Sample records for small wind system

  1. Study of dispersed small wind systems interconnected with a utility distribution system

    NASA Astrophysics Data System (ADS)

    Curtice, D.; Patton, J.; Bohn, J.; Sechan, N.

    1980-03-01

    Operating problems for various penetrations of small wind systems connected to the distribution system on a utility are defined. Protection equipment, safety hazards, feeder voltage regulation, line losses, and voltage flicker problems are studied, assuming different small wind systems connected to an existing distribution system. To identify hardware deficiencies, possible solutions provided by off-the-shelf hardware and equipment are assessed. Results of the study indicate that existing techniques are inadequate for detecting isolated operation of a small wind system. Potential safety hazards posed by small wind systems are adequately handled by present work procedures although these procedures require a disconnect device at synchronous generator and self commutated inverter small wind systems.

  2. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    NASA Astrophysics Data System (ADS)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  3. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-06-01

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connectmore » a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less

  4. Sistemas Eolicos Pequenos para Generacion de Electridad (Spanish version of Small Wind Electric Systems: A U.S. Consumer's Guide) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-07-01

    This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  5. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  6. A summary of impacts of wind power integration on power system small-signal stability

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Wang, Kewen

    2017-05-01

    Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Tim; Preus, Robert

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  8. FEM Simulation of Small Wind Power Generating System Using PMSG

    NASA Astrophysics Data System (ADS)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it'smore » possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to themore » utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  12. National Wind Technology Center | NREL

    Science.gov Websites

    . Wind Energy Research Wind turbine blade Wind energy research at the NWTC allows for validation and verification of large and small components and wind turbine systems. Photo by Dennis Schroeder / NREL 40935 Wind energy research at the NWTC has pioneered wind turbine components, systems, and modeling methods

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Spanish version of the popular Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a systemmore » to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  14. Wind Fins: Novel Lower-Cost Wind Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David C. Morris; Dr. Will D. Swearingen

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less

  15. Small wind systems field evaluation. Volume I. Program description. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, D.M.; Liske, C.

    1982-07-01

    A Field Evaluation Program (FEP) was developed in 1978 to assist in the commercialization process for small wind systems. The program is described, and a description is provided of the institutional issues and barriers encountered and measures taken to assist the state and local governments in resolving them. Barriers were found to involve not only government regulations, but also the distribution of costs and benefits of wind technology and the rate of diffusion of knowledge about wind technology. The availability of capital to finance the production and purchase of wind machines, and the training of qualified dealers and service personnelmore » were also considerable problem areas. (LEW)« less

  16. Sistemas Eolicos Pequenos para Generacion de Electricidad: Una guia para consumidores en Nuevo Mexico (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2007-09-01

    This Spanish version of the popular Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a systemmore » to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  17. Analyzing the dynamic response of rotating blades in small-scale wind turbines

    NASA Astrophysics Data System (ADS)

    Hsiung, Wan-Ying; Huang, Yu-Ting; Loh, Chin-Hsiung; Loh, Kenneth J.; Kamisky, Robert J.; Nip, Danny; van Dam, Cornelis

    2014-03-01

    The objective of this study was to validate modal analysis, system identification and damage detection of small-scale rotating wind turbine blades in the laboratory and in the field. Here, wind turbine blades were instrumented with accelerometers and strain gages, and data acquisition was achieved using a prototype wireless sensing system. In the first portion of this study conducted in the laboratory, sensors were installed onto metallic structural elements that were fabricated to be representative of an actual wind blade. In order to control the excitation (rotation of the wind blade), a motor was used to spin the blades at controlled angular velocities. The wind turbine was installed on a shaking table for testing under rotation of turbine blades. Data measured by the sensors were recorded while the blade was operated at different speeds. On the other hand, the second part of this study utilized a small-scale wind turbine system mounted on the rooftop of a building. The main difference, as compared to the lab tests, was that the field tests relied on actual wind excitations (as opposed to a controlled motor). The raw data from both tests were analyzed using signal processing and system identification techniques for deriving the model response of the blades. The multivariate singular spectrum analysis (MSSA) and covariance-driven stochastic subspace identification method (SSI-COV) were used to identify the dynamic characteristics of the system. Damage of one turbine blade (loose bolts connection) in the lab test was also conducted. The extracted modal properties for both undamaged and damage cases under different ambient or forced excitations (earthquake loading) were compared. These tests confirmed that dynamic characterization of rotating wind turbines was feasible, and the results will guide future monitoring studies planned for larger-scale systems.

  18. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  19. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    NASA Astrophysics Data System (ADS)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion systems and energy storage in electric power systems and provide useful input to the managerial decision process.

  20. Market Acceleration | Wind | NREL

    Science.gov Websites

    model of a shrouded wind turbine at the 2016 Collegiate Wind Competition. Workforce Development and accurate information that articulates the potential impacts and benefits of wind and water power on education, rural economic development, public power partnerships, and small wind systems. An

  1. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation

    PubMed Central

    Rodriguez Salazar, Leopoldo; Cobano, Jose A.; Ollero, Anibal

    2016-01-01

    This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz. Predictions show a convergence time with a 95% confidence interval of approximately 30 s. PMID:28025531

  2. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation.

    PubMed

    Rodriguez Salazar, Leopoldo; Cobano, Jose A; Ollero, Anibal

    2016-12-23

    This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz . Predictions show a convergence time with a 95% confidence interval of approximately 30 s .

  3. Control of large wind turbine generators connected to utility networks

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1983-01-01

    This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.

  4. Modelling and control of a microgrid including photovoltaic and wind generation

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  5. Navy applications experience with small wind power systems

    NASA Astrophysics Data System (ADS)

    Pal, D.

    1985-05-01

    This report describes the experience gained and lesson learned from the ongoing field evaluations of seven small, 2-to 20-kW wind energy conversion systems (WECS) at Navy installations located in the Southern California desert, on San Nicolas Island, in California, and in Kaneohe Bay, Hawaii. The field tests show that the WECS's bearings and yaw slip-rings are prone to failure. The failures were attributed to the corrosive environment and poor design practices. Based upon the field tests, it is concluded that a reliable WECS must use a permanent magnet alternator without a gearbox and yaw slip-rings that are driven by a fixed pitch wind turbine rotor. The present state-of-the-art in small WECS technology, including environmental concerns, is reviewed. Also presented is how the technology is advancing to improve reliability and availability for effectively using wind power at Navy bases. The field evaluations are continuing on the small WECS in order to develop operation, maintenance, and reliability data.

  6. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other remote wind sensors must operate.

  7. The California Central Coast Research Partnership: Building Relationships, Partnerships and Paradigms for University-Industry Collaboration

    DTIC Science & Technology

    2013-03-25

    funded project, sensors and a control system have been installed onto the 3 kW capacity wind turbine of the Cal Poly Wind Power Research Center, which is...to full operation. This wind turbine is used to educate students for careers in the wind energy industry and related professional fields and to...conduct research into the application of advanced wind turbine technologies from large turbines onto small tur- bines. In this project, a control system

  8. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems

    PubMed Central

    Brunelli, Davide

    2016-01-01

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm3. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions. PMID:26959018

  9. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems.

    PubMed

    Brunelli, Davide

    2016-03-04

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm³. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions.

  10. Estimating the impacts of wind power on power systems—summary of IEA Wind collaboration

    NASA Astrophysics Data System (ADS)

    Holttinen, Hannele

    2008-04-01

    Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power.

  11. Duration Test Report for the Entegrity EW50 Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.; Huskey, A.; Jager, D.

    2012-12-01

    This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  12. DOE/NREL supported wind energy activities in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in villagemore » settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.« less

  13. The Wind Energy in Power Production and Its Importance in Geography Teaching

    ERIC Educational Resources Information Center

    Munkacsy, Bela

    2005-01-01

    Wind energy is an increasingly important factor of the power system in Europe. But it is still just a small part of the significant changes of the new millennium, namely the spreading of micro power and decentralisation of the whole energy system which are very important elements of sustainability. This paper shows the importance of wind power…

  14. Renewable energy projects in the Dominican Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viani, B.

    1997-12-01

    This paper describes a US/Dominican Republic program to develop renewable energy projects in the country. The objective is to demonstrate the commercial viability of renewable energy generation projects, primarily small-scale wind and hydropower. Preliminary studies are completed for three micro-hydro projects with a total capacity of 262 kWe, and two small wind power projects for water pumping. In addition wind resource assessment is ongoing, and professional training and technical assistance to potential investors is ongoing. Projects goals include not less than ten small firms actively involved in installation of such systems by September 1998.

  15. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  16. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  17. Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

    NASA Astrophysics Data System (ADS)

    Suppioni, Vinicius; P. Grilo, Ahda

    2013-10-01

    In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

  18. Torsional vibration characteristic study of the grid-connected DFIG wind turbine

    NASA Astrophysics Data System (ADS)

    Yu, Songtao; Xie, Da; Wu, Wangping; Gu, Chenghong; Li, Furong

    2017-01-01

    This paper studies the torsional vibration characteristics of the grid-connected doubly-fed induction generator (DFIG) wind turbine by small signal analysis method. Firstly a detailed small-signal stability union model of the grid-connected DFIG wind turbine is developed, including the mechanical system and electrical system. To study the dynamic characteristic of the blade, gearbox, low speed and high speed shafts, a three mass shaft model for the mechanical system is adopted. At the same time, small signal models of DFIG, the voltage source converter (VSC) and the transmission line of the electrical system are developed respectively. Then, through calculating the eigenvalues of the state matrix A and the corresponding participation factors, the modal analysis is conducted in the shaft torsional vibration issues. And the impact of the system parameters including the series compensation capacitor, the flat-wave reactor, the PI parameters, especially the speed controller of generator rotor on shaft torsional vibration are discussed. The results show that the speed controller strengthens association between the mechanical system and the electrical system, and also produces a low-frequency oscillation mode.

  19. Wind energy developments in the 20th century

    NASA Technical Reports Server (NTRS)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  20. Black start research of the wind and storage system based on the dual master-slave control

    NASA Astrophysics Data System (ADS)

    Leng, Xue; Shen, Li; Hu, Tian; Liu, Li

    2018-02-01

    Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.

  1. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars lander and perhaps find its own niche in terrestrial applications due to its potential low cost an small size.

  2. Simulation and experiment of a fuzzy logic based MPPT controller for a small wind turbine system

    NASA Astrophysics Data System (ADS)

    Petrila, Diana; Muntean, Nicolae

    2012-09-01

    This paper describes the development of a fuzzy logic based maximum power point tracking (MPPT) strategy for a variable speed wind turbine system (VSWT). For this scope, a fuzzy logic controller (FLC) was described, simulated and tested on a real time "hardware in the loop" wind turbine emulator. Simulation and experimental results show that the controller is able to track the maximum power point for various wind conditions and validate the proposed control strategy.

  3. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo

    This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less

  4. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    DOE PAGES

    Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo

    2017-12-27

    This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less

  5. Wind power systems for individual applications. [electric power supplies for homes

    NASA Technical Reports Server (NTRS)

    Clews, H. M.

    1973-01-01

    A small windpower system is described which is suitable for electrifying a house. The self-contained unit consists of a two kilowatt wind driven generator, a set of 19 storage batteries, a small dc to ac inverter, and a gasoline generator for use as an emergency backup system in case of prolonged calm periods. Cost effectiveness of the electricity generated by this windmill system comes out to about 15 cents per kilowatt hour - assuming a 10 year life for the batteries and a 20 year life for the other components. Some other small windpower systems are also described, and it is shown that a windpowered generator in the 15- to 25-kilowatt output range coupled to a direct heated water storage system is able to heat a typical New England home.

  6. Development and comparisons of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2012-12-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  7. Comparison and application of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2013-07-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  8. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    NASA Astrophysics Data System (ADS)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Morris; Dennis Fitzpatrick

    This final report is issued for the "Supplemental power for the Town of Browning waste-water treatment facility" under the Field Verification Program for Small Wind Turbines Grant. The grant application was submitted on April 16, 1999 wherein the full description of this project is outlined. The project was initially designed to test the Bergy small wind turbines, 10 kW, applicability to residential and commercial applications. The objectives of the project were the following: 1. To verify the performance of the BWC Excel-S/E model wind turbine in an operational application in the fierce winds and severe weather conditions of the Classmore » V winds of the Blackfeet Indian Reservation of Northern Montana. 2. To open up the Blackfeet reservation and northern Montana, to government sponsored, regionally distributed wind generation programs. 3. To examine the natural partnership of wind/electric with water pumping and water purification applications whose requirements parallel the variably available nature of energy produced by wind. 4. To provide data and hands-on experience to citizens, scientists, political leaders, utility operators and Tribal planners with regard to the potential uses of small-capacity, distributed-array wind turbines on the Blackfeet Reservation and in other areas of northern Montana. This project has not been without a few, which were worked out and at the time of this report continue to be worked on with the installation of two new Trace Technologies invertors and a rebuilt one with new technology inside. For the most part when the system has worked it produced power that was used within the wastewater system as was the purpose of this project.« less

  10. Wind energy education projects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, P.; Conlon, T.R.; Arcadi, T.

    Two projects under DOE's Small-Scale Appropriate Energy Technology Grants Program have educated the public in a hands on way about wind energy systems. The first was awarded to Peter Ziegler of Berkeley, California, to design and build a walk-through exhibition structure powered by an adjoining wind-generator. This Wind Energy Pavilion was erected at Fort Funston in the Golden Gate National Recreation Area. It currently serves both as an enclosure for batteries and a variety of monitoring instruments, and as a graphic environment where the public can learn about wind energy. The second project, entitled Wind and Kid Power, involved anmore » educational program for a classroom of first through third grades in the Vallejo, Unified School District. The students studied weather, measured wind speeds and built small models of wind machines. They also built a weather station, and learned to use weather instruments. The grant funds enabled them to actually build and erect a Savonius wind machine at the Loma Vista Farm School.« less

  11. Developing wind and/or solar powered crop irrigation systems for the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Some small scale, off-grid irrigation systems (less than 2.5 ha) that are powered by wind or solar energy are cost effective, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. It was found that partitioning t...

  12. Navy Applications Experience with Small Wind Power Systems

    DTIC Science & Technology

    1985-05-01

    present state-of-the-art in small WECS technology, including environmental concerns, is reviewed. Also presented is how the technology is advancing to...environmental concerns, is reviewed. Also presented is how the technology is advancing to improve reliability and avail- ability for effectively using...VAWT technology is still in its early stages of development. The horizontal-axis wind turbine (HAWT) technology has advanced to third and fourth

  13. New York State Police remote communications site small wind energy conversion system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-03-01

    This report concludes a year-long demonstration and study of the use of a North Wind Model HR2 wind energy conversion system to supply the power for a remote New York State Police microwave repeater site at Mt. Morris in the Adirondack Mountains. Data were collected on a multi-channel digital strip chart recorder which provided a printout of the real-time relation between windspeed, power output, battery capacity and voltage, and contribution from backup power. These data proved that the site could be run on wind power alone and predictions can now be made on the performance of an HR2 or similarmore » wind system at other sites. 5 figs., 1 tab.« less

  14. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less

  15. Benchmarking U.S. Small Wind Costs with the Distributed Wind Taxonomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Poehlman, Eric A.

    The objective of this report is to benchmark costs for small wind projects installed in the United States using a distributed wind taxonomy. Consequently, this report is a starting point to help expand the U.S. distributed wind market by informing potential areas for small wind cost-reduction opportunities and providing a benchmark to track future small wind cost-reduction progress.

  16. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    NASA Astrophysics Data System (ADS)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  17. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    PubMed

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.

  18. Comparison of Transformer Winding Methods for Contactless Power Transfer Systems of Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kaneko, Yasuyoshi; Ehara, Natsuki; Iwata, Takuya; Abe, Shigeru; Yasuda, Tomio; Ida, Kazuhiko

    This paper describes the comparison of the characteristics of double- and single-sided windings of contactless power transfer systems used in electric vehicles. The self-inductance changes with the electric current when the gap length is fixed in single-sided windings. The issue is resolved by maintaining the secondary voltage constant. In the case of double-sided windings, the transformer can be miniaturized in comparison with the single-sided winding transformer. However, the coupling factor is small, and appropriate countermeasures must be adopted to reduce the back leakage flux. The leakage flux is reduced by placing an aluminum board behind the transformer. Thus, the coupling factor increases.

  19. Small and Shaping the Future Energy Eco-house System

    NASA Astrophysics Data System (ADS)

    Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki

    2010-11-01

    The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.

  20. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    NASA Astrophysics Data System (ADS)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake sensing data using UAVs in formation flight. This has been achieved and well documented before in manned aircraft but very little work has been done on UAV wake sensing especially during flight testing. This document describes the development and flight testing of small unmanned aerial system (UAS) for wind and wake sensing purpose including a Ground Control Station (GCS) and UAVs. This research can be stated in four major components. Firstly, formation flight was obtained by integrating a formation flight controller on the WVU Phastball Research UAV aircraft platform from the Flight Control Systems Laboratory (FCSL) at West Virginia University (WVU). Second, a new approach to wind estimation using an Unscented Kalman filter (UKF) is discussed along with results from flight data. Third, wake modeling within a simulator and wake sensing during formation flight is shown. Finally, experimental results are used to discuss the "sweet spot" for energy harvesting in formation flight, a novel approach to cooperative wind estimation, and gust suppression control for a follower aircraft in formation flight.

  1. Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.; Flowers, L.; Kelly, M.

    2009-05-01

    As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program'smore » objectives, goals, approach, and results.« less

  2. Sino-American cooperation for rural electrification in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, W.L.; Tsuo, Y.S.; Taylor, R.

    1997-12-01

    This paper discusses primarily two different renewable energy programs which are in progress in China. One is in Gansu province, based on a solar home system project. This project is stressing a sustainable market development, provision of small lighting systems for residential and small schools, and water pumping and telecommunications support. It seeks involvement of 600 households as a minimum over 18 months. The second project is a very aggressive renewable energy project in Inner Mongolia, where there are excellent wind and solar resources, and where there are already 110,000 small wind turbines installed, in addition to more than 9more » hybrid power systems for villages. These programs have major involvement from the Chinese government and industry, with some guidance and support from the USA.« less

  3. Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinsik; Jang, Gilsoo; Muljadi, Eduard

    For the fixed-gain inertial control of wind power plants (WPPs), a large gain setting provides a large contribution to supporting system frequency control, but it may cause over-deceleration for a wind turbine generator that has a small amount of kinetic energy (KE). Further, if the wind speed decreases during inertial control, even a small gain may cause over-deceleration. This paper proposes a stable inertial control scheme using adaptive gains for a doubly fed induction generator (DFIG)-based WPP. The scheme aims to improve the frequency nadir (FN) while ensuring stable operation of all DFIGs, particularly when the wind speed decreases duringmore » inertial control. In this scheme, adaptive gains are set to be proportional to the KE stored in DFIGs, which is spatially and temporally dependent. To improve the FN, upon detecting an event, large gains are set to be proportional to the KE of DFIGs; to ensure stable operation, the gains decrease with the declining KE. The simulation results demonstrate that the scheme improves the FN while ensuring stable operation of all DFIGs in various wind and system conditions. Further, it prevents over-deceleration even when the wind speed decreases during inertial control.« less

  4. Thirteenth Annual Acquisition Research Symposium. Acquisition Research: Creating Synergy for Informed Change. Volume 1

    DTIC Science & Technology

    2016-04-30

    renewable energy projects with a focus on novel onshore/offshore and small/large scale wind turbine designs for expanding their operational range and...ROA to estimate the values of maintenance options created by the implementation of PHM in wind turbines . When an RUL is predicted for a subsystem...predicted for the system. The section titled Example— Wind Turbine With an Outcome-Based Contract presents a case study for a PHM enabled wind

  5. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting

    PubMed Central

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-01-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518

  6. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    NASA Astrophysics Data System (ADS)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates risk, well-being and energy based indices to provide realistic cost/reliability measures of utilizing renewable energy. The concepts presented and the examples illustrated in this thesis will help system planners to decide on appropriate installation sites, the types and mix of different energy generating sources, the optimum operating policies, and the optimum generation expansion plans required to meet increasing load demands in small isolated power systems containing photovoltaic and wind energy sources.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    Suzanne Tegen made this presentation at the 2017 Small Wind Conference in Bloomington, Minnesota. It provides an overview of DOE-sponsored small wind products, testing, and support; an example of a Regional Resource Center defending distributed wind; the recently published Distributed Wind Taxonomy; the dWind model and recent results; and other recent DOE and NREL publications related to small and distributed wind.

  8. The Potential of Combined Heat and Power Generation, Wind Power Generation and Load Management Techniques for Cost Reduction in Small Electricity Supply Systems.

    NASA Astrophysics Data System (ADS)

    Bass, Jeremy Hugh

    Available from UMI in association with The British Library. Requires signed TDF. An evaluation is made of the potential fuel and financial savings possible when a small, autonomous diesel system sized to meet the demands of an individual, domestic consumer is adapted to include: (1) combined heat and power (CHP) generation, (2) wind turbine generation, (3) direct load control. The potential of these three areas is investigated by means of time-step simulation modelling on a microcomputer. Models are used to evaluate performance and a Net Present Value analysis used to assess costs. A cost/benefit analysis then enables those areas, or combination of areas, that facilitate and greatest savings to be identified. The modelling work is supported by experience gained from the following: (1) field study of the Lundy Island wind/diesel system, (2) laboratory testing of a small diesel generator set, (3) study of a diesel based CHP unit, (4) study of a diesel based direct load control system, (5) statistical analysis of data obtained from the long-term monitoring of a large number of individual household's electricity consumption. Rather than consider the consumer's electrical demand in isolation, a more flexible approach is adopted, with consumer demand being regarded as the sum of primarily two components: a small, electricity demand for essential services and a large, reschedulable demand for heating/cooling. The results of the study indicate that: (1) operating a diesel set in a CHP mode is the best strategy for both financial and fuel savings. A simple retrofit enables overall conversion efficiencies to be increased from 25% to 60%, or greater, at little cost. (2) wind turbine generation in association with direct load control is a most effective combination. (3) a combination of both the above areas enables greatest overall financial savings, in favourable winds resulting in unit energy costs around 20% of those of diesel only operation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huskey, A.; Bowen, A.; Jager, D.

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certificationmore » requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.« less

  10. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  11. Smart structure for small wind turbine blade

    NASA Astrophysics Data System (ADS)

    Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.

    2013-08-01

    Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.

  12. Nanomaterials Commercialization Center

    DTIC Science & Technology

    2013-02-01

    turbine manufacturer). ln the wind energy area , customers clearly stated that the major short-tenn technical need for toughening is in the area of...interactions: • The wind energy composites market for turbine blades is an extremely high growth, high potential opportunity. Potential value ofnano...Wire Takeup System (MTS), with a winding pitch modified to meet the needs of the small diameter wire (- 100J.1m) produced in this reel-to-reelline

  13. Task Force on Energy Systems for Forward/Remote Operating Bases

    DTIC Science & Technology

    2016-08-01

    military use While potentially beneficial, concerns with small wind turbines include reliability, visibility, and interference with...Power density is also sometimes used to refer to power per unit area (e.g., W/m2) of an antenna, solar panel, or cross-section of a wind turbine . A...GE Power & Water plans to implement additive manufacturing to create parts used in gas and wind turbines . Additive manufacturing techniques have

  14. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  15. NREL technical assistance to Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilienthal, P.

    1997-12-01

    This paper describes assistance to Argentina from the National Renewable Energy Laboratory which has touched on four programs: tariff analysis for rural concessions programs; wind/diesel hybrid retrofits in Patagonia; small hybrid systems designs for rural schools; an assessment of wind resources. The paper expands briefly on the first two points.

  16. Performance of a small wind powered water pumping system

    USDA-ARS?s Scientific Manuscript database

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  17. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    NASA Astrophysics Data System (ADS)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  18. Robert Preus | NREL

    Science.gov Websites

    | 303-384-7284 Robert's expertise is in design and manufacture of small and midsized wind generators certification support for small wind manufacturers. Robert has 28 years of experience in wind energy. He led the section for wind in the National Electrical Code. In 2010, Robert received the Small Wind Advocate award

  19. Flow interaction of diffuser augmented wind turbines

    NASA Astrophysics Data System (ADS)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, Larry

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  1. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  2. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling.more » Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.« less

  3. The 13-inch magnetic suspension and balance system wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, William G., Jr.; Dress, David A.

    1989-01-01

    NASA Langley has a small, subsonic wind tunnel in use with the 13-inch Magnetic Suspension and Balance System (MSBS). The tunnel is capable of speeds up to Mach 0.5. This report presents tunnel design and construction details. It includes flow uniformity, angularity, and velocity fluctuation data. It also compares experimental Mach number distribution data with computed results for the General Electric Streamtube Curvature Program.

  4. Economic analysis of small wind-energy conversion systems

    NASA Astrophysics Data System (ADS)

    Haack, B. N.

    1982-05-01

    A computer simulation was developed for evaluating the economics of small wind energy conversion systems (SWECS). Input parameters consisted of initial capital investment, maintenance and operating costs, the cost of electricity from other sources, and the yield of electricity. Capital costs comprised the generator, tower, necessity for an inverter and/or storage batteries, and installation, in addition to interest on loans. Wind data recorded every three hours for one year in Detroit, MI was employed with a 0.16 power coefficient to extrapolate up to hub height as an example, along with 10 yr of use variances. A maximum return on investment was found to reside in using all the energy produced on site, rather than selling power to the utility. It is concluded that, based on a microeconomic analysis, SWECS are economically viable at present only where electric rates are inordinately high, such as in remote regions or on islands.

  5. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, A.; Ferguson, T.

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysismore » and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.« less

  6. Structural health monitoring of wind turbine blade using fiber Bragg grating sensors and fiber optic rotary joint

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ni, Y. Q.; Ye, X. W.; Yang, H. X.; Zhu, S.

    2012-04-01

    Wind energy utilization as a reliable energy source has become a large industry in the last 20 years. Nowadays, wind turbines can generate megawatts of power and have rotor diameters that are on the order of 100 meters in diameter. One of the key components in a wind turbine is the blade which could be damaged by moisture absorption, fatigue, wind gusts or lighting strikes. The wind turbine blades should be routinely monitored to improve safety, minimize downtime, lower the risk of sudden breakdowns and associated huge maintenance and logistics costs, and provide reliable power generation. In this paper, a real-time wind turbine blade monitoring system using fiber Bragg grating (FBG) sensors with the fiber optic rotary joint (FORJ) is proposed, and applied to monitor the structural responses of a 600 W small scale wind turbine. The feasibility and effectiveness of the FORJ is validated by continuously transmitting the optical signals between the FBG interrogator at the stationary side and the FBG sensors on the rotating part. A comparison study between the measured data from the proposed system and those from an IMote2-based wireless strain measurement system is conducted.

  7. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  8. Lessons learned from hybrid wind/PV village power system installations in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergey, M.

    1995-09-01

    In the last three years eight decentralized village power systems utilizing small wind turbines as the primary energy source have been installed in rural Mexico. Hybrid wind/PV systems have been installed in five States and by three vendors. Seven out of the eight systems, which range i size from 9.3--71.2kW in combined wind and PV capacity, utilize one or more 10 kW wind turbines. All of these installations have battery banks and use static inverters to provide AC power for distribution to homes, businesses, and community facilities. On all but one of the systems a diesel generator is used tomore » provide back-up power. This paper attempts to summarize the range of costs and economics, performance, and operational experiences for all eight installations. Several of the systems are monitored for performance, including one that is extensively monitored under a cooperative program between the Instituto de Investigaciones Electricas and Sandia National Laboratory. Lessons learned from these systems provide insights that may allow future village power systems of this architecture to be installed at lower costs, to be operated more effectively and efficiently, and to be better able to satisfy customer requirements.« less

  9. The neutral wind 'flywheel' as a source of quiet-time, polar-cap currents

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Walterscheid, R. L.; Killeen, T. L.

    1985-01-01

    The neutral wind pattern over the summer polar cap can be driven by plasma convection to resemble the convection pattern. For a north-south component of the interplanetary magnetic field Bz directed southward, the wind speeds in the conducting E-region can become approximately 25 percent of the electric field drift speeds. If convection ceases, this neutral wind distribution can drive a significant polar cap current system for approximately 6 hours. The currents are reversed from those driven by the electric fields for southward Bz, and the Hall and field-aligned components of the current system resemble those observed during periods of northward Bz. The current magnitudes are similar to those observed during periods of small, northward Bz; however, observations indicate that electric fields often contribute to the currents as much as, or more than, the neutral winds.

  10. Grumman WS33 wind system: prototype construction and testing, Phase II technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, F.M.; Henton, P.; King, P.W.

    1980-11-01

    The prototype fabrication and testing of the 8 kW small wind energy conversion system are reported. The turbine is a three-bladed, down-wind machine designed to interface directly with an electrical utility network. The machine as finally fabricated is rated at 15 kW at 24 mpH and peak power of 18 kW at 35 mph. Utility compatible electrical power is generated in winds between a cut-in speed of 9 mph and a cut-out speed of 35 mph by using the torque characteristics of the unit's induction generator combined with the rotor aerodynamics to maintain essentially constant speed. Inspection procedures, pre-delivery testing,more » and a cost analysis are included.« less

  11. Eleventh Street and Bronx frontier: urban pioneering with wind power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwood, D.L.

    1981-01-01

    Wind energy is being applied to electricity generation at two locations in New York City. These small-scale systems (2 KW and 40 KW) are pioneering efforts contrasting with large wind turbines (such as the 2 MW experimental DOE-NASA unit in the Blue Ridge Mountains near Boone, N.C.), in that they are located in an urban setting, and represent initiatives by neighborhood associations and community groups rather than by government or utilities. 54 refs.

  12. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well asmore » on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.« less

  13. Research on the space-borne coherent wind lidar technique and the prototype experiment

    NASA Astrophysics Data System (ADS)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  14. Kinetic Interactions Between the Solar Wind and Lunar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Fatemi, S.; Turner, D. L.; Holmstrom, M.

    2016-12-01

    Despite their relatively weak strength, small scale, and incoherence, lunar magnetic anomalies can affect the incoming solar wind flow. The plasma interaction with lunar magnetic fields drives significant compressions of the solar wind plasma and magnetic field, deflections of the incoming flow, and a host of plasma waves ranging from the ULF to the electrostatic range. Recent work suggests that the large-scale features of the solar wind-magnetic anomaly interactions may be driven by ion-ion instabilities excited by reflected ions, raising the possibility that they are analogous to ion foreshock phenomena. Indeed, despite their small scale, many of the phenomena observed near lunar magnetic anomalies appear to have analogues in the foreshock regions of terrestrial planets. We discuss the charged particle distributions, fields, and waves observed near lunar magnetic anomalies, and place them in a context with the foreshocks of the Earth, Mars, and other solar system objects.

  15. Developing stochastic model of thrust and flight dynamics for small UAVs

    NASA Astrophysics Data System (ADS)

    Tjhai, Chandra

    This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.

  16. Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories

    DTIC Science & Technology

    2016-04-01

    ARL-TR-7642 ● APR 2016 US Army Research Laboratory Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms... Wind Profiles and Modeling Their Effects on Small-Arms Trajectories by Timothy A Fargus Weapons and Materials Research Directorate, ARL...Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  17. 78 FR 19183 - Notice of Funding Availability for the Rural Energy for America Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... project contains a wind and solar photovoltaic components. The wind system will cost $30,000 (75 percent... facilities. For example, a rural small business owner owns five retail stores and wishes to install solar... solar panels on the five stores. However, if this same owner wishes to install solar panels on three of...

  18. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliablemore » or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.« less

  19. Wind power demonstration and siting problems. [for recharging electrically driven automobiles

    NASA Technical Reports Server (NTRS)

    Bergey, K. H.

    1973-01-01

    Technical and economic feasibility studies on a small windmill to provide overnight charging for an electrically driven car are reported. The auxiliary generator provides power for heating and cooling the vehicle which runs for 25 miles on battery power alone, and for 50 miles with the onboard charger operating. The blades for this windmill have a diameter of 12 feet and are coupled through to a conventional automobile alternator so that they are able to completely recharge car batteries in 8 hours. Optimization of a windmill/storage system requires detailed wind velocity information which permits rational sitting of wind power system stations.

  20. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined inmore » terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.« less

  1. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Power and Energy.

    DTIC Science & Technology

    1980-12-22

    Vertical Axis Turbine (3.4.2) A vertical axis ( Darrieus ) turbine has the following advantages over a horizontal turbine : I. Accepts wind from all...would be too large, while wind and solar could only achieve capacity factors of 40 to 50 percent. Alcohol fue’s in gas turbines would be too expensive...or biomass base load system. Wind would not be a good choice to supply such a small toad cencer, especially in Nevada/Utah, since the turbine would

  2. Low-cost wind tunnel for aerosol inhalation studies.

    PubMed

    Chung, I P; Dunn-Rankin, D; Phalen, R F; Oldham, M J

    1992-04-01

    A low-cost wind tunnel for aerosol studies has been designed, constructed, and evaluated for aerosol uniformity with 2- and 0.46-micron particles. A commercial nebulizer was used to produce the suspended test particles, and a custom-made, four-hole injector was used to introduce the aerosol into the wind tunnel. A commercially available optical particle counter measured the particle concentration. Performance tests of the velocity profile and particle concentration distribution at two flow rates showed that the system performs well for small particles.

  3. A System for Measuring the Sway of the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Lane, John; Simmons, Stephen; Ihlefeld, Curtis

    2013-01-01

    A system was developed to measure the sway of the Vehicle Assembly Building (VAB) at Kennedy Space Center. This system was installed in the VAB and gathered more than one total year of data. The building movement was correlated with measurements provided by three wind towers in order to determine the maximum deflection of the building during high-wind events. The VAB owners were in the process of obtaining new platforms for use in assembling very tall rockets when analysis of the VAB showed that a high wind could move the building sufficiently that an upper platform might impact a rocket. The problem arises because safety requires a relatively small gap between the platform and the rocket, while a large enough gap is needed to ensure that stacking tolerances prevent contact between the rocket and the platform. This only leaves an inch or two (approximately 2 to 5 cm) of total clearance, so when the analysis showed that more than a couple of inches of motion could occur in a high wind, there was a potential for damaging the rocket. The KSC Applied Physics Laboratory was asked to install a system in the VAB that could measure the motion of the building in high winds to determine the actual building sway. The motion of the VAB roof under wind load was measured optically, and under analysis, it was determined that a relatively large-aperture optical system would be required to reduce diffraction effects to less than a small fraction of an inch (approximately mm) at a distance of 500 ft (˜150 m). A 10-in. (approximately 250 mm) telescope was placed on the floor of the building, looking at the ceiling. On the ceiling, a flat plate with three white LEDs was mounted in an "L" shape, such that the telescope was essentially looking at three stars. Software was written to track the motion of these three points using an image processing system. This provided a better than 1/10-in. (approximately 2.5-mm) 2D measurement faster than once a second. Data was downloaded once a month for comparison with the wind tower data. The system was fully operational and provided enough data to show that the VAB will only move 1 in. (approximately 2.5 cm) at the ceiling under 70-knot winds. Adjustable platforms are not required.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered,more » with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).« less

  5. Laser angle sensor

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.

    1985-01-01

    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.

  6. Small-Signal Analysis of Autonomous Hybrid Distributed Generation Systems in Presence of Ultracapacitor and Tie-Line Operation

    NASA Astrophysics Data System (ADS)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2010-07-01

    This paper presents small-signal analysis of isolated as well as interconnected autonomous hybrid distributed generation system for sudden variation in load demand, wind speed and solar radiation. The hybrid systems comprise of different renewable energy resources such as wind, photovoltaic (PV) fuel cell (FC) and diesel engine generator (DEG) along with the energy storage devices such as flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitors (UC) as an alternative energy storage element and interconnection of hybrid systems through tie-line is incorporated into the system for improved performance. A comparative assessment of deviation of frequency profile for different hybrid systems in the presence of different storage system combinations is carried out graphically as well as in terms of the performance index (PI), ie integral square error (ISE). Both qualitative and quantitative analysis reflects the improvements of the deviation in frequency profiles in the presence of the ultracapacitors (UC) as compared to other energy storage elements.

  7. Application of voltage oriented control technique in a fully renewable, wind powered, autonomous system with storage capabilities

    NASA Astrophysics Data System (ADS)

    Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.

    2017-02-01

    The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.

  8. Distributed Wind Market Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, centralmore » station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.« less

  9. 78 FR 70349 - Proposed Revision of Policy for Incorporating New Test Standards Into the List of Appropriate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Use with Low Energy Products. UL 6142 Small Wind Turbine Systems. UL 6420 Equipment Used for System... Seasonal-Use Cord-Connected Wiring Devices. UL 2560 Emergency Call Systems for Assisted Living and...

  10. Real time implementation and control validation of the wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Sattar, Adnan

    The purpose of the thesis is to analyze dynamic and transient characteristics of wind energy conversion systems including the stability issues in real time environment using the Real Time Digital Simulator (RTDS). There are different power system simulation tools available in the market. Real time digital simulator (RTDS) is one of the powerful tools among those. RTDS simulator has a Graphical User Interface called RSCAD which contains detail component model library for both power system and control relevant analysis. The hardware is based upon the digital signal processors mounted in the racks. RTDS simulator has the advantage of interfacing the real world signals from the external devices, hence used to test the protection and control system equipments. Dynamic and transient characteristics of the fixed and variable speed wind turbine generating systems (WTGSs) are analyzed, in this thesis. Static Synchronous Compensator (STATCOM) as a flexible ac transmission system (FACTS) device is used to enhance the fault ride through (FRT) capability of the fixed speed wind farm. Two level voltage source converter based STATCOM is modeled in both VSC small time-step and VSC large time-step of RTDS. The simulation results of the RTDS model system are compared with the off-line EMTP software i.e. PSCAD/EMTDC. A new operational scheme for a MW class grid-connected variable speed wind turbine driven permanent magnet synchronous generator (VSWT-PMSG) is developed. VSWT-PMSG uses fully controlled frequency converters for the grid interfacing and thus have the ability to control the real and reactive powers simultaneously. Frequency converters are modeled in the VSC small time-step of the RTDS and three phase realistic grid is adopted with RSCAD simulation through the use of optical analogue digital converter (OADC) card of the RTDS. Steady state and LVRT characteristics are carried out to validate the proposed operational scheme. Simulation results show good agreement with real time simulation software and thus can be used to validate the controllers for the real time operation. Integration of the Battery Energy Storage System (BESS) with wind farm can smoothen its intermittent power fluctuations. The work also focuses on the real time implementation of the Sodium Sulfur (NaS) type BESS. BESS is integrated with the STATCOM. The main advantage of this system is that it can also provide the reactive power support to the system along with the real power exchange from BESS unit. BESS integrated with STATCOM is modeled in the VSC small time-step of the RTDS. The cascaded vector control scheme is used for the control of the STATCOM and suitable control is developed to control the charging/discharging of the NaS type BESS. Results are compared with Laboratory standard power system software PSCAD/EMTDC and the advantages of using RTDS in dynamic and transient characteristics analyses of wind farm are also demonstrated clearly.

  11. Design of Small MEMS Microphone Array Systems for Direction Finding of Outdoors Moving Vehicles

    PubMed Central

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-01-01

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636

  12. Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.

    PubMed

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-03-05

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise.

  13. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    NASA Astrophysics Data System (ADS)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  14. Multi-hole pressure probes to wind tunnel experiments and air data systems

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Shmakov, A. S.

    2017-10-01

    The problems to develop a multihole pressure system to measure flow angularity, Mach number and dynamic head for wind tunnel experiments or air data systems are discussed. A simple analytical model with separation of variables is derived for the multihole spherical pressure probe. The proposed model is uniform for small subsonic and supersonic speeds. An error analysis was performed. The error functions are obtained, allowing to estimate the influence of the Mach number, the pitch angle, the location of the pressure ports on the uncertainty of determining the flow parameters.

  15. Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models

    NASA Astrophysics Data System (ADS)

    Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2018-06-01

    Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.

  16. Development of a light-weight, wind-turbine-rotor-based data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, D.E.; Rumsey, M.; Robertson, P.

    1997-12-01

    Wind-energy researchers at Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) are developing a new, light-weight, modular system capable of acquiring long-term, continuous time-series data from current-generation small or large, dynamic wind-turbine rotors. Meetings with wind-turbine research personnel at NREL and SNL resulted in a list of the major requirements that the system must meet. Initial attempts to locate a commercial system that could meet all of these requirements were not successful, but some commercially available data acquisition and radio/modem subsystems that met many of the requirements were identified. A time synchronization subsystem and a programmable logicmore » device subsystem to integrate the functions of the data acquisition, the radio/modem, and the time synchronization subsystems and to communicate with the user have been developed at SNL. This paper presents the data system requirements, describes the four major subsystems comprising the system, summarizes the current status of the system, and presents the current plans for near-term development of hardware and software.« less

  17. A magnetic tether system to investigate visual and olfactory mediated flight control in Drosophila.

    PubMed

    Duistermars, Brian J; Frye, Mark

    2008-11-21

    It has been clear for many years that insects use visual cues to stabilize their heading in a wind stream. Many animals track odors carried in the wind. As such, visual stabilization of upwind tracking directly aids in odor tracking. But do olfactory signals directly influence visual tracking behavior independently from wind cues? Also, the recent deluge of research on the neurophysiology and neurobehavioral genetics of olfaction in Drosophila has motivated ever more technically sophisticated and quantitative behavioral assays. Here, we modified a magnetic tether system originally devised for vision experiments by equipping the arena with narrow laminar flow odor plumes. A fly is glued to a small steel pin and suspended in a magnetic field that enables it to yaw freely. Small diameter food odor plumes are directed downward over the fly's head, eliciting stable tracking by a hungry fly. Here we focus on the critical mechanics of tethering, aligning the magnets, devising the odor plume, and confirming stable odor tracking.

  18. Wind Turbine Bearing Diagnostics Based on Vibration Monitoring

    NASA Astrophysics Data System (ADS)

    Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.

    2018-05-01

    Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.

  19. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  20. Aerodynamic study of a stall regulated horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Constantinescu, S. G.; Crunteanu, D. E.; Niculescu, M. L.

    2013-10-01

    The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of small stall regulated wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. During the running stall regulated wind turbines, due to the extremely broad range of the wind velocity, the angle of attack can reach high values and some regions of the blade will show stall and post-stall behavior. This paper deals with stall and post-stall regimes because they can induce significant vibrations, fatigue and even the wind turbine failure.

  1. Grumman Windstream 25 wind turbine generator. Final test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, J.H.

    1980-03-01

    The Grumman Windstream 25 Wind Turbine Generator (WTG) tested at the Rocky Flats Small Wind Systems Test Center (WSTC) was one of nineteen Windstream 25's manufactured by Grumman Energy Systems, Inc. The machine was considered a first generation prototype and is no longer being produced. While being tested at the WSTC, the Windstream 25 was still in a developmental stage, and operational problems were experienced during its testing period. It is important to underscore, however, that problems encountered during testing of the machine created valuable gains in experience and data for both Rocky Flats and Grumman personnel. It is believedmore » these gains have contributed significantly to further development of Grumman WTG's.« less

  2. Active Power Control of Waked Wind Farms: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul A; van Wingerden, Jan-Willem; Pao, Lucy

    Active power control can be used to balance the total power generated by wind farms with the power consumed on the electricity grid. With the increasing penetration levels of wind energy, there is an increasing need for this ancillary service. In this paper, we show that the tracking of a certain power reference signal provided by the transmission system operator can be significantly improved by using feedback control at the wind farm level. We propose a simple feedback control law that significantly improves the tracking behavior of the total power output of the farm, resulting in higher performance scores. Themore » effectiveness of the proposed feedback controller is demonstrated using high-fidelity computational fluid dynamics simulations of a small wind farm.« less

  3. Global assimilation of X Project Loon stratospheric balloon observations

    NASA Astrophysics Data System (ADS)

    Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.

    2017-12-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  4. Global Assimilation of X Project Loon Stratospheric Balloon Observations

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Schoeberl, Mark R.; Pawson, Steven; Candido, Salvatore; Carver, Robert W.

    2017-01-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  5. Small Arms - Hand and Shoulder Weapons and Machine Guns

    DTIC Science & Technology

    2016-06-24

    temperature with a wind speed less than 8 kilometers per hour (km/hr) (5 miles per hour (mph)) with no sunlight on the barrel or receiver. e...the aiming of the mount/weapon system. d. Meteorological Conditions. (1) Ensure that the velocity of the transverse wind is no greater than 8...km/hr (5 mph) or varies by more than 4 km/hr (2.5 mph); wind parallel to the LOF should not exceed 16 km/hr (10 mph) or vary by more than 8 km/hr (5

  6. A simulation environment for assisting system design of coherent laser doppler wind sensor for active wind turbine pitch control

    NASA Astrophysics Data System (ADS)

    Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm

    2013-05-01

    In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.

  7. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  8. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  9. An impact analysis of a micro wind system. [windpower for recovering magnesium from stack dust

    NASA Technical Reports Server (NTRS)

    Zimmer, R. P.; Robinette, S. L.; Mason, R. M.; Schaffer, W. A.

    1975-01-01

    A process for the recovery of steel mill stack dust has been developed and is being used to recover secondary metals by a small company in Georgia. The process is energy intensive and wind generators were studied as a means of supplying energy for part of the recovery process. Some of the results of this study will be presented.

  10. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.

    PubMed

    Ma, Ping; Lien, Fue-Sang; Yee, Eugene

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.

  11. Infrasonic wind-noise reduction by barriers and spatial filters.

    PubMed

    Hedlin, Michael A H; Raspet, Richard

    2003-09-01

    This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.

  12. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  13. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  14. On the impact index of synchronous generator displaced by DFIG on power system small-signal stability

    NASA Astrophysics Data System (ADS)

    Bi, J. T.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    As the maturity of wind power technology and the ageing and retirement of conventional synchronous generators, the displacement of synchronous generators by wind power generators would be a trend in the next few decades. The power system small-signal angular stability caused by the displacement is an urgent problem to be studied. The displacement of the SG by the DFIG includes withdrawing the dynamic interactions of the displaced SG and adding the dynamic interactions of the displacing DFIG. Based on this fact, a new index is proposed to predict the impact of the SG to be displaced by the DFIG on power system oscillation modes. The sensitivity index of the oscillation modes to the constant inertia of the displaced SGs, proposed in early literatures to estimate the dynamic impact of the SG being displaced by the DFIG, is also compared with the proposed index. The modified New England power system is adopted to show various results and conclusions. The proposed index can correctly identify the most dangerous and beneficial displacement to power system small-signal angular stability, and is very useful in practical applications.

  15. Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.

    2012-04-01

    We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.

  16. Impedance-based structural health monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Pitchford, Corey; Grisso, Benjamin L.; Inman, Daniel J.

    2007-04-01

    Wind power is a fast-growing source of non-polluting, renewable energy with vast potential. However, current wind turbine technology must be improved before the potential of wind power can be fully realized. Wind turbine blades are one of the key components in improving this technology. Blade failure is very costly because it can damage other blades, the wind turbine itself, and possibly other wind turbines. A successful damage detection system incorporated into wind turbines could extend blade life and allow for less conservative designs. A damage detection method which has shown promise on a wide variety of structures is impedance-based structural health monitoring. The technique utilizes small piezoceramic (PZT) patches attached to a structure as self-sensing actuators to both excite the structure with high-frequency excitations, and monitor any changes in structural mechanical impedance. By monitoring the electrical impedance of the PZT, assessments can be made about the integrity of the mechanical structure. Recently, advances in hardware systems with onboard computing, including actuation and sensing, computational algorithms, and wireless telemetry, have improved the accessibility of the impedance method for in-field measurements. This paper investigates the feasibility of implementing such an onboard system inside of turbine blades as an in-field method of damage detection. Viability of onboard detection is accomplished by running a series of tests to verify the capability of the method on an actual wind turbine blade section from an experimental carbon/glass/balsa composite blade developed at Sandia National Laboratories.

  17. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    NASA Astrophysics Data System (ADS)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  18. Observations of Near-Surface Relative Humidity in a Wind Turbine Array Boundary Layer Using an Instrumented Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Adkins, K. A.; Sescu, A.

    2016-12-01

    Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.

  19. Prototype Power and Communications System for EeV Cosmic Rays Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, James S.

    2010-08-31

    An analysis of improving the power output of small wind turbines by adding a venturi housing was done. Including the effects of back pressure developed at the input to the housing lowers the efficiency gain from a factor of 5 to a factor of 2 for a turbine blade radius of 24 inches. The gain is small enough that only large systems could profit from the application.

  20. Measuring high spatiotemporal variability in saltation intensity using a low-cost Saltation Detection System: Wind tunnel and field experiments

    NASA Astrophysics Data System (ADS)

    de Winter, W.; van Dam, D. B.; Delbecque, N.; Verdoodt, A.; Ruessink, B. G.; Sterk, G.

    2018-04-01

    The commonly observed over prediction of aeolian saltation transport on sandy beaches is, at least in part, caused by saltation intermittency. To study small-scale saltation processes, high frequency saltation sensors are required on a high spatial resolution. Therefore, we developed a low-cost Saltation Detection System (SalDecS) with the aim to measure saltation intensity at a frequency of 10 Hz and with a spatial resolution of 0.10 m in wind-normal direction. Linearity and equal sensitivity of the saltation sensors were investigated during wind tunnel and field experiments. Wind tunnel experiments with a set of 7 SalDec sensors revealed that the variability of sensor sensitivity is at maximum 9% during relatively low saltation intensities. During more intense saltation the variability of sensor sensitivity decreases. A sigmoidal fit describes the relation between mass flux and sensor output measured during 5 different wind conditions. This indicates an increasing importance of sensor saturation with increasing mass flux. We developed a theoretical model to simulate and describe the effect of grain size, grain velocity and saltation intensity on sensor saturation. Time-averaged field measurements revealed sensitivity equality for 85 out of a set of 89 horizontally deployed SalDec sensors. On these larger timescales (hours) saltation variability imposed by morphological features, such as sand strips, can be recognized. We conclude that the SalDecS can be used to measure small-scale spatiotemporal variabilities of saltation intensity to investigate saltation characteristics related to wind turbulence.

  1. Emulating avian orographic soaring with a small autonomous glider.

    PubMed

    Fisher, Alex; Marino, Matthew; Clothier, Reece; Watkins, Simon; Peters, Liam; Palmer, Jennifer L

    2015-12-17

    This paper explores a method by which an unpowered, fixed-wing micro air vehicle (MAV) may autonomously gain height by utilising orographic updrafts in urban environments. These updrafts are created when wind impinges on both man-made and natural obstacles, and are often highly turbulent and very localised. Thus in contrast to most previous autonomous soaring research, which have focused on large thermals and ridges, we use a technique inspired by kestrels known as 'wind-hovering', in order to maintain unpowered flight within small updrafts. A six-degree-of-freedom model of a MAV was developed based on wind-tunnel tests and vortex-lattice calculations, and the model was used to develop and test a simple cascaded control system designed to hold the aircraft on a predefined trajectory within an updraft. The wind fields around two typical updraft locations (a building and a hill) were analysed, and a simplified trajectory calculation method was developed by which trajectories for height gain can be calculated on-board the aircraft based on a priori knowledge of the wind field. The results of simulations are presented, demonstrating the behaviour of the system in both smooth and turbulent flows. Finally, the results from a series of flight tests are presented. Flight tests at the hill were consistently successful, while flights around the building could not be sustained for periods of more than approximately 20 s. The difficulty of operating near a building is attributable to significant levels of low-frequency unsteadiness (gustiness) in the oncoming wind during the flight tests, effectively resulting in a loss of updraft for sustained periods.

  2. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The costmore » of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.« less

  3. Arlinda Huskey | NREL

    Science.gov Websites

    | 303-384-6987 Arlinda joined NREL in 1995. Her activities include field testing of small and large wind for small wind turbines. She also is the secretary of the IEC maintenance team for the wind turbine

  4. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines

    PubMed Central

    Lien, Fue-Sang

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz. PMID:28378012

  5. An overview of fatigue failures at the Rocky Flats Wind System Test Center

    NASA Technical Reports Server (NTRS)

    Waldon, C. A.

    1981-01-01

    Potential small wind energy conversion (SWECS) design problems were identified to improve product quality and reliability. Mass produced components such as gearboxes, generators, bearings, etc., are generally reliable due to their widespread uniform use in other industries. The likelihood of failure increases, though, in the interfacing of these components and in SWECS components designed for a specific system use. Problems relating to the structural integrity of such components are discussed and analyzed with techniques currently used in quality assurance programs in other manufacturing industries.

  6. Eta Carinae: Viewed from Multiple Vantage Points

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2007-01-01

    The central source of Eta Carinae and its ejecta is a massive binary system buried within a massive interacting wind structure which envelops the two stars. However the hot, less massive companion blows a small cavity in the very massive primary wind, plus ionizes a portion of the massive wind just beyond the wind-wind boundary. We gain insight on this complex structure by examining the spatially-resolved Space Telescope Imaging Spectrograph (STIS) spectra of the central source (0.1") with the wind structure which extends out to nearly an arcsecond (2300AU) and the wind-blown boundaries, plus the ejecta of the Little Homunculus. Moreover, the spatially resolved Very Large Telescope/UltraViolet Echelle Spectrograph (VLT/UVES) stellar spectrum (one arcsecond) and spatially sampled spectra across the foreground lobe of the Homunculus provide us vantage points from different angles relative to line of sight. Examples of wind line profiles of Fe II, and the.highly excited [Fe III], [Ne III], [Ar III] and [S III)], plus other lines will be presented.

  7. The Impact of Transformer Winding Connections of A Grid-Connected PV on Voltage Quality Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Tumbelaka, Hanny H.; Gao, Wenzhong

    In this paper, the high-power PV plant is connected to the weak grid by means of a three-phase power transformer. The selection of transformer winding connection is critical especially when the PV inverter has a reactive power controller. In general, transformer winding connection can be arranged in star-star (with neutral earthed) or star-delta. The reactive power controller supports voltage regulation of the power system particularly under transient faults. Its control strategy is based on utilizing the grid currents to make a three-phase reactive unbalanced current with a small gain. The gain is determined by the system impedance. Simulation results exhibitmore » that the control strategy works very well particularly under disturbance conditions when the transformer winding connection is star-star with both neutrals grounded. The power quality in terms of the voltage quality is improved.« less

  8. Small Wind Research Turbine: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  9. Wind direction change criteria for wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cliff, W.C.

    1979-01-01

    A method is presented for estimating the root mean square (rms) value of the wind direction change, ..delta..theta(tau) = theta(tau + tau) - theta(tau), that occurs over the swept area of wind turbine rotor systems. An equation is also given for the rms value of the wind direction change that occurs at a single point in space, i.e., a direcion change that a wind vane would measure. Assuming a normal probability density function for the lateral wind velocity change and relating this to angular changes, equations are given for calculating the expected number of wind direction changes, larger than anmore » arbitrary value, that will occur in 1 hr as well as the expected number that will occur during the design life of a wind turbine. The equations presented are developed using a small angle approximation and are, therefore, considered appropriate for wind direction changes of less than 30/sup 0/. The equations presented are based upon neutral atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less

  10. German-Korean cooperation for erection and test of industrialized solar technologies

    NASA Astrophysics Data System (ADS)

    Pfeiffer, H.

    1986-01-01

    A combined small solar-wind power station and a solar-thermal experimental plant were built. The plants are designed to demonstrate the effective exploitation of solar energy and wind energy and enhanced availability achievable through combination of these two energy sources. A 14 kW wind energy converter and a 2.5 kW solar-cell generator were operated in parallel. The biaxial tracking system used on the solar generator leads to increased and constant generation of electricity throughout the day. A consumer control system switches the energy generators and the consumers in autonomous mode according to changing supply and demand. The solar powered air conditioning unit operates with an absorption type refrigerating unit, high-output flat collectors and an automatic control system. All design values are achieved on start-up of the plant.

  11. A Geosynchronous Lidar System for Atmospheric Winds and Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    2001-01-01

    An observing system comprised of two lidars in geosychronous orbit would enable the synoptic and meso-scale measurement of atmospheric winds and moisture both of which are key first-order variables of the Earth's weather equation. Simultaneous measurement of these parameters at fast revisit rates promises large advancements in our weather prediction skills. Such capabilities would be unprecedented and a) yield greatly improved and finer resolution initial conditions for models, b) make existing costly and cumbersome measurement approaches obsolete, and c) obviate the use of numerical techniques needed to correct data obtained using present observing systems. Additionally, simultaneous synoptic wind and moisture observations would lead to improvements in model parameterizations, and in our knowledge of small-scale weather processes. Technology and science data product assessments are ongoing. Results will be presented during the conference.

  12. Design of Hybrid Solar and Wind Energy Harvester for Fishing Boat

    NASA Astrophysics Data System (ADS)

    Banjarnahor, D. A.; Hanifan, M.; Budi, E. M.

    2017-07-01

    In southern beach of West Java, Indonesia, there are many villagers live as fishermen. They use small boats for fishing, in one to three days. Therefore, they need a fish preservation system. Fortunately, the area has high potential of solar and wind energy. This paper presents the design of a hybrid solar and wind energy harvester to power a refrigerator in the fishing boat. The refrigerator should keep the fish in 2 - 4 °C. The energy needed is 720 Wh daily. In the area, the daily average wind velocity is 4.27 m/s and the sun irradiation is 672 W/m2. The design combined two 100W solar panels and a 300W wind turbine. The testing showed that the solar panels can harvest 815 - 817 Wh of energy, while the wind turbine can harvest 43 - 62 Wh of energy daily. Therefore, the system can fulfil the energy requirement in fishing boat, although the solar panels were more dominant. To install the wind turbine on the fishing-boat, a computational design had been conducted. The boat hydrostatic dimension was measured to determine its stability condition. To reach a stable equilibrium condition, the wind turbine should be installed no more than 1.7 m of height.

  13. Computational examination of utility scale wind turbine wake interactions

    DOE PAGES

    Okosun, Tyamo; Zhou, Chenn Q.

    2015-07-14

    We performed numerical simulations of small, utility scale wind turbine groupings to determine how wakes generated by upstream turbines affect the performance of the small turbine group as a whole. Specifically, various wind turbine arrangements were simulated to better understand how turbine location influences small group wake interactions. The minimization of power losses due to wake interactions certainly plays a significant role in the optimization of wind farms. Since wind turbines extract kinetic energy from the wind, the air passing through a wind turbine decreases in velocity, and turbines downstream of the initial turbine experience flows of lower energy, resultingmore » in reduced power output. Our study proposes two arrangements of turbines that could generate more power by exploiting the momentum of the wind to increase velocity at downstream turbines, while maintaining low wake interactions at the same time. Furthermore, simulations using Computational Fluid Dynamics are used to obtain results much more quickly than methods requiring wind tunnel models or a large scale experimental test.« less

  14. Analyzing the requirements for mass production of small wind turbine generators

    NASA Astrophysics Data System (ADS)

    Anuskiewicz, T.; Asmussen, J.; Frankenfield, O.

    Mass producibility of small wind turbine generators to give manufacturers design and cost data for profitable production operations is discussed. A 15 kW wind turbine generator for production in annual volumes from 1,000 to 50,000 units is discussed. Methodology to cost the systems effectively is explained. The process estimate sequence followed is outlined with emphasis on the process estimate sheets compiled for each component and subsystem. These data enabled analysts to develop cost breakdown profiles crucial in manufacturing decision-making. The appraisal also led to various design recommendations including replacement of aluminum towers with cost effective carbon steel towers. Extensive cost information is supplied in tables covering subassemblies, capital requirements, and levelized energy costs. The physical layout of the plant is depicted to guide manufacturers in taking advantage of the growing business opportunity now offered in conjunction with the national need for energy development.

  15. Exploring the Power Output of Small Wind Turbines in Urban San Antonio, Texas

    NASA Astrophysics Data System (ADS)

    Casillas, Jose; Sperduti, Stephanie; Cardenas, Rosa

    2015-03-01

    The means of transporting power from a centralized power plant by transmission lines has several disadvantages. Electricity transmission and distribution networks are costly, require long planning processes and are unsightly to residents. These networks are also susceptible to natural disasters creating massive disruptions to consumers. For these reasons distributed power sources such as solar panels and small wind turbines are becoming a more desirable and viable means of energy production. We report on the status of a study to determine the maximum output power of small wind turbines in urban San Antonio, Texas. Wind speed data along with power measurements from small wind turbines in urban San Antonio will be reported. U.S. Department of Education Title V HSI-STEM and Articulation Award No. P031C110145.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belu, Radian; Koracin, Darko

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  17. Forest structure and light regimes following moderate wind storms: implications for multi-cohort management.

    PubMed

    Hanson, Jacob J; Lorimer, Craig G

    2007-07-01

    Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late-successional species.

  18. A Comprehensive Structural Study of Offshore Wind Turbine Foundation and Non-Model Based Damage Detection using Effective Mass with Application to Small Components/ Cables and a Truss Wind Turbine Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A.

    This research has two areas of focus. The first area is to investigate offshore wind turbine (OWT) designs, for use in the Maryland offshore wind area (MOWA), using intensive modeling techniques. The second focus area is to investigate a way to detect damage in wind turbine towers and small electrical components.

  19. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  20. Habitat use and movement patterns by adult saugers from fall to summer in an unimpounded small-river system

    USGS Publications Warehouse

    Kuhn, K.M.; Hubert, W.A.; Johnson, K.; Oberlie, D.; Dufek, D.

    2008-01-01

    The Little Wind River drainage in Wyoming is a relatively small unimpounded river system inhabited by native saugers Sander canadensis. Radio telemetry was used to assess habitat use and movement patterns by adult saugers in the river system from fall through early summer. Fifty-four adult saugers were captured during fall 2004, surgically implanted with radio transmitters, and tracked through mid-July 2005. Tagged saugers selected large and deep pools. Such pools were abundant throughout the Little Wind River system and led to saugers being widely dispersed from fall to early spring. During fall, winter, and early spring, tagged saugers remained sedentary and moved short distances among pools in close proximity to each other. Longer movements by tagged saugers occurred from mid-spring to early summer, and were associated with both upstream and downstream movements to and from two river segments believed to be used for spawning. During early summer, most saugers returned to locations where they had been tagged the previous fall and had spent the winter. Our results provide evidence that preservation of the sauger fishery in the Wind River system will depend on maintaining fish passage throughout the portion of the watershed inhabited by saugers and preserving natural fluvial processes that maintain large and deep pools. ?? Copyright by the American Fisheries Society 2008.

  1. Modeling the dust cycle from sand dunes to haboobs

    NASA Astrophysics Data System (ADS)

    Kallos, George; Patlakas, Platon; Bartsotas, Nikolaos; Spyrou, Christos; Qahtani, Jumaan Al; Alexiou, Ioannis; Bar, Ayman M.

    2017-04-01

    The dust cycle is a rather complicated mechanism depending on various factors. The most important factors affecting dust production is soil characteristics (soil composi-tion, physical and chemical properties, water content, temperature etc). The most known production mechanism at small scale is the saltation-bombardment. This mechanism is able to accurately predict uptake of dust particles up to about 10 μm. Larger dust particles are heavier and fall relatively fast due to the gravitational influ-ence. The other controlling factors of dust uptake and transport are wind speed (to be above a threshold) and turbulence. Weather conditions affecting dust produc-tion/transport/deposition are of multi-scale ranging from small surface inhomoge-neities to mesoscale and large-scale systems. While the typical dust transport mech-anism is related to wind conditions near the surface, larger scale systems play an important role on dust production. Such systems are associated with mesoscale phenomena typical of the specific regions. Usually they are associated with deep convection and strong downdrafts and are known as haboobs. Density currents are formed in the surface with strong winds and turbulence. Density currents can be considered as dust sources by themselves due to high productivity of dust. In this presentation we will discuss characteristics of the dust production mechanisms at multiscale over the Arabian Peninsula by utilizing the RAMS/ICLAMS multiscale model. A series of simulations at small-scale have been performed and mitigation actions will be explored.

  2. Analysis methods for wind turbine control and electrical system dynamics

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1995-01-01

    The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.

  3. Advanced and innovative wind energy concept development: Dynamic inducer system, executive summary

    NASA Astrophysics Data System (ADS)

    Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B. H.

    1981-05-01

    Concepts to improve the technical and economic performance of wind energy conversion systems (WECS) were examined. One technique for improving the cost-effectiveness of WECS is the use of tip vanes. Tip vanes are small airfoils attached approximately at right angles to the rotor tips with their span oriented approximately parallel to the local freestream. The performance benefits of the dynamic inducer tip vane system were demonstrated Tow-tests conducted on a three-bladed, 3.6-meter diameter rotor show that a dynamic inducer can achieve a power coefficient of 0.5, which exceeds that of a plain rotor by about 35%.

  4. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  5. New Wind in Old Sails: Novel Applications of Triphos-based Transition Metal Complexes as Homogeneous Catalysts for Small Molecules and Renewables Activation.

    PubMed

    Mellone, Irene; Bertini, Federica; Gonsalvi, Luca; Guerriero, Antonella; Peruzzini, Maurizio

    2015-01-01

    Recent developments in the coordination chemistry and applications of Ru-triphos [triphos = 1,1,1-tris-(diphenylphosphinomethyl)ethane] systems are reviewed, highlighting their role as active and selective homogenous catalysts for small molecule activation, biomass conversions and in carbon dioxide utilization-related processes.

  6. Hybrid Configuration of Darrieus and Savonius Rotors for Stand-alone Power Systems

    NASA Astrophysics Data System (ADS)

    Wakui, Tetsuya; Tanzawa, Yoshiaki; Hashizume, Takumi; Nagao, Toshio

    The suitable hybrid configuration of Darrieus lift-type and Savonius drag-type rotors for stand-alone wind turbine-generator systems is discussed using our dynamic simulation model. Two types of hybrid configurations are taken up: Type-A installs the Savonius rotor inside the Darrieus rotor and Type-B installs the Savonius rotor outside the Darrieus rotor. The computed results of the output characteristics and the dynamic behaviors of the system operated at the maximum power coefficient points show that Type-A, which has fine operating behavior to wind speed changes and can be compactly designed because of a shorter rotational shaft, is an effective way for self-controlled stand-alone small-scale systems.

  7. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  8. Renewable source controls for grid stability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond Harry; Elliott, Ryan Thomas; Neely, Jason C.

    2012-12-01

    The goal of this study was to evaluate the small signal and transient stability of the Western Electric- ity Coordinating Council (WECC) under high penetrations of renewable energy, and to identify control technologies that would improve the system performance. The WECC is the regional entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection. Transient stability is the ability of the power system to maintain synchronism after a large disturbance while small signal stability is the ability of the power system to maintain synchronism after a small disturbance. Tran- sient stability analysis usually focuses on themore » relative rotor angle between synchronous machines compared to some stability margin. For this study we employed generator speed relative to system speed as a metric for assessing transient stability. In addition, we evaluated the system transient response using the system frequency nadir, which provides an assessment of the adequacy of the primary frequency control reserves. Small signal stability analysis typically identi es the eigenvalues or modes of the system in response to a disturbance. For this study we developed mode shape maps for the di erent scenarios. Prony analysis was applied to generator speed after a 1.4 GW, 0.5 second, brake insertion at various locations. Six di erent WECC base cases were analyzed, including the 2022 light spring case which meets the renewable portfolio standards. Because of the di culty in identifying the cause and e ect relationship in large power system models with di erent scenarios, several simulations were run on a 7-bus, 5-generator system to isolate the e ects of di erent con gurations. Based on the results of the study, for a large power system like the WECC, incorporating frequency droop into wind/solar systems provides a larger bene t to system transient response than replacing the lost inertia with synthetic inertia. From a small signal stability perspective, the increase in renewable penetration results in subtle changes to the system modes. In gen- eral, mode frequencies increase slightly, and mode shapes remain similar. The system frequency nadir for the 2022 light spring case was slightly lower than the other cases, largely because of the reduced system inertia. However, the nadir is still well above the minimum load shedding frequency of 59.5 Hz. Finally, several discrepancies were identi ed between actual and reported wind penetration, and additional work on wind/solar modeling is required to increase the delity of the WECC models.« less

  9. Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation

    NASA Astrophysics Data System (ADS)

    Morris, M.; Ruf, C. S.

    2016-12-01

    A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.

  10. 75 FR 17161 - Job Corps: Preliminary Finding of No Significant Impact (FONSI) for the Installation of a Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Impact (FONSI) for the Installation of a Small Wind Turbine at the Pine Ridge Job Corps Center Located at...: Preliminary Finding of No Significant Impact (FONSI) for a small Wind Turbine Installation to be located at... prepared for a proposed Wind Turbine Installation to be located at the Pine Ridge Job Corps Center, 15710...

  11. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    NASA Astrophysics Data System (ADS)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind-system generator. Through the change of load impedance on the wind generator, the research facility has the ability to modify the rotational speed of the wind turbines, allowing the rotors to perform closer to their optimum tip-speed. Comparisons between field test data and performance predictions show that the aero-electro-mechanical analysis was able to predict differences in power production and rotational speed which result from changes in the system load impedance.

  12. Self energized air core superconducting (SEAC) motor

    NASA Astrophysics Data System (ADS)

    Hilal, M. A.; Huang, X.; Lloyd, J. D.; Crapo, A. D.

    1991-03-01

    The SEAC motor described utilizes superconductive windings both for the stator and the rotor and operates the same way as a conventional motor by supplying power to the stator. The rotor of a simple SEAC motor has a small and a large winding and two switches. The axes of the two rotor windings are normal to each other. The rotor is initially stationary, and the windings are exposed to the rotating stator field. Flux pumping is employed to charge the rotor windings. As the field rotates by 180 deg from being parallel to the axis of the small winding of the rotor, a switch connected in series with the windings automatically opens, allowing the magnetic flux to penetrate the winding. The switch is closed during most of the other half of the cycle. The flux trapped in the small winding is partially transferred to the larger rotor winding by opening another switch, which results in series connection of the two windings. This results in charging the large winding and in accelerating the rotor to reach the rotating field angular velocity. Current decay will not take place, since it will automatically trigger flux pumping and recharging of the windings. The use of superconductive windings will also make it feasible to operate at high magnetic field, thus eliminating the need for using iron laminations to magnetically link the rotor and the stator windings.

  13. Event-based measurement of boundary-layer winds and topographic effects with a small unmanned aircraft system (sUas)

    NASA Astrophysics Data System (ADS)

    Riddell, K.; Hugenholtz, C.

    2012-12-01

    Numerical models are invaluable tools for developing and testing hypotheses about interactions and feedbacks between wind and topography. However, field-based measurements are equally important for building and enhancing confidence in model output. Several field methods are available, including conventional approaches using tall masts equipped with an array of anemometers, as well as weather balloons, but few methods are able to match the level of detail available in model simulations of topographically-modified windflow. Here we propose an alternative method that may enhance numerical models. The method involves a small unmanned aircraft system (sUas) equipped with a meteorological sensor payload. The sUas is a two blade helicopter that weighs 5.5 kg, and has a length of 1.32 m. We designed a simple measurement and control system using an Arduino micro-controller, which acquired measurements at pre-defined coordinates autonomously. The entire survey was pre-configured and uploaded to the aircraft, effectively avoiding the need for manual aircraft operation and data collection. We collected raw measurements at each waypoint, yielding a point cloud of windspeed data. During test flights the sUas was able to maintain a stable position (± 0.6 m vertical and horizontal) in wind speeds up to 50 km/h. We used the raw data to map the wind speed-up ratio relative to a reference anemometer. Although it would be preferable to acquire continuous measurements at each waypoint, the sUas method only provides a snapshot of wind at each location. However, despite this limitation, the sUas does fill a void in terms of spatial measurements within the boundary layer. It may be possible to enhance this method in the future through deployment of sUas swarms that measure wind concurrently at many locations. Furthermore, other sensors can be deployed on sUas for measuring aeolian processes such as dust.

  14. A history of wind erosion prediction models in the United States Department of Agriculture prior to the Wind Erosion Prediction System

    NASA Astrophysics Data System (ADS)

    Tatarko, John; Sporcic, Michael A.; Skidmore, Edward L.

    2013-09-01

    The Great Plains experienced an influx of settlers in the late 1850s-1900. Periodic drought was hard on both settlers and the soil and caused severe wind erosion. The period known as the Dirty Thirties, 1931-1939, produced many severe windstorms, and the resulting dusty sky over Washington, DC helped Hugh Hammond Bennett gain political support for the Soil Conservation Act of 1937 that started the USDA Soil Conservation Service (SCS). Austin W. Zingg and William S. Chepil began wind erosion studies at a USDA laboratory at Kansas State University in 1947. Neil P. Woodruff and Francis H. Siddoway published the first widely used model for wind erosion in 1965, called the Wind Erosion Equation (WEQ). The WEQ was solved using a series of charts and lookup tables. Subsequent improvements to WEQ included monthly magnitudes of the total wind, a computer version of WEQ programmed in FORTRAN, small-grain equivalents for range grasses, tillage systems, effects of residue management, crop row direction, cloddiness, monthly climate factors, and the weather. The SCS and the Natural Resources Conservation Service (NRCS) produced several computer versions of WEQ with the goal of standardizing and simplifying it for field personnel including a standalone version of WEQ was developed in the late 1990s using Microsoft Excel. Although WEQ was a great advancement to the science of prediction and control of wind erosion on cropland, it had many limitations that prevented its use on many lands throughout the United States and the world. In response to these limitations, the USDA developed a process-based model know as the Wind Erosion Prediction System (WEPS). The USDA Agricultural Research Service has taken the lead in developing science and technology for wind erosion prediction.

  15. Small scale wind tunnel model investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    NASA Technical Reports Server (NTRS)

    Waites, W. L.; Chin, Y. T.

    1974-01-01

    A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects.

  16. Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.

    2012-06-01

    This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.

  17. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Cheng

    Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently compensate the reactive power demand, the DG operation no longer imposes a significant effect on the voltage fluctuations in the distribution system. And the proposed approach is efficient, simple and straightforward.

  18. Analysis of near-surface relative humidity in a wind turbine array boundary layer using an instrumented unmanned aerial system and large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Adkins, Kevin; Elfajri, Oumnia; Sescu, Adrian

    2016-11-01

    Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Results are also compared to numerical experiments conducted using large eddy simulation (LES). Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.

  19. Simulation of Wind Profile Perturbations for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2004-01-01

    Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.

  20. Propulsion simulator for magnetically-suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Goldey, C. L.; Sacco, G. P.; Lawing, Pierce L.

    1991-01-01

    The objective of phase two of a current investigation sponsored by NASA Langley Research Center is to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust gases, in magnetic suspension and balance system (MSBS) wind tunnels. Two propulsion simulator models are being developed: a small-scale and a large-scale unit, both employing compressed, liquified carbon dioxide as propellant. The small-scale unit was designed, fabricated, and statically-tested at Physical Sciences Inc. (PSI). The large-scale simulator is currently in the preliminary design stage. The small-scale simulator design/development is presented, and the data from its static firing on a thrust stand are discussed. The analysis of this data provides important information for the design of the large-scale unit. A description of the preliminary design of the device is also presented.

  1. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    NASA Technical Reports Server (NTRS)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  2. An experimental study of potential residential and commercial applications of small-scale hybrid power systems

    NASA Astrophysics Data System (ADS)

    Acosta, Michael Anthony

    The research presented in this thesis provides an understanding of small-scale hybrid power systems. Experiments were conducted to identify potential applications of renewable energy in residential and commercial applications in the Rio Grande Valley of Texas. Solar and wind energy converted into electric energy was stored in batteries and inverted to power common household and commercial appliances. Several small to medium size hybrid power systems were setup and utilized to conduct numerous tests to study renewable energy prospects and feasibility for various applications. The experimental results obtained indicate that carefully constructed solar power systems can provide people living in isolated communities with sufficient energy to consistently meet their basic power needs.

  3. Revitalize Electrical Program with Renewable Energy Focus

    ERIC Educational Resources Information Center

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  4. Small-wind-systems application analysis. Technical report and executive summary

    NASA Astrophysics Data System (ADS)

    1981-06-01

    A small wind energy conversion systems (SWECS) analysis was conducted to estimate the potential market for SWEC, or wind machines smaller than 100 kW for five selected applications. The goals were to aid manufacturers in attaining financing by convincing venture capital investors of the potential of SWECS and to aid government planners in allocating R and D expenditures that will effectively advance SWECS commercialization. Based on these goals, the study: (1) provides a basis for assisting the DOE in planning R and D programs that will advance the state of SWECS industry; (2) quantifies estimates of market size vs. installed system cost to enable industry to plan expansion of capacity and product lines; (3) identifies marketing strategies for industry to use in attaining financing from investors and in achieving sales goals; and (4) provides DOE with data that will assist in determining actions, incentives, and/or legislation required to achieve a commercially viable SWECS industry. The five applications were selected through an initial screening and priority-ranking analysis. The year of analysis was 1985, but all dollar amounts, such as fuel costs, are expressed in 1980 dollars. The five SWECS applications investigated were farm residences, non-farm residences, rural electric cooperatives, feed grinders, and remote communities.

  5. Tropical Processes Applications for CYGNSS

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.

    2017-01-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is focused primarily on observing extreme winds in the inner core of tropical cyclones But... Named storms will occur in view of CYGNSS constellation for only a small percentage of the time on orbit And... Rapid-update, all-weather sampling of wind speeds has many other applications in Tropical Meteorology So... Many potential tropical processes applications for CYGNSS were identified in previous Workshop - Let's revisit some of these possibilities now that the mission is up.

  6. Renewable Energy in China: Xiao Qing Dao Village Power Wind/Diesel Hybrid Pilot Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2006-01-01

    In 2000, DOE/NREL and the State Power Corporation of China (SPCC) developed a pilot project to electrify Xiao Qing Dao, a small island located in China's Yellow Sea. The project demonstrates the practicality of renewable energy systems for medium-scale, off-grid applications. It consists of four 10 k-W wind turbines connected to a 30-kW diesel generator, a 40-kW inverter and a battery bank.

  7. The impact of wind energy turbine piles on ocean dynamics

    NASA Astrophysics Data System (ADS)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  8. 7 CFR Appendix A to Part 4280 - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  9. 7 CFR Appendix A to Part 4280 - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  10. Investigation of self-excited induction generators for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, E.; Butterfield, C.P.; Sallan, J.

    2000-02-28

    The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sentmore » to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.« less

  11. To v∞ and beyond! The He I absorption variability across the 2014.6 periastron passage of η Carinae

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Madura, Thomas I.; St-Jean, Lucas; Moffat, Anthony F. J.; Gull, Theodore R.; Russell, Christopher M. P.; Damineli, Augusto; Teodoro, Mairan; Corcoran, Michael F.; Walter, Frederick M.; Clementel, Nicola; Groh, José H.; Hamaguchi, Kenji; Hillier, D. John

    2016-09-01

    We have monitored the massive binary star η Carinae with the CTIO/Small and Moderate Aperture Research Telescope System 1.5 m telescope and CHIRON spectrograph from the previous apastron passage of the system through the recent 2014.6 periastron passage. Our monitoring has resulted in a large, homogeneous data set with an unprecedented time-sampling, spectral resolving power, and signal to noise. This allowed us to investigate temporal variability previously unexplored in the system and discover a kinematic structure in the P Cygni absorption troughs of neutral helium wind lines. The features observed occurred prior to the periastron passage and are seen as we look through the trailing arm of the wind-wind collision shock cone. We show that the bulk of the variability is repeatable across the last five periastron passages, and that the absorption occurs in the inner 230 au of the system. In addition, we found an additional, high-velocity absorption component superimposed on the P Cygni absorption troughs that has been previously unobserved in these lines, but which bears resemblance to the observations of the He I λ10830 Å feature across previous cycles. Through a comparison of the current smoothed particle hydrodynamical simulations, we show that the observed variations are likely caused by instabilities in the wind-wind collision region in our line of sight, coupled with stochastic variability related to clumping in the winds.

  12. ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon

    NASA Astrophysics Data System (ADS)

    Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro

    2015-09-01

    This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Moses; Kim, Keonhui; Muljadi, Eduard

    This paper proposes a torque limit-based inertial control scheme of a doubly-fed induction generator (DFIG) that supports the frequency control of a power system. If a frequency deviation occurs, the proposed scheme aims to release a large amount of kinetic energy (KE) stored in the rotating masses of a DFIG to raise the frequency nadir (FN). Upon detecting the event, the scheme instantly increases its output to the torque limit and then reduces the output with the rotor speed so that it converges to the stable operating range. To restore the rotor speed while causing a small second frequency dipmore » (SFD), after the rotor speed converges the power reference is reduced by a small amount and maintained until it meets the reference for maximum power point tracking control. The test results demonstrate that the scheme can improve the FN and maximum rate of change of frequency while causing a small SFD in any wind conditions and in a power system that has a high penetration of wind power, and thus the scheme helps maintain the required level of system reliability. The scheme releases the KE from 2.9 times to 3.7 times the Hydro-Quebec requirement depending on the power reference.« less

  14. Philippines: Small-scale renewable energy update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  15. Biennial Wind Energy Conference and Workshop, 5th, Washington, DC, October 5-7, 1981, Proceedings

    NASA Astrophysics Data System (ADS)

    1982-05-01

    The results of studies funded by the Federal government to advance the state of the art of wind energy conversion systems (WECS) construction, operation, applications, and financial viability are presented. The economics of WECS were considered in terms of applicable tax laws, computer simulations of net value of WECS to utilities, and the installation of Mod-2 2.5 MW and WTS-4 4MW wind turbines near Medicine Bow, WY to test the operation of two different large WECS on the same utility grid. Potential problems of increasing penetration of WECS-produced electricity on a utility grid were explored and remedies suggested. The structural dynamics of wind turbines were analyzed, along with means to predict potential noise pollution from large WECS, and to make blade fatigue life assessments. Finally, Darrieus rotor aerodynamics were investigated, as were dynamic stall in small WECS and lightning protection for wind turbines and components.

  16. Remarkable long-term changes in the small Magellanic Cloud Wolf-Rayet system HD 5980

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.; Moffat, A. F. J.; St-Louis, N.; Auer, L. H.; Drissen, L.; Seggewiss, W.

    1994-01-01

    In this paper we report the remarkable changes which occured in the Small Magellanic Cloud W-R system HD5980 = AB5 between 1978 and 1991. Within this timescale, there has been a systematic enhancement (by factors of 2-10 depending on the line) in the equivalent widths of all emission lines, and a change in the relative strengths of N III, N IV, and N V lines. Currently, the W-R spectrum is more typical of a WN6 star than a WN3 or WN4, as it was originally classified. The terminal speed of the wind has diminished by approximately 600 km/s, while the system has brightened in the visual by 0.45 mag. The UV (1850 A) continuum changed by less than 0.13 mag. The change from WN3 or WN4 to WN6 is unprecedented. The system appears to be composed at least three stars: two WNs in mutual 19.266 day orbit and an O-type supergiant. We propose that the changes observed in HD 5980 are related to an increase in wind density of one (or both?) of the W-R components, where the brighter WN6 component will dominate the W-R spectrum after the change, and we speculate that this modification of the wind structure is driven by tidal interaction induced by a possible current periastron passage of the third component in the system.

  17. Superconducting light generator for large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.

    2014-05-01

    Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.

  18. Multiscale Approach to Small River Plumes off California

    NASA Astrophysics Data System (ADS)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  19. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  20. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  1. 7 CFR Appendix A to Subpart B of... - Technical Reports for Projects With Total Eligible Project Costs of $200,000 or Less

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the wind turbine is 100kW or smaller and with a generator hub height of 120 feet or less. Small... demonstrate the amount of local wind resource where the small wind turbine is to be installed. Indicate the... of the individual wind turbine(s) is larger than 100kW. (a) Qualifications of key project service...

  2. A comparative analysis of rawinsonde and NIMBUS 6 and TIROS N satellite profile data

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Carle, W. E.; Knight, K.; Moyer, V.; Cheng, N. M.

    1981-01-01

    Comparisons are made between rawinsonde and satellite profiles in seven areas for a wide range of surface and weather conditions. Variables considered include temperature, dewpoint temperature, thickness, precipitable water, lapse rate of temperature, stability, geopotential height, mixing ratio, wind direction, wind speed, and kinematic parameters, including vorticity and the advection of vorticity and temperature. In addition, comparisons are made in the form of cross sections and synoptic fields for selected variables. Sounding data from the NIMBUS 6 and TIROS N satellites were used. Geostrophic wind computed from smoothed geopotential heights provided large scale flow patterns that agreed well with the rawinsonde wind fields. Surface wind patterns as well as magnitudes computed by use of the log law to extrapolate wind to a height of 10 m agreed with observations. Results of this study demonstrate rather conclusively that satellite profile data can be used to determine characteristics of large scale systems but that small scale features, such as frontal zones, cannot yet be resolved.

  3. News on the X-ray emission from hot subdwarf stars

    NASA Astrophysics Data System (ADS)

    Palombara, Nicola La; Mereghetti, Sandro

    2017-12-01

    In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  4. Surface Wind and Upper-Ocean Variability Associated with the Madden-Julian Oscillation Simulated by the Coupled Ocean-Atmosphere Mesoscale Prediction System

    DTIC Science & Technology

    2013-07-01

    observed data at one location include variability caused by small -scale atmospheric convec- tion and wind variations that cannot be resolved by the... data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this...high-resolution nested grid (9 km) for the atmospheric component is used for the central Indian Ocean. While observational data are assimilated into the

  5. Demonstration of Physical Separation/Leaching Methods for the Remediation of Heavy Metals Contaminated Soils at Small Arms Ranges.

    DTIC Science & Technology

    1997-09-01

    8.8 WIND SOCK 8.9 SILT TRAP 8.10 BATTELLE SAMPLE PREPARATION AREA 8.11 RANGE 5 EXCAVATION PLAN 8.12 COMPONENTS THAT NEEDED MAINTENANCE, REPAIR...Pad Details 47 18 Soil Storage Bins 48 19 Power Distribution Station 49 20 Water Supply System 50 21 Wind Sock 50 22 Sample Preparation...washwater). Better process control, especially soil dewatering, would have reduced this occasional nuisance. The odor threshold for this acid is

  6. Research of low cost wind generator rotors

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Ross, R. S.

    1978-01-01

    A feasibility program determined that it would be possible to significantly reduce the cost of manufacturing wind generator rotors by making them of cast urethane. Several high modulus urethanes which were structurally tested were developed. A section of rotor was also cast and tested showing the excellent aerodynamic surface which results. A design analysis indicated that a cost reduction of almost ten to one can be achieved with a small weight increase to achieve the same structural integrity as expected of current rotor systems.

  7. Feasibility Study of a 400 Hz, 4160 Volt 3-Phase Electrical Power Distribution System

    DTIC Science & Technology

    1977-02-25

    accordance with HIL-E-917. 8. The primary insulation shall be adequate to withstand a high potential test of 60 Hz voltage windings to winding and to ground... withstand a short circuit current of 500 percent for 10 seconds without exceeding the voltage rating of any capacitors. They shall operate within...shaft. separation is required to withstand high voltages . The limited contact movement results in a very small contactor size be- cause it permits the use

  8. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden

    NASA Astrophysics Data System (ADS)

    Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid

    2017-05-01

    This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.

  9. Homemade Electricity: An Introduction to Small-Scale Wind, Hydro, and Photovoltaic Systems.

    ERIC Educational Resources Information Center

    Smith, Diane

    This report consists of three parts. The first part provides advice (in the form of questions and answers) to prospective individual power producers who are considering investing in electricity-producing systems and in generating their own power. A list of Public Utilities Regulatory Policies Act (PURPA) regulations is included. This legislation…

  10. Downwind pre-aligned rotors for extreme-scale wind turbines

    DOE PAGES

    Loth, Eric; Steele, Adam; Qin, Chao; ...

    2017-03-08

    Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less

  11. Downwind pre-aligned rotors for extreme-scale wind turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loth, Eric; Steele, Adam; Qin, Chao

    Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less

  12. Development of a site analysis tool for distributed wind projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Shawn

    The Cadmus Group, Inc., in collaboration with the National Renewable Energy Laboratory (NREL) and Encraft, was awarded a grant from the Department of Energy (DOE) to develop a site analysis tool for distributed wind technologies. As the principal investigator for this project, Mr. Shawn Shaw was responsible for overall project management, direction, and technical approach. The product resulting from this project is the Distributed Wind Site Analysis Tool (DSAT), a software tool for analyzing proposed sites for distributed wind technology (DWT) systems. This user-friendly tool supports the long-term growth and stability of the DWT market by providing reliable, realistic estimatesmore » of site and system energy output and feasibility. DSAT-which is accessible online and requires no purchase or download of software-is available in two account types; Standard: This free account allows the user to analyze a limited number of sites and to produce a system performance report for each; and Professional: For a small annual fee users can analyze an unlimited number of sites, produce system performance reports, and generate other customizable reports containing key information such as visual influence and wind resources. The tool’s interactive maps allow users to create site models that incorporate the obstructions and terrain types present. Users can generate site reports immediately after entering the requisite site information. Ideally, this tool also educates users regarding good site selection and effective evaluation practices.« less

  13. Glide back booster wind tunnel model testing

    NASA Astrophysics Data System (ADS)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  14. Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming

    NASA Astrophysics Data System (ADS)

    Bliss, A. K.; Stamper, B.

    2017-12-01

    Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.

  15. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    NASA Technical Reports Server (NTRS)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  16. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.Plain Language SummaryWe survey the environment around the Moon to determine when and where strong amplifications in the charged particle density and magnetic field strength occur. These structures may be some of the smallest shock waves in the solar system, and learning about their formation informs us about the interaction of charged particles with small-scale magnetic fields throughout the solar system and beyond. We find that these compressions occur in an extended region downstream from the lunar dawn and dusk regions and that they can form under a wide variety of solar wind conditions. However, we find that two distinctly different types of interactions occur for different magnetic field geometries and solar wind conditions. The two types of events appear to differ because of the different trajectories followed by solar wind protons that reflect from localized lunar magnetic fields and the resulting differences in how the incoming solar wind from upstream interacts with these reflected particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150006956','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150006956"><span>Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Decker, Ryan K.; Barbre, Robert E., Jr.</p> <p>2015-01-01</p> <p>Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016701','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016701"><span>Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Decker, Ryan K.; Barbre, Robert E., Jr.</p> <p>2014-01-01</p> <p>Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20541310','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20541310"><span>Environmental management framework for wind farm siting: methodology and case study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tegou, Leda-Ioanna; Polatidis, Heracles; Haralambopoulos, Dias A</p> <p>2010-11-01</p> <p>This paper develops an integrated framework to evaluate land suitability for wind farm siting that combines multi-criteria analysis (MCA) with geographical information systems (GIS); an application of the proposed framework for the island of Lesvos, Greece, is further illustrated. A set of environmental, economic, social, and technical constraints, based on recent Greek legislation, identifies the potential sites for wind power installation. Furthermore, the area under consideration is evaluated by a variety of criteria, such as wind power potential, land cover type, electricity demand, visual impact, land value, and distance from the electricity grid. The pair-wise comparison method in the context of the analytic hierarchy process (AHP) is applied to estimate the criteria weights in order to establish their relative importance in site evaluation. The overall suitability of the study region for wind farm siting is appraised through the weighted summation rule. Results showed that only a very small percentage of the total area of Lesvos could be suitable for wind farm installation, although favourable wind potential exists in many more areas of the island. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000074649&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dplanetary%2Bboundaries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000074649&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dplanetary%2Bboundaries"><span>Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.</p> <p>2000-01-01</p> <p>Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA586258','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA586258"><span>High Work, High-Efficiency Turbines for Uninhabited Aerial Vehicles (UAVs)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-01</p> <p>controlling highly loaded LP turbine blades have been demonstrated in a low speed linear cascade at the AFRL Low Speed Wind Tunnel (LSWT) facility that...34, pp. 1570-1577. [34] Selig M. S. and Mcgranahan, B. D., “ Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines .” National...aerodynamic flows is of interest in many design domains such as air vehicles, turbomachinery, and wind turbines . Micro-air-vehicles (MAV) which have small</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014594"><span>Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.</p> <p>2010-01-01</p> <p>Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950021561','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950021561"><span>Calculation of design load for the MOD-5A 7.3 mW wind turbine system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mirandy, L.; Strain, J. C.</p> <p>1995-01-01</p> <p>Design loads are presented for the General Electric MOD-SA wind turbine. The MOD-SA system consists of a 400 ft. diameter, upwind, two-bladed, teetered rotor connected to a 7.3 mW variable-speed generator. Fatigue loads are specified in the form of histograms for the 30 year life of the machine, while limit (or maximum) loads have been derived from transient dynamic analysis at critical operating conditions. Loads prediction was accomplished using state of the art aeroelastic analyses developed at General Electric. Features of the primary predictive tool - the Transient Rotor Analysis Code (TRAC) are described in the paper. Key to the load predictions are the following wind models: (1) yearly mean wind distribution; (2) mean wind variations during operation; (3) number of start/shutdown cycles; (4) spatially large gusts; and (5) spatially small gusts (local turbulence). The methods used to develop statistical distributions from load calculations represent an extension of procedures used in past wind programs and are believed to be a significant contribution to Wind Turbine Generator analysis. Test/theory correlations are presented to demonstrate code load predictive capability and to support the wind models used in the analysis. In addition MOD-5A loads are compared with those of existing machines. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department, under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......519S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......519S"><span>Assessing the Impacts of Wind Integration in the Western Provinces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sopinka, Amy</p> <p></p> <p>Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcMod.104...84C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcMod.104...84C"><span>Modeling circulation patterns induced by spatial cross-shore wind variability in a small-size coastal embayment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cerralbo, Pablo; Espino, Manuel; Grifoll, Manel</p> <p>2016-08-01</p> <p>This contribution shows the importance of the cross-shore spatial wind variability in the water circulation in a small-sized micro-tidal bay. The hydrodynamic wind response at Alfacs Bay (Ebro River delta, NW Mediterranean Sea) is investigated with a numerical model (ROMS) supported by in situ observations. The wind variability observed in meteorological measurements is characterized with meteorological model (WRF) outputs. From the hydrodynamic simulations of the bay, the water circulation response is affected by the cross-shore wind variability, leading to water current structures not observed in the homogeneous-wind case. If the wind heterogeneity response is considered, the water exchange in the longitudinal direction increases significantly, reducing the water exchange time by around 20%. Wind resolutions half the size of the bay (in our case around 9 km) inhibit cross-shore wind variability, which significantly affects the resultant circulation pattern. The characteristic response is also investigated using idealized test cases. These results show how the wind curl contributes to the hydrodynamic response in shallow areas and promotes the exchange between the bay and the open sea. Negative wind curl is related to the formation of an anti-cyclonic gyre at the bay's mouth. Our results highlight the importance of considering appropriate wind resolution even in small-scale domains (such as bays or harbors) to characterize the hydrodynamics, with relevant implications in the water exchange time and the consequent water quality and ecological parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006WiEn....9..383K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006WiEn....9..383K"><span>Minimization of the energy storage requirements of a stand-alone wind power installation by means of photovoltaic panels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaldellis, J. K.; Kostas, P.; Filios, A.</p> <p>2006-07-01</p> <p>Autonomous wind power systems are among the most interesting and environmentally friendly technological solutions for the electrification of remote consumers. In many cases, however, the battery contribution to the initial or the total operational cost is found to be dominant, discouraging further penetration of the available wind resource. This is basically the case for areas possessing a medium-low wind potential. On the other hand, several isolated consumers are located in regions having the regular benefit of an abundant and reliable solar energy supply. In this context the present study investigates the possibility of reducing the battery size of a stand-alone wind power installation by incorporating a small photovoltaic generator. For this purpose an integrated energy production installation based exclusively on renewable energy resources is hereby proposed. Subsequently a new numerical algorithm is developed that is able to estimate the appropriate dimensions of a similar system. According to the results obtained by long-term experimental measurements, the introduction of the photovoltaic panels considerably improves the operational and financial behaviour of the complete installation owing to the imposed significant battery capacity diminution. Copyright</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......167R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......167R"><span>Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riddell, Kevin Donald Alexander</p> <p></p> <p>The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750009567','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750009567"><span>An electronic system for measuring thermophysical properties of wind tunnel models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Corwin, R. R.; Kramer, J. S.</p> <p>1975-01-01</p> <p>An electronic system is described which measures the surface temperature of a small portion of the surface of the model or sample at high speeds using an infrared radiometer. This data is processed along with heating rate data from the reference heat gauge in a small computer and prints out the desired thermophysical properties, time, surface temperature, and reference heat rate. This system allows fast and accurate property measurements over thirty temperature increments. The technique, the details of the apparatus, the procedure for making these measurements, and the results of some preliminary tests are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......250T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......250T"><span>Aerodynamic design and analysis of small horizontal axis wind turbine blades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Xinzi</p> <p></p> <p>This work investigates the aerodynamic design and analysis of small horizontal axis wind turbine blades via the blade element momentum (BEM) based approach and the computational fluid dynamics (CFD) based approach. From this research, it is possible to draw a series of detailed guidelines on small wind turbine blade design and analysis. The research also provides a platform for further comprehensive study using these two approaches. The wake induction corrections and stall corrections of the BEM method were examined through a case study of the NREL/NASA Phase VI wind turbine. A hybrid stall correction model was proposed to analyse wind turbine power performance. The proposed model shows improvement in power prediction for the validation case, compared with the existing stall correction models. The effects of the key rotor parameters of a small wind turbine as well as the blade chord and twist angle distributions on power performance were investigated through two typical wind turbines, i.e. a fixed-pitch variable-speed (FPVS) wind turbine and a fixed-pitch fixed-speed (FPFS) wind turbine. An engineering blade design and analysis code was developed in MATLAB to accommodate aerodynamic design and analysis of the blades.. The linearisation for radial profiles of blade chord and twist angle for the FPFS wind turbine blade design was discussed. Results show that, the proposed linearisation approach leads to reduced manufacturing cost and higher annual energy production (AEP), with minimal effects on the low wind speed performance. Comparative studies of mesh and turbulence models in 2D and 3D CFD modelling were conducted. The CFD predicted lift and drag coefficients of the airfoil S809 were compared with wind tunnel test data and the 3D CFD modelling method of the NREL/NASA Phase VI wind turbine were validated against measurements. Airfoil aerodynamic characterisation and wind turbine power performance as well as 3D flow details were studied. The detailed flow characteristics from the CFD modelling are quantitatively comparable to the measurements, such as blade surface pressure distribution and integrated forces and moments. It is confirmed that the CFD approach is able to provide a more detailed qualitative and quantitative analysis for wind turbine airfoils and rotors..</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SBuil...3....2I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SBuil...3....2I"><span>Numerical investigation of the optimum wind turbine sitting for domestic flat roofs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishfaq, Salman Muhammad; Chaudhry, Hassam Nasarullah</p> <p>2018-05-01</p> <p>The power capacity of roof mounted wind turbines is dependent on several factors which influence its energy yield. In this paper, an investigation has been carried out using Computational Fluid Dynamics (CFD) to determine flow distribution and establish an optimum mounting location for a small wind turbine on a domestic flat roof. The realisable k-ɛ and SST k-ω turbulence models were compared to establish their consistency with one another with respect to the physical domain. Nine mounting locations were considered for a pole mounted wind turbine. Three windward positions on the upwind side of the flat surfaced building were considered as viable locations for mounting the small wind turbine. Out of the three windward locations, the central upwind (1,0) mounting position was seen to be producing the highest velocity of 5.3 m/s from the available ambient velocity which was 4 m/s. Therefore, this mounting location provided the highest extractable power for the wind turbine. Conclusively, wind properties along with the mounting locations can play a significant role in either enhancing or diminishing the small wind turbine's performance on a domestic flat roof.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..941...80M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..941...80M"><span>Assessment of Wind Home System's Potential in Coastal Areas of Pakistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Memon, Mujeebudin; Harijan, Khanji; Uqaili, Mohammad Aslam</p> <p>2007-10-01</p> <p>About 50 and 90 percent of the total population of rural coastal areas of Sindh and Balochistan provinces respectively have no access to electricity and meet lighting requirements through kerosene and LPG. The population density in rural coastal areas of Sindh and Balochistan provinces is about 100-150 and 10-50 persons per km2 respectively. Extension of existing centralized grid system to rural areas with very low population density and small-scattered loads is economically and technically unfeasible. In this situation, decentralized renewable electricity especially wind power appears to be one of the viable option. This paper presents the assessment of potential of wind home systems (WHS) for rural electrification in coastal areas of Pakistan using the wind speed data recorded by Pakistan Metrological Department (PMD) and power curve of a reference wind turbine. Pakistan has 1050 km long coastline, of which, 250 km is falling in Sindh and 800 km in Balochistan. A 150 Wp wind turbine could generate about 345 kWh and 250 kWh of electricity per year in coastal areas of Sindh and Balochistan respectively, which would be sufficient for meeting the electricity demand of a rural household. The average theoretical potential of WHS in the coastal area of Sindh and Balochistan is about 2245 and 1800 FLH respectively. The total installed capacity and technical potential of WHS in the coastal area of the country has been estimated as 63.75 MW and 135 GWh/year respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6677541','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6677541"><span>Wind velocity-change (gust rise) criteria for wind turbine design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cliff, W.C.; Fichtl, G.H.</p> <p>1978-07-01</p> <p>A closed-form equation is derived for root mean square (rms) value of velocity change (gust rise) that occurs over the swept area of wind turbine rotor systems and an equation for rms value of velocity change that occurs at a single point in space. These formulas confirm the intuitive assumption that a large system will encounter a less severe environment than a small system when both are placed at the same location. Assuming a normal probability density function for the velocity differences, an equation is given for calculating the expected number of velocity differences that will occur in 1 hrmore » and will be larger than an arbitrary value. A formula is presented that gives the expected number of velocity differences larger than an arbitrary value that will be encountered during the design life of a wind turbine. In addition, a method for calculating the largest velocity difference expected during the life of a turbine and a formula for estimating the risk of exceeding a given velocity difference during the life of the structure are given. The equations presented are based upon general atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA607991','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA607991"><span>Hot Thermal Storage in a Variable Power, Renewable Energy System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-06-01</p> <p>vehicle PV photovoltaic SCES super capacitors energy storage SPIDERS Smart Power Infrastructure Demonstration for Energy Reliability TE thermoelectric ...4  Figure 3.  Photovoltaic solar resources of the United States, from [24]. ...........................9  Figure 4.  Annual...collectors, solar photovoltaic collectors and small wind turbines coupled with facility suitable thermal storage systems. D. LITERATURE REVIEW The</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040000771&hterms=cost+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcost%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040000771&hterms=cost+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcost%2Bwind"><span>Low Cost Coherent Doppler Lidar Data Acquisition and Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnes, Bruce W.; Koch, Grady J.</p> <p>2003-01-01</p> <p>The work described in this paper details the development of a low-cost, short-development time data acquisition and processing system for a coherent Doppler lidar. This was done using common laboratory equipment and a small software investment. This system provides near real-time wind profile measurements. Coding flexibility created a very useful test bed for new techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900000271&hterms=enrichment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Denrichment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900000271&hterms=enrichment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Denrichment"><span>Compact Analyzer/Controller For Oxygen-Enrichment System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Puster, Richard L.; Singh, Jag J.; Sprinkle, Danny R.</p> <p>1990-01-01</p> <p>System controls hypersonic air-breathing engine tests. Compact analyzer/controller developed, built, and tested in small-scale wind tunnel prototype of the 8' HTT (High-Temperature Tunnel). Monitors level of oxygen and controls addition of liquid oxygen to enrich atmosphere for combustion. Ensures meaningful ground tests of hypersonic engines in range of speeds from mach 4 to mach 7.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/news/features/2017/nrel-developed-cube-helps-solve-armys-refueling-challenge.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/news/features/2017/nrel-developed-cube-helps-solve-armys-refueling-challenge.html"><span>NREL-Developed CUBE Helps Solve Army's Refueling Challenge | News | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Demonstration Opened Door to Idea Origins of the CUBE date to 2007 when representatives from the Army's <em>Mobile</em> proposed testing and evaluating some of the unit's <em>mobile</em> electric power systems, including a small wind to it." While the Army's original <em>mobile</em> electric power systems underwent testing at the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA626823','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA626823"><span>Security Engineering Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-01-31</p> <p>from a wireless joystick console broadcasting at 2.4 GHz. Figure 6. GTRI Airborne Unmanned Sensor System As shown in Figure 7 the autopilot has a...generating wind turbines , and video reconnaissance systems on unmanned aerial vehicles (UAVs). The most basic decision problem in designing a...chosen test UAV case was the GTRI Aerial Unmanned Sensor System (GAUSS) aircraft. The GAUSS platform is a small research UAV with a widely used</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS23A1380W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS23A1380W"><span>Local diurnal wind-driven variabiity and upwelling in a small coastal embayment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walter, R. K.; Reid, E. C.; Davis, K. A.; Armenta, K. J.; Merhoff, K.; Nidzieko, N.</p> <p>2017-12-01</p> <p>The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122..955W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122..955W"><span>Local diurnal wind-driven variability and upwelling in a small coastal embayment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walter, Ryan K.; Reid, Emma C.; Davis, Kristen A.; Armenta, Kevin J.; Merhoff, Kevin; Nidzieko, Nicholas J.</p> <p>2017-02-01</p> <p>The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......146P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......146P"><span>State estimation for autopilot control of small unmanned aerial vehicles in windy conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poorman, David Paul</p> <p></p> <p>The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non-zero mean error that increases when gyro bias is increased. The second method is shown to not exhibit any steady state error in the tested scenarios that is inherent to its design. The second method can correct for attitude errors that arise from both integration error and gyro bias states, but it suffers from lack of attitude error observability. The attitude errors are shown to be more observable in wind, but increased integration error in wind outweighs the increase in attitude corrections that such increased observability brings, resulting in larger attitude errors in wind. Overall, this work highlights many technical deficiencies of both of these methods of state estimation that could be improved upon in the future to enhance state estimation for small UAVs in windy conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930032371&hterms=eclipsing+binaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Declipsing%2Bbinaries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930032371&hterms=eclipsing+binaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Declipsing%2Bbinaries"><span>X-rays from the eclipsing pulsar 1957+20</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.</p> <p>1992-01-01</p> <p>The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004866','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004866"><span>Vapor generator wand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robelen, David B. (Inventor)</p> <p>1996-01-01</p> <p>A device for producing a stream of vapor for wind tunnel airflow visualization is described. An electrically conductive heating tube is used to resistively heat a vapor producing liquid. The heating and delivery systems are integrated to allow the device to present a small cross section to the air flow, thereby reducing disturbances due to the device. The simplicity of the design allows for inexpensive implementation and construction. The design is readily scaled for use in various wind tunnel applications. The device may also find uses in manufacturing, producing a vapor for deposition on a substrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA266384','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA266384"><span>Observations and Modelling of Winds and Waves during the Surface Wave Dynamics Experiment. Report 1. Intensive Observation Period IOP-1, 20-31 October 1990</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-04-01</p> <p>wave buoy provided by SEATEX, Norway (Figure 3). The modified Mills-cross array was designed to provide spatial estimates of the variation in wave, wind... designed for SWADE to examine the wave physics at different spatial and temporal scales, and the usefulness of a nested system. Each grid is supposed to...field specification. SWADE Model This high-resolution grid was designed to simulate the small scale wave physics and to improve and verify the source</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21282081-laboratory-experiments-simulating-solar-wind-driven-magnetospheres','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21282081-laboratory-experiments-simulating-solar-wind-driven-magnetospheres"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brady, P.; Ditmire, T.; Horton, W.</p> <p></p> <p>Magnetosphere-solar wind interactions are simulated in a laboratory setting with a small permanent magnet driven by two types of supersonic plasma wind sources. The first higher speed, shorter duration plasma wind is from a laser blow-off plasma while the second longer duration, lower speed plasma wind is produced with a capacitor discharge driven coaxial electrode creating plasma jets. The stand off distance of the solar wind from the magnetosphere was measured to be 1.7{+-}0.3 cm for the laser-produced plasma experiment and 0.87{+-}0.03 cm for the coaxial electrode plasma experiment. The stand off distance of the plasma was calculated using datamore » from HYADES[J. T. Larsen and S. M. Lane, J. Quant. Spectrosc. Radiat. Transf. 51, 179 (1994)] as 1.46{+-}0.02 cm for the laser-produced plasma, and estimated for the coaxial plasma jet as r{sub mp}=0.72{+-}0.07 cm. Plasma build up on the poles of the magnets, consistent with magnetosphere systems, was also observed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSR...15...91P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSR...15...91P"><span>Overview and first results of the Wind and Storms Experiment (WASTEX): a field campaign to observe the formation of gusts using a Doppler lidar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pantillon, Florian; Wieser, Andreas; Adler, Bianca; Corsmeier, Ulrich; Knippertz, Peter</p> <p>2018-05-01</p> <p>Wind gusts are responsible for most damages in winter storms over central Europe, but capturing their small scale and short duration is a challenge for both models and observations. This motivated the Wind and Storms Experiment (WASTEX) dedicated to investigate the formation of gusts during the passage of extratropical cyclones. The field campaign took place during the winter 2016-2017 on a former waste deposit located close to Karlsruhe in the Upper Rhine Valley in southwest Germany. Twelve extratropical cyclones were sampled during WASTEX with a Doppler lidar system performing vertical scans in the mean wind direction and complemented with a Doppler C-band radar and a 200 m instrumented tower. First results are provided here for the three most intense storms and include a potential sting jet, a unique direct observation of a convective gust and coherent boundary-layer structures of strong winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130010972','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130010972"><span>A Wind-powered Rover for a Low-Cost Venus Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.</p> <p>2013-01-01</p> <p>Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780052928&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dkinetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780052928&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dkinetic%2Benergy"><span>The effects of divergent and nondivergent winds on the kinetic energy budget of a mid-latitude cyclone - A case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, T.-C.; Alpert, J. C.; Schlatter, T. W.</p> <p>1978-01-01</p> <p>The magnitude of the divergent component of the wind is relatively small compared to that of the nondivergent component in large-scale atmospheric flows; nevertheless, it plays an important role in the case of explosive cyclogenesis examined here. The kinetic energy budget for the life cycle of an intense, developing cyclone over North America is calculated. The principal kinetic energy source is the net horizontal transport across the boundaries of the region enclosing the cyclone. By investigating the relative importance of the divergent and nondivergent wind components in the kinetic energy budget, it was found, as expected, that neglecting the divergent wind component in calculating the magnitude of the kinetic energy is of little consequence, but that the horizontal flux convergence and generation of kinetic energy depend crucially upon the divergent component. Modification of the divergent wind component can result in significant changes in the kinetic energy budget of the synoptic system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/wind/distributed-wind.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/wind/distributed-wind.html"><span>Distributed Wind Research | Wind | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>evaluation, and improve <em>wind</em> <em>turbine</em> and <em>wind</em> power plant performance. A photo of a snowy road leading to a single <em>wind</em> <em>turbine</em> surrounded by snow-covered pine trees against blue sky. Capabilities NREL's power plant and small <em>wind</em> <em>turbine</em> development. Algorithms and programs exist for simulating, designing</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900037302&hterms=fluid+mechanics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfluid%2Bmechanics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900037302&hterms=fluid+mechanics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfluid%2Bmechanics"><span>An intelligent data acquisition system for fluid mechanics research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.</p> <p>1989-01-01</p> <p>This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10632139N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10632139N"><span>Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P. P.; Zhou, J.; Norman, M.</p> <p>2001-12-01</p> <p>An eddy-covariance flux system was successfully applied over open sea, leads and ice floes during the Arctic Ocean Expedition in July-August 1996. Wind-driven upward aerosol number fluxes were observed over open sea and leads in the pack ice. These particles must originate from droplets ejected into the air at the bursting of small air bubbles at the water surface. The source flux F (in 106 m-2 s-1) had a strong dependency on wind speed, log>(F>)=0.20U¯-1.71 and 0.11U¯-1.93, over the open sea and leads, respectively (where U¯ is the local wind speed at about 10 m height). Over the open sea the wind-driven aerosol source flux consisted of a film drop mode centered at ˜100 nm diameter and a jet drop mode centered at ˜1 μm diameter. Over the leads in the pack ice, a jet drop mode at ˜2 μm diameter dominated. The jet drop mode consisted of sea-salt, but oxalate indicated an organic contribution, and bacterias and other biogenic particles were identified by single particle analysis. Particles with diameters less than -100 nm appear to have contributed to the flux, but their chemical composition is unknown. Whitecaps were probably the bubble source at open sea and on the leads at high wind speed, but a different bubble source is needed in the leads owing to their small fetch. Melting of ice in the leads is probably the best candidate. The flux over the open sea was of such a magnitude that it could give a significant contribution to the condensation nuclei (CCN) population. Although the flux from the leads were roughly an order of magnitude smaller and the leads cover only a small fraction of the pack ice, the local source may till be important for the CCN population in Arctic fogs. The primary marine aerosol source will increase both with increased wind speed and with decreased ice fraction and extent. The local CCN production may therefore increase and influence cloud or fog albedo and lifetime in response to greenhouse warming in the Arctic Ocean region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ32008S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ32008S"><span>Turbulent convection in geostrophic circulation with wind and buoyancy forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sohail, Taimoor; Gayen, Bishakhdatta; Hogg, Andy</p> <p>2017-11-01</p> <p>We conduct a direct numerical simulation of geostrophic circulation forced by surface wind and buoyancy to model a circumpolar ocean. The imposed buoyancy forcing (represented by Rayleigh number) drives a zonal current and supports small-scale convection in the buoyancy destabilizing region. In addition, we observe eddy activity which transports heat southward, supporting a large amount of heat uptake. Increasing wind stress enhances the meridional buoyancy gradient, triggering more eddy activity inside the boundary layer. Therefore, heat uptake increases with higher wind stress. The majority of dissipation is confined within the surface boundary layer, while mixing is dominant inside the convective plume and the buoyancy destabilizing region of the domain. The relative strength of the mixing and dissipation in the system can be expressed by mixing efficiency. This study finds that mixing is much greater than viscous dissipation, resulting in higher values of mixing efficiency than previously used. Supported by Australian Research Council Grant DP140103706.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1069158','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1069158"><span>Review of Variable Generation Integration Charges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Porter, K.; Fink, S.; Buckley, M.</p> <p>2013-03-01</p> <p>The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviewsmore » the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019201','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019201"><span>A new parameterization of an empirical model for wind/ocean scatterometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Woiceshyn, P. M.; Wurtele, M. G.; Boggs, D. H.; Mcgoldrick, L. F.; Peteherych, S.</p> <p>1984-01-01</p> <p>The power law form of the SEASAT A Scatterometer System (SASS) empirical backscatter-to-wind model function does not uniformly meet the instrument performance over the range 4 to 24 /ms. Analysis indicates that the horizontal polarization (H-Pol) and vertical polarization (V-Pol) components of the benchmark SASS1 model function yield self-consistent results only for a small mid-range of speeds at larger incidence angles, and for a somewhat larger range of speeds at smaller incidence angles. Comparison of SASS1 to in situ data over the Gulf of Alaska region further underscores the shortcomings of the power law form. Finally, a physically based empirical SASS model is proposed which corrects some of the deficiencies of power law models like SASS1. The new model allows the mutual determination of sea surface wind stress and wind speed in a consistent manner from SASS backscatter measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780011116','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780011116"><span>Dynamic wind-tunnel tests of an aeromechanical gust-alleviation system using several different combinations of control surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stewart, E. C.; Doggett, R. V., Jr.</p> <p>1978-01-01</p> <p>Some experimental results are presented from wind tunnel studies of a dynamic model equipped with an aeromechanical gust alleviation system for reducing the normal acceleration response of light airplanes. The gust alleviation system consists of two auxiliary aerodynamic surfaces that deflect the wing flaps through mechanical linkages when a gust is encountered to maintain nearly constant airplane lift. The gust alleviation system was implemented on a 1/6-scale, rod mounted, free flying model that is geometrically and dynamically representative of small, four place, high wing, single engine, light airplanes. The effects of flaps with different spans, two size of auxiliary aerodynamic surfaces, plain and double hinged flaps, and a flap elevator interconnection were studied. The model test results are presented in terms of predicted root mean square response of the full scale airplane to atmospheric turbulence. The results show that the gust alleviation system reduces the root mean square normal acceleration response by 30 percent in comparison with the response in the flaps locked condition. Small reductions in pitch-rate response were also obtained. It is believed that substantially larger reductions in normal acceleration can be achieved by reducing the rather high levels of mechanical friction which were extant in the alleviation system of the present model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..307a2064P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..307a2064P"><span>Design and Evaluation of Glass/epoxy Composite Blade and Composite Tower Applied to Wind Turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Hyunbum</p> <p>2018-02-01</p> <p>In the study, the analysis and manufacturing of small class wind turbine blade was performed. In the structural design, firstly the loading conditions are defined through the load case analysis. The proposed structural configuration of blade has a sandwich type composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. And also, this work proposes a design procedure and results of tower for the small scale wind turbine systems. Structural analysis of blade including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the finite element method, the load spectrum analysis and the Miner rule. Moreover, investigation on structural safety of tower was verified through structural analysis by FEM. The manufacturing of blade and tower was performed based on structural design. In order to investigate the designed structure, the structural tests were conducted and its results were compared with the calculated results. It is confirmed that the final proposed blade and tower meet the design requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859...27C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859...27C"><span>Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana</p> <p>2018-05-01</p> <p>The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940008654','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940008654"><span>Propulsion simulator for magnetically-suspended wind tunnel models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Joshi, P. B.; Malonson, M. R.; Sacco, G. P.; Goldey, C. L.; Garbutt, Keith; Goodyer, M.</p> <p>1992-01-01</p> <p>In order to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust jets in Magnetic Suspension and Balance System (MSBS) wind tunnels, two propulsion simulator models were developed at Physical Sciences Inc. (PSI). Both the small-scale model (1 in. diameter X 8 in. long) and the large-scale model (2.5 in. diameter X 15 in. long) employed compressed, liquefied carbon dioxide as a propellant. The small-scale simulator, made from a highly magnetizable iron alloy, was demonstrated in the 7 in. MSBS wind tunnel at the University of Southampton. It developed a maximum thrust of approximate 1.3 lbf with a 0.098 in. diameter nozzle and 0.7 lbf with a 0.295 in. diameter nozzle. The Southampton MSBS was able to control the simulator at angles-of attack up to 20 deg. The large-scale simulator was demonstrated to operate in both a steady-state and a pulse mode via a miniaturized solinoid valve. It developed a stable and repeatable thrust of 2.75 lbf over a period of 4s and a nozzle pressure ratio (NPR) of 5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/research/michael-resch.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/research/michael-resch.html"><span>Michael Resch | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>producing ammonia. The outcome of this project will be to make ammonia <em>synthesis</em> more sustainable and ) without affecting the ammonia production rate. Such an ammonia <em>synthesis</em> is ideally suitable for small-scale ammonia <em>synthesis</em> system using water and air, powered by wind energy. Instead of developing</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.1011H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.1011H"><span>Gas transfer velocities in small forested ponds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holgerson, Meredith A.; Farr, Emily R.; Raymond, Peter A.</p> <p>2017-05-01</p> <p>Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small (<250 m2) ponds by using a propane (C3H8) gas injection. When estimated across 12 h periods, the average k600 ranged from 0.19 to 0.72 m d-1 across the ponds. We also estimated k600 at 2 to 3 h intervals during the day and evaluated the relationship with environmental conditions. The average daytime k600 ranged from 0.33 to 1.83 m d-1 across the ponds and was best predicted by wind speed and air or air-water temperature; however, the explanatory power was weak (R2 < 0.27) with high variability within and among ponds. To compare our results to larger water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20140011252&hterms=nano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dnano','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20140011252&hterms=nano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dnano"><span>Nano Entry System for CubeSat-Class Payloads Project (Nano-ADEPT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Brandon Patrick</p> <p>2014-01-01</p> <p>This project is developing a mechanically deployed system through a mission application study, deployment/ejection testing, and wind tunnel testing. Adaptable Deployable Entry and Placement Technology (ADEPT) has been under development at NASA since 2011. Nano-ADEPT is the application of this revolutionary entry technology for small spacecraft. The unique capability of ADEPT for small science payloads comes from its ability to stow within a slender volume and deploy passively to achieve a mass-efficient drag surface with a high heat rate capability. Near-term applications for this technology include return of small science payloads or CubeSat technology from Low Earth Orbit (LEO) and delivery of secondary payloads to the surface of Mars.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/978478','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/978478"><span>Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Flowers, L.; Baring-Gould, I.</p> <p>2010-04-01</p> <p>As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1770c0005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1770c0005S"><span>Multi-hole pressure probes to air data system for subsonic small-scale air vehicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.</p> <p>2016-10-01</p> <p>A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E...85a2010T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E...85a2010T"><span>Dual stator winding variable speed asynchronous generator: optimal design and experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.</p> <p>2015-06-01</p> <p>In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1009699','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1009699"><span>Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baring-Gould, I.</p> <p>2011-03-01</p> <p>As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......130K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......130K"><span>A probabilistic assessment of large scale wind power development for long-term energy resource planning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kennedy, Scott Warren</p> <p></p> <p>A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29195464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29195464"><span>Wind noise spectra in small Reynolds number turbulent flows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Sipei; Cheng, Eva; Qiu, Xiaojun; Burnett, Ian; Liu, Jacob Chia-Chun</p> <p>2017-11-01</p> <p>Wind noise spectra caused by wind from fans in indoor environments have been found to be different from those measured in outdoor atmospheric conditions. Although many models have been developed to predict outdoor wind noise spectra under the assumption of large Reynolds number [Zhao, Cheng, Qiu, Burnett, and Liu (2016). J. Acoust. Soc. Am. 140, 4178-4182, and the references therein], they cannot be applied directly to the indoor situations because the Reynolds number of wind from fans in indoor environments is usually much smaller than that experienced in atmospheric turbulence. This paper proposes a pressure structure function model that combines the energy-containing and dissipation ranges so that the pressure spectrum for small Reynolds number turbulent flows can be calculated. The proposed pressure structure function model is validated with the experimental results in the literature, and then the obtained pressure spectrum is verified with the numerical simulation and experiment results. It is demonstrated that the pressure spectrum obtained from the proposed pressure structure function model can be utilized to estimate wind noise spectra caused by turbulent flows with small Reynolds numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1335795','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1335795"><span>Visualization of the Eastern Renewable Generation Integration Study: Preprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gruchalla, Kenny; Novacheck, Joshua; Bloom, Aaron</p> <p></p> <p>The Eastern Renewable Generation Integration Study (ERGIS), explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in the U.S. Eastern Interconnection and Quebec Interconnection (collectively, EI). In order to understand some of the economic and reliability challenges of managing hundreds of gigawatts of wind and PV generation, we developed state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated withmore » evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions. state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NRELs high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4164633','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4164633"><span>A Comprehensive Analysis of Small-Passerine Fatalities from Collision with Turbines at Wind Energy Facilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Erickson, Wallace P.; Wolfe, Melissa M.; Bay, Kimberly J.; Johnson, Douglas H.; Gehring, Joelle L.</p> <p>2014-01-01</p> <p>Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species). PMID:25222738</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70125465','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70125465"><span>A comprehensive analysis of small-passerine fatalities from collisions with turbines at wind energy facilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Erickson, Wallace P.; Wolfe, Melissa M.; Bay, Kimberly J.; Johnson, Douglas H.; Gehring, Joelle L.</p> <p>2014-01-01</p> <p>Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 39 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25222738','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25222738"><span>A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Erickson, Wallace P; Wolfe, Melissa M; Bay, Kimberly J; Johnson, Douglas H; Gehring, Joelle L</p> <p>2014-01-01</p> <p>Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMOS33C..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMOS33C..03C"><span>Dynamics and contaminants in the coastal lagoon system of Nichupte-Bojórquez located in the Peninsula of Yucatan, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbajal, N.; Gaviño, J.; Galicia, M. A.</p> <p>2007-05-01</p> <p>Measurements of hydrographic parameters like temperature, salinity, pH, turbidity, dissolved oxygen and determination of concentrations of contaminants like ammonia, surfactants, phosphate, nitrite and nitrate give a picture about the degradation of the lagoon system of Nichupté-Bojórquez. Numerical experiments reveal that the tidal circulation is not intense enough to induce an efficient exchange of water. Tidal currents are small and limited to regions near the two mouths which connect the lagoon system with the Caribbean Sea. The circulation induced by wind forcing is more effective in generating strong currents in the different lagoons of the system. The wind induced circulation reduces the residence time of water. To explain the observed distribution of contaminants, we also simulate numerically the dispersion of contaminants. We present a general picture of the environmental problems of this beautiful lagoon system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02455&hterms=coverage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcoverage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02455&hterms=coverage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcoverage"><span>SeaWinds Global Coverage with Detail of Hurricane Floyd</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1999-01-01</p> <p><p/>The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA's SeaWinds instrument on the QuikScat satellite, shows wind direction (white streamlines) at a resolution of 25 kilometers (15.5 miles), superimposed on the color image indicating wind speed.<p/>Over the ocean, the strong (seen in violet) trade winds blow steadily from the cooler subtropical oceans to warm waters just north of the equator. The air rises over these warm waters and sinks in the subtropics at the horse latitudes. Low wind speeds are indicated in blue. In the mid-latitudes, the high vorticity caused by the rotation of the Earth generates the spirals of weather systems. The North Atlantic is dominated by a high-pressure system, whose anti-cyclonic (clockwise) flow creates strong winds blowing parallel to the coast of Spain and Morocco. This creates strong ocean upwelling and cold temperature. Hurricane Floyd, with its high winds (yellow), is clearly visible west of the Bahamas. Tropical depression Gert is seen as it was forming in the tropical mid-Atlantic (as an anti-clockwise spiral); it later developed into a full-blown hurricane.<p/>Because the atmosphere is largely transparent to microwaves, SeaWinds is able to cover 93 percent of the global oceans, under both clear and cloudy conditions, in a single day, with the capability of a synoptic view of the ocean. The high resolution of the data also gives detailed description of small and intense weather systems, like Hurricane Floyd. The image in the insert is based on data specially produced at 12.5 kilometers (7.7 miles). In the insert, white arrows of wind vector are imposed on the color image of wind speed. The insert represents a 3-degree area occupied by Hurricane Floyd. After these data were acquired, Hurricane Floyd turned north. Its strength and proximity to the Atlantic coast of the U.S. caused the largest evacuation of citizens in U.S. history. Its landfall on September 16, 1999 resulted in severe flooding and devastation in the Carolinas. The high-resolution SeaWinds data provided an opportunity to monitor and study this hurricane.<p/>NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. JPL is a division of the California Institute of Technology, Pasadena, CA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28273838','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28273838"><span>Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing</p> <p>2017-03-04</p> <p>Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002772&hterms=electrons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Delectrons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002772&hterms=electrons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Delectrons"><span>On Electron-Scale Whistler Turbulence in the Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.</p> <p>2016-01-01</p> <p>For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21151.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21151.html"><span>Daedalia Planum Windstreak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-10-26</p> <p>The "tail" behind the crater at the top of this VIS image is called a windstreak. This feature is formed by winds blowing over/in and around the crater. Turbulence in the wind will erode or deposit fine materials, creating the windstreak. Windstreaks form on the down wind side of the crater, and indicate winds from the ESE. The small hills below the windstreak are small volcanic constructs. This image is located in the extensive lava plains called Daedalia Planum. Orbit Number: 65310 Latitude: -10.2729 Longitude: 226.476 Instrument: VIS Captured: 2016-09-03 11:24 http://photojournal.jpl.nasa.gov/catalog/PIA21151</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950005966','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950005966"><span>Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.</p> <p>1994-01-01</p> <p>High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1558.1249C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1558.1249C"><span>Aerodynamic study of a blade with sine variation of chord length along the height for Darrieus wind turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crunteanu, D. E.; Constantinescu, S. G.; Niculescu, M. L.</p> <p>2013-10-01</p> <p>The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. In contrast to these wind turbines, the Darrieus wind turbines are simpler and their price is lower. Unfortunately, their blades run at high variations of angles of attack, in stall and post-stall regimes, which can induce significant vibrations, fatigue and even the wind turbine failure. For this reason, the present paper deals with a blade with sine variation of chord length along the height because it has better behavior in stall and post-stall regimes than the classic blade with constant chord length.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNG32A..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNG32A..04W"><span>The Impact of Natural Hazards such as Turbulent Wind Gusts on the Wind Energy Conversion Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wächter, M.; Hölling, M.; Milan, P.; Morales, A.; Peinke, J.</p> <p>2012-12-01</p> <p>Wind turbines operate in the atmospheric boundary layer, where they are exposed to wind gusts and other types of natural hazards. As the response time of wind turbines is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. We show evidence that basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. Intermittent statistics include high probabilities of extreme events which can be related to wind gusts and other types of natural hazards. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features and quantify their effects on all stages of wind energy conversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-09-09/pdf/2010-22413.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-09-09/pdf/2010-22413.pdf"><span>75 FR 54961 - Final Supplemental Environmental Impact Statement, Single Nuclear Unit at the Bellefonte Plant...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-09-09</p> <p>... facility, a wind farm, a methane- gas cofiring facility, and several small solar photovoltaic facilities... maintenance of select plant systems and other regulatory compliance activities. Major buildings and plant... the plant cooling towers and the reactor, auxiliary, control, turbine, office, and service buildings...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830000387&hterms=sensors+pressure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsensors%2Bpressure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830000387&hterms=sensors+pressure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsensors%2Bpressure"><span>Electronically-Scanned Pressure Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coe, C. F.; Parra, G. T.; Kauffman, R. C.</p> <p>1984-01-01</p> <p>Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24726970','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24726970"><span>Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi</p> <p>2014-07-01</p> <p>Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900014391','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900014391"><span>Miniaturization of flight deflection measurement system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)</p> <p>1990-01-01</p> <p>A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.U22A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.U22A..03M"><span>Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.</p> <p>2010-12-01</p> <p>Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on individual wind turbines. The information is utilized by several technologies including: a) the Weather Research and Forecasting (WRF) model, which generates finely detailed simulations of future atmospheric conditions, b) the Real-Time Four-Dimensional Data Assimilation System (RTFDDA), which performs continuous data assimilation providing the WRF model with continuous updates of the initial atmospheric state, 3) the Dynamic Integrated Forecast System (DICast®), which statistically optimizes the forecasts using all predictors, and 4) a suite of wind-to-power algorithms that convert wind speed to power for a wide range of wind farms with varying real-time data availability capabilities. In addition to these core wind energy prediction capabilities, NCAR implemented a high-resolution (10 km grid increment) 30-member ensemble RTFDDA prediction system that provides information on the expected range of wind power over a 72-hour forecast period covering Xcel Energy’s service areas. This talk will include descriptions of these capabilities and report on several topics including initial results of next-day forecasts and nowcasts of wind energy ramp events, influence of local observations on forecast skill, and overall lessons learned to date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031076','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031076"><span>Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lindsey, D.A.; Langer, W.H.; Van Gosen, B. S.</p> <p>2007-01-01</p> <p>Clast populations in piedmont fluvial systems are products of complex histories that complicate provenance interpretation. Although pebble counts of lithology are widely used, the information provided by a pebble count has been filtered by a potentially large number of processes and circumstances. Counts of pebble lithology and roundness together offer more power than lithology alone for the interpretation of provenance. In this study we analyze pebble counts of lithology and roundness in two contrasting fluvial systems of Pleistocene age to see how provenance varies with drainage size. The two systems are 1) a group of small high-gradient incised streams that formed alluvial fans and terraces and 2) a piedmont river that formed terraces in response to climate-driven cycles of aggradation and incision. We first analyze the data from these systems within their geographic and geologic context. After this is done, we employ contingency table analysis to complete the interpretation of pebble provenance. Small tributary streams that drain rugged mountains on both sides of the Santa Cruz River, southeast Arizona, deposited gravel in fan and terrace deposits of Pleistocene age. Volcanic, plutonic and, to a lesser extent, sedimentary rocks are the predominant pebble lithologies. Large contrasts in gravel lithology are evident among adjacent fans. Subangular to subrounded pebbles predominate. Contingency table analysis shows that hard volcanic rocks tend to remain angular and, even though transport distances have been short, soft tuff and sedimentary rocks tend to become rounded. The Wind River, a major piedmont stream in Wyoming, drains rugged mountains surrounding the northwest part of the Wind River basin. Under the influence of climate change and glaciation during the Pleistocene, the river deposited an extensive series of terrace gravels. In contrast to Santa Cruz tributary gravel, most of the Wind River gravel is relatively homogenous in lithology and is rounded to well-rounded. Detailed analysis reveals a multitude of sources in the headwaters and the basin itself, but lithologies from these sources are combined downstream. Well-rounded volcanic and recycled quartzite clasts were derived from the headwaters. Precambrian igneous and metamorphic clasts were brought down tributary valleys to the Wind River by glaciers, and sandstone was added where the river enters the Wind River structural basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1013268','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1013268"><span>Wind for Schools: A National Data and Curricula Development Activity for Schools (Poster)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baring-Gould, I.</p> <p></p> <p>As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America?s Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community 'host' schools. 3) Implementing teacher training with interactive curricula at each host school.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850019542','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850019542"><span>Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Warmbrodt, W.; Smith, C. A.; Johnson, W.</p> <p>1985-01-01</p> <p>The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51C1004B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51C1004B"><span>The COWVR Mission: Demonstrating Small Satellite Capability to Fill the Looming Gap in Microwave Radiometer Coverage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, S. T.; Focardi, P.; Kitiyakara, A.; Maiwald, F.; Milligan, L.; Montes, O.; Padmanabhan, S.; Redick, R.; Russell, D.</p> <p>2017-12-01</p> <p>Passive microwave radiometer systems have been providing important Earth observations for over 30 years, including by not limited to surface wind vector, atmospheric and surface temperature, water vapor, clouds, precipitation, snow and sea ice. These data are critical for weather forecasting and the longevity of the record, along with careful calibration, has also enabled the extraction of climate records. But the future of these systems, conically scanning systems in particular, is uncertain. These sensors are have typically been developed at high cost and deployed on large spacecraft. A solution may lie in smaller, lower-cost but equally capable sensors manifested on free-flying small-satellites which can open the door to new possibilities and an avenue for sustainable passive microwave observation. Among the possibilities are deployment in constellations to shorten revisit time to improve weather forecasting or routine deployment of single sensors over time to ensure an unbroken long duration climate record. The Compact Ocean Wind Vector Radiometer (COWVR) mission, formally the US Air Force ORS-6 mission, will demonstrate a new generation conically scanning passive microwave radiometer on a small satellite. COWVR is an 18-34 GHz fully polarimetric radiometer with a 75cm aperture designed to provide measurements of ocean vector winds with an accuracy that meets or exceeds that provided by WindSat in all non-precipitating conditions, but using a simpler design which has both performance and cost advantages. This paper will give an overview of the COWVR instrument and mission and its performance estimated from pre-launch calibration data. While the COWVR mission is a focused technology demonstration mission, the sensor design is scalable to a much broader frequency range while retaining its low-cost advantage. We will describe extensions of the COWVR design that have been developed and the capabilities of such systems when deployed in a constellation scenario or climate monitoring scenario. We will also describe deployable reflector technologies being developed at JPL to enable large apertures (>2-meter) to stow inside an ESPA volume (<80cm) and be suitable for operation from 6-200 GHz. This removes any limitations on the spatial resolution of the sensor, even when launched as a ESPA secondary payload.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910005227','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910005227"><span>Modeling and control design of a wind tunnel model support</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Howe, David A.</p> <p>1990-01-01</p> <p>The 12-Foot Pressure Wind Tunnel at Ames Research Center is being restored. A major part of the restoration is the complete redesign of the aircraft model supports and their associated control systems. An accurate trajectory control servo system capable of positioning a model (with no measurable overshoot) is needed. Extremely small errors in scaled-model pitch angle can increase airline fuel costs for the final aircraft configuration by millions of dollars. In order to make a mechanism sufficiently accurate in pitch, a detailed structural and control-system model must be created and then simulated on a digital computer. The model must contain linear representations of the mechanical system, including masses, springs, and damping in order to determine system modes. Electrical components, both analog and digital, linear and nonlinear must also be simulated. The model of the entire closed-loop system must then be tuned to control the modes of the flexible model-support structure. The development of a system model, the control modal analysis, and the control-system design are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9801E..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9801E..02A"><span>Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amitay, Michael; Menicovich, David; Gallardo, Daniele</p> <p>2016-04-01</p> <p>The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920018479&hterms=research+gap&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dresearch%2Bgap','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920018479&hterms=research+gap&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dresearch%2Bgap"><span>Overview of magnetic suspension research at Langley Research Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Groom, Nelson J.</p> <p>1992-01-01</p> <p>An overview of research in small- and large-gap magnetic suspension systems at LaRC is presented. The overview is limited to systems which have been built as laboratory models or engineering models. Small-gap systems applications include the Annular Momentum Control Device (AMCD), which is a momentum storage device for the stabilization and control of spacecraft, and the Annular Suspension and Pointing System (ASPS), which is a general purpose pointing mount designed to provide orientation, mechanical isolation, and fine pointing space experiments. These devices are described and control and linearization approaches for the magnetic suspension systems for these devices are discussed. Large-gap systems applications at LaRC have been almost exclusively wind tunnel magnetic suspension systems. A brief description of these efforts is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25675491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25675491"><span>Warning signals for eruptive events in spreading fires.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fox, Jerome M; Whitesides, George M</p> <p>2015-02-24</p> <p>Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11.2583C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11.2583C"><span>Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin</p> <p>2018-05-01</p> <p>The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1261455-magnetic-amplifier-based-power-flow-controller','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1261455-magnetic-amplifier-based-power-flow-controller"><span>Magnetic Amplifier-Based Power-Flow Controller</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak</p> <p>2015-02-05</p> <p>The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100027411','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100027411"><span>Application of Reflected Global Navigation Satellite System (GNSS-R) Signals in the Estimation of Sea Roughness Effects in Microwave Radiometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan</p> <p>2010-01-01</p> <p>In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26818016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26818016"><span>An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Łopucki, Rafał; Mróz, Iwona</p> <p>2016-02-01</p> <p>The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7645E..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7645E..03S"><span>Multi-source energy harvester to power sensing hardware on rotating structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlichting, Alexander; Ouellette, Scott; Carlson, Clinton; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.</p> <p>2010-04-01</p> <p>The U.S. Department of Energy (DOE) proposes to meet 20% of the nation's energy needs through wind power by the year 2030. To accomplish this goal, the industry will need to produce larger (>100m diameter) turbines to increase efficiency and maximize energy production. It will be imperative to instrument the large composite structures with onboard sensing to provide structural health monitoring capabilities to understand the global response and integrity of these systems as they age. A critical component in the deployment of such a system will be a robust power source that can operate for the lifespan of the wind turbine. In this paper we consider the use of discrete, localized power sources that derive energy from the ambient (solar, thermal) or operational (kinetic) environment. This approach will rely on a multi-source configuration that scavenges energy from photovoltaic and piezoelectric transducers. Each harvester is first characterized individually in the laboratory and then they are combined through a multi-source power conditioner that is designed to combine the output of each harvester in series to power a small wireless sensor node that has active-sensing capabilities. The advantages/disadvantages of each approach are discussed, along with the proposed design for a field ready energy harvester that will be deployed on a small-scale 19.8m diameter wind turbine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1331258-case-study-weather-research-forecasting-model-applied-joint-urban-tracer-field-experiment-part-gas-tracer-dispersion','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1331258-case-study-weather-research-forecasting-model-applied-joint-urban-tracer-field-experiment-part-gas-tracer-dispersion"><span>A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...</p> <p>2016-07-28</p> <p>Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1331258','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1331258"><span>A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.</p> <p></p> <p>Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1156V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1156V"><span>Solar wind influence on Jupiter's magnetosphere and aurora</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogt, Marissa; Gyalay, Szilard; Withers, Paul</p> <p>2016-04-01</p> <p>Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDR40007C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDR40007C"><span>Enhancing wind turbines efficiency with passive reconfiguration of flexible blades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team</p> <p>2015-11-01</p> <p>Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5346402','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5346402"><span>Structural Composites Industries 4 kilowatt wind system development. Phase I: design and analysis, technical report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Malkine, N.; Bottrell, G.; Weingart, O.</p> <p>1981-05-01</p> <p>A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systemsmore » and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJWC.11925006D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJWC.11925006D"><span>Characterization of Water Vapor Fluxes by the Raman Lidar System Basil and the Univeristy of Cologne Wind Lidar in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.</p> <p>2016-06-01</p> <p>Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790032711&hterms=technology+agricultural&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtechnology%2Bagricultural','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790032711&hterms=technology+agricultural&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtechnology%2Bagricultural"><span>NASA Agricultural Aircraft Research Program in the Langley Vortex Research Facility and the Langley Full Scale Wind Tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.</p> <p>1978-01-01</p> <p>The current status of aerial applications technology research at the Langley's Vortex Research Facility and Full-Scale Wind Tunnel is reviewed. Efforts have been directed mainly toward developing and validating the required experimental and theoretical research tools. A capability to simulate aerial dispersal of materials from agricultural airplanes with small-scale airplane models, numerical methods, and dynamically scaled test particles was demonstrated. Tests on wake modification concepts have proved the feasibility of tailoring wake properties aerodynamically to produce favorable changes in deposition and to provide drift control. An aerodynamic evaluation of the Thrush Commander 800 agricultural airplane with various dispersal systems installed is described. A number of modifications intended to provide system improvement to both airplane and dispersal system are examined, and a technique for documenting near-field spray characteristics is evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/891952','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/891952"><span>Comprehensive Renewable Energy Feasibility Study for Sealaska Corporation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Robert Lynette; John Wade: Larry Coupe</p> <p>2006-06-30</p> <p>The purposes of this project were: (1) to conduct a comprehensive feasibility study to determine the potential sustainability of wind and/or small hydroelectric power plants on Southeast Alaska native village lands, and (2) to provide the villages with an understanding of the requirements, costs, and benefits of developing and operating wind or small hydroelectric power plants. The program was sponsored by the Tribal Energy program, Office of Energy Efficiency and Renewable Energy, US Department of Energy. The Contractor was Sealaska Corporation, the Regional Native Corporation for Southeast Alaska that includes 12 village/urban corporations. Most villages are isolated from any centralmore » electric transmission and use diesel-electric systems for power generation, making them prime candidates for deploying renewable energy sources. Wind Energy - A database was assembled for all of the candidate sites in SE Alaska, including location, demographics, electricity supply and demand, existing and planned transmission interties with central generation, topographical maps, macro wind data, and contact personnel. Field trips were conducted at the five candidate villages that were deemed most likely to have viable wind resources. Meetings were held with local village and utility leaders and the requirements, costs, and benefits of having local renewable energy facilities were discussed. Two sites were selected for anemometry based on their needs and the probability of having viable wind resources – Yakutat and Hoonah. Anemometry was installed at both sites and at least one year of wind resource data was collected from the sites. This data was compared to long-term data from the closest weather stations. Reports were prepared by meteorologist John Wade that contains the details of the measured wind resources and energy production projections. Preliminary financial analysis of hypothetical wind power stations were prepared to gauge the economic viability of installing such facilities at each site. The average wind resources measured at Yakutat at three sites were very marginal, with an annual average of 4.0 mps (9 mph) at 60 meters above ground level. At Hoonah, the average wind resources measured on the 1,417 ft elevation ridge above the village were very low, with a six-month average of 3.9 mps (8.7 mph) at 60 meters above ground level. The wind resources at both sites were not sufficient to justify installation of wind turbines. In summary, although there are several known windy spots in SE Alaska (e.g., Skagway), we were not able to identify any isolated Native American villages that utilize diesel-electric power generation that have commercially viable wind resources. Small Hydroelectric - The study focused on the communities associated with Sealaska Corporation that use diesel-electric for electricity and have a potential for hydroelectric power generation. Most of them have had at least an assessment of hydroelectric potential, and a few have had feasibility studies of potential hydroelectric projects. Although none of the sites examined are financially viable without substantial grant funding, Hoonah, Kake, and Yakutat appear to have the best potential for new hydro facilities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..372a2035W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..372a2035W"><span>A three degree of freedom manipulator used for store separation wind tunnel test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, R.; Che, B.-H.; Sun, C.-B.; Zhang, J.; Lu, Y.-Q.</p> <p>2018-06-01</p> <p>A three degree of freedom manipulator is presented, which is used for store separation wind tunnel test. It is a kind of mechatronics product, have small volume and large moment of torque. The paper researched the design principle of wind tunnel test equipment, also introduced the transmission principle design, physical design, control system design, drive element selection calculation and verification, dynamics computation and static structural computation of the manipulator. To satisfy the design principle of wind tunnel test equipment, some optimization design are made include optimizes the structure of drive element and cable, fairing configuration, overall dimension so that to make the device more suitable for the wind tunnel test. Some tests are made to verify the parameters of the manipulator. The results show that the device improves the load from 100 Nm to 250 Nm, control accuracy from 0.1°to 0.05°in pitch and yaw, also improves load from 10 Nm to 20 Nm, control accuracy from 0.1°to 0.05°in roll.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034812','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034812"><span>Coherence of river and ocean conditions along the US West Coast during storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.</p> <p>2011-01-01</p> <p>The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast. ?? 2011 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.A41K..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.A41K..03P"><span>An online mineral dust model within the global/regional NMMB: current progress and plans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez, C.; Haustein, K.; Janjic, Z.; Jorba, O.; Baldasano, J. M.; Black, T.; Nickovic, S.</p> <p>2008-12-01</p> <p>While mineral dust distribution and effects are important on global scales, they strongly depend on dust emissions that are occurring on small spatial and temporal scales. Indeed, the accuracy of surface wind speed used in dust models is crucial. Due to the high-order power dependency on wind friction velocity and the threshold behaviour of dust emissions, small errors in surface wind speed lead to large dust emission errors. Most global dust models use prescribed wind fields provided by major meteorological centres (e.g., NCEP and ECMWF) and their spatial resolution is currently about 1 degree x 1 degree . Such wind speeds tend to be strongly underestimated over arid and semi-arid areas and do not account for mesoscale systems responsible for a significant fraction of dust emissions regionally and globally. Other significant uncertainties in dust emissions resulting from such approaches are related to the misrepresentation of high subgrid-scale spatial heterogeneity in soil and vegetation boundary conditions, mainly in semi-arid areas. In order to significantly reduce these uncertainties, the Barcelona Supercomputing Center is currently implementing a mineral dust model coupled on-line with the new global/regional NMMB atmospheric model using the ESMF framework under development in NOAA/NCEP/EMC. The NMMB is an evolution of the operational WRF-NMME extending from meso to global scales, and including non-hydrostatic option and improved tracer advection. This model is planned to become the next-generation NCEP mesoscale model for operational weather forecasting in North America. Current implementation is based on the well established regional dust model and forecast system Eta/DREAM (http://www.bsc.es/projects/earthscience/DREAM/). First successful global simulations show the potentials of such an approach and compare well with DREAM regionally. Ongoing developments include improvements in dust size distribution representation, sedimentation, dry deposition, wet scavenging and dust-radiation feedback, as well as the efficient implementation of the model on High Performance Supercomputers for global simulations and forecasts at high resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=wind&pg=2&id=EJ848946','ERIC'); return false;" href="https://eric.ed.gov/?q=wind&pg=2&id=EJ848946"><span>Constructing a Plastic Bottle Wind Turbine as a Practical Aid for Learning about Using Wind Energy to Generate Electricity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Appleyard, S. J.</p> <p>2009-01-01</p> <p>A simple horizontal axis wind turbine can be easily constructed using a 1.5 l PET plastic bottle, a compact disc and a small dynamo. The turbine operates effectively at low wind speeds and has a rotational speed of 500 rpm at a wind speed of about 14 km h[superscript -1]. The wind turbine can be used to demonstrate the relationship between open…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6779843-small-scale-wind-disturbances-observed-mu-radar-during-passage-typhoon-kelly','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6779843-small-scale-wind-disturbances-observed-mu-radar-during-passage-typhoon-kelly"><span>Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sato, Kaoru</p> <p>1993-02-14</p> <p>This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1738O0004N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1738O0004N"><span>Aerodynamic study of a small wind turbine with emphasis on laminar and transition flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niculescu, M. L.; Cojocaru, M. G.; Crunteanu, D. E.</p> <p>2016-06-01</p> <p>The wind energy is huge but unfortunately, wind turbines capture only a little part of this enormous green energy. Furthermore, it is impossible to put multi megawatt wind turbines in the cities because they generate a lot of noise and discomfort. Instead, it is possible to install small Darrieus and horizontal-axis wind turbines with low tip speed ratios in order to mitigate the noise as much as possible. Unfortunately, the flow around this wind turbine is quite complex because the run at low Reynolds numbers. Therefore, this flow is usually a mixture of laminar, transition and laminar regimes with bubble laminar separation that is very difficult to simulate from the numerical point of view. Usually, transition and laminar regimes with bubble laminar separation are ignored. For this reason, this paper deals with laminar and transition flows in order to provide some brightness in this field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985iece....3....3P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985iece....3....3P"><span>Aerodynamics of small-scale vertical-axis wind turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paraschivoiu, I.; Desy, P.</p> <p>1985-12-01</p> <p>The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984STIN...8518453R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984STIN...8518453R"><span>Power quality and protection of electric distribution systems with small, dispersed generation devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rizy, D. T.; Jewell, W. T.</p> <p>1984-10-01</p> <p>There are several operational problems associated with the connection of small power sources, such as wind turbines and photovoltaic (PV) arrays, to an electric distribution system. In one study the harmonic distortion produced by a subdivision of PV arrays connected through line-commutated inverters was simulated. A second simulation study evaluated protection problems associated with the operation of dispersed ac generators. The purpose of these studies was to examine the adequacy of the electric utility industry's traditional practices and hardware for the operation of dispersed power sources. The results of these simulation studies are discussed and recommendations are given for hardware and system operation needed for accommodating this new technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/918795','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/918795"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker</p> <p></p> <p>The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and communitymore » outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940000575&hterms=Lakatos&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DLakatos','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940000575&hterms=Lakatos&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DLakatos"><span>Active Vibration Dampers For Rotating Machinery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong</p> <p>1994-01-01</p> <p>Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=physics+AND+glass&pg=4&id=EJ892053','ERIC'); return false;" href="https://eric.ed.gov/?q=physics+AND+glass&pg=4&id=EJ892053"><span>Fresnel's Lighthouse Lenses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Greenslade, Thomas B., Jr.</p> <p>2007-01-01</p> <p>One of the rewards of walking up the scores of steps winding around the inside of the shaft of a lighthouse is turning inward and examining the glass optical system. This arrangement of prisms, lenses, and reflectors is used to project the light from a relatively small source in a beam that can be seen far at sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850018394','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850018394"><span>Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knox, C. E.; Vicroy, D. D.; Simmon, D. A.</p> <p>1985-01-01</p> <p>A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5909566-planning-fuel-conservative-descents-airline-environmental-using-small-programmable-calculator-algorithm-development-flight-test-results','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5909566-planning-fuel-conservative-descents-airline-environmental-using-small-programmable-calculator-algorithm-development-flight-test-results"><span>Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Knox, C.E.; Vicroy, D.D.; Simmon, D.A.</p> <p></p> <p>A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720005302','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720005302"><span>Investigation of thermal protection systems effects on viscid and inviscid flow fields for manned entry systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bartlett, E. P.; Morse, H. L.; Tong, H.</p> <p>1971-01-01</p> <p>Procedures and methods for predicting aerothermodynamic heating to delta orbiter shuttle vehicles were reviewed. A number of approximate methods were found to be adequate for large scale parameter studies, but are considered inadequate for final design calculations. It is recommended that final design calculations be based on a computer code which accounts for nonequilibrium chemistry, streamline spreading, entropy swallowing, and turbulence. It is further recommended that this code be developed with the intent that it can be directly coupled with an exact inviscid flow field calculation when the latter becomes available. A nonsimilar, equilibrium chemistry computer code (BLIMP) was used to evaluate the effects of entropy swallowing, turbulence, and various three dimensional approximations. These solutions were compared with available wind tunnel data. It was found study that, for wind tunnel conditions, the effect of entropy swallowing and three dimensionality are small for laminar boundary layers but entropy swallowing causes a significant increase in turbulent heat transfer. However, it is noted that even small effects (say, 10-20%) may be important for the shuttle reusability concept.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/continuum/utility_scale/wind_power_innovation.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/continuum/utility_scale/wind_power_innovation.html"><span>Wind Power Innovation Enables Shift to Utility-Scale - Continuum Magazine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>the 1930s, a farmer in South Dakota built a small <em>wind</em> <em>turbine</em> on his farm, generating enough enough electricity to power thousands of homes. Aerial photo of large <em>wind</em> <em>turbine</em> with mountains in the background. Aerial view of the Siemens utility-scale <em>wind</em> <em>turbine</em> at the National <em>Wind</em> Technology Center</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011496','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011496"><span>Applying Required Navigation Performance Concept for Traffic Management of Small Unmanned Aircraft Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jung, Jaewoo; D'Souza, Sarah N.; Johnson, Marcus A.; Ishihara, Abraham K.; Modi, Hemil C.; Nikaido, Ben; Hasseeb, Hashmatullah</p> <p>2016-01-01</p> <p>In anticipation of a rapid increase in the number of civil Unmanned Aircraft System(UAS) operations, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that will investigate airspace integration requirements for enabling safe, efficient low-altitude operations. One aspect a UTM system must consider is the correlation between UAS operations (such as vehicles, operation areas and durations), UAS performance requirements, and the risk to people and property in the operational area. This paper investigates the potential application of the International Civil Aviation Organizations (ICAO) Required Navigation Performance (RNP) concept to relate operational risk with trajectory conformance requirements. The approach is to first define a method to quantify operational risk and then define the RNP level requirement as a function of the operational risk. Greater operational risk corresponds to more accurate RNP level, or smaller tolerable Total System Error (TSE). Data from 19 small UAS flights are used to develop and validate a formula that defines this relationship. An approach to assessing UAS-RNP conformance capability using vehicle modeling and wind field simulation is developed to investigate how this formula may be applied in a future UTM system. The results indicate the modeled vehicles flight path is robust to the simulated wind variation, and it can meet RNP level requirements calculated by the formula. The results also indicate how vehicle-modeling fidelity may be improved to adequately verify assessed RNP level.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SMaS...21b5017T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SMaS...21b5017T"><span>Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Truyen Luong, Hung; Goo, Nam Seo</p> <p>2012-02-01</p> <p>A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060013125','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060013125"><span>MESSENGER: Exploring Mercury's Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20060013125'); toggleEditAbsImage('author_20060013125_show'); toggleEditAbsImage('author_20060013125_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20060013125_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20060013125_hide"></p> <p>2005-01-01</p> <p>The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all driving field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights- into magnetospheric physics offered by study of the solar wind - Mercury system, quantitative specification of the "external" magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury s intrinsic magnetic field. MESSENGER S highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury s magnetic field and the acceleration of charged particles in small magnetospheres. In. this article, we review what is known about Mercury s magnetosphere and describe the MESSENGER science team s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/981535','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/981535"><span>Wind for Schools (Poster)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baring-Gould, I.</p> <p>2010-05-01</p> <p>As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, andmore » Idaho.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900004929','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900004929"><span>Techniques for extreme attitude suspension of a wind tunnel model in a magnetic suspension and balance system. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, David Huw</p> <p>1989-01-01</p> <p>Although small scale magnetic suspension and balance systems (MSBSs) for wind tunnel use have been in existence for many years, they have not found general application in the production testing of flight vehicles. One reason for this is thought to lie in the relatively limited range of attitudes over which a wind tunnel model may be suspended. Modifications to a small MSBS to permit the suspension and control of axisymmetric models over angles of attack from less than zero to over ninety degrees are reported. Previous work has shown that existing arrangement of ten electromagnets was unable to generate one of the force components needed for control at extreme attitudes. Examination of possible solutions resulted in a simple alteration to rectify this deficiency. To generate the feedback signals to control the suspended model, an optical position sensing system using collimated laser beams and photodiode arrays was installed and tested. An analytical basis was developed for distributing the demands for force and moment needed for model stabilization amonge the electromagnets over the full attitude range. This was implemented by an MSBS control program able to continually adjust the distribution for the instantaneous incidence in accordance with prescheduled data. Results presented demonstrate rotations of models from zero to ninety degrees at rates up to ninety degrees per second, with pitching rates rising to several hundred degrees per second in response to step-change demands. A study of a design for a large MSBS suggests that such a system could be given the capability to control a model in six degrees of freedom over an unlimited angle of attack range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDF32003J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDF32003J"><span>Airborne Measurement of Insolation Impact on the Atmospheric Surface Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacob, Jamey; Chilson, Phil; Houston, Adam; Detweiler, Carrick; Bailey, Sean; Cloud-Map Team</p> <p>2017-11-01</p> <p>Atmospheric surface boundary layer measurements of wind and thermodynamic parameters are conducted during variable insolation conditions, including the 2017 eclipse, using an unmanned aircraft system. It is well known that the air temperatures can drop significantly during a total solar eclipse as has been previously observed. In past eclipses, these observations have primarily been made on the ground. We present results from airborne measurements of the near surface boundary layer using a small unmanned aircraft with high temporal resolution wind and thermodynamic observations. Questions that motivate the study include: How does the temperature within the lower atmospheric boundary vary during an eclipse? What impact does the immediate removal of radiative heating on the ground have on the lower ABL? Do local wind patterns change during an eclipse event and if so why? Will there be a manifestation of the nocturnal boundary layer wind maximum? Comparisons are made with the DOE ARM SGP site that experiences a lower but still significant insolation. Supported by the National Science Foundation under Award Number 1539070.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982dwgm.rept.....D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982dwgm.rept.....D"><span>Development of a 5.5 m diameter vertical axis wind turbine, phase 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.</p> <p>1982-06-01</p> <p>In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800066596&hterms=WIND+STORMS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWIND%2BSTORMS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800066596&hterms=WIND+STORMS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWIND%2BSTORMS"><span>Moisture convergence using satellite-derived wind fields - A severe local storm case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Negri, A. J.; Vonder Haar, T. H.</p> <p>1980-01-01</p> <p>Five-minute interval 1-km resolution SMS visible channel data were used to derive low-level wind fields by tracking small cumulus clouds on NASA's Atmospheric and Oceanographic Information Processing System. The satellite-derived wind fields were combined with surface mixing ratios to derive horizontal moisture convergence in the prestorm environment of April 24, 1975. Storms began developing in an area extending from southwest Oklahoma to eastern Tennessee 2 h subsequent to the time of the derived fields. The maximum moisture convergence was computed to be 0.0022 g/kg per sec and areas of low-level convergence of moisture were in general indicative of regions of severe storm genesis. The resultant moisture convergence fields derived from two wind sets 20 min apart were spatially consistent and reflected the mesoscale forcing of ensuing storm development. Results are discussed with regard to possible limitations in quantifying the relationship between low-level flow and between low-level flow and satellite-derived cumulus motion in an antecedent storm environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhPro..55..192C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhPro..55..192C"><span>Assessment Parameters and Matching between the Sites and Wind Turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chermitti, A.; Bencherif, M.; Nakoul, Z.; Bibitriki, N.; Benyoucef, B.</p> <p></p> <p>The objective of this paper is to introduce the assessment parameters of the wind energy production of sites and pairing between the sites and wind turbines. The exploration is made with the wind data gathered at 10 m high is based on the atlas of the wind of Algeria established by the National office of the Meteorology runs 37 stations of measures. The data is used for a feasibility analysis of optimum future utilization of Wind generator potentiality in five promising sites covering a part of landscape types and regions in Algeria. Detailed technical assessment for the ten most promising potential wind sites was made using the capacity factor and the site effectiveness approach. The investigation was performed assuming several models of small, medium and big size wind machines representing different ranges of characteristic speeds and rated power suitable for water pumping and electric supply. The results show that small wind turbines could be installed in some coast region and medium wind turbines could be installed in the high plateau and some desert regions and utilized for water supply and electrical power generation, the sites having an important wind deposit, in high plateau we find Tiaret site's but in the desert there is some sites for example Adrar, Timimoun and In Amenas, in these sites could be installed a medium and big size wind turbines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23B2018H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23B2018H"><span>Modeling coastal upwelling around a small-scale coastline promontory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haas, K. A.; Cai, D.; Freismuth, T. M.; MacMahan, J.; Di Lorenzo, E.; Suanda, S. H.; Kumar, N.; Miller, A. J.; Edwards, C. A.</p> <p>2016-12-01</p> <p>On the US west coast, northerly winds drive coastal ocean upwelling, an important process which brings cold nutrient rich water to the nearshore. The coastline geometry has been shown to be a significant factor in the strength of the upwelling process. In particular, the upwelling in the lee of major headlands have been shown to be enhanced. Recent observations from the Pt. Sal region on the coast of southern California have shown the presence of cooler water south of a small (350 m) rocky promontory (Mussel Pt.) during upwelling events. The hypothesis is that the small scale promontory is creating a lee side enhancement to the upwelling. To shed some light on this process, numerical simulations of the inner shelf region centered about Pt. Sal are conducted with the ROMS module of the COAWST model system. The model system is configured with four nested grids with resolutions ranging from approximately 600 m to the outer shelf ( 200 m) to the inner shelf ( 66 m) and finally to the surf zone ( 22 m). A solution from a 1 km grid encompassing our domain provides the boundary conditions for the 600 m grid. Barotropic tidal forcing is incorporated at the 600 m grid to provide tidal variability. This model system with realistic topography and bathymetry, winds and tides, is able to isolate the forcing mechanisms that explain the emergence of the cold water mass. The simulations focus on the time period of June - July, 2015 corresponding to the pilot study in which observational experiment data was collected. The experiment data in part consists of in situ measurement, which includes mooring with conductivity, temperature, depth, and flow velocity. The model simulations are able to reproduce the important flow features including the cooler water mass south of Mussel Pt. As hypothesized, the strength of the upwelling is enhanced on the side of Mussel Pt. In addition, periods of wind relaxation where the upwelling ceases and even begins to transform towards downwelling is analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1029034','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1029034"><span>Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oteri, F.; Sinclair, K.</p> <p></p> <p>This paper provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1029024','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1029024"><span>Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio (Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sinclair, K.; Oteri, F.</p> <p></p> <p>This presentation provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15000181','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15000181"><span>Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator: Preprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Muljadi, E.; Green, J.</p> <p>2002-01-01</p> <p>In this paper, we investigate three design options to minimize cogging torque: uniformity of air gap, pole width, and skewing. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1173114','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1173114"><span>Technology solutions for wind integration in Ercot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None, None</p> <p></p> <p>Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacitymore » since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily in the infrastructure needed to increase the viability of this important resource. To help Texas and the rest of the nation address the challenges associated with the integration of large amounts of renewables, CCET seized on the federal opportunity to undertake a multi-faceted project aimed at demonstrating the viability of new “smart grid” technologies to facilitate larger amounts of wind energy through better system monitoring capabilities, enhanced operator visualization, and improved load management. In early 2010, CCET was awarded a $27 million grant, half funded by the Department of Energy and half-funded by project participants. With this funding, CCET undertook the project named Discovery Across Texas which has demonstrated how existing and new technologies can better integrate wind power into the state’s grid. The following pages summarize the results of seven technology demonstrations that will help Texas and the nation meet this wind integration challenge.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1173111','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1173111"><span>Technology solutions for wind integration in ERCOT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None, None</p> <p></p> <p>Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacitymore » since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily in the infrastructure needed to increase the viability of this important resource. To help Texas and the rest of the nation address the challenges associated with the integration of large amounts of renewables, CCET seized on the federal opportunity to undertake a multi-faceted project aimed at demonstrating the viability of new “smart grid” technologies to facilitate larger amounts of wind energy through better system monitoring capabilities, enhanced operator visualization, and improved load management. In early 2010, CCET was awarded a $27 million grant, half funded by the Department of Energy and half-funded by project participants. With this funding, CCET undertook the project named Discovery Across Texas which has demonstrated how existing and new technologies can better integrate wind power into the state’s grid. The following pages summarize the results of seven technology demonstrations that will help Texas and the nation meet this wind integration challenge.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS23A1628D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS23A1628D"><span>Simulation and Assessment of a Ku-Band Full-Polarized Radar Scatterometer for Ocean Surface Vector Wind Measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, X.; Lin, W.; Zhu, D.; Song, Z.</p> <p>2011-12-01</p> <p>Spaceborne radar scatterometry is the most important tool for global ocean surface wind vector (OSVW) measurement. Performances under condition of high-wind speed and accuracy of wind direction retrievals are two very important concerns for the development of OSVW measurement techniques by radar scatterometry. Co-polarized sigma 0 measurements are employed, for all the spaceborne radar scatterometers developed in past, and future planned missions. The main disadvantages of co-polarized only radar scatterometers for OSVW measurement are: firstly, wind vector retrieval performances varies with the position of the wind vector cells (WVC) within the swath, where WVCs with small incident angels with weaker modulation effect between sigma0 and azimuth incident angle, and the WVCs located in the outer part of the swath with lower signal-to-noise ratio and lower radiometric accuracies, have worse retrieval performances; secondly, for co-polarization measurements, Sigma 0 is the even function of the azimuth incident angle with respect to the real wind direction, which can results in directional ambiguity, and more additional information is need for the ambiguity removal. Theoretical and experimental results show that the cross-polarization measurement can provide complementary directional information to the co-polarization measurements, which can provide useful improvement to the wind vector retrieval performances. In this paper, the simulation and performance assessment of a full-polarized Ku-band radar scatterometer are provided. Some important conclusions are obtained: (1) Compared with available dual co-polarized radar scatterometer, the introduction of cross-polarization information can significantly improve the OSVW retrieval accuracies, where a relatively identical performance can be obtained within the whole swath. Simulation show that without significantly power increase, system design based on rotating-pencil beam design has much better performances than rotation fan-beam system due to its higher antenna gain and signal-to-noise ratio; (2) The performances of the full-polarized measurement, where all the 9 element covariant coefficient elements will be measurement, only have a little improvement compared with the "dual-co-polarization+HVVV" design, which is because of the almost identical characteristics of HVVV and VHHH measurement due to reciprocity; (3) The propagation error of rotation pencil-beam system is obviously much smaller than that of the rotation fan-beam system, which is due to the significant difference of antenna gains and signal-to-noise ratios; (4) Introduction of cross-polarized HVVV measurement can lead to almost identical wind direction retrieval performance for both the rotation pencil-beam and rotation fan-beam systems, which show that the cross-polarization information can significantly improve the wind direction retrieval performances by increasing the number of look angles, compared with the available fixed-fan-beam systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhyC..470.1860H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhyC..470.1860H"><span>The contactless detection of local normal transitions in superconducting coils by using Poynting’s vector method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Habu, K.; Kaminohara, S.; Kimoto, T.; Kawagoe, A.; Sumiyoshi, F.; Okamoto, H.</p> <p>2010-11-01</p> <p>We have developed a new monitoring system to detect an unusual event in the superconducting coils without direct contact on the coils, using Poynting's vector method. In this system, the potential leads and pickup coils are set around the superconducting coils to measure local electric and magnetic fields, respectively. By measuring the sets of magnetic and electric fields, the Poynting's vectors around the coil can be obtained. An unusual event in the coil can be detected as the result of the change of the Poynting's vector. This system has no risk of the voltage breakdown which may happen with the balance voltage method, because there is no need of direct contacts on the coil windings. In a previous paper, we have demonstrated that our system can detect the normal transitions in the Bi-2223 coil without direct contact on the coil windings by using a small test system. For our system to be applied to practical devices, it is necessary for the early detection of an unusual event in the coils to be able to detect local normal transitions in the coils. The signal voltages of the small sensors to measure local magnetic and electric fields are small. Although the increase in signals of the pickup coils is attained easily by an increase in the number of turns of the pickup coils, an increase in the signals of the potential lead is not easily attained. In this paper, a new method to amplify the signal of local electric fields around the coil is proposed. The validity of the method has been confirmed by measuring local electric fields around the Bi-2223 coil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950038139&hterms=L37&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DL37','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950038139&hterms=L37&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DL37"><span>Regimes of high-energy shock emission from the Be star/pulsar system PSR 1259-63</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tavani, Marco; Arons, Jonathan; Kaspi, Victoria M.</p> <p>1994-01-01</p> <p>PSR B1259-63 is a 47 ms radio pulsar in a wide, eccentric orbit with a Be star. We study the shock interaction between the pulsar and the companion's mass outflow and investigate the time evolution of radiative shock regimes. We find that for small values of the Be star's mass-loss rate, inverse-Compton scattering is likely to dominate the shock emission. Alternately, for a large mass-loss rate, synchrotron emission will dominate. Multifrequency X-ray and gamma-ray observations near periastron can distinguish between these cases and yield unique constraints on the pulsar and Be star winds. The PSR B1259-63 system provides a unique laboratory to study the time-dependent interaction of a pulsar wind with the circumbinary material from its companion star.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810035067&hterms=pilot+testing+research&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpilot%2Btesting%2Bresearch','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810035067&hterms=pilot+testing+research&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpilot%2Btesting%2Bresearch"><span>A status report on NASA general aviation stall/spin flight testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Patton, J. M., Jr.</p> <p>1980-01-01</p> <p>The NASA Langley Research Center has undertaken a comprehensive program involving spin tunnel, static and rotary balance wind tunnel, full-scale wind tunnel, free flight radio control model, flight simulation, and full-scale testing. Work underway includes aerodynamic definition of various configurations at high angles of attack, testing of stall and spin prevention concepts, definition of spin and spin recovery characteristics, and development of test techniques and emergency spin recovery systems. This paper presents some interesting results to date for the first aircraft (low-wing, single-engine) in the program, in the areas of tail design, wing leading edge design, mass distribution, center of gravity location, and small airframe changes, with associated pilot observations. The design philosophy of the spin recovery parachute system is discussed in addition to test techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-30/pdf/2012-21498.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-30/pdf/2012-21498.pdf"><span>77 FR 52754 - Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-30</p> <p>... include new and existing small-scale wind energy facilities, such as single-turbine demonstration projects, as well as large, multi-turbine commercial wind facilities. Covered Species The planning partners are...-FF03E00000] Draft Midwest Wind Energy Multi-Species Habitat Conservation Plan Within Eight-State Planning...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDL13011B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDL13011B"><span>Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan</p> <p>2015-11-01</p> <p>To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS032-508-005&hterms=fishing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfishing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS032-508-005&hterms=fishing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfishing"><span>STS-32 Earth observation of the southern Sand Sea, Namibia, Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1990-01-01</p> <p>STS-32 Earth observation taken onboard Columbia, Orbiter Vehicle (OV) 102, is of the southern Sand Sea. Low sun angles on this south-looking view of the sand dunes of the southern Sand Sea (foreground) shows the many subtle patterns produced by winds. Along the coast very strong southerly winds have generated a zone of ribbed, transverse dunes. Further inland, different patterns appear, which may relate to present winds, or perhaps to winds which blew in different directions at times in the geological past. Strong Santa Ana-type winds blow from inland (left) during the winter which may explain the small patterns (center left). The small fishing port of Luderitz occupies the main bay on the coastline. Otherwise the area is empty of inhabitants on the very dry and windy coast. Railways connect the post with inland centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859...28Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859...28Q"><span>Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, Qian; Fendt, Christian; Vourellis, Christos</p> <p>2018-05-01</p> <p>We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching—the simulation of the accretion–ejection transition—have so far almost only been done for nonrelativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, plays an important role for the launching process. Here we extend this treatment to general relativistic magnetohydrodynamics (GR-MHD), applying the resistive GR-MHD code rHARM. Our model setup considers a thin accretion disk threaded by a large-scale open magnetic field. We run a series of simulations with different Kerr parameter, field strength, and diffusivity level. Indeed, we find strong disk winds with, however, mildly relativistic speed, the latter most probably due to our limited computational domain. Further, we find that magnetic diffusivity lowers the efficiency of accretion and ejection, as it weakens the efficiency of the magnetic lever arm of the disk wind. As a major driving force of the disk wind we disentangle the toroidal magnetic field pressure gradient; however, magnetocentrifugal driving may also contribute. Black hole rotation in our simulations suppresses the accretion rate owing to an enhanced toroidal magnetic field pressure that seems to be induced by frame dragging. Comparing the energy fluxes from the Blandford–Znajek-driven central spine and the surrounding disk wind, we find that the total electromagnetic energy flux is dominated by the total matter energy flux of the disk wind (by a factor of 20). The kinetic energy flux of the matter outflow is comparatively small and comparable to the Blandford–Znajek electromagnetic energy flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981STIN...8226841.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981STIN...8226841."><span>Small wind systems application analysis. Executive summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1981-06-01</p> <p>The potential market for SWECS, or wind machines smaller than 100 kW for five selected applications was estimated. The goals of the study were to aid manufacturers in attaining financing by convincing venture capital investors of the potential of SWECS and to aid government planners in allocating R and D expenditures that will effectively advance SWECS commercialization. The five applications were selected through an initial screening and priority-ranking analysis. The year of analysis was 1985, but all dollar amounts, such as fuel costs, are expressed in 1980 dollars. The five SWECS applications investigated were farm residences, non-farm residences rural electric cooperatives, feed grinders, and remote communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790011243','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790011243"><span>Nonlinear Equations of Equilibrium for Elastic Helicopter or Wind Turbine Blades Undergoing Moderate Deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rosen, A.; Friedmann, P. P.</p> <p>1978-01-01</p> <p>A set of nonlinear equations of equilibrium for an elastic wind turbine or helicopter blades are presented. These equations are derived for the case of small strains and moderate rotations (slopes). The derivation includes several assumptions which are carefully stated. For the convenience of potential users the equations are developed with respect to two different systems of coordinates, the undeformed and the deformed coordinates of the blade. Furthermore, the loads acting on the blade are given in a general form so as to make them suitable for a variety of applications. The equations obtained in the study are compared with those obtained in previous studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=232642','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=232642"><span>Predicting wind-driven waves in small reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The earthen levees commonly used for irrigation reservoirs are subjected to significant embankment erosion due to wind-generated waves. The design of bank protection measures relies on adequate prediction of wave characteristics based on wind conditions and fetch length. Current formulations are ba...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...596A..42B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...596A..42B"><span>Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko. Observations and modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behar, E.; Lindkvist, J.; Nilsson, H.; Holmström, M.; Stenberg-Wieser, G.; Ramstad, R.; Götz, C.</p> <p>2016-11-01</p> <p>Context. The first long-term in-situ observation of the plasma environment in the vicinity of a comet, as provided by the European Rosetta spacecraft. Aims: Here we offer characterisation of the solar wind flow near 67P/Churyumov-Gerasimenko (67P) and its long term evolution during low nucleus activity. We also aim to quantify and interpret the deflection and deceleration of the flow expected from ionization of neutral cometary particles within the undisturbed solar wind. Methods: We have analysed in situ ion and magnetic field data and combined this with hybrid modeling of the interaction between the solar wind and the comet atmosphere. Results: The solar wind deflection is increasing with decreasing heliocentric distances, and exhibits very little deceleration. This is seen both in observations and in modeled solar wind protons. According to our model, energy and momentum are transferred from the solar wind to the coma in a single region, centered on the nucleus, with a size in the order of 1000 km. This interaction affects, over larger scales, the downstream modeled solar wind flow. The energy gained by the cometary ions is a small fraction of the energy available in the solar wind. Conclusions: The deflection of the solar wind is the strongest and clearest signature of the mass-loading for a small, low-activity comet, whereas there is little deceleration of the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1220606-quantifying-error-lidar-sodar-doppler-beam-swinging-measurements-wind-turbine-wakes-using-computational-fluid-dynamics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1220606-quantifying-error-lidar-sodar-doppler-beam-swinging-measurements-wind-turbine-wakes-using-computational-fluid-dynamics"><span>Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...</p> <p>2015-02-23</p> <p>Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AMT.....8..907L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AMT.....8..907L"><span>Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.</p> <p>2015-02-01</p> <p>Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3827366','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3827366"><span>Good Days, Bad Days: Wind as a Driver of Foraging Success in a Flightless Seabird, the Southern Rockhopper Penguin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra</p> <p>2013-01-01</p> <p>Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10169E..1SC','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10169E..1SC"><span>Foundation stiffness in the linear modeling of wind turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiang, Chih-Hung; Yu, Chih-Peng; Chen, Yan-Hao; Lai, Jiunnren; Hsu, Keng-Tsang; Cheng, Chia-Chi</p> <p>2017-04-01</p> <p>Effects of foundation stiffness on the linear vibrations of wind turbine systems are of concerns for both planning and construction of wind turbine systems. Current study performed numerical modeling for such a problem using linear spectral finite elements. The effects of foundation stiffness were investigated for various combinations of shear wave velocity of soil, size of tower base plate, and pile length. Multiple piles are also included in the models such that the foundation stiffness can be analyzed more realistically. The results indicate that the shear wave velocity of soil and the size of tower base plate have notable effects on the dominant frequency of the turbine-tower system. The larger the lateral dimension, the stiffer the foundation. Large pile cap and multiple spaced piles result in higher stiffness than small pile cap and a mono-pile. The lateral stiffness of a mono-pile mainly depends on the shear wave velocity of soil with the exception for a very short pile that the end constraints may affect the lateral vibration of the superstructure. Effective pile length may be determined by comparing the simulation results of the frictional pile to those of the end-bearing pile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20076326','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20076326"><span>Laser Doppler detection systems for gas velocity measurement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huffaker, R M</p> <p>1970-05-01</p> <p>The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 micro. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 micro, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1423756','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1423756"><span>Distributed Wind Competitiveness Improvement Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p></p> <p></p> <p>The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. Thismore » fact sheet describes the CIP and funding awarded as part of the project.ufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GRC-1945-C-13046.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GRC-1945-C-13046.html"><span>Wind Tunnel Complex at the Aircraft Engine Research Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1945-09-21</p> <p>This aerial photograph shows the entire original wind tunnel complex at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The large Altitude Wind Tunnel (AWT) at the center of the photograph dominates the area. The Icing Research Tunnel to the right was incorporated into the lab’s design to take advantage of the AWT’s powerful infrastructure. The laboratory’s first supersonic wind tunnel was added to this complex just prior to this September 1945 photograph. The AWT was the nation’s only wind tunnel capable of studying full-scale engines in simulated flight conditions. The AWT’s test section and control room were within the two-story building near the top of the photograph. The exhauster equipment used to thin the airflow and the drive motor for the fan were in the building to the right of the tunnel. The unique refrigeration equipment was housed in the structure to the left of the tunnel. The Icing Research Tunnel was an atmospheric tunnel that used the AWT’s refrigeration equipment to simulate freezing rain inside its test section. A spray bar system inside the tunnel was originally used to create the droplets. The 18- by 18-inch supersonic wind tunnel was built in the summer of 1945 to take advantage of the AWT’s powerful exhaust system. It was the lab’s first supersonic tunnel and could reach Mach 1.91. Eventually the building would house three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22034333-wind-structure-luminosity-variations-wolf-rayet-luminous-blue-variable-hd','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22034333-wind-structure-luminosity-variations-wolf-rayet-luminous-blue-variable-hd"><span>WIND STRUCTURE AND LUMINOSITY VARIATIONS IN THE WOLF-RAYET/LUMINOUS BLUE VARIABLE HD 5980</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Georgiev, Leonid; Koenigsberger, Gloria; Hillier, D. John</p> <p></p> <p>Over the past 40 years, the massive luminous blue variable/Wolf-Rayet system HD 5980 in the Small Magellanic Cloud (SMC) has undergone a long-term S Doradus-type variability cycle and two brief and violent eruptions in 1993 and 1994. In this paper we analyze a collection of UV and optical spectra obtained between 1979 and 2009 and perform CMFGEN model fits to spectra of 1994, 2000, 2002, and 2009. The results are as follows: (1) the long-term S Dor-type variability is associated with changes of the hydrostatic radius; (2) the 1994 eruption involved changes in its bolometric luminosity and wind structure; (3)more » the emission-line strength, the wind velocity, and the continuum luminosity underwent correlated variations in the sense that a decreasing V{sub {infinity}} is associated with increasing emission line and continuum levels; and (4) the spectrum of the third star in the system (Star C) is well fit by a T{sub eff} = 32 K model atmosphere with SMC chemical abundances. For all epochs, the wind of the erupting star is optically thick at the sonic point and is thus driven mainly by the continuum opacity. We speculate that the wind switches between two stable regimes driven by the 'hot' (during the eruption) and the 'cool' (post-eruption) iron opacity bumps as defined by Lamers and Nugis and Graefener and Hamann, and thus the wind may undergo a bi-stability jump of a different nature from that which occurs in OB stars.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......135A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......135A"><span>Integration of permanent magnet synchronous generator wind turbines into power grid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abedini, Asghar</p> <p></p> <p>The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent, integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApJ...774...59Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApJ...774...59Y"><span>Small-scale Pressure-balanced Structures Driven by Oblique Slow Mode Waves Measured in the Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.</p> <p>2013-09-01</p> <p>Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/3012','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/3012"><span>The effects of wind disturbance on temperate rain forest structure and dynamics of southeast Alaska.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Gregory J. Nowacki; Marc G. Kramer</p> <p>1998-01-01</p> <p>Wind disturbance plays a fundamental role in shaping forest dynamics in southeast Alaska. Recent studies have increased our appreciation for the effects of wind at both large and small scales. Current thinking is that wind disturbance characteristics change over a continuum dependent on landscape features (e.g., exposure, landscape position, topography). Data modeling...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1652...51D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1652...51D"><span>A new approach to wind energy: Opportunities and challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dabiri, John O.; Greer, Julia R.; Koseff, Jeffrey R.; Moin, Parviz; Peng, Jifeng</p> <p>2015-03-01</p> <p>Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource—which is 20 times greater than total global power consumption—and the limited penetration of existing wind energy technologies as a means for electricity generation worldwide. We describe an approach to wind energy harvesting that has the potential to resolve this disconnect by geographically distributing wind power generators in a manner that more closely mirrors the physical resource itself. To this end, technology development is focused on large arrays of small wind turbines that can harvest wind energy at low altitudes by using new concepts of biology-inspired engineering. This approach dramatically extends the reach of wind energy, as smaller wind turbines can be installed in many places that larger systems cannot, especially in built environments. Moreover, they have lower visual, acoustic, and radar signatures, and they may pose significantly less risk to birds and bats. These features can be leveraged to attain cultural acceptance and rapid adoption of this new technology, thereby enabling significantly faster achievement of state and national renewable energy targets than with existing technology alone. Favorable economics stem from an orders-of-magnitude reduction in the number of components in a new generation of simple, mass-manufacturable (even 3D-printable), vertical-axis wind turbines. However, this vision can only be achieved by overcoming significant scientific challenges that have limited progress over the past three decades. The following essay summarizes our approach as well as the opportunities and challenges associated with it, with the aim of motivating a concerted effort in basic and applied research in this area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1037463','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1037463"><span>Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Murray, Nathan E.</p> <p>2012-03-12</p> <p>Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressuremore » fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11F1943P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11F1943P"><span>"Rapid Revisit" Measurements of Sea Surface Winds Using CYGNSS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, J.; Johnson, J. T.</p> <p>2017-12-01</p> <p>The Cyclone Global Navigation Satellite System (CYGNSS) is a space-borne GNSS-R (GNSS-Reflectometry) mission that launched December 15, 2016 for ocean surface wind speed measurements. CYGNSS includes 8 small satellites in the same LEO orbit, so that the mission provides wind speed products having unprecedented coverage both in time and space to study multi-temporal behaviors of oceanic winds. The nature of CYGNSS coverage results in some locations on Earth experiencing multiple wind speed measurements within a short period of time (a "clump" of observations in time resulting in a "rapid revisit" series of measurements). Such observations could seemingly provide indications of regions experiencing rapid changes in wind speeds, and therefore be of scientific utility. Temporally "clumped" properties of CYGNSS measurements are investigated using early CYGNSS L1/L2 measurements, and the results show that clump durations and spacing vary with latitude. For example, the duration of a clump can extend as long as a few hours at higher latitudes, with gaps between clumps ranging from 6 to as high as 12 hours depending on latitude. Examples are provided to indicate the potential of changes within a clump to produce a "rapid revisit" product for detecting convective activity. Also, we investigate detector design for identifying convective activities. Results from analyses using recent CYGNSS L2 winds will be provided in the presentation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8690E..09K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8690E..09K"><span>Piezoelectric wind turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kishore, Ravi Anant; Priya, Shashank</p> <p>2013-03-01</p> <p>In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030075717&hterms=climate+change+climate+patterns&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange%2Bclimate%2Bpatterns','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030075717&hterms=climate+change+climate+patterns&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange%2Bclimate%2Bpatterns"><span>Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime from Lander and Orbiter Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, Ronald; Kraft, Michael D.; Kuzmin, Ruslan O.; Bridges, Nathan T.</p> <p>2000-01-01</p> <p>Surface features related to the wind are observed in the vicinity of the Mars Pathfinder (MPR landing site data from the lander and in data from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions. One is inferred to represent winds from the northeast, which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions. A second wind blowing from the ESE was responsible for modifying the crater rims and cutting some of the ventifacts. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, and the original surface formed by sedimentary processes from Tiu and Ares Vallis flooding events has been modified by repeated burial and exhumation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDE25003D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDE25003D"><span>Fan array wind tunnel: a multifunctional, complex environmental flow manipulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dougherty, Christopher; Veismann, Marcel; Gharib, Morteza</p> <p>2017-11-01</p> <p>The recent emergence of small unmanned aerial vehicles (UAVs) has reshaped the aerospace testing environment. Traditional closed-loop wind tunnels are not particularly suited nor easily retrofit to take advantage of these coordinated, controls-based rotorcraft. As such, a highly configurable, novel wind tunnel aimed at addressing the unmet technical challenges associated with single or formation flight performance of autonomous drone systems is presented. The open-loop fan array wind tunnel features 1296 individually controllable DC fans arranged in a 2.88m x 2.88m array. The fan array can operate with and without a tunnel enclosure and is able to rotate between horizontal and vertical testing configurations. In addition to standard variable speed uniform flow, the fan array can generate both unsteady and shear flows. Through the aid of smaller side fan array units, vortex flows are also possible. Conceptual design, fabrication, and validation of the tunnel performance will be presented, including theoretical and computational predictions of flow speed and turbulence intensity. Validation of these parameters is accomplished through standard pitot-static and hot-wire techniques. Particle image velocimetry (PIV) of various complex flows will also be shown. This material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1107446','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1107446"><span>Safety and Function Test Report for the Viryd CS8 Wind Turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roadman, J.; Murphy, M.; van Dam, J.</p> <p>2013-10-01</p> <p>This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Several turbines were selected for testing at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of the Small Wind Turbine Independent Testing project. Safety and function testing is one of up to five tests that may be performed on the turbines. Other tests include duration, power performance, acoustic noise, and power quality. Viryd Technologies, Inc.more » of Austin, Texas, was the recipient of the DOE grant and provided the turbine for testing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910034330&hterms=Quasi+experiment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DQuasi%2Bexperiment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910034330&hterms=Quasi+experiment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DQuasi%2Bexperiment"><span>Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matthaeus, William H.; Goldstein, Melvyn L.; Roberts, D. Aaron</p> <p>1990-01-01</p> <p>Assuming that the slab and isotropic models of solar wind turbulence need modification (largely due to the observed anisotropy of the interplanetary fluctuations and the results of laboratory plasma experiments), this paper proposes a model of the solar wind. The solar wind is seen as a fluid which contains both classical transverse Alfvenic fluctuations and a population of quasi-transverse fluctuations. In quasi-two-dimensional turbulence, the pitch angle scattering by resonant wave-particle interactions is suppressed, and the direction of minimum variance of interplanetary fluctuations is parallel to the mean magnetic field. The assumed incompressibility is consistent with the fact that the density fluctuations are small and anticorrelated, and that the total pressure at small scales is nearly constant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1172935','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1172935"><span>Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dykes, K.; Graf, P.; Scott, G.</p> <p>2015-01-01</p> <p>The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28787781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28787781"><span>Experimental investigation of flow over two-dimensional multiple hill models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke</p> <p>2017-12-31</p> <p>The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989GeoRL..16..759M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989GeoRL..16..759M"><span>On the lower altitude limit of the Venusian ionopause</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahajan, K. K.; Mayr, H. G.; Brace, L. H.; Cloutier, P. A.</p> <p>1989-07-01</p> <p>It has been observed from the plasma experiments on the Pioneer Venus Orbiter that the altitude of the upper boundary of the ionosphere decreases in response to increasing solar wind dynamic pressure. However, at pressures above about 2.5 x 10 to the -8th dynes/sq cm, the further decrease in the ionopause height is rather small. Following the model of Cloutier et al. (1969), it is suggested that during high solar wind conditions, when the ionopause is formed at lower altitudes, the solar wind induces vertical and horizontal flows which sweep away the ionospheric plasma that is produced locally by photoionization. As a result, a disturbed photodynamical ionosphere is formed which has the scale height of the ionizable neutral constituent. It is shown that such a photodynamical ionosphere is observed at the subsolar ionopause under these conditions. As a consequence of this interaction, the ionopause altitude is observed to follow the small-scale height of the ionizable species, atomic oxygen, showing only small changes with solar wind pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13b4014E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13b4014E"><span>The resilience of Australian wind energy to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, Jason P.; Kay, Merlinde; Prasad, Abhnil; Pitman, Andy</p> <p>2018-02-01</p> <p>The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negligibly in the future in regions with significant existing installed capacity. Technological developments in wind energy generation more than compensate for projected small reductions in wind, decreasing the LCOE by around 30%. These developments ensure viability for existing wind farms, and enhance the economic viability of proposed wind farms in Western Australian and Tasmania. Wind energy is therefore a resilient source of electricity over most of Australia and technological innovation entering the market will open new regions for energy production in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000110343&hterms=climate+change+evidence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dclimate%2Bchange%2Bevidence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000110343&hterms=climate+change+evidence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dclimate%2Bchange%2Bevidence"><span>Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime and Climate from Lander and Orbiter Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, R.; Kraft, M. D.; Kuzmin, R. O.; Bridges, N. T.</p> <p>1999-01-01</p> <p>Surface features related to the wind are observed in data from the Mars Pathfinder lander and from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions, one inferred to represent winds from the northeast which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions, and a second wind pattern oriented approx. 90 degrees to the first. This latter wind could be from the W-NW or from the E-SE and was responsible for cutting the ventifacts and modifying the crater rims. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, in which the original surface formed by sedimentary processes from Tiu and Ares Vallis events has been modified by repeated burial and exhumation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrES...12..170Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrES...12..170Z"><span>The effect of wind on the dispersal of a tropical small river plume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Junpeng; Gong, Wenping; Shen, Jian</p> <p>2018-03-01</p> <p>Wanquan River is a small river located in Hainan, a tropical island in China. As the third largest river in Hainan, the river plume plays an important role in the regional terrigenous mass transport, coastal circulation, and the coral reef's ecosystem. Studies have shown that wind forcings significantly influence river plume dynamics. In this study, wind effects on the dispersal of the river plume and freshwater transport were examined numerically using a calibrated, unstructured, finite volume numerical model (FVCOM). Both wind direction and magnitude were determined to influence plume dispersal. Northeasterly (downwelling-favorable) winds drove freshwater down-shelf while southeasterly (onshore) winds drove water up-shelf (in the sense of Kelvin wave propagation), and were confined near the coast. Southwesterly (upwelling-favorable) and north-westerly (offshore) winds transport more freshwater offshore. The transport flux is decomposed into an advection, a vertical shear, and an oscillatory component. The advection flux dominates the freshwater transport in the coastal area and the vertical shear flux is dominant in the offshore area. For the upwelling-favorable wind, the freshwater transport becomes more controlled by the advection transport with an increase in wind stress, due to enhanced vertical mixing. The relative importance of wind forcing and buoyancy force was investigated. It was found that, when the Wedderburn number is larger than one, the plume was dominated by wind forcing, although the importance of wind varies in different parts of the plume. The water column stratification decreased as a whole under the prevailing southwesterly wind, with the exception of the up-shelf and offshore areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/983025','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/983025"><span>Systems and methods for an integrated electrical sub-system powered by wind energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY</p> <p>2008-06-24</p> <p>Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910001714','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910001714"><span>Propulsion simulation for magnetically suspended wind tunnel models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.</p> <p>1990-01-01</p> <p>The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920064071&hterms=histoire&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhistoire','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920064071&hterms=histoire&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhistoire"><span>What heated the parent meteorite planets?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, John A.; Pellas, Paul</p> <p>1991-01-01</p> <p>The plausibility of the two most wide discussed mechanisms, decay of short-lived Al-26 and solar wind induction heating, for heating the small planetesimals in which the meteorites formed are examined and shown to have significant problems. The main problem for the Al-26 decay mechanism is the fact that eucritic lavas, melted by the mysterious heating mechanism in some early planetesimal, did not contain enough Al-26 to decay to radiogenic Mg-26 when they erupted to their planetesimal surface and cooled. It is necessary to postulate that the lavas lingered underground while their Al-26 decayed away. The solar wind induction heat concept has the problem that astrophysical evidence has made is seem increasingly unlikely that an intense solar wind flux blew past planetesimals in the early solar system. Instead, it was probably collimated in the direction of the sun's poles by the persistence of the solar nebula during the T Tauri epoch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030061399&hterms=amp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Damp','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030061399&hterms=amp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Damp"><span>Analysis of Near Simultaneous Jimsphere and AMPS High Resolution Wind Profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adelfang, S. I.</p> <p>2003-01-01</p> <p>The high-resolution wind profile of the Automated Meteorological Profiling System (HRAMPS) is the proposed replacement for the Jimsphere measurement system used to support NASA Shuttle launches from the Eastern Test Range (ETR). Samples of twenty-six ETR near simultaneous Jimsphere and HRAMPS wind profiles were obtained for Shuttle program HRAMPS certification studies. Shuttle systems engineering certification is to ensure that spacecraft and launch vehicle systems performance and safety evaluations for each launch (derived from flight simulations with Jimsphere wind profile data bases) retain their validity when HRAMPS profiles are used on day-of-launch (DOL) in trajectory and loads simulations to support the commit-to-launch decision. This paper describes a statistical analysis of the near simultaneous profiles. In principle the differences between a Jimsphere profile and an HRAMPS profile should be attributed to tracking technology (radar versus GPS tracking of a Jimsphere flight element) and the method for derivation of wind vectors from the raw tracking data. In reality, it is not technically feasible to track the same Jimsphere balloon with the two systems. The aluminized Mylar surface of the standard Jimsphere flight element facilitates radar tracking, but it interferes with HRAMPS during simultaneous tracking. Suspending a radar reflector from an HRAMPS flight element (Jimsphere without aluminized coating) does not produce satisfactory Jimsphere profiles because of intermittent radar returns. Thus, differences between the Jimsphere and HRAMPS profiles are also attributed to differences in the trajectories of separate flight elements. Because of small sample size and a test period limited to one winter season, test measurements during extreme high winds aloft could not have been expected and did not occur. It is during the highest winds that the largest differences between Jimsphere and HRAMPS would occur because the distance between flight elements would be larger. Jimsphere radar tracking noise increases as a function of balloon displacement downrange. The Jimsphere data processing compensates for tracking signal/noise degradation by increasing the smoothing interval. The Jimsphere wind profile effective resolution is a function of downrange distance and altitude, whereas the effective resolution of the HRAMPS should be independent of those variables. The procedure used for editing Jimsphere spikes in Shuttle DOL profiles was not implemented for the Jimsphere profile measurements during the AMPS field tests. For this analysis a code was developed that essentially mimics DOL Jimsphere spike editing. Jimsphere profiles have somewhat more noise in the wavelength range less than 200m defined as the noise floor. No differences between Jimsphere and HRAMPS wind profile pairs have been found that would support denial of HRAMPS certification for application in Shuttle DOL applications. The reliability of the HRAMPS system, which is an important certification issue, is not addressed in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000072439','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000072439"><span>Significant Features Found in Simulated Tropical Climates Using a Cloud Resolving Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.</p> <p>2000-01-01</p> <p>Cloud resolving model (CRM) has widely been used in recent years for simulations involving studies of radiative-convective systems and their role in determining the tropical regional climate. The growing popularity of CRMs usage can be credited for their inclusion of crucial and realistic features such like explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit radiative-convective interaction. For example, by using a two-dimensional cloud model with radiative-convective interaction process, found a QBO-like (quasibiennial oscillation) oscillation of mean zonal wind that affected the convective system. Accordingly, the model-generated rain band corresponding to convective activity propagated in the direction of the low-level zonal mean winds; however, the precipitation became "localized" (limited within a small portion of the domain) as zonal mean winds were removed. Two other CRM simulations by S94 and Grabowski et al. (1996, hereafter G96), respectively that produced distinctive quasi-equilibrium ("climate") states on both tropical water and energy, i.e., a cold/dry state in S94 and a warm/wet state in G96, have later been investigated by T99. They found that the pattern of the imposed large-scale horizontal wind and the magnitude of the imposed surface fluxes were the two crucial mechanisms in determining the tropical climate states. The warm/wet climate was found associated with prescribed strong surface winds, or with maintained strong vertical wind shears that well-organized convective systems prevailed. On the other hand, the cold/dry climate was produced due to imposed weak surface winds and weak wind shears throughout a vertically mixing process by convection. In this study, considered as a sequel of T99, the model simulations to be presented are generally similar to those of T99 (where a detailed model setup can be found), except for a more detailed discussion along with few more simulated experiments. There are twelve major experiments chosen for presentations that are introduced in section two. Several significant feature analyses regarding the rainfall properties, CAPE (Convective Available Potential Energy), cloud-scale eddies, the stability issue, the convective system propagation, relative humidity, and the effect on the quasi-equilibrium state by the imposed constant. radiation or constant surface fluxes, and etc. will be presented in the meeting. However, only three of the subjects are discussed in section three. A brief summary is concluded in the end section.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA470108','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA470108"><span>Directional Characteristics of Inner Shelf Internal Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-06-01</p> <p>Figure 18. YD 202-206 Current vector plot of significant events. Significant events include internal tidal bores, solibores, and solitons . The upper...Events (Bores, Solibores, and Solitons ): Upper column leading-edge cross-shore current velocity and cross-shore wind regression. The small ellipse...Significant Events (Bores, Solibores, and Solitons ): Upper column leading-edge along-shore current velocity and along-shore wind regression. The small</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/4986','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/4986"><span>Effect of natural inbreeding on variance structure in tests of wind pollination Douglas-fir progenies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Frank C. Sorensen; T.L. White</p> <p>1988-01-01</p> <p>Studies of the mating habits of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) have shown that wind-pollination families contain a small proportion of very slow-growing natural inbreds.The effect of these very small trees on means, variances, and variance ratios was evaluated for height and diameter in a 16-year-old plantation by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/26050','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/26050"><span>Frequency of dry east winds over northwest Oregon and southwest Washington.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Owen P. Cramer</p> <p>1957-01-01</p> <p>There is a close relation between occurrences of severe easterly winds and large forest fires in northwest Oregon and southwest Washington. With the east winds comes the dreaded combination of low humidity and high wind that in the past has whipped small fires into conflagrations such as the Tillamook fire of 1933 and the fire that burned Bandon in 1936. These easterly...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P13C2569A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P13C2569A"><span>Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.</p> <p>2017-12-01</p> <p>To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SMaS...26g5007T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SMaS...26g5007T"><span>Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, Ting; Yan, Zhimiao; Lei, Hong</p> <p>2017-07-01</p> <p>Galloping-based piezoelectric energy harvesters scavenge small-scale wind energy and convert it into electrical energy. For piezoelectric energy harvesting with the same vibrational source (galloping) but different (alternating-current (AC) and direct-current (DC)) interfaces, general analytical solutions of the electromechanical coupled distributed parameter model are proposed. Galloping is theoretically proven to appear when the linear aerodynamic negative damping overcomes the electrical damping and mechanical damping. The harvested power is demonstrated as being done by the electrical damping force. Via tuning the load resistance to its optimal value for optimal or maximal electrical damping, the harvested power of the given structure with the AC/DC interface is maximized. The optimal load resistances and the corresponding performances of such two systems are compared. The optimal electrical damping are the same but with different optimal load resistances for the systems with the AC and DC interfaces. At small wind speeds where the optimal electrical damping can be realized by only tuning the load resistance, the performances of such two energy harvesting systems, including the minimal onset speeds to galloping, maximal harvested powers and corresponding tip displacements are almost the same. Smaller maximal electrical damping with larger optimal load resistance is found for the harvester with the DC interface when compared to those for the harvester with the AC interface. At large wind speeds when the maximal electrical damping rather than the optimal electrical damping can be reached by tuning the load resistance alone, the harvester with the AC interface circuit is recommended for a higher maximal harvested power with a smaller tip displacement. This study provides a method using the general electrical damping to connect and compare the performances of piezoelectric energy harvesters with same excitation source but different interfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...154....9W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...154....9W"><span>Coastal upwelling seasonality and variability of temperature and chlorophyll in a small coastal embayment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walter, Ryan K.; Armenta, Kevin J.; Shearer, Brandon; Robbins, Ian; Steinbeck, John</p> <p>2018-02-01</p> <p>While the seasonality of wind-driven coastal upwelling in eastern boundary upwelling systems has long been established, many studies describe two distinct seasons (upwelling and non-upwelling), a generalized framework that does not capture details relevant to marine ecosystems. In this contribution, we present a more detailed description of the annual cycle and upwelling seasonality for an understudied location along the central California coast. Using both the mean monthly upwelling favorable wind stress and the monthly standard deviation, we define the following seasons (contiguous months) and a transitional period (non-contiguous months): "Winter Storms" season (Dec-Jan-Feb), "Upwelling Transition" period (Mar and Jun), "Peak Upwelling" season (Apr-May), "Upwelling Relaxation" season (Jul-Aug-Sep), and "Winter Transition" season (Oct-Nov). In order to describe the oceanic response to this upwelling wind seasonality, we take advantage of nearly a decade of full water-column measurements of temperature and chlorophyll made using an automated profiling system at the end of the California Polytechnic State University Pier in San Luis Obispo Bay, a small ( 2 km wide near study site) and shallow ( 10 m average bay depth) coastal embayment. Variability and average-year patterns are described inside the bay during the various upwelling seasons. Moreover, the role of the local coastline orientation and topography on bay dynamics is also assessed using long-term measurements collected outside of the bay. The formation of a seasonally variable upwelling shadow system and potential nearshore retention zone is discussed. The observations presented provide a framework on which to study interannual changes to the average-year seasonal cycle, assess the contribution of higher-frequency features to nearshore variability, and better predict dynamically and ecologically important events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........64W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........64W"><span>System frequency support of permanent magnet synchronous generator-based wind power plant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Ziping</p> <p></p> <p>With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved through the coordinated control between rotor speed and modified pitch angle in accordance with different specified wind speed modes. Fourth, an improved inertial control method based on the maximum power point tracking operation curve is introduced to boost the overall frequency support capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS) model is established and implemented to eliminate this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG. Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated model based on rotor speed control or active power control respectively to evaluate their impacts on the wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate that all the proposed methods can enhance the overall frequency regulation performance while imposing very slight negative impact on the major mechanical components of the wind turbine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003384','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003384"><span>Battery Cell Balancing System and Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davies, Francis J. (Inventor)</p> <p>2014-01-01</p> <p>A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPAr.XL7..959J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPAr.XL7..959J"><span>Joint Offshore Wind Field Monitoring with Spaceborne SAR and Platform-Based Doppler LIDAR Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobsen, S.; Lehner, S.; Hieronimus, J.; Schneemann, J.; Kuhn, M.</p> <p>2015-04-01</p> <p>The increasing demand for renewable energy resources has promoted the construction of offshore wind farms e.g. in the North Sea. While the wind farm layout consists of an array of large turbines, the interrelation of wind turbine wakes with the remaining array is of substantial interest. The downstream spatial evolution of turbulent wind turbine wakes is very complex and depends on manifold parameters such as wind speed, wind direction and ambient atmospheric stability conditions. To complement and validate existing numerical models, corresponding observations are needed. While in-situ measurements with e.g. anemometers provide a time-series at the given location, the merits of ground-based and space- or airborne remote sensing techniques are indisputable in terms of spatial coverage. Active microwave devices, such as Scatterometer and Synthetic Aperture Radar (SAR), have proven their capabilities of providing sea surface wind measurements and particularly SAR images reveal wind variations at a high spatial resolution while retaining the large coverage area. Platform-based Doppler LiDAR can resolve wind fields with a high spatial coverage and repetition rates of seconds to minutes. In order to study the capabilities of both methods for the investigation of small scale wind field structures, we present a direct comparison of observations obtained by high resolution TerraSAR-X (TS-X) X-band SAR data and platform-based LiDAR devices at the North Sea wind farm alpha ventus. We furthermore compare the results with meteorological data from the COSMO-DE model run by the German Weather Service DWD. Our study indicates that the overall agreement between SAR and LiDAR wind fields is good and that under appropriate conditions small scale wind field variations compare significantly well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911405B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911405B"><span>Simulation study for the Stratospheric Inferred Wind (SIW) sub-millimeter limb sounder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baron, Philippe; Murtagh, Donal; Eriksson, Patrick; Ochiai, Satoshi</p> <p>2017-04-01</p> <p>The Stratospheric Inferred Wind is a micro satellite mission studied within the Swedish Innosat program. The objective of the Innosat program is to launch a scientific satellite every two years [1]. SIW has been selected together with two other missions as a candidate for the 2nd launch planned in 2020. If realized, SIW will be the first sub-millimetre (SMM) satellite mission designed for measuring horizontal wind between 30-80 km. It has been shown that such systems can provide relevant wind information in this altitude range where other satellite techniques lack sensitivity [2,3]. The other objective of the mission will be to continue the stratospheric monitoring at a time in which the current observing systems will probably be ended. SIW is equipped with a small payload (40x40x44 cm3, 17 kg and power of 47 W) consisting of a radiometer cooled to 70 K, an auto-correlator spectrometer (8 GHz bandwidth, 1 MHz resolution), and an antenna of 30 cm. The atmospheric limb will be scanned from 10 to 80 km at two perpendicular directions in order to reconstruct the horizontal wind vectors from the measured line-of-sight winds. Those are obtained from the small Doppler shift of molecular lines contained in two spectral bands simultaneously measured with the double-side band radiometer. One of the bands is centred at 655 GHz to measure a cluster of strong O3 lines. It is the best spectral band for wind measurements [4]. The second band is centred near 625 GHz, and together with the first band, it will allow us to measure a large number of molecules relevant for studying the stratospheric dynamics and chemistry (N2O, H2O, ClO, HCl, BrO, NO, HNO3,...). The 655 GHz O3 lines also provide temperature between 10-80 km with similar performances as those obtained if an oxygen line would have been used instead. In this presentation we will introduce SIW and discuss the measurement performances derived from simulations studies. [1] http://www.ohb.de/press-releases-details/ohb-sweden-and-aac-microtec-to-develop-the-innosat-platform-and-implement-its-first-mission-named-mats.html [2] Wu D., et al.: Mesospheric Doppler wind measurements from Aura Microwave Limb Sounder (MLS), Advanced in Space Research, 42, 1246-1252, 2008 [3] Baron P., et al.: Observation of horizontal winds in the middle-atmosphere between 30S and 55N during the northern winter 2009-2010, Atmospheric Chemistry and Physics 13(13), 6049-6064, 2013, doi:10.5194/acp-13-6049-2013 [4] Baron P., et al.: Definition of an uncooled submillimeter/terahertz limb sounder for measuring middle atmospheric winds, Proceedings of ESA Living Planet Symposium, Edinburgh, UK, 9-13 September 2013, (ESA SP-722, December 2013)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4009S"><span>Assessment of wind energy potential in Poland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej</p> <p>2014-05-01</p> <p>The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22687999-differential-recovery-habitat-use-birds-after-wind-farm-installation-multi-year-comparison','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22687999-differential-recovery-habitat-use-birds-after-wind-farm-installation-multi-year-comparison"><span>Differential recovery of habitat use by birds after wind farm installation: A multi-year comparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Farfán, M.A., E-mail: mafarfanaguilar@hotmail.com; Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga; Duarte, J., E-mail: jddofitecma@gmail.com</p> <p></p> <p>Onshore wind farms remain one of the most widely used technologies for the production of renewable energy. These are known to affect birds through disturbance or collision. Most research focus on the impact of wind farms on raptors or other large bird species, especially those of conservation concern. However, limited information exists on the effect of wind farms on small birds. Recovery of large versus small bird populations impacted by wind farms is also largely unstudied. A reason for this is the lack of long-term datasets based on standardized, systematic assessments. We monitored birds in the vicinity of a windmore » farm in an upland habitat in southern Spain (Malaga province), immediately after installation and 6.5 years post-construction. During both study periods, we observed 11 raptor and 38 non-raptor species (including 30 passerines). We found differences in recovery rates between raptors and non-raptors. Raptors showed an upturn in numbers but non-raptor abundance fell significantly. Greater attention should be paid to the recovery of wildlife after initial impact assessments than at present. This study confirms that regulatory authorities and developers should consider the likely impacts of wind farms on small bird populations. Mitigation measures focused particularly on non-raptor species should be considered and implemented as a means to reduce these negative effects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........38V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........38V"><span>Spaced-antenna wind estimation using an X-band active phased-array weather radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venkatesh, Vijay</p> <p></p> <p>Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/947160','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/947160"><span>Stator for a rotating electrical machine having multiple control windings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Shah, Manoj R.; Lewandowski, Chad R.</p> <p>2001-07-17</p> <p>A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760057114&hterms=superconductor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsuperconductor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760057114&hterms=superconductor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsuperconductor"><span>Superconductor coil geometry and ac losses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pierce, T. V., Jr.; Zapata, R. N.</p> <p>1976-01-01</p> <p>An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997AIPC..394..323D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997AIPC..394..323D"><span>PV system field experience and reliability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durand, Steven; Rosenthal, Andrew; Thomas, Mike</p> <p>1997-02-01</p> <p>Hybrid power systems consisting of battery inverters coupled with diesel, propane, or gasoline engine-driven electrical generators, and photovoltaic arrays are being used in many remote locations. The potential cost advantages of hybrid systems over simple engine-driven generator systems are causing hybrid systems to be considered for numerous applications including single-family residential, communications, and village power. This paper discusses the various design constraints of such systems and presents one technique for reducing hybrid system losses. The Southwest Technology Development Institute under contract to the National Renewable Energy Laboratory and Sandia National Laboratories has been installing data acquisition systems (DAS) on a number of small and large hybrid PV systems. These systems range from small residential systems (1 kW PV - 7 kW generator), to medium sized systems (10 kW PV - 20 kW generator), to larger systems (100 kW PV - 200 kW generator). Even larger systems are being installed with hundreds of kilowatts of PV modules, multiple wind machines, and larger diesel generators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780019585&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWind%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780019585&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWind%2Benergy"><span>Wind energy systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stewart, H. J.</p> <p>1978-01-01</p> <p>A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170006199&hterms=cost+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcost%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170006199&hterms=cost+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcost%2Bwind"><span>MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.</p> <p>2016-01-01</p> <p>MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51S..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51S..07M"><span>MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.</p> <p>2015-12-01</p> <p>MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9978E..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9978E..04M"><span>MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.</p> <p>2016-09-01</p> <p>MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10000E..0LM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10000E..0LM"><span>Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.</p> <p>2016-10-01</p> <p>MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO43D..07N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO43D..07N"><span>Modeling the drift of objects floating in the sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nof, D.; Girihagama, L. N.</p> <p>2016-02-01</p> <p>The question how buoyant objects drift and where are they ultimately washed ashore must have troubled humans since the beginning of civilization. A good summary of the observational aspect of the problem is given in Ebbesmeyer (2015) and the references given therein. It includes the journey of shoes originally housed in containers that were accidently swept from the deck of cargo ships to the ocean as well as the famous world war two case of a corpse released by the British Counter Intelligence agency near the Spanish Coast. Of practical modern importance is the question how did the flaperon, belonging to the Malaysian Airplane lost last year (supposedly over the Indian Ocean near Western Australia), travelled almost across the entire Indian Ocean in just 15 months (corresponding to the very high speed of six centimeters per-second, about three times the speed of most ocean currents away from boundaries). Traditionally, it has been thought that three processes affect the drift-ocean currents, surface waves and wind. Of these, the last two are usually regarded as small. The waves effect (Stokes drift) is nonlinear and is probably indeed very small in most cases because the amplitudes are small. It is not so easy to estimate the wind effect and we will argue here that it is not necessarily small though it is obviously close to zero in some cases. The wind speed is typically two orders of magnitude faster than the water (meters per second compared to centimeters per second) and the stress is proportional to the square of the wind speed implying that the wind is important even if only a very small portion of the object protrudes above the sea-level. It is argued that wind, rather than ocean current dominated the drift of both the WWII corpse and the modern day flaperon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760021627','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760021627"><span>Ionospheric plasma cloud dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1976-01-01</p> <p>Measurements of the thermospheric neutral wind and ionospheric drift made at Eglin AFB, Florida and Kwajalein Atoll are discussed. The neutral wind measurements at Eglin had little variation over a period of four years for moderate magnetic activity (Kp 4); the ionospheric drifts are small. Evidence is presented that indicates that increased magnetic activity has a significant effect on the neutral wind magnitude and direction at this midlatitude station. The neutral wind at dusk near the equator is generally small although in one case out of seven it was significantly larger. It is described how observations of large barium releases can be used to infer the degree of electrodynamic coupling of ion clouds to the background ionosphere. Evidence is presented that indicates that large barium releases are coupled to the conjugate ionosphere at midlatitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000769','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000769"><span>Using Buoy and Radar Data to Study Sudden Wind Gusts Over Coastal Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Priftis, Georgios; Chronis, Themis; Lang, Timothy J.</p> <p>2017-01-01</p> <p>Significant sudden wind gusts can pose a threat to aviation near the coastline, as well as small (sailing) boats and commercial ships approaching the ports. Such cases can result in wind speed changes of more than an order of magnitude within 5 minutes, which can then last up to 20 minutes or more. Although the constellation of scatterometers is a good means of studying maritime convection, those sudden gusts are not easily captured because of the low time resolution. The National Data Buoy Center (NDBC) provides continuous measurements of wind speed and direction along the US coastal regions every 6 minutes. Buoys are platforms placed at specific places on the seas, especially along coastlines, providing data for atmospheric and oceanic studies. Next Generation Radars (NEXRADs), after the recent upgrade of the network to dual-pol systems, offer enhanced capabilities to study atmospheric phenomena. NEXRADs provide continuous full-volume scans approximately every 5 minutes and therefore are close to the time resolution of the buoy measurements. Use of single- Doppler retrievals might also provide a means of further validation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A33M..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A33M..01R"><span>The NASA CYGNSS Small Satellite Constellation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.</p> <p>2017-12-01</p> <p>The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1220531','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1220531"><span>2014 Distributed Wind Market Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Orell, A.; Foster, N.</p> <p>2015-08-01</p> <p>The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted formore » nearly 80% of United States-based manufacturers' sales.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014189','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014189"><span>Final Technical Report: Hawaii Energy and Environmental Technologies Initiative 2009 (HEET)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-05-25</p> <p>environment. A second objective under this subtask was to install, test and evaluate small wind turbine technologies to determine the relative... wind turbines adjacent to, and connected with the test platforms located at the Crissy Field Center in the Presidio of San Francisco, a proven wind ...resource for collection of comparative wind energy data. Vertical axis technology, turbines manufactured by Venco Power, Windspire Energy and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..153b2041Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..153b2041Q"><span>Coordinated control strategy for improving the two drops of the wind storage combined system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, Zhou; Chenggen, Wang; Jing, Bu</p> <p>2018-05-01</p> <p>In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960003216','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960003216"><span>Radiometric correction of scatterometric wind measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1995-01-01</p> <p>Use of a spaceborne scatterometer to determine the ocean-surface wind vector requires accurate measurement of radar backscatter from ocean. Such measurements are hindered by the effect of attenuation in the precipitating regions over sea. The attenuation can be estimated reasonably well with the knowledge of brightness temperatures observed by a microwave radiometer. The NASA SeaWinds scatterometer is to be flown on the Japanese ADEOS2. The AMSR multi-frequency radiometer on ADEOS2 will be used to correct errors due to attenuation in the SeaWinds scatterometer measurements. Here we investigate the errors in the attenuation corrections. Errors would be quite small if the radiometer and scatterometer footprints were identical and filled with uniform rain. However, the footprints are not identical, and because of their size one cannot expect uniform rain across each cell. Simulations were performed with the SeaWinds scatterometer (13.4 GHz) and AMSR (18.7 GHz) footprints with gradients of attenuation. The study shows that the resulting wind speed errors after correction (using the radiometer) are small for most cases. However, variations in the degree of overlap between the radiometer and scatterometer footprints affect the accuracy of the wind speed measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJC...76..311L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJC...76..311L"><span>Dynamical behavior and Jacobi stability analysis of wound strings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lake, Matthew J.; Harko, Tiberiu</p> <p>2016-06-01</p> <p>We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860009843','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860009843"><span>Hover and forward flight acoustics and performance of a small-scale helicopter rotor system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kitaplioglu, C.; Shinoda, P.</p> <p>1985-01-01</p> <p>A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740008686','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740008686"><span>NASA presentation. [wind energy conversion systems planning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, R. L.</p> <p>1973-01-01</p> <p>The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13E2115Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13E2115Y"><span>A Global Survey of Oceanic Mesoscale Convective Systems in Association with the Large-scale Water Vapor and Vertical Wind Shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, J.; Zhan, T.</p> <p>2017-12-01</p> <p>Sizes and organizations of mesoscale scale convective systems (MCSs) usually are related to both their precipitation characteristics and anvil productivity, which are crucial but not well-represented in current climate models. This study aims to further our knowledge about MCSs by documenting the relationship between MCSs and their associated large-scale environmental moisture and wind shear in different phases of large-scale convection. A dataset derived from MODIS and AMSR-E and TRMM, CMOPH and ERA-Interim reanalysis are used. Larger and merged systems tend to occur more frequently when the large-scale convection is stronger. At the occurrence time of MCSs, the middle troposphere relative humidity (MRH, 800-400hPa) shows large increases ( 15%) from the suppressed to the active phases. Differences of the MRH across phases appear in a large area and reaches its maximum at 650 850 km away from the center of MCSs. Higher MRH is found within 650 km around the center of merged and large MCSs in all phases. This distance is much larger than the size of any single MCSs. The MRH shows larger spatial gradients around merged MCSs, indicating that moisture tends to cluster around merged systems. Similar spatial differences of MRH appear at all phases 1-3 days before the MCSs occur. In lower troposphere (1000-850hPa), differences in the relative humidity are much smaller than that of MRH. In all phases around all MCSs the oceanic boundary layer is always effectively moisturized (RH>92%). Temporally the lower troposphere relative humidity is dominated by diurnal variations. No clear difference across systems of the wind shear is found when the domain-wide upward motion is dominated. In all cases there are always large low-level (1000-750hPa) wind shear (7-9m/s) and middle level (1000-750hPa) wind shear (11-15m/s) occurring at large distances (>500km) away from MCSs. However, both the low-level and the middle level wind shear closely around the MCSs converge to moderate values of 3-4.2m/s and 5-7m/s, respectively. Indicating that weak or moderate wind shear conditions favor developments of MCSs. Small but systematical differences in wind shear across phases are found. This study provides an observational reference for both cloud resovling or climate models to diagnose and improve their representaions of organized convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA602942','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA602942"><span>The Mesoscale Predictability of Terrain Induced Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-09-30</p> <p>simulations, we focus on assessing the predictability of winds, mountain waves and clear air turbulence ( CAT ) in the lee of the Sierra Nevada...complete description of the sensitivity of mountain waves, CAT and downslope to small variations in the initial conditions. WORK COMPLETED We...completed the analysis of the sensitivity of mountain waves, CAT and downslope winds to small perturbations in the upstream conditions. We also</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5295P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5295P"><span>Indexed semi-Markov process for wind speed modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petroni, F.; D'Amico, G.; Prattico, F.</p> <p>2012-04-01</p> <p>The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=285381','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=285381"><span>Effect of blade flutter and electrical loading on small wind turbine noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-12-05/pdf/2013-28515.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-12-05/pdf/2013-28515.pdf"><span>78 FR 73239 - Small Generator Interconnection Agreements and Procedures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-12-05</p> <p>... distributed resources.\\35\\ Public Interest Organizations go on to state that: \\29\\ See, e.g., American Wind... Society and Wind on the Wires are referred to collectively as Public Interest Organizations in this Final...\\ Similarly, installed wind generation with a capacity of 20 MW or less has increased in the contiguous United...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-12-27/pdf/2010-32363.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-12-27/pdf/2010-32363.pdf"><span>75 FR 81265 - Idaho Wind Partners 1, LLC; Notice of Petition for Declaratory Order</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-12-27</p> <p>... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-12-000] Idaho Wind... 15, 2010, Idaho Wind Partners 1, LLC (Petitioner), pursuant to Rule 207 of the Federal Energy...) Violate any of the Commission's anti-manipulation rules, and (2) result in the loss of small power...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611486M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611486M"><span>Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz</p> <p>2014-05-01</p> <p>Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7763G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7763G"><span>The turbulence structure of katabatic flows below and above wind-speed maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grachev, Andrey; Leo, Laura; Di Sabatino, Silvana; Fernando, Harindra; Pardyjak, Eric; Fairall, Christopher</p> <p>2015-04-01</p> <p>Measurements of atmospheric small-scale turbulence made over the complex-terrain at the US Army Dugway Proving Grounds in Utah during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the turbulence structure of katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels (up to seven) on four towers deployed along East lower slope (2-4 degrees) of Granite Mountain. The multi-level, multi-tower observations obtained during a 30-day long MATERHORN-Fall field campaign in September-October 2102 allow studying temporal and spatial structure of nocturnal slope flows in detail. In this study, we focus on the various statistics (fluxes, variances, spectra, cospectra, etc.) of the small-scale turbulence of katabatic winds. Observed vertical profiles of velocity, turbulent fluxes, and other quantities show steep gradients near the surface but in the layer above the slope jet these variables vary with height more slowly than near the surface. It is found that vertical momentum flux and horizontal heat (buoyancy) flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study, therefore, suggests that a position of the jet speed maximum can be derived from linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) and determination of a height where a flux becomes zero. It is shown that the standard deviations of all wind speed components (and therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind speed maximum. We report several cases when the destructive effect of vertical heat (buoyancy) flux is completely cancelled by the generation of turbulence due to the horizontal heat (buoyancy) flux. Turbulence in the layer above the wind-speed maximum is decoupled from the surface and it is consistent with the classical local z-less predictions for stably stratified boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.7977E..0GL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.7977E..0GL"><span>Design of a magnetic force exciter for a small-scale windmill using a piezo-composite generating element</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luong, Hung Truyen; Goo, Nam Seo</p> <p>2011-03-01</p> <p>We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980wien.conf......','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980wien.conf......"><span>Wind Energy Conference, Boulder, Colo., April 9-11, 1980, Technical Papers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1980-03-01</p> <p>Papers are presented concerning the technology, and economics of wind energy conversion systems. Specific topics include the aerodynamic analysis of the Darrieus rotor, the numerical calculation of the flow near horizontal-axis wind turbine rotors, the calculation of dynamic wind turbine rotor loads, markets for wind energy systems, an oscillating-wing windmill, wind tunnel tests of wind rotors, wind turbine generator wakes, the application of a multi-speed electrical generator to wind turbines, the feasibility of wind-powered systems for dairy farms, and wind characteristics over uniform and complex terrain. Attention is also given to performance tests of the DOE/NASA MOD-1 2000-kW wind turbine generator, the assessment of utility-related test data, offshore wind energy conversion systems, and the optimization of wind energy utilization economics through load management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC13K0880W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC13K0880W"><span>Assessment of Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y. H.; Walter, R. K.; Ruttenberg, B.; White, C.</p> <p>2017-12-01</p> <p>Offshore renewable energy along the central California coastline has gained significant interest in recent years. We present a comprehensive analysis of near-surface wind datasets available in this region to facilitate future estimates of wind power generation potential. The analyses are based on local NDBC buoys, satellite-based measurements (QuickSCAT and CCMP V2.0), reanalysis products (NARR and MERRA), and a regional climate model (WRF). There are substantial differences in the diurnal signal during different months among the various products (i.e., satellite-based, reanalysis, and modeled) relative to the local buoys. Moreover, the datasets tended to underestimate wind speed under light wind conditions and overestimate under strong wind conditions. In addition to point-to-point comparisons against local buoys, the spatial variations of bias and error in both the reanalysis products and WRF model data in this region were compared against satellite-based measurements. NARR's bias and root-mean-square-error were generally small in the study domain and decreased with distance from coastlines. Although its smaller spatial resolution is likely to be insufficient to reveal local effects, the small bias and error in near-surface winds, as well as the availability of wind data at the proposed turbine hub heights, suggests that NARR is an ideal candidate for use in offshore wind energy production estimates along the central California coast. The framework utilized here could be applied in other site-specific regions where offshore renewable energy is being considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.524a2087N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.524a2087N"><span>Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ning, A.; Dykes, K.</p> <p>2014-06-01</p> <p>For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013339','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013339"><span>Constraints on Decreases in Eta Carinae's Mass-loss from 3D Hydrodynamic Simulations of Its Binary Colliding Winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Madura, T. I.; Gull, T. R.; Okazaki, A. T.; Russell, C. M. P.; Owocki, S. P.; Groh, J. H.; Corcoran, M. F.; Hamaguchi, K.; Teodoro, M.</p> <p>2013-01-01</p> <p>Recent work suggests that the mass-loss rate of the primary star Eta-A in the massive colliding wind binary Eta Carinae dropped by a factor of 2-3 between 1999 and 2010. We present result from large- (+/- 1545 au) and small- (+/- 155 au) domain, 3D smoothed particle hydrodynamics (SPH) simulations of Eta Car's colliding winds for three Eta-A mass-loss rates ( (dot-M(sub Eta-A) = 2.4, 4.8 and 8.5 × 10(exp -4) M(solar)/ yr), investigating the effects on the dynamics of the binary wind-wind collision (WWC). These simulations include orbital motion, optically thin radiative cooling and radiative forces. We find that dot-M Eta-A greatly affects the time-dependent hydrodynamics at all spatial scales investigated. The simulations also show that the post-shock wind of the companion star Eta-B switches from the adiabatic to the radiative-cooling regime during periastron passage (Phi approx.= 0.985-1.02). This switchover starts later and ends earlier the lower the value of dot-M Eta-A and is caused by the encroachment of the wind of Eta-A into the acceleration zone of Eta-B's wind, plus radiative inhibition of Eta-B's wind by Eta-A. The SPH simulations together with 1D radiative transfer models of Eta-A's spectra reveal that a factor of 2 or more drop in dot-M EtaA should lead to substantial changes in numerous multiwavelength observables. Recent observations are not fully consistent with the model predictions, indicating that any drop in dot- M Eta-A was likely by a factor of approx. < 2 and occurred after 2004. We speculate that most of the recent observed changes in Eta Car are due to a small increase in the WWC opening angle that produces significant effects because our line of sight to the system lies close to the dense walls of the WWC zone. A modest decrease in dot-M Eta-A may be responsible, but changes in the wind/stellar parameter of Eta-B, while less likely, cannot yet be fully ruled out. We suggest observations during Eta-Car's next periastron in 2014 to further test for decreases in dot-M Eta-A. If dot-M Eta-A is declining and continues to do so, the 2014 X-ray minimum should be even shorter than that of 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MeScT..29a5108H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MeScT..29a5108H"><span>Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.</p> <p>2018-01-01</p> <p>Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by utilizing these identified parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040012996','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040012996"><span>Westerly Wind Events in the Eastern Indian Ocean as a Precursor to El Nino: A Case Study for the 2002-03 El Nino</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Curtis, Scott; Adler, Robert F.; Huffman, George J.; Gu, Guojun</p> <p>2003-01-01</p> <p>This paper extends the work of our previous study, which showed the potential of using precipitation in the eastern Indian Ocean to predict when an El Nino would begin. The paper begins by showing the successful prediction of the 2002-03 El Nino. However, precipitation is really used as a substitute for wind (storms are usually accompanied by heavy wind), because a popular hypothesis is that winds (especially % winds out of the West) stir up the ocean surface in the western Pacific sending currents of warm waters to the east Pacific where El Ninos form. This paper shows that it is typical for storms that produce strong winds in the western Pacific to have traveled from the Indian Ocean. We begin in the Indian Ocean looking at strong bursts of wind over several days. The number of windy days seems to increase in the months prior to El Nino. We examined these relationships in detail for November 2001 to April 2002, before the recent El Nino, using NASA's TRMM and QuikSCAT data. We found in one case that a warming of the eastern Indian Ocean occurred about 25 days before heavy rainfall formed. As the stormed moved eastward it was followed (6 days later) by strong winds out of the West. The entire storm system (and warming of the sea) moved eastward through a small strip of water between Indonesia and Australia, before reaching the western Pacific. Thus, this paper increases our understanding of the physical processes leading to the formation of El Nino.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25297315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25297315"><span>Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Timerman, David; Greene, David F; Urzay, Javier; Ackerman, Josef D</p> <p>2014-12-06</p> <p>In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind-stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15007087','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15007087"><span>Wind Power Today and Tomorrow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p></p> <p>Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describemore » the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ESDD....1..103G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ESDD....1..103G"><span>The problem of the second wind turbine - a note on a common but flawed wind power estimation method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gans, F.; Miller, L. M.; Kleidon, A.</p> <p>2010-06-01</p> <p>Several recent wind power estimates suggest how this renewable resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. Here we show that this common methodology is flawed because it does not account for energy removal by the turbines that is necessary to ensure the conservation of energy. We will first illustrate the common but flawed methodology using parameters from a recent global quantification of wind power in a simple experimental setup. For a small number of turbines at small scales, the conservation of energy hardly results in a difference when compared to the common method. However, when applied at large to global scales, the ability of radiative gradients to generate a finite amount of kinetic energy needs to be taken into account. Using the same experimental setup, we use the simplest method to ensure the conservation of energy to show a non-negligble decrease in wind velocity after the first turbine that will successively result in lower extraction of the downwind turbines. We then show how the conservation of energy inevitably results in substantially lower estimates of wind power at the global scale. Because conservation of energy is fundamental, we conclude that ultimately environmental constraints set the upper limit for wind power availability at the larger scale rather than detailed engineering specifications of the wind turbine design and placement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...114...72M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...114...72M"><span>The formation of a cold-core eddy in the East Australian Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.</p> <p>2016-02-01</p> <p>Cold-core eddies (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed eddy initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar eddy. This eddy formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for eddy formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01452&hterms=pineapple&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpineapple','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01452&hterms=pineapple&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpineapple"><span>Microwave Limb Sounder/El Nino Watch - 1997 Research Data Reveal Clues about El Nino's Influence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p>This image displays wind measurements taken by the satellite-borne NASA Scatterometer (NSCAT) during the last 10 days of May 1997, showing the relationship between the ocean and the atmosphere at the onset of the 1997-98 El Nino condition. The data have helped scientists confirm that the event began as an unusual weakening of the trade winds that preceded an increase in sea surface temperatures. The arrows represent wind speed and direction while the colors indicate sea surface temperature. The sea surface temperatures were measured by the Advanced Very High Resolution Radiometer, a joint mission of NASA and the National Oceanographic and Atmospheric Administration (NOAA). The trade winds normally blow from east to west, but the small arrows in the center of the image show the winds have changed direction and are blowing in the opposite direction. The areas shown in red are above normal sea surface temperatures -- along the equator, off the west coast of the U.S., and along the west coast of Mexico. This image also shows an unusual low pressure system with cyclonic (counterclockwise) circulation near the western North American coast. NSCAT also observed that winds associated with this circulation pattern branched off from the equator, bypassed Hawaii, and brought heat and moisture from the tropical ocean towards San Francisco, in what is often called the 'pineapple express.'</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..11723110S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..11723110S"><span>Validation of Mode-S Meteorological Routine Air Report aircraft observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strajnar, B.</p> <p>2012-12-01</p> <p>The success of mesoscale data assimilation depends on the availability of three-dimensional observations with high spatial and temporal resolution. This paper describes an example of such observations, available through Mode-S air traffic control system composed of ground radar and transponders on board the aircraft. The meteorological information is provided by interrogation of a dedicated meteorological data register, called Meteorological Routine Air Report (MRAR). MRAR provides direct measurements of temperature and wind, but is only returned by a small fraction of aircraft. The quality of Mode-S MRAR data, collected at the Ljubljana Airport, Slovenia, is assessed by its comparison with AMDAR and high-resolution radiosonde data sets, which enable high- and low-level validation, respectively. The need for temporal smoothing of raw Mode-S MRAR data is also studied. The standard deviation of differences between smoothed Mode-S MRAR and AMDAR is 0.35°C for temperature, 0.8 m/s for wind speed and below 10 degrees for wind direction. The differences with respect to radiosondes are larger, with standard deviations of approximately 1.7°C, 3 m/s and 25 degrees for temperature, wind speed and wind direction, respectively. It is concluded that both wind and temperature observations from Mode-S MRAR are accurate and therefore potentially very useful for data assimilation in numerical weather prediction models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1348371','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1348371"><span>Dual coil ignition system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian</p> <p>2017-03-28</p> <p>A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......490S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......490S"><span>System Identification for the Clipper Liberty C96 Wind Turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Showers, Daniel</p> <p></p> <p>System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11J2010W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11J2010W"><span>Observations and predictability of gap winds in a steep, narrow, fire-prone canyon in central Idaho, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.</p> <p>2017-12-01</p> <p>Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1215178','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1215178"><span>Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dana, S.; Damiani, R.; vanDam, J.</p> <p></p> <p>As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelasticmore » model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910014865','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910014865"><span>Integration of the TDWR and LLWAS wind shear detection system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cornman, Larry</p> <p>1991-01-01</p> <p>Operational demonstrations of a prototype TDWR/LLWAS (Terminal Doppler Weather Radar/Low Level Wind shear Alarm System) integrated wind shear detection system were conducted. The integration of wind shear detection systems is needed to provide end-users with a single, consensus source of information. A properly implemented integrated system provides wind shear warnings of a higher quality than stand-alone LLWAS or TDWR systems. The algorithmic concept used to generate the TDWR/LLWAS integrated products and several case studies are discussed, indicating the viability and potential of integrated wind shear detection systems. Implications for integrating ground and airborne wind shear detection systems are briefly examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1349254','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1349254"><span>EPIC Calibration/Validation Experiment Field Campaign Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Koch, Steven E; Chilson, Phillip; Argrow, Brian</p> <p></p> <p>A field exercise involving several different kinds of Unmanned Aerial Systems (UAS) and supporting instrumentation systems provided by DOE/ARM and NOAA/NSSL was conducted at the ARM SGP site in Lamont, Oklahoma on 29-30 October 2016. This campaign was part of a larger National Oceanic and Atmospheric Administration (NOAA) UAS Program Office program awarded to the National Severe Storms Laboratory (NSSL). named Environmental Profiling and Initiation of Convection (EPIC). The EPIC Field Campaign (Test and Calibration/Validation) proposed to ARM was a test or “dry-run” for a follow-up campaign to be requested for spring/summer 2017. The EPIC project addresses NOAA’s objective tomore » “evaluate options for UAS profiling of the lower atmosphere with applications for severe weather.” The project goal is to demonstrate that fixed-wing and rotary-wing small UAS have the combined potential to provide a unique observing system capable of providing detailed profiles of temperature, moisture, and winds within the atmospheric boundary layer (ABL) to help determine the potential for severe weather development. Specific project objectives are: 1) to develop small UAS capable of acquiring needed wind and thermodynamic profiles and transects of the ABL using one fixed-wing UAS operating in tandem with two different fixed rotary-wing UAS pairs; 2) adapt and test miniaturized, high-precision, and fast-response atmospheric sensors with high accuracy in strong winds characteristic of the pre-convective ABL in Oklahoma; 3) conduct targeted short-duration experiments at the ARM Southern Great Plains site in northern Oklahoma concurrently with a second site to be chosen in “real-time” from the Oklahoma Mesonet in coordination with the (National Weather Service (NWS)-Norman Forecast Office; and 4) gain valuable experience in pursuit of NOAA’s goals for determining the value of airborne, mobile observing systems for monitoring rapidly evolving high-impact severe weather conditions not observed with current operational systems. OU operated three UAS at the Lamont SGP site – the OU CopterSonde, the OU Iris, and the Meteomatics Meteodrone – under a blanket Federal Aviation Administration (FAA) Certificate of Authorization (COA) allowing flights up to 400 feet above ground level (AGL). The mission for the rotary-wing UAS involved four aircraft, three from the ARM Lamont site and one from an Oklahoma Mesonet site located at Medford, involving a vertical ascent to an altitude of 400 ft (130 m) AGL at ~ 30 minute intervals for ~ 5 hours duration on each of the two experiment days. This operation was conducted in close coordination with NSSL-launched rawinsonde balloons at the two sites, and operation of a fixed-wing UAS from the University of Colorado called the TTwistor that flew mission flight legs between the Lamont site and Medford. The NSSL operation at Medford (outside of ARM) also involved use of their Collaborative Lower Atmosphere Mobile Profiling System (CLAMPS) ground-based remote-sensing system for measuring atmospheric profiles of temperature, moisture, and winds with atmospheric emitted radiance interferometer (AERI), microwave radiometer, and Doppler wind lidar systems. The ARM Facility supported the project by providing access to their instrumented tower data at Lamont (at three levels), as well as AERI and Doppler wind lidar data obtained from systems quite similar to those used by CLAMPS. These non-UAS data from both ARM and NSSL provided the observations used to validate the experimental UAS observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770044370&hterms=balloon+tethered&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dballoon%2Btethered','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770044370&hterms=balloon+tethered&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dballoon%2Btethered"><span>A combined boundary-profile and automated data-reduction and analysis system. [meteorological balloon-calculator system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Deloach, R.; Morris, A. L.; Mcbeth, R. B.</p> <p>1976-01-01</p> <p>A portable boundary-layer meteorological data-acquisition and analysis system is described which employs a small tethered balloon and a programmable calculator. The system is capable of measuring pressure, wet- and dry-bulb temperature, wind speed, and temperature fluctuations as a function of height and time. Other quantities, which can be calculated in terms of these, can also be made available in real time. All quantities, measured and calculated, can be printed, plotted, and stored on magnetic tape in the field during the data-acquisition phase of an experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41A2236P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41A2236P"><span>Assessment of the Performance of a Scanning Wind Doppler Lidar at an Urban-Mountain Site in Seoul</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, S.; Kim, S. W.</p> <p>2017-12-01</p> <p>Winds in the planetary boundary layer (PBL) are important factors for accurate modelling of air quality, numerical weather prediction and conversion of satellite measurements to near-surface air quality information (Seibert et al., AE, 2000; Emeis et al., Meteorol. Z., 2008). In this study, we (1) evaluate wind speed (WS) and direction (WD) retrieved from Wind Doppler Lidar (WDL) measurements by two methods [so called, `sine-fitting (SF) method' and `singular value decomposition (SVD) method'] and (2) analyze the WDL data at Seoul National University (SNU), Seoul, to investigate the diurnal evolution of winds and aerosol characteristics in PBL. Evaluation of the two methods used in retrieving wind from radial velocity was done through comparison with radiosonde soundings from the same site. Winds retrieved using the SVD method from mean radial velocity of 15 minutes showed good agreement with radiosonde profiles (i.e., bias of 0.03 m s-1 and root mean square of 1.70 m s-1 in WS). However, the WDL was found to have difficulty retrieving signals under clean conditions (i.e., too small signal to noise ratio) or under the presence of near-surface optically-thick aerosol/cloud layer (i.e., strong signal attenuation). Despite this shortcoming, the WDL was able to successfully capture the diurnal variation of PBL wind. Two major wind patterns were observed at SNU; first of all, when convective boundary layer was strongly developed, thermally induced winds with large variation of vertical WS in the afternoon and a diurnal variation in WD showing characteristics of mountain and valley winds were observed. Secondly, small variation in WS and WD throughout the day was a major characteristic of cases when wind was largely influenced by the synoptic weather pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1826b0023B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1826b0023B"><span>A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani</p> <p>2017-03-01</p> <p>A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800011423','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800011423"><span>The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; Fletcher, G. R.; Gramling, F. E.; Pace, W. B.</p> <p>1980-01-01</p> <p>Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......436M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......436M"><span>Transient stability enhancement of wind farms using power electronics and facts controllers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohammadpour, Hossein Ali</p> <p></p> <p>Nowadays, it is well-understood that the burning of fossil fuels in electric power station has a significant influence on the global climate due to greenhouse gases. In many countries, the use of cost-effective and reliable low-carbon electricity energy sources is becoming an important energy policy. Among different kinds of clean energy resources- such as solar power, hydro-power, ocean wave power and so on, wind power is the fastest-growing form of renewable energy at the present time. Moreover, adjustable speed generator wind turbines (ASGWT) has key advantages over the fixed-speed generator wind turbines (FSGWT) in terms of less mechanical stress, improved power quality, high system efficiency, and reduced acoustic noise. One important class of ASGWT is the doubly-fed induction generator (DFIG), which has gained a significant attention of the electric power industry due to their advantages over the other class of ASGWT, i.e. fully rated converter-based wind turbines. Because of increased integration of DFIG-based wind farms into electric power grids, it is necessary to transmit the generated power from wind farms to the existing grids via transmission networks without congestion. Series capacitive compensation of DFIG-based wind farm is an economical way to increase the power transfer capability of the transmission line connecting wind farm to the grid. For example, a study performed by ABB reveals that increasing the power transfer capability of an existing transmission line from 1300 MW to 2000 MW using series compensation is 90% less than the cost of building a new transmission line. However, a factor hindering the extensive use of series capacitive compensation is the potential risk of sub- synchronous resonance (SSR). The SSR is a condition where the wind farm exchanges energy with the electric network, to which it is connected, at one or more natural frequencies of the electric or mechanical part of the combined system, comprising the wind farm and the network, and the frequency of the exchanged energy is below the fundamental frequency of the system. This phenomenon may cause severe damage in the wind farm, if not prevented. Therefore, this dissertation deals with the SSR phenomena in a capacitive series compensated wind farm. A DFIG-based wind farm, which is connected to a series compensated transmission line, is considered as a case study. The small-signal stability analysis of the system is presented, and the eigenvalues of the system are obtained. Using both modal analysis and time-domain simulation, it is shown that the system is potentially unstable due to the SSR mode. Then, three different possibilities for the addition of SSR damping controller (SSRDC) are investigated. The SSRDC can be added to (1) gate-controlled series capacitor (GCSC), (2) thyristor-controlled series capacitor (TCSC), or (3) DFIG rotor-side converter (RSC) and grid-side converter (GSC) controllers. The first and second cases are related to the series flexible AC transmission systems (FACTS) family, and the third case uses the DFIG back-to-back converters to damp the SSR. The SSRDC is designed using residue-based analysis and root locus diagrams. Using residue-based analysis, the optimal input control signal (ICS) to the SSRDC is identified that can damp the SSR mode without destabilizing other modes, and using root-locus analysis, the required gain for the SSRDC is determined. Moreover, two methods are discussed in order to estimate the optimum input signal to the SSRDC, without measuring it directly. In this dissertation, MATLAB/Simulink is used as a tool for modeling and design of the SSRDC, and PSCAD/EMTDC is used to perform time-domain simulation in order to verify the design process.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780015163','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780015163"><span>The future of wind tunnel technology in Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ewald, B.</p> <p>1978-01-01</p> <p>The practical value of a wind tunnel which is not dependent solely on size or achievable Reynolds number was examined. Measurement, interpretative and evaluative procedures developed in small facilities were also studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1055708','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1055708"><span>Quiet airfoils for small and large wind turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA</p> <p>2012-06-12</p> <p>Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040034180','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040034180"><span>A Flight Dynamics Model for a Small Glider in Ambient Winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.</p> <p>2003-01-01</p> <p>In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find the aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031358','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031358"><span>A Flight Dynamics Model for a Small Glider in Ambient Winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.</p> <p>2003-01-01</p> <p>In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9806E..0JH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9806E..0JH"><span>Neuro-fuzzy computing for vibration-based damage localization and severity estimation in an experimental wind turbine blade with superimposed operational effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoell, Simon; Omenzetter, Piotr</p> <p>2016-04-01</p> <p>Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913260S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913260S"><span>On the properties of energy transfer in solar wind turbulence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina</p> <p>2017-04-01</p> <p>Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA114418','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA114418"><span>Study of a Wind Energy Conversion System in New Hampshire.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-08-01</p> <p>Federal Jurisdiction Prior to PURPA ........ . 91 2) State Jurisdiction Prior to PURPA .... ....... 93 3) The Contemplated Effect of PURPA on the FERC’s...Jurisdictional Powers ..... ...... 94 (a) Definitions and Concepts of PURPA ... .. 95 (b) Analysis of Wheeling and Interconnection . 96 (i) FPA 9 210...Regarding Certain Interconnection and Wheeling ...... .. ........ 97 (c) PURPA § 210, Cogeneration and Small Power Production ...... ... ... .. 98 b</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29584658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29584658"><span>A Robust Real Time Direction-of-Arrival Estimation Method for Sequential Movement Events of Vehicles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Huawei; Li, Baoqing; Yuan, Xiaobing; Zhou, Qianwei; Huang, Jingchang</p> <p>2018-03-27</p> <p>Parameters estimation of sequential movement events of vehicles is facing the challenges of noise interferences and the demands of portable implementation. In this paper, we propose a robust direction-of-arrival (DOA) estimation method for the sequential movement events of vehicles based on a small Micro-Electro-Mechanical System (MEMS) microphone array system. Inspired by the incoherent signal-subspace method (ISM), the method that is proposed in this work employs multiple sub-bands, which are selected from the wideband signals with high magnitude-squared coherence to track moving vehicles in the presence of wind noise. The field test results demonstrate that the proposed method has a better performance in emulating the DOA of a moving vehicle even in the case of severe wind interference than the narrowband multiple signal classification (MUSIC) method, the sub-band DOA estimation method, and the classical two-sided correlation transformation (TCT) method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090014205&hterms=impulse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dimpulse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090014205&hterms=impulse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dimpulse"><span>The Mars Exploration Rover (MER) Transverse Impulse Rocket System (TIRS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>SanMartin, Alejandro Miguel; Bailey, Erik</p> <p>2005-01-01</p> <p>In a very short period of time the MER project successfully developed and tested a system, TIRS/DIMES, to improve the probability of success in the presence of large Martian winds. The successful development of TIRS/DIMES played a big role in the landing site selection process by enabling the landing of Spirit on Gusev crater, a site of very high scientific interest but with known high wind conditions. The performance of TIRS by Spirit at Gusev Crater was excellent. The velocity prediction error was small and Big TIRS was fired reducing the impact horizontal velocity from approximately 23 meters per second to approximately 11 meters per second, well within the airbag capabilities. The performance of TIRS by Opportunity at Meridiani was good. The velocity prediction error was rather large (approximately 6 meters per second, a less than 2 sigma value, but TIRS did not fire which was the correct action.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930070412&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930070412&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231087"><span>Spectral measurements of shock layer radiation in an arc-jet wind tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Palumbo, Giuseppe; Craig, Roger; Carrasco, Armando</p> <p>1993-01-01</p> <p>Measurements were made of the radiating gas cap of a blunt body in an NASA Ames 20 MW arcjet wind tunnel. The test gas was air. Spectra of the flux incident on a small aperture centered at the stagnation region were obtained. A helium-cooled MgF window transmitted flux into an evacuated collimating system that focused the aperture onto the entrance slit of a spectrometer. Data were obtained with films and by photomultipliers. The range covered was 120 nm to 1000 nm and the resolution was 0.05 nm to 0.5 nm. This paper presents preliminary results from the experiment. Representative spectral records from 200 nm to 1000 nm are shown. The spectra show the atomic lines from oxygen and nitrogen in the IR, as well as the molecular systems of NO, N2, N2(+), and CN. Copper, as a contaminant, and carbon are tentatively identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990110280&hterms=nolan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dnolan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990110280&hterms=nolan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dnolan"><span>A Reconnaissance of the 900-1200 A Spectra of Early O Stars in the Magellanic Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walborn, Nolan</p> <p>1999-01-01</p> <p>Far-UV spectrograms of ten very hot stars in the Magellanic Clouds were obtained with the Hopkins Ultraviolet Telescope during the Astro-2 mission in March 1995. Very few normal OB stars were observed during Astro-1, and the only significant prior sample of such objects in this wavelength range was that obtained by Copernicus of stars near the Sun. The Magellanic Cloud sample offers the advantages of low reddening, a range in metallicity, and more extreme temperatures and luminosities than represented in the near solar neighborhood. Several interesting phenomena were found in the HUT MC sample, including very strong O VI wind profiles in O3 spectra; anomalous CNO wind features corresponding to abundances altered by stellar nucleosynthesis; weak wind features due to the metal deficiency of the Small Magellanic Cloud; and interstellar molecular hydrogen features originating in the MCs. The results were presented and discussed as a small atlas, and they were shown at the Pittsburgh AAS meeting in June 1995. A correlative atlas of Copernicus data was also prepared and published under the auspices of this grant. These publications will serve as resources for the characterization of the FUSE observations of related objects to hopefully be obtained soon. I believe that the large differences among the strong wind features in the HUT data, corresponding to CNO and systemic metallicity effects, are amenable to some relative quantitative analysis, and I shall endeavor to promote such in conjunction with HST data at longer wavelengths for the same stars (which has also not yet been completely analyzed) at a future opportunity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JAMDS...2..133S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JAMDS...2..133S"><span>In-Roll Stress Analysis Considering Air-Entrainment at the Roll-Inlet with the Effect of Grooves on Nip Roll Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu</p> <p></p> <p>High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993seeo.work....7G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993seeo.work....7G"><span>Extrapolation of space weathering processes to other small solar system bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaffey, M. J.</p> <p></p> <p>A diverse range of processes were invoked as the dominant factor or as important contributory factors in the modification of the optical surface and regolith of the moon. These include impact vitrification by large and small projectiles, solar wind implantation and the reduction of oxidized iron during energetic events, sputtering and crystal lattice damage by energetic cosmic rays, shock metamorphism of minerals, mixing of diverse lithologies by impacts, and contamination by external materials. These processes are also potentially important on the rocky surfaces of other small solar system bodies. For icy bodies, several additional processes are also possible, including formation of complex organic compounds from methane and ammonia-bearing ices by ultraviolet irradiation and the condensation of vapor species to form frost layers in the polar or cooler regions of objects at appropriate heliocentric distances. The lunar case, even when completely understood, will not extend in a simple linear fashion to other small rocky objects, nor will the optical surfaces of those objects all be affected to the same degree by each process. The major factors that will control the relative efficacy of a possible mechanism include the efficiency of ejecta retention and the degree to which the regolith materials experience multiple events (primarily a function of body size, escape velocity, and impactor velocities); the mean duration of typical regolith particle exposure at the optical surface and within reach of the micrometeorite, cosmic ray, solar wind, or UV fluxes (a function of the rate and scale of regolith mixing, production, and removal processes); the incident flux of solar (low energy) cosmic rays, solar wind, or UV radiation (inverse square of heliocentric distance) or of galactic (high energy) cosmic rays (slowly increasing flux with heliocentric distance); and the compositional and mineralogical nature of the surface being affected. In general, those processes that depend upon either the retention of impact ejecta or on the presence of multigenerational regoliths should be substantially less effective on smaller bodies with lower escape velocities. However, there are important exceptions to this generalization. For example, a process that involves the hypervelocity impact of small particles into a fine-grained regolith may be able to effectively retain highly shocked or melted material due to the nature of shock wave propagation in such a heterogeneous material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940009827&hterms=solar+energy+effective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsolar%2Benergy%2Beffective','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940009827&hterms=solar+energy+effective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsolar%2Benergy%2Beffective"><span>Extrapolation of space weathering processes to other small solar system bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gaffey, M. J.</p> <p>1993-01-01</p> <p>A diverse range of processes were invoked as the dominant factor or as important contributory factors in the modification of the optical surface and regolith of the moon. These include impact vitrification by large and small projectiles, solar wind implantation and the reduction of oxidized iron during energetic events, sputtering and crystal lattice damage by energetic cosmic rays, shock metamorphism of minerals, mixing of diverse lithologies by impacts, and contamination by external materials. These processes are also potentially important on the rocky surfaces of other small solar system bodies. For icy bodies, several additional processes are also possible, including formation of complex organic compounds from methane and ammonia-bearing ices by ultraviolet irradiation and the condensation of vapor species to form frost layers in the polar or cooler regions of objects at appropriate heliocentric distances. The lunar case, even when completely understood, will not extend in a simple linear fashion to other small rocky objects, nor will the optical surfaces of those objects all be affected to the same degree by each process. The major factors that will control the relative efficacy of a possible mechanism include the efficiency of ejecta retention and the degree to which the regolith materials experience multiple events (primarily a function of body size, escape velocity, and impactor velocities); the mean duration of typical regolith particle exposure at the optical surface and within reach of the micrometeorite, cosmic ray, solar wind, or UV fluxes (a function of the rate and scale of regolith mixing, production, and removal processes); the incident flux of solar (low energy) cosmic rays, solar wind, or UV radiation (inverse square of heliocentric distance) or of galactic (high energy) cosmic rays (slowly increasing flux with heliocentric distance); and the compositional and mineralogical nature of the surface being affected. In general, those processes that depend upon either the retention of impact ejecta or on the presence of multigenerational regoliths should be substantially less effective on smaller bodies with lower escape velocities. However, there are important exceptions to this generalization. For example, a process that involves the hypervelocity impact of small particles into a fine-grained regolith may be able to effectively retain highly shocked or melted material due to the nature of shock wave propagation in such a heterogeneous material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.555a2013J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.555a2013J"><span>Structural Considerations of a 20MW Multi-Rotor Wind Energy System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jamieson, P.; Branney, M.</p> <p>2014-12-01</p> <p>The drive to upscale offshore wind turbines relates especially to possiblereductions in O&M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/6583','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/6583"><span>Yellow-Poplar and Oak Seedling Density Responses to Wind-Generated Gaps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Erik C. Berg; David H. Van Lear</p> <p>2004-01-01</p> <p>The effects of wind on upland hardwood forest structure and composition have been studied mostly in the context of either small "gap-phase" openings or in retrospective studies of ancient disturbances. Larger (> 0.1 ha) wind-created openings are common across Southern Appalachian landscapes, and can be impor tant in shaping understory colonization, growth...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=348286','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=348286"><span>Wind erosion potential influenced by tillage in an irrigated potato-sweet corn rotation in the Columbia Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Wind erosion is a concern within the Columbia Basin of the Inland Pacific Northwest (PNW) United States due to the sandy texture of soils and small amount of residue retained on the soil surface after harvest of vegetable crops like potato. This study assessed potential wind erosion of an irrigated ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21993581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21993581"><span>Wind speed affects prey-catching behaviour in an orb web spider.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas</p> <p>2011-12-01</p> <p>Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NW.....98.1063T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NW.....98.1063T"><span>Wind speed affects prey-catching behaviour in an orb web spider</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas</p> <p>2011-12-01</p> <p>Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4587435','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4587435"><span>Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26451391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26451391"><span>Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Ming-Hung</p> <p>2015-01-01</p> <p>This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070021697','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070021697"><span>Small UAV Research and Evolution in Long Endurance Electric Powered Vehicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Logan, Michael J.; Chu, Julio; Motter, Mark A.; Carter, Dennis L.; Ol, Michael; Zeune, Cale</p> <p>2007-01-01</p> <p>This paper describes recent research into the advancement of small, electric powered unmanned aerial vehicle (UAV) capabilities. Specifically, topics include the improvements made in battery technology, design methodologies, avionics architectures and algorithms, materials and structural concepts, propulsion system performance prediction, and others. The results of prototype vehicle designs and flight tests are discussed in the context of their usefulness in defining and validating progress in the various technology areas. Further areas of research need are also identified. These include the need for more robust operating regimes (wind, gust, etc.), and continued improvement in payload fraction vs. endurance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960010200','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960010200"><span>Edge technique lidar for high accuracy, high spatial resolution wind measurement in the Planetary Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Korb, C. L.; Gentry, Bruce M.</p> <p>1995-01-01</p> <p>The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...853..164N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...853..164N"><span>A Changing Wind Collision</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nazé, Yaël; Koenigsberger, Gloria; Pittard, Julian M.; Parkin, Elliot Ross; Rauw, Gregor; Corcoran, Michael F.; Hillier, D. John</p> <p>2018-02-01</p> <p>We report on the first detection of a global change in the X-ray emitting properties of a wind–wind collision, thanks to XMM-Newton observations of the massive Small Magellenic Cloud (SMC) system HD 5980. While its light curve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ∼2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the light-curve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind–wind collision, considering the varying wind properties of the eruptive component in HD 5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions. Based on XMM-Newton and Chandra data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......345S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......345S"><span>Stability analysis of offshore wind farm and marine current farm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shawon, Mohammad Hasanuzzaman</p> <p></p> <p>Renewable energy has been playing an important role to meet power demand and 'Green Energy' market is getting bigger platform all over the world in the last few years. Due to massive increase in the prices of fossil fuels along with global warming issues, energy harvesting from renewable energy sources has received considerable interest, nowadays, where extensive researches are going on to ensure optimum use of renewable sources. In order to meet the increasing demand of electricity and power, integration of renewable energy is getting highest priorities around the world. Wind is one of the most top growing renewable energy resources and wind power market penetration is expected to reach 3.35 percent by 2013 from its present market of about 240 GW. A wind energy system is the most environmental friendly, cost effective and safe among all renewable energy resources available. Another promising form of renewable energy is ocean energy which covers 70 % of the earth. Ocean energy can be tapped from waves, tides and thermal elements. Offshore Wind farm (OWF) has already become very popular for large scale wind power integration with the onshore grid. Recently, marine current farm (MCF) is also showing good potential to become mainstream energy sources and already successfully commissioned in United Kingdom. However, squirrel cage induction generator (SCIG) has the stability problem similar to synchronous generator especially during fault location to restore the electromagnetic torque. Series dynamic braking resistor (SDBR) has been known as a useful mean to stabilize fixed speed wind generator system. On the other hand, doubly fed induction generator (DFIG) has the capability of coupling the control of active and reactive power and to provide necessary reactive power demand during grid fault conditions. Series dynamic braking resistor (SDBR) can also be employed with DFIG to limit the rotor over current. An integration of wind and tidal energy represents a new-trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/915286','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/915286"><span>Wind for Schools Project Power System Brief</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>2007-08-01</p> <p>This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4820607N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4820607N"><span>Small is different: RPC observations of a small scale comet interacting with the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team</p> <p>2016-10-01</p> <p>Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind - comet atmosphere interaction region is smaller than the pickup ion gyroradius in the undisturbed solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1016690','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1016690"><span>Incorporation of Outcome-Based Contract Requirements in a Real Options Approach for Maintenance Planning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-04-30</p> <p>focus on novel onshore/offshore and small/large scale wind turbine designs for expanding their operational range and increasing their efficiency at...of maintenance options created by the implementation of PHM in wind turbines . When an RUL is predicted for a subsystem, there are multiple choices...The section titled Example— Wind Turbine With an Outcome-Based Contract presents a case study for a PHM enabled wind turbine with and without an</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11A1854L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11A1854L"><span>Measuring tropospheric wind with microwave sounders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.</p> <p>2017-12-01</p> <p>In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......271A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......271A"><span>Power control and management of the grid containing largescale wind power systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aula, Fadhil Toufick</p> <p></p> <p>The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0779085','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0779085"><span>Remote Sensing Wind and Wind Shear System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SuScT..29b4005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SuScT..29b4005M"><span>Lightweight MgB2 superconducting 10 MW wind generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.</p> <p>2016-02-01</p> <p>The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930017889','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930017889"><span>A low-mass faraday cup experiment for the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lazarus, A. J.; Steinberg, J. T.; Mcnutt, R. L., Jr.</p> <p>1993-01-01</p> <p>Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/wind/controls-analysis.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/wind/controls-analysis.html"><span>Wind Turbine Control Systems | Wind | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p><em>Turbine</em> Control Systems <em>Wind</em> <em>Turbine</em> Control Systems Advanced <em>wind</em> <em>turbine</em> controls can reduce the loads on <em>wind</em> <em>turbine</em> components while capturing more <em>wind</em> energy and converting it into electricity turbines. A photo of a <em>wind</em> <em>turbine</em> against blue sky with white blades on their sides in the foreground</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1867b0005B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1867b0005B"><span>Aerodynamic performance of a small vertical axis wind turbine using an overset grid method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten</p> <p>2017-08-01</p> <p>The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110000753','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110000753"><span>Sensor Systems Collect Critical Aerodynamics Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2010-01-01</p> <p>With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH52A..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH52A..03C"><span>Space Weathering Radiation Environment of the Inner Solar System from the Virtual Energetic Particle Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooper, J. F.; Papitashvili, N. E.</p> <p>2016-12-01</p> <p>The surfaces of Mercury, the Moon, the moons of Mars, the asteroids, and other small bodies of the inner solar system have been directly weathered for millions to billions of years by solar wind, energetic particle, and solar ultraviolet irradiation. Surface regolith layers to meters in depth are formed by impacts of smaller bodies and micrometeoroids. Sample return missions to small bodies, such as Osiris-REx to the asteroid Bennu, are intended to recover information on the early history of solar system formation, but must contend with the long-term space weathering effects that perturb the original structure and composition of the affected bodies. Solar wind plasma ions at keV energies penetrate only to sub-micron depths, while more energetic solar & heliospheric particles up to MeV energies reach centimeter depths, and higher-energy galactic cosmic rays to GeV energies fully penetrate through the impact regolith. The weathering effects vary with energy and penetration depth from ion implantation and erosive sputtering at solar wind energies to chemical and structural evolution driven by MeV - GeV particles. The energy versus depth dependence of such effects is weighted by the differential flux distributions of the incident particles as measured near the orbits of the affected bodies over long periods of time. Our Virtual Energetic Particle Observatory (http://vepo.gsfc.nasa.gov/) enables simultaneous access to multiple data sets from 1973 through the present in the form of differential flux spectral plots and downloadable data tables. The most continuous VEPO coverage exists for geospace data sources at 1 AU from the Interplanetary Monitoring Platform 8 (IMP-8), launched in 1973, through the present 1-AU constellation including the ACE, WIND, SOHO, and Stereo-A/B spacecraft. Other mission data, e.g. more occasionally from Pioneer-10/11, Helios-1/2, Voyager-1/2, and Ulysses, extend heliospheric coverage from the orbit of Mercury to that of Mars, the asteroid belt, and beyond. Using data from the VEPO services, we show the time-averaged spectra of protons and helium during 1973 - 2016 from Mercury to Mars. The main contributors on solar cycle time scales at keV to MeV energies are large solar flare and ICME events. These time-averaged spectra can then be used for space weathering models of the inner solar system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26537669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26537669"><span>The dune effect on sand-transporting winds on Mars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G</p> <p>2015-11-05</p> <p>Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4667610','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4667610"><span>The dune effect on sand-transporting winds on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.</p> <p>2015-01-01</p> <p>Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010641','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010641"><span>Mars Technologies Spawn Durable Wind Turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bubenheim, David L.</p> <p>2013-01-01</p> <p>Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small crews and their power requirements are less, says Bubenheim. In the summers, they bring in larger groups and photovoltaics could supply a lot of power. Using renewable energy technology could be a way of reducing the amount of fuel they have to fly in.Technology TransferTo advance wind turbine technology to meet the requirements of extremely harsh environments like that on Mars, Ames partnered with NSF and the Department of Energy. It was clear that a lot of the same features were also desirable for the cold regions of the Earth, says Bubenheim. NASA took the leadership on the team because we had the longest-term technology a Mars turbine. Years before, NSF had worked with a company called Northern Power Systems (NPS), based in Barre, Vermont, to deploy a 3-kilowatt wind turbine on Black Island off the coast of Antarctica.Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When there's a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small crews and their power requirements are less, says Bubenheim. In the summers, they bring in larger groups and photovoltaics could supply a lot of power. Using renewable energy technology could be a way of reducing the amount of fuel they have to fly in.Technology Transfer To advance wind turbine technology to meet the requirements of extremely harsh environments like that on Mars, Ames partnered with NSF and the Department of Energy. It was clear that a lot of the same features were also desirable for the cold regions of the Earth, says Bubenheim. NASA took the leadership on the team because we had the longest-term technology a Mars turbine.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1233445','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1233445"><span>Kansas Wind Energy Consortium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gruenbacher, Don</p> <p>2015-12-31</p> <p>This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend themore » renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21061.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21061.html"><span>X-Rays from Pluto</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-09-14</p> <p>The first detection of Pluto in X-rays has been made using NASA's Chandra X-ray Observatory in conjunction with observations from NASA's New Horizons spacecraft. As New Horizons approached Pluto in late 2014 and then flew by the planet during the summer of 2015, Chandra obtained data during four separate observations. During each observation, Chandra detected low-energy X-rays from the small planet. The main panel in this graphic is an optical image taken from New Horizons on its approach to Pluto, while the inset shows an image of Pluto in X-rays from Chandra. There is a significant difference in scale between the optical and X-ray images. New Horizons made a close flyby of Pluto but Chandra is located near the Earth, so the level of detail visible in the two images is very different. The Chandra image is 180,000 miles across at the distance of Pluto, but the planet is only 1,500 miles across. Pluto is detected in the X-ray image as a point source, showing the sharpest level of detail available for Chandra or any other X-ray observatory. This means that details over scales that are smaller than the X-ray source cannot be seen here. Detecting X-rays from Pluto is a somewhat surprising result given that Pluto - a cold, rocky world without a magnetic field - has no natural mechanism for emitting X-rays. However, scientists knew from previous observations of comets that the interaction between the gases surrounding such planetary bodies and the solar wind - the constant streams of charged particles from the sun that speed throughout the solar system -- can create X-rays. The researchers were particularly interested in learning more about the interaction between the gases in Pluto's atmosphere and the solar wind. The New Horizon spacecraft carries an instrument designed to measure that activity up-close -- Solar Wind Around Pluto (SWAP) -- and scientists examined that data and proposed that Pluto contains a very mild, close-in bowshock, where the solar wind first "meets" Pluto (similar to a shock wave that forms ahead of a supersonic aircraft) and a small wake or tail behind the planet. The immediate mystery is that Chandra's readings on the brightness of the X-rays are much higher than expected from the solar wind interacting with Pluto's atmosphere. The Chandra detection is also surprising since New Horizons discovered Pluto's atmosphere was much more stable than the rapidly escaping, "comet-like" atmosphere that many scientists expected before the spacecraft flew past in July 2015. In fact, New Horizons found that Pluto's interaction with the solar wind is much more like the interaction of the solar wind with Mars, than with a comet. While Pluto is releasing enough gas from its atmosphere to make the observed X-rays, there isn't enough solar wind flowing directly at Pluto at its great distance from the Sun to make them according to certain theoretical models. There are several suggested possibilities for the enhanced X-ray emission from Pluto. These include a much wider and longer tail of gases trailing Pluto than New Horizons detected using its SWAP instrument. Because Pluto is so small compared to the size of a Chandra point source, scientists may be unable to detect such a tail in X-rays. Other possibilities are that interplanetary magnetic fields are focusing more particles than expected from the solar wind into the region around Pluto, or the low density of the solar wind in the outer solar system at the distance of Pluto could allow for the formation of a doughnut, or torus, of neutral gas centered around Pluto's orbit. It will take deeper and higher resolution images of X-rays from Pluto's environment than we currently have from Chandra to distinguish between these possibilities. http://photojournal.jpl.nasa.gov/catalog/PIA21061</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740045022&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWind%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740045022&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWind%2Benergy"><span>Status of wind-energy conversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, R. L.; Savino, J. M.</p> <p>1973-01-01</p> <p>The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007230','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007230"><span>Compound Wing Vertical Takeoff and Landing Small Unmanned Aircraft System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Logan, Michael J. (Inventor); Motter, Mark A. (Inventor); Deloach, Richard (Inventor); Vranas, Thomas L. (Inventor); Prendergast, Joseph M. (Inventor); Lipp, Brittney N. (Inventor)</p> <p>2017-01-01</p> <p>Systems, methods, and devices are provided that enable robust operations of a small unmanned aircraft system (sUAS) using a compound wing. The various embodiments may provide a sUAS with vertical takeoff and landing capability, long endurance, and the capability to operate in adverse environmental conditions. In the various embodiments a sUAS may include a fuselage and a compound wing comprising a fixed portion coupled to the fuselage, a wing lifting portion outboard of the fixed portion comprising a rigid cross member and a controllable articulating portion configured to rotate controllable through a range of motion from a horizontal position to a vertical position, and a freely rotating wing portion outboard of the wing lifting portion and configured to rotate freely based on wind forces incident on the freely rotating wing portion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-02-08/pdf/2012-2848.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-02-08/pdf/2012-2848.pdf"><span>77 FR 6549 - Notice of Availability for Public Comment of Interconnection Facilities Studies Prepared for the...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-02-08</p> <p>...,250 megawatts of electric power produced from wind turbines to be located in the vicinity of La... States to Mexico, except for the small amount of electrical energy needed for wind turbine lubrication... connect a wind energy project to be built in the vicinity of La Rumorosa, Baja California, Mexico, to San...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/42121','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/42121"><span>Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>D. R. Bowling; W. J. Massman</p> <p>2011-01-01</p> <p>Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001758','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001758"><span>Life Cycle of Midlatitude Deep Convective Systems in a Lagrangian Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Feng, Zhe; Dong, Xiquan; Xie, Baike; McFarlane, Sally A.; Kennedy, Aaron; Lin, Bing; Minnis, Patrick</p> <p>2012-01-01</p> <p>Deep Convective Systems (DCSs) consist of intense convective cores (CC), large stratiform rain (SR) regions, and extensive non-precipitating anvil clouds (AC). This study focuses on the evolution of these three components and the factors that affect convective AC production. An automated satellite tracking method is used in conjunction with a recently developed multi-sensor hybrid classification to analyze the evolution of DCS structure in a Lagrangian framework over the central United States. Composite analysis from 4221 tracked DCSs during two warm seasons (May-August, 2010-2011) shows that maximum system size correlates with lifetime, and longer-lived DCSs have more extensive SR and AC. Maximum SR and AC area lag behind peak convective intensity and the lag increases linearly from approximately 1-hour for short-lived systems to more than 3-hours for long-lived ones. The increased lag, which depends on the convective environment, suggests that changes in the overall diabatic heating structure associated with the transition from CC to SR and AC could prolong the system lifetime by sustaining stratiform cloud development. Longer-lasting systems are associated with up to 60% higher mid-tropospheric relative humidity and up to 40% stronger middle to upper tropospheric wind shear. Regression analysis shows that the areal coverage of thick AC is strongly correlated with the size of CC, updraft strength, and SR area. Ambient upper tropospheric wind speed and wind shear also play an important role for convective AC production where for systems with large AC (radius greater than 120-km) they are 24% and 20% higher, respectively, than those with small AC (radius=20 km).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...853...85V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...853...85V"><span>3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny</p> <p>2018-01-01</p> <p>We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChOE...32...99Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChOE...32...99Z"><span>Mechanistic Drifting Forecast Model for A Small Semi-Submersible Drifter Under Tide-Wind-Wave Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin</p> <p>2018-03-01</p> <p>Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29717144','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29717144"><span>The extent of wind-mediated dispersal of small metazoans, focusing nematodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ptatscheck, Christoph; Gansfort, Birgit; Traunspurger, Walter</p> <p>2018-05-01</p> <p>Wind-mediated transport is an important mechanism in the dispersal of small metazoans. Yet, concrete dispersal rates have hardly been examined. Here we present the results of an one-year field experiment investigating the composition and dispersal rates of aeroplankton. To gain insights into the dynamics of dispersal at the species level, we focused on nematodes, worldwide the most common metazoan taxon. Among the six taxa collected in this study (nematodes, rotifers, collembolans, tardigrades, mites, and thrips), nematodes had the highest dispersal rates (up to >3000 individuals m -2 in 4 weeks, 27 species identified) and represented >44% of aeroplankton. Only living nematodes, and no propagules, were dispersed. All taxa had a higher dispersal potential in environments linked to the source habitat, evidenced by the much higher deposition of organisms in funnels placed on the ground than on the rooftop of a ten-story building. Nematodes under conditions of high humidity and wind speed had the highest dispersal rates, while increasing temperatures and dryness had a significantly positive impact on the wind drift of mites and thrips. The results indicated that wind dispersal over long distances is possible. The notable organismal input by wind dispersal may contribute to biodiversity and ecosystem functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/news/press/1996/38wind.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/news/press/1996/38wind.html"><span>Companies Selected for Small Wind Turbine Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-<em>maintenance</em> wind have to perform effectively and reliably over a long period of time without <em>maintenance</em>. The companies</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1220201','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1220201"><span>2012 Market Report on Wind Technologies in Distributed Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Orrell, Alice C.</p> <p>2013-08-01</p> <p>An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/850362','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/850362"><span>Comprehensive Renewable Energy Feasibility Study for the Makah Indian Tribe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>RobertLynette; John Wade; Larry Coupe</p> <p></p> <p>The purpose of this project was to determine the technical feasibility, economic viability, and potential impacts of installing and operating a wind power station and/or small hydroelectric generation plants on the Makah reservation. The long-term objective is to supply all or a portion of Tribe's electricity from local, renewable energy sources in order to reduce costs, provide local employment, and reduce power outages. An additional objective was for the Tribe to gain an understanding of the requirements, costs, and benefits of developing and operating such plants on the reservation. The Makah Indian Reservation, with a total land area of forty-sevenmore » square miles, is located on the northwestern tip of the Olympic Peninsula in Washington State. Four major watersheds drain the main Reservation areas and the average rainfall is over one hundred inches per year. The reservation's west side borders the Pacific Ocean, but mostly consists of rugged mountainous terrain between 500 and 1,900 feet in elevation. Approximately 1,200 tribal members live on the Reservation and there is an additional non-Indian residential population of about 300. Electric power is provided by the Clallam County PUD. The annual usage on the reservation is approximately 16,700 mWh. Project Work Wind Energy--Two anemometer suites of equipment were installed on the reservation and operated for a more than a year. An off-site reference station was identified and used to project long-term wind resource characteristics at the two stations. Transmission resources were identified and analyzed. A preliminary financial analysis of a hypothetical wind power station was prepared and used to gauge the economic viability of installation of a multi-megawatt wind power station. Small Hydroelectric--Two potential sites for micro/small-hydro were identified by analysis of previous water resource studies, topographical maps, and conversations with knowledgeable Makah personnel. Field trips were conducted to collect preliminary site data. A report was prepared by Alaska Power & Telephone (Larry Coupe) including preliminary layouts, capacities, potential environmental issues, and projected costs. Findings and Conclusions Wind Energy The average wind resources measured at both sites were marginal, with annual average wind speeds of 13.6-14.0 mph at a 65-meter hub height, and wind shears of 0.08-0.13. Using GE 1.5 MW wind turbines with a hub height of 65 meters, yields a net capacity factor of approximately 0.19. The cost-of-energy for a commercial project is estimated at approximately 9.6 cents per kWh using current costs for capital and equipment prices. Economic viability for a commercial wind power station would require a subsidy of 40-50% of the project capital cost, loans provided at approximately 2% rate of interest, or a combination of grants and loans at substantially below market rates. Recommendations: Because the cost-of-energy from wind power is decreasing, and because there may be small pockets of higher winds on the reservation, our recommendation is to: (1) Leave one of the two anemometer towers, preferably the 50-meter southern unit MCC, in place and continue to collect data from this site. This site would serve as an excellent reference anemometer for the Olympic Peninsula, and, (2) If funds permit, relocate the northern tower (MCB) to a promising small site closer to the transmission line with the hope of finding a more energetic site that is easier to develop. Small Hydroelectric There are a very limited number of sites on the reservation that have potential for economical hydroelectric development, even in conjunction with water supply development. Two sites emerged as the most promising and were evaluated: (1) One utilizing four creeks draining the north side of the Cape Flattery peninsula (Cape Creeks), and (2) One on the Waatch River to the south of Neah Bay. The Cape Creeks site would be a combination water supply and 512 kW power generation facility and would cost a approximately $11,100,000. Annual power generation would be approximately 1,300,000 kWh and the plant would have a cost-of-energy of approximately 65 cents per kWh, substantially above market rates. The Waatch site would also be a combination water supply and power generation facility. It would have a rated capacity of 935 kW and would cost approximately $16,400,000. Annual power generation would be approximately 3,260,000 kWh and the plant would have a cost-of-energy of approximately 38 cents per kWh, also substantially above market rates. Recommendation: Stand-alone hydroelectric development is not commercially viable. The Tribal Council should not pursue development of hydroelectric facilities on the Makah Reservation unless they are an adjunct to a water supply development, and the water supply systems absorbs almost all the capital cost of the project.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......157W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......157W"><span>Maximum wind energy extraction strategies using power electronic converters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Quincy Qing</p> <p>2003-10-01</p> <p>This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1176435','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1176435"><span>Wind tower service lift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas</p> <p>2011-09-13</p> <p>An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ARC-2005-ACD05-0022-017.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ARC-2005-ACD05-0022-017.html"><span>ARC-2005-ACD05-0022-017</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2005-02-04</p> <p>Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Silica Sand (Oklahoma 90) particles used in vortex generatory and Mars Wind Tunnel</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ARC-2005-ACD05-0022-019.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ARC-2005-ACD05-0022-019.html"><span>ARC-2005-ACD05-0022-019</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2005-02-04</p> <p>Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Carbondale Red Clay dust used in vortex generatory and Mars Wind Tunnel</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038165&hterms=Incidence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DIncidence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038165&hterms=Incidence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DIncidence"><span>Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Craeye, C.; Sobieski, P. W.; Bliven, L. F.</p> <p>1997-01-01</p> <p>Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Sci...351.9045B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Sci...351.9045B"><span>Pluto' interaction with its space environment: Solar wind, energetic particles, and dust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagenal, F.; Horányi, M.; McComas, D. J.; McNutt, R. L.; Elliott, H. A.; Hill, M. E.; Brown, L. E.; Delamere, P. A.; Kollmann, P.; Krimigis, S. M.; Kusterer, M.; Lisse, C. M.; Mitchell, D. G.; Piquette, M.; Poppe, A. R.; Strobel, D. F.; Szalay, J. R.; Valek, P.; Vandegriff, J.; Weidner, S.; Zirnstein, E. J.; Stern, S. A.; Ennico, K.; Olkin, C. B.; Weaver, H. A.; Young, L. A.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hinson, D. P.; Holdridge, M. E.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Stryk, T.; Summers, M. E.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.</p> <p>2016-03-01</p> <p>The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers-3 for the dust density in the Pluto system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26989259','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26989259"><span>Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A</p> <p>2016-03-18</p> <p>The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>