Science.gov

Sample records for small-angle neutron scatter

  1. Small Angle Neutron Scattering

    SciTech Connect

    Urban, Volker S

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  2. Small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice

    2015-10-01

    Small Angle Neutron Scattering (SANS) is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ˜ 1 nm up to ˜ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ˜ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area…) through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer), form factor analysis (I(q→0), Guinier regime, intermediate regime, Porod regime, polydisperse system), structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates), and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast). It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of spectrometer

  3. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    SciTech Connect

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  4. SANS (small-angle neutron scattering) from polymers and colloids

    SciTech Connect

    Hayter, J.B.

    1987-01-01

    Small-angle neutron scattering (SANS) has been remarkably successful in providing detailed quantitative structural information on complex everyday materials, such as polymers and colloids, which are often of considerable industrial as well as academic interest. This paper reviews some recent SANS experiments on polymers and colloids, including ferrofluids, and discusses the use of these apparently complex systems as general physical models of the liquid or solid state.

  5. A novel small-angle neutron scattering detector geometry

    PubMed Central

    Kanaki, Kalliopi; Jackson, Andrew; Hall-Wilton, Richard; Piscitelli, Francesco; Kirstein, Oliver; Andersen, Ken H.

    2013-01-01

    A novel 2π detector geometry for small-angle neutron scattering (SANS) applications is presented and its theoretical performance evaluated. Such a novel geometry is ideally suited for a SANS instrument at the European Spallation Source (ESS). Motivated by the low availability and high price of 3He, the new concept utilizes gaseous detectors with 10B as the neutron converter. The shape of the detector is inspired by an optimization process based on the properties of the conversion material. Advantages over the detector geometry traditionally used on SANS instruments are discussed. The angular and time resolutions of the proposed detector concept are shown to satisfy the requirements of the particular SANS instrument. PMID:24046504

  6. Small angle neutron scattering using a triple axis spectrometer

    SciTech Connect

    Ahmend, F.U.; Kamal, I.; Yunus, S.M.

    1994-12-31

    SANS technique has been developed on a triple axis neutron spectrometer at TRIGA Mark II (3 MW) research reactor, AERE, Savar, Dhaka, Bangladesh. Double crystal (with very small mosaic spread {approximately} 1 min.) diffraction known as Bonse and Hart`s method has been employed in this technique. Such a device is a useful tool for small angle scattering in the Q range between 10{sup -5} and 10{sup -1} {Angstrom}{sup -1} and for real time experiments at short time scales. Therefore, large objects and large distance interparticle correlations can be investigated easily by this method. Test measurements using alumina (Al{sub 2}O{sub 3}) sample has been carried out to exploit this method. The radius of gyration has been determined and the data has been fitted to the scattering function of a sphere.

  7. Small-angle neutron scattering study of polymeric micellar structures

    SciTech Connect

    Wu, G.; Chu, B. ); Schneider, D.K. )

    1994-11-17

    Polymeric micellar structures formed by a PEO-PPO-PEO copolymer in o-xylene in the presence of water were investigated by small-angle neutron scattering. In order to reveal the detailed micellar structure, different contrasts among the micellar core, the micellar shell, and the dispersing medium (background) were constructed by selectively changing the protonated/deuterated combination of water and xylene. The micellar structure could be well described by a core-shell structure with the scattering behavior of the micellar shell being very similar to that of a star polymer. The solubilized water existed not only in the micellar core but also in the micellar shell. The volume fraction of a copolymer segments in the micellar shell was rather low, being of the order of 0.2. There seemed to be no sharp interface between the micellar core and the micellar shell. 25 refs., 11 figs., 4 tabs.

  8. Radiation damage study using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Rétfalvi, E.; Török, Gy; Rosta, L.

    2000-03-01

    Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterization of this kind of nanostructures small angle neutron scattering technique is a very useful tool. We have carried out experiments on samples of irradiated reactor vessel material and welded components of VVER-440-type reactors on the SANS instrument at the Budapest Research Reactor. In our measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. Our data were analyzed by the ITP92 code, the inverse Fourier transform program of O. Glatter [1].

  9. Small angle neutron scattering studies of vesicle stability

    SciTech Connect

    Mang, J.T.; Hjelm, R.P.

    1997-10-01

    Small angle neutron scattering (SANS) was used to investigate the structure of mixed colloids of egg yolk phosphatidylcholine (EYPC) with the bile salt, cholylglycine (CG), in D{sub 2}O as a function of pressure (P) and temperature (T). At atmospheric pressure, the system forms an isotropic phase of mixed, single bilayer vesicles (SLV`s). Increasing the external hydrostatic pressure brought about significant changes in particle morphology. At T = 25 C, application of a pressure of 3.5 MPa resulted in the collapse of the SLV`s. Further increase of P, up to 51.8 MPa, resulted in a transition from a phase of ordered (stacked), collapsed vesicles to one of stacked, ribbon-like particles. A similar collapse of the vesicles was observed at higher temperature (T = 37 C) with increasing P, but at this temperature, no ribbon phase was found at the highest pressure explored.

  10. Ultra-small-angle neutron scattering with azimuthal asymmetry.

    PubMed

    Gu, X; Mildner, D F R

    2016-06-01

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.

  11. Ultra-small-angle neutron scattering with azimuthal asymmetry

    SciTech Connect

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.

  12. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE PAGES

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  13. Characterization of photosynthetic supramolecular assemblies using small angle neutron scattering

    SciTech Connect

    Tiede, D.M.; Marone, P.; Wagner, A.M.; Thiyagarajan, P.

    1995-12-31

    We are using small angle neutron scattering (SANS) to resolve structural features of supramolecular assemblies of photosynthetic proteins in liquid and frozen solutions. SANS resolves the size, shape, and structural homogeneity of macromolecular assemblies in samples identical to those used for spectroscopic assays of photosynthetic function. Likely molecular structures of the supramolecular assemblies can be identified by comparing experimental scattering data with scattering profiles calculated for model supramolecular assemblies built from crystal structures of the individual proteins. SANS studies of the Rhodobacter sphaeroides reaction center, RC, presented here, show that the detergent solubilized RC exists in a variety of monomeric and aggregation states. The distribution between monomer and aggregate was found to depend strongly upon detergent, temperature and nature of additives, such as ethylene glycol used for low temperature spectroscopy and polyethylene glycol used for crystallization. Likely aggregate structures are being identified by fitting the experimental scattering profiles with those calculated for model aggregates built-up using the RC crystal structure. This work establishes the foundation for using SANS to identify intermediates in the RC crystallization pathways, and for determining likely structures of complexes formed between the RC and its physiological reaction partners, cytochrome c, and the LHI antenna complex.

  14. Ultra-small-angle neutron scattering with azimuthal asymmetry

    PubMed Central

    Gu, X.; Mildner, D. F. R.

    2016-01-01

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry. PMID:27275140

  15. New Very Small Angle Neutron Scattering (VSANS) Instrument

    NASA Astrophysics Data System (ADS)

    Van Every, E.; Deyhim, A.; Kulesza, J.

    2016-09-01

    The design of a new Very Small Angle Neutron Scattering (VSANS) Instrument for use in National Institute of Standards And Technology (NIST) will be discussed. This instrument is similar to a shorter instrument we designed and delivered to ANSTO in Australia called the Bilby SANS instrument. The NIST VSANS and the ANSTO Bilby SANS instruments have very similar dimensions for length and diameter and have similar requirements for internal detector motion, top access port, walkway supports, and ports; however, the Bilby SANS instrument vacuum requirement was lower (7.5×10-5 Torr) and the entire (60,000 pound) vessel was required to move 1.5 meters on external rails with a repeatability of 100 um, which ADC achieved. The NIST VSANS length is 24 meter, internal diameter 2.3 meter with three internal carriages. The NIST VSANS instrument, which covers the usual SANS range will also allow configuration to cover the range between q ∼⃒ 10-4 A-1 to 10-3 A-1 with a sample beam current of (104 neutrons/s). The key requirements are a second position-sensitive detector system having a 1 mm pixel size and a longer sample-detector flight path of 20 m (i.e., a 40 m instrument).

  16. Multiple small angle neutron scattering: A new two-dimensional ultrasmall angle neutron scattering technique

    SciTech Connect

    Gruenzweig, C.; Hils, T.; Muehlbauer, S.; Ay, M.; Lorenz, K.; Georgii, R.; Gaehler, R.; Boeni, P.

    2007-11-12

    We report on the demonstration experiment of the multiple small angle neutron scattering (MSANS) technique at a 5.6 m long neutron beam line, leading to a q resolution of 3x10{sup -4} A{sup -1}. The MSANS technique is based on two two-dimensional multihole apertures placed at the front end of the collimator and close to the sample, respectively. By choosing the proper MSANS geometry, individual diffraction patterns are superimposed leading to a large gain in intensity. Using MSANS as an option for standard small angle neutron scattering beam lines, the q resolution could be increased to 10{sup -5} A{sup -1} without dramatically sacrificing intensity.

  17. Heparin's solution structure determined by small-angle neutron scattering.

    PubMed

    Rubinson, Kenneth A; Chen, Yin; Cress, Brady F; Zhang, Fuming; Linhardt, Robert J

    2016-12-01

    Heparin is a linear, anionic polysaccharide that is widely used as a clinical anticoagulant. Despite its discovery 100 years ago in 1916, the solution structure of heparin remains unknown. The solution shape of heparin has not previously been examined in water under a range of concentrations, and here is done so in D2 O solution using small-angle neutron scattering (SANS). Solutions of 10 kDa heparin-in the millimolar concentration range-were probed with SANS. Our results show that when sodium concentrations are equivalent to the polyelectrolyte's charge or up to a few hundred millimoles higher, the molecular structure of heparin is compact and the shape could be well modeled by a cylinder with a length three to four times its diameter. In the presence of molar concentrations of sodium, the molecule becomes extended to nearly its full length estimated from reported X-ray measurements on stretched fibers. This stretched form is not found in the presence of molar concentrations of potassium ions. In this high-potassium environment, the heparin molecules have the same shape as when its charges were mostly protonated at pD ≈ 0.5, that is, they are compact and approximately half the length of the extended molecules.

  18. Multiple magnetic scattering in small-angle neutron scattering of Nd–Fe–B nanocrystalline magnet

    PubMed Central

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd–Fe–B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd–Fe–B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd–Fe–B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  19. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet

    NASA Astrophysics Data System (ADS)

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-06-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  20. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    PubMed

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  1. Spin echo small angle neutron scattering using a continuously pumped {sup 3}He neutron polarisation analyser

    SciTech Connect

    Parnell, S. R.; Li, K.; Yan, H.; Stonaha, P.; Li, F.; Wang, T.; Baxter, D. V.; Snow, W. M.; Washington, A. L.; Walsh, A.; Chen, W. C.; Parnell, A. J.; Fairclough, J. P. A.; Pynn, R.

    2015-02-15

    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of {sup 3}He. We describe the performance of the analyser along with a study of the {sup 3}He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.

  2. Experimental methods in the study of neutron scattering at small angles

    SciTech Connect

    Dragolici, Cristian A.

    2014-11-24

    Small angle scattering (SAS) is the collective name given to the techniques of small angle neutron (SANS) and X-ray (SAXS) scattering. They offer the possibility to analyze particles without disturbing their natural environment. In each of these techniques radiation is elastically scattered by a sample and the resulting scattering pattern is analyzed to provide information about the size, shape and orientation of some component of the sample. Accordingly, a large number of methods and experimental patterns have been developed to ease the investigation of condensed matter by use of these techniques. Some of them are the discussed in this paper.

  3. Small Angle Neutron Scattering at the National Institute of Standards and Technology

    PubMed Central

    Hammouda, B.; Krueger, S.; Glinka, C. J.

    1993-01-01

    The small angle neutron scattering technique is a valuable method for the characterization of morphology of various materials. It can probe inhomogeneities in the sample (whether occurring naturally or introduced through isotopic substitution) at a length scale from the atomic size (nanometers) to the macroscopic (micrometers) size. This work provides an overview of the small angle neutron scattering facilities at the National Institute of Standards and Technology and a review of the technique as it has been applied to polymer systems, biological macromolecules, ceramic, and metallic materials. Specific examples have been included. PMID:28053456

  4. Development and prospects of Very Small Angle Neutron Scattering (VSANS) techniques

    NASA Astrophysics Data System (ADS)

    Xuo, Tai-Sen; Cheng, He; Chen, Yuan-Bo; Wang, Fang-Wei

    2016-07-01

    Very Small Angle Neutron Scattering (VSANS) is an upgrade of the traditional Small Angle Neutron Scattering (SANS) technique which can cover three orders of magnitude of length scale from one nanometer to one micrometer. It is a powerful tool for structure calibration in polymer science, biology, material science and condensed matter physics. Since the first VSANS instrument, D11 in Grenoble, was built in 1972, new collimation techniques, focusing optics (multi-beam converging apertures, material or magnetic lenses, and focusing mirrors) and higher resolution detectors combined with the long flight paths and long incident neutron wavelengths have been developed. In this paper, a detailed review is given of the development, principles and application conditions of various VSANS techniques. Then, beam current gain factors are calculated to evaluate those techniques. A VSANS design for the China Spallation Neutron Source (CSNS) is thereby presented. Supported by National Natural Science Foundation of China (21474119, 11305191)

  5. Survey of background scattering from materials found in small-angle neutron scattering

    PubMed Central

    Barker, J. G.; Mildner, D. F. R.

    2015-01-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088

  6. Survey of background scattering from materials found in small-angle neutron scattering.

    PubMed

    Barker, J G; Mildner, D F R

    2015-08-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a (3)He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the (3)He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.

  7. Solution properties of a CO{sub 2}-soluble fluoropolymer via small angle neutron scattering

    SciTech Connect

    McClain, J.B.; Combes, J.R.; Romack, T.J.; Canelas, D.A.; Betts, D.E.; Samulski, E.T.; DeSimone, J.M.; Londono, D.; Wignall, G.D.

    1996-01-31

    In this communication, we report the first characterization of solutions of a high molecular weight polymer in supercritical CO{sub 2} by small-angle neutron scattering (SANS). It is shown that small-angle neutron scattering gives key molecular parameters of an amorphous fluoropolymer in supercritical CO{sub 2}, i.e., the molecular weight, radius of gyration, and second virial coefficient, and thereby gives insights into a polymer chain`s behavior in this unique solvent. The positive sign of the second virial coefficients indicate that this medium is a good solvent - there is no evidence of a collapsed chain conformation. In fact, we conclude from the SANS data that, in CO{sub 2}, the poly(FOA) chain dimensions are expanded relative to those characteristic of its melt. 29 refs., 2 figs., 1 tab.

  8. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    SciTech Connect

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs.

  9. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W.

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  10. Small-angle neutron scattering studies from solutions of bovine nasal cartilage proteoglycan

    SciTech Connect

    Patel, A.; Stivala, S.S.; Damle, S.P.; Gregory, J.D.; Bunick, G.J.; Uberbacher, E.C.

    1985-08-01

    Small-angle neutron scattering, SANS, of the proteoglycan subunit of bovine nasal cartilage in 0.15N LiCl at 25/sup 0/C yielded the radius of gyration, R/sub g/, radius of gyration of the cross-section, R/sub q/, persistence length, a, and the molecular weight, M. The following values were obtained: M = 3.9 x 10/sup 6/, R/sub g/ = 745 A, R/sub q/ = 34.6 A and a = 35.2 A. These values compare favorably with those that were obtained from small angle x-ray scattering, SAXS, of a similar extract. The scattering curve of the proteoglycan subunit in D/sub 2/O showed a characteristic broad peak in the specified angular range similar to that observed from SAXS, thus confirming the polyelectrolyte nature of the proteoglycan. 15 refs., 3 figs., 1 tab. (DT)

  11. A small angle neutron scattering study of mica based glass-ceramics with applications in dentistry

    NASA Astrophysics Data System (ADS)

    Kilcoyne, S. H.; Bentley, P. M.; Al-Jawad, M.; Bubb, N. L.; Al-Shammary, H. A. O.; Wood, D. J.

    2004-07-01

    We are currently developing machinable and load-bearing mica-based glass-ceramics for use in restorative dental surgery. In this paper we present the results of an ambient temperature small angle neutron scattering (SANS) study of several such ceramics with chemical compositions chosen to optimise machinability and strength. The SANS spectra are all dominated by scattering from the crystalline-amorphous phase interface and exhibit Q-4 dependence (Porod scattering) indicating that, on a 100Å scale, the surface of the crystals is smooth.

  12. Microstructural investigations on Russian reactor pressure vessel steels by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Ulbricht, A.; Boehmert, J.; Strunz, P.; Dewhurst, C.; Mathon, M.-H.

    The effect of radiation embrittlement has a high safety significance for Russian VVER reactor pressure vessel steels. Heats of base and weld metals of the as-received state, irradiated state and post-irradiation annealed state were investigated using small-angle neutron scattering (SANS) to obtain insight about the microstructural features caused by fast neutron irradiation. The SANS intensities increase in the momentum transfer range between 0.8 and 3 nm-1 for all the material compositions in the irradiated state. The size distribution function of the irradiation-induced defect clusters has a pronounced maximum at 1 nm in radius. Their content varies between 0.1 and 0.7 vol.% dependent on material composition and increases with the neutron fluence. The comparison of nuclear and magnetic scattering indicates that the defects differ in their composition. Thermal annealing reduces the volume fraction of irradiation defect clusters.

  13. Bilayer thickness in unilamellar phosphatidylcholine vesicles: small-angle neutron scattering using contrast variation

    NASA Astrophysics Data System (ADS)

    Kučerka, N.; Uhríková, D.; Teixeira, J.; Balgavý, P.

    2004-07-01

    The thickness of the lipid bilayer in extruded unilamellar vesicles prepared from synthetic 1,2-diacyl-sn-glycero-3-phosphorylcholines with monounsaturated acyl chains (diCn:1PC, n=14-22) was studied at 30°C in the small-angle neutron scattering (SANS) experiment. Several contrasts of the neutron scattering length density between the aqueous phase and phospholipid bilayer of vesicles were used. The experimental data were evaluated using the small-angle form of the Kratky-Porod approximation ln[I(q)q2] vs. q2 of the SANS intensity I(q) in the appropriate range of scattering vector values q to obtain the bilayer radius of gyration Rg and its extrapolated value at infinite scattering contrast Rginf. The bilayer thickness parameter evaluated from a linear approximation of dependence of gyration radius on the inverse contrast was then obtained without using any bilayer structure model. The dependence of the thickness parameter dg≅120.5Rginf on the number n of acyl chain carbons was found to be linear with a slope of 1.8+/-0.2Å per one acyl chain carbon. This slope can be used in bilayer-protein interaction studies.

  14. Cylindrical aggregates of chlorophylls studied by small-angle neutron scatter

    SciTech Connect

    Worcester, D.L.; Katz, J.J.

    1994-12-31

    Neutron small-angle scattering has demonstrated tubular chlorophyll aggregates formed by self-assembly of a variety of chlorophyll types in nonpolar solvents. The size and other properties of the tubular aggregates can be accounted for by stereochemical properties of the chlorophyll molecules. Features of some of the structures are remarkably similar to light harvesting chlorophyll complexes in vivo, particularly for photosynthetic bacteria. These nanotube chlorophyll structures may have applications as light harvesting biomaterials where efficient energy transfer occurs from an excited state which is highly delocalized.

  15. Small angle X-ray and neutron scattering on cadmium sulfide nanoparticles in silicate glass

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Yu. V.; Rempel, A. A.; Meyer, M.; Pipich, V.; Gerth, S.; Magerl, A.

    2016-08-01

    Small angle X-ray and neutron scattering on Cd and S doped glass annealed at 600 °C shows after the first 12 h nucleation and growth of spherical CdS nanoparticles with a radius of up to 34±4 Å. After the nucleation is completed after 24 h, further growth in this amorphous environment is governed by oriented particle attachment mechanism as found for a liquid medium. Towards 48 h the particle shape has changed into spheroidal with short and long axis of 40±2 Å and 120±2 Å, respectively.

  16. Study of structural irregularities of smectite clay systems by small-angle neutron scattering and adsorption

    NASA Astrophysics Data System (ADS)

    De Stefanis, A.; Tomlinson, A. A. G.; Steriotis, Th. A.; Charalambopoulou, G. Ch.; Keiderling, U.

    2007-04-01

    Small angle neutron scattering (SANS) and its contrast-matching variant are employed in order to determine structural properties (inter-pillar distances and mass/surface fractal dimensions of the clay layers and pillars) of a series of smectite natural clays (montmorillonite, beidellite, and bentonite) and their pillared and pillared/ion-exchanged analogues. Moreover, a comparative analysis with the adsorption data is carried out on the basis of a systematic study of the structural changes induced by a particular treatment or modification (e.g. pillaring) of the clay systems.

  17. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    SciTech Connect

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; Gallego, Nidia C.; Melnichenko, Yuri B.

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbon (Do-Do model).

  18. Large-area proportional counter camera for the US National Small-Angle Neutron Scattering Facility

    SciTech Connect

    Abele, R.K.; Allin, G.W.; Clay, W.T.; Fowler, C.E.; Kopp, M.K.

    1980-01-01

    An engineering model of a multiwire position-sensitive proportional-counter (PSPC) was developed, tested, and installed at the US National Small-Angle Neutron Scattering Facility at ORNL. The PSPC is based on the RC-encoding and time-difference decoding method to measure the spatial coordinates of the interaction loci of individual scattered neutrons. The active area of the PSPC is 65 cm x 65 cm, and the active depth is 3.6 cm. The spatial uncertainty in both coordinates is approx. 1.0 cm (fwhm) for thermal neutrons; thus, a matrix of 64 x 64 picture elements is resolved. The count rate capability for randomly detected neutrons is 10/sup 4/ counts per second, with < 3% coincidence loss. The PSPC gas composition is 63% /sup 3/He, 32% Xe, and 5% CO/sub 2/ at an absolute pressure of approx. 3 x 10/sup 5/ Pa (3 atm). The detection efficiency is approx. 90% for the 0.475-nm (4.75-A) neutrons used in the scattering experiments.

  19. Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques.

    PubMed

    Mao, Yimin; Liu, Kai; Zhan, Chengbo; Geng, Lihong; Chu, Benjamin; Hsiao, Benjamin S

    2017-02-16

    Nanocellulose extracted from wood pulps using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and sulfuric acid hydrolysis methods was characterized by small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) techniques. The dimensions of this nanocellulose (TEMPO-oxidized cellulose nanofiber (TOCN) and sulfuric acid hydrolyzed cellulose nanocrystal (SACN)) revealed by the different scattering methods were compared with those characterized by transmission electron microscopy (TEM). The SANS and SAXS data were analyzed using a parallelepiped-based form factor. The width and thickness of the nanocellulose cross section were ∼8 and ∼2 nm for TOCN and ∼20 and ∼3 nm for SACN, respectively, where the fitting results from SANS and SAXS profiles were consistent with each other. DLS was carried out under both the VV mode with the polarizer and analyzer parallel to each other and the HV mode having them perpendicular to each other. Using rotational and translational diffusion coefficients obtained under the HV mode yielded a nanocellulose length qualitatively consistent with that observed by TEM, whereas the length derived by the translational diffusion coefficient under the VV mode appeared to be overestimated.

  20. Laser desorption mass spectrometry and small angle neutron scattering of heavy fossil materials

    SciTech Connect

    Hunt, J.E.; Winans, R.E.; Thiyagarajan, P.

    1997-09-01

    The determination of the structural building blocks and the molecular weight range of heavy hydrocarbon materials is of crucial importance in research on their reactivity and for their processing. The chemically and physically heterogenous nature of heavy hydrocarbon materials, such as coals, heavy petroleum fractions, and residues, dictates that their structure and reactivity patterns be complicated. The problem is further complicated by the fact that the molecular structure and molecular weight distribution of these materials is not dependent on a single molecule, but on a complex mixture of molecules which vary among coals and heavy petroleum samples. Laser Desorption mass spectrometry (LDMS) is emerging as a technique for molecular weight determination having found widespread use in biological polymer research, but is still a relatively new technique in the fossil fuel area. Small angle neutron scattering (SANS) provides information on the size and shape of heavy fossil materials. SANS offers the advantages of high penetration power even in thick cells at high temperatures and high contrast for hydrocarbon systems dispersed in deuterated solvents. LDMS coupled with time of flight has the advantages of high sensitivity and transmission and high mass range. We have used LDMS to examine various heavy fossil-derived materials including: long chain hydrocarbons, asphaltenes from petroleum vacuum resids, and coals. This paper describes the application of laser desorption and small angle neutron scattering techniques to the analysis of components in coals, petroleum resids and unsaturated polymers.

  1. Measuring Material Microstructure Under Flow Using 1-2 Plane Flow-Small Angle Neutron Scattering

    PubMed Central

    Gurnon, A. Kate; Godfrin, P. Douglas; Wagner, Norman J.; Eberle, Aaron P. R.; Butler, Paul; Porcar, Lionel

    2014-01-01

    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions. PMID:24561395

  2. Measuring material microstructure under flow using 1-2 plane flow-small angle neutron scattering.

    PubMed

    Gurnon, A Kate; Godfrin, P Douglas; Wagner, Norman J; Eberle, Aaron P R; Butler, Paul; Porcar, Lionel

    2014-02-06

    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions.

  3. Small-angle neutron scattering of nanocrystalline gadolinium and holmium with random paramagnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Döbrich, Frank; Bick, Jens-Peter; Birringer, Rainer; Wolff, Matthias; Kohlbrecher, Joachim; Michels, Andreas

    2015-02-01

    A neutron study of nanocrystalline terbium (Balaji G et al 2008 Phys. Rev. Lett. 100 227202) has shown that the randomly oriented anisotropy of the paramagnetic susceptibility tensor may lead to strongly correlated nanoscale spin disorder in the paramagnetic state which can be probed very effectively by magnetic small-angle neutron scattering (SANS). In principle, this scenario is also applicable to other rare-earth metals and the size of the effect is expected to scale with the strength of the anisotropy in the paramagnetic state. Here, we report SANS results (in the paramagnetic state) on nanocrystalline inert-gas condensed samples of Gd and Ho, which represent the cases of low and high anisotropy, respectively.

  4. Small-angle neutron scattering study of radiation-induced defects in synthetic quartz

    SciTech Connect

    Lebedev, V. M. Lebedev, V. T.; Orlov, S. P.; Pevzner, B. Z.; Tolstikhin, I. N.

    2006-12-15

    The supraatomic structure of single crystals of synthetic quartz was studied by thermal neutron small-angle scattering in the initial state (dislocation densities 54 and 570 cm{sup -2}) and after irradiation in the WWR-M reactor (Petersburg Nuclear Physics Institute) by fast neutrons with energies E{sub n} > 0.1 MeV at fluences F{sub n} = 0.2 x 10{sup 17} -5 x 10{sup 18} neutrons/cm{sup 2}. It is established that fast neutrons form point, linear, and volume defects in the lattice throughout the entire volume of a sample. Large-volume structures-amorphous-phase nuclei-reach sizes of {approx}100 nm in quartz, while occupying a small total volume of {approx}0.3% even at the maximum fluence 5 x 10{sup 18} neutrons/cm{sup 2}. The main fraction of the damaged volume (up to 5%) corresponds to point (with a radius of gyration of 1-2 nm) and linear defects, giving a comparable contribution ({approx}1-4%). The extended linear structures with a radius of 2 nm, even at a moderate fluence of 7.7 x 10{sup 17} neutrons/cm{sup 2}, have a significant total length per volume unit ({approx}10{sup 11} cm/cm{sup 3}) and can form a connected network with a cell {approx}30 nm in size in the sample. Foreign atoms and molecules can migrate through channels of this network.

  5. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars

    NASA Astrophysics Data System (ADS)

    Fernandez-Castanon, J.; Bomboi, F.; Rovigatti, L.; Zanatta, M.; Paciaroni, A.; Comez, L.; Porcar, L.; Jafta, C. J.; Fadda, G. C.; Bellini, T.; Sciortino, F.

    2016-08-01

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  6. SEC-SANS: size exclusion chromatography combined in situ with small-angle neutron scattering1

    PubMed Central

    Jordan, Ashley; Jacques, Mark; Merrick, Catherine; Devos, Juliette; Forsyth, V. Trevor; Porcar, Lionel; Martel, Anne

    2016-01-01

    The first implementation and use of an in situ size exclusion chromatography (SEC) system on a small-angle neutron scattering instrument (SANS) is described. The possibility of deploying such a system for biological solution scattering at the Institut Laue–Langevin (ILL) has arisen from the fact that current day SANS instruments at ILL now allow datasets to be acquired using small sample volumes with exposure times that are often shorter than a minute. This capability is of particular importance for the study of unstable biological macromolecules where aggregation or denaturation issues are a major problem. The first use of SEC-SANS on ILL’s instrument D22 is described for a variety of proteins including one particularly aggregation-prone system. PMID:27980509

  7. Small-Angle Neutron Scattering study of the NIST mAb reference material

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Liu, Yun; Krueger, Susan; Curtis, Joseph

    Monoclonal antibodies (mAbs) are of great interest to the biopharmaceutical industry because they can be engineered to target specific antigens. Due to their importance, the biomanufacturing initiative at NIST is developing an IgG1 mAb reference material `NIST mAb', which can be used by industry, academia, and regulatory authorities. As part of this collaborative effort, we aim at characterizing the reference material using neutron scattering techniques. We have studied the small-angle scattering profile of the NIST mAb in a histidine buffer at 0 and 150 mM NaCl. Using Monte Carlo simulations, we generate an ensemble of structures and calculate their theoretical scattering profile, which can be directly compared with experimental data. Moreover, we analyze the structure factor to understand the effect of solution conditions on the protein-protein interactions. Finally, we have measured the solution scattering of the NIST mAb, while simultaneously performing freeze/thaw cycles, in order to investigate if the solution structure was affected upon freezing. The results from neutron scattering not only support the development of the reference material, but also provide insights on its stability and guide efforts for its development under different formulations.

  8. A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering.

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Lynn, Gary W; Cole, David R

    2009-12-01

    In this paper we report the results of a study using small angle and ultra-small angle neutron scattering techniques (SANS and USANS) to examine the evolution of carbonates during contact metamorphism. Data were obtained from samples collected along two transects in the metamorphosed Hueco limestone at the Marble Canyon, Texas, contact aureole. These samples were collected from the igneous contact out to {approx}1700 m. Scattering curves obtained from these samples show mass fractal behavior at low scattering vectors, and surface fractal behavior at high scattering vectors. Significant changes are observed in the surface and mass fractal dimensions as well as the correlation lengths (pore and grain sizes), surface area to volume ratio and surface Gibbs Free energy as a function of distance, including regions of the aureole outside the range of classic metamorphic petrology. A change from mass-fractal to non-fractal behavior is observed at larger scales near the outer boundary of the aureole that implies significant reorganization of pore distributions early in the metamorphic history. Surface fractal results suggest significant smoothing of grain boundaries, coupled with changes in pore sizes. A section of the scattering curve with a slope less than -4 appears at low-Q in metamorphosed samples, which is not present in unmetamorphosed samples. A strong spike in the surface area to volume ratio is observed in rocks near the mapped metamorphic limit, which is associated with reaction of small amounts of organic material to graphite. It may also represent an increase in pore volume or permeability, suggesting that a high permeability zone forms at the boundary of the aureole and moves outwards as metamorphism progresses. Neutron scattering data also correlate well with transmission electron microscopic (TEM) observations, which show formation of micro- and nanopores and microfractures during metamorphism. The scattering data are, however, quantifiable for a bulk rock

  9. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  10. Nature of radiation defects in synthetic quartz according to the small-angle neutron scattering data

    SciTech Connect

    Lebedev, V. M. Lebedev, V. T.; Orlov, S. P.; Pevzner, B. Z.; Tolstikhin, I. N.

    2007-05-15

    The supraatomic structure of single crystals of synthetic quartz in the initial state with a dislocation density of 570 cm{sup -2} and after irradiation in the VVR-M reactor at the Petersburg Nuclear Physics Institute with fast neutrons having the energy E{sub n} > 1 MeV in the range of fluences F{sub n} = 7.7 x 10{sup 17} -2.1 x 10{sup 20} neutrons/cm{sup 2} has been studied by small-angle scattering of thermal neutrons. It is established that fast neutrons form point, linear, and volume lattice defects throughout the entire sample volume. Large-volume structures (nuclei of the amorphous phase) in quartz, reaching {approx}100 nm in size, occupy a small total volume ({approx}1.5%) even at the maximum fluence 2.1 x 10{sup 20} neutrons/cm{sup 2}. The majority of damage is related to the point defects with the radius of gyration of 1-2 nm and linear defects, which give comparable contributions up to several percent.

  11. Small-Angle Neutron Scattering by the Magnetic Microstructure of Nanocrystalline Ferromagnets Near Saturation

    PubMed Central

    Weissmüller, J.; McMichael, R. D.; Michels, A.; Shull, R. D.

    1999-01-01

    The paper presents a theoretical analysis of elastic magnetic small-angle neutron scattering (SANS) due to the nonuniform magnetic microstructure in nanocrystalline ferromagnets. The reaction of the magnetization to the magnetocrystalline and magnetoelastic anisotropy fields is derived using the theory of micromagnetics. In the limit where the scattering volume is a single magnetic domain, and the magnetization is nearly aligned with the direction of the magnetic field, closed form solutions are given for the differential scattering cross-section as a function of the scattering vector and of the magnetic field. These expressions involve an anisotropy field scattering function, that depends only on the Fourier components of the anisotropy field microstructure, not on the applied field, and a micromagnetic response function for SANS, that can be computed from tabulated values of the materials parameters saturation magnetization and exchange stiffness constant or spin wave stiffness constant. Based on these results, it is suggested that the anisotropy field scattering function SH can be extracted from experimental SANS data. A sum rule for SH suggests measurement of the volumetric mean square anisotropy field. When magnetocrystalline anisotropy is dominant, then a mean grain size or the grain size distribution may be determined by analysis of SH.

  12. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    SciTech Connect

    Kulvelis, Yu. V. Lebedev, V. T.; Trunov, V. A.; Pavlyuchenko, V. N.; Ivanchev, S. S.; Primachenko, O. N.; Khaikin, S. Ya.

    2011-12-15

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4-7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  13. Structure of nanocrystalline palladium and copper studied by small angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Barker, J.G.

    1996-12-01

    The structure of nanocrystalline palladium and copper, made by inert gas condensation and compaction, was studied using small angle neutron scattering (SANS), optical microscopy, and scanning electron microscopy. The effects of annealing and warm compaction were also examined with these techniques. The SANS results were interpreted using a maximum entropy routine, combined with knowledge of the Archimedes density and hydrogen concentration determined by prompt gamma activation analysis (PGAA). Similar hydrogen concentrations were detected by SANS and PGAA. This hydrogen content, which was approximately 5 at.{percent} in samples compacted at room temperature, was reduced by both annealing and warm compaction. Defects in several size classes were observed, including missing grain pores ({approx_equal}1{endash}50 nm diameter) and defects of micrometer size. Warm compaction produced a lower number density of pores in nanocrystalline palladium, which led to increased density. The observed structure was correlated with Vickers microhardness and fracture surface morphology. {copyright} {ital 1996 Materials Research Society.}

  14. Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering.

    SciTech Connect

    Tanaka, R.; Hunt, J. E.; Winans, R. E.; Thiyagarajan, P.; Sato, S.; Takanohashi, T.; Idemitsu Kosan Co.; National Institute of Advanced Industrial Science and Technology

    2003-01-01

    The objective of this study is to examine changes in the structures of petroleum asphaltene aggregates in situ with small-angle neutron scattering (SANS). Asphaltenes were isolated from three different crude oils: Maya, Khafji, and Iranian Light. An aliquot of the 5 wt % asphaltene solution in deuterated Decalin, 1-methylnaphthalene, or quinoline was loaded in a special stainless steel cell for SANS measurements. SANS data measured at various temperatures from 25 to 350 {sup o}C showed various topological features different with asphaltene or solvent species. A fractal network was formed only with asphaltene of Maya in Decalin, and it remained even at 350 {sup o}C. In all of the solvents, asphaltenes aggregate in the form of a prolate ellipsoid with a high aspect ratio at 25 {sup o}C and got smaller with increasing temperature. That became a compact sphere with the size of around 25 {angstrom} in radius at 350 {sup o}C.

  15. Study of the enzyme ascorbate oxidase by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Maritano, S.; Carsughi, F.; Fontana, M. P.; Marchesini, A.

    1996-09-01

    We report a study of the large scale structure of the "blue" copper enzyme ascorbate oxidase by small angle neutron scattering. The enzyme has been extracted from zucchini and studied in solutions of two different preparations. Contrast variation method was used by performing the measurements in water, heavy water and mixtures of H 2OD 2O. Our data show that, at least at the concentrations used here, the gyration radius of the enzyme is about 34 Å; with such a value our analysis is most consistent with a value of 70 KDa for the molecular weight of ascorbate oxidase in the conditions of our experiment. This is in contrast to the generally accepted value of 140 KDa, obtained by other techniques at high concentrations (e.g. greater than 2 mg ml -1). The possible origins of such a discrepancy are discussed.

  16. Small angle neutron scattering (SANS and V-SANS) study of asphaltene aggregates in crude oil.

    PubMed

    Headen, Thomas F; Boek, Edo S; Stellbrink, Jörg; Scheven, Ulrich M

    2009-01-06

    We report small angle neutron scattering (SANS) experiments on two crude oils. Analysis of the high-Q SANS region has probed the asphaltene aggregates in the nanometer length scale. We find that the radius of gyration decreases with increasing temperature. We show that SANS measurements on crude oils give similar aggregate sizes to those found from SANS measurements of asphaltenes redispersed in deuterated toluene. The combined use of SANS and V-SANS on crude oil samples has allowed the determination of the radius of gyration of large scale asphaltene aggregates of approximately 0.45 microm. This has been achieved by the fitting of Beaucage functions over two size regimes. Analysis of the fitted Beaucage functions at very low-Q has shown that the large scale aggregates are not simply made by aggregation of all the smaller nanoaggregates. Instead, they are two different aggregates coexisting.

  17. Study of (Cyclic Peptide)-Polymer Conjugate Assemblies by Small-Angle Neutron Scattering.

    PubMed

    Koh, Ming Liang; FitzGerald, Paul A; Warr, Gregory G; Jolliffe, Katrina A; Perrier, Sébastien

    2016-12-19

    We present a fundamental study into the self-assembly of (cyclic peptide)-polymer conjugates as a versatile supramolecular motif to engineer nanotubes with defined structure and dimensions, as characterised in solution using small-angle neutron scattering (SANS). This work demonstrates the ability of the grafted polymer to stabilise and/or promote the formation of unaggregated nanotubes by the direct comparison to the unconjugated cyclic peptide precursor. This ideal case permitted a further study into the growth mechanism of self-assembling cyclic peptides, allowing an estimation of the cooperativity. Furthermore, we show the dependency of the nanostructure on the polymer and peptide chemical functionality in solvent mixtures that vary in the ability to compete with the intermolecular associations between cyclic peptides and ability to solvate the polymer shell.

  18. Elucidating the Molecular Deformation Mechanism of Entangled Polymers in Fast Flow by Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Sanchez-Diaz, Luis; Cheng, Shiwang; Hong, Kunlun; Chen, Wei-Ren; Liu, Jianning; Lin, Panpan; Wang, Shi-Qing

    Understanding the viscoelastic properties of polymers is of fundamental and practical importance because of the vast and ever expanding demand of polymeric materials in daily life. Our current theoretical framework for describing the nonlinear flow behavior of entangled polymers is built upon the tube model pioneered by de Gennes, Doi, and Edwards. In this work, we critically examine the central hypothesis of the tube model for nonlinear rheology using small angle neutron scattering (SANS). While the tube model envisions a unique non-affine elastic deformation mechanism for entangled polymers, our SANS measurements show that the evolution of chain conformation of a well-entangled polystyrene melt closely follows the affine deformation mechanism in uniaxial extension, even when the Rouse Weissenberg number is much smaller than unity. This result provides a key clue for understanding the molecular deformation mechanism of entangled polymers in fast flow. Several implications from our analysis will be discussed in this talk.

  19. Micelle structural studies on oil solubilization by a small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Seong, Baek Seok; Ikram, Abarrul

    2009-02-01

    A small-angle neutron scattering (SANS) technique was applied to reveal the micelle structural changes. The micelle structural changes of 0.3 M sodium dodecyl sulfate (SDS) concentration by addition of various oil, i.e. n-hexane, n-octane, and n-decane up to 60% (v/v) have been investigated. It was found that the size, aggregation number and the structures of the micelles changed exhibiting that the effective charge on the micelle decreases with an addition of oil. There was a small increase in minor axis of micelle while the correlation peak shifted to a lower momentum transfer Q and then to higher Q by a further oil addition.

  20. Small angle neutron scattering as fingerprinting of ancient potteries from Sicily (Southern Italy)

    SciTech Connect

    Barone, G.; Mazzoleni, P.; Crupi, V.; Majolino, D.; Venuti, V.; Teixeira, J.

    2009-09-01

    Small angle neutron scattering measurements have been carried out in order to investigate, in microdestructive way, the mesoscopic structure of a variety of potteries of relevance to cultural heritage coming from different Sicilian (Southern Italy) archeological sites belonging to the 'Strait of Messina' area and dated back to 7th-3rd century B.C. Data have been compared with the mesoscopic parameters extracted for two series of clayey sediments typical of the Strait of Messina area and fired under controlled conditions. The observed agreement between the features of reference and archeological samples allowed us to estimate the maximum firing temperature of the latter. Information on the pore sizes was obtained by the use of the concept of fractal surface, and compared with porosimetry results.

  1. Small angle neutron scattering study to determine the structure of high strength hydrogels.

    NASA Astrophysics Data System (ADS)

    Tominaga, Taiki; Tirumala, Vijay R.; Lin, Eric K.; Wu, Wen-Li; Gong, Jian Ping; Furukawa, Hidemitsu; Osada, Yoshihito

    2006-03-01

    Hydrogels are swollen polymer networks containing more than 90% water. Most hydrogels, however, are mechanically too weak to be used as load bearing devices. Gong et al. have overcome this problem by synthesizing hydrogels with a double network (DN) structure. Modifying the polyelectrolyte network structure by polymerization of high molecular weight uncharged polymer in situ, resulted in orders of magnitude increase in their load bearing ability. Despite 90% water, these tough gels exhibit a fracture stress of 170 kg/cm^2, similar to that of articular cartilage found in the bone-joints of human body. In this work, we determined the structure of DN-gels using small angle neutron scattering. Structural origins for high toughness found in DN-gels were then examined by comparing the structure of DN-gels with that of pure polyelectrolyte network and polyacrylamide solution.

  2. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    DOE PAGES

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; ...

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbonmore » (Do-Do model).« less

  3. Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter

    NASA Astrophysics Data System (ADS)

    Wignall, G. D.; Melnichenko, Y. B.

    2005-08-01

    Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the

  4. Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy.

    PubMed

    Karino, Takeshi; Ikeda, Yuko; Yasuda, Yoritaka; Kohjiya, Shinzo; Shibayama, Mitsuhiro

    2007-02-01

    The microscopic structures of natural rubber (NR) and deproteinized NR (DPNR) were investigated by means of small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM). They were compared to those of isoprene rubber (IR), which is a synthetic analogue of NR in terms of chemical structure without any non-rubber components like proteins. Comparisons of the structure and mechanical properties of NR, DPNR, and IR lead to the following conclusions. (i) The well-known facts, for example, the outstanding green strength of NR and strain-induced crystallization, are due not much to the presence of proteins but to other components such as the presence of phospholipids and/or the higher stereoregularity of NR. It also became clear the naturally residing proteins accelerate the upturn of stress at low strain. The protein phases work as cross-linking sites and reinforcing fillers in the rubbery matrix. (ii) The microscopic structures of NR were successfully reproduced by SANS intensity functions consisting of squared-Lorentz and Lorentz functions, indicating the presence of inhomogeneities in bulk and thermal concentration fluctuations in swollen state, respectively. On the other hand, IR rubbers were homogeneous in bulk. (iii) The inhomogeneities in NR are assigned to protein aggregates of the order of 200 A or larger. Although these aggregates are larger in size as well as in volume fraction than those of cross-link inhomogeneities introduced by cross-linking, they are removed by deproteinization. (iv) Swelling of both NR and IR networks introduces gel-like concentration fluctuations whose mesh size is of the order of 20 A.

  5. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles

    PubMed Central

    Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew; Rechberger, Gerald N.; Katsaras, John

    2017-01-01

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ∼120 nm diameter palmitoyl­oleoyl phosphatidyl­choline (POPC) vesicles, compared to the inner leaflet. Analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e. above the melting transition temperature of the two lipids. PMID:28381971

  6. Investigation of the tripoli porous structure by small-angle neutron scattering

    SciTech Connect

    Avdeev, M. V.; Blagoveshchenskii, N. M.; Garamus, V. M.; Novikov, A. G. Puchkov, A. V.

    2011-12-15

    The characteristics of the tripoli porous structure have been investigated by small-angle neutron scattering (SANS). Tripoli is a finely porous sedimentary rock formed by small spherical opal particles. Its main component is aqueous silica SiO{sub 2} {center_dot} nH{sub 2}O (80-90%). Tripoli is widely used in practice as a working medium for sorption filters and in some other commercial and construction technologies. The shape of the experimental SANS curves indicates the presence of small and large pores in tripoli. The small-pore size was estimated to be {approx}100 Angstrom-Sign . The size of large pores turned out to be beyond the range of neutron wave vector transfers Q that are available for the instrument used; however, their size was indirectly estimated to be {approx}(2000-2500) Angstrom-Sign . The pores of both groups behave as surfacetype fractal scatterers with the fractal dimension D {approx} 2.2-2.6. The densities of pores of these two groups differ by approximately three orders of magnitude ({approx}10{sup 16} and {approx}10{sup 13} cm{sup -3} for small and large pores, respectively); the fraction of large pores amounts to 70-80% of the total pore volume. The found pore characteristics (their densities, sizes, and relative volumes) are in satisfactory agreement (when a comparison is possible) with the absorption data.

  7. Small-angle neutron scattering correlation functions of bulk magnetic materials

    PubMed Central

    Mettus, Denis; Michels, Andreas

    2015-01-01

    On the basis of the continuum theory of micromagnetics, the correlation function of the spin-misalignment small-angle neutron scattering cross section of bulk ferromagnets (e.g. elemental polycrystalline ferromagnets, soft and hard magnetic nanocomposites, nanoporous ferromagnets, or magnetic steels) is computed. For such materials, the spin disorder which is related to spatial variations in the saturation magnetization and magnetic anisotropy field results in strong spin-misalignment scattering dΣM/dΩ along the forward direction. When the applied magnetic field is perpendicular to the incoming neutron beam, the characteristics of dΣM/dΩ (e.g. the angular anisotropy on a two-dimensional detector or the asymptotic power-law exponent) are determined by the ratio of magnetic anisotropy field strength H p to the jump ΔM in the saturation magnetization at internal interfaces. Here, the corresponding one- and two-dimensional real-space correlations are analyzed as a function of applied magnetic field, the ratio H p/ΔM, the single-particle form factor and the particle volume fraction. Finally, the theoretical results for the correlation function are compared with experimental data on nanocrystalline cobalt and nickel. PMID:26500464

  8. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering.

    PubMed

    Eyssautier, Joëlle; Levitz, Pierre; Espinat, Didier; Jestin, Jacques; Gummel, Jérémie; Grillo, Isabelle; Barré, Loïc

    2011-06-02

    Complementary neutron and X-ray small angle scattering results give prominent information on the asphaltene nanostructure. Precise SANS and SAXS measurements on a large q-scale were performed on the same dilute asphaltene-toluene solution, and absolute intensity scaling was carried out. Direct comparison of neutron and X-ray spectra enables description of a fractal organization made from the aggregation of small entities of 16 kDa, exhibiting an internal fine structure. Neutron contrast variation experiments enhance the description of this nanoaggregate in terms of core-shell disk organization, giving insight into core and shell dimensions and chemical compositions. The nanoaggregates are best described by a disk of total radius 32 Å with 30% polydispersity and a height of 6.7 Å. Composition and density calculations show that the core is a dense and aromatic structure, contrary to the shell, which is highly aliphatic. These results show a good agreement with the general view of the Yen model (Yen, T. F.; et al. Anal. Chem.1961, 33, 1587-1594) and as for the modified Yen model (Mullins, O. C. Energy Fuels2010, 24, 2179-2207), provide characteristic dimensions of the asphaltene nanoaggregate in good solvent.

  9. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Qmore » values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  10. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    SciTech Connect

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Melnichenko, Yuri; He, Lilin; Wang, Yi

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD4) at low Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.

  11. Small-angle neutron scattering study of organic-phase aggregation in the TALSPEAK process.

    PubMed

    Grimes, Travis S; Jensen, Mark P; Debeer-Schmidt, Lisa; Littrell, Ken; Nash, Kenneth L

    2012-11-26

    The Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes (TALSPEAK) process is a solvent extraction based method for separating trivalent lanthanides (Ln(3+)) from trivalent actinide cations in used nuclear fuel reprocessing. In conventional TALSPEAK, the extractant solution is di(2-ethylhexyl)phosphoric acid (HDEHP) in 1,4-diisopropylbenzene (DIPB). The aqueous medium is diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA) in a concentrated lactic acid (HL) buffer. Lanthanides are extracted by HDEHP/DIPB, while the actinides remain in the aqueous phase as DTPA complexes. Lactic acid is extracted both independently of the lanthanides and as Ln/HL/HDEHP mixed complex(es). Previous results indicate that lanthanides are extracted both as the mixed complex and as a binary Ln(DEHP·HDEHP)(3) species. Small-angle neutron scattering (SANS) has been applied to study the self-organization properties of solute molecules in xylene solutions containing HDEHP, HL, selected lanthanide ions, and water. The scattering results demonstrate that the dominant HDEHP species is the hydrogen bonded dimer, (HDEHP)(2). Absent lanthanides, lactic acid is extracted as the 1:3 complex (HL·(HDEHP)(3)). Scattering in samples containing up to 0.005 M lanthanides (prepared by extracting lanthanides from aqueous media containing 1.0 M buffered lactic acid) indicates that the dominant metal complex is Ln(DEHP·HDEHP)(3). At 0.013 M extracted lanthanide, the scattering results indicate lower Ln:DEHP stoichiometry and larger scattering particles. At higher metal concentrations, the SANS results indicate large aggregates, the largest aggregates achieving a size equivalent to 20 HDEHP monomers as the primary scattering entity. Analysis of particle shapes indicates best fits with a uniform oblate spheroid particle. These results are discussed in connection with the results of a number of complementary observations that have been made on this system.

  12. Small angle neutron scattering study of fatigue induced grain boundary cavities

    SciTech Connect

    Page, R.; Roth, M.; Weertman, J.R.

    1982-07-01

    Small angle neutron scattering (SANS) has been used to study grain boundary cavitation in high purity copper fatigued at elevated temperatures. SANS is an extremely sensitive method for observing cavities. Void volume fractions of less than 10/sup -6/ can be detected. Analysis of scattering data yields values for the total void volume per unit volume and the total number of voids in a fatigued sample. The size distribution of the voids also can be calculated. From a series of specimens, each fatigued under identical conditions but for varying lengths of time, it is possible to obtain the void nucleation rate and the rate of growth of the total void volume and of the individual voids. Extrapolation of curves of void volume fraction vs time of fatigue to zero time shows that cavitation begins upon commencement of fatiguing without any measurable incubation time. Void nucleation is continuous throughout fatigue Calculated values of the individual void growth rate agree very well, as regards time dependence, temperature dependence, and even absolute value, with growth rates derived from a theory of fatigueinduced cavitation based on transient effects in vacancy diffusion.

  13. Solution Properties of 1,3-Cyclohexadiene Polymers by Small Angle Neutron and Light Scattering

    SciTech Connect

    Yun, Seok I; Melnichenko, Yuri B; Wignall, George D; Hong, Kunlun; Mays, Jimmy; Britt, Phillip F; Terao, Ken; Nakamura, Yo

    2006-01-01

    1,3-Cyclohexdiene polymers (PCHD) and their derivatives are of interest due to the six-member rings in the main chain, which are expected to impart higher mechanical strength and better thermal and chemical stability, as compared to common vinyl polymers. For example, hydrogenated PCHD has the highest glass transition temperature (T{sub g} {approx} 231 C) of all hydrocarbon polymers, and it also shows good heat, weather, impact, abrasion, and chemical resistance as well as low water absorption. In addition, PCHD has unique photochemical properties, such as excellent transparency, due to the isolated double bonds in the main chain. Also, block copolymers containing PCHD show unusual phase separation behavior. For example, a styrene/1,3-CHD block copolymer (PS-b-PCHD) with 50 vol % CHD (1,4/1,2 {approx} 95/5) exhibits a core-shell or hollow cylinder morphology, while a typical styrene/acyclic diene (isoprene or butadiene) block copolymer with similar composition exhibits a lamellar structure. Such phase behavior and many other properties strongly depend on the conformation of the polymer in solution or bulk. However, almost no data have been reported on the conformation of PCHD, probably because of the lack of well-defined and well-characterized samples. Here we report solution properties of PCHD in tetrahydrofuran (THF) and chloroform by multiangle laser light scattering, viscometry, and small-angle neutron scattering (SANS).

  14. New Insights into Pore Characteristics and Hydrocarbon Generation of Shale Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2014-12-01

    Pore size, distribution, connectivity, and shape as well as hydrocarbon saturation and composition reflect the history of hydrocarbon maturation and migration. However, characterization of the underlying factors and processes controlling hydrocarbons behavior in tight rocks is extremely limited, especially lacking of direct experimental observations. We have studied the pore characteristics of marine and lacustrine shale from the Erdos basin, China during laboratory pyrolysis using small-angle neutron scattering (SANS). Our SANS results show that scattering intensity of smaller pores (< 20 nm)/larger Q values of shale samples increase systematically as temperature increase during pyrolysis from 250 oC to 600oC (Fig.1a). These results in combination with hydrocarbon fractions measurements during the same process (Fig. 1b) provide a quantitative relation between pore characteristics and hydrocarbons generation. Our results indicate that hydrocarbon expulsion primarily causes the observed changes in smaller pores. They also demonstrate that due to its sensitivity to hydrogen, SANS locates all pores whether the pore is filled or not with hydrocarbons. Thus, SANS is particularly suited for probing hydrocarbon behavior in tight shale reservoirs and the factors that impact their pore dynamics for the petroleum industry.

  15. Using Small Angle Neutron Scattering on Glucose Oxidase immobilized on Single Layer Graphene

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh; Gurusaran, M.; Qian, S.; Weiss, K.; Urban, V.; Li, P.; Ma, L.; Ajayan, P.; Narayanan, T.; Sekar, K.; Viswanathan, S.; Renugopalakrishanan, V.

    2015-03-01

    Reliable blood glucose monitoring using biosensors is valuable for health evaluations and medication in wake of chronic diabetic issues accompanying deviations from evolutionary human lifestyle. Glucose oxidase (GOx) is an ideal enzyme because of its specificity and the ability to electrochemically transduce from the enzymatic reaction. We use graphene-based electrode with GOx sensor matrix so that the emitted electrons from sensor matrix can flow across graphene nearly without scattering; crucial for constructing ultrasensitive-sensors. Thereafter, establishing a structure-property based relationships to tune the sensor topology with electrochemically output forms the main focus of the device development process. We have developed a methodology to obtain low-resolution hierarchical models of the aggregate matrix using Small Angle Neutron Scattering (SANS) technique. A Unified Fit model is used in tandem with GNOM, DAMMIN and DAMAVER to construct low-resolution models for GOx matrices. A detailed explanation of a general methodology for obtaining quantitative details aggregate structures along with qualitative models will be presented.

  16. Miscibility Study of PCBM/P3EHT Organic Photovoltaics via Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Yin, Wen; McCulloch, Bryan; Segalman, Rachel; Dadmun, Mark

    2011-03-01

    Organic photovoltaics (OPV) attracted considerable interest as lightweight, inexpensive, and easily processable replacement of inorganic photovoltaics. Current results indicate that the morphology of these photovoltaic materials is essential to their solar energy conversion efficiency but a detailed and fundamental understanding is absent. In this paper, the miscibility and structure of P3EHT/PCBM composites with varying PCBM loading level are investigated via small angle neutron scattering (SANS). With P3EHT having a melting temperature below 100°C, SANS experiments of the blends are conducted above the melting point to unequivocally determine the miscibility of PCBM and P3EHT without the added complexity of polymer crystals. Our SANS results show that blends with 20 and 50 wt% PCBM exhibit dramatically larger scattering at low-Q regime relative to 10 and 15wt% PCBM samples. This result implies that the miscibility limit of PCBM and P3EHT lies between 15:85 and 20:80. Further analysis is underway to correlate these results to OPV efficiency.

  17. Structural characterization of a polymer substituted fullerene (flagellene) by small angle neutron scattering

    SciTech Connect

    Affholter, K.A.; Bunick, G.J.; Wignall, G.D.; Desimone, J.M.; Hunt, M.O. Jr.; Menceloglu, Y.Z.; Samulski, E.T.

    1994-12-31

    Small-angle neutron scattering (SANS) can structurally characterize fullerenes in solvents with strong SANS contrast (e.g. CS{sub 2}). Deuterated solvents (e.g. toluene-d{sub 8}) have a high scattering length density (SLD), which is close to that of C{sub 60} and C{sub 70} moieties. Hence, there is virtually no SANS contrast with the solvent and these particles are practically ``invisible`` in such media. On the other hand, the negative scattering length of hydrogen means that the SLD of H{sup 1}-containing materials is much lower, so they have strong contrast with toluene-d{sub 8}. Thus, SANS makes it possible to study the size and shapes of modified buckyballs such as the polymer-substituted fullerenes, or flagellenes. These consist of C{sub 60} cores to which 1-4 polystryene chains (with a molecular weight, MW {approx_equal} 2000) are attached. The extrapolated cross section at zero angle of scatter [d{Sigma}/d{Omega}(0)] is a function of the number of pendant chains, so SANS can be used to assess the number of ``arms`` which are covalently attached to the fullerene ``sphere.`` Close agreement ({plus_minus}4%) between measured and calculated values of d{Sigma}/d{Omega}(0) along with independent estimates of the radius of gyration (R{sub g}) and second virial coefficient (A{sub 2}) for a calibration linear polystyrene sample serves as a cross check on the validity of this methodology.

  18. Membrane Structure Studies by Means of Small-Angle Neutron Scattering (SANS)

    SciTech Connect

    Knott, R. B.

    2008-03-17

    summary of membrane structure will be followed by an outline of the neutron scattering techniques used to understand membrane structure and dynamics. The emphasis will be on the small angle neutron scattering technique since there is a very powerful instrument at Serpong, however brief mention of other techniques will be included to demonstrate how a multidisciplinary approach is usually required.

  19. Small angle neutron scattering for the structural study of intrinsically disordered proteins in solution: a practical guide.

    PubMed

    Gabel, Frank

    2012-01-01

    Small angle neutron scattering (SANS) allows studying bio-macromolecular structures and interactions in solution. It is particularly well-suited to study structural properties of intrinsically disordered proteins (IDPs) over a wide range of length-scales ranging from global aspects (radii of gyration and molecular weight) down to short-distance properties (e.g., cross-sectional analysis). In this book chapter, we provide a practical guide on how to carry out SANS experiments on IDPs and discuss the complementary aspects and strengths of SANS with respect to small angle X-ray scattering (SAXS).

  20. Search for small-angle neutron scattering in MnO at 1700K

    SciTech Connect

    Routbort, J.L.; Epperson, J.E.; Klippert, T.E.; Goretta, K.C.

    1986-01-01

    A preliminary small-angle scattering (SANS) experiment has been performed on MnO single crystal at the Intense Pulsed Neutron Source. The experiment was preformed at 1700/sup 0/K at oxygen partial pressures of 2.2 x 10/sup -4/, 1 x 10/sup 2/, and 2 x 10/sup 2/ Pa, which resulted in deviations from stoichiometry of about 0.0015, 0.082, and 0.127. No statistically significant change in SANS was observed at this temperature with the pressure changes. Neither was any significant change observed in the wavelength-dependent sample transmission, also measured in-situ as a function of pressure. Therefore, either clustering of cation vacancies is negligible in MnO for these conditions, or the clusters are smaller than about 5 A. Of proposed cluster configurations, only the existence of the smallest (4:1, 6:2, or possible 8:3) appears to be consistent with these results.

  1. Comparative analysis of the nucleosome structure of cell nuclei by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Isaev-Ivanov, V. V.; Lebedev, D. V.; Lauter, H.; Pantina, R. A.; Kuklin, A. I.; Islamov, A. Kh.; Filatov, M. V.

    2010-05-01

    The nucleosome structure in native nuclei of normal (chicken erythrocyte and rat leukocyte nuclei) and anomalously proliferating (the human cervical adenocarcinoma cell line HeLa and the Chinese hamster fibroblast cell line A238) cells has been investigated using small-angle neutron scattering. The experimental results obtained allow one to make the inference that the parameters of the nucleosome structure for the chicken erythrocyte and rat leukocyte nuclei (on average over the nucleus) are close to the universally accepted values and that the distance distribution function is bimodal. The bimodality of the distance distribution function reflects a narrow distribution of distances between nucleosomes (on average over the nucleus) at the fibril level of the chromatin organization. The histone core of the nucleosome structure in the nuclei of the HeLa and A238 cells (on average over the nucleus) is considerably less compact than that in the chicken erythrocyte and rat leukocyte nuclei, and the distance distribution function does not exhibit indications of the bimodality.

  2. Modeling and small-angle neutron scattering spectra of chromatin supernucleosomal structures at genome scale

    NASA Astrophysics Data System (ADS)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Grigoriev, Mikhail; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2011-11-01

    Eukaryotic genome is a highly compacted nucleoprotein complex organized in a hierarchical structure based on nucleosomes. Detailed organization of this structure remains unknown. In the present work we developed algorithms for geometry modeling of the supernucleosomal chromatin structure and for computing distance distribution functions and small-angle neutron scattering (SANS) spectra of the genome-scale (˜106 nucleosomes) chromatin structure at residue resolution. Our physical nucleosome model was based on the mononucleosome crystal structure. A nucleosome was assumed to be rigid within a local coordinate system. Interface parameters between nucleosomes can be set for each nucleosome independently. Pair distance distributions were computed with Monte Carlo simulation. SANS spectra were calculated with Fourier transformation of weighted distance distribution; the concentration of heavy water in solvent and probability of H/D exchange were taken into account. Two main modes of supernucleosomal structure generation were used. In a free generation mode all interface parameters were chosen randomly, whereas nucleosome self-intersections were not allowed. The second generation mode (generation in volume) enabled spherical or cubical wall restrictions. It was shown that calculated SANS spectra for a number of our models were in general agreement with available experimental data.

  3. Percolating bulk-heterostructures from neutron reflectometry and small angle scattering data

    NASA Astrophysics Data System (ADS)

    Olds, Daniel; Duxbury, Phillip

    2013-03-01

    We present a novel algorithm for efficiently calculating the simulated small angle scattering data of any discretized morphological model of arbitrary scale and resolution, referred to as the distribution function method (DFM). Unlike standard SAS fitting methods, the DFM algorithm allows for the calculation of form factors and structure factors from complex nanoscale morphologies commonly encountered in many modern polymeric and nanoparticle based systems, which have no exact analytical corollary. The computational efficiency of the DFM algorithm suggests it's use in morphological model refinement. We will present a number of simple examples to demonstrate the accuracy and limits of the algorithm, followed by an example of incorporation of the DFM algorithm into reverse Monte Carlo structural refinement of bulk-heterojunction two-phase morphologies, such as those commonly found in organic photovoltaic devices. We will show that morphological features introduced via direct incorporation of experimental neutron reflectometry and SANS data to the models has a direct effect on the results of device simulations. The authors thank CORE-CM at Michigan State University for it's funding of this research.

  4. Pore distributions in nanocrystalline metals from small-angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A.

    1998-07-24

    Recent upgrades in inert-gas condensation processing equipment have produced nanocrystalline metal samples with high densities and low-impurity levels. Typical Cu and Pd samples have densities {ge}98% of theoretical and oxygen and hydrogen impurity concentrations {le}0.5 at. %. Lower porosity and impurity levels may make it difficult to produce and maintain samples with the smallest nanocrystalline grain sizes. These improved samples were studied by small-angle neutron scattering (SANS) to determine the volume fraction and size distribution of pores. Excellent correlation was obtained between the total volume fraction of pores and the Archimedes density for Pd, signifying that most of the pores were relatively small and in the detectability range of SANS ({approx}1--100 nm). Nanocrystalline Cu is shown to exhibit a wider pore size distribution. For Pd, the average pore sizes were slightly smaller than the average grain size, while for Cu the pore size and grain size were about the same. Both materials exhibited a trend of increasing pore size with increasing grain size. In terms of processing prerequisites, the principal condition for the production of high-density nanocrystalline Cu is an exceptionally clean synthesis environment, while nanocrystalline Pd requires compaction at elevated temperatures. These differences are the result of Cu having both a lower melting point and a greater susceptibility to contamination by gaseous impurities such as oxygen.

  5. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    SciTech Connect

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.

  6. Ensemble Activation of G-Protein -Coupled Receptors Revealed by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Perera, Suchithranga; Shrestha, Utsab; Chawla, Udeep; Struts, Andrey; Qian, Shuo; Brown, Michael

    2014-03-01

    Rhodopsin is a G-protein -coupled receptor (GPCR) involved in visual light perception and occurs naturally in a membrane lipid environment. Rhodopsin photoactivation yields cis-trans isomerization of retinal giving equilibrium between inactive Meta-I and active Meta-II states. Does photoactivation lead to a single Meta-II conformation, or do substates exist as described by an ensemble-activation mechanism (EAM)? We use small-angle neutron scattering (SANS) to investigate conformational changes in rhodopsin-detergent and rhodopsin-lipid complexes upon photoactivation. Meta-I state is stabilized in CHAPS-solubilized rhodopsin, while Meta-II is trapped in DDM-solubilized rhodopsin. SANS data are acquired from 80% D2O solutions and at contrast-matching points for both DDM and CHAPS samples. Our experiments demonstrate that for detergent-solubilized rhodopsin, SANS with contrast variation can detect structural differences between the rhodopsin dark-state, Meta-I, Meta-II, and ligand-free opsin states. Dark-state rhodopsin has more conformational flexibility in DDM micelles compared to CHAPS, which is consistent with an ensemble of activated Meta-II states. Furthermore, time-resolved SANS enables study of the time-dependent structural transitions between Meta-I and Meta-II, which is crucial to understanding the ensemble-based activation.

  7. Small-Angle Neutron Scattering and Spontaneous Formation of Unilamellar Vesicles: Potential Vehicles for Drug Delivery

    NASA Astrophysics Data System (ADS)

    Katsaras, John

    2004-03-01

    Unilamellar vesicles (ULVs) are single-bilayer shells with radii commonly between 10 and 100 nm, and are widely used as model membranes, drug delivery systems, microreactors and substrates for a variety of enzymes and proteins. A common method of making ULVs is the extrusion of multilamellar vesicles (MLVs) through synthetic membranes of known pore size. These extruded ULVs are invariably unstable and in due time, revert back to MLVs. Over the years there have been reports of the spontaneous formation of stable ULVs in surfactant, lipid, and lipid/detergent mixtures. These ULVs have sometimes been shown to be monodisperse and their radii were found, almost without exception, to vary with concentration. We have carried-out small-angle neutron scattering (SANS) experiments on a biomimetic system composed of the phospholipids dimyristoyl and dihexanoyl phosphorylcholine (DMPC and DHPC, respectively). Doping DMPC/DHPC multilamellar vesicles with either the negatively charged lipid dimyristoyl phosphorylglycerol (DMPG, net charge -1) or the divalent cation, calcium (Ca2+) leads to the spontaneous formation of monodisperse unilamellar vesicles whose radii are concentration independent, in contrast to previous experimental observations.

  8. Small Angle Neutron Scattering Reveals pH-dependent Conformational Changes in Trichoderma reesei Cellobiohydrolase I

    PubMed Central

    Pingali, Sai Venkatesh; O'Neill, Hugh M.; McGaughey, Joseph; Urban, Volker S.; Rempe, Caroline S.; Petridis, Loukas; Smith, Jeremy C.; Evans, Barbara R.; Heller, William T.

    2011-01-01

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4–5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection. PMID:21784865

  9. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  10. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    SciTech Connect

    Scott, Jamieson; Tong, Katie; William, Hamilton; He, Lilin; James, Michael; Thordarson, Pall; Boukhalfa, Sofiane

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate to a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.

  11. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    DOE PAGES

    Scott, Jamieson; Tong, Katie; William, Hamilton; ...

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less

  12. Small-angle neutron scattering reveals a pH-dependent conformational change in cellobiohydrolase I

    SciTech Connect

    Pingali, Sai Venkatesh; O'Neill, Hugh Michael; McGaughey, Joseph; Urban, Volker S; Myles, Dean A A; Petridis, Loukas; Smith, Jeremy C; Evans, Barbara R; Heller, William T

    2011-01-01

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4-5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.

  13. Investigation of the interaction of dimethyl sulfoxide with lipid membranes by small-angle neutron scattering

    SciTech Connect

    Gorshkova, J. E. Gordeliy, V. I.

    2007-05-15

    The influence of dimethyl sulfoxide (CH{sub 3}){sub 2}SO (DMSO) on the structure of membranes of 1,2-dimiristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in an excess of a water-DMSO solvent is investigated over a wide range of DMSO molar concentrations 0.0 {<=} X{sub DMSO} {<=} 1.0 at temperatures T = 12.5 and 55 deg. C. The dependences of the repeat distance d of multilamellar membranes and the thickness d{sub b} of single vesicles on the molar concentration X{sub DMSO} in the L{sub {beta}}{sub '} gel and L{sub {alpha}} liquid-crystalline phases are determined by small-angle neutron scattering. The intermembrane distance d{sub s} is determined from the repeat distance d and the membrane thickness d{sub b}. It is shown that an increase in the molar concentration X{sub DMSO} leads to a considerable decrease in the intermembrane distance and that, at X{sub DMSO} = 0.4, the neighboring membranes are virtually in steric contact with each other. The use of the deuterated phospholipid (DMSO-D6) and the contrast variation method makes it possible, for the first time, to determine the number of DMSO molecules strongly bound to the membrane.

  14. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  15. Monte-Carlo simulation of an ultra small-angle neutron scattering instrument based on Soller slits

    SciTech Connect

    Rieker, T.; Hubbard, P.

    1997-09-01

    Monte Carlo simulations are used to investigate an ultra small-angle neutron scattering instrument for use at a pulsed source based on a Soller slit collimator and analyzer. The simulations show that for a q{sub min} of {approximately}le-4 {angstrom}{sup -1} (15 {angstrom} neutrons) a few tenths of a percent of the incident flux is transmitted through both collimators at q=0.

  16. Parameterization of structures in HE composites using surrogate materials: A small angle neutron scattering investigation

    SciTech Connect

    Mang, J.T.; Hjelm, R.P.; Skidmore, C.B.; Howe, P.M.

    1996-07-01

    High explosive materials used in the nuclear stockpile are composites of crystalline high explosives (HE) with binder materials, such as Estane. In such materials, there are naturally occurring density fluctuations (defects) due to cracks, internal (in the HE) and external (in the binder) voids and other artifacts of preparation. Changes in such defects due to material aging can affect the response of explosives due to shock, impact and thermal loading. Modeling efforts are attempting to provide quantitative descriptions of explosive response from the lowest ignition thresholds to the development of full blown detonations and explosions, however, adequate descriptions of these processes require accurate measurements of a number of structural parameters of the HE composite. Since different defects are believed to affect explosive sensitivity in different ways it is necessary to quantitatively differentiate between defect types. The authors report here preliminary results of SANS measurements on surrogates for HE materials. The objective of these measurements was to develop methodologies using SANS techniques to parameterize internal void size distributions in a surrogate material, sugar, to simulate an HE used in the stockpile, HMX. Sugar is a natural choice as a surrogate material, as it has the same crystal structure, has similar intragranular voids and has similar mechanical properties as HMX. It is used extensively as a mock material for explosives. Samples were used with two void size distributions: one with a sufficiently small mean particle size that only small occluded voids are present in significant concentrations, and one where the void sizes could be larger. By using methods in small-angle neutron scattering, they were able to isolate the scattering arising from particle-liquid interfaces and internal voids.

  17. Magnetic scattering in the simultaneous measurement of small-angle neutron scattering and Bragg edge transmission from steel.

    PubMed

    Oba, Yojiro; Morooka, Satoshi; Ohishi, Kazuki; Sato, Nobuhiro; Inoue, Rintaro; Adachi, Nozomu; Suzuki, Jun-Ichi; Tsuchiyama, Toshihiro; Gilbert, Elliot Paul; Sugiyama, Masaaki

    2016-10-01

    Pulsed neutron sources enable the simultaneous measurement of small-angle neutron scattering (SANS) and Bragg edge transmission. This simultaneous measurement is useful for microstructural characterization in steel. Since most steels are ferromagnetic, magnetic scattering contributions should be considered in both SANS and Bragg edge transmission analyses. An expression for the magnetic scattering contribution to Bragg edge transmission analysis has been derived. The analysis using this expression was applied to Cu steel. The ferrite crystallite size estimated from this Bragg edge transmission analysis with the magnetic scattering contribution was larger than that estimated using conventional expressions. This result indicates that magnetic scattering has to be taken into account for quantitative Bragg edge transmission analysis. In the SANS analysis, the ratio of magnetic to nuclear scattering contributions revealed that the precipitates consist of body-centered cubic Cu0.7Fe0.3 and pure Cu, which probably has 9R structure including elastic strain and vacancies. These results show that effective use of the magnetic scattering contribution allows detailed analyses of steel microstructure.

  18. Magnetic scattering in the simultaneous measurement of small-angle neutron scattering and Bragg edge transmission from steel1

    PubMed Central

    Oba, Yojiro; Morooka, Satoshi; Ohishi, Kazuki; Sato, Nobuhiro; Inoue, Rintaro; Adachi, Nozomu; Suzuki, Jun-ichi; Tsuchiyama, Toshihiro; Gilbert, Elliot Paul; Sugiyama, Masaaki

    2016-01-01

    Pulsed neutron sources enable the simultaneous measurement of small-angle neutron scattering (SANS) and Bragg edge transmission. This simultaneous measurement is useful for microstructural characterization in steel. Since most steels are ferromagnetic, magnetic scattering contributions should be considered in both SANS and Bragg edge transmission analyses. An expression for the magnetic scattering contribution to Bragg edge transmission analysis has been derived. The analysis using this expression was applied to Cu steel. The ferrite crystallite size estimated from this Bragg edge transmission analysis with the magnetic scattering contribution was larger than that estimated using conventional expressions. This result indicates that magnetic scattering has to be taken into account for quantitative Bragg edge transmission analysis. In the SANS analysis, the ratio of magnetic to nuclear scattering contributions revealed that the precipitates consist of body-centered cubic Cu0.7Fe0.3 and pure Cu, which probably has 9R structure including elastic strain and vacancies. These results show that effective use of the magnetic scattering contribution allows detailed analyses of steel microstructure. PMID:27738416

  19. Structure of spontaneously formed solid-electrolyte interphase on lithiated graphite determined using small-angle neutron scattering

    DOE PAGES

    Sacci, Robert L.; Banuelos, Jose Leobardo; Veith, Gabriel M.; ...

    2015-03-25

    We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.

  20. Small-angle neutron scattering study of structure and kinetics of temperature-induced protein gelation.

    PubMed

    Chodankar, S; Aswal, V K; Kohlbrecher, J; Vavrin, R; Wagh, A G

    2009-02-01

    The phase diagram, structural evolution, and kinetics of temperature-induced protein gelation of protein Bovine Serum Albumin (BSA) have been studied as a function of solution pH and protein concentration. The protein gelation temperature represents the onset of turbidity in the protein solution, which increases significantly with increasing pH beyond the isoelectric pH of the protein molecule. On the other hand, the gelation temperature decreases with an increase in protein concentration only in the low-protein-concentration regime and shows a small increasing trend at higher protein concentrations. The structural evolution and kinetics of protein gelation have been studied using small-angle neutron scattering. The structure of the protein molecule remains stable up to temperatures very close to the gelation temperature. On increasing the temperature above the gelation temperature, the protein solution exhibits a fractal structure, an indication of gel formation due to aggregation. The fractal dimension of the gel increases with increasing temperature, suggesting an increase in branching between the aggregates, which leads to stronger gels. The increase in both solution pH and protein concentration is found to delay the growth in the fractal structure and its saturation. The kinetics of gelation has been studied using the temperature-jump process of heating. It is found that the structure of the protein gels remains invariant after the heating time ( approximately 1 min), indicating a rapid formation of gel structure within this time. The protein gels prepared through gradual and temperature-jump heating routes do not always show the same structure. In particular, at higher temperatures (e.g., 85 degrees C ), while gradual heating shows a fractal structure, there is collapse of such fractal structure during temperature-jump heating.

  1. Small-angle neutron scattering studies of hemoglobin confined inside silica tubes of varying sizes.

    PubMed

    Mandal, Soumit S; Cristiglio, Viviana; Lindner, Peter; Bhattacharyya, Aninda J

    2014-02-03

    In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (≈20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (Rg) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the Rg of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (Rg of native Hb=23.8 Å). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.

  2. Nanostructure in block copolymer solutions: Rheology and small-angle neutron scattering

    SciTech Connect

    Habas, Jean-Pierre; Pavie, Emmanuel; Perreur, Christelle; Lapp, Alain; Peyrelasse, Jean

    2004-12-01

    Triblock copolymers composed of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) present an amphiphilic character in aqueous solutions. Since PPO is less hydrophilic than PEO and since their solubilities decrease when the temperature increases, the copolymers self-assemble spontaneously, forming micelles at moderate temperatures. For higher temperatures or concentrations, the copolymers or the micelles are ordered because of repulsive interactions and form lyotropic liquid crystalline phases. These are phases of very great viscosity with the aspect of gels, and transitions between different crystalline phases can occur at fixed concentration during an increase of temperature. We studied solutions of three different copolymers. The first two have a star structure. They are both composed of four branches (EO){sub x}(PO){sub y} fixed on an ethylene diamine, but differ by the values of x and y. Their commercial name is Tetronic 908 (x=114, y=21) and Tetronic 704 (x=16, y=18). The third copolymer (EO){sub 37}(PO){sub 56}(EO){sub 37} is linear and is known under the name of Pluronic P105. The measurements of the shear complex elastic modulus according to the temperature is used to determine the temperatures of the different transitions. Then, small-angle neutron scattering on samples under flow and true crystallographic arguments make it possible to identify the nature of the crystalline phases. For the systems studied, we show that the branched copolymers form only one type of liquid crystalline phase, which is bcc for the T908 and lamellar for the T704. For the linear copolymer, it is possible to identify three transitions: micellar solution to hexagonal phase, hexagonal phase to body-centered cubic phase, and finally body-centered cubic phase to lamellar phase.

  3. Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Majetich, Sara

    2009-03-01

    Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).

  4. Structure and properties of aqueous methylcellulose gels by small-angle neutron scattering.

    PubMed

    Chatterjee, Tirtha; Nakatani, Alan I; Adden, Roland; Brackhagen, Meinolf; Redwine, David; Shen, Hongwei; Li, Yongfu; Wilson, Tricia; Sammler, Robert L

    2012-10-08

    Cold, semidilute, aqueous solutions of methylcellulose (MC) are known to undergo thermoreversible gelation when warmed. This study focuses on two MC materials with much different gelation performance (gel temperature and hot gel modulus) even though they have similar metrics of their coarse-grained chemical structure (degree-of-methylether substitution and molecular weight distribution). Small-angle neutron scattering (SANS) experiments were conducted to probe the structure of the aqueous MC materials at pre- and postgel temperatures. One material (MC1, higher gel temperature) exhibited a single almost temperature-insensitive gel characteristic length scale (ζ(c) = 1090 ± 50 Å) at postgelation temperatures. This length scale is thought to be the gel blob size between network junctions. It also coincides with the length scale between entanglement sites measured with rheology studies at pregel temperatures. The other material (MC2, lower gel temperature) exhibited two distinct length scales at all temperatures. The larger length scale decreased as temperature increased. Its value (ζ(c1) = 1046 ± 19 Å) at the lowest pregel temperature was indistinguishable from that measured for MC1, and reached a limiting value (ζ(c1) = 450 ± 19 Å) at high temperature. The smaller length scale (ζ(c2) = 120 to 240 Å) increased slightly as temperature increased, but remained on the order of the chain persistence length (130 Å) measured at pregel temperatures. The smaller blob size (ζ(c1)) of MC2 suggests a higher bond energy or a stiffer connectivity between network junctions. Moreover, the number density of these blobs, at the same reduced temperature with respect to the gel temperature, is orders of magnitude higher for the MC2 gels. Presumably, the smaller gel length scale and higher number density lead to higher hot gel modulus for the low gel temperature material.

  5. Effective interactions in lysozyme aqueous solutions: a small-angle neutron scattering and computer simulation study.

    PubMed

    Abramo, M C; Caccamo, C; Costa, D; Pellicane, G; Ruberto, R; Wanderlingh, U

    2012-01-21

    We report protein-protein structure factors of aqueous lysozyme solutions at different pH and ionic strengths, as determined by small-angle neutron scattering experiments. The observed upturn of the structure factor at small wavevectors, as the pH increases, marks a crossover between two different regimes, one dominated by repulsive forces, and another one where attractive interactions become prominent, with the ensuing development of enhanced density fluctuations. In order to rationalize such experimental outcome from a microscopic viewpoint, we have carried out extensive simulations of different coarse-grained models. We have first studied a model in which macromolecules are described as soft spheres interacting through an attractive r(-6) potential, plus embedded pH-dependent discrete charges; we show that the uprise undergone by the structure factor is qualitatively predicted. We have then studied a Derjaguin-Landau-Verwey-Overbeek (DLVO) model, in which only central interactions are advocated; we demonstrate that this model leads to a protein-rich/protein-poor coexistence curve that agrees quite well with the experimental counterpart; experimental correlations are instead reproduced only at low pH and ionic strengths. We have finally investigated a third, "mixed" model in which the central attractive term of the DLVO potential is imported within the distributed-charge approach; it turns out that the different balance of interactions, with a much shorter-range attractive contribution, leads in this latter case to an improved agreement with the experimental crossover. We discuss the relationship between experimental correlations, phase coexistence, and features of effective interactions, as well as possible paths toward a quantitative prediction of structural properties of real lysozyme solutions.

  6. Distribution of transport current in a type-II superconductor studied by small-angle neutron scattering.

    PubMed

    Pautrat, A; Goupil, C; Simon, Ch; Charalambous, D; Forgan, E M; Lazard, G; Mathieu, P; Brûlet, A

    2003-02-28

    We report small-angle neutron scattering measurements on the vortex lattice in a PbIn polycrystal in the presence of an applied current. Using the rocking curves as a probe of the distribution of current in the sample, we observe that vortex pinning is due to the surface roughness. This leads to a surface current that persists in the flux-flow region. We show the influence of surface treatments on the distribution of this current.

  7. Carbide precipitates in solution-quenched PH13-8 Mo stainless steel: A small-angle neutron scattering investigation

    NASA Astrophysics Data System (ADS)

    Sen, D.; Patra, A. K.; Mazumder, S.; Mittra, J.; Dey, G. K.; de, P. K.

    2004-08-01

    This paper deals with the small-angle neutron scattering (SANS) investigation on solution-quenched PH13-8 Mo stainless steel. From the nature of the variation of the functionality of the profiles for varying specimen thickness and also from the transmission electron microscopy (TEM), it has been established that the small-angle scattering signal predominantly originates from the block-like metallic carbide precipitates in the specimen. The contribution due to double Bragg reflection is not significant in the present case. The single scattering profile has been extracted from the experimental profiles corresponding to different values of specimen thickness. In order to avoid complexity and non-uniqueness of the multi-parameter minimization for randomly oriented polydisperse block-like precipitate model, the data have been analyzed assuming randomly oriented polydisperse cylindrical particle model with a locked aspect ratio.

  8. Magnetic-field-dependent small-angle neutron scattering on random anisotropy ferromagnets

    NASA Astrophysics Data System (ADS)

    Michels, Andreas; Weissmüller, Jörg

    2008-06-01

    We report on the recently developed technique of magnetic-field-dependent small-angle neutron scattering (SANS), with attention to bulk ferromagnets exhibiting random magnetic anisotropy. In these materials, the various magnetic anisotropy fields (magnetocrystalline, magnetoelastic, and/or magnetostatic in origin) perturb the perfectly parallel spin alignment of the idealized ferromagnetic state. By varying the applied magnetic field, one can control one of the ordering terms which competes with the above-mentioned perturbing fields. Experiments which explore the ensuing reaction of the magnetization will therefore provide information not only on the field-dependent spin structure but, importantly, on the underlying magnetic interaction terms. This strategy, which underlies conventional studies of hysteresis loops in magnetometry, is here combined with magnetic SANS. While magnetometry generally records only a single scalar quantity, the integral magnetization, SANS provides access to a vastly richer data set, the Fourier spectrum of the response of the spin system as a function of the magnitude and orientation of the wave vector. The required data-analysis procedures have recently been established, and experiments on a number of magnetic materials, mostly nanocrystalline or nanocomposite metals, have been reported. Here, we summarize the theory of magnetic-field-dependent SANS along with the underlying description of random anisotropy magnets by micromagnetic theory. We review experiments which have explored the magnetic interaction parameters, the value of the exchange-stiffness constant as well as the Fourier components of the magnetic anisotropy field and of the magnetostatic stray field. A model-independent approach, based on the experimental autocorrelation function of the spin misalignment, provides access to the characteristic length of the spin misalignment. The field dependence of this quantity is in quantitative agreement with the predictions of

  9. Small-angle neutron scattering data on C{sub 60} clusters in weakly polar solutions of fullerenes

    SciTech Connect

    Tropin, T. V. Avdeev, M. V.; Aksenov, V. L.

    2007-05-15

    Solutions of fullerence C{sub 60} in carbon disulfide CS{sub 2} have been investigated by small-angle neutron scattering. Combination of solubility, contrast, and incoherent scattering make it possible to measure and analyze the relatively small scattering cross section of this system. Along with single fullerene molecules, a small amount of large fullerene clusters (more than 100 A in size) is found in these solutions. The formation of these clusters depends on the procedure of solution preparation. The size distribution functions of clusters are compared with the results of the phenomenological cluster model of fullerene solubility.

  10. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments.

    PubMed

    Jeffries, Cy M; Graewert, Melissa A; Blanchet, Clément E; Langley, David B; Whitten, Andrew E; Svergun, Dmitri I

    2016-11-01

    Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume, including the solvent and buffer components, as well as the macromolecules of interest. To obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis, so it is essential that the samples be pure and monodisperse for the duration of the experiment. This protocol outlines the basic physics of SAXS and SANS, and it reveals how the underlying conceptual principles of the techniques ultimately 'translate' into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size-exclusion chromatography (SEC) and light scattering. Also included are procedures that are specific to X-rays (in-line SEC-SAXS) and neutrons, specifically preparing samples for contrast matching or variation experiments and deuterium labeling of proteins.

  11. Small angle neutron scattering modeling of copper-rich precipitates in steel

    SciTech Connect

    Spooner, S.

    1997-11-01

    The magnetic to nuclear scattering intensity ratio observed in the scattering from copper rich precipitates in irradiated pressure vessel steels is much smaller than the value of 11.4 expected for a pure copper precipitate in iron. A model for precipitates in pressure vessel steels which matches the observed scattering typically incorporates manganese, nickel, silicon and other elements and it is assumed that the precipitate is non-magnetic. In the present work consideration is given to the effect of composition gradients and ferromagnetic penetration into the precipitate on the small angle scattering cross section for copper rich clusters as distinguished from conventional precipitates. The calculation is an extension of a scattering model for micelles which consist of shells of varying scattering density. A discrepancy between recent SANS scattering experiments on pressure vessel steels was found to be related to applied magnetic field strength. The assumption of cluster structure and its relation to atom probe FIM findings as well as the effects of insufficient field for magnetic saturation is discussed.

  12. Small angle neutron scattering modeling of copper-rich precipitates in steel

    SciTech Connect

    Spooner, S.

    1997-11-01

    The magnetic-to-nuclear scattering intensity ratio observed in the scattering from copper-rich precipitates in irradiated pressure vessel steels is much smaller than the value of 11.4 expected for a pure copper precipitate in iron. A model for precipitates in pressure vessel steels which matches the observed scattering typically incorporates manganese, nickel, silicon and other elements and it is assumed that the precipitate is non-magnetic. In the present work consideration is given to the effect of composition gradients and ferromagnetic penetration into the precipitate on the small angle scattering cross section for copper-rich clusters as distinguished from conventional precipitates. The calculation is an extension of a scattering model for micelles which consist of shells of varying scattering density. A discrepancy between recent SANS scattering experiments on pressure vessel shells was found to be related to applied magnetic field strength. The assumption of cluster structure and its relation to atom probe FIM findings as well as the effects of insufficient field for magnetic saturation is discussed.

  13. Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering

    SciTech Connect

    Kiselev, M. A. Zemlyanaya, E. V.; Zhabitskaya, E. I.; Aksenov, V. L.

    2015-01-15

    The structure of a polydispersed population of unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose solutions has been investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). Calculations within the model of separated form factors (SFF) show that the structure of the vesicle system depends strongly on the sucrose concentration.

  14. Investigation of microstructural evolution under neutron irradiation in Eurofer97 steel by means of small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Lindau, R.; May, R. P.; Möslang, A.; Valli, M.

    2009-04-01

    Small-angle neutron scattering (SANS) has been utilized to investigate in Eurofer97 steel (9Cr, 0.01C, 1W, 0.2V Fe bal wt%) the microstructural effect of neutron irradiation at 300 °C up to a dose level of 8.4 dpa. For each irradiated sample an unirradiated reference was measured to distinguish as accurately as possible the actual effect of the neutron irradiation. The SANS measurements were carried out at the D22 diffractometer at the High-Flux Reactor of the Institut Max von Laue-Paul Langevin, Grenoble, France. Analysing separately the nuclear and magnetic SANS components obtained after subtraction of the reference from the irradiated sample it appears that the microstructural inhomogeneities produced under such irradiation conditions are non-magnetic ones, such as microvoids. Their size distributions are presented and compared with those previously obtained for the same steel irradiated at 2.5 dpa: with increasing the dose, the volume fraction is increased by a factor of 2 roughly, while the average size of these inhomogeneities remains nearly unchanged.

  15. Strain induced directional coarsening in nickel based superalloys: Investigation on kinetics using the small angle neutron scattering (SANS) technique

    SciTech Connect

    Veron, M.; Bastie, P.

    1997-08-01

    Using the small angle neutron scattering technique, the authors have observed rafting in nickel based single crystal superalloys. Kinetics of morphological evolution of the precipitates have been studied in situ. Therefore the authors used a special furnace designed for the ageing of prestrained specimens under a neutron beam. The evolution of both the precipitate aspect ratio and the distance between precipitates confirms the importance of strain in the directional coarsening process. Results are presented and discussed regarding kinetics and microstructural aspects. In such conditions, rafts seem to be different from those obtained after a creep test.

  16. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  17. Internal structures of agar-gelatin co-hydrogels by light scattering, small-angle neutron scattering and rheology.

    PubMed

    Santinath Singh, S; Aswal, V K; Bohidar, H B

    2011-06-01

    Internal structures of agar-gelatin co-hydrogels were investigated as a function of their volumetric mixing ratio, [Formula: see text] , 1.0 and 2.0 using dynamic light scattering (DLS), small-angle neutron scattering (SANS) and rheology. The degree of non-ergodicity ( X = 0.2 ± 0.02) , which was extracted as a heterodyne contribution from the measured dynamic structure factor data remained less than that of homogeneous solutions where ergodicity is expected (X = 10. The static structure factor, I(q) , results obtained from SANS were interpreted in the Guinier regime (low-q , which implied the existence of ≈ 250 nm long rod-like structures (double-helix bundles), and the power law (intermediate-q regions) yielded I (q) ~ q(−α) with α = 2.3 , 1.8 and 1.6 for r = 0.5 , 1.0 and 2.0. This is indicative of the presence of Gaussian chains at low r , while at r = 2 there was a propensity of rod-shaped structures. The gel strength and transition temperatures measured from frequency sweep and temperature ramp studies were suggestive of the presence of a stronger association between the two biopolymer networks at higher r . The results indicate that the internal structures of agar-gelatin co-hydrogels were highly dependent on the volumetric mixing ratio.

  18. Small-angle Neutron Scattering Study of Magnetic Ordering and Inhomogeneity Across the Martensitic Phase Transformation in Ni50-xCoxMn40Sn10 Alloys

    DTIC Science & Technology

    2012-04-27

    dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered 1. REPORT DATE...observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin...magnetometry and small- angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions

  19. Morphology of poly(ethylene oxide) dissolved in a room temperature ionic liquid: a small angle neutron scattering study.

    PubMed

    Triolo, Alessandro; Russina, Olga; Keiderling, Uwe; Kohlbrecher, Joachim

    2006-02-02

    Solutions of deuterated poly(ethylene oxide) (d-PEO) in 1-butyl-3-methyl imidazolium tetrafluoroborate ([bmim][BF4]), a prototype room-temperature ionic liquid (RTIL), have been studied at room temperature over a range of polymer concentrations, using small angle neutron scattering (SANS), characterizing the conformation of PEO dissolved in RTILs. [bmim][BF4] behaves as a good solvent for d-PEO, which organizes in this solvent in non entangled random coils. These findings will help in optimizing the designing of microemulsions in these potentially environmentally friendly solvents.

  20. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  1. Investigation of coercivity mechanism in hot deformed Nd-Fe-B permanent magnets by small-angle neutron scattering

    SciTech Connect

    Yano, M. Manabe, A.; Shoji, T.; Kato, A.; Ono, K.; Harada, M.; Kohlbrecher, J.

    2014-05-07

    The magnetic reversal behaviors of single domain sized Nd-Fe-B permanent magnets, with and without isolation between the Nd{sub 2}Fe{sub 14}B grains, was clarified using small-angle neutron scattering (SANS). The SANS patterns obtained arose from changes in the magnetic domains and were analyzed using the Teubner–Stray model, a phenomenological correlation length model, to quantify the periodicity and morphology of the magnetic domains. The results indicated that the magnetic reversal evolved with the magnetic domains that had similar sized grains. The grain isolation enabled us to realize the reversals of single domains.

  2. Deformation of poly(methyl methacrylate)-poly(ethylene oxide) blends: a molecular characterization by small-angle neutron scattering

    SciTech Connect

    Lefebvre, J.M.R.; Porter, S.; Wignall, G.D.

    1986-01-01

    The deformation behavior of miscible amorphous/amorphous PMMA/PEO blends has been compared to that of pure PMMA. Small-angle neutron scattering experiments have been performed on labeled systems made of PEO + D-PMMA + H-PMMA. Characteristic molecular parameters such as radius of gyration R/sub g/, molecular weight M/sub w/ and interaction parameter X have been extracted from the coherent scattering cross sections. Molecular anisotropy is measured on the solid state coextruded samples and the observed drawing efficiency is compared to the results of shrinkage tests. In the case of PMMA/PEO blends, anomalous scattering behavior precludes any quantitative interpretation of the scattering patterns, but revealed important structural changes upon drawing, namely a deformation-induced phase separation.

  3. Small angle neutron scattering studies of HbA in concentrated solutions.

    PubMed Central

    Krueger, S; Chen, S H; Hofrichter, J; Nossal, R

    1990-01-01

    Differential cross-sections for neutrons scattered by normal human hemoglobin have been determined over the range of concentrations from 2 to approximately 35 weight percent. Data are compared with structure factors calculated from models of monodisperse hard spheres interacting through a screened Coulomb potential. Good agreement is noted when the volume fraction eta is adjusted during multivariate fitting of data, but the fitted value of eta is always lower than expected from the known Hb concentration of the samples. Calculations of cross-sections for polydisperse scatterers suggest that the samples may contain oligomers of the fundamental tetrameric Hb molecule. PMID:2207261

  4. Cavitation on deterministically nanostructured surfaces in contact with an aqueous phase: a small-angle neutron scattering study.

    PubMed

    Melnichenko, Yuri B; Lavrik, N V; Popov, E; Bahadur, J; He, L; Kravchenko, I I; Smith, G; Pipich, V; Szekely, N K

    2014-08-26

    The structure of deterministically nanopatterned surfaces created using a combination of electron beam lithography and reactive ion etching was evaluated using small-angle neutron scattering (SANS). Samples exhibit 2D neutron scattering patterns that confirm the presence of ordered nanoscale cavities consistent with the targeted morphologies as well as with SEM data analysis. Comparison of SANS intensities obtained from samples in air and in contact with an aqueous phase (pure deuterium oxide, D2O, or a contrast matched mixture of D2O + H2O) reveals formation of stable gaseous nanobubbles trapped inside the cavities. The relative volume of nanobubbles depends strongly on the hydrophobicity of the cavity walls. In the case of hydrophobic surfaces, nanobubbles occupy up to 87% of the total cavity volume. The results demonstrate the high degree of sensitivity of SANS measurements for detecting and characterizing nano- and mesoscale bubbles with the volume fraction as low as ∼10(-6).

  5. The new small-angle neutron scattering instrument SANS-1 at MLZ-characterization and first results

    NASA Astrophysics Data System (ADS)

    Mühlbauer, S.; Heinemann, A.; Wilhelm, A.; Karge, L.; Ostermann, A.; Defendi, I.; Schreyer, A.; Petry, W.; Gilles, R.

    2016-10-01

    A thorough characterization of the key features of the new small-angle neutron scattering instrument SANS-1 at MLZ, a joint project of Technische Universität München and Helmholtz Zentrum Geesthacht, is presented. Measurements of the neutron beam profile, divergency and flux are given for various positions along the instrument including the sample position, and agree well with Monte Carlo simulations of SANS-1 using the program McStas. Secondly, the polarization option of SANS-1 is characterized for a broad wavelength band. A key feature of SANS-1 is the large accessible Q-range facilitated by the sideways movement of the detector. Particular attention is hence paid to the effects that arise due to large scattering angles on the detector where a standard cos3 solid angle correction is no longer applicable. Finally the performance of the instrument is characterized by a set of standard samples.

  6. Concept for a time-of-flight Small Angle Neutron Scattering instrument at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Jaksch, S.; Martin-Rodriguez, D.; Ostermann, A.; Jestin, J.; Duarte Pinto, S.; Bouwman, W. G.; Uher, J.; Engels, R.; Frielinghaus, H.

    2014-10-01

    A new Small Angle Neutron Scattering instrument is proposed for the European Spallation Source. The pulsed source requires a time-of-flight analysis of the gathered neutrons at the detector. The optimal instrument length is found to be rather large, which allows for a polarizer and a versatile collimation. The polarizer allows for studying magnetic samples and incoherent background subtraction. The wide collimation will host VSANS and SESANS options that increase the resolution of the instrument towards μm and tens of μm, respectively. Two 1 m2 area detectors will cover a large solid angle simultaneously. The expected gains for this new instrument will lie in the range between 20 and 36, depending on the assessment criteria, when compared to up-to-date reactor based instruments. This will open new perspectives for fast kinetics, weakly scattering samples, and multi-dimensional contrast variation studies.

  7. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    PubMed Central

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; Katsaras, John

    2015-01-01

    We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.). PMID:26402708

  8. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    SciTech Connect

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; Katsaras, John

    2015-09-21

    In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).

  9. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    DOE PAGES

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; ...

    2015-09-21

    In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach producesmore » robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).« less

  10. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations

    DOE PAGES

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...

    2014-10-29

    We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.

  11. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    SciTech Connect

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C. M.; Plummer, L. K.

    2015-02-13

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.

  12. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    DOE PAGES

    Yan, Y.; Qian, S.; Littrell, K.; ...

    2015-02-13

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less

  13. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    SciTech Connect

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  14. Preliminary experiments on apparatus for in situ studies of microwave-driven reactions by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Whittaker, A. G.; Harrison, A.; Oakley, G. S.; Youngson, I. D.; Heenan, R. K.; King, S. M.

    2001-01-01

    In this article we describe apparatus for the study of the microwave-driven growth of particles in solution by in situ small angle neutron scattering (SANS). This apparatus has enabled the first preliminary experiments using microwave-activated in situ diffraction. We take iron oxide as the prototype system, but the technique may be extended to a wide variety of chemical reactions that deposit solids from solution. The key features of the apparatus are a microwave cavity with a modular construction that may be adapted to the geometric constraints of the diffractometer, and a computer-controlled microwave generator that may be set to maintain either constant pressure or temperature in the reaction vessel. In this particular piece of equipment the reaction vessel is adapted so that part of the sample fills a cell of identical construction to those commonly used in SANS measurements for optimal transmission of the neutron beam.

  15. Design and use of a double crystal diffractometer for very small angle neutron scattering at JRR-3M

    NASA Astrophysics Data System (ADS)

    Aizawa, K.; Tomimitsu, H.

    1995-02-01

    The double crystal diffractometer (DCD) for very small angle neutron scattering (VSANS) in the precise neutron optics (PNO) apparatus on a 3G beam hole at JRR-3M is described. The DCD consists of a nondispersive (1, - 1) setting of 111 reflection of silicon single crystals with a sample between two crystals and is set on a vibration isolator table in a constant temperature chamber. The peak intensity of a rocking curve without a sample is 2200 cps at a detector position and the signal to noise ratio is 1.6 × 10 4 in a typical experiment. VSANS measurements for silica powder samples reveal that the q-range is available between 2 × 10 -4 and 6 × 10 -2 nm -1.

  16. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    SciTech Connect

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    2016-09-23

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  17. Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study

    SciTech Connect

    Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; Furmann, Agnieszka; Clarkson, Chris R.

    2014-09-25

    Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated using the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.

  18. Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study

    DOE PAGES

    Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; ...

    2014-09-25

    Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated using themore » chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.« less

  19. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Badita, C. R.; Aranghel, D.; Radulescu, A.; Anitas, E. M.

    2016-03-01

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca2+ ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca2+ concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.

  20. Anomalous and resonance small angle scattering: Revision

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same for the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small angle neutron scatterings are discussed. 54 refs., 8 figs., 1 tab.

  1. Anomalous and resonance small angle scattering

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs.

  2. Micro-focused Small Angle Neutron Scattering and Imaging for Science and Engineering Using RTP--A Preliminary Study

    SciTech Connect

    Mohamed, Abdul Aziz; Al Rashid Megat Ahmad, Megat Harun; Md Idris, Faridah; Azman, Azraf; Jamro, Rafhayudi; Ibrahim, Mohd Rizal Mamat; Rahman, Anwar Abdul

    2010-01-05

    Malaysian Nuclear Agency's (Nuclear Malaysia) Small Angle Neutron Scattering (SANS) facility--(MYSANS)--is utilizing low flux of thermal neutron at the agency's 1 MW TRIGA reactor. As the design nature of the 8 m SANS facility can allow object resolution in the range between 5 and 80 nm to be obtained. It can be used to study alloys, ceramics and polymers in certain area of problems that relate to samples containing strong scatterers or contrast. The current SANS system at Malaysian Nuclear Agency is only capable to measure Q in limited range with a PSD (128x128) fixed at 4 m from the sample. The existing reactor hall that incorporate this MYSANS facility has a layout that prohibits the rebuilding of MYSANS therefore the position between the wavelength selector (HOPG) and sample and the PSD cannot be increased for wider Q range. The flux of the neutron at current sample holder is very low which around 10{sup 3} n/cm{sup 2}/sec. Thus it is important to rebuild the MYSANS to maximize the utilization of neutron. Over the years, the facility has undergone maintenance and some changes have been made. Modification on secondary shutter and control has been carried out to improve the safety level of the instrument. A compact micro-focus SANS method can suit this objective together with an improve cryostat system. This paper will explain some design concept and approaches in achieving higher flux and the modification needs to establish the micro-focused SANS.

  3. Hierarchical architecture of bacterial cellulose and composite plant cell wall polysaccharide hydrogels using small angle neutron scattering.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2016-02-07

    Small angle neutron scattering (SANS) has been applied to characterise the structure of pure bacterial cellulose hydrogels, and composites thereof, with two plant cell wall polysaccharides (arabinoxylan and xyloglucan). Conventional published models, which assume that bacterial cellulose ribbons are solid one-phase systems, fail to adequately describe the SANS data of pure bacterial cellulose. Fitting of the neutron scattering profiles instead suggests that the sub-structure of cellulose microfibrils contained within the ribbons results in the creation of regions with distinct values of neutron scattering length density, when the hydrogels are subjected to H2O/D2O exchange. This may be represented within a core-shell formalism that considers the cellulose ribbons to comprise a core containing impermeable crystallites surrounded by a network of paracrystalline cellulose and tightly bound water, and a shell containing only paracrystalline cellulose and water. Accordingly, a fitting function comprising the sum of a power-law term to account for the large scale structure of intertwined ribbons, plus a core-shell cylinder with polydisperse radius, has been applied; it is demonstrated to simultaneously describe all SANS contrast variation data of pure and composite bacterial cellulose hydrogels. In addition, the resultant fitting parameters indicate distinct interaction mechanisms of arabinoxylan and xyloglucan with cellulose, revealing the potential of this approach to investigate the role of different plant cell wall polysaccharides on the biosynthesis process of cellulose.

  4. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field

    SciTech Connect

    Klokkenburg, M.; Erne, B. H.; Petukhov, A. V.; Philipse, A. P.; Wiedenmann, A.

    2007-05-15

    Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined, single-magnetic-domain magnetite (Fe{sub 3}O{sub 4}) particles and by applying an external magnetic field. For decreasing particle dipole moments, the data show a progressive distortion of the hexagonal symmetry, resulting from the formation of magnetic sheets. The SANS data show qualitative agreement with recent cryogenic transmission electron microscopy results obtained in 2D [Klokkenburg et al., Phys. Rev. Lett. 97, 185702 (2006)] on the same ferrofluids.

  5. Morphology of crystalline-amorphous olefin block copolymers in solution characterized by small-angle neutron scattering and microscopy.

    PubMed

    Radulescu, Aurel; Goerigk, Günter; Fetters, Lewis; Richter, Dieter

    2015-12-01

    The single-chain properties and self-assembly behavior in dilute solution of olefin block copolymers obtained by chain-shuttling technology and consisting of alternating crystallizable and amorphous ethylene/1-octene blocks were investigated by pinhole and focusing small-angle neutron scattering techniques, optical microscopy in bright-field and crossed-polarizer modes, and differential scanning calorimetry. The complex hydrocarbon soluble (precipitant free) macro-aggregates formed with decreasing temperature are characterized by spherulitic textures. The spherulites yield, on one hand, a morphology that depends on the chain structure properties and, on the other hand, multiple structural levels with a hierarchical organization that ranges from 10 Å up to tens of micrometres. This morphology displays peculiarities dictated by the polydisperse character of these materials.

  6. Morphology of crystalline–amorphous olefin block copolymers in solution characterized by small-angle neutron scattering and microscopy

    PubMed Central

    Radulescu, Aurel; Goerigk, Günter; Fetters, Lewis; Richter, Dieter

    2015-01-01

    The single-chain properties and self-assembly behavior in dilute solution of olefin block copolymers obtained by chain-shuttling technology and consisting of alternating crystallizable and amorphous ethylene/1-octene blocks were investigated by pinhole and focusing small-angle neutron scattering techniques, optical microscopy in bright-field and crossed-polarizer modes, and differential scanning calorimetry. The complex hydrocarbon soluble (precipitant free) macro-aggregates formed with decreasing temperature are characterized by spherulitic textures. The spherulites yield, on one hand, a morphology that depends on the chain structure properties and, on the other hand, multiple structural levels with a hierarchical organization that ranges from 10 Å up to tens of micrometres. This morphology displays peculiarities dictated by the polydisperse character of these materials. PMID:26664344

  7. Exploring the structure of biological macromolecules in solution using Quokka, the small angle neutron scattering instrument, at ANSTO

    NASA Astrophysics Data System (ADS)

    Wood, Kathleen; Jeffries, Cy M.; Knott, Robert B.; Sokolova, Anna; Jacques, David A.; Duff, Anthony P.

    2015-10-01

    Small angle neutron scattering (SANS) is widely used to extract structural parameters, shape and other types of information from a vast array of materials. The technique is applied to biological macromolecules and their complexes in solution to reveal information often not accessible by other techniques. SANS measurements on biomolecules present some particular challenges however, one of which is suitable instrumentation. This review details SANS experiments performed on two well-characterised globular proteins (lysozyme and glucose isomerase) using Quokka, the recently commissioned SANS instrument at the Australian Nuclear Science and Technology Organisation (ANSTO). The instrument configuration as well as data collection and reduction strategies for biological investigations are discussed and act as a general reference for structural biologists who use the instrument. Both model independent analysis of the two proteins and ab initio modelling illustrate that Quokka-SANS data can be used to successfully model the overall shapes of proteins in solution, providing a benchmark for users.

  8. Comparison of the Behavior of Polymers in Supercritical Fluids and Organic Solvents Via Small Angle Neutron Scattering

    SciTech Connect

    Melnichenko, Y.B.; Kiran, E.; Heath, K.D.; Salaniwal, S.; Cochran, H.D.; Stamm, M.; Van Hook, W.A.; Wignall, G.D.

    1999-05-17

    Small-angle neutron scattering has been used to study the effect of temperature and pressure on the phase behavior of semidilute solutions of polymers dissolved in organic and supercritical solvents. Above the theta temperature (To), these systems exhibit a ''good solvent'' domain, where the molecules expand beyond the unperturbed dimensions in both organic solvents and in COZ. However, this transition can be made to occur at a critical ''theta pressure'' (PO) in CO2 and this represents a new concept in the physics of polymer-solvent systems. For T < To, and P < Po, the system enters the ''poor solvent'' domain where diverging concentration fluctuations prevent the chains from collapsing and allow them to maintain their unperturbed dimensions.

  9. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    SciTech Connect

    Egorov, V. V.; Gorshkov, A. N.; Murugova, T. N.; Vasin, A. V.; Lebedev, D. V.; Isaev-Ivanov, V. V.; Kiselev, O. I.

    2016-01-15

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551–560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.

  10. Small-angle neutron scattering by the tungsten and molybdenum oxides synthesized from polymer-salt complexes in acidic medium

    NASA Astrophysics Data System (ADS)

    Bogdanov, S.; Valiev, E.; Pirogov, A.; Teplykh, A.; Ostroushko, A.

    2004-07-01

    The peculiarities of oxide phase formation processes under the pyrolysis of salt and polymer-salt compounds based on polyvinyl alcohol and molybdenum and tungsten salts acidified by nitric acid have been studied. For that samples were prepared by annealing in a temperature range of 100-600°C and investigated by small-angle neutron scattering and X-ray diffraction methods. Similar samples with no polymer in their composition were studied for comparison. A size distribution of oxide phase particles, a specific surface area, a volume fraction and a mean particle size were found to be dependent on an annealing temperature and availability of the polymer. The characteristics of the above samples were compared with those of the earlier samples synthesized from solutions with a naturally established acidity. A mechanism of oxide particle formation under a thermal decomposition of the acidic compounds is provided.

  11. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Egorov, V. V.; Gorshkov, A. N.; Murugova, T. N.; Vasin, A. V.; Lebedev, D. V.; Isaev-Ivanov, V. V.; Kiselev, O. I.

    2016-01-01

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551-560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.

  12. Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering

    SciTech Connect

    Petrenko, V. I. Avdeev, M. V.; Bulavin, L. A.; Almasy, L.; Grigoryeva, N. A.; Aksenov, V. L.

    2016-01-15

    The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.

  13. Analysis of the pore structure of activated carbons produced from paper mill sludge using small angle neutron scattering data

    SciTech Connect

    Sandi, G.; Khalil, N. R.; Littrell, K.; Thiyagarajan, P.

    1999-12-13

    A novel, cost-effective, and environmentally benign process was developed to produce highly efficient carbon-based adsorbents (CBAs) from paper mill sludge. The production process required chemical activation of sludge using zinc chloride and pyrolysis at 750 C in N{sub 2} gas. The produced CBAs were characterized according to their surface area and pore size distribution using N{sub 2}-BET adsorption isotherm data. Further characterization of the surface and pore structure was conducted using a unified exponential/power law approach applied to small angle neutron scattering (SANS) data. The structural features analyzed by SANS revealed the dependence of porosity with zinc chloride concentration. The presence of inaccessible pores was also determined by contrast-match experiments.

  14. Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Petrenko, V. I.; Avdeev, M. V.; Bulavin, L. A.; Almasy, L.; Grigoryeva, N. A.; Aksenov, V. L.

    2016-01-01

    The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.

  15. Effect of crystal shape on neutron rocking curves of perfect single crystals designed for ultra-small-angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Freund, A. K.; Rehm, C.

    2014-07-01

    The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to "see" the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.

  16. Small-angle neutron scattering reveals the assembly mode and oligomeric architecture of TET, a large, dodecameric aminopeptidase

    SciTech Connect

    Appolaire, Alexandre; Girard, Eric; Colombo, Matteo; Durá, M. Asunción; Moulin, Martine; Härtlein, Michael; Franzetti, Bruno; Gabel, Frank

    2014-11-01

    The present work illustrates that small-angle neutron scattering, deuteration and contrast variation, combined with in vitro particle reconstruction, constitutes a very efficient approach to determine subunit architectures in large, symmetric protein complexes. In the case of the 468 kDa heterododecameric TET peptidase machine, it was demonstrated that the assembly of the 12 subunits is a highly controlled process and represents a way to optimize the catalytic efficiency of the enzyme. The specific self-association of proteins into oligomeric complexes is a common phenomenon in biological systems to optimize and regulate their function. However, de novo structure determination of these important complexes is often very challenging for atomic-resolution techniques. Furthermore, in the case of homo-oligomeric complexes, or complexes with very similar building blocks, the respective positions of subunits and their assembly pathways are difficult to determine using many structural biology techniques. Here, an elegant and powerful approach based on small-angle neutron scattering is applied, in combination with deuterium labelling and contrast variation, to elucidate the oligomeric organization of the quaternary structure and the assembly pathways of 468 kDa, hetero-oligomeric and symmetric Pyrococcus horikoshii TET2–TET3 aminopeptidase complexes. The results reveal that the topology of the PhTET2 and PhTET3 dimeric building blocks within the complexes is not casual but rather suggests that their quaternary arrangement optimizes the catalytic efficiency towards peptide substrates. This approach bears important potential for the determination of quaternary structures and assembly pathways of large oligomeric and symmetric complexes in biological systems.

  17. Minimal effects of macromolecular crowding on an intrinsically disordered protein: a small-angle neutron scattering study.

    PubMed

    Goldenberg, David P; Argyle, Brian

    2014-02-18

    Small-angle neutron scattering was used to study the effects of macromolecular crowding by two globular proteins, i.e., bovine pancreatic trypsin inhibitor and equine metmyoglobin, on the conformational ensemble of an intrinsically disordered protein, the N protein of bacteriophage λ. The λ N protein was uniformly labeled with (2)H, and the concentrations of D2O in the samples were adjusted to match the neutron scattering contrast of the unlabeled crowding proteins, thereby masking their contribution to the scattering profiles. Scattering from the deuterated λ N was recorded for samples containing up to 0.12 g/mL bovine pancreatic trypsin inhibitor or 0.2 g/mL metmyoglobin. The radius of gyration of the uncrowded protein was estimated to be 30 Å and was found to be remarkably insensitive to the presence of crowders, varying by <2 Å for the highest crowder concentrations. The scattering profiles were also used to estimate the fractal dimension of λ N, which was found to be ∼1.8 in the absence or presence of crowders, indicative of a well-solvated and expanded random coil under all of the conditions examined. These results are contrary to the predictions of theoretical treatments and previous experimental studies demonstrating compaction of unfolded proteins by crowding with polymers such as dextran and Ficoll. A computational simulation suggests that some previous treatments may have overestimated the effective volumes of disordered proteins and the variation of these volumes within an ensemble. The apparent insensitivity of λ N to crowding may also be due in part to weak attractive interactions with the crowding proteins, which may compensate for the effects of steric exclusion.

  18. Explaining the Non-Newtonian Character of Aggregating Monoclonal Antibody Solutions Using Small-Angle Neutron Scattering

    PubMed Central

    Castellanos, Maria Monica; Pathak, Jai A.; Leach, William; Bishop, Steven M.; Colby, Ralph H.

    2014-01-01

    A monoclonal antibody solution displays an increase in low shear rate viscosity upon aggregation after prolonged incubation at 40°C. The morphology and interactions leading to the formation of the aggregates responsible for this non-Newtonian character are resolved using small-angle neutron scattering. Our data show a weak repulsive barrier before proteins aggregate reversibly, unless a favorable contact with high binding energy occurs. Two types of aggregates were identified after incubation at 40°C: oligomers with radius of gyration ∼10 nm and fractal submicrometer particles formed by a slow reaction-limited aggregation process, consistent with monomers colliding many times before finding a favorable strong interaction site. Before incubation, these antibody solutions are Newtonian liquids with no increase in low shear rate viscosity and no upturn in scattering at low wavevector, whereas aggregated solutions under the same conditions have both of these features. These results demonstrate that fractal submicrometer particles are responsible for the increase in low shear rate viscosity and low wavevector upturn in scattered intensity of aggregated antibody solutions; both are removed from aggregated samples by filtering. PMID:25028888

  19. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    PubMed Central

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  20. SMALL-ANGLE NEUTRON SCATTERING CHARACTERIZATION OF THE STRUCTURE OF NANOPOROUS CARBONS FOR ENERGY-RELATED APPLICATIONS

    SciTech Connect

    He, Lilin; Mavila Chathoth, Suresh; Melnichenko, Yuri B; Presser, Volker; Mcdonough, John; Gogotsi, Yury G.

    2011-01-01

    We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well as to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.

  1. The effect of pressure, isotopic (H/D) substitution, and other variables on miscibility in polymer-solvent systems. The nature of the demixing process; dynamic light scattering and small angle neutron scattering studies. Final report

    SciTech Connect

    Van Hook, W.A.

    2000-01-01

    A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering.

  2. Membrane fusogenic activity of the Alzheimer's peptide A beta(1-42) demonstrated by small-angle neutron scattering.

    PubMed

    Dante, Silvia; Hauss, Thomas; Brandt, Astrid; Dencher, Norbert A

    2008-02-15

    Amyloid-beta peptide (A beta) is considered a triggering agent of Alzheimer's disease. In relation to a therapeutic treatment of the disease, the interaction of A beta with the cell membrane has to be elucidated at the molecular level to understand its mechanism of action. In previous works, we had ascertained by neutron diffraction on stacked lipid multilayers that a toxic fragment of A beta is able to penetrate and perturb the lipid bilayer. Here, the influence of A beta(1-42), the most abundant A beta form in senile plaques, on unilamellar lipid vesicles of phospholipids is investigated by small-angle neutron scattering. We have used the recently proposed separated form factor method to fit the data and to obtain information about the vesicle diameter and structure of the lipid bilayer and its change upon peptide administration. The lipid membrane parameters were obtained with different models of the bilayer profile. As a result, we obtained an increase in the vesicle radii, indicating vesicle fusion. This effect was particularly enhanced at pH 7.0 and at a high peptide/lipid ratio. At the same time, a thinning of the lipid bilayer occurred. A fusogenic activity of the peptide may have very important consequences and may contribute to cytotoxicity by destabilizing the cell membrane. The perturbation of the bilayer structure suggests a strong interaction and/or insertion of the peptide into the membrane, although its localization remains beyond the limit of the experimental resolution.

  3. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    SciTech Connect

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-12-31

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T{sub 0} chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with {tau} {approx} 750 {mu}s. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments.

  4. Interaction between surfactants and colloidal latexes in nonpolar solvents studied using contrast-variation small-angle neutron scattering.

    PubMed

    Smith, Gregory N; Alexander, Shirin; Brown, Paul; Gillespie, David A J; Grillo, Isabelle; Heenan, Richard K; James, Craig; Kemp, Roger; Rogers, Sarah E; Eastoe, Julian

    2014-04-01

    The interaction between deuterium-labeled Aerosol OT surfactant (AOT-d34) and sterically stabilized poly(methyl methacrylate) (PMMA) latex particles dispersed in nonpolar solvents has been studied using contrast-variation small-angle neutron scattering (CV-SANS). The electrophoretic mobilities (μ) of the latexes have been measured by phase-analysis light scattering, indicating that μ is negative. Two analogues of the stabilizers for the particles have been studied as free polymers in the absence of PMMA latexes: poly(12-hydroxystearic acid) (PHSA) polyester and poly(methyl methacrylate)-graft-poly(12-hydroxystearic acid) (PMMA-graft-PHSA) stabilizer copolymer. The scattering from both PHSA in dodecane and PMMA-graft-PHSA in toluene is consistent with extended polymer chains in good solvents. In dodecane, PMMA-graft-PHSA forms polymer micelles, and SANS is consistent with ellipsoidal aggregates formed of around 50 polymer chains. CV-SANS measurements were performed by measuring SANS from systems of PHSA, PMMA-graft-PHSA, and PMMA latexes with 10 and 100 mM surfactant solutions of AOT-d34 in both polymer/particle and AOT contrast-matched solvent. No excess scattering above the polymer or surfactant was found for PHSA in dodecane or PMMA-graft-PHSA in dodecane and toluene. This indicates that AOT does not significantly interact with the free polymers. Excess scattering was observed for systems with AOT-d34 and PMMA latexes dispersed in particle contrast-matched dodecane, consistent with the penetration of AOT into the PMMA latexes. This indicates that AOT does not interact preferentially with the stabilizing layers but, rather, is present throughout the colloids. Previous research ( Langmuir 2010, 26, 6967-6976 ) suggests that AOT surfactant is located in the latex PHSA-stabilizer layer, but all the results in this study are consistent with AOT poorly interacting with alkyl-stabilizer polymers.

  5. The structure of Sindbis virus produced from vertebrate and invertabrate hosts determined by small angle neutron scattering

    SciTech Connect

    He, Lilin; Piper, Amanda; Meilleur, Flora; Myles, Dean A A; Hernandez, Raquel; Brown, Dennis; Heller, William T

    2010-01-01

    The complex natural cycle of vectored viruses that transition between host species, such as between insects and mammals, makes understanding the full life cycle of the virus an incredibly complex problem. Sindbis virus, an arbovirus and prototypic alphavirus having an inner protein shell and an outer glycoprotein coat separated by a lipid membrane, is one example of a vectored virus that transitions between vertebrate and insect hosts. While evidence of host-specific differences in Sindbis virus has been observed, no work has been performed to characterize the impact of the host species on the structure of the virus. Here, we report the first study of the structural differences between Sindbis viruses grown in mammalian and insect cells, which were determined by small-angle neutron scattering (SANS), a nondestructive technique that did not decrease the infectivity of the Sindbis virus particles studied. The scattering data and modeling showed that, while the radial position of the lipid bilayer did not change significantly, it was possible to conclude that it did have significantly more cholesterol when the virus was grown in mammalian cells. Additionally, the outer protein coat was found to be more extended in the mammalian Sindbis virus. The SANS data also demonstrated that the RNA and nucleocapsid protein share a closer interaction in the mammalian-cell-grown virus than in the virus from insect cells.

  6. The spatial diamond-graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering.

    PubMed

    Avdeev, Mikhail V; Aksenov, Victor L; Tomchuk, Oleksandr V; Bulavin, Leonid A; Garamus, Vasil M; Osawa, Eiji

    2013-11-06

    A spatial transition of the carbon state in detonation nanodiamond (DND) from crystalline diamond inside the particle to a graphite-like state at the DND surface is proposed on the basis of small-angle neutron scattering (SANS) analysis. The SANS contrast variation from concentrated (5 wt%) dispersions of DND in liquids (water, dimethylsulfoxide) reveals a shift in the mean scattering length density of DND as compared to pure diamond, which is related to the presence of a non-diamond component in the DND structure. At the same time, the diffusive character of the particle surface is deduced based on the deviation from the Porod law. The two observations are combined to conclude that the continuous radial density profile over the whole particle volume conforms to a simple power law. The profile naturally suggests that non-diamond states are concentrated mainly close to the particle surface; still there is no sharp boundary between the radial distributions of the two states of carbon in DND.

  7. Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: a perspective of integral equation theory

    SciTech Connect

    Chen, Wei-Ren; Do, Changwoo; Hong, Kunlun; Liu, Yun; Porcar, L.; Shew, Chwen-Yang; Smith, Greg

    2012-01-01

    We present small angle neutron scattering (SANS) measurements of deuterium oxide (D2O) solutions of linear and star sodium poly(styrene sulfonate) (NaPSS) as a function of polyelectrolyte concentration. Emphasis is on understanding the dependence of their SANS coherent scattering cross section I(Q) on the molecular architecture of single polyelectrolyte. The key finding is that for a given concentration, star polyelectrolytes exhibit more pronounced characteristic peaks in I(Q), and the position of the first peak occurs at a smaller Q compared to their linear counterparts. Based on a model of integral equation theory, we first compare the SANS experimental I(Q) of salt free polyelectrolyte solutions with that predicted theoretically. Having seen their satisfactory qualitative agreement, the dependence of counterion association behavior on polyelectrolyte geometry and concentration is further explored. Our predictions reveal that the ionic environment of polyelectrolyte exhibits a strong dependence on polyelectrolyte geometry at lower polyelectrolyte concentration. However, when both linear and star polyelectrolytes exceed their overlap concentrations, the spatial distribution of counterion is found to be essentially insensitive to polyelectrolyte geometry due to the steric effect.

  8. Salt-dependent DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations.

    PubMed Central

    Hammermann, M; Brun, N; Klenin, K V; May, R; Tóth, K; Langowski, J

    1998-01-01

    Using small angle neutron scattering we have measured the static form factor of two different superhelical DNAs, p1868 (1868 bp) and pUC18 (2686 bp), in dilute aqueous solution at salt concentrations between 0 and 1.5 M Na+ in 10 mM Tris at 0% and 100% D2O. For both DNA molecules, the theoretical static form factor was also calculated from an ensemble of Monte Carlo configurations generated by a previously described model. Simulated and measured form factors of both DNAs showed the same behavior between 10 and 100 mM salt concentration: An undulation in the scattering curve at a momentum transfer q = 0.5 nm-1 present at lower concentration disappears above 100 mM. The position of the undulation corresponds to a distance of approximately 10-20 nm. This indicated a change in the DNA superhelix diameter, as the undulation is not present in the scattering curve of the relaxed DNA. From the measured scattering curves of superhelical DNA we estimated the superhelix diameter as a function of Na+ concentration by a quantitative comparison with the scattering curve of relaxed DNA. The ratio of the scattering curves of superhelical and relaxed DNA is very similar to the form factor of a pair of point scatterers. We concluded that the distance of this pair corresponds to the interstrand separation in the superhelix. The computed superhelix diameter of 16.0 +/- 0.9 nm at 10 mM decreased to 9.0 +/- 0.7 nm at 100 mM salt concentration. Measured and simulated scattering curves agreed almost quantitatively, therefore we also calculated the superhelix diameter from the simulated conformations. It decreased from 18.0 +/- 1.5 nm at 10 mM to 9.4 +/- 1.5 nm at 100 mM salt concentration. This value did not significantly change to lower values at higher Na+ concentration, in agreement with results obtained by electron microscopy, scanning force microscopy imaging in aqueous solution, and recent MC simulations, but in contrast to the observation of a lateral collapse of the DNA superhelix

  9. Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering

    SciTech Connect

    Hörnqvist, M. Thuvander, M.; Steuwer, A.; King, S.; Odqvist, J.; Hedström, P.

    2015-02-09

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe–35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a′{sup  }= 0.10–0.11 and a″ = 0.67–0.86). Furthermore, the method allows tracking of the high–Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a′{sup  }= 0.12–0.20 depending on the assumed mobility)

  10. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    SciTech Connect

    Wirth, B D; Asoka-Kumar, P; Howell, R H; Odette, G R; Sterne, P A

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs and VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.

  11. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  12. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    SciTech Connect

    Trapote-Barreira, Ana; Porcar, Lionel; Cama, Jordi; Soler, Josep M.; Allen, Andrew J.

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  13. Structure and interparticle interactions of bovine serum albumin in solution studied by small-angle neutron scattering

    SciTech Connect

    Bendedouch, D.; Chen, S.H.

    1983-04-28

    A series of small-angle neutron scattering (SANS) measurements were carried out on dilute and moderately concentrated bovine serum albumin (BSA) solutions at two different pH values and at t = 35/sup 0/C. The amount of bound water to the protein was deduced from the zero-contrast point of dilute BSA solutions, in D/sub 2/O and H/sub 2/O solvent mixtures. Detailed analysis of the intensity spectrum from the most dilute BSA solution in D/sub 2/O yields a prolate ellipsoidal shape (a,b,b) of the protein molecule with a = 70 angstrom and b = 20 angstrom. At moderate concentrations, pH 7, with or without salt (LiCl) added, the intensity spectra can be fitted satisfactorily by taking into account both the ellipsoidal shape of the particle and an interparticle interference factor (S(Q)). Calculation of S(Q) assumes a model of equivalent charged hard spheres interacting through a repulsive potential. For moderately concentrated solutions at pH 5.1, S(Q) can be accounted for by introducing an attractive potential between the particles.

  14. Small angle neutron scattering reveals pH-dependent conformational changes in Trichoderma reesei cellobiohydrolase I: implications for enzymatic activity.

    PubMed

    Pingali, Sai Venkatesh; O'Neill, Hugh M; McGaughey, Joseph; Urban, Volker S; Rempe, Caroline S; Petridis, Loukas; Smith, Jeremy C; Evans, Barbara R; Heller, William T

    2011-09-16

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4-5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.

  15. Structural Evolution of Polylactide Molecular Bottlebrushes: Kinetics Study by Size Exclusion Chromatography, Small Angle Neutron Scattering and Simulations

    SciTech Connect

    Pickel, Deanna L; Kilbey, II, S Michael; Uhrig, David; Hong, Kunlun; Carrillo, Jan-Michael Y; Sumpter, Bobby G; Ahn, Suk-Kyun; Han, Youngkyu; Kim, Dr. Tae-Hwan; Smith, Gregory Scott; Do, Changwoo

    2014-01-01

    Structural evolution from poly(lactide) (PLA) macromonomer to resultant PLA molecular bottlebrush during ring opening metathesis polymerization (ROMP) was investigated for the first time by combining size exclusion chromatography (SEC), small-angle neutron scattering (SANS) and coarse-grained molecular dynamics (CG-MD) simulations. Multiple aliquots were collected at various reaction times during ROMP, and subsequently analyzed by SEC and SANS. The two complementary techniques enable the understanding of systematic changes in conversion, molecular weight and dispersity as well as structural details of PLA molecular bottlebrushes. CG-MD simulation not only predicts the experimental observations, but it also provides further insight into the analysis and interpretation of data obtained in SEC and SANS experiments. We find that PLA molecular bottlebrushes undergo three conformational transitions with increasing conversion (i.e., increasing the backbone length): (1) from an elongated to a globular shape due to longer side chain at lower conversion, (2) from a globular to an elongated shape at intermediate conversion caused by excluded volume of PLA side chain, and (3) the saturation of contour length at higher conversion due to chain transfer reactions.

  16. Conformational changes in Sindbis virus induced by decreased pH revealed by small-angle neutron scattering

    SciTech Connect

    Hernandez, Raquel; He, Lilin; Piper, Amanda; Meilleur, Flora; Brown, Dennis; Heller, William T

    2012-01-01

    Alphaviruses, such as Sindbis virus, undergo dramatic changes in three-dimensional structure upon exposure to low pH, and such exposure can establish conditions allowing fusion of the virus membrane with a cell plasma membrane upon return to neutral pH. While exposure to low pH is not required for entry of Sindbis virus into vertebrate or invertebrate cells, the conformational changes occurring at low pH may mimic those occurring upon virus-receptor interaction. Here, we employed small-angle neutron scattering with contrast variation to probe how the structure of a mammalian-grown Sindbis virus responds to moderately acidic pH. Several changes took place throughout the virion structure when the pH decreased from 7.2 to 6.4. Specifically, the RNA in the virion core underwent a conformational change. Additionally, the protein was redistributed. A significant amount of protein moved from the layer containing the lipid bilayer to the exterior of the virion. The results improve our understanding of the pH-driven alteration of Sindbis virus structure.

  17. Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment

    NASA Astrophysics Data System (ADS)

    Palit, Swomitra; He, Lilin; Hamilton, William A.; Yethiraj, Arun; Yethiraj, Anand

    2017-03-01

    The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as the effect of "crowding" proteins in cells, colloid-polymer mixtures, and nanoparticle "fillers" in polymer solutions and melts. In this Letter, we study the effect of spherical inert nanoparticles (which we refer to as "crowders") on the diffusion coefficient and radius of gyration of polymers in solution using pulsed-field-gradient NMR and small-angle neutron scattering (SANS), respectively. The diffusion coefficients exhibit a plateau below a characteristic polymer concentration, which we identify as the overlap threshold concentration c⋆. Above c⋆, in a crossover region between the dilute and semidilute regimes, the (long-time) self-diffusion coefficients are found, universally, to decrease exponentially with polymer concentration at all crowder packing fractions, consistent with a structural basis for the long-time dynamics. The radius of gyration obtained from SANS in the crossover regime changes linearly with an increase in polymer concentration, and must be extrapolated to c⋆ in order to obtain the radius of gyration of an individual polymer chain. When the polymer radius of gyration and crowder size are comparable, the polymer size is very weakly affected by the presence of crowders, consistent with recent computer simulations. There is significant chain compression, however, when the crowder size is much smaller than the polymer radius gyration.

  18. Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment.

    PubMed

    Palit, Swomitra; He, Lilin; Hamilton, William A; Yethiraj, Arun; Yethiraj, Anand

    2017-03-03

    The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as the effect of "crowding" proteins in cells, colloid-polymer mixtures, and nanoparticle "fillers" in polymer solutions and melts. In this Letter, we study the effect of spherical inert nanoparticles (which we refer to as "crowders") on the diffusion coefficient and radius of gyration of polymers in solution using pulsed-field-gradient NMR and small-angle neutron scattering (SANS), respectively. The diffusion coefficients exhibit a plateau below a characteristic polymer concentration, which we identify as the overlap threshold concentration c^{⋆}. Above c^{⋆}, in a crossover region between the dilute and semidilute regimes, the (long-time) self-diffusion coefficients are found, universally, to decrease exponentially with polymer concentration at all crowder packing fractions, consistent with a structural basis for the long-time dynamics. The radius of gyration obtained from SANS in the crossover regime changes linearly with an increase in polymer concentration, and must be extrapolated to c^{⋆} in order to obtain the radius of gyration of an individual polymer chain. When the polymer radius of gyration and crowder size are comparable, the polymer size is very weakly affected by the presence of crowders, consistent with recent computer simulations. There is significant chain compression, however, when the crowder size is much smaller than the polymer radius gyration.

  19. Molecular conformation of the full-length tumor suppressor NF2/Merlin—a small angle neutron scattering study

    PubMed Central

    Khajeh, Jahan Ali; Ju, Jeong Ho; Atchiba, Moussoubaou; Allaire, Marc; Stanley, Christopher; Heller, William T.; Callaway, David J.E.; Bu, Zimei

    2014-01-01

    Summary The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high sequence similarity to the Ezrin-Radixin-Moesin (ERM) family of proteins, the structural model of ERM protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small angle neutron scattering (SANS) and binding experiments. SANS shows that in solution both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding, and contributes to resolve a controversy about the molecular conformation and binding activity of Merlin. PMID:24882693

  20. Effect of Chain Structure on the Miscibility of Cellulose Acetate Blends. A Small-Angle Neutron Scattering Study

    SciTech Connect

    Dyer, Caleb W.; Jiang, Zhe; Bozell, Joseph J.; Rials, Timothy G.; Heller, William T.; Dadmun, Mark D.

    2013-02-12

    The miscibility of cellulose ester blends with varying degree of substitution (DS) of acetates along the chain backbone has been investigated using small-angle neutron scattering. The difference in degree of substitution (ΔDS) between the two components in the blend was systematically varied from 0.06 to 0.63 where each blend was found to be a partially miscible, two-phase system. Miscibility between the two components initially decreases as ΔDS of the blends increases. The Flory interaction parameter, χ, concurrently increases with increasing ΔDS as a result of diminishing van der Waals forces between components. The cellulose acetates with lower degree of substitution, which contain more hydroxyl substituents, however, demonstrate greater miscibility even at higher ΔDS. This is interpreted to be the result of favorable hydrogen bonding between blend components that are possible in the presence of more hydroxyl groups. FT-IR data support this interpretation, indicating an increase in hydrogen bonding in a blend having a lower DS component. These results indicate that while an increase in structural differences between cellulose acetate blend components limits miscibility, the presence of hydroxyl groups on the chain promotes mixing. This competition accentuates the significant impact specific interactions have on blend miscibility for these copolymers.

  1. Characterization of multimetric variants of ubiquitin carboxyl-terminal hydrolase L1 in water by small-angle neutron scattering

    SciTech Connect

    Naito, Sachio . E-mail: sachio@post.kek.jp; Mochizuki, Hideki; Yasuda, Toru; Mizuno, Yoshikuni; Furusaka, Michihiro; Ikeda, Susumu; Adachi, Tomohiro; Shimizu, Hirohiko M.; Suzuki, Junichi; Fujiwara, Satoru; Okada, Tomoko; Nishikawa, Kaori; Aoki, Shunsuke; Wada, Keiji

    2006-01-13

    Here, we illustrated that the morphological structures of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) variants and Parkinson's disease (PD) exhibit good pathological correlation by a small-angle neutron scattering (SANS). UCH-L1 is a neuro-specific multiple functional enzyme, deubiquitinating, ubiquityl ligase, and also involved in stabilization of mono-ubiquitin. To examine the relationship between multiple functions of UCH-L1 and the configuration of its variants [wild-type, I93M (linked to familial Parkinson's disease), and S18Y (linked to reduced risk of Parkinson's disease)], in this report, we proposed that these were all self-assembled dimers by an application of a rotating ellipsoidal model; the configurations of these dimers were quite different. The wild-type was a rotating ellipsoidal. The globular form of the monomeric component deformed by the I93M mutation. Conversely, the S18Y polymorphism promoted the globularity. Thus, the multiple functional balance is closely linked to the intermolecular interactions between the UCH-L1 monomer and the final dimeric configuration.

  2. Interactions between block copolymers and single-walled carbon nanotubes in aqueous solutions: a small-angle neutron scattering study.

    PubMed

    Granite, Meirav; Radulescu, Aurel; Pyckhout-Hintzen, Wim; Cohen, Yachin

    2011-01-18

    The amphiphilic copolymers of the Pluronic family are known to be excellent dispersants for single-walled carbon nanotubes (SWCNT) in water, especially F108 and F127, which have rather long end-blocks of poly(ethylene oxide) (PEO). In this study, the structure of the CNT/polymer hybrid formed in water is evaluated by measurements of small-angle neutron scattering (SANS) with contrast variation, as supported by cryo-transmission electron microscopy (cryo-TEM) imaging. The homogeneous, stable, inklike dispersions exhibited very small isolated bundles of carbon nanotubes in cryo-TEM images. SANS experiments were conducted at different D(2)O/H(2)O content of the dispersing solvent. The data for both systems showed surprisingly minimal intensity values at 70% D(2)O solvent composition, which is much higher than the expected value of 17% D(2)O that is based on the scattering length density (SLD) of PEO. At this near match point, the data exhibited a q(-1) power law relation of intensity to the scattering vector (q), indicating rodlike entities. Two models are evaluated, as extensions to Pederson's block copolymer micelles models. One is loosely adsorbed polymer chains on a rodlike CNT bundle. In the other, the hydrophobic block is considered to form a continuous hydrated shell on the CNT surface, whereas the hydrophilic blocks emanate into the solvent. Both models were found to fit the experimental data reasonably well. The model fit required special considerations of the tight association of water molecules around PEO chains and slight isotopic selectivity.

  3. A study of alcohol-induced gelation of beta-lactoglobulin with small-angle neutron scattering, neutron spin echo, and dynamic light scattering measurements.

    PubMed

    Yoshida, Koji; Yamaguchi, Toshio; Osaka, Noboru; Endo, Hitoshi; Shibayama, Mitsuhiro

    2010-04-07

    Gelation of beta-lactoglobulin (beta-Lg) in various alcohol-water mixtures with 0.1 M (M = mol L(-1)) hydrochloric acid was investigated with small-angle neutron scattering (SANS), neutron spin echo (NSE), and time-resolved dynamic light scattering (TRDLS) measurements. The beta-Lg in alcohol-water solutions undergoes gelation at specific alcohol concentrations where the alcohol-induced alpha-helical structure of beta-Lg is stabilized. The SANS profiles showed that beta-Lg exists as a single molecule at a low alcohol concentration. With increasing alcohol concentration, the profiles indicate a power law behavior of approximately 1.7 when the samples gelate. These behaviors were observed in all alcohol-water mixtures used, but the alcohol concentrations where the SANS profiles change shift to a lower alcohol concentration region with an increase in the size of the hydrophobic group of the alcohols. Apparent diffusion constants, obtained from the intermediate scattering function (ISF) of NSE and the intensity time correlation function (ITCF) of TRDLS, mainly depend on the viscosity of alcohol-water mixtures before gelation. After gelation, on the other hand, the ISFs of gels do not change appreciably in the range of the NSE time scale, indicating the microscopically rigid structure of beta-Lg gel. The ITCF functions obtained from TRDLS follow a double exponential decay type before gelation, but a logarithmic one (exponent alpha = 0.7) after gelation. It is most likely that the alcohol-induced gelation undergoes a similar mechanism to that for the heat-induced one at pH = 7 where beta-Lg aggregates stick together to form a fractal network, although the gelation time is faster in the former than in the latter.

  4. The microstructure and morphology of carbon black: A study using small angle neutron scattering and contrast variation

    SciTech Connect

    Hjelm, R.P. Jr.; Seeger, P.A.; Wampler, W.A.; Gerspacher, M.

    1994-04-01

    This is a study of the microstructure of particles of an experimental high surface area carbon black (HSA) and of the morphology of the particle aggregates using small-angle neutron scattering and the method of contrast variation. Contrast variation was effected by studying suspensions of the carbon black in cyclohexane containing different fractions of deuterocyclohexane. We find that the approximately 29 nm diameter HSA particles are arranged as small, linear aggregates with average aggregation number between 4 and 6. The structure averaged over the particle population is best represented by a prolate ellipsoid of revolution with semi axes 14.5 and 76.4 nm. The surface of the aggregates appears smooth over length scales longer than 1 nm, which places an upper limit on the surface roughness observed by other methods. The intemal structure of the aggregates is described by a shell-core model, with the shell density being consistent with a graphitic structure and the core being of lower density, more like amorphous carbon. Some fraction of the core volume (0.1 to 0.2) is taken up by voids that are not accessible to the solvent. An estimate of the shell thickness gives 1 to 2 nm along the ellipsoid minor axis and 6 to 10 nm along the major axis. The particles of the aggregate appear to be fused so that the less dense amorphous core is continuous through the inner parts of the aggregate. The information that can be obtained on the internal structure using contrast variation is limited by nonheterogeneity in the chemical composition of carbon black aggregates.

  5. Non-destructive analysis of hydrogen-induced cracking of api steels using acoustic microscopy and small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Oh, S. B.; Choi, Y.; Jung, H. G.; Kho, S. W.; Lee, C. S.

    2014-12-01

    Acoustic microscopy and small-angle neutron scattering were applied to non-destructively evaluate the hydrogen-induced cracking of API steels and to find the initiation time of the crack. The API steels had equiaxed grains with about 4 to 12-μm average grain size along the rolling, sample-normal, and transverse directions. For 5 days of immersion in a sodium-acetic solution with chloride ions (NaCl: CH3COOH: H2O: FeCl2 = 50: 5: 944: 1, pH = 2.7), micro-sized cracks were not formed in the as-received specimen, but they did form in the 7% deformed specimen. Nano-sized cracks were observed in the specimen after 3 days of immersion by small-angle neutron scattering.

  6. A study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and sodium (lithium) dodecyl sulfate by the small-angle neutron scattering method

    NASA Astrophysics Data System (ADS)

    Rajewska, A.; Medrzycka, K.; Hallmann, E.

    2007-09-01

    The micellization in mixed aqueous systems based on a new nonionic surfactant, namely, heptaethylene glycol monotetradecyl ether (C14E7), and an anionic surfactant, namely, sodium dodecyl sulfate, sodium decyl sulfate, or lithium dodecyl sulfate, is studied by small-angle neutron scattering. Preliminary results of the investigation into the behavior of C14E7 aqueous solutions (at two concentrations, 0.17 and 0.50%) upon addition of small amounts of three different classical anionic surfactants are reported.

  7. Small-angle neutron scattering study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and cesium dodecyl sulfate

    SciTech Connect

    Rajewska, A.; Medrzycka, K.; Hallmann, E.; Soloviov, D. V.

    2016-01-15

    The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.

  8. Water-in-model oil emulsions studied by small-angle neutron scattering: interfacial film thickness and composition.

    PubMed

    Verruto, Vincent J; Kilpatrick, Peter K

    2008-11-18

    The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. Traditional problems associated with these feedstocks, particularly stable water-in-petroleum emulsions, are drawing increasing attention. Despite considerable research on the interfacial assembly of asphaltenes, resins, and naphthenic acids, much about the resulting interfacial films is not well understood. Here, we describe the use of small-angle neutron scattering (SANS) to elucidate interfacial film properties from model emulsion systems. Modeling the SANS data with both a polydisperse core/shell form factor as well as a thin sheet approximation, we have deduced the film thickness and the asphaltenic composition within the stabilizing interfacial films of water-in-model oil emulsions prepared in toluene, decalin, and 1-methylnaphthalene. Film thicknesses were found to be 100-110 A with little deviation among the three solvents. By contrast, asphaltene composition in the film varied significantly, with decalin leading to the most asphaltene-rich films (30% by volume of the film), while emulsions made in toluene and methylnaphthalene resulted in lower asphaltenic contents (12-15%). Through centrifugation and dilatational rheology, we found that trends of decreasing water resolution (i.e., increasing emulsion stability) and increasing long-time dilatational elasticity corresponded with increasing asphaltene composition in the film. In addition to the asphaltenic composition of the films, here we also deduce the film solvent and water content. Our analyses indicate that 1:1 (O/W) emulsions prepared with 3% (w/w) asphaltenes in toluene and 1 wt % NaCl aqueous solutions at pH 7 and pH 10 resulted in 80-90 A thick films, interfacial areas around 2600-3100 cm (2)/mL, and films that were roughly 25% (v/v) asphaltenic, 60-70% toluene, and 8-12% water. The increased asphaltene and water film

  9. Application of small-angle neutron scattering to the study of forces between magnetically chained monodisperse ferrofluid emulsion droplets

    SciTech Connect

    Jain, Dr Nirmesh; Liu, Dr C K; Hawkett, Dr B. S.; Warr, G. G.; Hamilton, William A

    2014-01-01

    The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements in the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.

  10. Microphase Separation in Pr0.67Ca0.33MnO3 by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Simon, Ch.; Mercone, S.; Guiblin, N.; Martin, C.; Brûlet, A.; André, G.

    2002-10-01

    We have evidenced by small-angle neutron scattering at low temperature the coexistence of ferromagnetism (F) and antiferromagnetism (AF) in Pr0.67Ca0.33MnO3. The results are compared to those obtained in Pr0.80Ca0.20MnO3 and Pr0.63Ca0.37MnO3, which are F and AF, respectively. Quantitative analysis shows that the small-angle scattering is not due to a mesoscopic mixing but to a nanoscopic electronic and magnetic ``red cabbage'' structure, in which the ferromagnetic phase exists in the form of thin layers in the AF matrix (stripes or 2D ``sheets'').

  11. Microstructural investigation, using small-angle neutron scattering (SANS), of Optifer steel after low dose neutron irradiation and subsequent high temperature tempering

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Lindau, R.; Magnani, M.; May, R. P.; Möslang, A.; Valli, M.

    2007-08-01

    The microstructural effect of low dose neutron irradiation and subsequent high temperature tempering in the reduced activation ferritic/martensitic steel Optifer (9.3 Cr, 0.1 C, 0.50 Mn, 0.26 V, 0.96 W, 0.66 Ta, Fe bal wt%) has been studied using small-angle neutron scattering (SANS). The investigated Optifer samples had been neutron irradiated, at 250 °C, to dose levels of 0.8 dpa and 2.4 dpa. Some of them underwent 2 h tempering at 770 °C after the irradiation. The SANS measurements were carried out at the D22 instrument of the High Flux Reactor at the Institut Max von Laue - Paul Langevin, Grenoble, France. The differences observed in nuclear and magnetic SANS cross-sections after subtraction of the reference sample from the irradiated one suggest that the irradiation and the subsequent post-irradiation tempering produce the growth of non-magnetic defects, tentatively identified as microvoids.

  12. Small angle neutron scattering on an absolute intensity scale and the internal surface of diatom frustules from three species of differing morphologies.

    PubMed

    Garvey, C J; Strobl, M; Percot, A; Saroun, J; Haug, J; Vyverman, W; Chepurnov, V A; Ferris, J M

    2013-05-01

    The internal nanostructure of the diatoms Cyclotella meneghiniana, Seminavis robusta and Achnanthes subsessilis was investigated using small angle neutron scattering (SANS) to examine thin biosilica samples, consisting of isotropic (powder) from their isolated cell walls. The interpretation of SANS data was assisted by several other measurements. The N2 adsorption, interpreted within the Branuer-Emmet-Teller isotherm, yielded the specific surface area of the material. Fourier transform infrared (FTIR) and Raman spectroscopy indicates that the isolated material is amorphous silica with small amounts of organic cell wall materials acting as a filling material between the silica particles. A two-phase (air and amorphous silica) model was used to interpret small angle neutron scattering data. After correction for instrumental resolution, the measurements on two SANS instruments covered an extended range of scattering vectors 0.0011 nm(-1) < q < 5.6 nm(-1), giving an almost continuous SANS curve over a range of scattering vectors, q, on an absolute scale of intensity for each sample. Each of the samples gave a characteristic scattering curve where log (intensity) versus log (q) has a -4 dependence, with other features superimposed. In the high-q regime, departure from this behaviour was observed at a length-scales equivalent to the proposed unitary silica particle. The limiting Porod scattering law was used to determine the specific area per unit of volume of each sample illuminated by the neutron beam. The Porod behaviour, and divergence from this behaviour, is discussed in terms of various structural features and the proposed mechanisms for the bio-assembly of unitary silica particles in frustules.

  13. Evolution of the pore structure during the early stages of the alkali-activation reaction: An in situ small-angle neutron scattering investigation

    DOE PAGES

    White, Claire E.; Olds, Daniel P.; Hartl, Monika; ...

    2017-02-01

    The long-term durability of cement-based materials is influenced by the pore structure and associated permeability at the sub-micrometre length scale. With the emergence of new types of sustainable cements in recent decades, there is a pressing need to be able to predict the durability of these new materials, and therefore nondestructive experimental techniques capable of characterizing the evolution of the pore structure are increasingly crucial for investigating cement durability. Here, small-angle neutron scattering is used to analyze the evolution of the pore structure in alkali-activated materials over the initial 24 h of reaction in order to assess the characteristic poremore » sizes that emerge during these short time scales. By using a unified fitting approach for data modeling, information on the pore size and surface roughness is obtained for a variety of precursor chemistries and morphologies (metakaolin- and slag-based pastes). Furthermore, the impact of activator chemistry is elucidatedviathe analysis of pastes synthesized using hydroxide- and silicate-based activators. It is found that the main aspect influencing the size of pores that are accessible using small-angle neutron scattering analysis (approximately 10–500 Å in diameter) is the availability of free silica in the activating solution, which leads to a more refined pore structure with smaller average pore size. Furthermore, as the reaction progresses the gel pores visible using this scattering technique are seen to increase in size.« less

  14. Sapphire-anvil cell for small-angle neutron scattering measurements in large-volume liquid samples up to 530 MPa

    NASA Astrophysics Data System (ADS)

    Bonetti, M.; Calmettes, P.

    2005-04-01

    A cell with unsupported beveled sapphire-anvils was developed to carry out small-angle neutron scattering measurements in large-volume liquid samples up to a pressure of 530 MPa. The body of the anvil is a cylinder with a 30 mm diameter. One end is shaped into a truncated cone with a face 14 mm in diameter. The two opposed anvils squeeze a flat metallic gasket of thickness between 1 and 3 mm with a central hole between 4 and 10 mm in diameter. The initial sample volume varies from about 10 to 240mm3. The highest achievable pressure depends on the dimensions and on the mechanical properties of the gasket. To allow a high neutron transmission of the collimated neutron beam, a 10-mm-diam bore is machined along the cell axis. For a neutron beam of 7 mm in diameter, the maximum forward scattering angle is about 9.5°. With a neutron wavelength of 0.4 nm, this allows scattering spectra to be recorded for wave-number transfers up to 2.6nm-1.

  15. Structural changes during the unfolding of Bovine serum albumin in the presence of urea: A small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Das, Amit; Chitra, R.; Choudhury, R. R.; Ramanadham, M.

    2004-08-01

    The native form of serum albumin is the most important soluble protein in the body plasma. In order to investigate the structural changes of Bovine serum albumin (BSA) during its unfolding in the presence of urea, a small-angle neutron scattering (SANS) study was performed. The scattering curves of dilute solutions of BSA with different concentrations of urea in D2O at pH 7.2+/-0.2 were measured at room temperature. The scattering profile was fitted to a prolate ellipsoidal shape (a, b, b) of the protein with a = 52.2 Å and b = 24.2 Å. The change in the dimensions of the protein as it unfolds was found to be anisotropic. The radius of gyration of the compact form of the protein in solution decreased as the urea concentration was increased.

  16. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering.

    PubMed

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr. 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  17. On structural features of fullerene C60 dissolved in carbon disulfide: Complementary study by small-angle neutron scattering and molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Avdeev, M. V.; Tropin, T. V.; Bodnarchuk, I. A.; Yaradaikin, S. P.; Rosta, L.; Aksenov, V. L.; Bulavin, L. A.

    2010-04-01

    The parameters of fullerene C60 dissolved in carbon disulfide CS2 are analyzed by small-angle neutron scattering (SANS) in a wide interval of momentum transfer. To exclude the influence of nonequilibrium conditions, the solutions are prepared without applying shaking, stirring or ultrasound. No indication of the equilibrium cluster state of C60 (with the cluster size below 60 nm) in the final solutions is revealed. Molecular dynamic simulations are complementary used to find out the partial volume of C60 in CS2 and the scattering contribution of the solvent organization at the interface with the fullerene molecule, which is shown to be small. Among several approaches for describing SANS data the preference is given to the model, which takes into account the presence of stable C60 dimers (comprising 10% of the total particle number density) in the solution.

  18. On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Eremin, Roman A.; Kholmurodov, Kholmirzo T.; Petrenko, Viktor I.; Rosta, László; Grigoryeva, Natalia A.; Avdeev, Mikhail V.

    2015-11-01

    The data of infrared spectroscopy (IR), molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) have been combined to conclude about the nanoscale structural organization of organic non-polar solutions of saturated mono-carboxylic acids with different alkyl chain lengths for diluted solutions of saturated myristic (C14) and stearic (C18) acids in benzene and decalin. In particular, the degree of dimerization was found from the IR spectra. The structural anisotropy of the acids and their dimers was used in the treatment of the data of MD simulations to describe the solute-solvent interface in a cylindrical approximation and show its rather strong influence on SANS. The corresponding scattering length density profiles were used to fit the experimental SANS data comprising the information about the acid molecule isomerization. The SANS data from concentrated solutions showed a partial self-assembling of the acids within the nematic transition is different for two solvents due to lyophobic peculiarities.

  19. Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) Study of New Albany Shale: A Treatise on Microporosity

    SciTech Connect

    Bahadur, Jitendra; Radlinski, Andrzej P.; Melnichenko, Yuri B.; Mastalerz, Maria; Schimmelmann, Arndt

    2014-12-17

    We applied small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques to study the microstructure of several New Albany shales of different maturity. It has been established that the total porosity decreases with maturity and increases somewhat for post-mature samples. A new method of SANS data analysis was developed, which allows the extraction of information about the size range and number density of micropores from the relatively flat scattering intensity observed in the limit of the large scattering vector Q. Macropores and significant number of mesopores are surface fractals, and their structure can be described in terms of the polydisperse spheres (PDSP) model. The model-independent Porod invariant method was employed to estimate total porosity, and the results were compared with the PDSP model results. It has been demonstrated that independent evaluation of incoherent background is crucial for accurate interpretation of the scattering data in the limit of large Q-values. Moreover, pore volumes estimated by the N2 and CO2 adsorption, as well as via the mercury intrusion technique, have been compared with those measured by SANS/USANS, and possible reasons for the observed discrepancies are discussed.

  20. Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) Study of New Albany Shale: A Treatise on Microporosity

    DOE PAGES

    Bahadur, Jitendra; Radlinski, Andrzej P.; Melnichenko, Yuri B.; ...

    2014-12-17

    We applied small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques to study the microstructure of several New Albany shales of different maturity. It has been established that the total porosity decreases with maturity and increases somewhat for post-mature samples. A new method of SANS data analysis was developed, which allows the extraction of information about the size range and number density of micropores from the relatively flat scattering intensity observed in the limit of the large scattering vector Q. Macropores and significant number of mesopores are surface fractals, and their structure can be described in terms of themore » polydisperse spheres (PDSP) model. The model-independent Porod invariant method was employed to estimate total porosity, and the results were compared with the PDSP model results. It has been demonstrated that independent evaluation of incoherent background is crucial for accurate interpretation of the scattering data in the limit of large Q-values. Moreover, pore volumes estimated by the N2 and CO2 adsorption, as well as via the mercury intrusion technique, have been compared with those measured by SANS/USANS, and possible reasons for the observed discrepancies are discussed.« less

  1. Small-angle scattering and 3D structure interpretation.

    PubMed

    Trewhella, Jill

    2016-10-01

    This review focuses on advances in the application of solution small-angle scattering (SAS) in structural analysis of biomolecules and the complexes they form. Examples highlighted illustrate the unique contribution of SAS, using both X-rays and neutrons, in hybrid or integrative modelling methods. The increased information content when neutron scattering with contrast variation is used is a particular focus. Finally, progress toward an agreed reporting framework, the development of open data and model archives, and the importance of these initiatives is covered.

  2. Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with pluronic F127 and poly(vinylpyrrolidone).

    PubMed

    Granite, Meirav; Radulescu, Aurel; Cohen, Yachin

    2012-07-31

    Amphiphilic block copolymers are excellent dispersants for single-walled carbon nanotubes (SWCNT) in aqueous environments, where their noncovalent attachments do not affect the π chemical bonding. In this small-angle neutron scattering (SANS) study, we investigate whether the coverage of Pluronic F127 polymers around the CNTs depends on the solution concentration in the range of 1-6% (w/w). The observations indicate that at these concentrations the SWCNT surface is fully saturated at about 14 chains per unit length of 100 Å. Furthermore, we seek to verify whether the unusual effect observed in a previous study by contrast variation, interpreted as being due to a dense hydration layer around the polymer chains, also appears using a homopolymer (polyvinylpyrrolidone - PVP) that does not contain poly(ethylene oxide) (PEO) units. The SANS patterns showed again a minimal intensity value at much higher solvent composition (75% D(2)O) than the expected value of 29% D(2)O. The minimum scattering curve exhibited a nearly q(-1) power law at small angles, an indication of rodlike entities. A model of a CNT thin bundle with loosely adsorbed polymer chains around it (core-chains) was reasonably well fitted to the data. The polymer chains are assumed to be surrounded by a water layer with a slightly higher density than bulk water, having partial selectivity for D(2)O.

  3. Microstructural changes of globules in calcium-silicate-hydrate gels with and without additives determined by small-angle neutron and X-ray scattering.

    PubMed

    Chiang, Wei-Shan; Fratini, Emiliano; Ridi, Francesca; Lim, Sung-Hwan; Yeh, Yi-Qi; Baglioni, Piero; Choi, Sung-Min; Jeng, U-Ser; Chen, Sow-Hsin

    2013-05-15

    The microstructure of calcium-silicate-hydrate (C-S-H) gel, a major hydrated phase of Ordinary Portland Cement, with and without polycarboxylic ether (PCE) additives is investigated by combined analyses of small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) data. The results show that these comb-shaped polymers tend to increase the size of the disk-like globules but have little influence on the thickness of the water and calcium silicate layers within the globules. As a result, the fractal packing of the globules becomes more open in the range of a few hundred nanometers, in the sense that the mass fractal dimension diminishes, since the PCE adsorption on the globules increases the repulsive force between and polydispersity of the C-S-H units. Moreover, scanning electron microscope (SEM) study of the synthesized C-S-H gels in the micrometer range shows that the PCEs depress the formation of fibrils while enhancing the foil-like morphology.

  4. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  5. Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons.

    PubMed

    Erko, M; Wallacher, D; Hoell, A; Hauss, T; Zizak, I; Paris, O

    2012-03-21

    A simple explanation is given for the low-temperature density minimum of water confined within cylindrical pores of ordered nanoporous materials of different pore size. The experimental evidence is based on combined data from in-situ small-angle scattering of X-rays (SAXS) and neutrons (SANS), corroborated by additional wide-angle X-ray scattering (WAXS). The combined scattering data cannot be described by a homogeneous density distribution of water within the pores, as was originally suggested from SANS data alone. A two-step density model reveals a wall layer covering approximately two layers of water molecules with higher density than the residual core water in the central part of the pores. The temperature-induced changes of the scattering signal from both X-rays and neutrons are consistent with a minimum of the average water density. We show that the temperature at which this minimum occurs depends monotonically on the pore size. Therefore we attribute this minimum to a liquid-solid transition of water influenced by confinement. For water confined in the smallest pores of only 2 nm in diameter, the density minimum is explained in terms of a structural transition of the surface water layer closest to the hydrophilic pore walls.

  6. Emerging applications of small angle solution scattering in structural biology.

    PubMed

    Chaudhuri, Barnali N

    2015-03-01

    Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.

  7. Small-Angle Neutron Scattering Studies on the Multilamellae Formed by Mixing Lamella-Forming Cationic Diblock Copolymers with Lipids and Their Interaction with DNA.

    PubMed

    Yang, Po-Wei; Lin, Tsang-Lang; Liu, I-Ting; Hu, Yuan; Jeng, U-Ser; Gilbert, Elliot Paul

    2016-02-23

    We demonstrate that the lamella-forming polystyrene-block-poly(N-methyl-4-vinylpyridinium iodine) (PS-b-P4VPQ), with similar sizes of the PS and P4VPQ blocks, can be dispersed in the aqueous solutions by forming lipid/PS-b-P4VPQ multilamellae. Using small-angle neutron scattering (SANS) and 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (d62-DPPC) in D2O, a broad correlation peak is found in the scattering profile that signifies the formation of the loosely ordered d62-DPPC/PS-b-P4VPQ multilamellae. The thicknesses of the hydrophobic and hydrophilic layers of the d62-DPPC/PS-b-P4VPQ multilamellae are close to the PS layer and the condensed brush layer thicknesses as determined from previous neutron reflectometry studies on the PS-b-P4VPQ monolayer at the air-water interface. Such well-dispersed d62-DPPC/PS-b-P4VPQ multilamellae are capable of forming multilamellae with DNA in aqueous solution. It is found that the encapsulation of DNA in the hydrophilic layer of the d62-DPPC/PS-b-P4VPQ multilamellae slightly increases the thickness of the hydrophilic layer. Adding CaCl2 can enhance the DNA adsorption in the hydrophilic brush layer, and it is similar to that observed in the neutron reflectometry study of the DNA adsorption by the PS-b-P4VPQ monolayer.

  8. Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion strengthened steels produced via cryomilling

    SciTech Connect

    Kim, Jeoung Han; Byun, Thak Sang; Shin, Eunjoo; Seol, Jae-Bok; Young, Sung; Reddy, N. S.

    2015-08-17

    Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 *C; however, this effect disappears in testing at 900 *C. The milling process at *70 *C exhibits excellent high fracture toughness, which is better than the benchmark material 14YWT-SM10. However, the *150 *C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed.

  9. Magnetization reversal of a Nd-Cu-infiltrated Nd-Fe-B nanocrystalline magnet observed with small-angle neutron scattering

    SciTech Connect

    Saito, Kotaro Ono, Kanta; Ueno, Tetsuro; Yano, Masao; Shoji, Tetsuya; Sakuma, Noritsugu; Manabe, Akira; Kato, Akira; Harada, Masashi; Keiderling, Uwe

    2015-05-07

    The magnetization reversal process of Nd-Fe-B nanocrystalline magnets infiltrated with Nd-Cu alloy was examined using small-angle neutron scattering (SANS). The magnetic-field dependence of SANS intensity revealed a qualitative difference between Nd-Cu-infiltrated samples and as-deformed samples. Insufficient magnetic isolation along the direction perpendicular to the nominal c-axis is expected from comparable SANS intensities for different ranges of q values along this direction. For small q values near the coercivity field, Nd-Cu-infiltrated samples show a noticeable reduction in SANS intensity along the nominal c-axis, which is parallel to the external magnetic field. This indicates less spatial fluctuation of magnetic moments in Nd-Cu-infiltrated samples, owing to magnetically isolated Nd{sub 2}Fe{sub 14}B grains.

  10. Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes: a small-angle neutron scattering study.

    PubMed

    Balgavý, P; Dubnicková, M; Kucerka, N; Kiselev, M A; Yaradaikin, S P; Uhríková, D

    2001-05-02

    Small-angle neutron scattering (SANS) experiments have been performed on large unilamellar liposomes prepared from 1,2-dilauroylphosphatidylcholine (DLPC), 1,2-dimyristoyl-phosphatidylcholine (DMPC) and 1,2-distearoylphosphatidylcholine (DSPC) in heavy water by extrusion through polycarbonate filters with 500 A pores. The neutron scattering intensity I(Q) in the region of scattering vectors Q corresponding to 0.0015 A(-2) < or = Q(2) < or = 0.0115 A(-2) was fitted using a step function model of bilayer neutron scattering length density and supposing that the liposomes are spherical and have a Gaussian distribution of radii. Using the lipid volumetric data, and supposing that the thickness of bilayer polar region equals to d(H) = 9+/-1 A and the water molecular volume intercalated in the bilayer polar region is the same as in the aqueous bulk aqueous phase, the steric bilayer thickness d(L), the lipid surface area A(L) and the number of water molecules per lipid molecule N intercalated in the bilayer polar region were obtained: d(L) = 41.58+/-1.93 A, A(L) = 57.18+/-1.00 A(2) and N = 6.53+/-1.93 in DLPC at 20 degrees C, d(L) = 44.26+/-1.42 A, A(L) = 60.01+/-0.75 A(2) and N = 7.37+/-1.94 in DMPC at 36 degrees C, and d(L) = 49.77+/-1.52 A, A(L) = 64.78+/-0.46 A(2) and N = 8.67+/-1.97 in DSPC at 60 degrees C. After correcting for area thermal expansivity alpha approximately 0.00417 K(-1), the lipid surface area shows a decrease with the lipid acyl chain length at 60 degrees C: A(L) = 67.56+/-1.18 A(2) in DLPC, A(L) = 66.33+/-0.83 A(2) in DMPC and A(L) = 64.78+/-0.46 A(2) in DSPC. It is also shown that a joint evaluation of SANS and small-angle X-ray scattering on unilamellar liposomes can be used to obtain the value of d(H) and the distance of the lipid phosphate group from the bilayer hydrocarbon region d(H1).

  11. Neutron guide system for small-angle neutron scattering instruments of the Jülich Centre for Neutron Science at the FRM-II

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Ioffe, A.

    2008-02-01

    Following the shut-down of the FRJ-2 research reactor in Jülich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-München. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically "S-shaped" guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally "S-shaped" guide serving the focusing KWS3 instrument, will be reported on.

  12. SASBDB, a repository for biological small-angle scattering data

    PubMed Central

    Valentini, Erica; Kikhney, Alexey G.; Previtali, Gianpietro; Jeffries, Cy M.; Svergun, Dmitri I.

    2015-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are fundamental tools used to study the global shapes of proteins, nucleic acids, macromolecular complexes and assemblies in solution. Due to recent advances in instrumentation and computational methods, the quantity of experimental scattering data and subsequent publications is increasing dramatically. The need for a global repository allowing investigators to locate and access experimental scattering data and associated models was recently emphasized by the wwPDB small-angle scattering task force (SAStf). The small-angle scattering biological data bank (SASBDB) www.sasbdb.org has been designed in accordance with the plans of the SAStf as part of a future federated system of databases for biological SAXS and SANS. SASBDB is a comprehensive repository of freely accessible and fully searchable SAS experimental data and models that are deposited together with the relevant experimental conditions, sample details and instrument characteristics. At present the quality of deposited experimental data and the accuracy of models are manually curated, with future plans to integrate automated systems as the database expands. PMID:25352555

  13. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    DOE PAGES

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi; ...

    2015-10-26

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs+). SANS profiles obtained for the complex of ace-DB20C6 and Cs+ (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs+ coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that the SANS analysis experimentallymore » supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs+ is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs+ above the center of the crown ether ring of ace-DB20C6.« less

  14. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    SciTech Connect

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi; Ikeda, Takashi; Yaita, Tsuyoshi; Suzuki, Shinichi; Narita, Hirokazu; Akutsu, Kazuhiro; Heller, William T.

    2015-10-26

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs+). SANS profiles obtained for the complex of ace-DB20C6 and Cs+ (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs+ coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that the SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs+ is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs+ above the center of the crown ether ring of ace-DB20C6.

  15. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    SciTech Connect

    Mang, Joseph Thomas; Hjelm, Rex P; Francois, Elizabeth G

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  16. Small-angle neutron scattering investigation of as-irradiated, annealed and reirradiated reactor pressure vessel weld material of decommissioned reactor

    NASA Astrophysics Data System (ADS)

    Ulbricht, A.; Altstadt, E.; Bergner, F.; Viehrig, H.-W.; Keiderling, U.

    2011-09-01

    Small-angle neutron scattering (SANS) was applied to characterize the microstructure of weld material taken from the reactor pressure vessel (RPV) of the decommissioned VVER440 (230)-type nuclear power plant (NPP) Greifswald, Units 1, 2 and 4. The welding seam of highest neutron exposure of Unit 1 was subject to a large-scale annealing treatment in 1988 after about 11.5 effective years of operation. The same type of annealing was applied to Unit 2 in 1990 after about 11 effective years of operation. After final decommissioning of NPP Greifswald in 1990, RPV material was left in the reirradiated condition (Unit 1), in the as-annealed condition (Unit 2) and in the as-irradiated condition (Unit 4). Trepans of material from the highly irradiated RPV welds of these Units have recently become available for examination. The results of the SANS investigation are reported and compared with published results obtained for as-irradiated, post-irradiation annealed and reirradiated surveillance material of the same type. A general agreement was found indicating in particular the formation of irradiation-induced Cu-enriched clusters and efficient recovery as a result of the large-scale annealing treatments. The only essential difference was observed for the ratio of magnetic and nuclear scattering indicating differences of the cluster composition for the RPV wall and surveillance material.

  17. Small-angle neutron scattering study of the short-range organization of dispersed CsNi[Cr(CN){sub 6}] nanoparticles

    SciTech Connect

    Ridier, Karl; Gillon, Béatrice; André, Gilles; Chaboussant, Grégory; Catala, Laure; Mazérat, Sandra; Mallah, Talal

    2015-09-21

    Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A new length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.

  18. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    SciTech Connect

    Lebedev, D. V. Filatov, M. V.; Kuklin, A. I.; Islamov, A. Kh.; Stellbrink, J.; Pantina, R. A.; Denisov, Yu. Yu.; Toperverg, B. P.; Isaev-Ivanov, V. V.

    2008-01-15

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10{sup -1} to 10{sup -4} A{sup -1} with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 {mu}m and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm.

  19. Small-Angle Neutron Scattering and Electron Microscopy Study of the Wet and Dry High-Temperature Oxidation of Alumina- and Chromia- Forming Stainless Steels

    SciTech Connect

    Rother, Gernot; Keiser, James R; Brady, Michael P; Unocic, Kinga A; Anovitz, Lawrence {Larry} M; Littrell, Ken; Meisner, Roberta Ann; Santella, Michael L; Wesolowski, David J; Cole, David R

    2012-01-01

    Foils of T347 stainless steel and a developmental alumina-forming austenitic (AFA) stainless steel were oxidized at 800 C in dry air, air with 10% H2O, and air with 10% D2O. The T347 foils exhibited a transition to rapid Fe-base oxide formation between 24 and 72 h of exposure in H2O and D2O, but exhibited protective Cr-rich oxide formation in dry air. In contrast, only thin, protective Al-rich oxide surfaces were observed for the AFA alloy foils under all conditions studied. Changes in the small angle neutron scattering (SANS) signal were observed for the T347 stainless steel as a function of oxidation time in dry air, attributed to oxide grain growth and porosity formation/partial scale detachment associated with spinel phase at the scale/gas interface. For the AFA alloy, only minor changes in scattering as a result of oxidation time were observed. For both T347 and AFA, similar scattering was observed in dry and wet air (H2O and D2O) exposure. This finding indicates that water vapor exposure did not induce significant morphological changes in the oxide scales (such as increased porosity) in the 5-300 nm size regime accessed by SANS.

  20. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    PubMed Central

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  1. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites.

    PubMed

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi

    2016-12-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (PH). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for PH = -35% or PH = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å(-1)) varied as a quadratic function of PH and indicated a minimum value at PH = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å(-1)) decreased with increasing PH, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing PH. At PH = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at PH = 29% and PH = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations

  2. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of the Effect of Mn on the Nanostructural Features formed in Irradiated Fe-Cu-Mn Alloys

    SciTech Connect

    Glade, S C; Wirth, B D; Asoka-Kumar, P; Odette, G R; Sterne, P A; Howell, R H

    2003-02-27

    The size, number density and composition of the nanometer defects responsible for the hardening and embrittlement in irradiated Fe-0.9wt.% Cu and Fe-0.9wt.% Cu-1.0wt% Mn model reactor pressure vessel alloys were measured using small angle neutron scattering and positron annihilation spectroscopy. These alloys were irradiated at 290 C to relatively low neutron fluences (E > 1 MeV, 6.0 x 10{sup 20} to 4.0 x 10{sup 21} n/m{sup 2}) in order to study the effect of manganese on the nucleation and growth of copper rich precipitates and secondary defect features. Copper rich precipitates were present in both alloys following irradiation. The Fe-Cu-Mn alloy had smaller precipitates and a larger number density of precipitates, suggesting Mn segregation at the iron matrix-precipitate interface which reduces the interfacial energy and in turn the driving force for coarsening. Mn also retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion.

  3. Interaction of the Full-length Bax Protein with Biomimetic Mitochondrial Liposomes: A Small-Angle Neutron Scattering and Fluorescence Study

    SciTech Connect

    Satsoura, D; Kucerka, Norbert; Shivakumar, S; Pencer, J; Griffiths, C; Leber, B; Andrews, D.W; Katsaras, John; Fradin, C

    2012-01-01

    In response to apoptotic stimuli, the pro-apoptotic protein Bax inserts in the outer mitochondrial membrane, resulting in the formation of pores and the release of several mitochondrial components, and sealing the cell's fate. To study the binding of Bax to membranes, we used an in vitro system consisting of 50 nm diameter liposomes prepared with a lipid composition mimicking that of mitochondrial membranes in which recombinant purified full-length Bax was inserted via activation with purified tBid. We detected the association of the protein with the membrane using fluorescence fluctuation methods, and found that it could well be described by an equilibrium between soluble and membrane-bound Bax and that at a high protein-toliposome ratio the binding seemed to saturate at about 15 Bax proteins per 50 nm diameter liposome. We then obtained structural data for samples in this saturated binding regime using small-angle neutron scattering under different contrast matching conditions. Utilizing a simple model to fit the neutron data, we observed that a significant amount of the protein mass protrudes above the membrane, in contrast to the conjecture that all of the membrane-associated Bax states are umbrella-like. Upon protein binding, we also observed a thinning of the lipid bilayer accompanied by an increase in liposome radius, an effect reminiscent of the action of antimicrobial peptides on membranes.

  4. Model-based Approaches for the Determination of Lipid Bilayer Structure from Small-Angle Neutron and X-ray Scattering Data

    SciTech Connect

    Heberle, Frederick A; Pan, Jianjun; Standaert, Robert F; Drazba, Paul; Kucerka, Norbert; Katsaras, John

    2012-01-01

    Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Ku erka et al. (Ku erka et al. 2012; Ku erka et al. 2008). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent in these models. In particular, it is recognized that standalone data do not contain enough information to fully resolve the structure of inherently disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structural parameters, including the much sought after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data sets, as well as the implementation of local volume conservation in the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.

  5. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-d-maltoside using small-angle neutron scattering and molecular dynamics simulation

    SciTech Connect

    Le, Rosemary K.; Harris, Bradley J.; Iwuchukwu, Ifeyinwa J.; Bruce, Barry D.; Cheng, Xiaolin; Qian, Shuo; Heller, William T.; O’Neill, Hugh; Frymier, Paul D.

    2014-05-01

    Small-angle neutron scattering (SANS) and molecular dynamics (MD) simulation were used to investigate the structure of trimeric photosystem I (PSI) from Thermosynechococcus elongatus (T. elongatus) stabilized in n-dodecyl-β-d-maltoside (DDM) detergent solution. Scattering curves of detergent and protein–detergent complexes were measured at 18% D2O, the contrast match point for the detergent, and 100% D2O, allowing observation of the structures of protein/detergent complexes. It was determined that the maximum dimension of the PSI–DDM complex was consistent with the presence of a monolayer belt of detergent around the periphery of PSI. A dummy-atom reconstruction of the shape of the complex from the SANS data indicates that the detergent envelope has an irregular shape around the hydrophobic periphery of the PSI trimer rather than a uniform, toroidal belt around the complex. A 50 ns MD simulation model (a DDM ring surrounding the PSI complex with extra interstitial DDM) of the PSI–DDM complex was developed for comparison with the SANS data. The results suggest that DDM undergoes additional structuring around the membrane-spanning surface of the complex instead of a simple, relatively uniform belt, as is generally assumed for studies that use detergents to solubilize membrane proteins.

  6. Functionalization of Single-walled Carbon Nanotubes with Thermo-reversible Block Copolymers and Characterization by Small-angle Neutron Scattering

    DOE PAGES

    Han, Youngkyu; Ahn, Suk-kyun; Zhang, Zhe; ...

    2016-06-01

    We demonstrate a protocol for single-walled carbon nanotube functionalization using thermo-sensitive PEO-PPO-PEO triblock copolymers in an aqueous solution In a carbon nanotube/PEO105-PPO70-PEO105 (poloxamer 407) aqueous solution, the amphiphilic poloxamer 407 adsorbs onto the carbon nanotube surfaces and self-assembles into continuous layers, driven by intermolecular interactions between constituent molecules. The addition of 5-methylsalicylic acid changes the self-assembled structure from spherical-micellar to a cylindrical morphology. The fabricated poloxamer 407/carbon nanotube hybrid particles exhibit thermo-responsive structural features so that the density and thickness of poloxamer 407 layers are also reversibly controllable by varying temperature. The detailed structural properties of the poloxamer 407/carbon nanotubemore » particles in suspension can be characterized by small-angle neutron scattering experiments and model fit analyses. The distinct curve shapes of the scattering intensities depending on temperature control or addition of aromatic additives are well described by a modified core-shell cylinder model consisting of a carbon nanotube core cylinder, a hydrophobic shell, and a hydrated polymer layer. In conclusion, this method can provide a simple but efficient way for the fabrication and in-situ characterization of carbon nanotube-based nano particles with a structure-tunable encapsulation.« less

  7. Functionalization of Single-walled Carbon Nanotubes with Thermo-reversible Block Copolymers and Characterization by Small-angle Neutron Scattering

    SciTech Connect

    Han, Youngkyu; Ahn, Suk-kyun; Zhang, Zhe; Smith, Gregory S.; Do, Changwoo

    2016-06-01

    We demonstrate a protocol for single-walled carbon nanotube functionalization using thermo-sensitive PEO-PPO-PEO triblock copolymers in an aqueous solution In a carbon nanotube/PEO105-PPO70-PEO105 (poloxamer 407) aqueous solution, the amphiphilic poloxamer 407 adsorbs onto the carbon nanotube surfaces and self-assembles into continuous layers, driven by intermolecular interactions between constituent molecules. The addition of 5-methylsalicylic acid changes the self-assembled structure from spherical-micellar to a cylindrical morphology. The fabricated poloxamer 407/carbon nanotube hybrid particles exhibit thermo-responsive structural features so that the density and thickness of poloxamer 407 layers are also reversibly controllable by varying temperature. The detailed structural properties of the poloxamer 407/carbon nanotube particles in suspension can be characterized by small-angle neutron scattering experiments and model fit analyses. The distinct curve shapes of the scattering intensities depending on temperature control or addition of aromatic additives are well described by a modified core-shell cylinder model consisting of a carbon nanotube core cylinder, a hydrophobic shell, and a hydrated polymer layer. In conclusion, this method can provide a simple but efficient way for the fabrication and in-situ characterization of carbon nanotube-based nano particles with a structure-tunable encapsulation.

  8. Investigation of the pore structure and morphology of cellulose acetate membranes using small-angle neutron scattering. 2: Ultrafiltration and reverse-osmosis membranes

    SciTech Connect

    Kulkarni, S.; Krause, S. ); Wignall, G.D. . Solid State Div.)

    1994-11-07

    Pore structure in cellulose acetate ultrafiltration (UF) and reverse-osmosis (RO) membranes has been studied using small-angle neutron scattering. Scattering experiments were carried out on dry membranes as well as on membranes swollen with deuterated solvents (D[sub 2]O and CD[sub 3]OD). In addition, the RO membranes were studied both before and after annealing (a process of heating a membrane in a water bath at [approximately]75 C to improve its separation properties). The pore surface in UF membranes was found to be smooth and nonfractal, as evidenced by the fourth power law behavior at high Q. Values of average pore sizes obtained for dry and solvent swollen membranes agree well with pore sizes obtained by other methods. For cellulose acetate RO membranes in their dry state, the unannealed membrane appears to consist of two discrete pore size distributions in the intermediate and high Q region while the annealed membrane contains a much wider distribution of pore sizes. These results give a good account of the changes occurring in the structure of RO membranes as a result of annealing, and agree well with the prediction of other authors.

  9. Investigation of the pore structure and morphology of cellulose acetate membranes using small-angle neutron scattering. 1: Cellulose acetate active layer membranes

    SciTech Connect

    Kulkarni, S.; Krause, S. ); Wignall, G.D. . Solid State Div.); Hammouda, B. . Center for High Resolution Neutron Scattering)

    1994-11-07

    The structure of ultrathin cellulose acetate membranes, known as active layer membranes, has been investigated using small-angle neutron scattering. These membranes are known to have structural and functional similarity to the surface or skin layer in commercial reverse-osmosis (RO) membranes and hence are useful model systems for understanding the structure of the RO membrane skin layer. Active layer membranes were studied after swelling them with either D[sub 2]O or CD[sub 3]OD. The results in both cases clearly indicated the presence of very small (10--20 [angstrom]) porous structures in the membrane. The presence of such pores has been a subject of long-standing controversy in this area. The data were analyzed using a modified Debye-Bueche analysis and the resultant membrane structure was seen to agree well with structural information from electron microscopic studies. Finally, a possible explanation for the differences in scattering observed between the D[sub 2]O swollen membranes and the CD[sub 3]OD swollen membranes has been presented.

  10. Onset and Nature of Fracture of Uniaxially Compressed Gun Propellants. A Small Angle Neutron and X-ray Scattering Study

    DTIC Science & Technology

    1993-08-01

    Avogadro constant , Di is the mass density of material i, the sums are over the k atom types in material i, nk is the number of atoms of type k, Wk is the...subsequent analysis. This includes the ability to obtain averages for constant scattering angle (0) as functions of the azimuthal angle (0). If radial...values for the B specimen are plotted against axial orientation with strain level for each curve remaining constant . The general trend indicated is an

  11. Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Arleth, Lise; Pedersen, Jan Skov

    2001-06-01

    Microemulsions consisting of AOT water, and decane or iso-octane are studied in the region of the phase diagram where surfactant covered water droplets are formed. The polydispersity and shape fluctuations of the microemulsion droplets are determined and compared in the two different alkane types. Conductivity measurements show that there is a pronounced dependence of the temperature behavior of the microemulsion on the type of alkane used. In both cases the microemulsion droplets start to form larger aggregates when the temperature increases. But in the system with decane this aggregation temperature occurs at a temperature about 10 °C lower than in a similar system with iso-octane. Aggregation phenomena are avoided and the two systems are at approximately the same reduced temperature with respect to the aggregation temperature when the temperature of the AOT/D2O/decane microemulsion is 10 °C and the temperature of the AOT/D2O/iso-octane microemulsion is 20 °C. Contrast variation small-angle neutron scattering measurements are performed at these temperatures on systems with volume fractions of 5% D2O+AOT by varying the scattering length density of the alkane. The small-angle scattering for 11 different contrasts evenly distributed around the match points are studied for each sample. The scattering data for the different contrasts are analyzed using a molecular constrained model for ellipsoidal droplets of water covered by AOT, interacting as polydisperse hard spheres. All contrasts are fitted simultaneously by taking the different contrast factors into account. The analysis show that at the same reduced temperature with respect to the aggregation temperature the droplet size, polydispersity index, the size of the shape fluctuations are similar in the two systems. A polydispersity index (σ/R of the Gaussian size distribution) of 16% and an average axis ratio of the droplets of 1.56 is found in the AOT/D2O/decane microemulsion. In the AOT/D2O/iso-octane system

  12. Tuning the instrument resolution using chopper and time of flight at the small-angle neutron scattering diffractometer KWS-2

    PubMed Central

    Radulescu, Aurel; Székely, Noémi Kinga; Polachowski, Stephan; Leyendecker, Marko; Amann, Matthias; Buitenhuis, Johan; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter; Lindner, Peter; Papagiannopoulos, Aristeidis; Pipich, Vitaliy; Willner, Lutz; Frielinghaus, Henrich; Richter, Dieter

    2015-01-01

    Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q-range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution Δλ/λ within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes. PMID:26664343

  13. Characterization of the Decaheme c-type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-ray Scattering and Neutron Reflectometry

    SciTech Connect

    Johs, Alexander; Shi, Liang; Droubay, Timothy; Ankner, John Francis; Liang, Liyuan

    2010-01-01

    The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate electron shuttling, generated by the bacteria s metabolism, to extracellular acceptors that include solid metal oxides such as hematite ( -Fe2O3). To investigate the mechanism by which OmcA interacts with hematite, we purified OmcA and characterized its solution structure by small angle X-ray scattering (SAXS) and its interaction with hematite by neutron reflectometry (NR). SAXS results showed that OmcA is a monomer that adopts a flat ellipsoidal shape with a dimension of 3.4 9.0 6.5 nm3. Changes in redox state affect OmcA conformation. In addition, OmcA interacts with small organic ligands known to act as electron shuttle molecules, such as flavin mononucleotide (FMN), resulting in the formation of high molecular weight assemblies. A model system, developed using NR to study the interaction of OmcA with hematite, shows that OmcA forms a well-defined monomolecular layer on hematite surfaces. This allows OmcA to preferentially interact with hematite in a conformation that maximizes its contact area with the mineral surface. Overall, these results provide experimental and quantitative evidence for OmcA reduction of solid metal oxides involving both direct and indirect mechanisms.

  14. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    DOE PAGES

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; ...

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin.more » Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.« less

  15. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    SciTech Connect

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J.E.; Bu, Zimei

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin. Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.

  16. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering*

    PubMed Central

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei

    2015-01-01

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402

  17. Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering

    PubMed Central

    Sugiyama, Masaaki; Yagi, Hirokazu; Ishii, Kentaro; Porcar, Lionel; Martel, Anne; Oyama, Katsuaki; Noda, Masanori; Yunoki, Yasuhiro; Murakami, Reiko; Inoue, Rintaro; Sato, Nobuhiro; Oba, Yojiro; Terauchi, Kazuki; Uchiyama, Susumu; Kato, Koichi

    2016-01-01

    The molecular machinery of the cyanobacterial circadian clock consists of three proteins: KaiA, KaiB, and KaiC. Through interactions among the three Kai proteins, the phosphorylation states of KaiC generate circadian oscillations in vitro in the presence of ATP. Here, we characterized the complex formation between KaiB and KaiC using a phospho-mimicking mutant of KaiC, which had an aspartate substitution at the Ser431 phosphorylation site and exhibited optimal binding to KaiB. Mass-spectrometric titration data showed that the proteins formed a complex exclusively in a 6:6 stoichiometry, indicating that KaiB bound to the KaiC hexamer with strong positive cooperativity. The inverse contrast-matching technique of small-angle neutron scattering enabled selective observation of KaiB in complex with the KaiC mutant with partial deuteration. It revealed a disk-shaped arrangement of the KaiB subunits on the outer surface of the KaiC C1 ring, which also serves as the interaction site for SasA, a histidine kinase that operates as a clock-output protein in the regulation of circadian transcription. These data suggest that cooperatively binding KaiB competes with SasA with respect to interaction with KaiC, thereby promoting the synergistic release of this clock-output protein from the circadian oscillator complex. PMID:27752127

  18. Effect of successive alkylation of N,N-dialkyl amides on the complexation behavior of uranium and thorium: solvent extraction, small angle neutron scattering, and computational studies.

    PubMed

    Verma, Parveen Kumar; Pathak, Priyanath N; Kumari, Neelam; Sadhu, Biswajit; Sundararajan, Mahesh; Aswal, Vinod Kumar; Mohapatra, Prasanta Kumar

    2014-12-11

    The effect of successive alkylation of the Cα atom adjacent to the carbonyl group in N,N-dialkyl amides (i.e., di(2-ethylhexyl)acetamide (D2EHAA), di(2-ethylhexyl)propionamide (D2EHPRA), di(2-ethylhexyl)isobutyramide (D2EHIBA), and di(2-ethylhexyl)pivalamide (D2EHPVA)) on the extraction behavior of hexavalent uranium (U(VI)) and tetravalent thorium (Th(IV)) ions has been investigated. These studies show that the extraction of Th(IV) is significantly suppressed compared to that of U(VI) with increased branching at the Cα atom adjacent to the carbonyl group. Small angle neutron scattering (SANS) studies showed an increased aggregation tendency in the presence of nitric acid and metal ions. D2EHAA showed more aggregation compared to its branched homologues, which explains its capacity for higher extraction of metal ions. These experimental observations were further supported by density function theory calculations, which provided structural evidence of differential binding affinities of these extractants for uranyl cations. The complexation process is primarily controlled by steric and electronic effects. Quantum chemical calculations showed that local hardness and polarizability can be extremely useful inputs for designing novel extractants relevant to a nuclear fuel cycle.

  19. Microstructure of oxide dispersion strengthened Eurofer and iron-chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Heintze, C.; Bergner, F.; Ulbricht, A.; Hernández-Mayoral, M.; Keiderling, U.; Lindau, R.; Weissgärber, T.

    2011-09-01

    Oxide dispersion strengthening of ferritic/martensitic chromium steels is a promising route for the extension of the range of operation temperatures for nuclear applications. The investigation of dedicated model alloys is an important means in order to separate individual effects contributing to the mechanical behaviour under irradiation and to improve mechanistic understanding. A powder metallurgy route based on spark plasma sintering was applied to fabricate oxide dispersion strengthened (ODS) Fe9Cr model materials. These materials along with Eurofer97 and ODS-Eurofer were investigated by means of small-angle neutron scattering (SANS) and TEM. For Fe9Cr-0.6 wt.%Y 2O 3, TEM results indicate a peak radius of the size distribution of Y 2O 3 particles of 4.2 nm with radii ranging up to 15 nm, and a volume fraction of 0.7%, whereas SANS indicates a peak radius of 3.8 nm and a volume fraction of 0.6%. It was found that the non-ODS Fe9Cr and Eurofer97 are suitable reference materials for ODS-Fe9Cr and ODS-Eurofer, respectively, and that the ODS-Fe9Cr variants are suitable model materials for the separated investigation of irradiation-Y 2O 3 particle interaction effects.

  20. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  1. Protein crowding in solution, frozen and freeze-dried states: small-angle neutron and X-ray scattering study of lysozyme/sorbitol/water systems

    NASA Astrophysics Data System (ADS)

    Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi

    2015-03-01

    For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.

  2. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    SciTech Connect

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  3. Small-angle neutron scattering analysis of Mn–C clusters in high-manganese 18Mn–0.6C steel

    SciTech Connect

    Kang, Mihyun; Shin, Eunjoo; Woo, Wanchuck; Lee, Young-Kook

    2014-10-15

    Nanometer-scale particles (Mn–C clusters) were analyzed quantitatively using small-angle neutron scattering in 18Mn–0.6C (wt.%) austenite high-manganese steel. The size, number, and volume fraction of the particles were determined as a function of strain (0, 5, 15, 30, 45, 50%) at different temperatures (25 and 100 °C). The diameter of the cluster ranges from 2 to 14 nm in the matrix. The total volume fraction of the cluster significantly increases from 2.7 × 10{sup −6} to 8.7 × 10{sup −6} as the strain increases. Such clustering phenomenon is correlated to the serration behavior under loading in high-manganese steels. - Highlights: • Show Mn-C clustering as function of strain in 18Mn-0.6C TWIP steel. • Determine the size, number, and volume fraction of clusters quantitatively. • Compare the clustering behavior at 25 and 100 °C.

  4. Small-Angle Neutron Scattering Reveals pH-Dependent Conformational Changes in Trichoderma reesei Cellobiohydrolase I: Implications for Enzymatic Activity

    SciTech Connect

    Pingali, Sai Venkatesh; O'Neill, Hugh Michael; McGaughey, Joseph; Urban, Volker S; Rempe, Caroline S; Petridis, Loukas; Smith, Jeremy C; Evans, Barbara R; Heller, William T

    2011-01-01

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4 5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.

  5. Effects of N,N-dimethyl-N-alkylamine-N-oxides on DOPC bilayers in unilamellar vesicles: small-angle neutron scattering study.

    PubMed

    Belička, Michal; Kučerka, Norbert; Uhríková, Daniela; Islamov, Akhmed Kh; Kuklin, Alexander I; Devínsky, Ferdinand; Balgavý, Pavol

    2014-05-01

    Small-angle neutron scattering data were collected from aqueous dispersions of unilamellar vesicles (ULVs) consisting of mixtures of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine and a homologous series of N,N-dimethyl-N-alkylamine-N-oxides (CnNO, n = 12, 14, 16, and 18, where n is the number of carbon atoms in the alkyl chain). A modeling approach was applied to the neutron scattering curves to obtain the bilayer structural parameters. Particularly, the external (2)H2O/H2O contrast variation technique was carried out on pure dioleoylphosphatidylcholine (DOPC) ULVs to determine the hydrophilic region thickness [Formula: see text] = 9.8 ± 0.6 Å. Consequently, the hydrocarbon region thickness [Formula: see text], the lateral bilayer area per one lipid molecule [Formula: see text], and the number of water molecules located in the hydrophilic region per one lipid molecule [Formula: see text] were obtained from single-contrast neutron scattering curves using the previously determined [Formula: see text]. The structural parameters were extracted as functions of [Formula: see text] (the CnNO:DOPC molar ratio) and n. The dependences [Formula: see text] provided the partial lateral areas of CnNOs ([Formula: see text]) and DOPC ([Formula: see text]) in bilayers. It was observed that the [Formula: see text]'s were constant in the investigated interval of [Formula: see text] and for n = 12, 14, and 16 equal to 36.6 ± 0.4 Å(2), while [Formula: see text] increased to 39.4 ± 0.4 Å(2). The bilayer hydrocarbon region thickness [Formula: see text] decreased with intercalation of each CnNO. This effect increased with [Formula: see text] and decreased with increasing CnNO alkyl chain length. The intercalation of C18NO changed the [Formula: see text] only slightly. To quantify the effect of CnNO intercalation into DOPC bilayers we fit the [Formula: see text] dependences with weighted linear approximations and acquired their slopes [Formula: see text].

  6. Characterization of the Decaheme c-Type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-Ray Scattering and Neutron Reflectometry

    SciTech Connect

    Johs, A.; Shi, L.; Droubay, T.; Ankner, J. F.; Liang, L.

    2010-06-15

    The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate shuttling of electrons to extracellular acceptors that include solid metal oxides such as hematite (α-Fe2O3). No information is yet available concerning OmcA structure in physiologically relevant conditions such as aqueous environments. We purified OmcA and characterized its solution structure by small angle x-ray scattering (SAXS), and its interaction at the hematite-water interface by neutron reflectometry. SAXS showed that OmcA is a monomer that adopts a flat ellipsoidal shape with an overall dimension of 34 × 90 × 65 Å3. To our knowledge, we obtained the first direct evidence that OmcA undergoes a redox state-dependent conformational change in solution whereby reduction decreases the overall length of OmcA by ~7 Å (the maximum dimension was 96 Å for oxidized OmcA, and 89 Å for NADH and dithionite-reduced OmcA). OmcA was also found to physically interact with electron shuttle molecules such as flavin mononucleotide, resulting in the formation of high-molecular-weight assemblies. Neutron reflectometry showed that OmcA forms a well-defined monomolecular layer on hematite surfaces, where it assumes an orientation that maximizes its contact area with the mineral surface. Finally, these novel insights into the molecular structure of OmcA in solution, and its interaction with insoluble hematite and small organic ligands, demonstrate the fundamental structural bases underlying OmcA's role in mediating redox processes.

  7. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50–xCoxMn₄₀Sn₁₀ alloys

    DOE PAGES

    Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; ...

    2012-04-27

    The Heusler-derived multiferroic alloy Ni50–xCoxMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390 K. Themore » static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less

  8. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    NASA Astrophysics Data System (ADS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  9. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    SciTech Connect

    Schmidt, A. E. Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  10. Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small-angle neutron scattering

    SciTech Connect

    Arleth, Lise; Pedersen, Jan Skov

    2001-06-01

    Microemulsions consisting of AOT water, and decane or iso-octane are studied in the region of the phase diagram where surfactant covered water droplets are formed. The polydispersity and shape fluctuations of the microemulsion droplets are determined and compared in the two different alkane types. Conductivity measurements show that there is a pronounced dependence of the temperature behavior of the microemulsion on the type of alkane used. In both cases the microemulsion droplets start to form larger aggregates when the temperature increases. But in the system with decane this aggregation temperature occurs at a temperature about 10{degree}C lower than in a similar system with iso-octane. Aggregation phenomena are avoided and the two systems are at approximately the same reduced temperature with respect to the aggregation temperature when the temperature of the AOT/D{sub 2}O/decane microemulsion is 10{degree}C and the temperature of the AOT/D{sub 2}O/iso-octane microemulsion is 20{degree}C. Contrast variation small-angle neutron scattering measurements are performed at these temperatures on systems with volume fractions of 5% D{sub 2}O+AOT by varying the scattering length density of the alkane. The small-angle scattering for 11 different contrasts evenly distributed around the match points are studied for each sample. The scattering data for the different contrasts are analyzed using a molecular constrained model for ellipsoidal droplets of water covered by AOT, interacting as polydisperse hard spheres. All contrasts are fitted simultaneously by taking the different contrast factors into account. The analysis show that at the same reduced temperature with respect to the aggregation temperature the droplet size, polydispersity index, the size of the shape fluctuations are similar in the two systems. A polydispersity index ({sigma}/R of the Gaussian size distribution) of 16% and an average axis ratio of the droplets of 1.56 is found in the AOT/D{sub 2}O

  11. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques.

  12. Pore characteristics and their emergent effect on water adsorption and transport in clays using small-angle neutron scattering with contrast variation

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2013-12-01

    In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for

  13. Effect of Protein Incorporation on the Nanostructure of the Bicontinuous Microemulsion Phase of Winsor-III Systems: A Small-Angle Neutron Scattering Study

    DOE PAGES

    Hayes, Douglas G.; Gomez del Rio, Javier A.; Ye, Ran; ...

    2015-01-20

    Small-angle neutron scattering (SANS) analysis using the Teubner₋Strey model has been employed to evaluate the effect of protein incorporation into the middle, bicontinuous microemulsion (BμE) phase of Winsor-III (WIII) systems formed by an aerosol-OT (AOT)/alkyl ethoxylate mixed surfactant system to understand better the extraction of proteins into and out of BμEs and to study the effect of proteins on a system that serves as a biomimetic analog of cell membranes. Under conditions of high salinity, the incorporation of positively charged proteins cytochrome c, lysozyme, and α-chymotrypsin, near their solubilization limit in the BμEs promoted the release of water and oilmore » from the BμEs, a decrease in the quasi-periodic repeat distance (d), an increase in ordering (a decrease in the amphiphilicity factor, fa) for the surfactant monolayers, and a decrease in the surface area per surfactant headgroup, suggesting that the proteins affected the self-assembly of components in the BμE phase and produced Debye shielding of AOTs sulfonate headgroup. For WIII systems possessing lower salinity, cytochrome c reduced the efficiency of surfactant in the BμE phase, noted by increases in d and fa, suggesting that the enzyme and AOT underwent ion pairing. We find that the results of this study demonstrate the importance of ionic strength to modulate proteinsurfactant interactions, which in turn will control the release of proteins encapsulated in the BμEs, relevant to WIII-based protein extraction and controlled release from BμE delivery systems, and demonstrate the utility of BμEs as a model system to understand the effect of proteins on biomembranes.« less

  14. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    SciTech Connect

    Wang, Hsiu-Wen; Anovitz, Lawrence {Larry} M; Burg, Avihu; Cole, David; Allard Jr, Lawrence Frederick; Jackson, Andrew J; Stack, Andrew G; Rother, Gernot; Ciarlette, Diane D

    2013-01-01

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests that increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.

  15. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  16. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins.

    PubMed

    Zaccai, Nathan R; Sandlin, Clifford W; Hoopes, James T; Curtis, Joseph E; Fleming, Patrick J; Fleming, Karen G; Krueger, Susan

    2016-01-01

    In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling.

  17. Deuterium Labeling Together with Contrast Variation Small-angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins

    PubMed Central

    Zaccai, Nathan R.; Sandlin, Clifford W.; Hoopes, James T.; Curtis, Joseph E.; Fleming, Patrick J.; Fleming, Karen G.; Krueger, Susan

    2016-01-01

    In gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archeal prefoldins and the mitochondrial Tim chaperones, that is α-helical ‘tentacles’ extend from a β-strand ‘body’ to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis and structure modeling. PMID:26791979

  18. Effect of Protein Incorporation on the Nanostructure of the Bicontinuous Microemulsion Phase of Winsor-III Systems: A Small-Angle Neutron Scattering Study

    SciTech Connect

    Hayes, Douglas G.; Gomez del Rio, Javier A.; Ye, Ran; Urban, Volker S.; Pingali, Sai Venkatesh; O’Neill, Hugh M.

    2015-01-20

    Small-angle neutron scattering (SANS) analysis using the Teubner₋Strey model has been employed to evaluate the effect of protein incorporation into the middle, bicontinuous microemulsion (BμE) phase of Winsor-III (WIII) systems formed by an aerosol-OT (AOT)/alkyl ethoxylate mixed surfactant system to understand better the extraction of proteins into and out of BμEs and to study the effect of proteins on a system that serves as a biomimetic analog of cell membranes. Under conditions of high salinity, the incorporation of positively charged proteins cytochrome c, lysozyme, and α-chymotrypsin, near their solubilization limit in the BμEs promoted the release of water and oil from the BμEs, a decrease in the quasi-periodic repeat distance (d), an increase in ordering (a decrease in the amphiphilicity factor, fa) for the surfactant monolayers, and a decrease in the surface area per surfactant headgroup, suggesting that the proteins affected the self-assembly of components in the BμE phase and produced Debye shielding of AOTs sulfonate headgroup. For WIII systems possessing lower salinity, cytochrome c reduced the efficiency of surfactant in the BμE phase, noted by increases in d and fa, suggesting that the enzyme and AOT underwent ion pairing. We find that the results of this study demonstrate the importance of ionic strength to modulate proteinsurfactant interactions, which in turn will control the release of proteins encapsulated in the BμEs, relevant to WIII-based protein extraction and controlled release from BμE delivery systems, and demonstrate the utility of BμEs as a model system to understand the effect of proteins on biomembranes.

  19. Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers1

    PubMed Central

    Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi

    2016-01-01

    Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae. PMID:27738412

  20. Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol) Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length

    SciTech Connect

    Cheng, Gang; Hong, Kunlun; Hua, Fengjun; Melnichenko, Yuri B; Wignall, George D; Mays, Jimmy

    2008-01-01

    The conformation and clusterization of comb like polymers of polystyrene densely grafted with oligo(ethylene glycol) (OEG) side chains in 1.0 wt% solutions of D2O, toluene-d8 and methanol-d4 was investigated as a function of the degree of polymerization (DP) of the backbone by small angle neutron scattering (SANS). Each side chain had four EG repeat units and the DP of the polystyrene backbone was varied from 8 to 85. The global conformation of the polymers in toluene and methanol was shown to assume ellipsoidal, cylindrical or worm-like chain morphologies with increasing DP of the polystyrene backbone. At the same time, in D2O, the polymer conformation was described by the form factor of rigid cylinders. The second viral coefficient was measured for the polymer with a DP of 85 in all three solvents and the solvent quality of toluene, methanol and D2O was identified as good, marginal and poor for this polymer. Due to a poor solvent quality, the PS backbone (DP = 85) is partially collapsed in D2O whereas it is moderately expanded in toluene and methanol. Polymers with the DP of 8 were found to aggregate into clusters in all three solvents, with the characteristic size between 100 and 200 ?and a fractal dimension of 2. With increase of the DP, the clusters diminished in D2O and completely disappeared in toluene and methanol. This observation suggests that the clusterization of these short side-chain polymers is caused by end group and hydrogen bonding interactions between different chains.

  1. Small-angle neutron scattering instrument of Institute for Solid State Physics, the Univeristy of Tokyo (SANS-U) and its application to biology

    SciTech Connect

    Ito, Yuji; Imai, Masayuki; Takahashi, Shiro

    1994-12-31

    A small-angle neutron spectrometer (SANS-U) suitable for the study of mesoscopic structure in the field of polymer chemistry and biology, has been constructed at the guide hall of JRR-3M reactor at the Japan Atomic Energy Research Institute. The instrument is 32m long and utilizes a mechanical velocity selector and pinhole collimation to provide a continuous beam with variable wavelength in the range from 5 to 10{Angstrom}. The neutron detector is a 65 x 65cm{sup 2} 2D position sensitive proportional counter. The practical Q range of SANS-U is 0.0008 to 0.45{Angstrom}{sup -1}. The design, characteristics and performance of SANS-U are described with some biological studies using SANS-U.

  2. A combined method of small-angle neutron scattering and neutron radiography to visualize water in an operating fuel cell over a wide length scale from nano to millimeter

    NASA Astrophysics Data System (ADS)

    Iwase, H.; Koizumi, S.; Iikura, H.; Matsubayashi, M.; Yamaguchi, D.; Maekawa, Y.; Hashimoto, T.

    2009-06-01

    In order to visualize water generated in an operating polymer electrolyte fuel cell (PEFC), a neutron radiography (NR) apparatus, composed of a scintillator, optical mirrors and a CCD camera, was installed at a sample position of the focusing and polarized neutron small-angle scattering (SANS) spectrometer (SANS-J-II) at research reactor JRR-3 at Japan Atomic Energy Agency, Tokai, Japan. By combining SANS and NR, we aim to cover a wide length scale from nanometer to millimeter. The new method succeeded in detecting a spatial distribution of the water generated in individual cell elements; NR detected the water in a gas diffusion layer and a flow field, whereas SANS quantitatively determines the water content in a membrane electrode assembly (MEA).

  3. Small-angle X-ray and neutron scattering study of Nafion-SiO2 hybrid membranes prepared in different solvent media

    NASA Astrophysics Data System (ADS)

    Dresch, M. A.; Matos, B. R.; Fonseca, F. C.; Santiago, E. I.; Carmo, M.; Lanfredi, A. J. C.; Balog, S.

    2015-01-01

    Nafion-SiO2 hybrid electrolytes were synthesized by sol-gel reaction. The homogeneity, structural properties, and proton conductivity of the hybrid membranes were studied. Small-angle scattering analyses indicate that the Nafion structural matrix was preserved on the nanoscale, and the growth of silica particles occurred both in the ionic and nonionic domains of Nafion, which resulted in hybrids with characteristic morphologies. The water uptake and the weight fraction of the inorganic phase were found to be dependent on the alcohol solvent used for the sol-gel synthesis. Nafion-silica hybrids with homogeneous distribution of the inorganic phase were obtained using methanol as the solvent for the sol-gel reaction. The observed microstructural properties of the Nafion-silica membranes were related to enhanced proton conductivity at high temperatures and low relative humidity conditions.

  4. Branch Content in Hybrid Materials using Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Beaucage, Greg

    2005-03-01

    Inorganic/organic hybrid materials often display ramified mass- fractal structures characterized by primary particle size, aggregate size, and mass-fractal dimension. Physical properties, such as mechanical and dynamic mechanical properties and electrical conductivity (in carbon composites for instance), can not be predicted using only these structural features since such properties are intimately tied to the degree and type of branching as shown by Witten [1]. Witten suggested the use of the minimum dimension, or the related connectivity dimension, to calculate mechanical response in these hybrid systems. A viable technique to quantify the minimum dimension and connectivity dimension in hybrid materials has, until recently, been absent from the literature. This presentation will discuss the use of small-angle x-ray and neutron scattering to describe branch content in hybrid materials [2] and will outline an approach to use the minimum dimension and connectivity dimension to predict static and dynamic mechanical properties for hybrid materials based on structure [1, 3]. 1. Witten TA, Rubinstein M, Colby RH Reinforcement of Rubber by Fractal Aggregates J Phys II 3 (3): 367-383 (1993). 2. Beaucage G Determination of branch fraction and minimum dimension of mass-fractal aggregates Phys Rev E 70 (3): art. no. 031401 Part 1 (2004). 3. Kohls DJ, Beaucage G Rational design of reinforced rubber Curr Opin Solid St M 6 (3): 183-194 (2002).

  5. Reconstruction from small-angle neutron scattering measurements of the real space magnetic field distribution in the mixed state of Sr2RuO4.

    PubMed

    Kealey, P G; Riseman, T M; Forgan, E M; Galvin, L M; Mackenzie, A P; Lee, S L; Paul, D M; Cubitt, R; Agterberg, D F; Heeb, R; Mao, Z Q; Maeno, Y

    2000-06-26

    We have measured the diffracted neutron scattering intensities from the square magnetic flux lattice in the perovskite superconductor Sr2RuO4, which is thought to exhibit p-wave pairing with a two-component order parameter. The relative intensities of different flux lattice Bragg reflections over a wide range of field and temperature have been shown to be inconsistent with a single component Ginzburg-Landau theory but qualitatively agree with a two-component p-wave Ginzburg-Landau theory.

  6. Evaluation of Pore Networks in Caprocks at Geologic Storage Sites: A Combined Study using High Temperature and Pressure Reaction Experiments, Small Angle Neutron Scattering, and Focused Ion Beam-Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Mouzakis, K. M.; Sitchler, A.; Wang, X.; McCray, J. E.; Kaszuba, J. P.; Rother, G.; Dewers, T. A.; Heath, J. E.

    2011-12-01

    Low permeability rock units, often shales or mudstones, that overlie geologic formations under consideration for CO2 sequestration will help contain injected CO2. CO2 that does flow through these rocks will dissolve into the porewaters, creating carbonic acid lowering the pH. This perturbation of the system may result in mineral dissolution or precipitation, which can change the pore structure and impact the flow properties of the caprocks. In order to investigate the impacts that reaction can have on caprock pore structure, we performed a combination of high pressure high temperature reaction experiments, small angle neutron scattering (SANS) experiments and high resolution focused ion beam-scanning electron microscope (FIB-SEM) imaging on samples from the Gothic shale and Marine Tuscaloosa Group. Small angle neutron scattering was performed on unreacted and reacted caprocks at the High Flux Isotope Reactor at Oak Ridge National Laboratory. New precipitates and pores are observed in high-resolution images of the reacted samples. The precipitates have been preliminarily identified as gypsum or anhydrite, and sulfide minerals. Results from small angle neutron scattering, a technique that provides information about pores and pore/mineral interfaces at scales ~ 5 to 300 nm, show an increased porosity and specific surface area after reaction with brine and CO2. However, there appear to be differences in how the pore networks change between the two samples that are related to sample mineralogy and original pore network structure. Changes to pores and formation of new pores may lead to different capillary sealing behavior and permeability. This combination of controlled laboratory experiments, neutron scattering and high-resolution imaging provides detailed information about the geochemical processes that occur at the pore scale as CO2 reacts with rocks underground. Such information is integral to the evaluation of large-scale CO2 sequestration as a feasible technology

  7. Observation of Well-ordered Metastable Vortex Lattice Phases in Superconducting MgB2 Using Small-Angle Neutron Scattering

    SciTech Connect

    Das, Pinaki; Rastovski, Catherine; O'Brien, Timothy; Schlesinger, Kimberly; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2012-01-01

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB2 for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  8. Windows for small-angle X-ray scattering cryostats.

    PubMed

    Lurio, Laurence; Mulders, Norbert; Paetkau, Mark; Jemian, Pete R; Narayanan, Suresh; Sandy, Alec

    2007-11-01

    To determine the suitability of commonly used windows for small-angle X-ray scattering, a range of materials, including Kapton, (aluminized) Mylar, beryllium, high-purity aluminium foil, mica and silicon nitride have been studied. At small wavevector transfers, Q, in the range 2 x 10(-3) to 0.2 nm(-1), the scattering from Kapton, mica and beryllium is reasonably well described by power laws in Q with exponents of -3.25, -3.6 and -3.9, respectively. There are large variations in the scattering from mica, but a freshly cleaved natural mica window was by far the weakest scatterer. For applications where radiation in the infrared or visible range should be blocked, aluminized Mylar is the most suitable material. Both Mylar and Kapton can be used to make very simple demountable superfluid-tight windows using indium O-ring seals.

  9. A small angle neutron scattering study of the adsorbed asphaltene layer in water-in-hydrocarbon emulsions: structural description related to stability.

    PubMed

    Jestin, Jacques; Simon, Sébastien; Zupancic, Lina; Barré, Loïc

    2007-10-09

    We have developed a specific protocol to study with SANS measurements, the structure of the interfacial film layer in water-in-oil emulsions stabilized by asphaltene. Using the contrast matching technique available for neutron scattering, we have access to both the composition and the quantity of interface. The results obtained give us a view of the asphaltene aggregates in the interfacial film, which are structured as a monolayer and show a direct correlation between the size of asphaltene aggregates in solution and the thickness of the film layer. The organization of the interface has been studied as a function of several parameters such as the quantity of resins, i.e., the size of aggregates, the pH of the aqueous phase, and the aging time of the emulsions and the consequences of these variations on the macroscopic stability of these emulsions. We show that the key parameter for the stability is the inter-asphaltene aggregate interaction inside the film layer. Changing the attractive/repulsive balance between the aggregates in the film at the microscopic scale, by changing the aggregate's size or the aggregate's ionization, has a direct incidence on the quantity of water recovered after centrifugation: the stronger the attraction between aggregates in the film, the more stable the emulsion is.

  10. Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering.

    PubMed

    Golub, M; Combet, S; Wieland, D C F; Soloviov, D; Kuklin, A; Lokstein, H; Schmitt, F-J; Olliges, R; Hecht, M; Eckert, H-J; Pieper, J

    2017-04-01

    The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well described using a cylindrical shape with a length of about 225Å and a diameter of approximately 100Å. This finding is qualitatively consistent with earlier electron microscopy studies reporting a rod-like shape of the phycobiliproteins with a length of about 250 (M. Chen et al., FEBS Letters 583, 2009, 2535) or 300Å (J. Marquart et al., FEBS Letters 410, 1997, 428). In contrast, phycobiliproteins dissolved in buffer lacking phosphate revealed a splitting of the rods into cylindrical subunits with a height of 28Å only, but also a pronounced sample aggregation. Complementary small angle neutron and X-ray scattering experiments on phycocyanin suggest that the cylindrical subunits may represent either trimeric phycocyanin or trimeric allophycocyanin. Our findings are in agreement with the assumption that a phycobiliprotein rod with a total height of about 225Å can accommodate seven trimeric phycocyanin subunits and one trimeric allophycocyanin subunit, each of which having a height of about 28Å. The structural information obtained by small angle neutron and X-ray scattering can be used to interpret variations in the low-energy region of the 4.5K absorption spectra of phycobiliproteins dissolved in buffer solutions containing and lacking phosphate, respectively.

  11. Accounting for thermodynamic non-ideality in the Guinier region of small-angle scattering data of proteins.

    PubMed

    Scott, David J

    2016-12-01

    Hydrodynamic studies of the solution properties of proteins and other biological macromolecules are often hard to interpret when the sample is present at a reasonably concentrated solution. The reason for this is that solutions exhibit deviations from ideal behaviour which is manifested as thermodynamic non-ideality. The range of concentrations at which this behaviour typically is exhibited is as low as 1-2 mg/ml, well within the range of concentrations used for their analysis by techniques such as small-angle scattering. Here we discuss thermodynamic non-ideality used previously used in the context of light scattering and sedimentation equilibrium analytical ultracentrifugation and apply it to the Guinier region of small-angle scattering data. The results show that there is a complementarity between the radially averaged structure factor derived from small-angle X-ray scattering/small-angle neutron scattering studies and the second virial coefficient derived from sedimentation equilibrium analytical ultracentrifugation experiments.

  12. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    PubMed

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.

  13. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    SciTech Connect

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; Zhang, Ping; Heller, William T.; Taylor, Susan S.

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.

  14. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    DOE PAGES

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; ...

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme ismore » much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.« less

  15. Small angle scattering methods to study porous materials under high uniaxial strain

    SciTech Connect

    Le Floch, Sylvie Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-15

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  16. Small angle scattering methods to study porous materials under high uniaxial strain

    NASA Astrophysics Data System (ADS)

    Le Floch, Sylvie; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-01

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  17. Small angle x-ray scattering with edge-illumination

    NASA Astrophysics Data System (ADS)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  18. Small angle x-ray scattering with edge-illumination

    PubMed Central

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-01-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond. PMID:27491917

  19. Microstructure and rheology of a thermoreversible gel under large amplitude oscillatory shear (LAOS) deformation using time-resolved oscillatory rheo-small-angle neutron scattering (tOr-SANS)

    NASA Astrophysics Data System (ADS)

    Kim, Jung Min; Gurnon, A. Kate; Wagner, Norman; Eberle, Aaron

    2013-03-01

    Large amplitude oscillatory shear (LAOS) rheology is an effective way of studying the nonlinear dynamics of complex fluids. Here, we present a new method for a direct, quantitative study of the microstructure under LAOS deformation in the framework of the alignment factor, Af. We use a model thermoreversible adhesive hard-sphere system composed of octadecyl-coated silica particles suspended in n-tetradecane. With temperature the particle potential is controlled and the system is shifted from behaving as a near hard-sphere to an adhesive hard-sphere system leading to aggregation and ultimately a dynamical arrest transition to macroscopic gelation. Time-resolved oscillatory rheo-small-angle neutron scattering (tOr-SANS) measurements in the 1-3 plane are performed by stroboscopically probing the structural evolution as a function of time during LAOS. Under strong shear, the 2D scattering pattern of the system in the gelled state exhibits a strong anisotropy commonly known as a ``butterfly'' pattern, which corresponds to the stretching of the microstructure along the flow direction. The first structure-Lissajous plots of this model system are presented in terms of an order parameter and Af as a function of instantaneous strain and strain rate. This new analysis demonstrates a novel method for simultaneously measuring the rheology and microstructure during a time-dependent deformation (LAOS).

  20. Small angle elastic scattering of protons off of spinless nuclei

    SciTech Connect

    Ling, A.G.

    1988-07-01

    Elastic differential cross sections and analyzing powers for 800 MeV protons incident on /sup 12/C, /sup 40/Ca, and /sup 208/Pb in the momentum transfer range 20 MeV/c < q < 130 MeV/c have been measured. The data was taken with the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility. Special delay-line drift chambers with dead regions for the beam to pass through them were used to obtain the data. Through the interference of the Coulomb and nuclear contributions to the differential cross section in the small angle region, the ratio of the real to imaginary part of the forward nuclear amplitude ..cap alpha../sub n/(0) = Ref/sub n/(0)/Imf/sub n/(0) is extracted. The importance of knowing this quantity at lower energies in order to study the differences between relativistic and non-relativistic scattering theories is discussed. 130 refs., 60 figs., 12 tabs.

  1. Limits of applicability of the concept of scattering amplitude in small-angle scattering problems

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.; Lvov, D. V.

    2014-01-01

    The applicability of the concept of scattering amplitude to the description of small-angle scattering experiments has been considered. An expression has been obtained for a scattered radiation flux on a detector under much milder conditions than the condition of Fraunhofer diffraction. The influence of incoherence of the source on the results has been evaluated.

  2. Cryocup - Compact spherical neutron polarimetry device for small angle measurement

    NASA Astrophysics Data System (ADS)

    Wang, Tianhao

    In my thesis I describe my research work of developing a compact device for Spherical Neutron Polarimetry (SNP) measurements at small neutron scattering angles. The thesis first introduced the purpose of this research project, which is developing an easy to use and maintain version of an advanced neutron experiment technique (SNP). After the introduction, the design principle and construction detail of the prototype device is demonstrated. The design principle is based on our finite element simulation of the device's magnetic field profile, and is later verified by the performance test experiment. The prototype device is tested at the SESAME neutron beamline at Indiana University and the HB-2D beamline at Oak Ridge National laboratory. The performance test data are analyzed and proof that the design is successful and the prototype is capable of perform accurate SNP measurement. Based on the test result, the prototype device is utilized to perform SNP measurement on two types of magnetic film sample: Permalloy and Metglas. Combined with other characterization method such as SQUID and MFM, I study the magnetization of these two samples both at zero magnetic field environment and in external field. The SNP data provided by the prototype device is discussed in the thesis and provide detailed information about the magnetization, which is also not accessible through other method. In the end, the possible improvement and the future application of the device is discussed.

  3. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50–xCoxMn₄₀Sn₁₀ alloys

    SciTech Connect

    Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; James, R. D.; Leighton, C.

    2012-04-27

    The Heusler-derived multiferroic alloy Ni50–xCoxMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390 K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.

  4. An overview of resid characterization by mass spectrometry and small angle scattering techniques.

    SciTech Connect

    Hunt, J. E.; Winans, R. E.

    1999-07-14

    The purpose of this presentation is to discuss what is known about the molecular structures found in petroleum resid from mass spectrometry and small angle neutron and X-ray scattering methods. The question about molecular size distributions and the occurrence of aggregation in the asphaltene fraction will be examined. Our understanding of this problem has evolved with the application of new analytical methods. Also, correlations with results from other approaches will be discussed. In addition, the issue of the nature of the heteroatom-containing molecules will be examined and the challenges that remain in this area.

  5. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering

    SciTech Connect

    Raghuwanshi, Vikram Singh; Harizanova, Ruzha; Tatchev, Dragomir; Hoell, Armin; Rüssel, Christian

    2015-02-15

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.

  6. Convex and concave successions of power-law decays in small-angle scattering

    NASA Astrophysics Data System (ADS)

    Anitas, E. M.

    2016-08-01

    The small-angle scattering (SAS) structure factor from a new model of a 3D deterministic fractal in which the relative positions and the number of structural units vary with fractal iteration number is calculated. It is shown that, depending on the relative positions of scattering units inside the fractal, we can obtain various types of power-law successions, such as: convex/concave - when the absolute value of the scattering exponent of the first power-law decay is higher/smaller than that of the subsequent power- law decay, or any combination of them (i.e. convex-concave or concave-convex). The obtained results can explain experimental SAS (neutron or X-rays) data which are characterized by a succession of power-law decays of arbitrary length.

  7. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.

    PubMed

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-19

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  8. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography

    NASA Astrophysics Data System (ADS)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-01

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  9. Solution structures of calcium regulating proteins: A small-angle scattering study

    SciTech Connect

    Trewhella, J.; Heidorn, D.B.; Seeger, P.A.

    1987-11-01

    Small-angle X-ray scattering (SAXS) experiments have shown that the solution structures of two calcium-binding regulatory proteins, calmodulin and troponin C, are significantly different from their crystal structure forms. The structural differences occur in a region of calmodulin that is thought to bind to target enzymes;the calmodulin-enzyme complex is an initiator for many important biochemical processes. Calcium binding to calmodulin induces a conformational change that is a prerequisite for calmodulin binding to a target enzyme. SAXS data can characterize this conformational change and give insight into the mechanism of enzyme binding. Neutron resonance scattering promises to determine accurately the distances between calcium binding sites, thus providing important constraints on the structure of calmodulin in solution. 24 refs., 5 figs., 1 tab.

  10. New developments in the ATSAS program package for small-angle scattering data analysis

    PubMed Central

    Petoukhov, Maxim V.; Franke, Daniel; Shkumatov, Alexander V.; Tria, Giancarlo; Kikhney, Alexey G.; Gajda, Michal; Gorba, Christian; Mertens, Haydyn D. T.; Konarev, Petr V.; Svergun, Dmitri I.

    2012-01-01

    New developments in the program package ATSAS (version 2.4) for the processing and analysis of isotropic small-angle X-ray and neutron scattering data are described. They include (i) multiplatform data manipulation and display tools, (ii) programs for automated data processing and calculation of overall parameters, (iii) improved usage of high- and low-resolution models from other structural methods, (iv) new algorithms to build three-dimensional models from weakly interacting oligomeric systems and complexes, and (v) enhanced tools to analyse data from mixtures and flexible systems. The new ATSAS release includes installers for current major platforms (Windows, Linux and Mac OSX) and provides improved indexed user documentation. The web-related developments, including a user discussion forum and a widened online access to run ATSAS programs, are also presented. PMID:25484842

  11. Multiple size scale structures in silica/siloxane composites studied by small-angle scattering

    SciTech Connect

    Beaucage, G.; Schaefer, D.W.; Ulibarri, T.; Black, E.

    1993-12-31

    The physical properties of in-situ produced composites, such as the TEOS-polysiloxane based systems, are directly related to the complex interaction of structural features from the nano- to macro-scopic scales. The nature of these structural interactions are a key element in understanding and controlling mechanical properties in these systems. We believe that the smallest scale structures, in the nanometer range, correlate with properties such as the modulus while large-scale structures on the micron scale effect failure in these materials. This paper discusses techniques for analysis of structural features and interrelation of structural features over these wide ranges of size using small-angle light, x-ray and neutron scattering. Combination of data from different instruments allows for characterization of the interaction between these different size scale features.

  12. Small-angle scattering as a tool to study the thermal denaturation of DNA

    NASA Astrophysics Data System (ADS)

    Wood, Kathleen; Knott, Robert; Tonchev, Ognyan; Angelov, Dimitar; Theodorakopoulos, Nikos; Peyrard, Michel

    2014-10-01

    DNA thermal denaturation is the breaking of the base pairs, leading to a splitting of the two strands of the double helix. While it is easy to measure the fraction of open base pairs (f) vs. temperature, determining the fraction (p) of fully open molecules is much harder. Previously, the simultaneous recording of f and p could only be achieved for special sequences. We show that small-angle scattering of X-rays or neutrons allows the measurement of p for any sequence. We illustrate the method with a SAXS investigation of two sequences designed to exhibit different melting profiles and compare the SAXS data with nano-calorimetric measurements of the melting curve.

  13. Small-angle Scattering Study of Mesoscopic Structures in Charged Gel and Their Evolution in Dehydration

    SciTech Connect

    Sugiyama, M.; Annaka, M.; Hara, K.; Vigild, M. E.; Wignall, George D

    2003-01-01

    Mesoscopic structures, with length scales {approx}10{sup 2} {angstrom}, were investigated by small-angle X-ray and neutron scattering (SAXS and SANS) in several N-isopropylacrylamide-sodium acrylate (NIPA-SA) copolymeric hydrogels with varying [NIPA]/[SA] ratios and water contents. The SAXS experiments reveal that, depending upon the [NIPA]/[SA] ratio, the dehydrated NIPA-SA gel shows two mesoscopic structures: one consists of randomly distributed SA-rich islands in NIPA matrix, while the other is a microphase-separated structure, composed of NIPA-rich and SA-rich domains. In addition, the SANS experiments reveal the mesoscopic structural features during the dehydration process. As the concentration of the network polymers increases, NIPA-rich and water-rich domains segregate in the gel. Then, an electrostatic interaction between the segregated domains induces a microphase-separated structure in the limit of the dehydrated NIPA-SA gel.

  14. Toward a Taxonomy of the Denatured State: Small Angle Scattering Studies of Unfolded Proteins

    SciTech Connect

    Millett, I.S.; Doniach, S.; Plaxco, K.W.

    2005-02-15

    Despite the critical role the unfolded state plays in defining protein folding kinetics and thermodynamics (Berg et al., 2002; Dunker, 2002; Shortle, 2002; Wright and Dyson, 2002), our understanding of its detailed structure remains rather rudimentary; the heterogeneity of the unfolded ensemble renders difficult or impossible its study by traditional, atomic-level structural methods. Consequently, recent years have seen a significant expansion of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) techniques that provide direct, albeit rotationally and time-averaged, measures of the geometric properties of the unfolded ensemble. These studies have reached a critical mass, allowing us for the first time to define general observations regarding the nature of the geometry - and possibly the chemistry and physics - of unfolded proteins.

  15. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    PubMed Central

    Zhang, Fan; Kline, R. Joseph; Guthrie, William F.; Ilavsky, Jan

    2017-01-01

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å−1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification. PMID:28381972

  16. Small Angle X-ray Scattering for Nanoparticle Research.

    PubMed

    Li, Tao; Senesi, Andrew J; Lee, Byeongdu

    2016-09-28

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and angstrom length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle's size, size distribution, shape, and organization into hierarchical structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well as the combination of SAXS with other X-ray and non-X-ray characterization tools. We conclude with an examination of several key areas of research where X-ray scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.

  17. How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective

    PubMed Central

    Receveur-Bréchot, Véronique; Durand, Dominique

    2012-01-01

    While the crucial role of intrinsically disordered proteins (IDPs) in the cell cycle is now recognized, deciphering their molecular mode of action at the structural level still remains highly challenging and requires a combination of many biophysical approaches. Among them, small angle X-ray scattering (SAXS) has been extremely successful in the last decade and has become an indispensable technique for addressing many of the fundamental questions regarding the activities of IDPs. After introducing some experimental issues specific to IDPs and in relation to the latest technical developments, this article presents the interest of the theory of polymer physics to evaluate the flexibility of fully disordered proteins. The different strategies to obtain 3-dimensional models of IDPs, free in solution and associated in a complex, are then reviewed. Indeed, recent computational advances have made it possible to readily extract maximum information from the scattering curve with a special emphasis on highly flexible systems, such as multidomain proteins and IDPs. Furthermore, integrated computational approaches now enable the generation of ensembles of conformers to translate the unique flexible characteristics of IDPs by taking into consideration the constraints of more and more various complementary experiment. In particular, a combination of SAXS with high-resolution techniques, such as x-ray crystallography and NMR, allows us to provide reliable models and to gain unique structural insights about the protein over multiple structural scales. The latest neutron scattering experiments also promise new advances in the study of the conformational changes of macromolecules involving more complex systems. PMID:22044150

  18. Small-angle approximation to the transfer of narrow laser beams in anisotropic scattering media

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1981-01-01

    The broadening and the signal power detected of a laser beam traversing an anisotropic scattering medium were examined using the small-angle approximation to the radiative transfer equation in which photons suffering large-angle deflections are neglected. To obtain tractable answers, simple Gaussian and non-Gaussian functions for the scattering phase functions are assumed. Two other approximate approaches employed in the field to further simplify the small-angle approximation solutions are described, and the results obtained by one of them are compared with those obtained using small-angle approximation. An exact method for obtaining the contribution of each higher order scattering to the radiance field is examined but no results are presented.

  19. SCT: a suite of programs for comparing atomistic models with small-angle scattering data.

    PubMed

    Wright, David W; Perkins, Stephen J

    2015-06-01

    Small-angle X-ray and neutron scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are of particular utility when large proteins cannot be crystallized or when the structure is altered by solution conditions. Atomistic models of the averaged structure can be generated through constrained modelling, a technique in which known domain or subunit structures are combined with linker models to produce candidate global conformations. By randomizing the configuration adopted by the different elements of the model, thousands of candidate structures are produced. Next, theoretical scattering curves are generated for each model for trial-and-error fits to the experimental data. From these, a small family of best-fit models is identified. In order to facilitate both the computation of theoretical scattering curves from atomistic models and their comparison with experiment, the SCT suite of tools was developed. SCT also includes programs that provide sequence-based estimates of protein volume (either incorporating hydration or not) and add a hydration layer to models for X-ray scattering modelling. The original SCT software, written in Fortran, resulted in the first atomistic scattering structures to be deposited in the Protein Data Bank, and 77 structures for antibodies, complement proteins and anionic oligosaccharides were determined between 1998 and 2014. For the first time, this software is publicly available, alongside an easier-to-use reimplementation of the same algorithms in Python. Both versions of SCT have been released as open-source software under the Apache 2 license and are available for download from https://github.com/dww100/sct.

  20. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  1. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  2. Studying fractal geometry on submicron length scales by small-angle scattering

    SciTech Connect

    Wong, P.; Lin, J.

    1988-08-01

    Recent studies have shown that internal surfaces of porous geological materials, such as rocks and lignite coals, can be described by fractals down to atomic length scales. In this paper, the basic properties of self-similar and self-affine fractals are reviewed and how fractal dimensions can be measured by small-angle scattering experiments are discussed.

  3. PREFACE Proceedings of the XIV International Conference on Small-Angle Scattering, SAS-2009

    NASA Astrophysics Data System (ADS)

    King, Stephen; Terrill, Nicholas

    2010-10-01

    The XIV International Conference on Small-Angle Scattering, SAS-2009, was held in Oxford UK, 13-18 September 2009, and was jointly organised under the auspices of the International Union of Crystallography Commission on SAS by a team from the Diamond Light Source and the ISIS Pulsed Neutron Source - their first such joint venture - with help from the UK Science and Technology Facilities Council. It was the first time that this long running and successful series of conferences on the application, science and technology of small-angle scattering techniques had been staged in the UK. The UK has a proud heritage in small-angle scattering: as home to one of the world's first SANS instruments (at AERE Harwell), as the site of the world's first 2nd generation X-ray Synchrotron (the SRS at Daresbury with its suite of SAXS beamlines), and latterly as the location of the world's most successful pulsed source SANS instrument. Indeed, 2009 also marked the 25th Anniversary of neutron operations at ISIS and the opening of a Second Target Station. Whilst the SRS ceased operations in 2008, its mantle has been inherited by the Diamond synchrotron. Many delegates took the opportunity to visit both Diamond and ISIS during a conference excursion. Despite the prevailing global economic downturn, we were delighted that 434 delegates from 32 different countries were able to attend SAS-2009; two-thirds were drawn from the UK, Germany, Japan, the USA and France, but there were also sizeable contingents from Australia, Korea, Taiwan and South America. In many ways this geographical spread reflects the present and emerging distribution, respectively, of 3rd generation X-ray synchrotrons and high-flux neutron sources, although the scope of the conference was not solely limited to these probes. Financial support from the IUCr enabled us to grant bursaries to attend SAS-2009 to 12 delegates from emerging countries (Algeria, Argentina, Brazil, India, Nepal, Romania, Russia and the Ukraine). The

  4. X-ray small-angle scattering from sputtered CeO{sub 2}/C bilayers

    SciTech Connect

    Haviar, S.; Dubau, M.; Khalakhan, I.; Vorokhta, M.; Matolinova, I.; Matolin, V.; Vales, V.; Endres, J.; Holy, V.; Buljan, M.; Bernstorff, S.

    2013-01-14

    Surface and interface morphology of cerium oxide/carbon bilayers used as thin-film catalysts is studied by grazing-incidence small-angle x-ray scattering, scanning electron microscopy, and atomic-force microscopy, and the dependence of the structural parameters on the thicknesses of the constituting layers is investigated. The applicability of x-ray scattering and its advantages over standard analytical methods are discussed.

  5. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Round, A. R.; Wilkinson, S. J.; Hall, C. J.; Rogers, K. D.; Glatter, O.; Wess, T.; Ellis, I. O.

    2005-09-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  6. Quantitative characterization of the contrast mechanisms of ultra-small angle x-ray scattering imaging.

    SciTech Connect

    Zhang, F.; Long, G. G.; Levine, L.E.; Ilavsky, J.; Jemain, P.R.; NIST

    2008-04-01

    A general treatment of X-ray imaging contrast for ultra-small-angle X-ray scattering (USAXS) imaging is presented; this approach makes use of phase propagation and dynamical diffraction theory to account quantitatively for the intensity distribution at the detector plane. Simulated results from a model system of micrometer-sized spherical SiO{sub 2} particles embedded in a polypropylene matrix show good agreement with experimental measurements. Simulations by means of a separate geometrical ray-tracing method also account for the features in the USAXS images and offer a complementary view of small-angle X-ray scattering as a contrast mechanism. The ray-tracing analysis indicates that refraction, in the form of Porod scattering, and, to a much lesser extent, X-ray reflection account for the USAXS imaging contrast.

  7. BIOISIS: Biological Macromolecules by Small Angle X-ray Scattering (SAXS)

    DOE Data Explorer

    Tainer, John [Scripps Research Institute; Hura, Greg [LBNL; Rambo, Robert P. [LBNL

    BIOISIS is an open access database dedicated to the study of biological macromolecules by small angle X-ray scattering (SAXS). BIOISIS aims to become the complete source for the deposition, distribution and maintenance of small angle X-ray scattering data and technologies. The database is designed around the concept of an ôexperimentö and relates a specific experiment to a set of genes, organisms, computational models and experimental data. As of May 2012, BIOSIS contains 7,118 genes covering four different organisms. Forty-two modeled structures are available. Clicking on a structures reveals scattering curves, experimental conditions, and experimental values. The data are collected at Beamline 12.3.1 of the Advanced Light Source (ALS).[Copied with editing from http://www.bioisis.net/about

  8. [Construction of a small angle neutron scattering spectrometer for investigation of microemulsions and micellar solutions in bulk, in porous materials and under shear]. Progress report [Phase 1, July 1, 1990--June 30, 1993

    SciTech Connect

    Not Available

    1993-09-01

    This report presents the status of the small-angle diffractometer; 3-D microstructure of bicontinuous microemulsions from SANS and simulation; local geometry of the surfactant monolayer in microemulsions; surface ordering in microemulsions; dynamics of water-in-oil droplet microemulsions; and micellar formation and correlation in the cavity of porous silica glass.

  9. Small-angle and surface scattering from porous and fractal materials.

    SciTech Connect

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  10. Small-angle X-ray scattering method to characterize molecular interactions: Proof of concept.

    PubMed

    Allec, Nicholas; Choi, Mina; Yesupriya, Nikhil; Szychowski, Brian; White, Michael R; Kann, Maricel G; Garcin, Elsa D; Daniel, Marie-Christine; Badano, Aldo

    2015-07-10

    Characterizing biomolecular interactions is crucial to the understanding of biological processes. Existing characterization methods have low spatial resolution, poor specificity, and some lack the capability for deep tissue imaging. We describe a novel technique that relies on small-angle X-ray scattering signatures from high-contrast molecular probes that correlate with the presence of biomolecular interactions. We describe a proof-of-concept study that uses a model system consisting of mixtures of monomer solutions of gold nanoparticles (GNPs) as the non-interacting species and solutions of GNP dimers linked with an organic molecule (dimethyl suberimidate) as the interacting species. We report estimates of the interaction fraction obtained with the proposed small-angle X-ray scattering characterization method exhibiting strong correlation with the known relative concentration of interacting and non-interacting species.

  11. Changes of creatine kinase structure upon ligand binding as seen by small-angle scattering

    NASA Astrophysics Data System (ADS)

    Forstner, Michael; Kriechbaum, Manfred; Laggner, Peter; Wallimann, Theo

    1996-09-01

    Small-angle X-ray and neutron scattering have been used to investigate structural changes upon binding of individual substrates or a transition state analogue complex (TSAC), consisting of Mg-ADP, creatine and KNO 3 to creatine kinase isoenzymes (dimeric M-CK and octameric Mi-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-ATP and TSAC, whereas creatine alone had only a small effect. In Mi-CK, the radius of gyration was reduced from 55.6 Å (free enzyme) to 48.9 Å (enzyme + Mg-ATP) and to 48.2 Å (enzyme + TSAC). The experiments performed with M-CK showed similar changes from 28.0 Å (free enzyme) to 25.6 Å (enzyme + Mg-ATP) and to 25.5 Å (enzyme + TSAC). Creatine alone did not lead to significant changes in the radii of gyration, nor did free ATP or ADP. AK showed the same behaviour: a change of the radius of gyration from 21.5 Å (free enzyme) to 19.7 Å (enzyme + MG-ATP), whereas with arginine alone only a minor change could be observed. The primary change in structure as seen with monomeric AK seems to be a magnesium-nucleotide induced domain movement relative to each other, whereas the effect of substrate may be of local order only. In creatine kinase, however, further movements must be involved in the large conformational change.

  12. Small-angle scatter tomography with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  13. From Non-equilibrium to Equilibrium: Micellar Kinetics seen by Time-resolved Small-angle Scattering

    NASA Astrophysics Data System (ADS)

    Lund, Reidar

    The kinetic pathways of self-assembled nanostructures are not fully understood. Time-resolved small-angle X-ray/neutron scattering (TR-SAXS/SANS) is powerful technique1 that allows kinetics processes such as nucleation processes2,3 and morphological transitions4,5 to be followed with structural resolution over time scales starting from milliseconds. Neutrons offer the additional advantage of facile contrast variation through H/D substitution schemes, which also allow equilibrium processes such as molecular exchange and diffusion to be studied1 , 6 , 7. Here we will highlight the current capabilities of TR-SAS and show results on the kinetics of polymeric micelles. We will address how the understanding of kinetic pathways can be used control the nanostructure.

  14. Characterising density fluctuations in liquid yttria aluminates with small angle x-ray scattering

    SciTech Connect

    Greaves, G. Neville; Wilding, Martin C.; Vu Van, Quang; Majerus, Odile; Hennet, Louis

    2009-01-29

    Small angle x-ray scattering (SAXS) has been measured in the wavevector range 0.01scatter from longer range fluctuating volumes.

  15. Small angle X-ray scattering study of coal soot formation

    SciTech Connect

    Winans, R. E.; Parker, J. T.; Seifert, S.; Fletcher, T. H.

    2000-02-14

    The objective of this study is to examine, by small angle X-ray scattering (SAXS), the formation of soot from individual coal particle combustion in a methane flat flame burner. The SAXS instrument at the Basic Energy Sciences Synchrotron Radiation Center (BESSRC) at the Advanced Photon Source (APS) can be used to observe both the formation of spherules and clusters since it can access length scales of 6--6000 {angstrom}. The high X-ray flux enables rapid acquisition of scattering data of various regions of the flame. SAXS data reveal particle size, shape, surface areas, and surface roughness.

  16. Global small-angle X-ray scattering data analysis for multilamellar vesicles: the evolution of the scattering density profile model

    PubMed Central

    Heftberger, Peter; Kollmitzer, Benjamin; Heberle, Frederick A.; Pan, Jianjun; Rappolt, Michael; Amenitsch, Heinz; Kučerka, Norbert; Katsaras, John; Pabst, Georg

    2014-01-01

    The highly successful scattering density profile (SDP) model, used to jointly analyze small-angle X-ray and neutron scattering data from unilamellar vesicles, has been adapted for use with data from fully hydrated, liquid crystalline multilamellar vesicles (MLVs). Using a genetic algorithm, this new method is capable of providing high-resolution structural information, as well as determining bilayer elastic bending fluctuations from standalone X-ray data. Structural parameters such as bilayer thickness and area per lipid were determined for a series of saturated and unsaturated lipids, as well as binary mixtures with cholesterol. The results are in good agreement with previously reported SDP data, which used both neutron and X-ray data. The inclusion of deuterated and non-deuterated MLV neutron data in the analysis improved the lipid backbone information but did not improve, within experimental error, the structural data regarding bilayer thickness and area per lipid. PMID:24587787

  17. Correlation between fractal dimension and surface characterization by small angle X-ray scattering in marble.

    PubMed

    Salinas-Nolasco, Manlio Favio; Méndez-Vivar, Juan

    2010-03-16

    Among several analysis techniques applied to the study of surface passivation using dicarboxylic acids, small angle X-ray scattering (SAXS) has proved to be relevant in the physicochemical interpretation of the surface association resulting between calcium carbonate and the molecular structure of malonic acid. It is possible to establish chemical affinity principles through bidimensional geometric analysis in terms of the fractal dimension obtained experimentally by SAXS. In this Article, we present results about the adsorption of malonic acid on calcite, using theoretical and mathematical principles of the fractal dimension.

  18. Small-angle X-ray scattering probe of intermolecular interaction in red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Guan-Fen; Wang, We-Jia; Xu, Jia-Hua; Dong, Yu-Hui

    2015-03-01

    With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. Supported by National Basic Research Program of China (2009CB918600) and National Natural Science Foundation of China (10979005)

  19. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions

    PubMed Central

    Breßler, Ingo; Kohlbrecher, Joachim; Thünemann, Andreas F.

    2015-01-01

    SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102). PMID:26500467

  20. Nucleon-nucleon scattering at small angles, measured at ANKE-COSY

    NASA Astrophysics Data System (ADS)

    Bagdasarian, Z.

    2016-03-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA), which translates various experimental observables to the common language of the partial waves. The reliable analysis relies not only on the quality experimental data, but also on the measurements of scattering observables over preferably the full angular range. Small angle scattering has been measured for six beam energies between 0.8 and 2.4 GeV using polarized proton beam incident on both proton and deuteron unpolarized targets at COSY-ANKE. This proceeding will report on the published and preliminary results for both pp and pn scattering from this and other recent experiments at ANKE. This study aims to provide the valuable observables to the SAID group in order to improve the phenomenological understanding of the nucleon-nucleon interaction.

  1. MAGNETIC NEUTRON SCATTERING

    SciTech Connect

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    , ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  2. A small-angle x-ray scattering system with a vertical layout

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-01

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  3. A small-angle x-ray scattering system with a vertical layout

    SciTech Connect

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-15

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  4. A small-angle x-ray scattering system with a vertical layout.

    PubMed

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-01

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  5. Using Small-Angle Scattering Techniques to Understand Mechanical Properties of Biopolymer-Based Biomaterials

    PubMed Central

    Hyland, Laura L.; Taraban, Marc B.

    2013-01-01

    The design and engineering of innovative biopolymer-based biomaterials for a variety of biomedical applications should be based on the understanding of the relationship between their nanoscale structure and mechanical properties. Down the road, such understanding could be fundamental to tune the properties of engineered tissues, extracellular matrices for cell delivery and proliferation/differentiation, etc. In this tutorial review, we attempt to show in what way biomaterial structural data can help to understand the bulk material properties. We begin with some background on common types of biopolymers used in biomaterials research, discuss some typical mechanical testing techniques and then review how others in the field of biomaterials have utilized small-angle scattering for material characterization. Detailed examples are then used to show the full range of possible characterization techniques available for biopolymer-based biomaterials. Future developments in the area of material characterization by small-angle scattering will undoubtedly facilitate the use of structural data to control the kinetics of assembly and final properties of prospective biomaterials. PMID:24273590

  6. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    PubMed Central

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan

    2017-01-01

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ2(q) = [I(q) + const.]/(kq), where I(q) is the scattering intensity as a function of the momentum transfer q; k and const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors. PMID:28381982

  7. Structural Analysis of the Flagellar Component Proteins in Solution by Small Angle X-Ray Scattering.

    PubMed

    Lee, Lawrence K

    2017-01-01

    Small angle X-ray scattering is an increasingly utilized method for characterizing the shape and structural properties of proteins in solution. The technique is amenable to very large protein complexes and to dynamic particles with different conformational states. It is therefore ideally suited to the analysis of some flagellar motor components. Indeed, we recently used the method to analyze the solution structure of the flagellar motor protein FliG, which when combined with high-resolution snapshots of conformational states from crystal structures, led to insights into conformational transitions that are important in mediating the self-assembly of the bacterial flagellar motor. Here, we describe procedures for X-ray scattering data collection of flagellar motor components, data analysis, and interpretation.

  8. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes

    SciTech Connect

    Lipfert, Jan; Doniach, Sebastian; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC, SSRL

    2007-09-18

    Small-angle X-ray scattering (SAXS) is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. Although still a low-resolution technique, the advent of high-flux synchrotron sources and the development of algorithms for the reconstruction of 3-D electron density maps from 1-D scattering profiles have made possible the generation of useful low-resolution molecular models from SAXS data. Furthermore, SAXS is well suited for the study of unfolded or partially folded conformational ensembles as a function of time or solution conditions. Here, we review recently developed algorithms for 3-D structure modeling and applications to protein complexes. Furthermore, we discuss the emerging use of SAXS as a tool to study membrane protein-detergent complexes. SAXS is proving useful to study the folding of functional RNA molecules, and finally we discuss uses of SAXS to study ensembles of denatured proteins.

  9. Sample holder for small-angle x-ray scattering static and flow cell measurements

    SciTech Connect

    Lipfert, Jan; Millett, Ian S.; Seifert, Soenke; Doniach, Sebastian

    2006-04-15

    We present the design of a sample holder for small-angle x-ray scattering (SAXS) that can be used for both static and flow cell measurements, allowing to switch between these two types of measurement without having to realign the detector and camera geometry. The device makes possible high signal-to-noise experiments with sample volumes as small as 16 {mu}l and can be thermocontrolled using a standard circulating water bath. The setup has been used successfully for a range of biological SAXS measurements, including peptides, detergent micelles, membrane proteins, and nucleic acids. As a performance test, we present scattering data for horse heart cytochrome c, collected at the BESSRC CAT beam line 12-ID of the Advanced Photon Source. The design drawings are provided in the supplementary material.

  10. The structure of the muscle protein complex 4Ca{sup 2+}. Tronponin C*troponin: A Monte Carlo modeling analysis of small-angle X-ray and neutron scattering data

    SciTech Connect

    Olah, G.A.; Trewhella, J.

    1995-11-01

    Analysis of scattering data based on a Monte Carlo integration method was used to obtain a low resolution model of the 4Ca2+.troponin c.troponin I complex. This modeling method allows rapid testing of plausible structures where the best fit model can be ascertained by a comparison between model structure scattering profiles and measured scattering data. In the best fit model, troponin I appears as a spiral structure that wraps about 4CA2+.trophonin C which adopts an extended dumbell conformation similar to that observed in the crystal structures of troponin C. The Monte Carlo modeling method can be applied to other biological systems in which detailed structural information is lacking.

  11. Optical and Geometric Properties of Free Silica Nanoparticles Studied by Small-Angle X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Langer, Burkhard; Raschpichler, Christopher; Gruner, Mathias; Antonsson, Egill; Goroncy, Christian; Graf, Christina; Rühl, Eckart

    2016-09-01

    Elastic small-angle X-ray scattering (SAXS) of free silica (SiO2) nanoparticles is reported (d = 100-180 nm). The particles were prepared by a modified Stöber synthesis in narrow size distributions with controlled surface roughness and functionalization. Angle-resolved small-angle X-ray scattering patterns are shown to be sensitive to these changes in particle properties. It is reported that there is an exponential decrease in scattered X-ray intensity towards larger scattering angles as well as distinct oscillations, which is fully explained by Mie theory. Small-angle X-ray scattering of mesoporous nanoparticles with rough surfaces is compared to that of microporous nanoparticles with smooth surfaces, revealing distinct differences that are rationalized by diffuse scattering from nanoparticle pores in addition to the dominating contribution of Mie scattering. Furthermore, results from small-angle X-ray scattering experiments on functionalized silica nanoparticles are presented, where the incorporation of the dye fluorescein isothiocyanate is found to cause changes in the optical properties of the nanoparticles, as compared to non-functionalized samples. Small, but distinct deviations in particle size derived from electron microscopy and from small-angle X-ray scattering are observed. These are rationalized by particle shrinking occurring in electron microscopy as well as slight changes in optical properties of the nanoparticle samples.

  12. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  13. Small angle x-ray scattering study of the porosity in coals

    NASA Astrophysics Data System (ADS)

    Schmidt, P. W.; Kalliat, M.; Kwak, C. Y.

    1981-02-01

    Small-angle scattering curves have bee obtained for some Pennsylvania State University PSOC coal samples and for several other coals. The x-ray scattering data provide information about the porosity in the coals and suggest that there are three classes of pores, which have average dimensions of the order of 1000 A˚, 30 A˚, and less than 5 A˚, corresponding to the macropores, transition pores and micropores discussed by Dubinin. The principal factor determining the form of the scattering curves has been found to be the rank of the coal. In coals of all ranks, the specific surface associated with the macropores is about 1 to 10 m2/gm. The micropores are most highly developed in high-rank coals. Comparison of the x-ray and adsorption results suggests that x-ray scattering and nitrogen adsorption detect only the specific surface of the macropores and transition pores, while carbon dioxide adsorption measures the total porosity from the micropores. Scattering data have also been recorded for a series of coals which had been tested for their suitability for conversion to liquid fuels. All the coals which were well-suited for producing liquid fuels were found to have a well-developed transition pore structure, while coals which were not especially good for coal liquefaction processes had almost no transition pores.

  14. Small-angle x-ray scattering studies of the manganese stabilizing subunit in photosystem II.

    SciTech Connect

    Svensson, B.; Tiede, D. M.; Barry, B. A.; Univ. of Minnesota

    2002-08-29

    Small-angle X-ray scattering studies (SAXS) were used to determine the size, shape, and oligomeric composition of the manganese stabilizing protein (MSP) of photosystem II. This extrinsic protein subunit plays an important role in photosynthetic oxygen evolution. As its name implies, MSP stabilizes the tetranuclear Mn cluster of the water oxidation complex. Removal of MSP lowers activity and decreases the stability of active-site manganese. Reconstitution of MSP reverses these effects. In this study, MSP was extracted from spinach PSII membranes using CaCl{sub 2} or urea. Through the use of MALDI-TOF mass spectrometry, the molecular weight of MSP was determined to be 26.53 kDa. X-ray scattering results show that both samples display a monodisperse scattering pattern; this pattern is consistent with a homogeneous protein solution. The CaCl{sub 2} extracted and urea extracted MSP samples have radii of gyration of 25.9 {+-} 0.4 and 27.0 {+-} 0.01 {angstrom}, respectively. MSP is shown to be monomeric in solution. This was determined using a cytochrome c standard and the scattering intensity, extrapolated to zero scattering angle, which is proportional to the molecular weight. This SAXS study suggests that, in solution, MSP is a monomeric, elongated prolate ellipsoid with dimensions, 112 x 23 x 23 {angstrom}{sup 3} and an axial ratio of 4.8.

  15. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    NASA Astrophysics Data System (ADS)

    Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T.

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  16. A Laboratory Scale Critical-Dimension Small-Angle X-ray Scattering Instrument

    SciTech Connect

    Ho, Derek L.; Wang Chengqing; Lin, Eric K.; Jones, Ronald L.; Wu Wenli

    2007-09-26

    New methods for critical dimension (CD) measurements may be needed to enable the detailed characterization of nanoscale structures produced in the semiconductor industry and for nanotechnology applications. In earlier work, small angle x-ray scattering (SAXS) measurements with synchrotron sources have shown promise in meeting several grand challenges for CD metrology. However, it is not practical to depend upon x-ray synchrotron sources, which are large national facilities with limitations in the number of available instruments. To address this problem, a laboratory scale SAXS instrument for critical dimension measurements on periodic nanoscale patterns has been designed, installed, and tested. The system possesses two configurations, SAXS and ultra-small-angle x-ray scattering (USAXS), with a radiation target of either copper or molybdenum. With these configurations, the instrument is capable of accessing scattering angles that probe length scales ranging from ca. 0.5 nm to 2 {mu}m. In this work, we compare CD-SAXS measurements taken from a synchrotron-based SAXS at the Advanced Photon Source of the Argonne National Laboratory with those from the National Institute of Standards and Technology laboratory-scale SAXS instrument. The results from standard line/space gratings possessing periodic line-space patterns with CDs of tens to hundreds of nanometers show that the laboratory-scale system can quantitatively measure parameters, such as the pitch, line width, height, line-width roughness and sidewall angle. These results show that laboratory-scale measurements are feasible and can be used for research and development purposes or to assist calibration of optical scatterometry and CD-scanning electron microscopy instruments. The primary limitation of the measurement is that the data collection rate is unacceptably slow for production metrology because of the significantly lower x-ray beam fluxes currently available.

  17. Self crowding of globular proteins studied by small-angle x-ray scattering.

    PubMed

    Goldenberg, David P; Argyle, Brian

    2014-02-18

    Small-angle x-ray scattering (SAXS) was used to study the behavior of equine metmyoglobin (Mb) and bovine pancreatic trypsin inhibitor (BPTI) at concentrations up to 0.4 and 0.15 g/mL, respectively, in solutions also containing 50% D2O and 1 M urea. For both proteins, significant effects because of interference between x-rays scattered by different molecules (interparticle interference) were observed, indicating nonideal behavior at high concentrations. The experimental data were analyzed by comparison of the observed scattering profiles with those predicted by crystal structures of the proteins and a hard-sphere fluid model used to represent steric exclusion effects. The Mb scattering data were well fit by the hard-sphere model using a sphere radius of 18 Å, only slightly smaller than that estimated from the three-dimensional structure (20 Å). In contrast, the scattering profiles for BPTI in phosphate buffer displayed substantially less pronounced interparticle interference than predicted by the hard-sphere model and the radius estimated from the known structure of the protein (15 Å). Replacing the phosphate buffer with 3-(N-morpolino)propane sulfonic acid (MOPS) led to increased interparticle interference, consistent with a larger effective radius and suggesting that phosphate ions may mediate attractive intermolecular interactions, as observed in some BPTI crystal structures, without the formation of stable oligomers. The scattering data were also used to estimate second virial coefficients for the two proteins: 2.0 ×10(-4) cm(3)mol/g(2) for Mb in phosphate buffer, 1.6 ×10(-4) cm(3)mol/g(2) for BPTI in phosphate buffer and 9.2 ×10(-4) cm(3)mol/g(2) for BPTI in MOPS. The results indicate that the behavior of Mb, which is nearly isoelectric under the conditions used, is well described by the hard-sphere model, but that of BPTI is considerably more complex and is likely influenced by both repulsive and attractive electrostatic interactions. The hard

  18. Self Crowding of Globular Proteins Studied by Small-Angle X-Ray Scattering

    PubMed Central

    Goldenberg, David P.; Argyle, Brian

    2014-01-01

    Small-angle x-ray scattering (SAXS) was used to study the behavior of equine metmyoglobin (Mb) and bovine pancreatic trypsin inhibitor (BPTI) at concentrations up to 0.4 and 0.15 g/mL, respectively, in solutions also containing 50% D2O and 1 M urea. For both proteins, significant effects because of interference between x-rays scattered by different molecules (interparticle interference) were observed, indicating nonideal behavior at high concentrations. The experimental data were analyzed by comparison of the observed scattering profiles with those predicted by crystal structures of the proteins and a hard-sphere fluid model used to represent steric exclusion effects. The Mb scattering data were well fit by the hard-sphere model using a sphere radius of 18 Å, only slightly smaller than that estimated from the three-dimensional structure (20 Å). In contrast, the scattering profiles for BPTI in phosphate buffer displayed substantially less pronounced interparticle interference than predicted by the hard-sphere model and the radius estimated from the known structure of the protein (15 Å). Replacing the phosphate buffer with 3-(N-morpolino)propane sulfonic acid (MOPS) led to increased interparticle interference, consistent with a larger effective radius and suggesting that phosphate ions may mediate attractive intermolecular interactions, as observed in some BPTI crystal structures, without the formation of stable oligomers. The scattering data were also used to estimate second virial coefficients for the two proteins: 2.0 ×10-4 cm3mol/g2 for Mb in phosphate buffer, 1.6 ×10-4 cm3mol/g2 for BPTI in phosphate buffer and 9.2 ×10-4 cm3mol/g2 for BPTI in MOPS. The results indicate that the behavior of Mb, which is nearly isoelectric under the conditions used, is well described by the hard-sphere model, but that of BPTI is considerably more complex and is likely influenced by both repulsive and attractive electrostatic interactions. The hard-sphere model may be

  19. Analytical model for determination of parameters of helical structures in solution by small angle scattering: comparison of RecA structures by SANS.

    PubMed

    Lebedev, D V; Baitin, D M; Islamov, A Kh; Kuklin, A I; Shalguev, V Kh; Lanzov, V A; Isaev-Ivanov, V V

    2003-02-27

    The filament structures of the self-polymers of RecA proteins from Escherichia coli and Pseudomonas aeruginosa, their complexes with ATPgammaS, phage M13 single-stranded DNA (ssDNA) and the tertiary complexes RecA::ATPgammaS::ssDNA were compared by small angle neutron scattering. A model was developed that allowed for an analytical solution for small angle scattering on a long helical filament, making it possible to obtain the helical pitch and the mean diameter of the protein filament from the scattering curves. The results suggest that the structure of the filaments formed by these two RecA proteins, and particularly their complexes with ATPgammaS, is conservative.

  20. EDITORIAL Proceedings of the XIV International Conference on Small-Angle Scattering, SAS-2009

    NASA Astrophysics Data System (ADS)

    Ungar, Goran; Heenan, Richard

    2010-10-01

    There are 52 papers in these Proceedings. The papers are divided into 10 thematic sections and a section for invited papers and reviews. The sections and the respective section editors are given below. Section Editor(s) Invited Papers and Reviews Peter Griffiths, Wim Bras, Rudolf Winter Beamlines and Instrumentation Elliot Gilbert, Wim Bras, Nigel Rhodes Theory, Data processing and Modelling Jan Skov Pedersen, Carlo Knupp Biological Systems and Membranes Richard Heenan, Cameron Neylon Ceramics, Glasses and Porous Materials Rudolf Winter Colloids and Solutions Peter Griffiths Hierarchical Structures and Fibres Steve Eichhorn, Karen Edler Metallic and Magnetic Systems Armin Hoell Polymers Patrick Fairclough Time resolved Diffraction, Kinetic and Dynamical Studies João Cabral, Christoph Rau We are grateful to all section editors and the many anonymous referees for their invaluable effort which made the publication of the Proceedings possible. The refereeing process was strict and thorough, some papers were rejected and most were improved. The resulting compendium gives a good overview of recent developments in small-angle X-ray and neutron scattering theory, application, methods of analysis and instrumentation. Thus it should be a useful source of reference for a number of years to come. The papers are a good reflection of the material presented at the meeting. Because of the general high quality of the articles, it was difficult to decide which to highlight and be fair to all contributors. The following in particular have caught the attention of the editors. Highlighted papers A statistical survey of publications reporting the application of SAXS and SANS by Aldo Craievich (paper 012003) is recommended reading for anyone needing convincing about the vibrancy of this scientific field and the ever expanding use of these techniques. Two aspects of coherent X-ray scattering, made available by the advent of the 3rd generation synchrotron sources, are discussed in the

  1. Deterministic fractals: extracting additional information from small-angle scattering data.

    PubMed

    Cherny, A Yu; Anitas, E M; Osipov, V A; Kuklin, A I

    2011-09-01

    The small-angle scattering curves of deterministic mass fractals are studied and analyzed in momentum space. In the fractal region, the curve I(q)q(D) is found to be log-periodic with good accuracy, and the period is equal to the scaling factor of the fractal. Here, D and I(q) are the fractal dimension and the scattering intensity, respectively. The number of periods of this curve coincides with the number of fractal iterations. We show that the log-periodicity of I(q)q(D) in the momentum space is related to the log-periodicity of the quantity g(r)r(3-D) in the real space, where g(r) is the pair distribution function. The minima and maxima positions of the scattering intensity are estimated explicitly by relating them to the pair distance distribution in real space. It is shown that the minima and maxima are damped with increasing polydispersity of the fractal sets; however, they remain quite pronounced even at sufficiently large values of polydispersity. A generalized self-similar Vicsek fractal with controllable fractal dimension is introduced, and its scattering properties are studied to illustrate the above findings. In contrast with the usual methods, the present analysis allows us to obtain not only the fractal dimension and the edges of the fractal region, but also the fractal iteration number, the scaling factor, and the number of structural units from which the fractal is composed.

  2. Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering

    SciTech Connect

    Littrell, Kenneth C.; Gallas, James M.; Zajac, Gerry W.; Thiyagarajan, Pappannan

    2003-01-01

    Small-angle X-ray scattering was used to measure the effects of chemical bleaching on the size and morphology of tyrosine-derived synthetic melanin dispersed in aqueous media. The average size as measured by the radius of gyration of the melanin particles in solution, at neutral to mildly basic pH, decreases from 16.5 to 12.5 angstroms with increased bleaching. The melanin particles exhibit scattering characteristic of sheet-like structures with a thickness of approximately 11 angstroms at all but the highest levels of bleaching. The scattering data are well described by the form factor for scattering from a pancake-like circular cylinder. These data are consistent with the hypothesis that unbleached melanin, at neutral to mildly basic pH, is a planar aggregate of 6- to 10-nm-sized melanin protomolecules, hydrogen bonded through their quinone and phenolic perimeters. The observed decrease in melanin particle size with increased bleaching is interpreted as evidence for deaggregation, most probably the result of oxidative disruption of hydrogen bonds and an increase in the number of charged, carboxylic acid groups, whereby the melanin aggregates disassociate into units composed of decreasing numbers of protomolecules.

  3. Small-angle x-ray scattering investigation of the solution structure of troponin C

    SciTech Connect

    Hubbard, S.R.; Hodgson, K.O.; Doniach, S.

    1988-03-25

    X-ray crystallographic studies of troponin C have revealed a novel protein structure consisting of two globular domains, each containing two Ca/sup 2 +/-binding sites, connected via a nine-turn alpha-helix, three turns of which are fully exposed to solvent. Since the crystals were grown at pH approximately 5, it is of interest to determine whether this structure is applicable to the protein in solution under physiological conditions. We have used small-angle x-ray scattering to examine the solution structure of troponin C at pH 6.8 and the effect of Ca/sup 2 +/ on the structure. The scattering data are consistent with an elongated structure in solution with a radius of gyration of approximately 23.0 A, which is quite comparable to that computed for the crystal structure. The experimental scattering profile and the scattering profile computed from the crystal structure coordinates do, however, exhibit differences at the 40-A level. A weak Ca/sup 2 +/-facilitated dimerization of troponin C was observed. The data rule out large Ca/sup 2 +/-induced structural changes, indicating rather that the molecule with Ca/sup 2 +/ bound is only slightly more compact than the Ca/sup 2 +/-free molecule.

  4. Small-angle scattering and morphologies of ultra-flexible microemulsions.

    PubMed

    Prevost, Sylvain; Lopian, Tobias; Pleines, Maximilian; Diat, Olivier; Zemb, Thomas

    2016-12-01

    The phase diagrams of ternary mixtures of partly miscible solvents containing a hydrotropic co-solvent exhibit a variable miscibility gap and one critical point. This work investigates the entire monophasic region far from and near to the miscibility gap in octan-1-ol/ethanol/water, for which ultra-flexible micro-emulsions (UFMEs) are observed by small-angle scattering techniques. SWAXS (combined small- and wide-angle X-ray scattering) allows the elucidation of these types of structure. Three distinct areas can be identified in the phase diagram, with scattering data resembling those from direct, bicontinuous and reverse local structures. These UFMEs are far more polydisperse than their surfactant-based counterparts. Water-rich and solvent-rich domains are only delimited by a small excess of hydrotrope, instead of a well defined surfactant layer of fixed area per molecule. It is shown that all scattering spectra obtained for the nanostructured compositions can be modelled by a simple unified analytical model composed of two uncorrelated contributions. The main one is the Ornstein-Zernike formula for composition fluctuations which gives information about the pseudo-phase domain size. The second is a Lorentzian that captures the structure of at least one of the coexisting pseudo-phases. No Porod law can be measured in the SAXS domain. The proposed expression gives access to two characteristic sizes as well as one inter-aggregate distance.

  5. Small-angle scattering and morphologies of ultra-flexible microemulsions1

    PubMed Central

    Prevost, Sylvain; Lopian, Tobias; Pleines, Maximilian; Diat, Olivier; Zemb, Thomas

    2016-01-01

    The phase diagrams of ternary mixtures of partly miscible solvents containing a hydrotropic co-solvent exhibit a variable miscibility gap and one critical point. This work investigates the entire monophasic region far from and near to the miscibility gap in octan-1-ol/ethanol/water, for which ultra-flexible micro­emulsions (UFMEs) are observed by small-angle scattering techniques. SWAXS (combined small- and wide-angle X-ray scattering) allows the elucidation of these types of structure. Three distinct areas can be identified in the phase diagram, with scattering data resembling those from direct, bicontinuous and reverse local structures. These UFMEs are far more polydisperse than their surfactant-based counterparts. Water-rich and solvent-rich domains are only delimited by a small excess of hydrotrope, instead of a well defined surfactant layer of fixed area per molecule. It is shown that all scattering spectra obtained for the nanostructured compositions can be modelled by a simple unified analytical model composed of two uncorrelated contributions. The main one is the Ornstein–Zernike formula for composition fluctuations which gives information about the pseudo-phase domain size. The second is a Lorentzian that captures the structure of at least one of the coexisting pseudo-phases. No Porod law can be measured in the SAXS domain. The proposed expression gives access to two characteristic sizes as well as one inter-aggregate distance. PMID:27980512

  6. Small angle x-ray scattering and electron microscopy of nanoparticles formed in an electrical arc

    NASA Astrophysics Data System (ADS)

    Carvou, E.; Garrec, J. L. Le; Pérez, J.; Praquin, J.; Djeddi, M.; Mitchell, J. B. A.

    2013-03-01

    Small Angle X-ray Scattering has been used to characterize nanoparticles generated by electrical arcing between metallic (AgSnO2) electrodes. The particles are found to have diameters between 30 and 40 nm and display smooth surfaces suggesting that they are either in liquid form or have solidified from the liquid state. Particles collected around the electrodes were analyzed by Transmission Electron Microscopy and were seen to be much larger than those seen in the SAXS measurement, to be spherical in form and composed of silver metal with irregular tin oxide particles deposited on their surface. Mixed metal nanoparticles can have important practical applications and the use of mixed sintered electrodes may be a direct method for their production.

  7. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    SciTech Connect

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  8. Small-angle x-ray scattering study of polymer structure: Carbosilane dendrimers in hexane solution

    NASA Astrophysics Data System (ADS)

    Shtykova, E. V.; Feigin, L. A.; Volkov, V. V.; Malakhova, Yu. N.; Streltsov, D. R.; Buzin, A. I.; Chvalun, S. N.; Katarzhanova, E. Yu.; Ignatieva, G. M.; Muzafarov, A. M.

    2016-09-01

    The three-dimensional organization of monodisperse hyper-branched macromolecules of regular structure—carbosilane dendrimers of zero, third, and sixth generations—has been studied by small-angle X-ray scattering (SAXS) in solution. The use of modern methods of SAXS data interpretation, including ab initio modeling, has made it possible to determine the internal architecture of the dendrimers in dependence of the generation number and the number of cyclosiloxane end groups (forming the shell of dendritic macromolecules) and show dendrimers to be spherical. The structural results give grounds to consider carbosilane dendrimers promising objects for forming crystals with subsequent structural analysis and determining their structure with high resolution, as well as for designing new materials to be used in various dendrimer-based technological applications.

  9. Use of anomalous small angle x-ray scattering to investigate microstructural features in complex alloys

    SciTech Connect

    Weertman, J.R.

    1988-08-01

    This report covers the last 5 months of the second year of this grant and the first 8 months of the third year. The research thrust of this grant has been directed into two areas. The principal effort has been spent in an investigation of the use of anomalous small angle x-ray scattering (ASAXS) to observe changes in the microstructure of a relatively complex alloy produced by high temperature deformation or aging. The second effort involves a study of the high temperature behavior of several ferritic steels. During this past year we have been examining the effect of environment (air vs vacuum) on the high temperature strength of Fe9Cr1Mo modified by the addition of small amounts of V and Nb.

  10. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering.

    PubMed

    Carli, Larissa N; Bianchi, Otávio; Machado, Giovanna; Crespo, Janaina S; Mauler, Raquel S

    2013-03-01

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite® 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor (β) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing.

  11. Small angle x-ray scattering studies of carbon anodes used in lithium rechargeable batteries.

    SciTech Connect

    Sandi, G.; Carrado, K. A.; Winans, R. E.; Seifert, S.; Johnson, C. S.

    1999-11-16

    In ANL laboratories, disordered carbons with predictable surface area and porosity properties have been prepared using inorganic templates containing well defined pore sizes. The carbons have been tested in electrochemical cells as anodes in lithium secondary batteries. They deliver high specific capacity and display excellent performance in terms of the number of cycles run. In situ small angle X-ray scattering (SAXS) during electrochemical cycling was carried out at the Advanced Photon Source, at ANL. In order to monitor the carbon electrode structural changes upon cycling, an electrochemical cell was specially designed to allow for the application of electrical current and the collection of SAXS data at the same time. Results show that upon cycling the structure of the carbon remains unchanged, which is desirable in reversible systems.

  12. The crystallization of hectorite clays as monitored by small angle X-ray scattering and NMR

    SciTech Connect

    Carrado, K. A.; Xu, L.; Seifert, S.; Gregory, D.; Song, K.; Botto, R. E.

    1999-12-13

    The authors have probed the 48-hr crystallization of a magnesium silicate clay called hectorite. Small angle X-ray scattering (SAXS) at the Advanced Photon Source using aliquots ex situ has revealed that data is consistent with ex situ XRD, TGA, AFM, and IR data in that all these techniques see clay crystallite beginning to form in the first few hours of reaction. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. {sup 13}C NMR shows that 80% of the final TEA loading is accomplished in the first 10 hrs. {sup 29}Si NMR displays a visible clay silicate peak after just 1 hr. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. Results are consistent with the ex situ data as well as showing the sensitivity of SAXS to sol gel reactions occurring on the order of minutes.

  13. Riboswitch Conformations Revealed by Small-Angle X-Ray Scattering

    PubMed Central

    Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2015-01-01

    Summary Riboswitches are functional RNA molecules that control gene expression through conformational changes in response to small-molecule ligand binding. In addition, riboswitch 3D structure, like that of other RNA molecules, is dependent on cation–RNA interactions as the RNA backbone is highly negatively charged. Here, we show how small-angle X-ray scattering (SAXS) can be used to probe RNA conformations as a function of ligand and ion concentration. In a recent study of a glycine-binding tandem aptamer from Vibrio cholerae, we have used SAXS data and thermodynamic modeling to investigate how Mg2+-dependent folding and glycine binding are energetically coupled. In addition, we have employed ab initio shape reconstruction algorithms to obtain low-resolution models of the riboswitch structure from SAXS data under different solution conditions. PMID:19381558

  14. A stress-controlled shear cell for small-angle light scattering and microscopy

    NASA Astrophysics Data System (ADS)

    Aime, S.; Ramos, L.; Fromental, J. M.; Prévot, G.; Jelinek, R.; Cipelletti, L.

    2016-12-01

    We develop and test a stress-controlled, parallel plates shear cell that can be coupled to an optical microscope or a small angle light scattering setup, for simultaneous investigation of the rheological response and the microscopic structure of soft materials under an imposed shear stress. In order to minimize friction, the cell is based on an air bearing linear stage, the stress is applied through a contactless magnetic actuator, and the strain is measured through optical sensors. We discuss the contributions of inertia and of the small residual friction to the measured signal and demonstrate the performance of our device in both oscillating and step stress experiments on a variety of viscoelastic materials.

  15. Brain tumor imaging using small-angle x-ray scattering tomography

    NASA Astrophysics Data System (ADS)

    Jensen, Torben H.; Bech, Martin; Bunk, Oliver; Thomsen, Maria; Menzel, Andreas; Bouchet, Audrey; Le Duc, Géraldine; Feidenhans'l, Robert; Pfeiffer, Franz

    2011-03-01

    We demonstrate high-resolution small-angle x-ray scattering computed tomography (SAXS-CT) of soft matter and soft tissue samples. Complete SAXS patterns over extended ranges of momentum transfer are reconstructed spatially resolved from volumes inside an extended sample. Several SAXS standard samples are used to quantitatively validate the method and demonstrate its performance. Further results on biomedical tissue samples (rat brains) are presented that demonstrate the advantages of the method compared to existing biomedical x-ray imaging approaches. Functional areas of the brains as well as tumor morphology are imaged. By providing insights into the structural organization at the nano-level, SAXS-CT complements and extends results obtainable with standard methods such as x-ray absorption tomography and histology.

  16. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water

    NASA Astrophysics Data System (ADS)

    Wikfeldt, K. T.; Huang, C.; Nilsson, A.; Pettersson, L. G. M.

    2011-06-01

    We present extensive simulations on the TIP4P/2005 water model showing significantly enhanced small-angle scattering (SAS) in the supercooled regime. The SAS is related to the presence of a Widom line (TW) characterized by maxima in thermodynamic response functions and Ornstein-Zernike correlation length. Recent experimental small-angle x-ray scattering data [Huang et al., J. Chem. Phys. 133, 134504 (2010)], 10.1063/1.3495974 are excellently reproduced, albeit with an increasing temperature offset at lower temperatures. Assuming the same origin of the SAS in experiment and model this suggests the existence of a Widom line also in real supercooled water. Simulations performed at 1000 bar show an increased abruptness of a crossover from dominating high-density (HDL) to dominating low-density (LDL) liquid and strongly enhanced SAS associated with crossing TW, consistent with a recent determination of the critical pressure of TIP4P/2005 at 1350 bar. Furthermore, good agreement with experimental isothermal compressibilities at 1000, 1500, and 2000 bar shows that the high pressure supercooled thermodynamic behavior of water is well described by TIP4P/2005. Analysis of the tetrahedrality parameter Q reveals that the HDL-LDL structural transition is very sharp at 1000 bar, and that structural fluctuations become strongly coupled to density fluctuations upon approaching TW. Furthermore, the tetrahedrality distribution becomes bimodal at ambient temperatures, an observation that possibly provides a link between HDL-LDL fluctuations and the structural bimodality in liquid water indicated by x-ray spectroscopic techniques. Computed x-ray absorption spectra are indeed found to show sensitivity to the tetrahedrality parameter.

  17. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water.

    PubMed

    Wikfeldt, K T; Huang, C; Nilsson, A; Pettersson, L G M

    2011-06-07

    We present extensive simulations on the TIP4P∕2005 water model showing significantly enhanced small-angle scattering (SAS) in the supercooled regime. The SAS is related to the presence of a Widom line (T(W)) characterized by maxima in thermodynamic response functions and Ornstein-Zernike correlation length. Recent experimental small-angle x-ray scattering data [Huang et al., J. Chem. Phys. 133, 134504 (2010)] are excellently reproduced, albeit with an increasing temperature offset at lower temperatures. Assuming the same origin of the SAS in experiment and model this suggests the existence of a Widom line also in real supercooled water. Simulations performed at 1000 bar show an increased abruptness of a crossover from dominating high-density (HDL) to dominating low-density (LDL) liquid and strongly enhanced SAS associated with crossing T(W), consistent with a recent determination of the critical pressure of TIP4P∕2005 at 1350 bar. Furthermore, good agreement with experimental isothermal compressibilities at 1000, 1500, and 2000 bar shows that the high pressure supercooled thermodynamic behavior of water is well described by TIP4P∕2005. Analysis of the tetrahedrality parameter Q reveals that the HDL-LDL structural transition is very sharp at 1000 bar, and that structural fluctuations become strongly coupled to density fluctuations upon approaching T(W). Furthermore, the tetrahedrality distribution becomes bimodal at ambient temperatures, an observation that possibly provides a link between HDL-LDL fluctuations and the structural bimodality in liquid water indicated by x-ray spectroscopic techniques. Computed x-ray absorption spectra are indeed found to show sensitivity to the tetrahedrality parameter.

  18. Limiting cases of the small-angle scattering approximation solutions for the propagation of laser beams in anisotropic scattering media

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1981-01-01

    The propagation of photons in a medium with strongly anisotropic scattering is a problem with a considerable history. Like the propagation of electrons in metal foils, it may be solved in the small-angle scattering approximation by the use of Fourier-transform techniques. In certain limiting cases, one may even obtain analytic expressions. This paper presents some of these results in a model-independent form and also illustrates them by the use of four different phase-function models. Sample calculations are provided for comparison purposes

  19. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems.

    PubMed

    Konarev, Petr V; Svergun, Dmitri I

    2015-05-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy) experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.

  20. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography

    NASA Astrophysics Data System (ADS)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-01

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  1. Small-Angle Scattering of X-Rays from Extragalactic Sources by Dust in Intervening Galaxies

    NASA Astrophysics Data System (ADS)

    Miralda-Escudé, Jordi

    1999-02-01

    Gamma-ray bursts are now known to be a cosmological population of objects, which are often accompanied by X-ray and optical afterglows. The total energy emitted in the afterglow can be similar to the energy radiated in the gamma-ray burst itself. If a galaxy containing a large column density of dust is near the line of sight to a gamma-ray burst, small-angle scattering of the X-rays due to diffraction by the dust grains will give rise to an X-ray echo of the afterglow. A measurement of the angular size of the echo at a certain time after the afterglow is observed yields a combination of the angular diameter distances to the scattering galaxy and the gamma-ray burst that can be used to constrain cosmological models in the same way as a time delay in a gravitational lens. The scattering galaxy will generally cause gravitational lensing as well, and this should modify the shape of the X-ray echo from a circular ring. The main difficulty in detecting this phenomenon is the very low flux expected for the echo. The flux can be increased when the gamma-ray burst is highly magnified by gravitational lensing, or when the deflecting galaxy is at low redshift. X-ray echoes of continuous (but variable) sources, such as quasars, may also be detectable with high-resolution instruments and would allow similar measurements.

  2. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    PubMed

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  3. Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering

    SciTech Connect

    Liu, Kao-Hsiang; Zhang, Yang; Jeng, U-Ser; Mou, Chung-Yuan

    2015-09-07

    Water’s behavior near hydrophobic surfaces has attracted great attention due to chemical and geological applications. Here, we report small angle X-ray scattering (SAXS) studies of water confined in the hydrophobic nanoporous carbon material, CMK-1-14, from ambient to deeply cooled temperatures. By monitoring the scattering intensity of the first Bragg peak, which is directly related to the scattering length density contrast between the carbon matrix and the confined water, the average density of the hydrophobically confined water was determined from 300 K to 150 K at ambient pressure. Furthermore, differential scanning calorimetry and X-ray diffraction measurements showed that the majority of such hydrophobically confined water did not crystallize in the investigated temperature range. By exploiting the fast speed of SAXS measurements and the continuous temperature ramping, the average density profile and the deduced thermal expansion coefficient (α{sub p}) were obtained. We found that the well-known density maximum of water at 277 K downshifted to 260 K, and the density minimum which has been observed in hydrophilic confinement disappeared. In addition, the previously measured large density decreasing of 18% at low temperature was recalibrated to a more reasonable 10% instead. Consequently, the recalculated α{sub p} peak was found to be quite similar to that of the water confined in hydrophilic MCM-41-S-15 suggesting an intrinsic property of water, which does not sensitively depend on the confinement surface.

  4. Characterization of Athabasca Asphaltenes Separated Physically and Chemically Using Small-Angle X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Amundarain Hurtado, Jesus Leonardo

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS) with synchrotron radiation. Two methods were used to separate asphaltenes from Athabasca bitumen. Conventional chemical separation by precipitation with n-pentane, and physical separation realized by passing bitumen through a zirconia membrane with a 20 nm average pore size. The Athabasca permeates and chemically separated samples were dispersed in 1-methylnaphtalene and n-dodecane, with temperature and asphaltene concentration ranges of 50-310 °C and 1-8 wt. %, respectively. Two approaches were also taken in the analysis of the SAXS emissions. A model-independent approach provided radii of gyration and scattering coefficients. A model-dependent fit provided size distributions for asphaltenes aggregates assuming that they are dense and spherical. Physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and their structural properties exhibited different temperature dependencies. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in crude oil/bitumen.

  5. Small angle neutron scattering (SANS) study of gastric mucin solutions

    NASA Astrophysics Data System (ADS)

    Hong, Z.; Bansil, R.; Waigh, T.; Turner, B.; Bhaskar, K. R.; Afdhal, N.; Lal, J.

    2002-03-01

    We report the first results from a SANS study of purified porcine gastric mucin solutions in D2O. The ability of this glycoprotein to protect the stomach epithelium from acid damage, may be due to a pH dependent conformational transition which leads to gelation at low pH Cao et. al. (Biophysical. J. 76, 1250, 1999). SANS measurements were made over the concentration range of 1 -15 mg/ml at pH 7, 4 and 2. The data indicate that at pH 7 the excluded volume exponent is 1.7, characteristic of swollen chains whereas at pH 2 this exponent increases to 2, indicating theta or poor solvent conditions, consistent with the hydrophobic interactions increasing at lower pH. From a Guinier analysis of the 1mg/ml data at low q's (0.003- 0.007 Å-1) we estimate the cross section radius of the effective cylinder to be 23nm and its length as 96nm in an unbuffered sample, i.e. close to pH 7. In the intermediate q-range (0.01 -0.1Å-1) at pH 7 a fit to the Debye chain gives radius of gyration Rg of 16nm. Mucin is best modelled as an elongated micelle with a cylindrical or worm-like chain to represent the protein core and the sugar chains forming the corona. Results of such calculations will be presented.

  6. The dynamic duo: Combining NMR and small angle scattering in structural biology

    PubMed Central

    Hennig, Janosch; Sattler, Michael

    2014-01-01

    Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X-ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well-suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR-derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state-of-the-art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution. PMID:24687405

  7. Synchrotron-based small-angle X-ray scattering (SAXS) of proteins in solution

    PubMed Central

    Skou, Soren; Gillilan, Richard E

    2015-01-01

    Summary With recent advances in data analysis algorithms, X-ray detectors, and synchrotron sources, small-angle X-ray scattering (SAXS) has become much more accessible to the structural biology community than ever before. Although limited to ~10 Å resolution, SAXS can provide a wealth of structural information on biomolecules in solution and is compatible with a wide range of experimental conditions. SAXS is thus an attractive alternative when crystallography is not possible. Moreover, advanced usage of SAXS can provide unique insight into biomolecular behavior that can only be observed in solution, such as large conformational changes and transient protein-protein interactions. Unlike crystal diffraction data, however, solution scattering data are subtle in appearance, highly sensitive to sample quality and experimental errors, and easily misinterpreted. In addition, synchrotron beamlines that are dedicated to SAXS are often unfamiliar to the non-specialist. Here, we present a series of procedures that can be used for SAXS data collection and basic cross-checks designed to detect and avoid aggregation, concentration effects, radiation damage, buffer mismatch, and other common problems. The protein, human serum albumin (HSA), serves as a convenient and easily replicated example of just how subtle these problems can sometimes be, but also of how proper technique can yield pristine data even in problematic cases. Because typical data collection times at a synchrotron are only one to several days, we recommend that the sample purity, homogeneity, and solubility be extensively optimized prior to the experiment. PMID:24967622

  8. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering

    PubMed Central

    Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.

    2016-01-01

    Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263

  9. Small-angle x-ray scattering study on the structure of microcrystalline and nanofibrillated cellulose

    NASA Astrophysics Data System (ADS)

    Leppänen, Kirsi; Pirkkalainen, Kari; Penttilä, Paavo; Sievänen, Jenni; Kotelnikova, Nina; Serimaa, Ritva

    2010-10-01

    The effects of different solvents on the structure of microcrystalline and nanofibrillated cellulose (MCC, NFC) were studied using small-angle x-ray scattering (SAXS). MCC was immersed in water, ethanol, and acetone, and NFC was immersed only in water and ethanol, but studied also in the form of foam-like water-NFC-gel in wet, air-dried and re-wet states. The solvent affected the average chord length, which reveals the typical length scale of the structure of the sample: 2.4 ± 0.1 nm was obtained for MCC-water, 2.5 ± 0.1 nm for re-wet NFC-gel, 1.6 ± 0.1 nm for MCC-ethanol, 1.2 ± 0.1 nm for NFC-ethanol, and 1.3 ± 0.1 nm for MCC-acetone. The specific surface of cellulose increased strongly when MCC and NFC were immersed in the solvents compared to dry cellulose. The specific surface of cellulose was determined to be larger for NFC-water than MCC-water, and slightly larger for dry NFC powder than for dry MCC, which can be explained by the fact that the width of cellulose crystallites perpendicular to the cellulose chain direction was slightly larger in MCC than in NFC on the basis of wide-angle x-ray scattering results.

  10. Modeling detergent organization around aquaporin-0 using small-angle X-ray scattering.

    PubMed

    Berthaud, Alice; Manzi, John; Pérez, Javier; Mangenot, Stéphanie

    2012-06-20

    Solubilization of integral membrane proteins in aqueous solutions requires the presence of amphiphilic molecules like detergents. The transmembrane region of the proteins is then surrounded by a corona formed by these molecules, ensuring a hydrophilic outer surface. The presence of this corona has strongly hampered structural studies of solubilized membrane proteins by small-angle X-ray scattering (SAXS), a technique frequently used to monitor conformational changes of soluble proteins. Through the online combination of size exclusion chromatography, SAXS, and refractometry, we have determined a precise geometrical model of the n-dodecyl β-d-maltopyranoside corona surrounding aquaporin-0, the most abundant membrane protein of the eye lens. The SAXS data were well-fitted by a detergent corona shaped in an elliptical toroid around the crystal structure of the protein, similar to the elliptical shape recently reported for nanodiscs (Skar-Gislinge et al. J. Am. Chem. Soc. 2010, 132, 13713-13722). The torus thickness determined from the curve-fitting protocol is in excellent agreement with the thickness of a lipid bilayer, while the number of detergent molecules deduced from the volume of the torus compares well with those obtained on the same sample from refractometry and mass analysis based on SAXS forward scattering. For the first time, the partial specific volume of the detergent surrounding a protein was measured. The present protocol is a crucial step toward future conformational studies of membrane proteins in solution.

  11. Characterization of Physically and Chemically Separated Athabasca Asphaltenes Using Small-Angle X-ray Scattering

    SciTech Connect

    Amundaraín Hurtado, Jesús Leonardo; Chodakowski, Martin; Long, Bingwen; Shaw, John M.

    2012-02-07

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS). Two methods were used to separate asphaltenes from the Athabasca bitumen: namely, chemical separation by precipitation with n-pentane and physical separation by nanofiltration using a zirconia membrane with a 20 nm average pore size. The permeate and chemically separated samples were diluted in 1-methylnaphtalene and n-dodecane prior to SAXS measurements. The temperature and asphaltene concentration ranges were 50-310 C and 1-10.4 wt %, respectively. Model-independent analysis of SAXS data provided the radius of gyration and the scattering coefficients. Model-dependent fits provided size distributions for asphaltenes assuming that they are dense and spherical. Model-independent analysis for physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and the temperature dependence of structural properties. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in hydrocarbon resources. While the residuals for model-dependent fits are small, the results are inconsistent with the structural parameters obtained from model-independent analysis.

  12. Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations

    SciTech Connect

    Chen, Chun-Yu; Chen, Wei-Ren; Herwig, Kenneth W; Hong, Kunlun; Li, Xin; Liu, Emily; Liu, Yun; Smith, Gregory Scott; Wu, Bin; Yang, Jun; Do, Changwoo

    2011-01-01

    An experimental scheme using contrast variation small angle neutron scattering technique (SANS), is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers (PAMAM) solutions. The focus is placed on understanding the dependence of intra-dendrimer water and polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH value of solution. Assuming the spherical symmetry in the spatial arrangement of the constituent component of dendrimer, and the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside dendrimer, the intra-dendrimer water distribution along the radial direction can be determined based on the model of coherent scattering cross section developed in this work. Moreover, our result clearly reveals an outward relocation of the peripheral groups, as well as the enhanced intra-dendrimer hydration, upon increasing the molecular protonation and therefore allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

  13. Size And Shape of Detergent Micelles Determined By Small-Angle X-Ray Scattering

    SciTech Connect

    Lipfert, Jan; Columbus, Linda; Chu, Vincent B.; Lesley, Scott A.; Doniach, Sebastian; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC, SSRL /Pasteur Inst., Paris /Scripps Res. Inst. /Novartis Res. Found.

    2009-04-29

    We present a systematic analysis of the aggregation number and shape of micelles formed by nine detergents commonly used in the study of membrane proteins. Small-angle X-ray scattering measurements are reported for glucosides with 8 and 9 alkyl carbons (OG/NG), maltosides and phosphocholines with 10 and 12 alkyl carbons (DM/DDM and FC-10/FC-12), 1,2-dihexanoyl-sn-glycero-phosphocholine (DHPC), 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG), and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). The SAXS intensities are well described by two-component ellipsoid models, with a dense outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core. These models provide an intermediate resolution view of micelle size and shape. In addition, we show that Guinier analysis of the forward scattering intensity can be used to obtain an independent and model-free measurement of the micelle aggregation number and radius of gyration. This approach has the advantage of being easily generalizable to protein-detergent complexes, where simple geometric models are inapplicable. Furthermore, we have discovered that the position of the second maximum in the scattering intensity provides a direct measurement of the characteristic head group-head group spacing across the micelle core. Our results for the micellar aggregation numbers and dimensions agree favorably with literature values as far as they are available. We de novo determine the shape of FC-10, FC-12, DM, LPPG, and CHAPS micelles and the aggregation numbers of FC-10 and OG to be ca. 50 and 250, respectively. Combined, these data provide a comprehensive view of the determinants of micelle formation and serve as a starting point to correlate detergent properties with detergent-protein interactions.

  14. Porosity and structural parameters of Karelian shungites according to the data of small-angle synchrotron radiation scattering and microscopy

    SciTech Connect

    Golubev, Ye. A. Ulyashev, V. V.; Veligzhanin, A. A.

    2016-01-15

    The nanoporosity and structure of natural carbons has been investigated on the example of Karelian carbon-rich shungites by comparing the data of small-angle synchrotron radiation scattering and highresolution microscopy. The analysis of small-angle scattering data is based on the model of scattering spheres with lognormal size distribution. It is found that the structure of samples from the Maksovo and Zazhogino deposits subjected to high temperatures in the geological medium and (also to a lesser extent) a sample from the Shunga deposit can be described as an aggregation of polydisperse scattering spheres with lognormal size distribution; the characteristic scatterer size is determined for them. A comparison with microscopy data shows that these scatterers are mainly associated with pores, and the character of their size distribution is similar to that previously established for nanoglobules in schungites.

  15. Improving small-angle X-ray scattering data for structural analyses of the RNA world

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2010-01-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNAval, and yeast tRNAphe that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. PMID:20106957

  16. The accurate assessment of small-angle X-ray scattering data

    PubMed Central

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-01

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality. PMID:25615859

  17. Structure parameters of synaptic vesicles quantified by small-angle x-ray scattering.

    PubMed

    Castorph, Simon; Riedel, Dietmar; Arleth, Lise; Sztucki, Michael; Jahn, Reinhard; Holt, Matthew; Salditt, Tim

    2010-04-07

    Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons, and which are crucial in neurotransmission. After a rise in internal [Ca(2+)] during neuronal stimulation, SVs fuse with the plasma membrane releasing their neurotransmitter content, which then signals neighboring neurons. SVs are subsequently recycled and refilled with neurotransmitter for further rounds of release. Recently, tremendous progress has been made in elucidating the molecular composition of SVs, as well as putative protein-protein interactions. However, what is lacking is an empirical description of SV structure at the supramolecular level-which is necessary to enable us to fully understand the processes of membrane fusion, retrieval, and recycling. Using small-angle x-ray scattering, we have directly investigated the size and structure of purified SVs. From this information, we deduced detailed size and density parameters for the protein layers responsible for SV function, as well as information about the lipid bilayer. To achieve a convincing model fit, a laterally anisotropic structure for the protein shell is needed, as a rotationally symmetric density profile does not explain the data. Not only does our model confirm many of the preexisting ideas concerning SV structure, but also for the first time, to our knowledge, it indicates structural refinements, such as the presence of protein microdomains.

  18. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Thaury, Claire; Mineau, Jean-Luc; Gaubicher, Bertrand

    2010-08-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration.

  19. Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering.

    PubMed

    Bruetzel, Linda K; Gerling, Thomas; Sedlak, Steffen M; Walker, Philipp U; Zheng, Wenjun; Dietz, Hendrik; Lipfert, Jan

    2016-08-10

    Self-assembled DNA origami nanostructures enable the creation of precisely defined shapes at the molecular scale. Dynamic DNA devices that are capable of switching between defined conformations could afford completely novel functionalities for diagnostic, therapeutic, or engineering applications. Developing such objects benefits strongly from experimental feedback about conformational changes and 3D structures, ideally in solution, free of potential biases from surface attachment or labeling. Here, we demonstrate that small-angle X-ray scattering (SAXS) can quantitatively resolve the conformational changes of a DNA origami two-state switch device as a function of the ionic strength of the solution. In addition, we show how SAXS data allow for refinement of the predicted idealized three-dimensional structure of the DNA object using a normal mode approach based on an elastic network model. The results reveal deviations from the idealized design geometries that are otherwise difficult to resolve. Our results establish SAXS as a powerful tool to investigate conformational changes and solution structures of DNA origami and we anticipate our methodology to be broadly applicable to increasingly complex DNA and RNA devices.

  20. Synchrotron radiation small angle scattering studies of d(TTAGGG)4 oligomer in solution

    NASA Astrophysics Data System (ADS)

    Kozak, Maciej; Wlodarczyk, Agnieszka; Dobek, Andrzej

    2009-10-01

    Telomeric DNA sequences play a crucial role in maintaining chromosome stability and integrity. In human chromosomes telomeres are composed of tandem (TTAGGG)n repeats. The structural parameters and low-resolution structure of a synthetic d(TTAGGG)4 oligomer in solution has been studied in the absence and in the presence of potassium cations, with the use of the small angle scattering of synchrotron radiation. The radii of gyration RG, calculated for d(TTAGGG)4 oligomer (in 10 mM Tris/HCl pH 7.3) was 1.42 nm, while RG, (in 10 mM Tris/HCl pH 7.3; 0.1 mM KCl) was 1.32 nm. The pair distance distribution function, P(r), yielded a maximum dimension of 4.55and 4.35 nm for solutions in the absence and the presence of potassium cations. On the basis of SAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods.

  1. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-01

    A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  2. Use of anomalous small angle x-ray scattering to investigate microstructural features in complex alloys

    SciTech Connect

    Weertman, J.R.

    1990-08-01

    The research thrust has been directed into two areas. The principal effort has been spent in an investigation of the use of anomalous small angle x-ray scattering (ASAXS) to observe changes in the microstructure of a relatively complex alloy produced by high temperature deformation or aging. A second effort involves a study of the high temperature behavior of several ferritic steels. In particular, we are investigating the precursors and earliest stages of fatigue crack initiation, especially how initiation is affected by hold times and by environment. We have been studying carbides in two ferritic steel alloys. The first is Fe9CrlMo modified by the addition of small amounts of the strong carbide formers, V and Nb. This alloy, which has been studied at ORNL and in the course of this grant, is used in power-generating equipment. The second alloy is AF1410 (primarily Fel4Col0Ni), an ultra high-strength, high toughness steel. 8 figs.,

  3. Interactive graphical system for small-angle scattering analysis of polydisperse systems

    NASA Astrophysics Data System (ADS)

    Konarev, P. V.; Volkov, V. V.; Svergun, D. I.

    2016-09-01

    A program suite for one-dimensional small-angle scattering analysis of polydisperse systems and multiple data sets is presented. The main program, POLYSAS, has a menu-driven graphical user interface calling computational modules from ATSAS package to perform data treatment and analysis. The graphical menu interface allows one to process multiple (time, concentration or temperature-dependent) data sets and interactively change the parameters for the data modelling using sliders. The graphical representation of the data is done via the Winteracter-based program SASPLOT. The package is designed for the analysis of polydisperse systems and mixtures, and permits one to obtain size distributions and evaluate the volume fractions of the components using linear and non-linear fitting algorithms as well as model-independent singular value decomposition. The use of the POLYSAS package is illustrated by the recent examples of its application to study concentration-dependent oligomeric states of proteins and time kinetics of polymer micelles for anticancer drug delivery.

  4. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  5. The accurate assessment of small-angle X-ray scattering data

    DOE PAGES

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; ...

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  6. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  7. Quantifying radiation damage in biomolecular small-angle X-ray scattering.

    PubMed

    Hopkins, Jesse B; Thorne, Robert E

    2016-06-01

    Small-angle X-ray scattering (SAXS) is an increasingly popular technique that provides low-resolution structural information about biological macromolecules in solution. Many of the practical limitations of the technique, such as minimum required sample volume, and of experimental design, such as sample flow cells, are necessary because the biological samples are sensitive to damage from the X-rays. Radiation damage typically manifests as aggregation of the sample, which makes the collected data unreliable. However, there has been little systematic investigation of the most effective methods to reduce damage rates, and results from previous damage studies are not easily compared with results from other beamlines. Here a methodology is provided for quantifying radiation damage in SAXS to provide consistent results between different experiments, experimenters and beamlines. These methods are demonstrated on radiation damage data collected from lysozyme, glucose isomerase and xylanase, and it is found that no single metric is sufficient to describe radiation damage in SAXS for all samples. The radius of gyration, molecular weight and integrated SAXS profile intensity constitute a minimal set of parameters that capture all types of observed behavior. Radiation sensitivities derived from these parameters show a large protein dependence, varying by up to six orders of magnitude between the different proteins tested. This work should enable consistent reporting of radiation damage effects, allowing more systematic studies of the most effective minimization strategies.

  8. In situ microfluidic dialysis for biological small-angle X-ray scattering

    PubMed Central

    Skou, Magda; Skou, Søren; Jensen, Thomas G.; Vestergaard, Bente; Gillilan, Richard E.

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample aggregation was induced by the concentration process at the levels achieved in these experiments. Simulations of fluid dynamics and transport properties within the device strongly suggest that aggregates, and possibly even higher-order oligomers, are preferentially retained by the device, resulting in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions. PMID:25242913

  9. Collagen Orientation and Crystallite Size in Human Dentin: A Small Angle X-ray Scattering Study

    SciTech Connect

    Pople, John A.

    2001-03-29

    The mechanical properties of dentin are largely determined by the intertubular dentin matrix, which is a complex composite of type I collagen fibers and a carbonate-rich apatite mineral phase. The authors perform a small angle x-ray scattering (SAXS) study on fully mineralized human dentin to quantify this fiber/mineral composite architecture from the nanoscopic through continuum length scales. The SAXS results were consistent with nucleation and growth of the apatite phase within periodic gaps in the collagen fibers. These mineralized fibers were perpendicular to the dentinal tubules and parallel with the mineralization growth front. Within the plane of the mineralization front, the mineralized collagen fibers were isotropic near the pulp, but became mildly anisotropic in the mid-dentin. Analysis of the data also indicated that near the pulp the mineral crystallites were approximately needle-like, and progressed to a more plate-like shape near the dentino-enamel junction. The thickness of these crystallites, {approx} 5 nm, did not vary significantly with position in the tooth. These results were considered within the context of dentinogenesis and maturation.

  10. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  11. Structural modeling of proteins by integrating small-angle x-ray scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Peng, Jun-Hui; Zhang, Zhi-Yong

    2015-12-01

    Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an “integrative structural biology” approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and low-resolution experimental data using computer simulations. Small-angle x-ray scattering (SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB910203 and 2011CB911104), the National Natural Science Foundation of China (Grant No. 31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB08030102), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402120013).

  12. Modeling the Structure of RNA Molecules with Small-Angle X-Ray Scattering Data

    PubMed Central

    Gajda, Michal Jan; Martinez Zapien, Denise; Uchikawa, Emiko; Dock-Bregeon, Anne-Catherine

    2013-01-01

    We propose a novel fragment assembly method for low-resolution modeling of RNA and show how it may be used along with small-angle X-ray solution scattering (SAXS) data to model low-resolution structures of particles having as many as 12 independent secondary structure elements. We assessed this model-building procedure by using both artificial data on a previously proposed benchmark and publicly available data. With the artificial data, SAXS-guided models show better similarity to native structures than ROSETTA decoys. The publicly available data showed that SAXS-guided models can be used to reinterpret RNA structures previously deposited in the Protein Data Bank. Our approach allows for fast and efficient building of de novo models of RNA using approximate secondary structures that can be readily obtained from existing bioinformatic approaches. We also offer a rigorous assessment of the resolving power of SAXS in the case of small RNA structures, along with a small multimetric benchmark of the proposed method. PMID:24223750

  13. Atomistic modelling of scattering data in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS).

    PubMed

    Perkins, Stephen J; Wright, David W; Zhang, Hailiang; Brookes, Emre H; Chen, Jianhan; Irving, Thomas C; Krueger, Susan; Barlow, David J; Edler, Karen J; Scott, David J; Terrill, Nicholas J; King, Stephen M; Butler, Paul D; Curtis, Joseph E

    2016-12-01

    The capabilities of current computer simulations provide a unique opportunity to model small-angle scattering (SAS) data at the atomistic level, and to include other structural constraints ranging from molecular and atomistic energetics to crystallography, electron microscopy and NMR. This extends the capabilities of solution scattering and provides deeper insights into the physics and chemistry of the systems studied. Realizing this potential, however, requires integrating the experimental data with a new generation of modelling software. To achieve this, the CCP-SAS collaboration (http://www.ccpsas.org/) is developing open-source, high-throughput and user-friendly software for the atomistic and coarse-grained molecular modelling of scattering data. Robust state-of-the-art molecular simulation engines and molecular dynamics and Monte Carlo force fields provide constraints to the solution structure inferred from the small-angle scattering data, which incorporates the known physical chemistry of the system. The implementation of this software suite involves a tiered approach in which GenApp provides the deployment infrastructure for running applications on both standard and high-performance computing hardware, and SASSIE provides a workflow framework into which modules can be plugged to prepare structures, carry out simulations, calculate theoretical scattering data and compare results with experimental data. GenApp produces the accessible web-based front end termed SASSIE-web, and GenApp and SASSIE also make community SAS codes available. Applications are illustrated by case studies: (i) inter-domain flexibility in two- to six-domain proteins as exemplified by HIV-1 Gag, MASP and ubiquitin; (ii) the hinge conformation in human IgG2 and IgA1 antibodies; (iii) the complex formed between a hexameric protein Hfq and mRNA; and (iv) synthetic 'bottlebrush' polymers.

  14. Atomistic modelling of scattering data in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS)1

    PubMed Central

    Perkins, Stephen J.; Wright, David W.; Zhang, Hailiang; Brookes, Emre H.; Chen, Jianhan; Irving, Thomas C.; Krueger, Susan; Barlow, David J.; Edler, Karen J.; Scott, David J.; Terrill, Nicholas J.; King, Stephen M.; Butler, Paul D.; Curtis, Joseph E.

    2016-01-01

    The capabilities of current computer simulations provide a unique opportunity to model small-angle scattering (SAS) data at the atomistic level, and to include other structural constraints ranging from molecular and atomistic energetics to crystallography, electron microscopy and NMR. This extends the capabilities of solution scattering and provides deeper insights into the physics and chemistry of the systems studied. Realizing this potential, however, requires integrating the experimental data with a new generation of modelling software. To achieve this, the CCP-SAS collaboration (http://www.ccpsas.org/) is developing open-source, high-throughput and user-friendly software for the atomistic and coarse-grained molecular modelling of scattering data. Robust state-of-the-art molecular simulation engines and molecular dynamics and Monte Carlo force fields provide constraints to the solution structure inferred from the small-angle scattering data, which incorporates the known physical chemistry of the system. The implementation of this software suite involves a tiered approach in which GenApp provides the deployment infrastructure for running applications on both standard and high-performance computing hardware, and SASSIE provides a workflow framework into which modules can be plugged to prepare structures, carry out simulations, calculate theoretical scattering data and compare results with experimental data. GenApp produces the accessible web-based front end termed SASSIE-web, and GenApp and SASSIE also make community SAS codes available. Applications are illustrated by case studies: (i) inter-domain flexibility in two- to six-domain proteins as exemplified by HIV-1 Gag, MASP and ubiquitin; (ii) the hinge conformation in human IgG2 and IgA1 antibodies; (iii) the complex formed between a hexameric protein Hfq and mRNA; and (iv) synthetic ‘bottlebrush’ polymers. PMID:27980506

  15. Nano-Scale Morphology of Melanosomes Revealed by Small-Angle X-Ray Scattering

    PubMed Central

    Gorniak, Thomas; Haraszti, Tamas; Garamus, Vasyl M.; Buck, Andreas R.; Senkbeil, Tobias; Priebe, Marius; Hedberg-Buenz, Adam; Koehn, Demelza; Salditt, Tim; Grunze, Michael; Anderson, Michael G.; Rosenhahn, Axel

    2014-01-01

    Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences – determining the color of skin, hair and the iris – they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining how much light enters the eye). Though melanosomes can be beneficial for health, abnormalities in their structure can lead to adverse effects. Knowledge of their ultrastructure will be crucial to gaining insight into the mechanisms that ultimately lead to melanosome-related diseases. However, due to their small size and electron-dense content, physiologically intact melanosomes are recalcitrant to study by common imaging techniques such as light and transmission electron microscopy. In contrast, X-ray-based methodologies offer both high spatial resolution and powerful penetrating capabilities, and thus are well suited to study the ultrastructure of electron-dense organelles in their natural, hydrated form. Here, we report on the application of small-angle X-ray scattering – a method effective in determining the three-dimensional structures of biomolecules – to whole, hydrated murine melanosomes. The use of complementary information from the scattering signal of a large ensemble of suspended organelles and from single, vitrified specimens revealed a melanosomal sub-structure whose surface and bulk properties differ in two commonly used inbred strains of laboratory mice. Whereas melanosomes in C57BL/6J mice have a well-defined surface and are densely packed with 40-nm units, their counterparts in DBA/2J mice feature a rough surface, are more granular and consist of 60-nm building blocks. The fact that these strains have different coat colors and distinct susceptibilities to pigment-related eye disease suggest that these differences in size and packing are of biological significance. PMID:24621581

  16. A triple axis double crystal multiple reflection camera for ultra small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Lambard, Jacques; Lesieur, Pierre; Zemb, Thomas

    1992-06-01

    To extend the domain of small angle X-ray scattering requires multiple reflection crystals to collimate the beam. A double crystal, triple axis X-ray camera using multiple reflection channel cut crystals is described. Procedures for measuring the desmeared scattering cross-section on absolute scale are described as well as the measurement from several typical samples : fibrils of collagen, 0.3 μm diameter silica spheres, 0.16 μm diameter interacting latex spheres, porous lignite coal, liquid crystals in a surfactant-water system, colloidal crystal of 0.32 μm diameter silica spheres. L'extension du domaine de diffusion des rayons-X vers les petits angles demande l'emploi de cristaux à réflexions multiples pour collimater le faisceau. Nous décrivons une caméra à rayons-X à trois axes où les réflexions multiples sont réalisées dans deux cristaux à gorge. Nous donnons ensuite les procédures de déconvolution pour obtenir la section efficace de diffusion en échelle absolue, ainsi que les résultats des mesures effectuées avec plusieurs échantillons typiques : fibres de collagène, sphères de silice de 0,3 μm de diamètre, sphères de latex de 0,16 μm de diamètre en interaction, charbon lignite poreux, cristaux liquides formés dans un système eau-tensioactif, solution colloïdale de sphères de silice de 0,32 μm de diamètre.

  17. Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering

    SciTech Connect

    Chen, Lingling

    1996-04-01

    Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

  18. New neutron small-angle diffraction instrument at the Brookhaven High Flux Beam Reactor

    SciTech Connect

    Schneider, D.K.; Schoenborn, B.P.

    1982-01-01

    The new instrument utilizes cold neutrons emerging from a series of straight neutron guides. A multilayered monochromator is used in combination with a short collimator to obtain a monochromatized beam with a wavelength between 4 and 10 A and a wavelength spread of about 10%. The flux at 5 A exceeds 10/sup 6/ ns/sup -1/ cm/sup -2/ in a typical beam of 6-mm diameter at the sample. The spectrometer itself incorporates provisions for computer-controlled positioning of samples and a two-dimensional detector. At a sample-detector distance between 50 and 200 cm the detector can be centered at scattering angles of up to 45/sup 0/. The beam-defining components, the monochromator, the collimator, and various slits, are easily accessible and exchangeable for alternative devices. These features make the instrument modular and give it flexibility approaching that of standard x-ray equipment.

  19. Biological neutron scattering: Now and the future

    SciTech Connect

    Trewhella, J.

    1996-06-01

    Neutrons have an important role to play in structural biology. Neutron crystallography, small-angle neutron scattering and inelastic neutron scattering techniques can all contribute unique information on biomolecular structures. In particular, solution scattering techniques can give critical information on the conformations an dispositions of the components of complex assemblies under a wide variety of relevant conditions. The power of these methods are demonstrated for examples by protein/DNA complexes, and Ca{sup 2+}- binding proteins complexed with their regulatory targets. In addition, we demonstrate the utility of a new structural approach suing neutron resonance scattering. The impact of biological neutron scattering to date has been constrained principally by the available fluxes at neutron sources and the true potential of these approaches will only be realized with the development of new more powerful neutron sources.

  20. The effect of the shape function on small-angle scattering analysis by the maximum entropy method

    SciTech Connect

    Jemian, P.R.; Allen, A.J. |

    1992-09-15

    Analysis of small-angle scattering data to obtain a particle size distribution is dependent upon the shape function used to model the scattering. Using a maximum entropy analysis of small-angle scattering data, the effect of shape function selection on obtained size distribution is demonstrated using three different shape functions to describe the same scattering data from each of two steels. The alloys have been revealed by electron microscopy to contain a distribution of randomly oriented and mainly non-interacting, irregular, ellipsoidal precipitates. Comparison is made between the different forms of the shape function. Effect of an incident wavelength distribution is also shown. The importance of testing appropriate shape functions and validating these against other microstructural studies is discussed.

  1. Methods for analysis of size-exclusion chromatography-small-angle X-ray scattering and reconstruction of protein scattering.

    PubMed

    Malaby, Andrew W; Chakravarthy, Srinivas; Irving, Thomas C; Kathuria, Sagar V; Bilsel, Osman; Lambright, David G

    2015-08-01

    Size-exclusion chromatography in line with small-angle X-ray scattering (SEC-SAXS) has emerged as an important method for investigation of heterogeneous and self-associating systems, but presents specific challenges for data processing including buffer subtraction and analysis of overlapping peaks. This paper presents novel methods based on singular value decomposition (SVD) and Guinier-optimized linear combination (LC) to facilitate analysis of SEC-SAXS data sets and high-quality reconstruction of protein scattering directly from peak regions. It is shown that Guinier-optimized buffer subtraction can reduce common subtraction artifacts and that Guinier-optimized linear combination of significant SVD basis components improves signal-to-noise and allows reconstruction of protein scattering, even in the absence of matching buffer regions. In test cases with conventional SAXS data sets for cytochrome c and SEC-SAXS data sets for the small GTPase Arf6 and the Arf GTPase exchange factors Grp1 and cytohesin-1, SVD-LC consistently provided higher quality reconstruction of protein scattering than either direct or Guinier-optimized buffer subtraction. These methods have been implemented in the context of a Python-extensible Mac OS X application known as Data Evaluation and Likelihood Analysis (DELA), which provides convenient tools for data-set selection, beam intensity normalization, SVD, and other relevant processing and analytical procedures, as well as automated Python scripts for common SAXS analyses and Guinier-optimized reconstruction of protein scattering.

  2. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    SciTech Connect

    Settens, Charles M.

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  3. Ultra small angle x-ray scattering in complex mixtures of triacylglycerols

    NASA Astrophysics Data System (ADS)

    Peyronel, Fernanda; Quinn, Bonnie; Marangoni, Alejandro G.; Pink, David A.

    2014-11-01

    Ultra-small angle x-ray scattering (USAXS) has been used to elucidate, in situ, the aggregation structure of unsheared model edible oils. Each system comprised one or two solid lipids and a combination of liquid lipids. The 3D nano- to micro-structures of each system were characterized. The length scale investigated, using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, ANL, ranged from 300 Å-10 µm. Using the Unified Fit model, level-1 analysis showed that the scatterers were 2D objects with either a smooth, a rough, or a diffuse surface. These 2D objects had an average radius of gyration Rg1 between 200-1500 Å. Level-2 analysis displayed a slope between -1 and -2. Use of the Guinier-Porod model gave s ≈ 1 thus showing that it was cylinders (TAGwoods) aggregating with fractal dimension 1 ≤ D2 ≤ 2. D2 = 1 is consistent with 1D structures formed from TAGwoods, while D2 = 2 implies that the TAGwoods had formed structures characteristic of diffusion or reaction limited cluster-cluster aggregation (DLCA/RLCA). These aggregates exhibited radii of gyration, Rg2, between 2500 and 6500 Å. Level-3 analyses showed diffuse surfaces, for most of the systems. These interpretations are in accord with theoretical models which studied crystalline nano-platelets (CNPs) coated with nano-scale layers arising from phase separation at the CNP surfaces. These layers could be due to either liquid-liquid phase separation with the CNPs coated, uniformly or non-uniformly, by a diffuse layer of TAGs, or solid-liquid phase separation with the CNPs coated by a rough layer of crystallites. A fundamental understanding of the self-organizing structures arising in these systems helps advance the characterization of fat crystal networks from nanometres to micrometres. This research can be used to design novel fat structures that use healthier fats via nano- and meso-scale structural engineering.

  4. LORES: Low resolution shape program for the calculation of small angle scattering profiles for biological macromolecules in solution

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Deyhim, A.; Krueger, S.; Gregurick, S. K.

    2005-08-01

    A program for determining the low resolution shape of biological macromolecules, based on the optimization of a small angle neutron scattering profile to experimental data, is presented. This program, termed LORES, relies on a Monte Carlo optimization procedure and will allow for multiple scattering length densities of complex structures. It is therefore more versatile than utilizing a form factor approach to produce low resolution structural models. LORES is easy to compile and use, and allows for structural modeling of biological samples in real time. To illustrate the effectiveness and versatility of the program, we present four specific biological examples, Apoferritin (shell model), Ribonuclease S (ellipsoidal model), a 10-mer dsDNA (duplex helix) and a construct of a 10-mer DNA/PNA duplex helix (heterogeneous structure). These examples are taken from protein and nucleic acid SANS studies, of both large and small scale structures. We find, in general, that our program will accurately reproduce the geometric shape of a given macromolecule, when compared with the known crystallographic structures. We also present results to illustrate the lower limit of the experimental resolution which the LORES program is capable of modeling. Program summaryTitle of program:LORES Catalogue identifier: ADVC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:SGI Origin200, SGI Octane, SGI Linux, Intel Pentium PC Operating systems:UNIX64 6.5 and LINUX 2.4.7 Programming language used:C Memory required to execute with typical data:8 MB No. of lines in distributed program, including test data, etc.:2270 No. of bytes in distributed program, including test data, etc.:13 302 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MATH library

  5. Role of Molecular Flexibility and Colloidal Descriptions of Proteins in Crowded Environments from Small-Angle Scattering.

    PubMed

    Castellanos, Maria Monica; Clark, Nicholas J; Watson, Max C; Krueger, Susan; McAuley, Arnold; Curtis, Joseph E

    2016-12-15

    Small-angle scattering is a powerful technique to study molecular conformation and interactions of proteins in solution and in amorphous solids. We have investigated the role of multiple protein configurations in the interaction parameters derived from small-angle scattering for proteins in concentrated solutions. In order to account for the wide configurational space sampled by proteins, we generate ensembles of atomistic structures for lysozyme and monoclonal antibodies, representing globular and flexible proteins, respectively. While recent work has argued that a colloidal approach is inadequate to model proteins, because of the large configurational space that they sample in solution, we find a range of length scales where colloidal models can be used to describe solution scattering data while simultaneously accounting for structural flexibility. We provide insights to determine the length scales where isotropic colloidal models can be used, and find smoothly varying sets of interaction parameters that encompass ensembles of structures. This approach may play an important role in the definition of long-range interactions in coarse-grained models of flexible proteins with experimental scattering constraints. Additionally, we apply the decoupling approximation to ensembles of lysozyme structures with atomistic detail and observe remarkably different results when using geometric solids, such as ellipsoids. The insights from this study provide guidelines for the analysis of small-angle scattering profiles of proteins in crowded environments.

  6. A simple procedure to evaluate the efficiency of bio-macromolecular rigid-body refinement by small-angle scattering.

    PubMed

    Gabel, Frank

    2012-01-01

    A simple and rapid procedure is presented that enables evaluation and visualization of refinement efficiency for bio-macromolecular complexes consisting of two subunits in a given orientation by using small-angle scattering. Subunit orientations within a complex can be provided in practice by NMR residual dipolar couplings, an approach that has been combined with increasing success to complement small-angle data. The procedure is illustrated by applying it to several systems composed of two simple geometric bodies (ellipsoids) and to protein complexes from the protein data bank that vary in subunit size and anisometry. The effects of the experimental small-angle scattering range (Q-range) and data noise level on the refinement efficiency are investigated and discussed. The procedure can be used in two ways: (1) either as a quick preliminary test to probe the refinement capacity expected for a given bio-macromolecular complex prior to sophisticated and time-consuming experiments and data analysis, or (2) as an a posteriori check of the stability and accuracy of a refined model and for illustration of the residual degrees of freedom of the subunit positions that are in agreement with both small-angle data and restraints on subunit orientation (as provided, e.g., by NMR).

  7. Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys

    SciTech Connect

    Rice, M.

    1993-12-01

    This dissertation addresses the issue of composition modulation in sputtered amorphous metal-germanium thin films with the aim of understanding the intermediate range structure of these films as a function of composition. The investigative tool used in this work is anomalous small-angle X-ray scattering (ASAXS). The primary focus of this investigation is the amorphous iron-germanium (a-Fe{sub x}Ge{sub 100-x}) system with particular emphasis on the semiconductor-rich regime. Brief excursions are made into the amorphous tungsten-germanium (a-W{sub x}Ge{sub 100-x}) and the amorphous molybdenum-germanium (a-Mo{sub x}Ge{sub 100-x}) systems. All three systems exhibit an amorphous structure over a broad composition range extending from pure amorphous germanium to approximately 70 atomic percent metal when prepared as sputtered films. Across this composition range the structures change from the open, covalently bonded, tetrahedral network of pure a-Ge to densely packed metals. The structural changes are accompanied by a semiconductor-metal transition in all three systems as well as a ferromagnetic transition in the a-Fe{sub x}Ge{sub 100-x} system and a superconducting transition in the a-Mo{sub x}Ge{sub 100-x} system. A long standing question, particularly in the a-Fe{sub x}Ge{sub 100-x} and the a-Mo{sub x}Ge{sub 100-x} systems, has been whether the structural changes (and therefore the accompanying electrical and magnetic transitions) are accomplished by homogeneous alloy formation or phase separation. The application of ASAXS to this problem proves unambiguously that fine scale composition modulations, as distinct from the simple density fluctuations that arise from cracks and voids, are present in the a-Fe{sub x}Ge{sub 100-x}, a-W{sub x}Ge{sub 100-x}, and a-Mo{sub x}Ge{sub 100-x} systems in the semiconductor-metal transition region. Furthermore, ASAXS shows that germanium is distributed uniformly throughout each sample in the x<25 regime of all three systems.

  8. A method for determining transmembrane helix association and orientation in detergent micelles using small angle x-ray scattering.

    PubMed Central

    Bu, Z; Engelman, D M

    1999-01-01

    Solution small angle x-ray scattering can be used to study the association of transmembrane proteins solubilized in detergent micelles. We have used the alpha-helical transmembrane domain of the human erythrocyte glycophorin A (GpA) fused to the carboxyl terminus of monomeric staphylococcal nuclease (SN/GpA) as a model system for study. By matching the average electron density of the detergent micelles to that of the buffer solution, the micelle contribution to the small angle scattering vanishes, and the molecular weight and the radius of gyration of the proteins can be determined. SN/GpA has been found to dimerize in a zwitterionic detergent micelle, N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB), whose average electron density naturally matches the electron density of an aqueous buffer. The dimerization occurs through the transmembrane domains of GpA. With the aid of the nuclease domain scattering, the orientation of the helices within a dimer can be determined to be parallel by radius of gyration analysis. The association constant of a mutant (G83I) that weakens the GpA dimerization has been determined to be 24 microM in the DDMAB environment. The experimental methods established here could be used to apply solution small angle x-ray scattering to studying the association and interactions of other membrane proteins. PMID:10423450

  9. Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices

    SciTech Connect

    Buljan, Maja Radić, Nikola; Bernstorff, Sigrid; Dražić, Goran; Bogdanović-Radović, Iva; Holý, Václav

    2012-01-01

    The modelling of grazing-incidence small-angle X-ray scattering (GISAXS) from three-dimensional quantum dot lattices is described. The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process.

  10. Grazing incidence small-angle X-ray scattering microtomography demonstrated on a self-ordered dried drop of nanoparticles.

    PubMed

    Kuhlmann, Marion; Feldkamp, Jan M; Patommel, Jens; Roth, Stephan V; Timmann, Andreas; Gehrke, Rainer; Müller-Buschbaum, Peter; Schroer, Christian G

    2009-07-07

    We combine grazing-incidence small-angle X-ray scattering (GISAXS) with scanning X-ray microtomography to investigate the nanostructure in a dried gold/polystyrene nanocomposite drop. Local GISAXS structure factors are reconstructed at each position on the surface of this two-dimensionally heterogeneous sample with 30 microm pixel size. Evidence for four types of self-assembled colloidal crystalline structures is provided by the reconstructed data of the drop demonstrating the feasibility of the method.

  11. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    NASA Astrophysics Data System (ADS)

    Jääskeläinen, Pentti; Engelhardt, Peter; Hynönen, Ulla; Torkkeli, Mika; Palva, Airi; Serimaa, Ritva

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 Å and 435 Å.

  12. Measurement of energy spectra of small-angle scattering and distribution of optical microinhomogeneities in laser ceramics

    SciTech Connect

    Tverdokhleb, P E; Shepetkin, Yu A; Steinberg, I Sh; Belikov, A Yu; Vatnik, S M; Vedin, I A; Kurbatov, P F

    2014-06-30

    The energy spectra of small-angle light scattering from the samples of Nd:YAG ceramics and the spatial distributions of optical microinhomogeneities in them are measured. The spatial profiles of microinhomogeneities are found using the collinear heterodyne microprobe technique. Based on the obtained data, the comparison of noise and lasing characteristics of foreign and domestic samples of laser ceramics is carried out. (extreme light fields and their applications)

  13. Thermal degradation of M41S-class mesoporous sieves as revealed by small angle X-ray scattering

    SciTech Connect

    Hunt, J. E.; Xu, L.; Winans, R. E.; Seifert, S.

    2000-02-16

    The authors have studied the temperature stability of M41S class siliceous mesoporous materials loaded with carbonaceous material by temperature programmed small-angle X-ray scattering (TPSAXS) techniques. Results show the thermal structural instability of large pore pure silica sieve material with carbonaceous material (such as coal extracts) occluded within the pores of mesoporous 31 {angstrom} M41S materials. Unfilled pore M41S materials do not show thermal-related structural instability.

  14. Ultra Low-{kappa} Metrology Using X-Ray Reflectivity And Small-Angle X-Ray Scattering Techniques

    SciTech Connect

    Plantier, L.; Gonchond, J.-P.; Pernot, F.; Peled, A.; Yokhin, B.; Wyon, C.; Royer, J.-C.

    2007-09-26

    The automated metrology tool, combining X-ray reflectivity XRR and small-angle X-ray scattering SAXS has been demonstrated as a capable equipment to assess standard porous Ultra low-{kappa} (ULK) metrology. Therefore those techniques have enabled characterizations of several ULK used in sub-65 nm nodes integration. Standard ULK material for 65 nm node technology has been monitored through the whole C065 integration steps using those combined techniques.

  15. Quantitative impact of small angle forward scatter on whole blood oximetry using a Beer-Lambert absorbance model.

    PubMed

    LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean

    2011-04-21

    It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.

  16. Method to study sample object size limit of small-angle x-ray scattering computed tomography

    NASA Astrophysics Data System (ADS)

    Choi, Mina; Ghammraoui, Bahaa; Badal, Andreu; Badano, Aldo

    2016-03-01

    Small-angle x-ray scattering (SAXS) imaging is an emerging medical tool that can be used for in vivo detailed tissue characterization and has the potential to provide added contrast to conventional x-ray projection and CT imaging. We used a publicly available MC-GPU code to simulate x-ray trajectories in a SAXS-CT geometry for a target material embedded in a water background material with varying sample sizes (1, 3, 5, and 10 mm). Our target materials were water solution of gold nanoparticle (GNP) spheres with a radius of 6 nm and a water solution with dissolved serum albumin (BSA) proteins due to their well-characterized scatter profiles at small angles and highly scattering properties. The background material was water. Our objective is to study how the reconstructed scatter profile degrades at larger target imaging depths and increasing sample sizes. We have found that scatter profiles of the GNP in water can still be reconstructed at depths up to 5 mm embedded at the center of a 10 mm sample. Scatter profiles of BSA in water were also reconstructed at depths up to 5 mm in a 10 mm sample but with noticeable signal degradation as compared to the GNP sample. This work presents a method to study the sample size limits for future SAXS-CT imaging systems.

  17. Single-crystal CVD diamonds as small-angle X-ray scattering windows for high-pressure research.

    PubMed

    Wang, Suntao; Meng, Yu-Fei; Ando, Nozomi; Tate, Mark; Krasnicki, Szczesny; Yan, Chih-Shiue; Liang, Qi; Lai, Joseph; Mao, Ho-Kwang; Gruner, Sol M; Hemley, Russell J

    2012-06-01

    Small-angle X-ray scattering (SAXS) was performed on single-crystal chemical vapor deposition (CVD) diamonds with low nitrogen concentrations, which were fabricated by microwave plasma-assisted chemical vapor deposition at high growth rates. High optical quality undoped 500 µm-thick single-crystal CVD diamonds grown without intentional nitrogen addition proved to be excellent as windows on SAXS cells, yielding parasitic scattering no more intense than a 7.5 µm-thick Kapton film. A single-crystal CVD diamond window was successfully used in a high-pressure SAXS cell.

  18. Integral indicatrix of light scattering from {open_quotes}soft{close_quotes} spherical particles in the region of small angles

    SciTech Connect

    Lopatin, V.N.; Shapovalov, K.A.

    1995-05-01

    The integral indicatrix of light scattering from a {open_quotes}soft{close_quotes} spherical particle is studied as a function of the phase shift. It is shown analytically in the WKB approximation and numerically on the basis of the Mie theory and the WKB approximation that the dependence of the integral indicatrix on the phase shift is similar to that for the factor of light scattering efficiency. Asymptotic expressions for the integral indicatrix are obtained for large diffraction parameters in the limiting cases of small and large phase shifts in the region of small angles. 8 refs., 3 figs.

  19. Neutron scattering from a ferrofluid

    SciTech Connect

    Lin, M.Y. |; Luo, W.; Lynn, J.

    1995-12-31

    Small angle neutron scattering experiments were performed on a eicosane-based ferrofluid. An average size of 88 {angstrom} can be extracted from the data, in agreement with results from electron microscopy. Below the frozen temperature of eicosane, however, the particles are seen to be in larger aggregates with a fractal dimension of 2.15, similar to those formed under reaction-limited cluster aggregation (RLCA) conditions. At high concentrations, particles form larger aggregates even in the liquid state. Applying a magnetic field introduces new structure and changes the density inside the aggregates.

  20. Nuclear effects on ion heating within the small-angle charged-particle elastic-scattering regime

    NASA Astrophysics Data System (ADS)

    Andrade, A.; Hale, G. M.

    1984-10-01

    The effects of nuclear forces (in contrast to pure Coulomb interaction) on the ion heating rate which results from small-angle scattering processes between charged particles in plasmas are investigated within the framework of Fokker-Planck theory. These effects are included through the addition of analytic Coulomb-nuclear interference and nuclear elastic cross sections in the scattering integrals of the dynamical friction coefficient and dispersion tensor. It is found that corrections to traditional Fokker-Planck predictions of the ion-ion energy exchange rate can be calculated and that these corrections are sensitive to the choice of the maximum scattering angle defining the cutoff between small- and large-angle scattering.

  1. DARA: a web server for rapid search of structural neighbours using solution small angle X-ray scattering data

    PubMed Central

    Kikhney, Alexey G.; Panjkovich, Alejandro; Sokolova, Anna V.; Svergun, Dmitri I.

    2016-01-01

    Motivation: Small angle X-ray scattering (SAXS) is an established method for studying biological macromolecules in solution, whereby the experimental scattering patterns relate to the quaternary and tertiary structure of the macromolecule. Here we present DARA, a web-server, that queries over 150 000 scattering profiles pre-computed from the high resolution models of macromolecules and biological assemblies in the Protein Data Bank, to rapidly find nearest neighbours of a given experimental or theoretical SAXS pattern. Identification of the best scattering equivalents provides a straightforward and automated way of structural assessment of macromolecules based on a SAXS profile. DARA results are useful e.g. for fold recognition and finding of biologically active oligomers. Availability and implementation: http://dara.embl-hamburg.de/ Contact: svergun@embl-hamburg.de PMID:26504146

  2. Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices.

    PubMed

    Buljan, Maja; Radić, Nikola; Bernstorff, Sigrid; Dražić, Goran; Bogdanović-Radović, Iva; Holý, Václav

    2012-01-01

    The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process.

  3. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  4. Silver behenate as a calibration standard of grazing-incidence small-angle X-ray scattering

    SciTech Connect

    Lee, Byeongdu; Lo, Chieh-Tsung; Seifert, Soenke; Winans, Randall E.

    2006-09-12

    Grazing-incidence small-angle X-ray scattering (GISAXS) patterns of a silver behenate composite film, which has a typical layered structure, are described. The peak position of the film in the GISAXS pattern was varied depending on the incident angle, which was well described by taking into account the refraction and the reflection effects. Since the refractive index of samples depends on sample preparation, it is recommended that the measurement of silver behenate as a standard be done in conventional transmission mode to avoid any complexity.

  5. Small-angle light scattering from polymer-dispersed liquid-crystal films

    SciTech Connect

    Loiko, V. A. Maschke, U.; Zyryanov, V. Ya.; Konkolovich, A. V.; Misckevich, A. A.

    2008-10-15

    A method is developed for modeling and computing the angular distribution of light scattered forward from a single-layer polymer-dispersed liquid-crystal (PDLC) film. The method is based on effective-medium approximation, anomalous diffraction approximation, and far-field single-scattering approximation. The angular distribution of forward-scattered light is analyzed for PDLC films with droplet size larger than the optical wavelength. The method can be used to study field-and temperature-induced phase transitions in LC droplets with cylindrical symmetry by measuring polarized scattered light intensity.

  6. Characterization of Nanoclay Orientation in Polymer Nanocomposite Film by Small-angle X-ray Scattering

    SciTech Connect

    P Nawani; C Burger; L Rong; B Chu; B Hsiao; A Tsou; W Weng

    2011-12-31

    The orientation distribution of layer-shaped nanoclays (e.g. organoclays and pristine clays) dispersed in a polymer matrix is an important parameter to control the properties of polymer nanocomposites. In this study, we demonstrate that the use of multi-directional 2-D small-angleX-rayscattering (SAXS) can quantitatively describe the orientation distribution of organoclays (e.g. Cloisite C20A) in melt-pressed nanocompositefilms, containing ethylene-vinyl acetate (EVA) copolymers as polymer matrices. Different weight fractions of organoclays were used to alter the orientation profile of nanocompositefilms, in which the dispersion and morphology of organoclays were also characterized by complementary 2-D and 3-D transmission electron microscopy (TEM). All nanocomposites exhibited mixed intercalation/exfoliation clay morphology, where the intercalated structure possessed partial orientation parallel to the in-plane direction of the film. The higher content of the clay loading showed a higher clay orientation. A simple analytical scheme for SAXS data analysis to determine the orientation parameter (P{sub 2}) was demonstrated, the results of which are in agreement with the gas permeation properties of the nanocompositefilms.

  7. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  8. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    SciTech Connect

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard; Yennawar, Neela

    2011-05-01

    The X-ray crystal structure and a small-angle X-ray scattering solution structure of sheep liver sorbitol dehydrogenase have been determined. The details of the interactions that enable the tetramer scaffold to be the functional biological unit have been analyzed. The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer that superposes well with that seen in hSDH (despite belonging to a different space group) and obeying the 222 crystal symmetry is seen in slSDH. An acetate molecule is bound in the active site, coordinating to the active-site zinc through a water molecule. Glycerol, a substrate of slSDH, also occupies the substrate-binding pocket together with the acetate designed by nature to fit large polyol substrates. The substrate-binding pocket is seen to be in close proximity to the tetramer interface, which explains the need for the structural integrity of the tetramer for enzyme activity. Small-angle X-ray scattering was also used to identify the quaternary structure of the tetramer of slSDH in solution.

  9. Dynamic small angle x-ray scattering study of stressed Kevlar 49 epoxy composites

    SciTech Connect

    Lee, J.S.; Fellers, J.F.; Tang, M.Y.; Lin, J.S.

    1985-01-01

    The highly crosslinked epoxy resins gave rise to isotropic scattering patterns and applying tensile stresses resulted in very little scattering changes. The dynamic scattering studies on the epoxy resins indicate the failure process as a catastrophic dynamic process with fractures initiating from surface or internal flaws. The crack propagates across the whole sample in a very short time to complete failure. The Kevlar fibers are microporous giving rise to equatorially elongated anisotropic scattering patterns. These microvoids can be partially filled by liquid epoxy. Based on comparisons of the volume fraction of the microvoids obtained by SAXS absolute intensity measurements and by the density measurements, two sizes of microvoids are present in the Kevlar 49 fibers - one in the range of 10 to 20 nm and the other much larger. Applying tensile stresses results in an increase in the scattering intensities and in the volume fraction of smaller microvoids. The average radius of gyration of these microvoids remained constant, and hence the number of these smaller microvoids must have increased in order to account for increased scattering intensities. It is thus concluded that the failure of Kevlar 49 fibers is accompanied by the increase in number of smaller microvoids and the enlargement of the larger microvoids along the fiber axis direction. The reinforced epoxy composites of low volume fraction unidirectional Kevlar 49 fiber gave rise to anisotropic scattering patterns perpendicular to the fiber axis direction, and it is believed this scattering is due to voids within the fibers and voids entrapped along the fiber matrix interface during processing. The dynamic scattering studies on the composites indicate the failure as a catastrophic dynamic process, fracture initiating in the epoxy matrix and the fibers not being able to carry the load, thus failing catastrophically as well. The failure is thus instantaneous once incipient failure occurs.

  10. VecDec4SAS program for analyzing the dynamic processes observed by the small-angle scattering technique

    NASA Astrophysics Data System (ADS)

    Molodenskii, D. S.

    2017-01-01

    A VecDec4SAS program has been developed to provide a fast and easy description of the dynamics of any process occurring in a nanoparticle solution observed by the small-angle scattering technique. The process should be characterized by the some conditional initial and final stages, in fractions of which all intermediate data are expanded. The program makes it possible to estimate the adequacy of two-basis approximation and indicate the presence of an additional process introducing a systematic error into the initial data. Scattering curves for human serum albumin protein in solutions with pH 7.4 and 3.0 and a concentration of 20 mg/mL, obtained on the DICSY station at the National Research Centre "Kurchatov Institute" in the solution temperature range from 25 to 70°C, were taken to be initial data to illustrate the potential of the program.

  11. Grazing-incidence small-angle X-ray scattering from alkaline phosphatase immobilized in atmospheric plasmapolymer coatings

    NASA Astrophysics Data System (ADS)

    Ortore, M. G.; Sinibaldi, R.; Heyse, P.; Paulussen, S.; Bernstorff, S.; Sels, B.; Mariani, P.; Rustichelli, F.; Spinozzi, F.

    2008-06-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) has been used to study proteins embedded in thin polymer films obtained by a new cold, atmospheric-pressure plasma technique. In order to test the efficiency of the technology, four samples of alkaline phosphatase incorporated in organic polymer coatings in different plasma conditions have been investigated. Data have been analysed in the framework of the distorted-wave Born approximation (DWBA), by using a new method for the simultaneous fitting of the two-dimensional diffuse scattering from each sample. As a result, protein film concentration and aggregation state as well as a set of parameters describing the polymer coatings have been obtained.

  12. Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures.

    PubMed

    Fang, Xianyang; Stagno, Jason R; Bhandari, Yuba R; Zuo, Xiaobing; Wang, Yun-Xing

    2015-02-01

    Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS) due to high electron density along phosphate-sugar backbones, whose scattering contribution dominates SAXS intensity. For this reason, SAXS is particularly useful in obtaining global RNA structural information that outlines backbone topologies and, therefore, molecular envelopes. Such information is extremely valuable in bridging the gap between the secondary structures and three-dimensional topological structures of RNA molecules, particularly those that have proven difficult to study using other structure-determination methods. Here we review published results of RNA topological structures derived from SAXS data or in combination with other experimental data, as well as details on RNA sample preparation for SAXS experiments.

  13. Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures

    SciTech Connect

    Fang, Xianyang; Stagno, Jason R.; Bhandari, Yuba R.; Zuo, Xiaobing; Wang, Yun-Xing

    2015-02-01

    Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS) due to high electron density along phosphate-sugar backbones, whose scattering contribution dominates SAXS intensity. For this reason, SAXS is particularly useful in obtaining global RNA structural information that outlines backbone topologies and, therefore, molecular envelopes. Such information is extremely valuable in bridging the gap between the secondary structures and three-dimensional topological structures of RNAmolecules, particularly those that have proven difficult to study using other structuredetermination methods. Here we review published results of RNA topological structures derived from SAXS data or in combination with other experimental data, as well as details on RNA sample preparation for SAXS experiments.

  14. Performance of the micro-PIC gaseous area detector in small-angle X-ray scattering experiments.

    PubMed

    Hattori, Kaori; Tsuchiya, Ken'ichi; Ito, Kazuki; Okada, Yoko; Fujii, Kotaro; Kubo, Hidetoshi; Miuchi, Kentaro; Takata, Masaki; Tanimori, Toru; Uekusa, Hidehiro

    2009-03-01

    The application of a two-dimensional photon-counting detector based on a micro-pixel gas chamber (micro-PIC) to high-resolution small-angle X-ray scattering (SAXS), and its performance, are reported. The micro-PIC is a micro-pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the micro-PIC in SAXS experiments at SPring-8. A dynamic range of >10(5) was obtained for X-ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high-angle region in one accumulation of photons.

  15. Characterizing the Morphologies of Mechanically Manipulated Multiwall Carbon Nanotube Films by Small-Angle X-ray Scattering

    SciTech Connect

    Wang,B.; Bennett, R.; Verploegen, E.; Hart, A.; Cohen, R.

    2007-01-01

    We used small-angle X-ray scattering (SAXS) to quantitatively characterize the morphological characteristics of pristine and mechanically manipulated multiwall carbon nanotube (MWCNT) films. We determined that CNT diameters measured near the edges of a film were smaller compared to those measured in the interior. Uniaxially compressed MWCNT films exhibited a buckling deformation that was observable both in scanning electron microscopy (SEM) and SAXS. CNT films were also converted into cellular foams of CNTs through capillarity-induced densification. By examining spatially- and time-resolved SAXS data for the cellular foams, we identified low angle features in the scattering curves that correspond to the average spacing between CNTs, demonstrating that SAXS is a useful method for monitoring the packing density of CNTs in a film. For all of the morphologies that were examined (aligned, disordered, compressed, and densified), SAXS data showed good correspondence with SEM images.

  16. Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering.

    PubMed

    Ellis, Jacqueline; Gutierrez, Aldo; Barsukov, Igor L; Huang, Wei-Cheng; Grossmann, J Günter; Roberts, Gordon C K

    2009-12-25

    NADPH-cytochrome P450 reductase (CPR), a diflavin reductase, plays a key role in the mammalian P450 mono-oxygenase system. In its crystal structure, the two flavins are close together, positioned for interflavin electron transfer but not for electron transfer to cytochrome P450. A number of lines of evidence suggest that domain motion is important in the action of the enzyme. We report NMR and small-angle x-ray scattering experiments addressing directly the question of domain organization in human CPR. Comparison of the (1)H-(15)N heteronuclear single quantum correlation spectrum of CPR with that of the isolated FMN domain permitted identification of residues in the FMN domain whose environment differs in the two situations. These include several residues that are solvent-exposed in the CPR crystal structure, indicating the existence of a second conformation in which the FMN domain is involved in a different interdomain interface. Small-angle x-ray scattering experiments showed that oxidized and NADPH-reduced CPRs have different overall shapes. The scattering curve of the reduced enzyme can be adequately explained by the crystal structure, whereas analysis of the data for the oxidized enzyme indicates that it exists as a mixture of approximately equal amounts of two conformations, one consistent with the crystal structure and one a more extended structure consistent with that inferred from the NMR data. The correlation between the effects of adenosine 2',5'-bisphosphate and NADPH on the scattering curve and their effects on the rate of interflavin electron transfer suggests that this conformational equilibrium is physiologically relevant.

  17. Ambiguity assessment of small-angle scattering curves from monodisperse systems.

    PubMed

    Petoukhov, Maxim V; Svergun, Dmitri I

    2015-05-01

    A novel approach is presented for an a priori assessment of the ambiguity associated with spherically averaged single-particle scattering. The approach is of broad interest to the structural biology community, allowing the rapid and model-independent assessment of the inherent non-uniqueness of three-dimensional shape reconstruction from scattering experiments on solutions of biological macromolecules. One-dimensional scattering curves recorded from monodisperse systems are nowadays routinely utilized to generate low-resolution particle shapes, but the potential ambiguity of such reconstructions remains a major issue. At present, the (non)uniqueness can only be assessed by a posteriori comparison and averaging of repetitive Monte Carlo-based shape-determination runs. The new a priori ambiguity measure is based on the number of distinct shape categories compatible with a given data set. For this purpose, a comprehensive library of over 14,000 shape topologies has been generated containing up to seven beads closely packed on a hexagonal grid. The computed scattering curves rescaled to keep only the shape topology rather than the overall size information provide a `scattering map' of this set of shapes. For a given scattering data set, one rapidly obtains the number of neighbours in the map and the associated shape topologies such that in addition to providing a quantitative ambiguity measure the algorithm may also serve as an alternative shape-analysis tool. The approach has been validated in model calculations on geometrical bodies and its usefulness is further demonstrated on a number of experimental X-ray scattering data sets from proteins in solution. A quantitative ambiguity score (a-score) is introduced to provide immediate and convenient guidance to the user on the uniqueness of the ab initio shape reconstruction from the given data set.

  18. Small angle x-ray scattering: Instrument development and studies of protein aggregation, cellulose hydrolysis, and the production of nanoporous metals using surfactact templates

    NASA Astrophysics Data System (ADS)

    Banuelos, Jose Leobardo

    Small angle x-ray scattering (SAXS) was used to obtain structural insights into protein aggregation, the enzymatic hydrolysis of cellulose, and the structural evolution of surfactant-templated nanoporous palladium and platinum systems during their synthesis. SAXS is bulk technique that allows probing the nanometer-scale morphology, interactions, density, and distribution of a variety of nonperiodic systems in the solid, liquid, or gaseous state. A 10-meter Small Angle Scattering camera, originally at ORNL, was assembled. During its re-commissioning, several upgrades were made including new data acquisition software built using National Instrument's Labview development environment, as well as portability to use analysis tools in wide use in scattering community. The Multiple Energy Diffractometer Using Small, medium and wide Angles (MEDUSA) was designed and built, its development will be discussed. The ability of proteins to change their conformation in response to changes in pressure, temperature, the presence of other molecular species, and ionic concentration in the solvents they are found, is a remarkable phenomenon that allows living cells to function properly. When proteins irreversibly unfold or mis-fold and aggregate this gives rise to severely debilitating diseases such as Alzheimer's and prion diseases. Protein aggregation was measured using SAXS on aqueous solutions of bovine serum albumin, myoglobin, and cellulase enzymes. Understanding how cellulose can be broken down into fermentable sugars is an important step in the development of strategies for producing alternative energy from biomass. The enzymatic hydrolysis of cellulose was studied using both small angle neutron scattering and SAXS. One result from these investigations was finding supporting evidence that nanopores within the cellulose fibril matrix allow biologically active enzymes access to digest parts of the fibers. The production of mesoporous materials for hydrogen storage applications was

  19. Fluid adsorption in ordered mesoporous solids determined by in situ small-angle X-ray scattering.

    PubMed

    Findenegg, Gerhard H; Jähnert, Susanne; Müter, Dirk; Prass, Johannes; Paris, Oskar

    2010-07-14

    The adsorption of two organic fluids (n-pentane and perfluoropentane) in a periodic mesoporous silica material (SBA-15) is investigated by in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. Structural changes are monitored as the ordered and disordered pores in the silica matrix are gradually filled with the fluids. The experiments yield integrated peak intensities from up to ten Bragg reflections from the 2D hexagonal pore lattice, and additionally diffuse scattering contributions arising from disordered (mostly intrawall) porosity. The analysis of the scattering data is based on a separation of these two contributions. Bragg scattering is described by adopting a form factor model for ordered pores of cylindrical symmetry which accounts for the filling of the microporous corona, the formation of a fluid film at the pore walls, and condensation of the fluid in the core. The filling fraction of the disordered intrawall pores is extracted from the diffuse scattering intensity and its dependence on the fluid pressure is analyzed on the basis of a three-phase model. The data analysis introduced here provides an important generalisation of a formalism presented recently (J. Phys. Chem. C, 2009, 13, 15201), which was applicable to contrast-matching fluids only. In this way, the adsorption behaviour of fluids into ordered and disordered pores in periodic mesoporous materials can be analyzed quantitatively irrespective of the fluid density.

  20. A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.; Kim, W.; Sivathanu, Yudaya

    2007-01-01

    One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described.

  1. Monte Carlo simulation of neutron scattering instruments

    SciTech Connect

    Seeger, P.A.

    1995-12-31

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.

  2. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  3. Anomalous small-angle X-ray scattering of nanoporous two-phase atomistic models for amorphous silicon–germanium alloys

    SciTech Connect

    Chehaidar, A.

    2015-09-15

    The present work deals with a detailed analysis of the anomalous small-angle X-ray scattering in amorphous silicon–germanium alloy using the simulation technique. We envisage the nanoporous two-phase alloy model consisting in a mixture of Ge-rich and Ge-poor domains and voids at the nanoscale. By substituting Ge atoms for Si atoms in nanoporous amorphous silicon network, compositionally heterogeneous alloys are generated with various composition-contrasts between the two phases. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its anomalous X-ray scattering pattern. Using a smoothing procedure, the computed X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so a rigorous quantitative analysis of the anomalous small-angle scattering. Our simulation shows that, as expected, the anomalous small-angle X-ray scattering technique is a tool of choice for characterizing compositional heterogeneities coexisting with structural inhomogeneities in an amorphous alloy. Furthermore, the sizes of the compositional nanoheterogeneities, as measured by anomalous small-angle X-ray scattering technique, are X-ray energy independent. A quantitative analysis of the separated reduced anomalous small-angle X-ray scattering, as defined in this work, provided a good estimate of their size.

  4. A potential for overestimating the absolute magnitudes of second virial coefficients by small-angle X-ray scattering.

    PubMed

    Scott, David J; Patel, Trushar R; Winzor, Donald J

    2013-04-15

    Theoretical consideration is given to the effect of cosolutes (including buffer and electrolyte components) on the determination of second virial coefficients for proteins by small-angle X-ray scattering (SAXS)-a factor overlooked in current analyses in terms of expressions for a two-component system. A potential deficiency of existing practices is illustrated by reassessment of published results on the effect of polyethylene glycol concentration on the second virial coefficient for urate oxidase. This error reflects the substitution of I(0,c3,0), the scattering intensity in the limit of zero scattering angle and solute concentration, for I(0,0,0), the corresponding parameter in the limit of zero cosolute concentration (c3) as well. Published static light scattering results on the dependence of the apparent molecular weight of ovalbumin on buffer concentration are extrapolated to zero concentration to obtain the true value (M2) and thereby establish the feasibility of obtaining the analogous SAXS parameter, I(0,0,0), experimentally.

  5. Measurement of carbon condensates using small-angle x-ray scattering during detonation of high explosives

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Hansen, D.; May, C.; van Buuren, T.; Dattelbaum, D. M.; Gustavsen, R. L.; Watkins, E. B.; Firestone, M. A.; Jensen, B. J.; Graber, T.; Bastea, S.; Fried, L.

    2017-01-01

    The lack of experimental validation for processes occurring at sub-micron length scales on time scales ranging from nanoseconds to microseconds hinders detonation model development. Particularly, quantification of late-time energy release requires measurement of carbon condensation kinetics behind detonation fronts. A new small-angle x-ray scattering (SAXS) endstation has been developed for use at The Dynamic Compression Sector to observe carbon condensation during detonation. The endstation and beamline demonstrate unprecedented fidelity; SAXS profiles can be acquired from single x-ray pulses, which in 24-bunch mode are about 80 ps in duration and arrive every 153.4 ns. This paper presents both the current temporal capabilities of this beamline, and the ability to distinguish different carbon condensate morphologies as they form behind detonation fronts. To demonstrate temporal capabilities, three shots acquired during detonation of hexanitrostilbene (HNS) are interleaved to show the evolution of the SAXS in about 50 ns steps. To show fidelity of the SAXS, the scattering from carbon condensates at several hundred nanoseconds varies with explosive: scattering from HNS is consistent with a complex morphology that we assert is associated with sp2 carbon., while Comp B scattering is consistent with soots containing three-dimensional diamond nanoparticles.

  6. Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.

    PubMed

    Marmiroli, Benedetta; Cacho-Nerin, Fernando; Sartori, Barbara; Pérez, Javier; Amenitsch, Heinz

    2014-01-01

    Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.

  7. A small-angle X-ray scattering study of alpha-synuclein from human red blood cells.

    PubMed

    Araki, Katsuya; Yagi, Naoto; Nakatani, Rie; Sekiguchi, Hiroshi; So, Masatomo; Yagi, Hisashi; Ohta, Noboru; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki

    2016-07-29

    α-synuclein (α-syn) is the main component of Lewy bodies, which are neuropathological hallmarks of patients with Parkinson's disease. As it has been controversial whether human α-syn from erythrocytes exists as a tetramer under physiological conditions, we tried solving this issue by the small-angle X-ray solution scattering method. Under two different conditions (high ionic strength with a Tris buffer and low ionic strength with an ammonium acetate buffer), no evidence was found for the presence of tetramer. When comparing erythrocyte and recombinant α-syn molecules, we found no significant difference of the molecular weight and the secondary structure although the buffer conditions strongly affect the radius of gyration of the protein. The results indicate that, even though a stable tetramer may not be formed, conformation of α-syn depends much on its environment, which may be the reason for its tendency to aggregate in cells.

  8. Porosity of microporous zeolites A, X and ZSM-5 studied by small angle X-ray scattering and nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Du, Xiaoming; Wu, Erdong

    2007-09-01

    Small-angle X-ray scattering (SAXS) using synchrotron radiation and nitrogen adsorption have been applied to characterizations of porosities and microporous structures for the zeolites of NaA, KA, CaA, NaX and ZSM-5. Besides the information on the external morphology of the particles of the zeolites, the complementation of the two techniques has revealed rich and consistent structural and surface information on the molecular scale crystalline pores of these zeolites. Analyses of the data suggest that the determined sizes of the micropores imply the pore spaces occupied by the probe molecules of water in the SAXS and nitrogen in adsorption techniques, respectively. The microporous information of NaA and KA are difficult to obtain from nitrogen adsorption, due to the blocking of nitrogen by their narrow channels, but have been satisfactorily measured by SAXS. The factors causing variations of the measured values of the parameters in different analysis methods have been discussed.

  9. Magnetic design evolution in perpendicular magnetic recording media as revealed by resonant small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Wang, Tianhan; Mehta, Virat; Ikeda, Yoshihiro; Do, Hoa; Takano, Kentaro; Florez, Sylvia; Terris, Bruce D.; Wu, Benny; Graves, Catherine; Shu, Michael; Rick, Ramon; Scherz, Andreas; Stöhr, Joachim; Hellwig, Olav

    2013-09-01

    We analyze the magnetic design for different generations of perpendicular magnetic recording (PMR) media using resonant soft x-ray small angle x-ray scattering. This technique allows us to simultaneously extract in a single experiment the key structural and magnetic parameters, i.e., lateral structural grain and magnetic cluster sizes as well as their distributions. We find that earlier PMR media generations relied on an initial reduction in the magnetic cluster size down to the grain level of the high anisotropy granular base layer, while very recent media designs introduce more exchange decoupling also within the softer laterally continuous cap layer. We highlight that this recent development allows optimizing magnetic cluster size and magnetic cluster size distribution within the composite media system for maximum achievable area density, while keeping the structural grain size roughly constant.

  10. Probing helium nano-bubble formation in tungsten with grazing incidence small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Corr, C.

    2015-04-01

    Helium nano-bubble formation in plasma facing materials has emerged as a major concern for the next-step fusion experiment ITER, where helium plasmas will be used during the tokamak's start-up phase. Here, we demonstrate that grazing incidence small-angle x-ray scattering is a powerful technique for the analysis of helium nano-bubble formation in tungsten. We measured helium bubbles with sizes between 1.5-2.5 nm in tungsten exposed to helium plasma at 700 °C, where a smaller number of larger bubbles were also observed. Depth distributions can be estimated by taking successive measurements across a range of x-ray incidence angles. Compared with traditional approaches in the field, such as transmission electron microscopy, this technique provides information across a much larger volume with high statistical precision, whilst also being non-destructive.

  11. Small-angle X-ray scattering study on pectin-chitosan mixed solutions and thermoreversible gels.

    PubMed

    Ventura, Irit; Bianco-Peled, Havazelet

    2015-06-05

    Hot solutions containing pectin and chitosan with pectin weight fraction of 0.75, in acidic pH, demonstrate gelation occurring upon cooling to room temperature. This study explores the origin of this gelation using small angle X-ray scattering (SAXS) as the main experimental tool. Modeling SAXS patterns revealed rigid rod conformation in chitosan solutions, whereas pectin formed a self-avoiding chain. In addition, nanometric aggregates were detected in pectin solutions. Pectin and chitosan in mixed solutions adopted a similar semiflexible conformation. The only sample that created a visually stable gel displayed a different pattern, characteristic to polymers gels. Manipulating the composition by adding urea and salts highlighted the important role of hydrogen bonding, which governs the gelation mechanism. Nevertheless, electrostatic interactions were also found to take part in the gelation. To the best of our knowledge, this is the first comprehensive and systematic SAXS study on these pectin-chitosan mixtures.

  12. Resolving Individual Components in Protein-RNA Complexes Using Small-Angle X-ray Scattering Experiments.

    PubMed

    Rambo, Robert P

    2015-01-01

    Small-angle X-ray scattering (SAXS) of protein-RNA complexes has developed into an efficient and economical approach for determining low-resolution shapes of particles in solution. Here, we demonstrate a mutliphase volumetric modeling approach capable of resolving individual components within a low-resolution shape. Through three case studies, we describe the SAXS data collecting strategies, premodeling analysis, and computational methods required for deconstructing complexes into their respective components. This chapter presents an approach using the programs ScÅtter and MONSA and custom scripts for averaging and aligning of multiple independent modeling runs. The method can image small (7kDa) masses within the context of complex and is capable of visualizing ligand-induced conformational changes. Nevertheless, computational algorithms are not without error, and we describe specific considerations during SAXS data reduction and modeling to mitigate possible false positives.

  13. Structural investigations of E. Coli dihydrolipoamide dehydrogenase in solution: Small-angle X-ray scattering and molecular docking

    NASA Astrophysics Data System (ADS)

    Dadinova, L. A.; Rodina, E. V.; Vorobyeva, N. N.; Kurilova, S. A.; Nazarova, T. I.; Shtykova, E. V.

    2016-05-01

    Dihydrolipoamide dehydrogenase from Escherichia coli (LpD) is a bacterial enzyme that is involved in the central metabolism and shared in common between the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes. In the crystal structure, E. coli LpD is known to exist as a dimer. The present work is focused on analyzing the solution structure of LpD by small-angle X-ray scattering, molecular docking, and analytical ultracentrifugation. It was shown that in solution LpD exists as an equilibrium mixture of a dimer and a tetramer. The presence of oligomeric forms is determined by the multifunctionality of LpD in the cell, in particular, the required stoichiometry in the complexes.

  14. Insights on the structural dynamics of Leishmania braziliensis Hsp90 molecular chaperone by small angle X-ray scattering.

    PubMed

    Seraphim, Thiago V; Silva, Kelly P; Dores-Silva, Paulo R; Barbosa, Leandro R S; Borges, Júlio C

    2017-04-01

    Heat shock protein of 90kDa (Hsp90) is an essential molecular chaperone involved in a plethora of cellular activities which modulate protein homeostasis. During the Hsp90 mechanochemical cycle, it undergoes large conformational changes, oscillating between open and closed states. Although structural and conformational equilibria of prokaryotic and some eukaryotic Hsp90s are known, some protozoa Hsp90 structures and dynamics are poorly understood. In this study, we report the solution structure and conformational dynamics of Leishmania braziliensis Hsp90 (LbHsp90) investigated by small angle X-ray scattering (SAXS). The results indicate that LbHsp90 coexists in open and closed conformations in solution and that the linkers between domains are not randomly distributed. These findings noted interesting features of the LbHsp90 system, opening doors for further conformational studies of other protozoa chaperones.

  15. Characterization of Protein Flexibility Using Small-Angle X-Ray Scattering and Amplified Collective Motion Simulations

    PubMed Central

    Wen, Bin; Peng, Junhui; Zuo, Xiaobing; Gong, Qingguo; Zhang, Zhiyong

    2014-01-01

    Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations. PMID:25140431

  16. In situ probing calcium carbonate formation by combining fast controlled precipitation method and small-angle X-ray scattering.

    PubMed

    Chao, Yanjia; Horner, Olivier; Vallée, Philippe; Meneau, Florian; Alos-Ramos, Olga; Hui, Franck; Turmine, Mireille; Perrot, Hubert; Lédion, Jean

    2014-04-01

    The initial stage of calcium carbonate nucleation and growth, found usually in "natural" precipitation conditions, is still not well understood. The calcium carbonate formation for moderate supersaturation level could be achieved by an original method called the fast controlled precipitation (FCP) method. FCP was coupled with SAXS (small-angle X-ray scattering) measurements to get insight into the nucleation and growth mechanisms of calcium carbonate particles in Ca(HCO3)2 aqueous solutions. Two size distributions of particles were observed. The particle size evolutions of these two distributions were obtained by analyzing the SAXS data. A nice agreement was obtained between the total volume fractions of CaCO3 obtained by SAXS analysis and by pH-resistivity curve modeling (from FCP tests).

  17. Early nucleation events in the polymerization of actin, probed by time-resolved small-angle x-ray scattering

    PubMed Central

    Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo

    2016-01-01

    Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032

  18. Influence of monovalent ions on density fluctuations in hydrothermal aqueous solutions by small angle X-ray scattering.

    PubMed

    Da Silva-Cadoux, Cécile; Hazemann, Jean-Louis; Testemale, Denis; Proux, Olivier; Rochas, Cyrille

    2012-01-28

    Synchrotron small angle X-ray scattering measurements on water and alkaline bromine aqueous solutions (XBr, with X = Li, Rb, or Cs) were carried out from ambient to supercritical conditions. The temperature was increased from 300 to 750 K along several isobars between 24 and 35 MPa. The correlation length and the structure factor were extracted from the data following the Ornstein-Zernike formalism. We obtained experimental evidence of the shift of the critical point and isochore and their dependence on the ions concentration (0.33 mol/kg and 1.0 mol/kg). We also observed that the size of the density fluctuations and the structure factor increase with the presence of the ions and that this effect is positively correlated with the atomic number of the cation. These behaviors were compared with ZnBr(2) and NaCl systems from the literature.

  19. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.

    PubMed

    Kikhney, Alexey G; Svergun, Dmitri I

    2015-09-14

    Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.

  20. A small-angle X-ray scattering study of alpha-synuclein from human red blood cells

    PubMed Central

    Araki, Katsuya; Yagi, Naoto; Nakatani, Rie; Sekiguchi, Hiroshi; So, Masatomo; Yagi, Hisashi; Ohta, Noboru; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki

    2016-01-01

    α-synuclein (α-syn) is the main component of Lewy bodies, which are neuropathological hallmarks of patients with Parkinson’s disease. As it has been controversial whether human α-syn from erythrocytes exists as a tetramer under physiological conditions, we tried solving this issue by the small-angle X-ray solution scattering method. Under two different conditions (high ionic strength with a Tris buffer and low ionic strength with an ammonium acetate buffer), no evidence was found for the presence of tetramer. When comparing erythrocyte and recombinant α-syn molecules, we found no significant difference of the molecular weight and the secondary structure although the buffer conditions strongly affect the radius of gyration of the protein. The results indicate that, even though a stable tetramer may not be formed, conformation of α-syn depends much on its environment, which may be the reason for its tendency to aggregate in cells. PMID:27469540

  1. Thermal quenching sample chamber for grazing incidence small angle x-ray scattering studies of polymer films.

    PubMed

    Singh, M A; Groves, M N; Müller, M S; Stahlbrand, I J; Smilgies, D-M

    2007-11-01

    The second generation of a sample chamber designed for in situ measurement of temperature- and time-dependent polymer film nanostructure using the method of grazing incidence small angle x-ray scattering is presented. An increased operating temperature limit (from 260 to 400 degrees C) with precise control (+/-0.1 degrees C) at fixed temperatures as well as a fourfold increase in maximum instantaneous cooling rate (up to 73 degrees C/s) relative to the first generation chamber [M. N. Groves et al, J. Appl. Crystallogr. 39, 120 (2006)] are reported. Thermal quenches from 220 to 90 degrees C are shown to be reproducible to within +/-1 degrees C of the final temperature. Experimental tests on spin-coated films of symmetric diblock styrene-butadiene copolymer demonstrate the ability to resolve the kinetics of orientation of lamellar domains parallel to the silicon substrate, distinct from the initial formation of randomly oriented lamellar domains immediately following the thermal quench.

  2. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  3. Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays

    DOEpatents

    Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong

    2005-09-20

    A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.

  4. Small angle scattering polarization biopsy: a comparative analysis of various skin diseases

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Alonova, M. V.; Yermolenko, S. B.; Ivashko, P. V.; Reshetnikova, E. M.; Galkina, E. M.; Utz, S. R.

    2013-12-01

    An approach to differentiation of the morphological features of normal and pathological human epidermis on the base of statistical analysis of the local polarization states of laser light forward scattered by in-vitro tissue samples is discussed. The eccentricity and the azimuth angle of local polarization ellipses retrieved for various positions of the focused laser beam on the tissue surface, and the coefficient of collimated transmittance are considered as the diagnostic parameters for differentiation. The experimental data obtained with the psoriasis, discoid lupus erythematosus, alopecia, lichen planus, scabies, demodex, and normal skin samples are presented.

  5. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    SciTech Connect

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-11

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  6. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.

    PubMed

    Nishi, Kengo; Shibayama, Mitsuhiro

    2017-03-01

    Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.

  7. X-Ray Dust Scattering At Small Angles: The Complete Halo Around GX13+1

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.

    2007-01-01

    The exquisite angular resolution available with Chandra should allow precision measurements of faint diffuse emission surrounding bright sources, such as the X-ray scattering halos created by interstellar dust. However, the ACIS CCDs suffer from pileup when observing bright sources, and this creates difficulties when trying to extract the scattered halo near the source. The initial study of the X-ray halo around GX13+1 using only the ACIS-I detector done by Smith, Edgar & Shafer (2002) suffered from a lack of sensitivity within 50" of the source, limiting what conclusions could be drawn. To address this problem, observations of GX13+1 were obtained with the Chandra HRC-I and simultaneously with the RXTE PCA. Combined with the existing ACIS-I data, this allowed measurements of the X-ray halo between 2-1000". After considering a range of dust models, each assumed to be smoothly distributed with or without a dense cloud along the line of sight, the results show that there is no evidence in this data for a dense cloud near the source, as suggested by Xiang et al. (2005). In addition, although no model leads to formally acceptable results, the Weingartner & Draine (2001) and all but one of the composite grain models from Zubko, Dwek & Arendt (2004) give particularly poor fits.

  8. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    DOE PAGES

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; ...

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis.more » Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.« less

  9. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    SciTech Connect

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; Bagdasarian, Z.; Barsov, S.; Gebel, R.; Gou, B.; Hartmann, M.; Kacharava, A.; Keshelashvili, I.; Khoukaz, A.; Kulessa, P.; Kulikov, A.; Lehrach, A.; Lomidze, N.; Lorentz, B.; Maier, R.; Macharashvili, G.; Merzliakov, S.; Mikirtychyants, S.; Nioradze, M.; Ohm, H.; Prasuhn, D.; Rathmann, F.; Serdyuk, V.; Schroer, D.; Shmakova, V.; Stassen, R.; Stein, H. J.; Stockhorst, H.; Strakovsky, I. I.; Stroher, H.; Tabidze, M.; Taschner, A.; Trusov, S.; Tsirkov, D.; Uzikov, Yu.; Valdau, Yu.; Wilkin, C.; Workman, R. L.; Wustner, P.

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis. Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.

  10. Measurement of illite particle thickness using a direct Fourier transform of small-angle X-ray scattering data

    USGS Publications Warehouse

    Shang, C.; Rice, J.A.; Eberl, D.D.; Lin, S.-J.

    2003-01-01

    It has been suggested that interstratified illite-smectite (I-S) minerals are composed of aggregates of fundamental particles. Many attempts have been made to measure the thickness of such fundamental particles, but each of the methods used suffers from its own limitations and uncertainties. Small-angle X-ray scattering (SAXS) can be used to measure the thickness of particles that scatter X-rays coherently. We used SAXS to study suspensions of Na-rectorite and other illites with varying proportions of smectite. The scattering intensity (I) was recorded as a function of the scattering vector, q = (4 ??/??) sin(??/2), where ?? is the X-ray wavelength and ?? is the scattering angle. The experimental data were treated with a direct Fourier transform to obtain the pair distance distribution function (PDDF) that was then used to determine the thickness of illite particles. The Guinier and Porod extrapolation were used to obtain the scattering intensity beyond the experimental q, and the effects of such extrapolations on the PDDF were examined. The thickness of independent rectorite particles (used as a reference mineral) is 18.3 A??. The SAXS results are compared with those obtained by X-ray diffraction peak broadening methods. It was found that the power-law exponent (??) obtained by fitting the data in the region of q = 0.1 -0.6 nm-1 to the power law (I = Ioq-??) is a linear function of illite particle thickness. Therefore, illite particle thickness could be predicted by the linear relationship as long as the thickness is within the limit where ?? <4.0.

  11. Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering

    SciTech Connect

    Kammler, Hendrik K.; Beaucage, Gregory; Kohls, Douglas J.; Agashe, Nikhil; Ilavsky, Jan

    2005-03-01

    Ultra-small-angle x-ray scattering can provide information about primary particles and aggregates from a single scattering experiment. This technique is applied in situ to flame aerosol reactors for monitoring simultaneously the primary particle and aggregate growth dynamics of oxide nanoparticles in a flame. This was enabled through the use of a third generation synchrotron source (Advanced Photon Source, Argonne IL, USA) using specialized scattering instrumentation at the UNICAT facility which is capable of simultaneously measuring nanoscales to microscales (1 nm to 1 {mu}m). More specifically, the evolution of primary-particle diameter, mass-fractal dimension, geometric standard deviation, silica volume fraction, number concentration, radius of gyration of the aggregate, and number of primary particles per aggregate are measured along the flame axis for two different premixed flames. All these particle characteristics were derived from a single and nonintrusive measurement technique. Flame temperature profiles were measured in the presence of particles by in situ Fourier transform infrared spectroscopy and thermophoretic sampling was used to visualize particle growth with height above the burner as well as in the radial direction.

  12. Investigation of a catalyst ink dispersion using both ultra-small-angle X-ray scattering and cryogenic TEM.

    PubMed

    Xu, Fan; Zhang, HangYu; Ilavsky, Jan; Stanciu, Lia; Ho, Derek; Justice, Matthew J; Petrache, Horia I; Xie, Jian

    2010-12-21

    The dispersion of Nafion ionomer particles and Pt/C catalyst aggregates in liquid media was studied using both ultra-small-angle X-ray scattering (USAXS) and cryogenic TEM. A systematic approach was taken to study first the dispersion of each component (i.e., ionomer particles and Pt/C aggregates), then the combination of the components, and last the catalyst ink. Multiple-level curve fitting was used to extract the particle size, size distribution, and geometry of the Pt/C aggregates and the Nafion particles in liquid media from the scattering data. The results suggest that the particle size, size distribution, and geometry are not uniform throughout the systems but rather vary significantly. It was found that the interaction of each component (i.e., the Nafion ionomer particles and the Pt/C aggregates) occurs in the dispersion. Cryogenic TEM was used to observe the size and geometry of the particles in liquid directly and to validate the scattering results. The TEM results showed excellent agreement.

  13. Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering

    PubMed Central

    2014-01-01

    Background X-ray scattering is a well-established method for measuring cellulose microfibril angles in secondary cell walls. However, little data is available on the much thinner primary cell walls. Here, we show that microfibril orientation distributions can be determined by small angle X-ray scattering (SAXS) even in primary cell walls. The technique offers a number of advantages: samples can be analyzed in the native hydrated state without any preparation which minimizes the risk of artifacts and allows for fast data acquisition. The method provides data averaged over a specimen region, determined by the size of the used X-ray beam and, thus, yields the microfibril orientation distribution within this region. Results Cellulose microfibril orientation distributions were obtained for single cells of the alga Chara corallina, as well as for the multicellular hypocotyl of Arabidopsis thaliana. In both, Chara and Arabidopsis, distributions with a broad scattering around mean microfibril angles of approximately 0° and 90° towards the longitudinal axis of the cells were found. Conclusions With SAXS, the structure of primary cell walls can be analysed in their native state and new insights into the cellulose microfibril orientation of primary cell walls can be gained. The data shows that SAXS can serve as a valuable tool for the analysis of cellulose microfibril orientation in primary cell walls and, in consequence, add to the understanding of its mechanical behaviour and the intriguing mechanisms behind cell growth. PMID:25170343

  14. Associative phase separation of beta-lactoglobulin/pectin solutions: a kinetic study by small angle static light scattering.

    PubMed

    Girard, Maude; Sanchez, Christian; Laneuville, Sandra I; Turgeon, Sylvie L; Gauthier, Sylvie F

    2004-05-01

    Interpolymer complexation between beta-lactoglobulin (beta-lg) and pectin led to phase separation. Small angle static light scattering and phase contrast microscopy were used to monitor the phase separation of beta-lg/low-methoxyl or high-methoxyl-pectin (LM- or HM-pectin) dispersions as they were slowly acidified from pH 7 to 4 with glucono-delta-lactone (GDL). The monotonic decrease in scattered light intensity with the wave vector was associated with a nucleation and growth phase separation mechanism. Microscopic observations and turbidity measurements showed the increase of complex amounts with lower pH and at higher beta-lg/pectin ratios. The formation of intrapolymer complexes was initiated at pH 6.4 with the LM-pectin and at pH 5.0 with the HM-pectin. Local ordering with increasing amounts of small complexes was observed as scattered light intensity increased at intermediate q values. The beta-lg/LM-pectin complexes at the 5:1 and the 2:1 weight ratios and the beta-lg/HM-pectin complexes at 5:1 weight ratio have fractal structures. The formation of large amounts of small assemblies and sedimentation would be responsible for the decrease in the number and volume mean diameters and fractal dimension of beta-lg/LM-pectin complexes over time.

  15. Energy-dispersive small-angle X-ray scattering with cone collimation using X-ray capillary optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-09-01

    Energy-dispersive small-angle X-ray scattering (ED-SAXS) with an innovative design of cone collimation based on an ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL) had been explored. Using this new cone collimation system, scattering angle 2θ has a theoretical minimum angle related to the mean half-opening angle of the hollow cone beam of 1.42 mrad, and with the usable X-ray energy ranging from 4 to 30 keV, the resulting observable scattering vector q is down to a minimum value of about 0.003 Å-1 (or a Bragg spacing of about 2100 Å). However, the absorption of lower energies by X-ray capillary optics, sample transmission, and detector response function limits the application range to lower energy. Cone collimation ED-SAXS experiments carried out on pure water, Lupolen, and in situ temperature-dependent measurement of diacetylenic acid/melamine micelle solid were presented at three different scattering angles 2θ of 0.18°, 0.70° and 1.18° to illustrate the new opportunities offered by this technique as well as its limitations. Also, a comparison has been made by replacing the PPXRL with a pinhole, and the result shows that cone collimation ED-SAXS based on ESBC with PPXRL was helpful in improving the signal-to-noise ratio (i.e., reducing the parasitic background scattering) than ESBC with a pinhole. The cone collimation instrument based on X-ray capillary optics could be considered as a promising tool to perform SAXS experiments, especially cone collimation ED-SAXS has potential application for the in situ temperature-dependent studying on the kinetics of phase transitions.

  16. Molecular weight-gyration radius relation of globular proteins: a comparison of light scattering, small-angle X-ray scattering and structure-based data.

    PubMed

    Smilgies, Detlef-M; Folta-Stogniew, Ewa

    2015-10-01

    The molecular weight-gyration radius relation for a number of globular proteins based on experimental light scattering data is compared with small-angle X-ray scattering data recently published by Mylonas & Svergun [J. Appl. Cryst. (2007 ▸), 40, s245-s249]. In addition, other recent experimental data and theoretical calculations are reviewed. It is found that the MW-Rg relation for the globular proteins is well represented by a power law with an exponent of 0.37 (2).

  17. Temperature Assisted in-Situ Small Angle X-ray Scattering Analysis of Ph-POSS/PC Polymer Nanocomposite

    NASA Astrophysics Data System (ADS)

    Yadav, Ramdayal; Naebe, Minoo; Wang, Xungai; Kandasubramanian, Balasubramanian

    2016-07-01

    Inorganic/organic nanofillers have been extensively exploited to impart thermal stability to polymer nanocomposite via various strategies that can endure structural changes when exposed a wide range of thermal environment during their application. In this abstraction, we have utilized temperature assisted in-situ small angle X-ray scattering (SAXS) to examine the structural orientation distribution of inorganic/organic nanofiller octa phenyl substituted polyhedral oligomeric silsesquioxane (Ph-POSS) in Polycarbonate (PC) matrix from ambient temperature to 180 °C. A constant interval of 30 °C with the heating rate of 3 °C/min was utilized to guise the temperature below and above the glass transition temperature of PC followed by thermal gravimetric, HRTEM, FESEM and hydrophobic analysis at ambient temperature. The HRTEM images of Ph-POSS nano unit demonstrated hyperrectangular structure, while FESEM image of the developed nano composite rendered separated phase containing flocculated and overlapped stacking of POSS units in the PC matrix. The phase separation in polymer nanocomposite was further substantiated by thermodynamic interaction parameter (χ) and mixing energy (Emix) gleaned via Accelrys Materials studio. The SAXS spectra has demonstrated duplex peak at higher scattering vector region, postulated as a primary and secondary segregated POSS domain and followed by abundance of secondary peak with temperature augmentation.

  18. Temperature Assisted in-Situ Small Angle X-ray Scattering Analysis of Ph-POSS/PC Polymer Nanocomposite

    PubMed Central

    Yadav, Ramdayal; Naebe, Minoo; Wang, Xungai; Kandasubramanian, Balasubramanian

    2016-01-01

    Inorganic/organic nanofillers have been extensively exploited to impart thermal stability to polymer nanocomposite via various strategies that can endure structural changes when exposed a wide range of thermal environment during their application. In this abstraction, we have utilized temperature assisted in-situ small angle X-ray scattering (SAXS) to examine the structural orientation distribution of inorganic/organic nanofiller octa phenyl substituted polyhedral oligomeric silsesquioxane (Ph-POSS) in Polycarbonate (PC) matrix from ambient temperature to 180 °C. A constant interval of 30 °C with the heating rate of 3 °C/min was utilized to guise the temperature below and above the glass transition temperature of PC followed by thermal gravimetric, HRTEM, FESEM and hydrophobic analysis at ambient temperature. The HRTEM images of Ph-POSS nano unit demonstrated hyperrectangular structure, while FESEM image of the developed nano composite rendered separated phase containing flocculated and overlapped stacking of POSS units in the PC matrix. The phase separation in polymer nanocomposite was further substantiated by thermodynamic interaction parameter (χ) and mixing energy (Emix) gleaned via Accelrys Materials studio. The SAXS spectra has demonstrated duplex peak at higher scattering vector region, postulated as a primary and secondary segregated POSS domain and followed by abundance of secondary peak with temperature augmentation. PMID:27436152

  19. Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering

    PubMed Central

    Chatani, Eri; Inoue, Rintaro; Imamura, Hiroshi; Sugiyama, Masaaki; Kato, Minoru; Yamamoto, Masahide; Nishida, Koji; Kanaya, Toshiji

    2015-01-01

    The nucleation event of amyloid fibrils is one of the most crucial processes that dictate the timing and rate of the pathology of diseases; however, information regarding how protein molecules associate to produce fibril nuclei is currently limited. In order to explore this issue in more detail, we performed time-resolved small angle X-ray scattering (SAXS) measurements on insulin fibrillation, in combination with additional multidirectional analyses of thioflavin T fluorescence, FTIR spectroscopy, light scattering, and light transmittance, during the fibrillation process of bovine insulin. SAXS monitoring revealed that insulin molecules associated into rod-like prefibrillar aggregates in the very early stage of the reaction. After the formation of these early aggregates, they appeared to further coalesce mutually to form larger clusters, and the SAXS profiles subsequently showed the further time evolution of conformational development towards mature amyloid fibrils. Distinct types of structural units in terms of shape in a nano-scale order, cross-β content, and thioflavin T fluorescence intensity were observed in a manner that was dependent on the fibrillation pathways. These results suggest the presence of diverse substructures that characterize various fibrillation pathways, and eventually, manifest polymorphisms in mature amyloid fibrils. PMID:26503463

  20. Probing Anisotropic Structure Changes in Proteins with Picosecond Time-Resolved Small Angle X-ray Scattering

    PubMed Central

    Cho, Hyun Sun; Schotte, Friedrich; Dashdorj, Naranbaatar; Kyndt, John; Anfinrud, Philip A.

    2014-01-01

    We have exploited the principle of photoselection and the method of time-resolved Small Angle X-ray Scattering (SAXS) to investigate protein size and shape changes following photoactivation of photoactive yellow protein (PYP) in solution with ~150 ps time resolution. This study partially overcomes the orientational average intrinsic to solution scattering methods, and provides structural information at a higher level of detail. Photoactivation of the p-coumaric acid (pCA) chromophore in PYP produces a highly-contorted, short-lived, red shifted intermediate (pR0), and triggers prompt, protein compaction of approximately 0.3% along the direction defined by the electronic transition dipole moment of the chromophore. Contraction along this dimension is accompanied by expansion along the orthogonal directions, with the net protein volume change being approximately -0.25%. More than half the strain arising from formation of pR0 is relieved by the pR0 to pR1 structure transition (1.8 ± 0.2 ns), with the persistent strain presumably contributing to the driving force needed to generate the spectroscopically blue-shifted pB signaling state. The results reported here are consistent with the near-atomic resolution structural dynamics reported in a recent time-resolved Laue crystallography study of PYP crystals, and suggest that the early-time structural dynamics in the crystalline state carry over to proteins in solution. PMID:24125473

  1. Small-angle X-ray scattering from salt-free solutions of star-branched polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Heinrich, M.; Rawiso, M.; Zilliox, J. G.; Lesieur, P.; Simon, J. P.

    2001-02-01

    The dispersion state of sodium-sulphonated polystyrene (ensuremathNaPSS) star-branched polyelectrolytes was investigated in salt-free aqueous solutions, by use of the small-angle X-ray scattering technique. With respect to polystyrene (PS) star-branched polymers of identical functionality, the ordering phenomenon occurring in the neighborhood of the overlap concentration c^* is reinforced and observed in a larger range of concentrations. Moreover, the degree of order is no longer maximum at c^* and is improved as the concentration decreases. The dispersion state is then mainly controlled by the electrostatic interaction. A crystalline order should therefore be achieved with stars of lower functionality, provided the electrostatic interaction is added to the osmotic repulsion. On the other hand, unusual scattering patterns are measured for aqueous solutions of ensuremathNaPSS star polyelectrolytes. Indeed, a diffuse scattering is revealed at high angles, in addition to the regular diffraction rings related to preferred interstar distances. It is similar to the broad scattering peak produced by semidilute solutions of ensuremathNaPSS linear polyelectrolytes and associated to the electrostatic correlation hole within the isotropic model. In the dilute regime (c< c^*), it is just an intramolecular characteristic and represents the electrostatic repulsion between arms belonging to the same star. In the semidilute regime (c> c^*), it also reflects the electrostatic repulsion between arms of distinct stars. So, as the concentration increases, it is mainly caused by the interpenetration of ensuremathNaPSS stars. Such an observation is in agreement with the composite structure earlier proposed by Daoud and Cotton for star semidilute solutions. For c> c^*, ensuremathNaPSS star aqueous solutions can therefore be pictured as effective stars immersed in a matrix formed by the overlap of the arm ends. With respect to the dilute regime, the effective stars are smaller; the higher

  2. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; Graber, T.; Jensen, B. J.; Ilavsky, J.; Willey, T. M.

    2015-06-01

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  3. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE PAGES

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; ...

    2015-06-24

    In this study, the dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation end station has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution,more » provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  4. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    SciTech Connect

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; Buuren, T. van; Hansen, D.; Benterou, J.; May, C.; Willey, T. M.; Graber, T.; Jensen, B. J.; Ilavsky, J.

    2015-06-28

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about −3, which is consistent with a complex disordered, irregular, or folded sp{sup 2} sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  5. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    SciTech Connect

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; Graber, T.; Jensen, B. J.; Ilavsky, J.; Willey, T. M.

    2015-06-24

    In this study, the dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation end station has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  6. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    SciTech Connect

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; Graber, T.; Jensen, B. J.; Ilavsky, J.; Willey, T. M.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  7. Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels.

    PubMed

    Draget, Kurt Ingar; Stokke, Bjørn T; Yuguchi, Yoshiaki; Urakawa, Hiroshi; Kajiwara, Kanji

    2003-01-01

    Alginic acid gels were studied by small-angle X-ray scattering and rheology to elucidate the influence of alginate chemical composition and molecular weight on the gel elasticity and molecular structure. The alginic acid gels were prepared by homogeneous pH reduction throughout the sample. Three alginates with different chemical composition and sequence, and two to three different molecular weights of each sample were examined. Three alginate samples with fractions of guluronic acid residues of 0.39 (LoG), 0.50 (InG), and 0.68 (HiG), covering the range of commercially available alginates, were employed. The excess scattering intensity I of the alginic acid gels was about 1 order of magnitude larger and exhibited a stronger curvature toward low q compared to ionically cross-linked alginate. The I(q) were decomposed into two components by assuming that the alginic acid gel is composed of aggregated multiple junctions and single chains. Time-resolved experiments showed a large increase in the average size of aggregates and their weight fraction within the first 2 h after onset of gelling, which also coincides with the most pronounced rheological changes. At equilibrium, little or no effect of molecular weight was observed, whereas at comparable molecular weights, an increased scattering intensity with increasing content of guluronic acid residues was recorded, probably because of a larger apparent molecular mass of domains. The results suggest a quasi-ordered junction zone is formed in the initial stage, followed by subsequent assembling of such zones, forming domains in the order of 50 A. The average length of the initial junction zones, being governed by the relative fraction of stabilizing G-blocks and destabilizing alternating (MG) blocks, determines the density of the final random aggregates. Hence, high-G alginates give alginic acid gels of a higher aggregate density compared to domains composed of loosely packed shorter junction zones in InG or LoG system.

  8. Guanidine hydrochloride denaturation of dopamine-induced α-synuclein oligomers: a small-angle X-ray scattering study.

    PubMed

    Pham, Chi L L; Kirby, Nigel; Wood, Kathleen; Ryan, Timothy; Roberts, Blaine; Sokolova, Anna; Barnham, Kevin J; Masters, Colin L; Knott, Robert B; Cappai, Roberto; Curtain, Cyril C; Rekas, Agata

    2014-01-01

    Alpha-synuclein (α-syn) forms the amyloid-containing Lewy bodies found in the brain in Parkinson's disease. The neurotransmitter dopamine (DA) reacts with α-syn to form SDS-resistant soluble, non-amyloid, and melanin-containing oligomers. Their toxicity is debated, as is the nature of their structure and their relation to amyloid-forming conformers of α-syn. The small-angle X-ray scattering technique in combination with modeling by the ensemble optimization method showed that the un-reacted native protein populated three broad classes of conformer, while reaction with DA gave a restricted ensemble range suggesting that the rigid melanin molecule played an important part in their structure. We found that 6 M guanidine hydrochloride did not dissociate α-syn DA-reacted dimers and trimers, suggesting covalent linkages. The pathological significance of covalent association is that if they are non-toxic, the oligomers would act as a sink for toxic excess DA and α-syn; if toxic, their stability could enhance their toxicity. We argue it is essential, therefore, to resolve the question of whether they are toxic or not.