories in North America and Europe. Attendees identified problems that could impede achieving the 20 percent wind scenario and formulated research recommendations to attack these problems. Findings were structured into four focus areas: 1) Turbine Dynamics, 2) Micrositing and Array Effects, 3) Mesoscale Processes, and 4) Climate Effects. In the Turbine Dynamics area, detailed characterizations of inflows and turbine flow fields were deemed crucial to attaining accuracy levels in aerodynamics loads required for future designs. To address the complexities inherent in this area, an incremental approach involving hierarchical computational modeling and detailed measurements was recommended. Also recommended was work to model extreme and anomalous atmospheric inflow events and aerostructural responses of turbines to these events. The Micrositing and Array Effects area considered improved wake models important for large, multiple row wind plants. Planetary boundary layer research was deemed necessary to accurately determine inflow characteristics in the presence of atmospheric stability effects and complex surface characteristics. Finally, a need was identified to acquire and exploit large wind inflow data sets, covering heights to 200 meters and encompassing spatial and temporal resolution ranges unique to wind energy. The Mesoscale Processes area deemed improved understanding of mesoscale and local flows crucial to providing enhanced model outputs for wind energy production forecasts and wind plant siting. Modeling approaches need to be developed to resolve spatial scales in the 100 to 1000 meter range, a notable gap in current capabilities. Validation of these models will require new instruments and observational strategies, including augmented analyses of existing measurements. In the Climate Effects area, research was recommended to understand historical trends in wind resource variability. This was considered a prerequisite for improved predictions of future wind climate and resources, which would enable reliable wind resource estimation for future planning. Participants also considered it important to characterize interactions between wind plants and climates through modeling and observations that suitably emphasize atmospheric boundary layer dynamics. High-penetration wind energy deployment represents a crucial and attainable U.S. strategic objective. Achieving the 20 percent wind scenario will require an unprecedented ability for characterizing large wind turbines arrayed in gigawatt wind plants and extracting elevated energy levels from the atmosphere. DOE national laboratories, with industry and academia, represents a formidable capability for attaining these objectives.

  4. Wind Power Energy in Southern Brazil: evaluation using a mesoscale meteorological model

    NASA Astrophysics Data System (ADS)

    Krusche, Nisia; Stoevesandt, Bernhard; Chang, Chi-Yao; Peralta, Carlos

    2015-04-01

    In recent years, several wind farms were build in the coast of Rio Grande do Sul state. This region of Brazil was identified, in wind energy studies, as most favorable to the development of wind power energy, along with the Northeast part of the country. Site assessments of wind power, over long periods to estimate the power production and forecasts over short periods can be used for planning of power distribution and enhancements on Brazil's present capacity to use this resource. The computational power available today allows the simulation of the atmospheric flow in great detail. For instance, one of the authors participated in a research that demonstrated the interaction between the lake and maritime breeze in this region through the use of a atmospheric model. Therefore, we aim to evaluate simulations of wind conditions and its potential to generate energy in this region. The model applied is the Weather Research and Forecasting , which is the mesoscale weather forecast software. The calculation domain is centered in 32oS and 52oW, in the southern region of Rio Grande do Sul state. The initial conditions of the simulation are taken from the global weather forecast in the time period from October 1st to October 31st, 2006. The wind power potential was calculated for a generic turbine, with a blade length of 52 m, using the expression: P=1/2*d*A*Cp*v^3, where P is the wind power energy (in Watts), d is the density (equal to 1.23 kg/m^3), A is the area section, which is equal to 8500 m2 , and v is the intensity of the velocity. The evaluation was done for a turbine placed at 50 m and 150 m of height. A threshold was chosen for a turbine production of 1.5 MW to estimate the potential of the site. In contrast to northern Brazilian region, which has a rather constant wind condition, this region shows a great variation of power output due to the weather variability. During the period of the study, at least three frontal systems went over the region, and thre was a associated variation of wind intensity. The monthly average indicate several small regions with a higher value of energy. Average production higher than 1.5 MW, for the area inland, was of 72.9% for a turbine at 150 m height but only 13.1% for one at 50 m height. This initial study indicates the variability of the region in terms of wind power availability. It can be extended to the study of extreme situations, as the case of very strong winds that knocked down 8 wind turbines in this region on the 20 of December of 2014. Simulations with high degree of spacial details will be the next step in this investigation.

  5. Ship Air Wake Detection Using a Small Fixed Wing Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Phelps, David M.

    A ship's air wake is dynamically detected using an airborne inertial measurement unit (IMU) and global positioning system (GPS) attached to a fixed wing unmanned aerial system. A fixed wing unmanned aerial system (UAS) was flown through the air wake created by an underway 108 ft (32.9m) long research vessel in pre designated flight paths. The instrumented aircraft was used to validate computational fluid dynamic (CFD) simulations of naval ship air wakes. Computer models of the research ship and the fixed wing UAS were generated and gridded using NASA's TetrUSS software. Simulations were run using Kestrel, a Department of Defense CFD software to validate the physical experimental data collection method. Air wake simulations were run at various relative wind angles and speeds. The fixed wing UAS was subjected to extensive wind tunnel testing to generate a table of aerodynamic coefficients as a function of control surface deflections, angle of attack and sideslip. The wind tunnel experimental data was compared against similarly structured CFD experiments to validate the grid and model of fixed wing UAS. Finally, a CFD simulation of the fixed wing UAV flying through the generated wake was completed. Forces on the instrumented aircraft were calculated from the data collected by the IMU. Comparison of experimental and simulation data showed that the fixed wing UAS could detect interactions with the ship air wake.

  6. The Unusual Temporal and Spectral Evolution of SN2011ht. II. Peculiar Type IIn or Impostor?

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Davidson, Kris; Jones, Terry J.; Pogge, R. W.; Grammer, Skyler H.; Prieto, José L.; Pritchard, T. A.

    2012-11-01

    SN2011ht has been described both as a true supernova (SN) and as an impostor. In this paper, we conclude that it does not match some basic expectations for a core-collapse event. We discuss SN2011ht's spectral evolution from a hot dense wind to a cool dense wind, followed by the post-plateau appearance of a faster low density wind during a rapid decline in luminosity. We identify a slow dense wind expanding at only 500-600 km s-1, present throughout the eruption. A faster wind speed V ~ 900 km s-1 occurred in a second phase of the outburst. There is no direct or significant evidence for any flow speed above 1000 km s-1 the broad asymmetric wings of Balmer emission lines in the hot wind phase were due to Thomson scattering, not bulk motion. We estimate a mass-loss rate of order 0.05 M ⊙ yr-1 during the hot dense wind phase of the event. The same calculations present difficulties for a hypothetical unseen SN blast wave. There is no evidence that the kinetic energy greatly exceeded the luminous energy, roughly 3 × 1049 erg so the radiative plus kinetic energy was small compared to a typical SN. We suggest that SN2011ht may have been a giant eruption driven by super-Eddington radiation pressure, perhaps beginning a few months before the discovery. A strongly non-spherical SN might also account for the data at the cost of more free parameters. Based on observations with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia. Based also on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, on data from the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555, and on observations from the Gemini Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  7. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    NASA Astrophysics Data System (ADS)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind-system generator. Through the change of load impedance on the wind generator, the research facility has the ability to modify the rotational speed of the wind turbines, allowing the rotors to perform closer to their optimum tip-speed. Comparisons between field test data and performance predictions show that the aero-electro-mechanical analysis was able to predict differences in power production and rotational speed which result from changes in the system load impedance.

  8. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  9. Small Scale Air Driven Generator

    DTIC Science & Technology

    2016-12-01

    the wire is wound around the stator, the more windings the higher the voltage as seen in equation two from [10], de N dt Φ = , (2) where N is...was a Maxwell BMOD0500 P016 B02 16 volt 500 farad capacitor shown in Figure 8. Typical uses for this particular model are in wind turbines ... turbine , in this case a turbocharger, provided a constant source of shaft power which was used to spin a small permanent magnet motor. With the

  10. Understanding thermal circulations and near-surface turbulence processes in a small mountain valley

    NASA Astrophysics Data System (ADS)

    Pardyjak, E.; Dupuy, F.; Durand, P.; Gunawardena, N.; Thierry, H.; Roubin, P.

    2017-12-01

    The interaction of turbulence and thermal circulations in complex terrain can be significantly different from idealized flat terrain. In particular, near-surface horizontal spatial and temporal variability of winds and thermodynamic variables can be significant event over very small spatial scales. The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 conducted from January through March 2017 was designed to address these issues and to ultimately improve prediction of dispersion in complex terrain, particularly during stable atmospheric conditions. We have used a relatively large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations and fourteen Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in southeastern France. The Cadarache Valley is a relatively small valley (5 km x 1 km) with modest slopes and relatively small elevation differences between the valley floor and nearby hilltops ( 100 m). During winter, winds in the valley are light and stably stratified at night leading to thermal circulations as well as complex near-surface atmospheric layering. In this presentation we present results quantifying spatial variability of thermodynamic and turbulence variables as a function of different large -scale forcing conditions (e.g., quiescent conditions, strong westerly flow, and Mistral flow). In addition, we attempt to characterize highly-regular nocturnal horizontal wind meandering and associated turbulence statistics.

  11. 78 FR 77343 - Small Business Size Standards: Utilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... (such as solar, wind, biomass, geothermal) as well as other industries, where power generation is...: namely NAICS 221114 (Solar Electric Power Generation), NAICS 221115 (Wind Electric Power Generation... Electric Power 4 million 250 employees. Generation. megawatt hours. [[Page 77348

  12. Colliding Stellar Winds Structure and X-ray Emission

    NASA Astrophysics Data System (ADS)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  13. Validation of Simplified Load Equations Through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana, Scott; Van Dam, Jeroen J; Damiani, Rick R

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, the National Renewable Energy Laboratory (NREL) tested a small horizontal-axis wind turbine in the field at the National Wind Technology Center. The test turbine was a 2.1-kW downwind machine mounted on an 18-m multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the outputmore » of an aeroelastic model of the turbine. In particular, we compared fatigue loads as measured in the field, predicted by the aeroelastic model, and calculated using the simplified design equations. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads and a discussion about the simplified design equations is discussed.« less

  14. View of a dust storm taken from Atlantis during STS-106

    NASA Image and Video Library

    2000-09-11

    STS106-718-056 (11 September 2000) --- One of the STS-106 crew members on board the Space Shuttle Atlantis used a handheld 70mm camera to photograph this image of Afghanistan dust/front winds in the upper Amu Darya Valley. The strong winds along the northern border of Afghanistan lofted thick, light brown dust into the air (top half of the view). In this desert environment land surfaces are not protected by vegetation from the effect of blowing wind. The central Asian deserts experience the greatest number of dust storm days on the planet each year. The sharp dust front shows that the dust has not traveled far, but has been raised from the surfaces in the view. Dust is entrained in the atmosphere by horizontal winds but also by vertical movements. Here the vertical component is indicated by the fact that the higher points along the dust front are each topped by a small cumulus cloud, which appear as a line of small white puffballs. Cumulus clouds indicate upward motion and here the air which has entrained the dust is lifting the air above to the level of condensation at each point where a small cloud has formed.

  15. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for two- or three-dimensional contractions installed on small, low-speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a three-dimensional numerical panel method. The pressure or velocity distributions are then fed into two-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low-speed contractions it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs if justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a fifth-order polynomial was selected for installation on a newly designed mixing layer wind tunnel.

  16. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.

  17. 2017 Publications Demonstrate Advancements in Wind Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deploymentmore » activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.« less

  18. Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  19. Axisymmetric Calculations of a Low-Boom Inlet in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Hirt, Stefanie M.; Reger, Robert

    2011-01-01

    This paper describes axisymmetric CFD predictions made of a supersonic low-boom inlet with a facility diffuser, cold pipe, and mass flow plug within wind tunnel walls, and compares the CFD calculations with the experimental data. The inlet was designed for use on a small supersonic aircraft that would cruise at Mach 1.6, with a Mach number over the wing of 1.7. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center in the fall of 2010 to demonstrate the performance and stability of a practical flight design that included a novel bypass duct. The inlet design is discussed here briefly. Prior to the test, CFD calculations were made to predict the performance of the inlet and its associated wind tunnel hardware, and to estimate flow areas needed to throttle the inlet. The calculations were done with the Wind-US CFD code and are described in detail. After the test, comparisons were made between computed and measured shock patterns, total pressure recoveries, and centerline pressures. The results showed that the dual-stream inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a large stable operating range. Predicted core recovery agreed well with the experiment but predicted bypass recovery and maximum capture ratio were high. Calculations of offdesign performance of the inlet along a flight profile agreed well with measurements and previous calculations.

  20. A measurement of forward-flight effects on the noise from a JT15D-1 turbofan engine in the NASA-Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.

    1980-01-01

    A Pratt and Whitney JT15D-1 turbofan engine was tested in two facilities at Ames Research Center: the outdoor Static Test Facility and the 40- by 80-Foot Wind Tunnel. The primary purposes of the test were to determine the effects of forward velocity on the turbofan spectra in the forward quadrant for the cruise inlet and to compare these wind-tunnel spectra with outdoor spectra to determine the possibility of simulating forward-velocity effects from purely outdoor measurements. The wind-tunnel data show a reduction in the blade-passage frequency tones of the order of 10 dB with increasing forward velocity at subsonic fan-tip speeds. No forward-velocity variation was observed at supersonic tip speeds. Comparison of in-duct spectra for the cruise inlet at forward velocity, with spectra from outdoor tests with a distortion-control inlet shows excellent agreement for the in-duct data when allowance is made for different in-duct volumes. This is also reflected in good agreement for the far-field spectra at small forward angles. The comparisons of wind-tunnel and outdoor data also indicate that at least for the JT15D-1, it may be possible to approximate the shape of the far-field spectra at large directivity angles from an outdoor measurement with the cruise inlet, providing an effective inflow control device is used.

  1. Measuring Fast-Temporal Sediment Fluxes with an Analogue Acoustic Sensor: A Wind Tunnel Study

    PubMed Central

    Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field. PMID:24058512

  2. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study.

    PubMed

    Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field.

  3. Recent Advances in the Tempest UAS for In-Situ Measurements in Highly-Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Argrow, B. M.; Frew, E.; Houston, A. L.; Weiss, C.

    2014-12-01

    The spring 2010 deployment of the Tempest UAS during the VORTEX2 field campaign verified that a small UAS, supported by a customized mobile communications, command, and control (C3) architecture, could simultaneously satisfy Federal Aviation Administration (FAA) airspace requirements, and make in-situ thermodynamic measurements in supercell thunderstorms. A multi-hole airdata probe was recently integrated into the Tempest UAS airframe and verification flights were made in spring 2013 to collect in-situ wind measurements behind gust fronts produced by supercell thunderstorms in northeast Colorado. Using instantaneous aircraft attitude estimates from the autopilot, the in-situ measurements were converted to inertial wind estimates, and estimates of uncertainty in the wind measurements was examined. To date, the limited deployments of the Tempest UAS have primarily focused on addressing the engineering and regulatory requirements to conduct supercell research, and the Tempest UAS team of engineers and meteorologists is preparing for deployments with the focus on collecting targeted data for meteorological exploration and hypothesis testing. We describe the recent expansion of the operations area and altitude ceiling of the Tempest UAS, engineering issues for accurate inertial wind estimates, new concepts of operation that include the simultaneous deployment of multiple aircraft with mobile ground stations, and a brief description of our current effort to develop a capability for the Tempest UAS to perform autonomous path planning to maximize energy harvesting from the local wind field for increased endurance.

  4. Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Haskin, Henry H.

    2017-01-01

    The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.

  5. Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

    2012-01-01

    We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

  6. An inventory of aeronautical ground research facilities. Volume 1: Wind tunnels

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    A survey of wind tunnel research facilities in the United States is presented. The inventory includes all subsonic, transonic, and hypersonic wind tunnels operated by governmental and private organizations. Each wind tunnel is described with respect to size, mechanical operation, construction, testing capabilities, and operating costs. Facility performance data are presented in charts and tables.

  7. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... obtain public comments on construction and operation of the wind farm. The purpose of constructing and...

  8. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  9. Wind Turbine Bearing Diagnostics Based on Vibration Monitoring

    NASA Astrophysics Data System (ADS)

    Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.

    2018-05-01

    Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.

  10. Differences and Similarities between Summer and Winter Temperatures and Winds during MaCWAVE

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2008-01-01

    The Mountain and Convective Waves Ascending Vertically Experiment (MaCWAVE) was carried out in two sequences: one during the summer from the Andoya Rocket Range (69N) during July 2002 to examine convective initiation of gravity waves. The second was a winter sequence from ESRANGE (68N) during January 2003 to examine mountain-initiated waves. Inflatable falling spheres released from small meteorological rockets provided significant information about the variation of temperature and wind from 50 km and higher. The small rocket launch activity was restricted to 12-hour periods that inhibited observing a full diurnal cycle, nonetheless, the time-history of the measurements have provided information about tidal motion. During summer, temperature variation was smaller than observed during winter when peak differences reached 15-20 K at 80-85 km. variation in zonal winds varied up to more than 100 mps in summer and winter. Times of wind vs. altitude showed that the peak zonal component occurred approximately two hours ahead of the peak meridional wind. Measurement details and the observed variations are discussed.

  11. Investigation on installation of offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bai, Yong

    2010-06-01

    Wind power has made rapid progress and should gain significance as an energy resource, given growing interest in renewable energy and clean energy. Offshore wind energy resources have attracted significant attention, as, compared with land-based wind energy resources, offshore wind energy resources are more promising candidates for development. Sea winds are generally stronger and more reliable and with improvements in technology, the sea has become a hot spot for new designs and installation methods for wind turbines. In the present paper, based on experience building offshore wind farms, recommended foundation styles have been examined. Furthermore, wave effects have been investigated. The split installation and overall installation have been illustrated. Methods appropriate when installing a small number of turbines as well as those useful when installing large numbers of turbines were analyzed. This investigation of installation methods for wind turbines should provide practical technical guidance for their installation.

  12. Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder

    2014-05-01

    The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE) and the atmosphere's thermal stability are important to estimate power production and loads. Especially the TKE is in the focus of our research since the Master Length Scale of the closure schemes depends on it. A third step is the validation of the results using wind measurements around the North Sea. Because the considered heights are much larger than available data from met masts, we use LiDAR observations (light detection and ranging) and prospectively UAVs (unmanned aerial vehicle).

  13. Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  14. (abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.

    1996-01-01

    Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).

  15. Alongshore wind forcing of coastal sea level as a function of frequency

    USGS Publications Warehouse

    Ryan, H.F.; Noble, M.A.

    2006-01-01

    The amplitude of the frequency response function between coastal alongshore wind stress and adjusted sea level anomalies along the west coast of the United States increases linearly as a function of the logarithm (log10) of the period for time scales up to at least 60, and possibly 100, days. The amplitude of the frequency response function increases even more rapidly at longer periods out to at least 5 yr. At the shortest periods, the amplitude of the frequency response function is small because sea level is forced only by the local component of the wind field. The regional wind field, which controls the wind-forced response in sea level for periods between 20 and 100 days, not only has much broader spatial scales than the local wind, but also propagates along the coast in the same direction as continental shelf waves. Hence, it has a stronger coupling to and an increased frequency response for sea level. At periods of a year or more, observed coastal sea level fluctuations are not only forced by the regional winds, but also by joint correlations among the larger-scale climatic patterns associated with El Nin??o. Therefore, the amplitude of the frequency response function is large, despite the fact that the energy in the coastal wind field is relatively small. These data show that the coastal sea level response to wind stress forcing along the west coast of the United States changes in a consistent and predictable pattern over a very broad range of frequencies with time scales from a few days to several years.

  16. An Experimental Comparison Between Flexible and Rigid Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Uzodinma, Jaylon; Macphee, David

    2017-11-01

    This study uses experimental and computational research methods to compare the aerodynamic performance of rigid and flexible airfoils at a low Reynolds number throughout varying angles of attack. This research can be used to improve the design of small wind turbines, micro-aerial vehicles, and any other devices that operate at low Reynolds numbers. Experimental testing was conducted in the University of Alabama's low-speed wind tunnel, and computational testing was conducted using the open-source CFD code OpenFOAM. For experimental testing, polyurethane-based (rigid) airfoils and silicone-based (flexible) airfoils were constructed using acrylic molds for NACA 0012 and NACA 2412 airfoil profiles. Computer models of the previously-specified airfoils were also created for a computational analysis. Both experimental and computational data were analyzed to examine the critical angles of attack, the lift and drag coefficients, and the occurrence of laminar boundary separation for each airfoil. Moreover, the computational simulations were used to examine the resulting flow fields, in order to provide possible explanations for the aerodynamic performances of each airfoil type. EEC 1659710.

  17. Global assimilation of X Project Loon stratospheric balloon observations

    NASA Astrophysics Data System (ADS)

    Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.

    2017-12-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  18. Global Assimilation of X Project Loon Stratospheric Balloon Observations

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Schoeberl, Mark R.; Pawson, Steven; Candido, Salvatore; Carver, Robert W.

    2017-01-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  19. Grid-Free 2D Plasma Simulations of the Complex Interaction Between the Solar Wind and Small, Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.

    2014-01-01

    We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions

  20. Wind Energy Program Summary. Volume 2: Research summaries, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-04-01

    Activities by the Federal Wind Energy program since the early 1980s have focused on developing a technology base necessary for industry to demonstrate the viability of wind energy as an alternative energy supply. The Federal Wind Energy Program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. These efforts have resulted in major advancements toward the development and commercialization of wind technology as an alternative energy source. The installation of more than 16,000 wind turbines in California by the end of 1987 provides evidence that commercial use of wind energy technology can be a viable source of electric power. Research in wind turbine sciences has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. As outlines in the projects that are described in this document, advancements in atmospheric fluid dynamics have been made through the development and refinement of wind characterization models and wind/rotor interaction prediction codes. Recent gains in aerodynamics can be attributed to a better understanding of airfoil operations, using innovative research approaches such as flow-visualization techniques. Qualitative information and data from laboratory and field tests are being used to document fatigue damage processes. These data are being used to develop new theories and data bases for structural dynamics, and will help to achieve long-term unit life and lower capital and maintenance costs. Material characterization and modeling techniques have been improved to better analyze effects of stress and fatigue on system components.

  1. Collaboratives for Wildlife-Wind Turbine Interaction Research: Fostering Multistakeholder Involvement (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, K.

    This poster highlights the various wildlife-wind collaboratives (specific to wildlife-wind turbine interaction research) that currently exist. Examples of collaboratives are included along with contact information, objectives, benefits, and ways to advance the knowledge base.

  2. Bibliography of NASA-related publications on wind turbine technology 1973-1995

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1995-01-01

    A major program of research and development projects on wind turbines for generating electricity was conducted at the NASA Lewis Research Center from 1973 to 1988. Most of these projects were sponsored by the U.S. Department of Energy (DOE), as a major element of its Federal Wind Energy Program. One other large-scale wind turbine project was sponsored by the Bureau of Reclamation of the Department of Interior (DOI). The peak years for wind energy work at Lewis were 1979-80, when almost 100 engineers, technicians, and administrative personnel were involved. From 1988 their conclusion in 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. Wind energy activities at NASA can be divided into two broad categories which are closely related and often overlapping: (1) Designing, building, and testing a series of 12 large-scale, experimental, horizontal-axis wind turbines (HAWT's); and (2) conducting supporting research and technology (SR&T) projects. The purpose of this bibliography is to assist those active in the field of wind energy in locating the technical information they need on wind power planning, wind loads, turbine design and analysis, fabrication and installation, laboratory and field testing, and operations and maintenance. This bibliography contains approximately 620 citations of publications by over 520 authors and co-authors. Sources are: (1) NASA reports authored by government grantee, and contractor personnel, (2) papers presented by attendees at NASA-sponsored workshops and conferences, (3) papers presented by NASA personnel at outside workshops and conferences, and (4) outside publications related to research performed at NASA/ DOE wind turbine sites.

  3. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    2015-04-01

    We analyzed the nighttime horizontal neutral winds in the middle atmosphere (˜87 and ˜98 km) and thermosphere (˜250 km) derived from a Fabry-Perot interferometer (FPI), which was installed at Xinglong station (40.2◦ N, 117.4◦ E) in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ˜87 km, ˜98 km and ˜250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07). Our results show the following: (1) at ˜ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2) At ˜98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3) There are large discrepancies between the observed and HWM07 winds at ˜250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ˜87 and ˜98 km than that at ˜250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1) the seasonally averaged zonal winds at ˜87 and ˜98 km typically have small variations throughout the night. (2) The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ˜87 km and ˜98 km. (3) At ˜250 km, model zonal wind compares well with the observation in the winter. For spring and autumn, the model wind is more eastward before ˜ 03:00 LT but more westward after. The observed nighttime zonal and meridional winds on average are close to zero in the summer and autumn, which indicates a lack of strong stable tides. The consistency of FPI zonal wind with model wind at ˜250 km is better than the meridional wind.

  4. Reindeer habitat use in relation to two small wind farms, during preconstruction, construction, and operation.

    PubMed

    Skarin, Anna; Alam, Moudud

    2017-06-01

    Worldwide there is a rush toward wind power development and its associated infrastructure. In Fennoscandia, large-scale wind farms comprising several hundred windmills are currently built in important grazing ranges used for Sámi reindeer husbandry. In this study, reindeer habitat use was assessed using reindeer fecal pellet group counts in relation to two relatively small wind farms, with 8 and 10 turbines, respectively. In 2009, 1,315 15-m 2 plots were established and pellet groups were counted and cleaned from the plots. This was repeated once a year in May, during preconstruction, construction, and operation of the wind farms, covering 6 years (2009-2014) of reindeer habitat use in the area. We modeled the presence/absence of any pellets in a plot at both the local (wind farm site) and regional (reindeer calving to autumn range) scale with a hierarchical logistic regression, where spatial correlation was accounted for via random effects, using vegetation type, and the interaction between distance to wind turbine and time period as predictor variables. Our results revealed an absolute reduction in pellet groups by 66% and 86% around each wind farm, respectively, at local scale and by 61% at regional scale during the operation phase compared to the preconstruction phase. At the regional, scale habitat use declined close to the turbines in the same comparison. However, at the local scale, we observed increased habitat use close to the wind turbines at one of the wind farms during the operation phase. This may be explained by continued use of an important migration route close to the wind farm. The reduced use at the regional scale nevertheless suggests that there may be an overall avoidance of both wind farms during operation, but further studies of reindeer movement and behavior are needed to gain a better understanding of the mechanisms behind this suggested avoidance.

  5. Development research for wind power weather insurance index through analysis of weather elements and new renewable energy

    NASA Astrophysics Data System (ADS)

    Park, Ki-Jun; jung, jihoon

    2014-05-01

    Recently, social interests and concerns regarding weather risk are gradually growing with increase in frequency of unusual phenomena. Actually, the threat to many vulnerable industries (sensitive to climate conditions) such as agriculture, architecture, logistics, transportation, clothing, home appliance, and food is increasing. According to climate change scenario reports published by National Institute of Meteorological Research (NIMR) in 2012, temperature and precipitation are expected to increase by 4.8% and 13.2% respectively with current status of CO2 emissions (RCP 8.5) at the end of the 21st century. Furthermore, most of areas in Korea except some mountainous areas are also expected to shift from temperate climate to subtropical climate. In the context of climate change, the intensity of severe weathers such as heavy rainfalls and droughts is enhanced, which, in turn, increases the necessity and importance of weather insurance. However, most insurance market is small and limited to policy insurance like crop disaster insurance, and natural disaster insurance in Korea. The reason for poor and small weather insurance market could result from the lack of recognition of weather risk management even though all economic components (firms, governments, and households) are significantly influenced by weather. However, fortunately, new renewable energy and leisure industry which are vulnerable to weather risk are in a long term uptrend and the interest of weather risk is also getting larger and larger in Korea. So, in the long run, growth potential of weather insurance market in Korea might be higher than ever. Therefore, in this study, the capacity of power generation per hour and hourly wind speed are analyzed to develop and test weather insurance index for wind power, and then the effectiveness of weather insurance index are investigated and the guidance will be derived to objectively calculate the weather insurance index.

  6. Simulation study for the Stratospheric Inferred Wind (SIW) sub-millimeter limb sounder

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Murtagh, Donal; Eriksson, Patrick; Ochiai, Satoshi

    2017-04-01

    The Stratospheric Inferred Wind is a micro satellite mission studied within the Swedish Innosat program. The objective of the Innosat program is to launch a scientific satellite every two years [1]. SIW has been selected together with two other missions as a candidate for the 2nd launch planned in 2020. If realized, SIW will be the first sub-millimetre (SMM) satellite mission designed for measuring horizontal wind between 30-80 km. It has been shown that such systems can provide relevant wind information in this altitude range where other satellite techniques lack sensitivity [2,3]. The other objective of the mission will be to continue the stratospheric monitoring at a time in which the current observing systems will probably be ended. SIW is equipped with a small payload (40x40x44 cm3, 17 kg and power of 47 W) consisting of a radiometer cooled to 70 K, an auto-correlator spectrometer (8 GHz bandwidth, 1 MHz resolution), and an antenna of 30 cm. The atmospheric limb will be scanned from 10 to 80 km at two perpendicular directions in order to reconstruct the horizontal wind vectors from the measured line-of-sight winds. Those are obtained from the small Doppler shift of molecular lines contained in two spectral bands simultaneously measured with the double-side band radiometer. One of the bands is centred at 655 GHz to measure a cluster of strong O3 lines. It is the best spectral band for wind measurements [4]. The second band is centred near 625 GHz, and together with the first band, it will allow us to measure a large number of molecules relevant for studying the stratospheric dynamics and chemistry (N2O, H2O, ClO, HCl, BrO, NO, HNO3,...). The 655 GHz O3 lines also provide temperature between 10-80 km with similar performances as those obtained if an oxygen line would have been used instead. In this presentation we will introduce SIW and discuss the measurement performances derived from simulations studies. [1] http://www.ohb.de/press-releases-details/ohb-sweden-and-aac-microtec-to-develop-the-innosat-platform-and-implement-its-first-mission-named-mats.html [2] Wu D., et al.: Mesospheric Doppler wind measurements from Aura Microwave Limb Sounder (MLS), Advanced in Space Research, 42, 1246-1252, 2008 [3] Baron P., et al.: Observation of horizontal winds in the middle-atmosphere between 30S and 55N during the northern winter 2009-2010, Atmospheric Chemistry and Physics 13(13), 6049-6064, 2013, doi:10.5194/acp-13-6049-2013 [4] Baron P., et al.: Definition of an uncooled submillimeter/terahertz limb sounder for measuring middle atmospheric winds, Proceedings of ESA Living Planet Symposium, Edinburgh, UK, 9-13 September 2013, (ESA SP-722, December 2013)

  7. Grid Integration Research | Wind | NREL

    Science.gov Websites

    -generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant

  8. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, K. S.; Thelander, C. G.

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed atmore » identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.« less

  9. Resolving Environmental Effects of Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin C; DeGeorge, Elise M; Copping, Andrea E.

    Concerns for potential wildlife impacts resulting from land-based and offshore wind energy have created challenges for wind project development. Research is not always adequately supported, results are neither always readily accessible nor are they satisfactorily disseminated, and so decisions are often made based on the best available information, which may be missing key findings. The potential for high impacts to avian and bat species and marine mammals have been used by wind project opponents to stop, downsize, or severely delay project development. The global nature of the wind industry - combined with the understanding that many affected species cross-national boundaries,more » and in many cases migrate between continents - also points to the need to collaborate on an international level. The International Energy Agency (IEA) Wind Technology Collaborative Programs facilitates coordination on key research issues. IEA Wind Task 34 - WREN: Working Together to Resolve Environmental Effects of Wind Energy-is a collaborative forum to share lessons gained from field research and modeling, including management methods, wildlife monitoring methods, best practices, study results, and successful approaches to mitigating impacts and addressing the cumulative effects of wind energy on wildlife.« less

  10. Note: Tesla transformer damping

    NASA Astrophysics Data System (ADS)

    Reed, J. L.

    2012-07-01

    Unexpected heavy damping in the two winding Tesla pulse transformer is shown to be due to small primary inductances. A small primary inductance is a necessary condition of operability, but is also a refractory inefficiency. A 30% performance loss is demonstrated using a typical "spiral strip" transformer. The loss is investigated by examining damping terms added to the transformer's governing equations. A significant alteration of the transformer's architecture is suggested to mitigate these losses. Experimental and simulated data comparing the 2 and 3 winding transformers are cited to support the suggestion.

  11. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    DTIC Science & Technology

    2015-10-01

    calibration of the flow in the test section of the Research Wind Tunnel at DST Group. The calibration was performed to establish the flow quality and to...of the Flow in the Test Section of the Research Wind Tunnel at DST Group Executive Summary The Defence Science and Technology Group (DST

  12. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.

  13. 78 FR 36291 - Revocation of License of Small Business Investment Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... SMALL BUSINESS ADMINISTRATION Revocation of License of Small Business Investment Company Pursuant to the authority granted to the United States Small Business Administration by the Wind-Up Order of the United States District Court for the Eastern District of Arkansas, Western Division, entered...

  14. Wind power in Jamaica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Daniel, A.R.; Daniel, S.T.

    1990-01-01

    Parameters to evaluate the potential for using wind energy to generate electricity in Jamaica were obtained. These include the average wind power scaled to a height of 20 m at existing weather stations and temporary anemometer sites, the variation in annual and monthly wind power, and the frequency distribution of wind speed and wind energy available. Four small commercial turbines were assumed to be operating at some of the sites, and the estimated energy captured by them, the time they operated above their cut-in speed and their capacity factors were also determined. Diurnal variations of wind speed and prevailing windmore » directions are discussed and a map showing wind power at various sites was produced. Two stations with long-term averages, Manley and Morant Point, gave results which warranted further investigation. Results from some temporary stations are also encouraging. Mean wind speeds at two other sites in the Caribbean are given for comparison. A method for estimating the power exponent for scaling the wind speed from climatic data is described in Appendix 2.« less

  15. Distributed Wind Soft Costs: A Beginning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Tony; Forsyth,Trudy; Preus, Robert

    2016-06-14

    Tony Jimenez presented this overview of distributed wind soft costs at the 2016 Small Wind Conference in Stevens Point, Wisconsin, on June 14, 2016. Soft costs are any non-hardware project costs, such as costs related to permitting fees, installer/developer profit, taxes, transaction costs, permitting, installation, indirect corporate costs, installation labor, and supply chain costs. This presentation provides an overview of soft costs, a distributed wind project taxonomy (of which soft costs are a subset), an alpha data set project demographics, data summary, and future work in this area.

  16. The Distribution of Solar Wind Speeds During Solar Minimum: Calibration for Numerical Solar Wind Modeling Constraints on the Source of the Slow Solar Wind (Postprint)

    DTIC Science & Technology

    2012-03-05

    subsonic corona below the critical point, resulting in an increased scale height and mass flux, while keeping the kinetic energy of the flow fairly...Approved for public release; distribution is unlimited. tubes with small expansion factors the heating occurs in the supersonic corona, where the energy ...goes into the kinetic energy of the solar wind, increasing the flow speed [Leer and Holzer, 1980; Pneuman, 1980]. Using this model and a sim- plified

  17. Distributed Wind Competitiveness Improvement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-05-01

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.

  18. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook

    PubMed Central

    Goldstein, M. L.; Wicks, R. T.; Perri, S.; Sahraoui, F.

    2015-01-01

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics. PMID:25848084

  19. Prospects for generating electricity by large onshore and offshore wind farms

    NASA Astrophysics Data System (ADS)

    Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.

    2017-03-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m-2, whereas in offshore regions with very strong winds it exceeds 3 W m-2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.

  20. Overview of GNSS-R Research Program for Ocean Observations at Japan

    NASA Astrophysics Data System (ADS)

    Ichikawa, Kaoru; Ebinuma, Takuji; Akiyama, Hiroaki; Kitazawa, Yukihito

    2015-04-01

    GNSS-R is a new remote-sensing method which uses reflected GNSS signals. Since no transmitters are required, it is suitable for small satellites. Constellations of GNSS-R small satellites have abilities on revolutionary progress on 'all-time observable' remote-sensing methods . We have started a research program for GNSS-R applications on oceanographic observations under a contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) as a'Space science research base formation program'. The duration of research program is 3 years (2015-2017). The one of important focuses of this program is creation of a new community to merge space engineering and marine science through establishment on application plans of GNSS-R. Actual GNSS-R data acquisition experiments using multi-copters, ships, and/or towers are planned, together with in-situ sea truth data such as wave spectrum, wind speed profiles and sea surface height. These data are compared to determine the accuracy and resolution of the estimates based on GNSS-R observations. Meanwhile, preparation of a ground station for receiving GNSS-R satellite data will be also established. Whole those data obtained in this project will be distributed for public. This paper introduces the overview of research plan..

  1. A miniature 48-channel pressure sensor module capable of in situ calibration

    NASA Technical Reports Server (NTRS)

    Gross, C.; Juanarena, D. B.

    1977-01-01

    A new high data rate pressure sensor module with in situ calibration capability has been developed by the Langley Research Center to help reduce energy consumption in wind-tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. This module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by sensors. The small size of the sensor module will allow mounting within many wind-tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.

  2. Computational Analysis of a Low-Boom Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2011-01-01

    A low-boom supersonic inlet was designed for use on a conceptual small supersonic aircraft that would cruise with an over-wing Mach number of 1.7. The inlet was designed to minimize external overpressures, and used a novel bypass duct to divert the highest shock losses around the engine. The Wind-US CFD code was used to predict the effects of capture ratio, struts, bypass design, and angles of attack on inlet performance. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center. Test results showed that the inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a stable operating range much larger than that of an engine. Predictions generally compared very well with the experimental data, and were used to help interpret some of the experimental results.

  3. Nanomaterials Commercialization Center

    DTIC Science & Technology

    2013-02-01

    turbine manufacturer). ln the wind energy area , customers clearly stated that the major short-tenn technical need for toughening is in the area of...interactions: • The wind energy composites market for turbine blades is an extremely high growth, high potential opportunity. Potential value ofnano...Wire Takeup System (MTS), with a winding pitch modified to meet the needs of the small diameter wire (- 100J.1m) produced in this reel-to-reelline

  4. Task Force on Energy Systems for Forward/Remote Operating Bases

    DTIC Science & Technology

    2016-08-01

    military use While potentially beneficial, concerns with small wind turbines include reliability, visibility, and interference with...Power density is also sometimes used to refer to power per unit area (e.g., W/m2) of an antenna, solar panel, or cross-section of a wind turbine . A...GE Power & Water plans to implement additive manufacturing to create parts used in gas and wind turbines . Additive manufacturing techniques have

  5. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h...

  6. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h...

  7. Structure-borne sound and vibration from building-mounted wind turbines

    NASA Astrophysics Data System (ADS)

    Moorhouse, Andy; Elliott, Andy; Eastwick, Graham; Evans, Tomos; Ryan, Andy; von Hunerbein, Sabine; le Bescond, Valentin; Waddington, David

    2011-07-01

    Noise continues to be a significant factor in the development of wind energy resources. In the case of building-mounted wind turbines (BMWTs), in addition to the usual airborne sound there is the potential for occupants to be affected by structure-borne sound and vibration transmitted through the building structure. Usual methods for prediction and evaluation of noise from large and small WTs are not applicable to noise of this type. This letter describes an investigation aiming to derive a methodology for prediction of structure-borne sound and vibration inside attached dwellings. Jointly funded by three UK government departments, the work was motivated by a desire to stimulate renewable energy generation by the removal of planning restrictions where possible. A method for characterizing BMWTs as sources of structure-borne sound was first developed during a field survey of two small wind turbines under variable wind conditions. The 'source strength' was established as a function of rotor speed although a general relationship to wind speed could not be established. The influence of turbulence was also investigated. The prediction methodology, which also accounts for the sound transmission properties of the mast and supporting building, was verified in a field survey of existing installations. Significant differences in behavior and subjective character were noted between the airborne and structure-borne noise from BMWTs.

  8. The evolution of ovule number and flower size in wind-pollinated plants.

    PubMed

    Friedman, Jannice; Barrett, Spencer C H

    2011-02-01

    In angiosperms, ovules are "packaged" within individual flowers, and an optimal strategy should occur depending on pollination and resource conditions. In animal-pollinated species, wide variation in ovule number per flower occurs, and this contrasts with wind-pollinated plants, where most species possess uniovulate flowers. This pattern is usually explained as an adaptive response to low pollen receipt in wind-pollinated species. Here, we develop a phenotypic model for the evolution of ovule number per flower that incorporates the aerodynamics of pollen capture and a fixed resource pool for provisioning of flowers, ovules, and seeds. Our results challenge the prevailing explanation for the association between uniovulate flowers and wind pollination. We demonstrate that when flowers are small and inexpensive, as they are in wind-pollinated species, ovule number should be minimized and lower than the average number of pollen tubes per style, even under stochastic pollination and fertilization regimes. The model predicts that plants benefit from producing many small inexpensive flowers, even though some flowers capture too few pollen grains to fertilize their ovules. Wind-pollinated plants with numerous flowers distributed throughout the inflorescence, each with a single ovule or a few ovules, sample more of the airstream, and this should maximize pollen capture and seed production.

  9. DOE/NREL supported wind energy activities in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in villagemore » settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.« less

  10. Offshore Wind Turbines Subjected to Hurricanes

    NASA Astrophysics Data System (ADS)

    Amirinia, Gholamreza

    Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed. Then a new formulation for addressing unsteady wind forces on the tower was introduced and NREL-FAST package was modified with the new formulation. Interaction of wind-wave-soil-structure was also included in the modification. After customizing the package, the tower and blade buffeting responses, the low cycle fatigue during different hurricane categories, and extreme value of the short-term responses were analyzed. In the second part, piezoelectric materials were used to generate perturbations on the surface of a specimen in the wind tunnel. This perturbation was used to combine upward wall motion and surface curvature. For this purpose, a Macro Fiber Composite (MFC) material was mounted on the surface of a cylindrical specimen for generating perturbation in the wind tunnel. Four different perturbation frequencies (1 Hz, 2 Hz, 3 Hz, and 4Hz) as well as the baseline specimen were tested in a low-speed wind tunnel (Re= 2.8x104). Results showed that recently observed turbulence models resulted in larger structural responses and low-cycle fatigue damage than existing models. In addition, extreme value analysis of the short-term results showed that the IEC 61400-3 recommendation for wind turbine class I was sufficient for designing the tower for wind turbine class S subjected to hurricane; however, for designing the blade, IEC 61400-3 recommendations for class I underestimated the responses. In addition, wind tunnel testing results showed that the perturbation of the surface of the specimen increased the turbulence in the leeward in specific distance from the specimen. The surface perturbation technique had potential to reduce the drag by 4.8%.

  11. A global wind resource atlas including high-resolution terrain effects

    NASA Astrophysics Data System (ADS)

    Hahmann, Andrea; Badger, Jake; Olsen, Bjarke; Davis, Neil; Larsen, Xiaoli; Badger, Merete

    2015-04-01

    Currently no accurate global wind resource dataset is available to fill the needs of policy makers and strategic energy planners. Evaluating wind resources directly from coarse resolution reanalysis datasets underestimate the true wind energy resource, as the small-scale spatial variability of winds is missing. This missing variability can account for a large part of the local wind resource. Crucially, it is the windiest sites that suffer the largest wind resource errors: in simple terrain the windiest sites may be underestimated by 25%, in complex terrain the underestimate can be as large as 100%. The small-scale spatial variability of winds can be modelled using novel statistical methods and by application of established microscale models within WAsP developed at DTU Wind Energy. We present the framework for a single global methodology, which is relative fast and economical to complete. The method employs reanalysis datasets, which are downscaled to high-resolution wind resource datasets via a so-called generalization step, and microscale modelling using WAsP. This method will create the first global wind atlas (GWA) that covers all land areas (except Antarctica) and 30 km coastal zone over water. Verification of the GWA estimates will be done at carefully selected test regions, against verified estimates from mesoscale modelling and satellite synthetic aperture radar (SAR). This verification exercise will also help in the estimation of the uncertainty of the new wind climate dataset. Uncertainty will be assessed as a function of spatial aggregation. It is expected that the uncertainty at verification sites will be larger than that of dedicated assessments, but the uncertainty will be reduced at levels of aggregation appropriate for energy planning, and importantly much improved relative to what is used today. In this presentation we discuss the methodology used, which includes the generalization of wind climatologies, and the differences in local and spatially aggregated wind resources that result from using different reanalyses in the various verification regions. A prototype web interface for the public access to the data will also be showcased.

  12. Fluvial dissolved organic carbon composition varies spatially and seasonally in a small catchment draining a wind farm and felled forestry.

    PubMed

    Zheng, Ying; Waldron, Susan; Flowers, Hugh

    2018-06-01

    Assessing whether land use, from activities such as wind farm construction and tree-felling, impacts on terrestrial C delivery to rivers has focused on quantifying the loss of dissolved organic carbon (DOC), and not the composition changes. Here we explore how land use influences DOC composition by considering fluvial DOC concentration, [DOC], and spectrophotometric composition of a river draining a peat-rich catchment. We find that in this 5.7km 2 catchment differences occur in both the concentration and composition of the DOC in its sub-catchments. This is attributed to differences in how land was used: one tributary (D-WF) drains an area with wind farm construction and forestry in the headwaters, and one tributary (D-FF) drains an area with felled plantation trees. Generally, [DOC] in both streams showed similar seasonal variation, and autumn maxima. However, the felled catchment had greater mean [DOC] than the wind farm catchment. The SUVA 254 and E 4 /E 6 indicated DOC in both streams had similar aromaticity and fulvic:humic acid for most of the time, but SUVA 410 and E 2 /E 4 indicated less DOC humification in the felled catchment. This may be due to young DOC from the breakdown of residual branches and roots, or more humification in soils in the wind farm area. During the dry months, DOC composition showed more spatial variation: the D-WF DOC had smaller SUVA 254 (less total aromatic material) and SUVA 410 (fewer humic substances). The decreased E 2 /E 4 in both streams indicated the total aromatic carbon decreased more than humic substances content. Moreover, the larger E 4 /E 6 for D-WF in summer indicated that the humic substances were richer in fulvic acids than humic acids. Soil disturbance associated with forestry-felling likely contributed to the higher [DOC] and release of less-humified material in D-FF. This research indicates drivers of different DOC concentration and composition can exist even in small catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Performance of WRF in simulating terrain induced flows and atmospheric boundary layer characteristics over the tropical station Gadanki

    NASA Astrophysics Data System (ADS)

    Hari Prasad, K. B. R. R.; Srinivas, C. V.; Rao, T. Narayana; Naidu, C. V.; Baskaran, R.

    2017-03-01

    In this study the evolution of the topographic flows and boundary layer features over a tropical hilly station Gadanki in southern India were simulated using Advanced Research WRF (ARW) mesoscale model for fair weather days during southwest monsoon (20-22 July 2011) and winter (18-20 Jan. 2011). Turbulence measurements from an Ultra High Frequency (UHF) Wind Profiler, Ultra Sonic Anemometer, GPS Sonde and meteorological tower were used for comparison. Simulations revealed development of small-scale slope winds in the lower boundary layer (below 800 m) at Gadanki which are more prevalent during nighttime. Stronger slope winds during winter and weaker flows in the monsoon season are simulated indicating the sensitivity of slope winds to the background synoptic flows and radiative heating/cooling. Higher upward surface fluxes (sensible, latent heat) and development of very deep convective boundary layer ( 2500 m) is simulated during summer monsoon relative to the winter season in good agreement with observations. Four PBL parameterizations (YSU, MYJ, MYNN and ACM) were evaluated to simulate the above characteristics. Large differences were noticed in the simulated boundary layer features using different PBL schemes in both the seasons. It is found that the TKE-closures (MYJ, MYNN) produced extremities in daytime PBL depth, surface fluxes, temperature, humidity and winds. The differences in the simulations are attributed to the eddy diffusivities, buoyancy and entrainment fluxes which were simulated differently in the respective schemes. The K-based YSU followed by MYNN best produced the slope winds as well as daytime boundary layer characteristics realistically in both the summer and winter synoptic conditions at Gadanki hilly site though with slight overestimation of nocturnal PBL height.

  14. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    PubMed Central

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  15. Wind Energy Resource Assessment on Alaska Native Lands in Cordova Region of Prince William Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whissel, John C.; Piche, Matthew

    The Native Village of Eyak (NVE) has been monitoring wind resources around Cordova, Alaska in order to determine whether there is a role for wind energy to play in the city’s energy scheme, which is now supplies entirely by two run-of-the-river hydro plants and diesel generators. These data are reported in Appendices A and B. Because the hydro resources decline during winter months, and wind resources increase, wind is perhaps an ideal counterpart to round out Cordova’s renewable energy supply. The results of this effort suggests that this is the case, and that developing wind resources makes sense for ourmore » small, isolated community.« less

  16. Engineer Measures Ice Formation on an Instrument Antenna Model

    NASA Image and Video Library

    1945-05-21

    A National Advisory Committee for Aeronautics (NACA) researcher measures the ice thickness on a landing antenna model in the Icing Research Tunnel at the Aircraft Engine Research Laboratory. NACA design engineers added the Icing Research Tunnel to the original layout of the new Aircraft Engine Research Laboratory to take advantage of the massive refrigeration system being built for the Altitude Wind Tunnel. The Icing Research Tunnel was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks air flow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45 degrees F and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flows velocities up to 400 miles per hour. The Icing Research Tunnel began testing in June of 1944. Early testing, seen in this photograph, studied ice accumulation on propellers and antenna of a military aircraft. The Icing Research Tunnel’s designers, however, struggled to develop a realistic spray system since they did not have access to data on the size of naturally occurring water droplets. The system would have to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. For five years a variety of different designs were painstakingly developed and tested before the system was perfected.

  17. EU-Norsewind Using Envisat ASAR And Other Data For Offshore Wind Atlas

    NASA Astrophysics Data System (ADS)

    Hasager, Charlotte B.; Mouche, Alexis; Badger, Merete

    2010-04-01

    The EU project NORSEWIND - short for Northern Seas Wind Index Database - www.norsewind.eu has the aim to produce state-of-the-art wind atlas for the Baltic, Irish and North Seas using ground-based lidar, meteorological masts, satellite data and mesoscale modelling. So far CLS and Risø DTU have collected Envisat ASAR images for the area of interest and the first results: maps of wind statistics, Weibull scale and shape parameters, mean and energy density are presented. The results will be compared to a distributed network of high-quality in-situ observations and mesoscale model results during 2009-2011 as the in-situ data and model results become available. Wind energy is proportional with wind speed to the third power, thus even small improvements on wind speed mapping are important in this project. One challenge is to arrive at hub-height winds ~100 m above sea level.

  18. Collected Papers on Wind Turbine Technology

    NASA Technical Reports Server (NTRS)

    Spera, David A. (Editor)

    1995-01-01

    R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.

  19. Magnetic Turbulence, Fast Magnetic Field line Diffusion and Small Magnetic Structures in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Zimbardo, G.; Pommois, P.; Veltri, P.

    2003-09-01

    The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.

  20. Development and testing of vortex generators for small horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Gyatt, G. W.

    1986-01-01

    Vortex generators (VGs) for a small (32 ft diameter) horizontal axis wind turbine, the Carter Model 25, have been developed and tested. Arrays of VGs in a counterrotating arrangement were tested on the inbound half-span, outboard half-span, and on the entire blade. VG pairs had their centerlines spaced at a distance of 15% of blade chord, with a spanwise width of 10% of blade chord. Each VG had a length/height ratio of 4, with a height of between 0.5% and 1.0% of the blade chord. Tests were made with roughness strips to determine whether VGs alleviated the sensitivity of some turbines to an accumulation of bugs and dirt on the leading edge. Field test data showed that VGs increased power output up to 20% at wind speeds above 10 m/s with only a small (less than 4%) performance penalty at lower speeds. The VGs on the outboard span of the blade were more effective than those on inner sections. For the case of full span coverage, the energy yearly output increased almost 6% at a site with a mean wind speed of 16 mph. The VGs did reduce the performance loss caused by leading edge roughness. An increase in blade pitch angle has an effect on the power curve similar to the addition of VGs. VGs alleviate the sensitivity of wind turbine rotors to leading edge roughness caused by bugs and drift.

  1. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less

  2. Determination of wind from NIMBUS 6 satellite sounding data

    NASA Technical Reports Server (NTRS)

    Carle, W. E.; Scoggins, J. R.

    1981-01-01

    Objective methods of computing upper level and surface wind fields from NIMBUS 6 satellite sounding data are developed. These methods are evaluated by comparing satellite derived and rawinsonde wind fields on gridded constant pressure charts in four geographical regions. Satellite-derived and hourly observed surface wind fields are compared. Results indicate that the best satellite-derived wind on constant pressure charts is a geostrophic wind derived from highly smoothed fields of geopotential height. Satellite-derived winds computed in this manner and rawinsonde winds show similar circulation patterns except in areas of small height gradients. Magnitudes of the standard deviation of the differences between satellite derived and rawinsonde wind speeds range from approximately 3 to 12 m/sec on constant pressure charts and peak at the jet stream level. Fields of satellite-derived surface wind computed with the logarithmic wind law agree well with fields of observed surface wind in most regions. Magnitudes of the standard deviation of the differences in surface wind speed range from approximately 2 to 4 m/sec, and satellite derived surface winds are able to depict flow across a cold front and around a low pressure center.

  3. Research on large-scale wind farm modeling

    NASA Astrophysics Data System (ADS)

    Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng

    2017-01-01

    Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.

  4. A study of large scale gust generation in a small scale atmospheric wind tunnel with applications to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason Markos

    Modern technology operating in the atmospheric boundary layer can always benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the atmospheric boundary layer turbulence at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an "atmospheric wind tunnel" is sought. Many programs could utilize such a tool including Micro Aerial Vehicle(MAV) development, the wind energy industry, fuel efficient vehicle design, and the study of bird and insect flight, to name just a few. The small scale of MAVs provide the somewhat unique capability of full scale Reynolds number testing in a wind tunnel. However, that same small scale creates interactions under real world flight conditions, atmospheric gusts for example, that lead to a need for testing under more complex flows than the standard uniform flow found in most wind tunnels. It is for these reasons that MAVs are used as the initial testing application for the atmospheric gust tunnel. An analytical model for both discrete gusts and a continuous spectrum of gusts is examined. Then, methods for generating gusts in agreement with that model are investigated. Previously used methods are reviewed and a gust generation apparatus is designed. Expected turbulence and gust characteristics of this apparatus are compared with atmospheric data. The construction of an active "gust generator" for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to weather ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using the surface oil flow visualization technique.

  5. Effect of the Initial Vortex Size on Intensity Change in the WRF-ROMS Coupled Model

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Chan, Johnny C. L.

    2017-12-01

    Numerous studies have demonstrated that the tropical cyclone (TC) induced sea surface temperature (SST) cooling strongly depends on the preexisting oceanic condition and TC characteristics. However, very few focused on the correlation of SST cooling and the subsequent intensity with TC size. Therefore, a series of idealized numerical experiments are conducted using the Weather Research Forecasting (WRF) model coupled with the Regional Ocean Model System (ROMS) model to understand how the vortex size is related to SST cooling and subsequent intensity changes of a stationary TC-like vortex. In the uncoupled experiments, the radius of maximum wind (RMW) and size (radius of gale-force wind (R17)) both depend on the initial size within the 72 h simulation. The initially small vortex is smaller than the medium and large vortices throughout its life cycle and is the weakest. In other words, thermodynamic processes do not contribute as much to the R17 change as the dynamic processes proposed (e.g., angular momentum transport) in previous studies. In the coupled experiments, the area-averaged SST cooling induced by medium and large TCs within the inner-core region is comparable due to the similar surface winds and thus mixing in the ocean. Although a stronger SST cooling averaged within a larger region outside the inner-core is induced by the larger TC, the intensity of the larger TC is more intense. This is because that the enthalpy flux in the inner-core region is higher in the larger TC than that in the medium and small TCs.

  6. Climatology of Neutral vertical winds in the midlatitude thermosphere

    NASA Astrophysics Data System (ADS)

    Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.

    2017-12-01

    More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.

  7. Wind noise under a pine tree canopy.

    PubMed

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  8. 76 FR 6775 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Services Corporation; Fowler Ridge II Wind Farm LLC. Description: Notice of Non-Material Change in Status... Open Access Transmission Tariff, a Small Generator Interconnection Agreement Facilities Maintenance..., Inc.; Atlantic Renewable Projects II LLC; Barton Windpower LLC; Big Horn Wind Project LLC; Big Horn II...

  9. Revealing Large-Scale Asymetries in the Winds of Hot, Luminous Stars Using Spectroscopy and Polarimetry

    NASA Astrophysics Data System (ADS)

    St-Louis, Nicole

    2015-08-01

    The winds of hot, luminous stars are known to show small but also large scale density structures. Ultimately, these departures from spherical symmetry are important for the understanding of the loss of angular momentum from the star and are crucial in determining its rotation rate. There are many observational signatures of these departures from a uniform and spherically symmetric outflow. This poster will present results from spectroscopic and polarimetric observations of Wolf-Rayet stars, the descendants of massive O stars, that reveal large-scale asymmetries in their winds and discuss what can be learned about the structure of these winds and about the the physical mechanism responsible for generating them. Very little is known about the rotation rates of these small, He-burning stars which are the direct progenitors of at least some supernova explosions. If enough angular momentum is retained in the core, some may also very well be the progenitors of long gamma-ray bursts.

  10. MHD Modeling of the Solar Wind with Turbulence Transport and Heating

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Usmanov, A. V.; Matthaeus, W. H.; Breech, B.

    2009-01-01

    We have developed a magnetohydrodynamic model that describes the global axisymmetric steady-state structure of the solar wind near solar minimum with account for transport of small-scale turbulence associated heating. The Reynolds-averaged mass, momentum, induction, and energy equations for the large-scale solar wind flow are solved simultaneously with the turbulence transport equations in the region from 0.3 to 100 AU. The large-scale equations include subgrid-scale terms due to turbulence and the turbulence (small-scale) equations describe the effects of transport and (phenomenologically) dissipation of the MHD turbulence based on a few statistical parameters (turbulence energy, normalized cross-helicity, and correlation scale). The coupled set of equations is integrated numerically for a source dipole field on the Sun by a time-relaxation method in the corotating frame of reference. We present results on the plasma, magnetic field, and turbulence distributions throughout the heliosphere and on the role of the turbulence in the large-scale structure and temperature distribution in the solar wind.

  11. Hosting a Fourier Transform Spectrometer (FTS) on CubeSat Spacecraft Platforms for Global Measurements of Three-Dimensional Winds

    NASA Astrophysics Data System (ADS)

    Scott, D. K.; Neilsen, T. L.; Weston, C.; Frazier, C.; Smith, T.; Shumway, A.

    2015-12-01

    Global measurements of vertically-resolved atmospheric wind profiles offer the potential for improved weather forecasts and superior predictions of atmospheric wind patterns. A small-satellite constellation that uses a Fourier Transform Spectrometer (FTS) instrument onboard 12U CubeSats can provide measurements of global tropospheric wind profiles from space at a very low cost. These small satellites are called FTS CubeSats. This presentation will describe a spacecraft concept that provides a stable, robust platform to host the FTS payload. Of importance to the payload are power, data, station keeping, thermal, and accommodations that enable high spectral measurements to be made from a LEO orbit. The spacecraft concept draws on Space Dynamics Laboratory (SDL) heritage and the recent success of the Dynamic Ionosphere Cubesat Experiment (DICE) and HyperAngular Rainbow Polarimeter (HARP) missions. Working with team members, SDL built a prototype observatory (spacecraft and payload) for testing and proof of concept.

  12. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions - a full-scale validation study

    NASA Astrophysics Data System (ADS)

    Larsen, G. C.; Larsen, T. J.; Chougule, A.

    2017-05-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine the classical Dynamic Wake Meandering model with a fundamental conjecture stating: Atmospheric boundary layer stability affects primary wake meandering dynamics driven by large turbulent scales, whereas wake expansion in the meandering frame of reference is hardly affected. Inclusion of stability (i.e. buoyancy) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load recordings, is available for model validation. For a multitude of wake situations this data set displays a considerable scatter, which to a large degree seems to be caused by atmospheric boundary layer stability effects. Notable is also that rotating wind turbine components predominantly experience high fatigue loading for stable stratification with significant shear, whereas high fatigue loading of non-rotating wind turbine components are associated with unstable atmospheric boundary layer stratification.

  13. Mars Parachute Testing in World Largest Wind Tunnel

    NASA Image and Video Library

    2009-04-22

    The parachute for NASA next mission to Mars passed flight-qualification testing in March and April 2009 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif. NASA's Mars Science Laboratory mission, to be launched in 2011 and land on Mars in 2012, will use the largest parachute ever built to fly on an extraterrestrial mission. This image shows a duplicate qualification-test parachute inflated in an 80-mile-per-hour (36-meter-per-second) wind inside the test facility. The parachute uses a configuration called disk-gap-band. It has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 16 meters (51 feet). Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. It is designed to survive deployment at Mach 2.2 in the Martian atmosphere, where it will generate up to 65,000 pounds of drag force. The wind tunnel is 24 meters (80 feet) tall and 37 meters (120 feet) wide, big enough to house a Boeing 737. It is part of the National Full-Scale Aerodynamics Complex, operated by the Arnold Engineering Development Center of the U.S. Air Force. http://photojournal.jpl.nasa.gov/catalog/PIA11995

  14. Smart structure for small wind turbine blade

    NASA Astrophysics Data System (ADS)

    Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.

    2013-08-01

    Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.

  15. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays configurations. Under controlled flow conditions in a wind tunnel, the counter-rotating configuration resulted in a slight improvement in the aerodynamic performance of each turbine compared to the isolated installation. Moreover, the counter-rotating pair improved the power generation of a turbine located downstream of the pair substantially.

  16. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Cheng

    Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently compensate the reactive power demand, the DG operation no longer imposes a significant effect on the voltage fluctuations in the distribution system. And the proposed approach is efficient, simple and straightforward.

  17. Active-passive synergy for interpreting ocean L-band emissivity: Results from the CAROLS airborne campaigns

    NASA Astrophysics Data System (ADS)

    Martin, A. C. H.; Boutin, J.; Hauser, D.; Dinnat, E. P.

    2014-08-01

    The impact of the ocean surface roughness on the ocean L-band emissivity is investigated using simultaneous airborne measurements from an L-band radiometer (CAROLS) and from a C-band scatterometer (STORM) acquired in the Gulf of Biscay (off-the French Atlantic coasts) in November 2010. Two synergetic approaches are used to investigate the impact of surface roughness on the L-band brightness temperature (Tb). First, wind derived from the scatterometer measurements is used to analyze the roughness contribution to Tb as a function of wind and compare it with the one simulated by SMOS and Aquarius roughness models. Then residuals from this mean relationship are analyzed in terms of mean square slope derived from the STORM instrument. We show improvement of new radiometric roughness models derived from SMOS and Aquarius satellite measurements in comparison with prelaunch models. Influence of wind azimuth on Tb could not be evidenced from our data set. However, we point out the importance of taking into account large roughness scales (>20 cm) in addition to small roughness scale (5 cm) rapidly affected by wind to interpret radiometric measurements far from nadir. This was made possible thanks to simultaneous estimates of large and small roughness scales using STORM at small (7-16°) and large (30°) incidence angles.

  18. Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Diaz, E.; Rouillard, A. P.; Lavraud, B.

    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north–south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining themore » remote-sensing observations taken by the Solar-TErrestrial RElations Observatory ( STEREO ) mission with coronagraphic observations from the SOlar and Heliospheric Observatory ( SOHO ) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as “raining inflows.” This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.« less

  19. Risk analysis for U.S. offshore wind farms: the need for an integrated approach.

    PubMed

    Staid, Andrea; Guikema, Seth D

    2015-04-01

    Wind power is becoming an increasingly important part of the global energy portfolio, and there is growing interest in developing offshore wind farms in the United States to better utilize this resource. Wind farms have certain environmental benefits, notably near-zero emissions of greenhouse gases, particulates, and other contaminants of concern. However, there are significant challenges ahead in achieving large-scale integration of wind power in the United States, particularly offshore wind. Environmental impacts from wind farms are a concern, and these are subject to a number of on-going studies focused on risks to the environment. However, once a wind farm is built, the farm itself will face a number of risks from a variety of hazards, and managing these risks is critical to the ultimate achievement of long-term reductions in pollutant emissions from clean energy sources such as wind. No integrated framework currently exists for assessing risks to offshore wind farms in the United States, which poses a challenge for wind farm risk management. In this "Perspective", we provide an overview of the risks faced by an offshore wind farm, argue that an integrated framework is needed, and give a preliminary starting point for such a framework to illustrate what it might look like. This is not a final framework; substantial work remains. Our intention here is to highlight the research need in this area in the hope of spurring additional research about the risks to wind farms to complement the substantial amount of on-going research on the risks from wind farms. © 2015 Society for Risk Analysis.

  20. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  1. Weakly inhomogeneous MHD turbulence and transport of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Zhou, Y.; Oughton, S.; Zank, G. P.

    1992-01-01

    An evaluation is conducted of recent theories of small-scale MHD turbulence transport in an inhomogeneous background that are pertinent to the evolution of solar wind turbulence. Attention is given to the WKB formalism that has been used in many solar wind-related physics applications, with a view to its shortcomings. Also discussed are the structure of two-scale transport theories, and their relationship to WKB theory in light of multiple-scales analysis.

  2. Electron bulk speed lags the protons in the collisionless solar wind

    NASA Astrophysics Data System (ADS)

    Tong, Y.; Bale, S. D.; Salem, C. S.; Pulupa, M.

    2017-12-01

    We use a large, statistical set of in situ measurements of the solar wind electron distribution from the Wind/3DP instrument to show that the magnetic field-aligned core electron-proton drift speed tend to small values at high collisionality and asymptotes towards a large limiting value in the collisionless limit. This collisionless drift-limit, when normalized to the local Alfven speed is large and may drive instabilities.

  3. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    PubMed Central

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small. PMID:25136681

  4. Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

    PubMed

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  5. Use of the 4D-Global Reference Atmosphere Model (GRAM) for space shuttle descent design

    NASA Technical Reports Server (NTRS)

    Mccarty, S. M.

    1987-01-01

    The method of using the Global Reference Atmosphere Model (GRAM) mean and dispersed atmospheres to study skipout/overshoot requirements, to characterize mean and worst case vehicle temperatures, study control requirements, and verify design was discussed. Landing sites in these analyses range from 65 N to 30 S, while orbit inclinations vary from 20 deg to 98 deg. The primary concern was that they cannot use as small vertical steps in the reentry calculation as desired because the model predicts anomalously large density shear rates for very small vertical step sizes. The winds predicted by the model are not satisfactory. This is probably because they are geostrophic winds and because the model has an error in the computation of winds in the equatorial regions.

  6. Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge

    NASA Astrophysics Data System (ADS)

    Zavadsky, A.; Shemer, L.

    2017-05-01

    Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.

  7. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manwell, James

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  8. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter

    2010-04-01

    With an increasing number of communities considering nearby wind power developments, there is a need to empirically investigate community concerns about wind project development. One such concern is that property values may be adversely affected by wind energy facilities, and relatively little research exists on the subject. The present research investigates roughly 7,500 sales of single-family homes surrounding 24 existing U.S. wind facilities. Across four different hedonic models the results are consistent: neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on home sales prices.

  9. The Brothers Were Wright - An Abridged History of Wind Tunnel Testing at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Buchholz, Steve

    2017-01-01

    The Wright Brothers used wind tunnel data to refine their design for the first successful airplane back in 1903. Today, wind tunnels are still in use all over the world gathering data to improve the design of cars, trucks, airplanes, missiles and spacecraft. Ames Research Center is home to many wind tunnels, including the Unitary Plan Wind Tunnel complex. Built in the early 1950s, it is one of the premiere transonic and supersonic testing facilities in the country. Every manned spacecraft has been tested in the wind tunnels at Ames. This is a testing history from past to present.

  10. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Lu, H.; Miao, X.; Cha, P.; Zhou, Y.

    2008-01-01

    The climatic controls on dune mobility, especially the relative importance of wind strength, remain incompletely understood. This is a key research problem in semi-arid northern China, both for interpreting past dune activity as evidence of paleoclimate and for predicting future environmental change. Potential eolian sand transport, which is approximately proportional to wind power above the threshold for sand entrainment, has decreased across much of northern China since the 1970s. Over the same period, effective moisture (ratio of precipitation to potential evapotranspiration) has not changed significantly. This "natural experiment" provides insight on the relative importance of wind power as a control on dune mobility in three dunefields of northern China (Mu Us, Otindag, and Horqin), although poorly understood and potentially large effects of human land use complicate interpretation. Dune forms in these three regions are consistent with sand transport vectors inferred from weather station data, suggesting that wind directions have remained stable and the stations adequately represent winds that shaped the dunes. The predicted effect of weaker winds since the 1970s would be dune stabilization, with lower sand transport rates allowing vegetation cover to expand. Large portions of all three dunefields remained stabilized by vegetation in the 1970s despite high wind power. Since the 1970s, trends in remotely sensed vegetation greenness and change in mobile dune area inferred from sequential Landsat images do indicate widespread dune stabilization in the eastern Mu Us region. On the other hand, expansion of active dunes took place farther west in the Mu Us dunefield and especially in the central Otindag dunefield, with little overall change in two parts of the Horqin dunes. Better ground truth is needed to validate the remote sensing analyses, but results presented here place limits on the relative importance of wind strength as a control on dune mobility in the study areas. High wind power alone does not completely destabilize these dunes. A large decrease in wind power either has little short-term effect on the dunes, or more likely its effect is sufficiently small that it is obscured by human impacts on dune stability in many parts of the study areas. ?? 2008 Elsevier B.V. All rights reserved.

  11. Systems Engineering | Wind | NREL

    Science.gov Websites

    platform to leverage its research capabilities toward integrating wind energy engineering and cost models achieve a better understanding of how to improve system-level performance and achieve system-level cost research capabilities to: Integrate wind plant engineering performance and cost software modeling to enable

  12. Work with Us | Wind | NREL

    Science.gov Websites

    our cutting-edge research facilities to develop, test, and evaluate wind technologies. License Our advantage of the center's facilities and research and development capabilities. An aerial photo of buildings wind-generated electricity. Companies partner with NREL when they have particular design challenges

  13. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  14. Fabrication and assembly of the ERDA/NASA 100 kilowatt experimental wind turbine

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1976-01-01

    As part of the Energy Research and Development Administration (ERDA) wind-energy program, NASA Lewis Research Center has designed and built an experimental 100-kW wind turbine. The two-bladed turbines drives a synchronous alternator that generates its maximum output of 100 kW of electrical power in a 29-km/hr (18-mph) wind. The design and assembly of the wind turbine were performed at Lewis from components that were procured from industry. The machine was installed atop the tower on September 3, 1975.

  15. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  16. Development and testing of a unique carousel wind tunnel to experimentally determine the effect of gravity and the interparticle force on the physics of wind-blown particles

    NASA Technical Reports Server (NTRS)

    Leach, R. N.; Greeley, Ronald; White, Bruce R.; Iversen, James D.

    1987-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with the interparticle forces but the two are not separable. A wind tunnel that perimits multiphase flow experiments with wind blown particles at variable gravity was built and experiments were conducted at reduced gravity. The equations of particle motion initiation (saltation threshold) with variable gravity were experimentally verified and the interparticle force was separated. A uniquely design Carousel Wind Tunnel (CWT) allows for the long flow distance in a small sized tunnel since the test section if a continuous loop and develops the required turbulent boundary layer. A prototype model of the tunnel where only the inner drum rotates was built and tested in the KC-135 Weightless Wonder 4 zero-g aircraft. Future work includes further experiments with walnut shell in the KC-135 which sharply graded particles of widely varying median sizes including very small particles to see how interparticle force varies with particle size, and also experiments with other aeolian material.

  17. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, S.; Link, H.; LaCava, W.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  18. Survey Of Wind Tunnels At Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bower, Robert E.

    1989-01-01

    Report presented at AIAA 14th Aerodynamic Testing Conference on current capabilities and planned improvements at NASA Langley Research Center's major wind tunnels. Focuses on 14 major tunnels, 8 unique in world, 3 unique in country. Covers Langley Spin Tunnel. Includes new National Transonic Facility (NTF). Also surveys Langley Unitary Plan Wind Tunnel (UPWT). Addresses resurgence of inexpensive simple-to-operate research tunnels. Predicts no shortage of tools for aerospace researcher and engineer in next decade or two.

  19. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo

    This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less

  20. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE PAGES

    Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo

    2017-12-27

    This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less

  1. Enhanced near-surface ozone under heatwave conditions in a Mediterranean island.

    PubMed

    Pyrgou, Andri; Hadjinicolaou, Panos; Santamouris, Mat

    2018-06-15

    Near-surface ozone is enhanced under particular chemical reactions and physical processes. This study showed the seasonal variation of near-surface ozone in Nicosia, Cyprus and focused in summers when the highest ozone levels were noted using a seven year hourly dataset from 2007 to 2014. The originality of this study is that it examines how ozone levels changed under heatwave conditions (defined as 4 consecutive days with daily maximum temperature over 39 °C) with emphasis on specific air quality and meteorological parameters with respect to non-heatwave summer conditions. The influencing parameters had a medium-strong positive correlation of ozone with temperature, UVA and UVB at daytime which increased by about 35% under heatwave conditions. The analysis of the wind pattern showed a small decrease of wind speed during heatwaves leading to stagnant weather conditions, but also revealed a steady diurnal cycle of wind speed reaching a peak at noon, when the highest ozone levels were noted. The negative correlation of NOx budget with ozone was further increased under heatwave conditions leading to steeper lows of ozone in the morning. In summary, this research encourages further analysis into the persistent weather conditions prevalent during HWs stimulating ozone formation for higher temperatures.

  2. Reducing uncertainty in wind turbine blade health inspection with image processing techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyi

    Structural health inspection has been widely applied in the operation of wind farms to find early cracks in wind turbine blades (WTBs). Increased numbers of turbines and expanded rotor diameters are driving up the workloads and safety risks for site employees. Therefore, it is important to automate the inspection process as well as minimize the uncertainties involved in routine blade health inspection. In addition, crack documentation and trending is vital to assess rotor blade and turbine reliability in the 20 year designed life span. A new crack recognition and classification algorithm is described that can support automated structural health inspection of the surface of large composite WTBs. The first part of the study investigated the feasibility of digital image processing in WTB health inspection and defined the capability of numerically detecting cracks as small as hairline thickness. The second part of the study identified and analyzed the uncertainty of the digital image processing method. A self-learning algorithm was proposed to recognize and classify cracks without comparing a blade image to a library of crack images. The last part of the research quantified the uncertainty in the field conditions and the image processing methods.

  3. NWTC Helps Chart the World's Wind Resource Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry, policymakers, and other stakeholders with applied wind resource data, information, maps, and technical assistance. These tools, which emphasize wind resources at ever-increasing heights, help stakeholders evaluate the wind resource and development potential for a specific area.

  4. Qualitatively Assessing Randomness in SVD Results

    NASA Astrophysics Data System (ADS)

    Lamb, K. W.; Miller, W. P.; Kalra, A.; Anderson, S.; Rodriguez, A.

    2012-12-01

    Singular Value Decomposition (SVD) is a powerful tool for identifying regions of significant co-variability between two spatially distributed datasets. SVD has been widely used in atmospheric research to define relationships between sea surface temperatures, geopotential height, wind, precipitation and streamflow data for myriad regions across the globe. A typical application for SVD is to identify leading climate drivers (as observed in the wind or pressure data) for a particular hydrologic response variable such as precipitation, streamflow, or soil moisture. One can also investigate the lagged relationship between a climate variable and the hydrologic response variable using SVD. When performing these studies it is important to limit the spatial bounds of the climate variable to reduce the chance of random co-variance relationships being identified. On the other hand, a climate region that is too small may ignore climate signals which have more than a statistical relationship to a hydrologic response variable. The proposed research seeks to identify a qualitative method of identifying random co-variability relationships between two data sets. The research identifies the heterogeneous correlation maps from several past results and compares these results with correlation maps produced using purely random and quasi-random climate data. The comparison identifies a methodology to determine if a particular region on a correlation map may be explained by a physical mechanism or is simply statistical chance.

  5. Conical Probe Calibration and Wind Tunnel Data Analysis of the Channeled Centerbody Inlet Experiment

    NASA Technical Reports Server (NTRS)

    Truong, Samson Siu

    2011-01-01

    For a multi-hole test probe undergoing wind tunnel tests, the resulting data needs to be analyzed for any significant trends. These trends include relating the pressure distributions, the geometric orientation, and the local velocity vector to one another. However, experimental runs always involve some sort of error. As a result, a calibration procedure is required to compensate for this error. For this case, it is the misalignment bias angles resulting from the distortion associated with the angularity of the test probe or the local velocity vector. Through a series of calibration steps presented here, the angular biases are determined and removed from the data sets. By removing the misalignment, smoother pressure distributions contribute to more accurate experimental results, which in turn could be then compared to theoretical and actual in-flight results to derive any similarities. Error analyses will also be performed to verify the accuracy of the calibration error reduction. The resulting calibrated data will be implemented into an in-flight RTF script that will output critical flight parameters during future CCIE experimental test runs. All of these tasks are associated with and in contribution to NASA Dryden Flight Research Center s F-15B Research Testbed s Small Business Innovation Research of the Channeled Centerbody Inlet Experiment.

  6. Comparison of Transformer Winding Methods for Contactless Power Transfer Systems of Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kaneko, Yasuyoshi; Ehara, Natsuki; Iwata, Takuya; Abe, Shigeru; Yasuda, Tomio; Ida, Kazuhiko

    This paper describes the comparison of the characteristics of double- and single-sided windings of contactless power transfer systems used in electric vehicles. The self-inductance changes with the electric current when the gap length is fixed in single-sided windings. The issue is resolved by maintaining the secondary voltage constant. In the case of double-sided windings, the transformer can be miniaturized in comparison with the single-sided winding transformer. However, the coupling factor is small, and appropriate countermeasures must be adopted to reduce the back leakage flux. The leakage flux is reduced by placing an aluminum board behind the transformer. Thus, the coupling factor increases.

  7. Solar wind and magnetosphere interactions

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Allen, J. H.; Cauffman, D. P.; Feynman, J.; Greenstadt, E. W.; Holzer, R. E.; Kaye, S. M.; Slavin, J. A.; Manka, R. H.; Rostoker, G.

    1979-01-01

    The relationship between the magnetosphere and the solar wind is addressed. It is noted that this interface determines how much of the solar plasma and field energy is transferred to the Earth's environment, and that this coupling not only varies in time, responding to major solar disturbances, but also to small changes in solar wind conditions and interplanetary field directions. It is recommended that the conditions of the solar wind and interplanetary medium be continuously monitored, as well as the state of the magnetosphere. Other recommendations include further study of the geomagnetic tail, tests of Pc 3,4 magnetic pulsations as diagnostics of the solar wind, and tests of kilometric radiation as a remote monitor of the auroral electrojet.

  8. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations.

    PubMed

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena-especially the wind situation-when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31 m s -1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were likely caused by microburst straight-line wind and/or embedded small vortices, rather than tornadoes.

  9. Tony Jimenez | NREL

    Science.gov Websites

    pre-feasibility analysis; wind data analysis; the small wind turbine certification process; economic Regional Test Center effort, analysis of the potential economic impact of large-scale MHK deployment off pre-feasibility analysis. Tony is an engineer officer in the Army Reserve. He has deployed twice

  10. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields

    NASA Astrophysics Data System (ADS)

    Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse

    2016-08-01

    Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the subkilometer resolution of 333 m is necessary to reproduce realistic air pollution patterns in this case of short-range transport over a complex terrain area. Globally, this work contributes to enrich the sparsely documented domain of real nested microscale air pollution modelling. This study dealing with the determination of the proper resolution grid and proper turbulence scheme, is of significant interest to the near-source and complex terrain air quality research community.

  11. Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control

    NASA Astrophysics Data System (ADS)

    Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul

    2017-11-01

    Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  12. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between thesemore » two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.« less

  13. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  14. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  15. Advanced Offshore Wind Energy - Atlantic Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempton, Willett

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing amore » course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.« less

  16. SORD Special Operations and Research Division)

    Science.gov Websites

    ) Climate Summaries Lightning Precipitation Wind Chill Chart Wind Roses Sodar Sodar Data Wind Plot Vertical ) Relative Humidity (%) Max Wind Gust (mph) Pressure (mb) Precipitation (in) Solar Radiation (W/m^2) Battery

  17. Multi-Axis Space Inertia Test Facility inside the Altitude Wind Tunnel

    NASA Image and Video Library

    1960-04-21

    The Multi-Axis Space Test Inertial Facility (MASTIF) in the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Although the Mercury astronaut training and mission planning were handled by the Space Task Group at Langley Research Center, NASA Lewis played an important role in the program, beginning with the Big Joe launch. Big Joe was a singular attempt early in the program to use a full-scale Atlas booster and simulate the reentry of a mockup Mercury capsule without actually placing it in orbit. A unique three-axis gimbal rig was built inside Lewis’ Altitude Wind Tunnel to test Big Joe’s attitude controls. The control system was vital since the capsule would burn up on reentry if it were not positioned correctly. The mission was intended to assess the performance of the Atlas booster, the reliability of the capsule’s attitude control system and beryllium heat shield, and the capsule recovery process. The September 9, 1959 launch was a success for the control system and heatshield. Only a problem with the Atlas booster kept the mission from being a perfect success. The MASTIF was modified in late 1959 to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control.

  18. SeaWinds Global Coverage with Detail of Hurricane Floyd

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA's SeaWinds instrument on the QuikScat satellite, shows wind direction (white streamlines) at a resolution of 25 kilometers (15.5 miles), superimposed on the color image indicating wind speed.

    Over the ocean, the strong (seen in violet) trade winds blow steadily from the cooler subtropical oceans to warm waters just north of the equator. The air rises over these warm waters and sinks in the subtropics at the horse latitudes. Low wind speeds are indicated in blue. In the mid-latitudes, the high vorticity caused by the rotation of the Earth generates the spirals of weather systems. The North Atlantic is dominated by a high-pressure system, whose anti-cyclonic (clockwise) flow creates strong winds blowing parallel to the coast of Spain and Morocco. This creates strong ocean upwelling and cold temperature. Hurricane Floyd, with its high winds (yellow), is clearly visible west of the Bahamas. Tropical depression Gert is seen as it was forming in the tropical mid-Atlantic (as an anti-clockwise spiral); it later developed into a full-blown hurricane.

    Because the atmosphere is largely transparent to microwaves, SeaWinds is able to cover 93 percent of the global oceans, under both clear and cloudy conditions, in a single day, with the capability of a synoptic view of the ocean. The high resolution of the data also gives detailed description of small and intense weather systems, like Hurricane Floyd. The image in the insert is based on data specially produced at 12.5 kilometers (7.7 miles). In the insert, white arrows of wind vector are imposed on the color image of wind speed. The insert represents a 3-degree area occupied by Hurricane Floyd. After these data were acquired, Hurricane Floyd turned north. Its strength and proximity to the Atlantic coast of the U.S. caused the largest evacuation of citizens in U.S. history. Its landfall on September 16, 1999 resulted in severe flooding and devastation in the Carolinas. The high-resolution SeaWinds data provided an opportunity to monitor and study this hurricane.

    NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. JPL is a division of the California Institute of Technology, Pasadena, CA.

  19. Sound and fluctuating disturbance measurements in the settling chamber and test section of a small, Mach 5 wind tunnel

    NASA Technical Reports Server (NTRS)

    Anders, J. B.; Stainback, P. C.; Beckwith, I. E.; Keefe, L. R.

    1975-01-01

    Disturbance measurements were made using a hot-wire anemometer and piezoelectric pressure transducers in the settling chamber and free stream of a small Mach 5 wind tunnel. Results from the two instruments are compared and acoustical disturbances in the settling chamber are discussed. The source of the test-section noise is identified as nozzle-wall waviness at low Reynolds numbers and as eddy-Mach-wave radiation from the turbulent boundary layer on the nozzle wall at high Reynolds numbers.

  20. 77 FR 31839 - Wind and Water Power Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology development and market acceleration and deployment projects from the Program's research and development...

Top