Sample records for small-scale gravity waves

  1. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region

    NASA Astrophysics Data System (ADS)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre

    2016-07-01

    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  2. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  3. On the use of infrasound for constraining global climate models

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David

    2017-11-01

    Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.

  4. Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.; Cheng, B.

    1996-01-01

    For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.

  5. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  6. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  7. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  8. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  9. Small-Scale Dynamical Structures Using OH Airglow From Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Franzen, C.; Espy, P. J.; Hibbins, R. E.; Djupvik, A. A.

    2017-12-01

    Remote sensing of perturbations in the hydroxyl (OH) Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through the 80-90 km region. While large scale (>1 km) gravity waves and the winds caused by their breaking are widely documented, information on the highest frequency waves and instabilities occurring during the breaking process is often limited by the temporal and spatial resolution of the available observations. In an effort to better quantify the full range of wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements have a 24 s repetition rate and horizontal spatial resolutions at 87 km as small as 10 cm, allowing us to quantify the transition in the mesospheric wave domains as the gravity waves break. Temporal scales from hours to minutes, as well as sub-100 m coherent structures in the OH airglow have been observed and will be presented.

  10. A climatology of gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin

    2017-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.

  11. Gravity waves and instabilities in the lower and middle atmosphere

    NASA Technical Reports Server (NTRS)

    Klostermeyer, Juergen

    1989-01-01

    Some basic aspects of mesoscale and small-scale gravity waves and instability mechanisms are discussed. Internal gravity waves with wavelengths between ten and less than one kilometer and periods between several hours and several minutes appear to play a central role in atmospheric wavenumber and frequency spectra. Therefore, the author discusses the propagation of gravity waves in simplified atmospheric models. Their interaction with the wind as well as their mutual interaction and stability mechanisms based on these processes are discussed. Mesosphere stratosphere troposphere radar observations showing the relevant hydrodynamic processes are stressed.

  12. A Simple Theory of Capillary-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1995-01-01

    Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.

  13. Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi

    2017-04-01

    An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.

  14. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  15. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  16. Waves in the Mesosphere of Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, B.; Hinson, D. P.; Tyler, G.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-10-01

    The Venus Express Radio Science Experiment (VeRa) has retrieved more than 700 profiles of the mesosphere and troposphere of Venus. These profiles cover a wide range of latitudes and local times, enabling study of atmospheric wave phenomena over a range spatial scales at altitudes of 40-90 km. In addition to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves, and turbulence play a significant role in the development and maintenance of atmospheric super-rotation. Small-scale temperature variations with vertical wavelengths of 4 km or less have wave amplitudes reaching TBD km in the stable atmosphere above the tropopause, in contrast with much weaker temperature perturbations observed in the middle cloud layer below. The strength of gravity waves increases with latitude in both hemispheres. The results suggest that convection at low latitudes and topographical forcing at high northern latitudes—possibly in combination with convection and/or Kelvin-Helmholtz instabilities—play key roles in the genesis of gravity waves. Further, thermal tides also play an important role in the mesosphere. Diurnal and semi-diurnal wave modes are observed at different latitudes and altitudes. The latitudinal and height dependence of the thermal tide modes will be investigated.

  17. Atmospheric waves on Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Häusler, B.; Hinson, D. P.; Tyler, G. L.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-09-01

    Next to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves and turbulence play a significant role in the development and maintenance of atmospheric super rotation.

  18. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    NASA Astrophysics Data System (ADS)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  19. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  20. Performance evaluation of low-cost airglow cameras for mesospheric gravity wave measurements

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Shiokawa, K.

    2016-12-01

    Atmospheric gravity waves significantly contribute to the wind/thermal balances in the mesosphere and lower thermosphere (MLT) through their vertical transport of horizontal momentum. It has been reported that the gravity wave momentum flux preferentially associated with the scale of the waves; the momentum fluxes of the waves with a horizontal scale of 10-100 km are particularly significant. Airglow imaging is a useful technique to observe two-dimensional structure of small-scale (<100 km) gravity waves in the MLT region and has been used to investigate global behaviour of the waves. Recent studies with simultaneous/multiple airglow cameras have derived spatial extent of the MLT waves. Such network imaging observations are advantageous to ever better understanding of coupling between the lower and upper atmosphere via gravity waves. In this study, we newly developed low-cost airglow cameras to enlarge the airglow imaging network. Each of the cameras has a fish-eye lens with a 185-deg field-of-view and equipped with a CCD video camera (WATEC WAT-910HX) ; the camera is small (W35.5 x H36.0 x D63.5 mm) and inexpensive, much more than the airglow camera used for the existing ground-based network (Optical Mesosphere Thermosphere Imagers (OMTI) operated by Solar-Terrestrial Environmental Laboratory, Nagoya University), and has a CCD sensor with 768 x 494 pixels that is highly sensitive enough to detect the mesospheric OH airglow emission perturbations. In this presentation, we will report some results of performance evaluation of this camera made at Shigaraki (35-deg N, 136-deg E), Japan, where is one of the OMTI station. By summing 15-images (i.e., 1-min composition of the images) we recognised clear gravity wave patterns in the images with comparable quality to the OMTI's image. Outreach and educational activities based on this research will be also reported.

  1. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  2. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  3. Drake Antarctic Agile Meteor Radar first results: Configuration and comparison of mean and tidal wind and gravity wave momentum flux measurements with Southern Argentina Agile Meteor Radar

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Leme, N. M. P.

    2012-01-01

    A new generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1°S) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8°S). Motivations for the radars include the “hotspot” of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contributes most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from ˜20 to >70 ms-1. In contrast, the diurnal tide and various planetary waves achieve maximum winds of ˜10 to 20 ms-1. Monthly mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below ˜85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this “hotspot.”

  4. Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.

    2011-01-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  5. Wave Dynamics and Transport in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Alexander, M. Joan

    1999-01-01

    The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.

  6. Gravity Waves in the Atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.

    2016-12-01

    Gravity waves are atmospheric waves whose restoring force is the buoyancy. They are known to play an essential role in the redistribution of energy, momentum and atmospheric constituents in all stably stratified planetary atmospheres. Possible excitation mechanisms comprise convection in an adjacent atmospheric layer, other atmospheric instabilities like wind shear instabilities, or air flow over orographic obstacles especially in combination with the strong winter jets on Mars. Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. A fundamental understanding of the possible source mechanisms is required to reveal the influence of small scale gravity waves on the global atmospheric circulation. Radio occultation profiles from the MaRS experiment on Mars Express [5] with their exceptionally high vertical resolution can be used to study small-scale vertical gravity waves and their global distribution in the lower atmosphere from the planetary boundary layer up to 40 km altitude. Atmospheric instabilities, which are clearly identified in the data, are used to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves. [1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037. [2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058. [3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421. [5] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.

  7. Demystifying the Complexities of Gravity Wave Dynamics in the Middle Atmosphere: a Roadmap to Improved Weather Forecasts through High-Fidelity Modeling

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Bossert, K.; Laughman, B.; Wang, L.; Lund, T.; Kantha, L. H.

    2017-12-01

    Gravity waves play a profound role in the mixing of the atmosphere, transporting vast amounts of momentum and energy among different altitudes as they propagate vertically. Above 60km in the middle atmosphere, high wave amplitudes enable a series of complex, nonlinear interactions with the background environment that produce highly-localized wind and temperature variations which alter the layering structure of the atmosphere. These small-scale interactions account for a significant portion of energy transport in the middle atmosphere, but they are difficult to characterize, occurring at spatial scales that are both challenging to observe with ground instruments and prohibitively small to include in weather forecasting models. Using high fidelity numerical simulations, these nuanced wave interactions are analyzed to better our understanding of these dynamics and improve the accuracy of long-term weather forecasting.

  8. Small-scale structure and turbulence observed in MAP/WINE)

    NASA Technical Reports Server (NTRS)

    Blix, T. A.

    1989-01-01

    During MAP/WINE small scale structure and turbulence in the mesosphere and lower thermosphere was studied in situ by rocket-borne instruments as well as from the ground by remote sensing techniques. The eight salvoes launched during the campaign resulted in a wealth of information on the dynamical structure of these regions. The experimental results are reviewed and their interpretation is discussed in terms of gravity waves and turbulence. It is shown that eddy diffusion coefficients and turbulent energy dissipation rates may be derived from the in situ measurements in a consistent manner. The observations are also shown to be consistent with the hypothesis that turbulence can be created by a process of gravity wave saturation.

  9. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1983-01-01

    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  10. Evidence at Mesospheric Altitude of Deeply Propagating Atmospheric Gravity Waves Created by Orographic Forcing over the Auckland Islands (50.5ºS) During the Deepwave Project

    NASA Astrophysics Data System (ADS)

    Pautet, P. D.; Ma, J.; Taylor, M. J.; Bossert, K.; Doyle, J. D.; Eckermann, S. D.; Williams, B. P.; Fritts, D. C.

    2014-12-01

    The DEEPWAVE project recently took place in New Zealand during the months of June and July 2014. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves. A series of instruments was operated at several ground-based locations and on-board the NSF Gulfstream V aircraft. 26 research flights were performed to explore possible wave sources and their effects on the middle and upper atmosphere. On July 14th, a research flight was conducted over the Auckland Islands, a small sub Antarctic archipelago located ~450km south of New Zealand. Moderate southwesterly tropospheric wind (~25m/s) was blowing over the rugged topography of the islands, generating mountain wave signature at the flight altitude. Spectacular small-scale gravity waves were simultaneously observed at the mesopause level using the USU Advanced Mesospheric Temperature Mapper (AMTM). Their similarity with the model-predicted waves was striking. This presentation will describe this remarkable case of deep wave propagation and compare the measurements obtained with the instruments on-board the aircraft with forecasting and wave propagation models.

  11. The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wenbo, E-mail: Wenbo.Tang@asu.edu; Mahalov, Alex, E-mail: Alex.Mahalov@asu.edu

    2014-04-15

    We present a three-dimensional numerical study for the E and lower F region ionosphere coupled with the neutral atmosphere dynamics. This model is developed based on a previous ionospheric model that examines the transport patterns of plasma density given a prescribed neutral atmospheric flow. Inclusion of neutral dynamics in the model allows us to examine the charge-neutral interactions over the full evolution cycle of an inertial gravity wave when the background flow spins up from rest, saturates and eventually breaks. Using Lagrangian analyses, we show the mixing patterns of the ionospheric responses and the formation of ionospheric layers. The correspondingmore » plasma density in this flow develops complex wave structures and small-scale patches during the gravity wave breaking event.« less

  12. A ground-base Radar network to access the 3D structure of MLT winds

    NASA Astrophysics Data System (ADS)

    Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.

    2016-12-01

    The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.

  13. Interactions between finite amplitude small and medium-scale waves in the MLT region.

    NASA Astrophysics Data System (ADS)

    Heale, C. J.; Snively, J. B.

    2016-12-01

    Small-scale gravity waves can propagate high into the thermosphere and deposit significant momentum and energy into the background flow [e.g., Yamada et al., 2001, Fritts et al., 2014]. However, their propagation, dissipation, and spectral evolution can be significantly altered by other waves and dynamics and the nature of these complex interactions are not yet well understood. While many ray-tracing and time-dependent modeling studies have been performed to investigate interactions between waves of varying scales [e.g., Eckermann and Marks .1996, Sartelet. 2003, Liu et al. 2008, Vanderhoff et al., 2008, Senf and Achatz., 2011, Heale et al., 2015], the majority of these have considered waves of larger (tidal) scales, or have simplified one of the waves to be an imposed "background" and discount (or limit) the nonlinear feedback mechanisms between the two waves. In reality, both waves will influence each other, especially at finite amplitudes when nonlinear effects become important or dominant. We present a study of fully nonlinear interactions between small-scale 10s km, 10 min period) and medium-scale wave packets at finite amplitudes, which include feedback between the two waves and the ambient atmosphere. Time-dependence of the larger-scale wave has been identified as an important factor in reducing reflection [Heale et al., 2015] and critical level effects [Sartelet, 2003, Senf and Achatz, 2011], we choose medium-scale waves of different periods, and thus vertical scales, to investigate how this influences the propagation, filtering, and momentum and energy deposition of the small-scale waves, and in turn how these impacts affect the medium-scale waves. We also consider the observable features of these interactions in the mesosphere and lower thermosphere.

  14. Internal Gravity Waves Forced by an Isolated Mountain

    NASA Astrophysics Data System (ADS)

    Nikitina, L.; Campbell, L.

    2009-12-01

    Density-stratified fluid flow over topography such as mountains, hills and ridges may give rise to internal gravity waves which transport and distribute energy away from their source and have profound effects on the general circulation of the atmosphere and ocean. Much of our knowledge of internal gravity wave dynamics has been acquired from theoretical studies involving mathematical analyses of simplified forms of the governing equations, as well as numerical simulations at varying levels of approximation. In this study, both analytical and numerical methods are used to examine the nonlinear dynamics of gravity waves forced by an isolated mountain. The topography is represented by a lower boundary condition on a two-dimensional rectangular domain and the waves are represented as a perturbation to the background shear flow, thus allowing the use of weakly-nonlinear and multiple-scale asymptotic analyzes. The waves take the form of a packet, localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers centered at zero. For horizontally-localized wave packets, such as those forced by a mountain range with multiple peaks, there are generally two horizontal scales, the fast (short) scale which is defined by the oscillations within the packet and the slow (large) scale which is defined by the horizontal extent of the packet. In the case of an isolated mountain that we examine here, the multiple-scaling procedure is simplified by the absence of a fast spatial scale. The problem is governed by two small parameters that define the height and width of the mountain and approximate solutions are derived in terms of these parameters. Numerical solutions are also carried out to simulate nonlinear critical-level interactions such as the transfer of energy to the background flow by the wave packet, wave reflection and static instability and, eventually, wave breaking leading to turbulence. It is found that for waves forced by an isolated mountain the time frame within which these nonlinear effects become significant depends on both the mountain height and width and that they begin to occur at least an order of magnitude later and the configuration thus remains stable longer than in the case of waves forced by a mountain range of equivalent height.

  15. Effect of small floating disks on the propagation of gravity waves

    NASA Astrophysics Data System (ADS)

    De Santi, F.; Olla, P.

    2017-04-01

    A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided.

  16. 3D DNS and LES of Breaking Inertia-Gravity Waves

    NASA Astrophysics Data System (ADS)

    Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.

    2012-04-01

    As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.

  17. Analysis and numerical study of inertia-gravity waves generated by convection in the tropics

    NASA Astrophysics Data System (ADS)

    Evan, Stephanie

    2011-12-01

    Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.

  18. Investigation of the small-scale structure and dynamics of Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1991-01-01

    This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.

  19. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part II: Combined Effects of Gravity Waves and Equatorial Planetary Waves.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.

  20. Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

    NASA Technical Reports Server (NTRS)

    Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven

    2016-01-01

    This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

  1. Can the graviton have a large mass near black holes?

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhou, Shuang-Yong

    2018-04-01

    The mass of the graviton, if nonzero, is usually considered to be very small, e.g., of the Hubble scale, from several observational constraints. In this paper, we propose a gravity model where the graviton mass is very small in the usual weak gravity environments, below all the current graviton mass bounds, but becomes much larger in the strong gravity regime such as a black hole's vicinity. For black holes in this model, significant deviations from general relativity emerge very close to the black hole horizon and alter the black hole quasinormal modes, which can be extracted from the ringdown wave form of black hole binary mergers. Also, the enhancement of the graviton mass near the horizon can result in echoes in the late-time ringdown, which can be verified in the upcoming gravitational wave observations of higher sensitivity.

  2. Recent Developments in Gravity Wave Effects in Climate Models, and the Global Distribution of Gravity Wave Momentum Flux from Observations and Models

    DTIC Science & Technology

    2009-01-01

    super-pressure balloon observations. Intermit - tency in this work was quantified via 1 = (1 + σ2/µ2)−1 where µ is the mean momentum flux in each...can be very local- ized in both space and time, a concept termed intermit - tency. Because of intermittency, local values can be more than an order of... Fast Fourier synoptic mapping. J. Atmos. Sci., 39, 2601-2614. Sato, K. 1993: Small-scale wind disturbances observed by the MU radar during the passage

  3. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  4. Synoptic-scale variability of arctic gravity wave activity during summer and potential impacts on the high latitude middle atmosphere

    NASA Astrophysics Data System (ADS)

    Gerrard, Andrew John

    Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.

  5. Numerical modeling of a multiscale gravity wave event and its airglow signatures over Mount Cook, New Zealand, during the DEEPWAVE campaign

    NASA Astrophysics Data System (ADS)

    Heale, C. J.; Bossert, K.; Snively, J. B.; Fritts, D. C.; Pautet, P.-D.; Taylor, M. J.

    2017-01-01

    A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a λx=200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25-28 km) waves within the warm phase of the large mountain wave. The simulation results show rapid breaking above 70 km altitude, with the preferential formation of almost-stationary vortical instabilities within the warm phase front of the mountain wave. An OH airglow model is used to identify the presence of small-scale wave-like structures generated in situ by the breaking of the mountain wave that are consistent with those seen in the observations. While it is easy to interpret these feature as waves in OH airglow data, a considerable fraction of the features are in fact instabilities and vortex structures. Simulations suggest that a combination of a large westward perturbation velocity and shear, in combination with strong perturbation temperature gradients, causes both dynamic and convective instability conditions to be met particularly where the wave wind is maximized and the temperature gradient is simultaneously minimized. This leads to the inevitable breaking and subsequent generation of smaller-scale waves and instabilities which appear most prominent within the warm phase front of the mountain wave.

  6. Gravity wave generation from jets and fronts: idealized and real-case simulations

    NASA Astrophysics Data System (ADS)

    Plougonven, Riwal; Arsac, Antonin; Hertzog, Albert; Guez, Lionel; Vial, François

    2010-05-01

    The generation of gravity waves from jets and fronts remains an outstanding issue in the dynamics of the atmosphere. It is important to explain and quantify this emission because of the several impacts of these waves, in particular the induced momentum fluxes towards the middle atmosphere, and their contribution to turbulence and mixing, e.g. in the region of the tropopause. Yet, the mechanisms at the origin of these waves have been difficult to identify, the fundamental reason for this being the separation between the time scales of balanced motions and gravity waves. Recent simulations of idealized baroclinic life cycles and of dipoles have provided insights into the mechanisms determining the characteristics and the amplitude of gravity waves emitted by jets. It has been shown in particular that the environmental strain and shear play a crucial role in determining the characteristics and location of the emitted waves, emphasizing jet exit regions for the appearance of coherent low-frequency waves. It has also been shown how advection of relatively small-scales allow to overcome the separation of time scales alluded to above. Recent results, remaining open questions and ongoing work on these idealized simulations will be briefly summarized. Nevertheless, unavoidable shortcomings of such idealized simulations include the sensitivity of the emitted waves to model setup (resolution, diffusion, parameterizations) and uncertainty regarding the realism of this aspect of the simulations. Hence, it is necessary to compare simulations with observations in order to assess their relevance. Such comparison has been undertaken using the dataset from the Vorcore campaign (Sept. 2005 - Feb. 2006, Hertzog, J. Atmos. Ocean. Techno. 2007) during which 27 superpressure balloons drifted as quasi-Lagrangian tracers in the lower stratosphere above Antarctica and the Southern Ocean. High-resolution simulations (dx = 20 km) have been carried out using the Weather Research and Forecast model for nearly two months. The realism of the simulated gravity waves is established based on systematic comparison with the observations and on case studies. The simulations are then used to quantify the importance and characteristics of gravity waves emitted from jets and fronts above the Southern Ocean. In particular, application of results from the idealized simulations to real cases, with a check provided by observations, will be discussed.

  7. Very high resolution observations of waves in the OH airglow at low latitudes.

    NASA Astrophysics Data System (ADS)

    Franzen, Christoph; Espy, Patrick J.; Hibbins, Robert E.; Djupvik, Amanda A.

    2017-04-01

    Vibrationally excited hydroxyl (OH) is produced in the mesosphere by the reaction of atomic hydrogen and ozone. This excited OH radiates a strong, near-infrared airglow emission in a thin ( 8 km thick) layer near 87 km. In the past, remote sensing of perturbations in the OH Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through this region. However, information on the highest frequency gravity waves is often limited by the temporal and spatial resolution of the available observations. In an effort to expand the wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements are taken with a 10 s integration time (24 s repetition rate), and the spatial resolution at 87 km is as small as 10 m, allowing us to quantify the transition between the gravity and acoustic wave domains in the mesosphere.

  8. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of absorption and dispersion and a stochastic model is constructed for ground-based acoustic signals in mountain environments.

  9. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    PubMed

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  10. 'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.; Boville, Byron A.

    1994-01-01

    According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.

  11. Midlatitude sporadic-E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1976-01-01

    The partially transparent echo from midlatitude sporadic E layers was recorded by ionosondes between the blanketing frequency and the maximum frequency. The theory that the midlatitude sporadic E layers are not uniform in the horizontal plane but contain localized regions of high electron density was evaluated using data obtained by incoherent scatter radar and found to provide a satisfactory explanation. The main features of midlatitude sporadic E layers are consistent with the convergence of metallic ions as described by the wind shear theory applied to gravity waves and tides. The interference of gravity waves with other gravity waves and tides can be recognized in the altitudes of occurrence and the structure of the layers. Small scale horizontal irregularities are attributed in some cases to critical level effects and in others to fluid instabilities. The convergence of a meteor trail can, under some circumstances, account for localized enhancement of the electron density in the layer.

  12. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  13. The global reference atmospheric model, mod 2 (with two scale perturbation model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Hargraves, W. R.

    1976-01-01

    The Global Reference Atmospheric Model was improved to produce more realistic simulations of vertical profiles of atmospheric parameters. A revised two scale random perturbation model using perturbation magnitudes which are adjusted to conform to constraints imposed by the perfect gas law and the hydrostatic condition is described. The two scale perturbation model produces appropriately correlated (horizontally and vertically) small scale and large scale perturbations. These stochastically simulated perturbations are representative of the magnitudes and wavelengths of perturbations produced by tides and planetary scale waves (large scale) and turbulence and gravity waves (small scale). Other new features of the model are: (1) a second order geostrophic wind relation for use at low latitudes which does not "blow up" at low latitudes as the ordinary geostrophic relation does; and (2) revised quasi-biennial amplitudes and phases and revised stationary perturbations, based on data through 1972.

  14. Occurrence characteristics of medium-scale gravity waves observed in OH and OI nightglow over Adelaide (34.5°S, 138.5°E)

    NASA Astrophysics Data System (ADS)

    Ding, F.; Yuan, H.; Wan, W.; Reid, I. M.; Woithe, J. M.

    2004-07-01

    This paper presents a 7 year climatology describing medium-scale gravity waves observed in the menopause region covering the years from 1995 to 2001. The data comes from the OI and OH airglow observations of the three-field photometer employed at the University of Adelaide's Buckland Park, Australia (34.5°S, 138.5°E). About 1300 gravity wave events (AGW) are identified during the years 1995-2001. These AGW events usually persist for between 40 min and 4 hours. The magnitudes range from 1% to 14% of the background intensities and peak at 2% for OI observations and at 3% for OH observations. The observed periods range from 10 to 30 min, and the horizontal phase speeds range from 20 to 250 m s-1, with dominant wave scales of 17 min, 70 m s-1 for OI observations and 20 min, 40 m s-1 for OH observations. The intrinsic parameters are obtained by using medium-frequency (MF) wind data observed at the same place. The occurrence frequency of AGW events peaks at 13 min, 40 m s-1 for both OI and OH observations. The occurrence rate of gravity waves has a major peak in summer and a minor peak in winter. There is an obvious dominating southeastward direction for gravity waves, with azimuths of 160° in summer and 130° in winter. Studies for gravity waves observed in various locations show a similar tendency of propagating meridionally toward the summer pole. This implies that the tendency of propagating toward the summer pole may be a global trend for medium-scale gravity waves observed in the mesopause region. During summer, gravity waves propagate against winds measured by MF radar in their dominating direction. Using the ray tracing method, we found that the seasonal variation of winds limits the access of gravity waves to the observation height through reflection and critical coupling, which is one of the causes leading to the seasonal behavior of gravity waves observed over Adelaide.

  15. Auroral origin of medium scale gravity waves in neutral composition and temperature

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.

    1979-01-01

    The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.

  16. Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter

    NASA Technical Reports Server (NTRS)

    Atakturk, Serhad S.; Katsaros, Kristina B.

    1993-01-01

    Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.

  17. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  18. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  19. Analysis of gravity wave propagation and properties, comparison between WRF model simulations and LIDAR data in Southern France

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Heinrich, Philippe

    2014-05-01

    Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637

  20. Stratospheric gravity waves at southern hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan

    2017-04-01

    Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation. Reference: Hoffmann, L., Grimsdell, A. W., and Alexander, M. J.: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations, Atmos. Chem. Phys., 16, 9381-9397, doi:10.5194/acp-16-9381-2016, 2016.

  1. The effect of small-wave modulation on the electromagnetic bias

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin; Martin, Jan M.

    1992-01-01

    The effect of the modulation of small ocean waves by large waves on the physical mechanism of the EM bias is examined by conducting a numerical scattering experiment which does not assume the applicability of geometric optics. The modulation effect of the large waves on the small waves is modeled using the principle of conservation of wave action and includes the modulation of gravity-capillary waves. The frequency dependence and magnitude of the EM bias is examined for a simplified ocean spectral model as a function of wind speed. These calculations make it possible to assess the validity of previous assumptions made in the theory of the EM bias, with respect to both scattering and hydrodynamic effects. It is found that the geometric optics approximation is inadequate for predictions of the EM bias at typical radar altimeter frequencies, while the improved scattering calculations provide a frequency dependence of the EM bias which is in qualitative agreement with observation. For typical wind speeds, the EM bias contribution due to small-wave modulation is of the same order as that due to modulation by the nonlinearities of the large-scale waves.

  2. Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review

    NASA Astrophysics Data System (ADS)

    Sharman, Robert D.; Trier, S. B.

    2018-03-01

    Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.

  3. Small Scale Motions Observed by Aircraft in the Tropical Tropopause Layer - Convective and Non-Convective Environments

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Bui, T. P.; Dean-Day, J.

    2016-01-01

    Indirect evidence indicates a role for vertical mixing in the Tropical Tropopause Layer (TTL). In particular, detailed model studies suggest that such vertical mixing may be required to explain the value of the water vapor minimum in the TTL. There have been previous observations during the STEP Tropical aircraft campaign (1987) of bursts of high frequency activity associated with convectively generated gravity waves in the tropical western Pacific. Higher frequency, higher quality measurements from NASA high altitude aircraft (ER-2, WB-57, and Global Hawk) have been made available in the last 20 years. These include measurements of vertical velocity and other meteorological parameters. Most recently, during the ATTREX Global Hawk aircraft mission (Airborne Tropical TRopopause EXperiment), there have been extensive measurements at all altitudes of the TTL in both convective (winter western Pacific) and less convective (winter eastern Pacific) regions. This presentation represents an initial analysis of high frequency small scale (a few km max) meteorological measurements from the ATTREX dataset. We obtain some basic information about the distribution and character of high frequency activity in vertical velocity in the TTL. In particular, we focus on relating the high frequency activity to nearby tropical convection and to vertical shears associated with gravity and inertia-gravity waves.

  4. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kaoru

    1993-02-14

    This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less

  5. Gravity Waves in the Atmosphere: Instability, Saturation, and Transport.

    DTIC Science & Technology

    1995-11-13

    role of gravity wave drag in the extratropical QBO , destabilization of large-scale tropical waves by deep moist convection, and a general theory of equatorial inertial instability on a zonally nonuniform, nonparallel flow.

  6. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    This quarter was largely devoted to a detailed study of temperature data acquired by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS. Our analysis used the same sequence of methods that have been developed, tested and refined on a more limited subset of temperature data acquired by the CRISTA instrument. We focused on a limited subset of our reasoning that geographical and vertical trends in the small-scale temperature variability could be compared with similar trends observed in November 1994 by the CRISTA-SPAS satellite. Results, backed up with hindcasts from the Mountain Wave Forecast Model (MWFM), reveal strong evidence of mountain waves, most persuasively in the Himalayas on 16-17 November, 1992. These CLAES results are coherent over the 30-50 km range and compare well with MWFM hindcasts for the same period. This constitutes, we believe, the first clear evidence that CLAES explicitly resolved long wavelength gravity waves in its CO2 temperature channel. A series of other tasks, related to mesoscale modeling of mountain waves in CRISTA data and fitting of ground-based and HRDI data on global scales, were seen through to publication stage in peer-reviewed journals.

  7. Gravity waves produced by the total solar eclipse of 1 August 2008

    NASA Astrophysics Data System (ADS)

    Marty, Julien; Francis, Dalaudier; Damien, Ponceau; Elisabeth, Blanc; Ulziibat, Munkhuu

    2010-05-01

    Gravity waves are a major component of atmospheric small scale dynamics because of their ability to transport energy and momentum over considerable distances and of their interactions with the mean circulation or other waves. They produce pressure variations which can be detected at the ground by microbarographs. The solar intensity reduction which occurs in the atmosphere during solar eclipses is known to act as a temporary source of large scale gravity waves. Despite decades of research, observational evidence for a characteristic bow-wave response of the atmosphere to eclipse passages remains elusive. A new versatile numerical model (Marty, J. and Dalaudier, F.: Linear spectral numerical model for internal gravity wave propagation. J. Atmos. Sci. (in press)) is presented and applied to the cooling of the atmosphere during a solar eclipse. Calculated solutions appear to be in good agreement with ground pressure fluctuations recorded during the total solar eclipse of 1 August 2008. To the knowledge of the authors, this is the first time that such a result is presented. A three-dimensional linear spectral numerical model is used to propagate internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave fluctuations produced by identified sources. It is based on the solutions of the linearized fundamental fluid equations and uses the fully-compressible dispersion relation for inertia-gravity waves. The spectral implementation excludes situations involving spatial variations of buoyancy frequency or background wind. However density stratification variations are taken into account in the calculation of fluctuation amplitudes. In addition to gravity wave packet free propagation, the model handles both impulsive and continuous sources. It can account for spatial and temporal variations of the sources allowing to cover a broad range of physical situations. It is applied to the case of solar eclipses, which are known to produce large-scale bow waves on the Earth's surface. The asymptotic response to a Gaussian thermal forcing travelling at constant velocity as well as the transient response to the 4 December 2002 eclipse are presented. They show good agreement with previous numerical simulations. The model is then applied to the case of the 1 August 2008 solar eclipse. Ground pressure variations produced by the response to the solar intensity reduction in both stratosphere and troposphere are calculated. These synthetic signals are then compared to pressure variations recorded by IMS (International Monitoring System) infrasound stations and a temporary network specifically set up in Western Mongolia for this occasion. The pressure fluctuations produced by the 1 August 2008 solar eclipse are in a frequency band highly disturbed by atmospheric tides. Pressure variations produced by atmospheric tides and synoptic disturbances are thus characterized and removed from the signal. A low frequency wave starting just after the passage of the eclipse is finally brought to light on all stations. Its frequency and amplitude are close to the one calculated with our model, which strongly suggest that this signal was produced by the total solar eclipse.

  8. The family of anisotropically scaled equatorial waves

    NASA Astrophysics Data System (ADS)

    RamíRez GutiéRrez, Enver; da Silva Dias, Pedro Leite; Raupp, Carlos; Bonatti, Jose Paulo

    2011-04-01

    In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to equatorial waves at intermediate states between the shallow water and the long wave approximation model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions of the long wave model in one extreme and to the shallow water model solutions in the other extreme of the parameter dependency. Thus, the problem associated with the completeness of the long wave model solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in addition to the typical dependency on the equivalent depth, meridional quantum number and zonal wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used δ ∈ < 1]. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere and ocean dynamics in the tropics.

  9. Small scale currents and ocean wave heights: from today's models to future satellite observations with CFOSAT and SKIM

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Gille, Sarah; Menemenlis, Dimitris; Rocha, Cesar; Rascle, Nicolas; Gula, Jonathan; Chapron, Bertrand

    2017-04-01

    Tidal currents and large oceanic currents, such as the Agulhas, Gulf Stream and Kuroshio, are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of ocean currents at scales of 10 km or less have revealed the ubiquitous presence of fronts and filaments. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations at 10 km. This current-induced variability creates gradients in wave heights that were previously overlooked and are relevant for extreme wave heights and remote sensing. The spectrum of significant wave heights is found to be of the order of 70⟨Hs ⟩2/(g2⟨Tm0,-1⟩2) times the current spectrum, where ⟨Hs ⟩ is the spatially-averaged significant wave height, ⟨Tm0,-1⟩ is the average energy period, and g is the gravity acceleration. This small scale variability is consistent with Jason-3 and SARAL along-track variability. We will discuss how future satellite mission with wave spectrometers can help observe these wave-current interactions. CFOSAT is due for launch in 2018, and SKIM is a proposal for ESA Earth Explorer 9.

  10. Advancement of Techniques for Modeling the Effects of Atmospheric Gravity-Wave-Induced Inhomogeneities on Infrasound Propagation

    DTIC Science & Technology

    2010-09-01

    ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound

  11. Long-term variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric gravity waves by using airglow images obtained at Shigarkai, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.

    2016-12-01

    Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.

  12. Statistical properties of nonlinear one-dimensional wave fields

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2005-06-01

    A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  13. Evidence of Tropospheric 90 Day Oscillations in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Hagan, M. E.; Zhao, Y.

    2017-10-01

    In the last decade evidence demonstrated that terrestrial weather greatly impacts the dynamics and mean state of the thermosphere via small-scale gravity waves and global-scale solar tidal propagation and dissipation effects. While observations have shown significant intraseasonal variability in the upper mesospheric mean winds, relatively little is known about this variability at satellite altitudes (˜250-400 km). Using cross-track wind measurements from the Challenging Minisatellite Payload and Gravity field and steady-state Ocean Circulation Explorer satellites, winds from a Modern-Era Retrospective Analysis for Research and Applications/Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model simulation, and outgoing longwave radiation data, we demonstrate the existence of a prominent and global-scale 90 day oscillation in the thermospheric zonal mean winds and in the diurnal eastward propagating tide with zonal wave number 3 (DE3) during 2009-2010 and present evidence of its connection to variability in tropospheric convective activity. This study suggests that strong coupling between the troposphere and the thermosphere occurs on intraseasonal timescales.

  14. Simulations of Atmospheric Neutral Wave Coupling to the Ionosphere

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.

    2005-12-01

    The densities in the E- and F-layer plasmas are much less than the density of background neutral atmosphere. Atmospheric neutral waves are primary sources of plasma density fluctuations and are the sources for triggering plasma instabilities. The neutral atmosphere supports acoustic waves, acoustic gravity waves, and Kelvin Helmholtz waves from wind shears. These waves help determine the structure of the ionosphere by changes in neutral density that affect ion-electron recombination and by neutral velocities that couple to the plasma via ion-neutral collisions. Neutral acoustic disturbances can arise from thunderstorms, chemical factory explosions and intentional high-explosive tests. Based on conservation of energy, acoustic waves grow in amplitude as they propagate upwards to lower atmospheric densities. Shock waves can form in an acoustic pulse that is eventually damped by viscosity. Ionospheric effects from acoustic waves include transient perturbations of E- and F-Regions and triggering of E-Region instabilities. Acoustic-gravity waves affect the ionosphere over large distances. Gravity wave sources include thunderstorms, auroral region disturbances, Space Shuttle launches and possibly solar eclipses. Low frequency acoustic-gravity waves propagate to yield traveling ionospheric disturbances (TID's), triggering of Equatorial bubbles, and possible periodic structuring of the E-Region. Gravity wave triggering of equatorial bubbles is studied numerically by solving the equations for plasma continuity and ion velocity along with Ohms law to provide an equation for the induced electric potential. Slow moving gravity waves provide density depressions on bottom of ionosphere and a gravitational Rayleigh-Taylor instability is initiated. Radar scatter detects field aligned irregularities in the resulting plasma bubble. Neutral Kelvin-Helmholtz waves are produced by strong mesospheric wind shears that are also coincident with the formation of intense E-layers. An atmospheric model for periodic structures with Kelvin-Helmholtz (KH) wavelengths is used to show the development of quasi-periodic structures in the E-layer. For the model, a background atmosphere near 100 km altitude with a scale height of 12.2 km is subjected to a wind shear profile varying by 100 m/s over a distance of 1.7 km. This neutral speed shear drives the KH instability with a growth time of about 100 seconds. The neutral KH wave is a source of plasma turbulence. The E-layer responds to the KH-Wave structure in the neutral atmosphere as an electrodynamic tracer. The plasma flow leads to small scale plasma field aligned irregularities from a gradient drift, plasma interchange instability (GDI) or a Farley-Buneman, two-stream instability (FBI). These irregularities are detected by radar scatter as quasi-periodic structures. All of these plasma phenomena would not occur without the initiation by neutral atmospheric waves.

  15. In Situ Observations of PSCs Generated by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Bui, Paul; Mahoney, M. J.; Gandrud, Bruce; Hipskind, K. Stephen (Technical Monitor)

    2000-01-01

    During SOLVE, the bulk of the in-situ observations of PSCs are of large scale extended structures associated with synoptic scale cooling. The nature of these structures is also determined by layers of high relative NOy that have been stretched into thin layers by advective processes. Some of the in situ observations, however, are clearly correlated with gravity wave signatures. The first goal of this work is to examine these cases and evaluate gravity wave parameters. In particular, we are interested in the intrinsic periods of the waves and their temperature amplitude, which are key ingredients in the nucleation process. Secondly, we will examine some rudimentary properties of the particle size distributions and composition, comparing these with in situ observations of the more extended PSC features. Finally, we will attempt to ascertain the mechanism which generates the gravity waves.

  16. Model of Wave Driven Flow Oscillation for Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    At low latitudes in the Earth's atmosphere, the observed zonal flow velocities are dominated by the semi-annual and quasi-biennial oscillations with periods of 6 months and 20 to 32 months respectively. These terrestrial oscillations, the SAO and QBO respectively, are driven by wave-mean flow interactions due to upward propagating planetary-scale waves (periods of days) and small-scale gravity waves (periods of hours). We are proposing (see also Mayr et al., GRL, 2001) that such a mechanism may drive long period oscillations (reversing flows) in stellar and planetary interiors, and we apply it to the Sun. The reversing flows would occur below the convective envelope where waves can propagate. We apply a simplified, one dimensional, analytical flow model that incorporates a gravity wave parameterization due to Hines (1997). Based on this analysis, our estimates show that relatively small wave amplitudes less than 10 m/s can produce zonal flow amplitudes of 20 m/s, which should be sufficient to generate the observed variations in the magnetic field. To produce the 22-year period of oscillation, a low buoyancy frequency must be chosen, and this places the proposed flow in a region that is close to (and below) the base of the convective envelope. Enhanced turbulence associated with this low stability should help to generate the dynamo currents. With larger stability at deeper levels in the solar interior, the model can readily produce also oscillations with much longer periods. To provide an understanding of the fluid dynamics involved, we present numerical results from a 2D model for the terrestrial atmosphere that exemplify the non-linear nature of the wave interaction for which a mechanical analog is the escapement mechanism of the clock.

  17. Study of atmospheric gravity waves and infrasonic sources using the USArray Transportable Array pressure data

    NASA Astrophysics Data System (ADS)

    Hedlin, Michael; de Groot-Hedlin, Catherine; Hoffmann, Lars; Alexander, M. Joan; Stephan, Claudia

    2016-04-01

    The upgrade of the USArray Transportable Array (TA) with microbarometers and infrasound microphones has created an opportunity for a broad range of new studies of atmospheric sources and the large- and small-scale atmospheric structure through which signals from these events propagate. These studies are akin to early studies of seismic events and the Earth's interior structure that were made possible by the first seismic networks. In one early study with the new dataset we use the method of de Groot-Hedlin and Hedlin (2015) to recast the TA as a massive collection of 3-element arrays to detect and locate large infrasonic events. Over 2,000 events have been detected in 2013. The events cluster in highly active regions on land and offshore. Stratospherically ducted signals from some of these events have been recorded more than 2,000 km from the source and clearly show dispersion due to propagation through atmospheric gravity waves. Modeling of these signals has been used to test statistical models of atmospheric gravity waves. The network is also useful for making direct observations of gravity waves. We are currently studying TA and satellite observations of gravity waves from singular events to better understand how the waves near ground level relate to those observed aloft. We are also studying the long-term statistics of these waves from the beginning of 2010 through 2014. Early work using data bandpass filtered from 1-6 hr shows that both the TA and satellite data reveal highly active source regions, such as near the Great Lakes. de Groot-Hedlin and Hedlin, 2015, A method for detecting and locating geophysical events using clusters of arrays, Geophysical Journal International, v203, p960-971, doi: 10.1093/gji/ggv345.

  18. Helicity, geostrophic balance and mixing in rotating stratified turbulence: a multi-scale problem

    NASA Astrophysics Data System (ADS)

    Pouquet, A.; Marino, R.; Mininni, P.; Rorai, C.; Rosenberg, D. L.

    2012-12-01

    Helicity, geostrophic balance and mixing in rotating stratified turbulence: a multi-scale problem A. Pouquet, R. Marino, P. D. Mininni, C. Rorai & D. Rosenberg, NCAR Interactions between winds and waves have important roles in planetary and oceanic boundary layers, affecting momentum, heat and CO2 transport. Within the Abyssal Southern Ocean at Mid latitude, this may result in a mixed layer which is too shallow in climate models thereby affecting the overall evolution because of poor handling of wave breaking as in Kelvin-Helmoltz instabilities: gravity waves couple nonlinearly on slow time scales and undergo steepening through resonant interactions, or due to the presence of shear. In the oceans, sub-mesoscale frontogenesis and significant departure from quasi-geostrophy can be seen as turbulence intensifies. The ensuing anomalous vertical dispersion may not be simply modeled by a random walk, due to intermittent structures, wave propagation and to their interactions. Conversely, the energy and seeds required for such intermittent events to occur, say in the stable planetary boundary layer, may come from the wave field that is perturbed, or from winds and the effect of topography. Under the assumption of stationarity, weak nonlinearities, dissipation and forcing, one obtains large-scale geostrophic balance linking pressure gradient, gravity and Coriolis force. The role of helicity (velocity-vorticity correlations) has not received as much attention, outside the realm of astrophysics when considering the growth of large-scale magnetic fields. However, it is measured routinely in the atmosphere in order to gauge the likelihood of supercell convective storms to strengthen, and it may be a factor to consider in the formation of hurricanes. In this context, we examine the transition from a wave-dominated regime to an isotropic small-scale turbulent one in rotating flows with helical forcing. Using a direct numerical simulation (DNS) on a 3072^3 grid with Rossby and Reynolds numbers of 0.07 and 27000, one can resolve both the Zeman scale at which the inertial and eddy turn-over times equalize, and the dissipation scale. We show that fully helical vertical columns dominate at intermediate scales, presumably self-similar and shrouded by a sea of small-scale vortex filaments as in Kolmogorov turbulence. Helicity has a profound effect on the structures of the flow, and a previously developed model that includes a helical component in its eddy viscosity and eddy noise shows a measurable improvement. Indeed, if dimensionless parameters for inertial and gravity waves are reachable numerically, the Reynolds number is too low in DNS for geophysics unless one uses parametrizations of small scale interactions. For spin-down stably-stratified flows, energy and helicity undergo a substantially slower decay than in the unstratified case, and a type of large-scale cyclostrophic balance is invoked to explain this behavior. The decay rate is similar to that occurring in the unstratified rotating case, as modeled by taking into account the quasi-conservation of helicity. We finally mention helicity production when rotation and stratification are both combined. In conclusion, much remains to be done, e.g. examining transport properties of rotating stratified turbulence, such as the effect of helicity on mixing in geophysical flows that can be studied with high-performance computing allowing multi-scale interactions and intermittency to develop.

  19. On the dynamo generation of flux ropes in the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.

    1985-01-01

    Small scale magnetic field structures or 'flux ropes' observed in the ionosphere of Venus can be interpreted as the result of a kinematic dynamo process acting on weak seed fields. The seed fields result from the prevailing downward convection of magnetic flux from the vicinity of the ionopause, while small scale fluctuations in the velocity of the ionospheric plasma, which can be caused by collisional coupling to gravity waves in the neutral atmosphere, provide the mechanism by which the field is twisted and redistributed into features of similar scale. This mechanism naturally explains some of the average properties of flux ropes such as the variation of their characteristics with altitude and solar zenith angle. It also elucidates the relationship between the large scale and small scale ionospheric magnetic fields.

  20. Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics

    NASA Astrophysics Data System (ADS)

    MacKenzie Laxague, Nathan Jean

    Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.

  1. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  2. Final Reports for Contract N00014-87-K-0181 (University of Hawaii, School of Ocean and Earth Science and Technology)

    DTIC Science & Technology

    1994-09-01

    CONTENT A. Administration B. Dynamics of Small-scale Ocean Motions (P. Muller) C. Seismic Anisotropy ( G . Fryer) D. Low Frequency Modulus Measurements...Manghnani G . Marching the Elastodynamic Wave Equation (N. Frazer) H. Theoretical & Computational Studies in Marine Seismology (N. Frazer) I. Correction and...Publication. and in the summary article: Muller, P.,E. D’Asaro and G . Holloway, 1991: Internal Gravity Waves and Mixing. EOS, T:ansactions, American

  3. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    NASA Astrophysics Data System (ADS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  4. Small-Scale Structure in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Rehnberg, Morgan

    2017-08-01

    The rings of Saturn are the largest and most complex in the Solar System. Decades of observation from ground- and space-based observatories and spacecraft missions have revealed the broad structure of the rings and the intricate interactions between the planet's moons and its rings. Stellar occultations observed by the Ultraviolet Imaging Spectrograph's High Speed Photometer onboard the Cassini spacecraft now enable the direct study of the small-scale structure that results from these interactions. In this dissertation, I present three distinct phenomena resulting from the small-scale physics of the rings. Many resonance locations with Saturn's external satellites lie within the main (A and B) rings. Two of these satellites, Janus and Epimetheus, have a unique co-orbital relationship and move radially to switch positions every 4.0 years. This motion also moves the resonance locations within the rings. As the spiral density waves created at these resonances interact, they launch an enormous solitary wave every eight years. I provide the first-ever observations of this never-predicted phenomenon and detail a possible formation mechanism. Previous studies have reported a population of kilometer-scale aggregates in Saturn's F ring, which likely form as a result of self-gravitation between ring particles in Saturn's Roche zone. I expand the known catalog of features in UVIS occultations and provide the first estimates of their density derived from comparisons with the A ring. These features are orders of magnitude less dense than previously believed, a fact which reconciles them with detections made by other means. Theory and indirect observations indicate that the smallest regular structures in the rings are wavelike aggregates called self-gravity wakes. Using the highest-resolution occulta- tions, I provide the first-ever direct detection of these features by identifying the gaps that represent the minima of the wakes. I demonstrate that the distribution of these gaps is con- sistent with the broad brightness asymmetries previously observed in the rings. Furthermore, the presence of spiral density waves affects the formation of self-gravity waves.

  5. Waiting for 21-Lutetia "Rosetta" images as a final proof of structurizing force of inertia-gravity waves

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    The 100 km long flattened asteroid 21-Lutetia will be imaged by the "Rosetta' spacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia-gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies' accelerations imply inertia-gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four directions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising strongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) makes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the essentially dichotomous simplest Plato's figure. In this polyhedron always there is an opposition of extension (a face) to contraction (a vertex). The first overtone wave2 (long πR) makes tectonic sectors, also risen and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes and is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the main sequence and the individual wave (also long 2πR) are in the strongest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - «orbits make structures». [1] Kochemasov G.G. (1999) "Diamond" and "dumb-bells"-like shapes of celestial bodies induced by inertia-gravity waves // 30th Vernadsky-Brown microsymposium on comparative planetology, Abstracts, Moscow, Vernadsky Inst., 49-50. [2] -"- (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22. [3] -"- (2006) The wave planetology illustrated - I: dichotomy, sectoring // 44th Vernadsky-Brown microsymposium "Topics in Comparative Planetology", Oct. 9-11, 2006, Moscow, Vernadsky Inst., Abstr. m44_39, CD-ROM; [4] -"- (2006) Theorems of the wave planetology imprinted in small bodies // Geophys. Res. Abstracts, Vol. 8, EGU06-A-01098, CD-ROM. [5] -"- (2007) Plato's polyhedra in space // EPSC Abstracts, Vol. 2, EPSC2007-A-00014, 2007. [6] -"-(2007) Wave shaping of small saturnian satellites and wavy granulation of saturnian rings // Geophys. Res. Abstracts, Vol. 9, EGU2007-A-01594, CD-ROM. [7] -"- (2007) Plato's polyhedra as shapes of small satellites in the outer Solar system // New Concepts in Global Tectonics Newsletter, # 44, 43-45. [8] -"- (2008) Plato' polyhedra as shapes of small icy satellites // Geophys. Res. Abstracts, Vol. 10, EGU2008-A-01271, CD-ROM. [9] -"- (2008) A wave geometrization of small heavenly bodies // GRA, Vol. 10, EGU2008-A-01275, CD-ROM.

  6. Three-wave and four-wave interactions in gravity wave turbulence

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  7. Shock waves in strongly coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios

    2010-12-15

    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics withmore » no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.« less

  8. High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer

    NASA Astrophysics Data System (ADS)

    Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-12-01

    A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) at Oberpfaffenhofen (48.09° N, 11.28° E), Germany. The spatial resolution of the instrument is 17 m pixel-1 in zenith direction with a field of view (FOV) of 11.1 km × 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 and 0°) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the maximum entropy method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4-5 April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings.

  9. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    USGS Publications Warehouse

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  10. A numerical experiment on the formation of the tropopause inversion layer associated with an explosive cyclogenesis: possible role of gravity waves

    NASA Astrophysics Data System (ADS)

    Otsuka, Shigenori; Takeshita, Megumi; Yoden, Shigeo

    2014-12-01

    The tropopause inversion layer (TIL) is a persistent layer with high static stability. Although some mechanisms for the formation of the TIL have been proposed, the time evolution of the TIL under realistic conditions especially when factoring in the contribution of small-scale processes such as gravity waves is not well understood. To gain an understanding of this factor, we conducted a numerical experiment on an explosive cyclogenesis in mid-latitudes using a nonhydrostatic regional atmospheric model. Although the TIL in the model is consistent with previous observations in the sense that it is stronger in the negative vorticity areas, the relationship is clear only in the development and mature stages of a cyclone, suggesting that the evolution of the cyclone plays an important role in the formation of the TIL. To ascertain the effects of gravity waves on the TIL, vertical convergence at the tropopause is analyzed. Histograms of maximum buoyancy frequency squared within the TIL show that regions of vertical convergence have higher , in addition to regions with high ∂ 2 w/ ∂ z 2, implying that waves having downward phase propagation also play an important role in the dynamical formation of the TIL. This tendency is clearer in regions of negative relative vorticity at the tropopause. By taking account of the fact that the gravity wave activities associated with the cyclone and the jet streak are enhanced during the development and mature stages of the cyclone, vertical convergence due to gravity waves associated with synoptic weather systems can be seen to be a key process in the formation of the negative correlation between the strength of the TIL and the local relative vorticity at the tropopause.

  11. Equatorial Dynamics Observed by Rocket, Radar, and Satellite During the CADRE/MALTED Campaign. 1; Programmatics and small-scale fluctuations

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-01-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3 deg S) and magnetic (approx. 0.5 deg S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.

  12. Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign 1. Programmatics and small-scale fluctuations

    NASA Astrophysics Data System (ADS)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-11-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alca‸ntara rocket site in northeastern Brazil as part of the International Guará Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (~0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.

  13. Seasonal and height variation of gravity wave activities observed by a meteor radar at King Sejong Station (62°S, 57°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Choi, J.; Jee, G.

    2010-12-01

    We have analyzed wind data from individual meteor echoes detected by a meteor radar at King Sejong Station, Antarctica to measure gravity wave activity in the mesopause region. Wind data in the meteor altitudes has been obtained routinely by the meteor radar since its installation in March 2007. The mean variances in the wind data that were filtered for large scale motions (mean winds and tides) can be regarded as the gravity wave activity. Monthly mean gravity wave activities show strong seasonal and height dependences in the altitude range of 80 to 100 km. The gravity wave activities except summer monotonically increase with altitude, which is expected since decreasing atmospheric densities cause wave amplitudes to increase. During summer (Dec. - Feb.) the height profiles of gravity wave activities show a minimum near 90 - 95 km, which may be due to different zonal wind and strong wind shear near 80 - 95 km. Our gravity wave activities are generally stronger than those of the Rothera station, implying sensitive dependency on location. The difference may be related to gravity wave sources in the lower atmosphere near Antarctic vortex.

  14. Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.

  15. Large ice particles associated with small ice water content observed by AIM CIPS imagery of polar mesospheric clouds: Evidence for microphysical coupling with small-scale dynamics

    NASA Astrophysics Data System (ADS)

    Rusch, D.; Thomas, G.; Merkel, A.; Olivero, J.; Chandran, A.; Lumpe, J.; Carstans, J.; Randall, C.; Bailey, S.; Russell, J.

    2017-09-01

    Observations by the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite have demonstrated the existence of Polar Mesospheric Cloud (PMC) regions populated by particles whose mean sizes range between 60 and 100 nm (radii of equivalent volume spheres). It is known from numerous satellite experiments that typical mean PMC particle sizes are of the order of 40-50 nm. Determination of particle size by CIPS is accomplished by measuring the scattering of solar radiation at various scattering angles at a spatial resolution of 25 km2. In this size range we find a robust anti-correlation between mean particle size and albedo. These very-large particle-low-ice (VLP-LI) clouds occur over spatially coherent areas. The surprising result is that VLP-LI are frequently present either in the troughs of gravity wave-like features or at the edges of PMC voids. We postulate that an association with gravity waves exists in the low-temperature summertime mesopause region, and illustrate the mechanism by a gravity wave simulation through use of the 2D Community Aerosol and Radiation Model for Atmospheres (CARMA). The model results are consistent with a VLP-LI population in the cold troughs of monochromatic gravity waves. In addition, we find such events in Whole Earth Community Climate Model/CARMA simulations, suggesting the possible importance of sporadic downward winds in heating the upper cloud regions. This newly-discovered association enhances our understanding of the interaction of ice microphysics with dynamical processes in the upper mesosphere.

  16. Forced Gravity Waves and the Tropospheric Response to Convection

    NASA Astrophysics Data System (ADS)

    Halliday, O. J.; Griffiths, S. D.; Parker, D. J.; Stirling, A.

    2017-12-01

    It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighboring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. We find the tropospheric adjustment to be sensitive to the horizontal length scale which characterizes the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings. We show that an idealized `full-physics' nonlinear simulation of deep convection in the UK Met Office Unified Model is qualitatively described by the linear solution: departures are quantified and explored.

  17. Imaging across the interface of small-scale breaking waves

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra H.; Belden, Jesse L.

    2007-11-01

    Flow characteristics on both the air and water side of small scale spilling and plunging waves are investigated using fully time-resolved particle image velocimetry (PIV). PIV at 1000 frames per second (fps) is used to capture the flow field in both the air and water for waves generated by shoaling. Reynolds number of the waves is on the order of Re = 9x10^4 to 2x10^6, where Re = ρ√g 3̂μ, ρ is fluid density, μ is fluid dynamic viscosity, g is gravity, and λ is the characteristic wavelength of the breaking wave before breaking. Isopropyl alcohol is mixed with the distilled water in the tank to reduce surface tension and thus achieve plunging breakers on this scale. Flow in the water is seeded using conventional silver-coated hollow glass spheres, whereas the quiescent air side (i.e. no wind) is seeded using micro-air balloons with high stokes drag and thus long settling times. Imaging of both the air and water are performed simultaneously and advanced image processing is performed to determine the water surface location and to avoid surface tracking during PIV processing. Repeatable, coherent vortical structures are revealed on the air-side of the waves and are considered mechanisms for energy transfer across the interface.

  18. The GISS global climate-middle atmosphere model. II - Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Balachandran, N. K.

    1988-01-01

    The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.

  19. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  20. Convectively Generated Gravity Waves In The Tropical Stratosphere: Case Studies And Importance For The Circulation Of The Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Chan, Kwoklong R.; Gary, Bruce; Singh, Hanwant B. (Technical Monitor)

    1995-01-01

    The advent of high altitude aircraft measurements in the stratosphere over tropical convective systems has made it possible to observe the mesoscale disturbances in the temperature field that these systems excite. Such measurements show that these disturbances have horizontal scales comparable to those of the underlying anvils (about 50-100 km) with peak to peak theta surface variations of about 300-400 meters. Moreover, correlative wind measurements from the tropical phase of the Stratosphere-Troposphere Exchange Project (STEP) clearly show that these disturbances are gravity waves. We present two case studies of anvil-scale gravity waves over convective systems. Using steady and time-dependent linear models of gravity wave propagation in the stratosphere, we show: (1) that the underlying convective systems are indeed the source of the observed phenomena; and (2) that their generating mechanism can be crudely represented as flow over a time-dependent mountain. We will then discuss the effects gravity waves of the observed amplitudes have on the circulation of the middle atmosphere, particularly the quasi-biennial, and semiannual oscillations.

  1. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  2. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Luo, Zhangai

    1993-01-01

    We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.

  3. Inversion of gravity and bathymetry in oceanic regions for long-wavelength variations in upper mantle temperature and composition

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Jordan, Thomas H.

    1993-01-01

    Long-wavelength variations in geoid height, bathymetry, and SS-S travel times are all relatable to lateral variations in the characteristic temperature and bulk composition of the upper mantle. The temperature and composition are in turn relatable to mantle convection and the degree of melt extraction from the upper mantle residuum. Thus the combined inversion of the geoid or gravity field, residual bathymetry, and seismic velocity information offers the promise of resolving fundamental aspects of the pattern of mantle dynamics. The use of differential body wave travel times as a measure of seismic velocity information, in particular, permits resolution of lateral variations at scales not resolvable by conventional global or regional-scale seismic tomography with long-period surface waves. These intermediate scale lengths, well resolved in global gravity field models, are crucial for understanding the details of any chemical or physical layering in the mantle and of the characteristics of so-called 'small-scale' convection beneath oceanic lithosphere. In 1991 a three-year project to the NASA Geophysics Program was proposed to carry out a systematic inversion of long-wavelength geoid anomalies, residual bathymetric anomalies, and differential SS-S travel time delays for the lateral variation in characteristic temperature and bulk composition of the oceanic upper mantle. The project was funded as a three-year award, beginning on 1 Jan. 1992.

  4. Absorption of inertia-gravity waves in vertically sheared rotating stratified flows

    NASA Astrophysics Data System (ADS)

    Millet, C.; Lott, F.

    2012-12-01

    It is well established that gravity waves have a substantial role on the large-scale atmospheric circulation, particularly in the middle atmosphere. In the present work, we re-examine the reflection and transmission of gravity waves through a critical layer surrounded by two inertial levels for the case of a constant vertically sheared flow. In this configuration, the vertical structure of the disturbance can be described as quasi-geostrophic from the critical layer up to the inertial levels, at which the Doppler-shifted frequency is equal to the Coriolis parameter. Near and beyond these levels, the balanced approximations do not apply and there is a transition from the quasi-geostrophic solution to propagating gravity waves. The three-dimensional disturbance solution is obtained analytically using both an exact method, in terms of hypergeometric functions, and a WKB approximation valid for large Richardson numbers; the latter includes an exponentially small term which captures the radiation feedback in the region between the inertial levels. We first focused on the homogeneous part of the disturbance equations, under the assumption of an unbounded domain. In contrast with past studies which show that there is a finite reflection and did not analyze the transmission (Yamanaka and Tanaka, 1984), we find that the reflection coefficient is too small to be significant and that the transmission coefficient is exactly like in the much simpler non-rotating case analyzed by Booker and Bretherton (1966). Our theoretical predictions are found to be in very good agreement with those obtained by numerically integrating the complete hydrostatic-Boussinesq equations with a small Rayleigh damping. The discrepancies between our results and those in Yamanaka and Tanaka (1984) are related to the fact that the solutions are given in term of multivalued functions and the values of the reflection and transmission coefficients are exponentially small, e.g. quite difficult to cross check numerically. More specifically, we suspect that the differences come from their treatment of the analytic continuations in the matching regions (e.g. the inertial layers). Our results are useful to study the evolution of initial disturbances. As an illustration, we consider the problem of gravity waves generated by potential-vorticity anomalies, a problem that was recently studied in Lott et al. (2013) for an unbounded atmosphere. The vertical structure of the potential-vorticity anomaly is represented by a Dirac distribution localized at the critical level. The disturbance field can be deduced from the homogeneous solutions above and below the critical level, by using suitable jump conditions. It is shown how the inclusion of a boundary condition within the problem, below the potential-vorticity anomaly, changes the amplitude of the radiated gravity wave, especially when the Richardson number is not too large. This process may be related to the occurrence of radiative instability waves in sheared rotating stratified flows.

  5. Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas

    DTIC Science & Technology

    2012-11-21

    an oscillating LOS velocity with the same periodicity as the heating modulation pattern. A set of Fourier periodogram from the MUIR LOS velocity...scale ionospheric turbulence are discussed separately, viz., (a) anomalous heat source-induced acoustic gravity waves (AGW), and (b) HF radio wave...ionospheric ducts, acoustic gravity waves (AGWs), anomalous heat sources, inner and outer radiation belts, L parameter, whistler wave interactions

  6. Can gravity waves significantly impact PSC occurrence in the Antarctic?

    NASA Astrophysics Data System (ADS)

    McDonald, A. J.; George, S. E.; Woollands, R. M.

    2009-11-01

    A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs). POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm. A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT), shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed. Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses). For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The latitudinal variation of POAM III observations means that we only observe this region in June-July, and thus the true pattern of enhanced PSC production may continue operating into later months. The analysis has shown that early in the Antarctic winter stratospheric background temperatures are close to the TNAT threshold (and PSC formation), and are thus sensitive to temperature perturbations associated with mountain wave activity near the Antarctic peninsula (40% of PSC formation). Later in the season, and at latitudes away from the peninsula, temperature perturbations associated with gravity waves contribute to about 15% of the observed PSC (a value which corresponds well to several previous studies). This lower value is likely to be due to colder background temperatures already achieving the TNAT threshold unaided. Additionally, there is a reduction in the magnitude of gravity waves perturbations observed as POAM III samples poleward of the peninsula.

  7. Gravity Waves in the Atmospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Paetzold, Martin; Häusler, Bernd; Bird, Michael K.; Tyler, G. Leonard; Hinson, David P.; Imamura, Takeshi

    2016-10-01

    Gravity waves are ubiquitous in all stably stratified planetary atmospheres and play a major role in the redistribution of energy and momentum. Gravity waves can be excited by many different mechanisms, e.g. by airflow over orographic obstacles or by convection in an adjacent layer.Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. They might be excited by convection in the daytime boundary layer or by strong winter jets in combination with the pronounced topographic diversity on Mars.On Venus, gravity waves play an important role in the mesosphere above the cloud layer [5] and probably below. Convection in the cloud layer is one of the most important source mechanisms but certain correlations with topography were observed by different experiments [6,7,8].Temperature height profiles from the radio science experiments on Mars Express (MaRS) [9] and Venus Express (VeRa) [10] have the exceptionally high vertical resolution necessary to study small-scale vertical gravity waves, their global distribution, and possible source mechanisms.Atmospheric instabilities, which are clearly identified in the data, can be investigated to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves.[1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037.[2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058.[3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421.[5] Tellmann, S., et al. (2012), Icarus, 221, 471 - 480.[6] Blamont, J.E. et al., (1986) 231, 1422-1425.[7] Bertaux J.-L., et al. (2016), J. Geophys. Res., Planets, in press.[8] Piccialli, A., et al. (2014), Icarus, 227, 94 - 111.[9] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.[10] Häusler, B. et al., (2006). 1315-1335.

  8. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    NASA Technical Reports Server (NTRS)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.

  9. Effect of Small-Scale Gravity Waves on Polar Mesospheric Clouds Observed From CIPS/AIM

    NASA Astrophysics Data System (ADS)

    Gao, Haiyang; Li, Licheng; Bu, Lingbing; Zhang, Qilin; Tang, Yuanhe; Wang, Zhen

    2018-05-01

    Data from the Cloud Imaging and Particle Size experiment on the Aeronomy of Ice in the Mesosphere (AIM) satellite are employed to study the impact of small-scale gravity wave (GW) on albedo, ice water content (IWC), and particle radius (PR) of polar mesospheric clouds. Overall, 23,987 eligible GW events, with a horizontal wavelength of 20-150 km are eventually extracted from Cloud Imaging and Particle Size level 2 orbit albedo maps during 2007-2011. The overall statistical results show that when small-scale GWs travel horizontally in polar mesospheric clouds, they can amplify the albedo and IWC by a rate of 10.0-22.6%, while reducing the PR by as much as -7.01%. Owing to the strong temporal and spatial dependences, the albedo and IWC variations are larger on an average during the core of the season, while they decrease during the initial and final periods of the season. The obvious zonal asymmetries are also found. The albedo variations show a positive linear relation with the GW amplitudes in albedo, as opposed to a negative linear relation with GW horizontal wavelengths. In most of the GW events, the periodic variation in the trend of albedo exhibits an anticorrelation with that of PR. Combining previous research studies with our results, we deduce that the rapid change in particle concentration and the upward movement of water vapor by GWs may be very important aspects for explaining the influence mechanism.

  10. Scale-Dependent Infrared Radiative Damping Rates on Mars and Their Role in the Deposition of Gravity-Wave Momentum Flux

    DTIC Science & Technology

    2010-01-01

    1984; Zhu and Strobel , 1991; Zhu, 1993; Bresser et al., 1995) and the resulting scale-dependent IR damping rates have been incorporated within...determining total non-LTE cooling rates over the entire band. Offline calculations by Zhu and Strobel (1990) found errors of no more than ∼1 K day−1 in...and Strobel (1991) and Zhu (1993), who provide more details and justification. If we add small temperature perturbations δT to a background

  11. Modeling the QBO and SAO Driven by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.

    1999-01-01

    Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW) is applied in a global scale numerical spectral model (NSM) to describe the semi-annual and quasi-biennial oscillations (SAO and QBO) as well as the long term interannual variations that are driven by wave mean flow interactions. This model has been successful in simulating the salient features observed near the equator at altitudes above 20 km, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model has now been extended to describe also the mean zonal and meridional circulations of the upper troposphere and lower stratosphere that affect the equatorial QBO and its global scale extension. This is accomplished in part through tuning of the GW parameterization, and preliminary results lead to the following conclusions: (1) To reproduce the upwelling at equatorial latitudes associated with the Brewer/Dobson circulation that in part is modulated in the model by the vertical component of the Coriolis force, the eddy diffusivity in the lower stratosphere had to be enhanced and the related GW spectrum modified to bring it in closer agreement with the form recommended for the DSP. (2) To compensate for the required increase in the diffusivity, the observed QBO requires a larger GW source that is closer to the middle of the range recommended for the DSP. (3) Through global scale momentum redistribution, the above developments are conducive to extending the QBO and SAO oscillations to higher latitudes. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. (4) In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. Thus, a somewhat larger GW source is required to generate realistic amplitudes for the QBO and SAO.

  12. Gravity waves and the LHC: towards high-scale inflation with low-energy SUSY

    NASA Astrophysics Data System (ADS)

    He, Temple; Kachru, Shamit; Westphal, Alexander

    2010-06-01

    It has been argued that rather generic features of string-inspired inflationary theories with low-energy supersymmetry (SUSY) make it difficult to achieve inflation with a Hubble scale H > m 3/2, where m 3/2 is the gravitino mass in the SUSY-breaking vacuum state. We present a class of string-inspired supergravity realizations of chaotic inflation where a simple, dynamical mechanism yields hierarchically small scales of post-inflationary supersymmetry breaking. Within these toy models we can easily achieve small ratios between m 3/2 and the Hubble scale of inflation. This is possible because the expectation value of the superpotential < W> relaxes from large to small values during the course of inflation. However, our toy models do not provide a reasonable fit to cosmological data if one sets the SUSY-breaking scale to m 3/2 ≤ TeV. Our work is a small step towards relieving the apparent tension between high-scale inflation and low-scale supersymmetry breaking in string compactifications.

  13. Intraseasonal to interannual variations in the tropical wave activity revealed in reanalyses and their potential impact on the QBO

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ha; Yoo, Changhyun

    2017-04-01

    We investigate activities of tropical waves represented in reanalysis products. The wave activities are quantified by the Eliassen-Palm (EP) flux at 100 hPa, after decomposed into the following four components: equatorially trapped Kelvin waves and mixed Rossby-gravity waves, gravity waves, and Rossby waves. Monthly EP fluxes of the four waves exhibit considerable temporal variations at intraseasonal and interannual, along with seasonal, time scales. These variations are discussed with the tropical large-scale variabilities, including the Madden-Julian Oscillation (MJO), the El Ninõ-Southern Oscillation, and the stratospheric quasi-biennial oscillation (QBO). We find that during boreal winter, the interannual variation of Kelvin wave activity is in phase with that of the MJO amplitude, while such a simultaneous variation cannot be seen in other seasons. The gravity wave is dominated by a semi-annual cycle, while the departure from its semi-annual cycle is largely correlated with the QBO phase in the stratosphere. Potential impacts of the variations in the wave activity upon the QBO properties will be assessed using a simple one-dimensional QBO model.

  14. Relationship between Ripples and Gravity Waves Observed in OH Airglow over the Andes Lidar Observatory

    NASA Astrophysics Data System (ADS)

    Cao, B.; Gelinas, L. J.; Liu, A. Z.; Hecht, J. H.

    2016-12-01

    Instabilities generated by large amplitude gravity waves are ubiquitous in the mesopause region, and contribute to the strong forcing on the background atmosphere. Gravity waves and ripples generated by instability are commonly detected by high resolution airglow imagers that measure the hydroxyl emissions near the mesopause ( 87 km). Recently, a method based on 2D wavelet is developed by Gelinas et al. to characterize the statistics of ripple parameters from the Aerospace Infrared Camera at Andes Lidar Observatory located at Cerro Pachón, Chile (70.74°W, 30.25°S). In the meantime, data from a collocated all-sky imager is used to derive gravity wave parameters and their statistics. In this study, the relationship between the ripples and gravity waves that appeared at the same time and location are investigated in terms of their orientations, magnitudes and scales, to examine the statistical properties of the gravity wave induced instabilities and the ripples they generate.

  15. Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)

    NASA Astrophysics Data System (ADS)

    Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi

    2017-05-01

    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.

  16. Turbulence sources, character, and effects in the stable boundary layer: Insights from multi-scale direct numerical simulations and new, high-resolution measurements

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Wang, Ling; Balsley, Ben; Lawrence, Dale

    2013-04-01

    A number of sources contribute to intermittent small-scale turbulence in the stable boundary layer (SBL). These include Kelvin-Helmholtz instability (KHI), gravity wave (GW) breaking, and fluid intrusions, among others. Indeed, such sources arise naturally in response to even very simple "multi-scale" superpositions of larger-scale GWs and smaller-scale GWs, mean flows, or fine structure (FS) throughout the atmosphere and the oceans. We describe here results of two direct numerical simulations (DNS) of these GW-FS interactions performed at high resolution and high Reynolds number that allow exploration of these turbulence sources and the character and effects of the turbulence that arises in these flows. Results include episodic turbulence generation, a broad range of turbulence scales and intensities, PDFs of dissipation fields exhibiting quasi-log-normal and more complex behavior, local turbulent mixing, and "sheet and layer" structures in potential temperature that closely resemble high-resolution measurements. Importantly, such multi-scale dynamics differ from their larger-scale, quasi-monochromatic gravity wave or quasi-horizontally homogeneous shear flow instabilities in significant ways. The ability to quantify such multi-scale dynamics with new, very high-resolution measurements is also advancing rapidly. New in-situ sensors on small, unmanned aerial vehicles (UAVs), balloons, or tethered systems are enabling definition of SBL (and deeper) environments and turbulence structure and dissipation fields with high spatial and temporal resolution and precision. These new measurement and modeling capabilities promise significant advances in understanding small-scale instability and turbulence dynamics, in quantifying their roles in mixing, transport, and evolution of the SBL environment, and in contributing to improved parameterizations of these dynamics in mesoscale, numerical weather prediction, climate, and general circulation models. We expect such measurement and modeling capabilities to also aid in the design of new and more comprehensive future SBL measurement programs.

  17. Observations of Convective and Dynamical Instabilities in Tropopause Folds and their Contribution to Stratosphere-Troposphere Exchange

    NASA Technical Reports Server (NTRS)

    Cho, John Y. N.; Newell, Reginald E.; Bui, T. Paul; Browell, Edward V.; Fenn, Martha A.; Gary, Bruce L.; Mahoney, Michael J.; Gregory, Gerald L.; Sachse, Glen W.; Vay, Stephanie A.

    1999-01-01

    With aircraft-mounted in-situ and remote sensing instruments for dynamical, thermal. and chemical measurements, we studied two cases of tropopause folding. In both folds we found Kelvin-Helmholtz billows with horizontal wavelength of about 900 m and thickness of about 120 m. In one case the instability was effectively mixing the bottomside of the fold, leading to the transfer of stratospheric air into the troposphere. Also we discovered in both cases small-scale secondary ozone maxima shortly after the aircraft ascended past the topside of the fold that corresponded to regions of convective instability. We interpreted this phenomenon as convectively breaking gravity waves. Therefore, we posit that convectively breaking gravity waves acting on tropopause folds must be added to the list of important irreversible mixing mechanisms leading to stratosphere-troposphere exchange.

  18. Educing the emission mechanism of internal gravity waves in the differentially heat rotating annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Hien, Steffen; Achatz, Ulrich; Borchert, Sebastian; Fruman, Mark

    2016-04-01

    Understanding the lifecycle of gravity waves is fundamental to a good comprehension of the dynamics of the atmosphere. In this lifecycle, the emission mechanisms may be the most elusive. Indeed, while the emission of gravity waves by orography or convection is well understood, the so-called spontaneous emission is still a quite open topic of investigation [1]. This type of emission usually occur very near jet-front systems in the troposphere. In this abstract, we announce our numerical study of the question. Model systems of the atmosphere which can be easily simulated or built in a laboratory have always been an important part of the study of atmospheric dynamics, alongside global simulations, in situ measurements and theory. In the case of the study of the spontaneous emission of gravity waves near jet-front systems, the differentially heated rotating annulus set up has been proposed and extensively used. It comprises of an annular tank containing water: the inner cylinder is kept at a cold temperature while the outer cylinder is kept at a warm temperature. The whole system is rotating. Provided the values of the control parameters (temperature, rotation rate, gap between the cylinders, height of water) are well chosen, the resulting flow mimics the troposphere at midlatitudes: it has a jet stream, and a baroclinic lifecycle develops on top of it. A very reasonable ratio of Brunt-Väisälä frequency over rotation rate of the system can be obtained, so as to be as close to the atmosphere as possible. Recent experiments as well as earlier numerical simulations in our research group have shown that gravity waves are indeed emitted in this set up, in particular near the jet front system of the baroclinic wave [2]. After a first experimental stage of characterising the emitted wavepacket, we focused our work on testing hypotheses on the gravity wave emission mechanism: we have tested and validated the hypothesis of spontaneous imbalance generated by the flow in geostrophic balance. For the first stage of this investigation, we separated the flow between a balance and an imbalanced part at first order in Rossby number: the balanced pressure field was computed through an inversion of the potential vorticity equation [3]. The balanced horizontal velocity field and buoyancy were then computed using the geostrophic and hydrostatic balance conditions. We first checked that this decomposition gave on the one hand a large scaled balanced flow, comprising mostly of the baroclinic wave, and on the other hand a small scale flow comprising mostly of the gravity wave signal. We then proceeded with the central stage of the validation: we simulated the tangent linear dynamics of the imbalanced part of the flow [4]. The equations are linearised about the balanced part, and any imbalances forces the modeled imbalanced part. The output of this simulation compares very well with the actual imbalanced part, thus confirming that the observed gravity waves are indeed generated through spontaneous imbalance. To our knowledge, this is the first demonstration of emission by this mechanism in a flow which is not idealised: a flow which can be obtained as a result of a numerical simulation of primitive equations or actually observed in a laboratory experiment. References [1] R. Plougonven, F. Zhang, Internal gravity waves from atmospheric jets and fronts, Rev. Geophys. 52, 33-76 (2014). [2] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [3] F. Zhang, S.E . Koch, C. A. Davis, M. L. Kaplan, A Survey of unbalanced flow diagnostics and their application, Adv. Atmo. Sci. 17, 165-183 (2000). [4] S. Wang, F. Zhang, Source of gravity waves within a vortex dipole jet revealed by a linear model, J. Atmo. Sci. 67, 1438-1455 (2010).

  19. Gravity Waves and Tidal Measurement Capabilities from a Space-borne Lidar across the Mesopause.

    NASA Astrophysics Data System (ADS)

    Dawkins, E. C. M.; Gardner, C. S.; Kaifler, B.; Marsh, D. R.; Janches, D.

    2017-12-01

    A new proposed NASA mission, ACaDAMe (Atmospheric Coupling and Dynamics Across the Mesopause region) consists of a space-borne sodium lidar, mounted upon the International Space Station. Combining the advantages of a lidar with the near-global coverage provided by the ISS (orbital inclination: 51.6o, orbital period: 92.7 mins), the ACaDAMe mission has enormous potential to quantify the waves that provide the major momentum and energy forcing of the Ionosphere-Thermosphere-Mesosphere system from below. Specifically, this mission seeks to quantify the dominant wave momentum and energy inputs across the mesopause, and identify the near-global distribution of gravity waves and tides that impact the Thermosphere/Ionosphere and are the terrestrial drivers of Space Weather. Leveraging on existing instrument heritage and expertise, this nadir-pointing narrowband lidar would be tuned to two-frequencies (at the peak of the D2a line, and at the minimum between the D2a and D2b peaks), with a capability to retrieve vertically-resolved [Na] and temperature, T, for both nighttime and daytime conditions. Here we outline the proposed mission, present an error characterization for [Na] and T, and describe the capabilities to estimate gravity waves and tidal features which will provide a crucial role in advancing our understanding of small-scale dynamical processes and coupling across this important atmospheric region.

  20. On the Interaction Between Gravity Waves and Atmospheric Thermal Tides

    NASA Astrophysics Data System (ADS)

    Agner, Ryan Matthew

    Gravity waves and thermal tides are two of the most important dynamical features of the atmosphere. They are both generated in the lower atmosphere and propagate upward transporting energy and momentum to the upper atmosphere. This dissertation focuses on the interaction of these waves in the Mesosphere and Lower Thermosphere (MLT) region of the atmosphere using both observational data and Global Circulation Model (GCMs). The first part of this work focuses on observations of gravity wave interactions with the tides using both LIDAR data at the Star Fire Optical Range (SOR, 35?N, 106.5?W) and a meteor radar data at the Andes LIDAR Observatory (ALO, 30.3?S, 70.7?W). At SOR, the gravity waves are shown to enhance or damp the amplitude of the diurnal variations dependent on altitude while the phase is always delayed. The results compare well with previous mechanistic model results and with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high resolution global circulation model. The meteor radar observed the GWs to almost always enhance the tidal amplitudes and either delay or advance the phase depending on the altitude. When compared to previous radar results from the same meteor radar when it was located in Maui, Hawaii, the Chile results are very similar while the LIDAR results show significant differences. This is because of several instrument biases when calculating GW momentum fluxes that is not significant when determining the winds. The radar needs to perform large amounts of all-sky averaging across many weeks, while the LIDAR directly detects waves in a small section of sky. The second part of this work focuses on gravity wave parameterization scheme effects on the tides in GCMs. The Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM) are used for this analysis. The gravity wave parameterization schemes in the eCMAM (Hines scheme) have been shown to enhance the tidal amplitudes compared to observations while the parameterization scheme in SD-WACCM (Lindzen scheme) overdamps the tides. It is shown here that the Hines scheme assumption that only small scale gravity waves force the atmosphere do not create enough drag to properly constrain the tidal amplitudes. The Lindzen scheme produces too much drag because all wave scales are assumed to be saturated thus continuing to provide forcing on the atmosphere above the breaking altitude. The final part of this work investigates GWs, tides and their interactions on a local time scale instead of a global scale in the two GCMs. The local time GWs in eCMAM are found to have a strong seasonal dependence, with the majority of the forcings at the winter pole at latitudes where the diurnal variations are weak limiting their interactions. In SD-WACCM, the largest local GW forcings are located at mid latitudes near where the diurnal variations peak causing them to dampen the diurnal amplitudes. On a local time level the diurnal variations may be a summation of many tidal modes. The analysis reveals that in eCMAM the DW1 tidal mode is by far the dominant mode accounting for the local time variations. The high amount of modulation of GWs by the DW1 tidal winds does not allow it to be properly constrained, causing it to dominate the local time diurnal variations. Similarly, the DW1 projection of GW forcing is dominant over all other other modes and contributes the most to the local time diurnal GW variations. The local time wind variations in SD-WACCM are in uenced by several tidal modes because the DW1 tide is of compatible amplitudes to other modes. This is because of the increased damping on the tide by the GWs. It is also found that the local GW diurnal variations have significant contributions from all tidal modes due to the time and location of the forcing being dependent only on the tropospheric source regions and not the at altitude tidal winds.

  1. A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.

    1985-01-01

    Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.

  2. A Revised Method of Presenting Wavenumber-Frequency Power Spectrum Diagrams That Reveals the Asymmetric Nature of Tropical Large-scale Waves

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Yang, Bo; Fu, Xiouhua

    2007-01-01

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called "convectively-coupled Kelvin (mixed Rossby-gravity) waves" are presented as existing only in the symmetric (antisymmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of "convectively-coupled Kelvin waves," which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, "convectively-coupled Kelvin waves" do show anti-symmetric components, and "convectively-coupled mixed Rossby-gravity waves (also known as Yanai waves)" do show a hint of symmetric components. These results bolster a published proposal that these waves be called "chimeric Kelvin waves," "chimeric mixed Rossby-gravity waves," etc. This revised method of presenting power spectrum diagrams offers a more rigorous means of comparing the General Circulation Models (GCM) output with observations by calling attention to the capability of GCMs in correctly simulating the asymmetric characteristics of the equatorial waves.

  3. Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.

  4. High resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer

    NASA Astrophysics Data System (ADS)

    Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2017-04-01

    A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Centre (DFD) of the German Aerospace Centre (DLR) at Oberpfaffenhofen (48.09 ° N, 11.28 ° E), Germany. The spatial resolution of the instrument is 17 m/pixel in zenith direction with a field of view (FOV) of 11.1 km x 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 ° and 0 °) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the Maximum Entropy Method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4th to 5th April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM airglow imager provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings. Parts of this research received funding from the Bavarian State Ministry of the Environment and Consumer Protection.

  5. Scale-dependent Ocean Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.

    1995-01-01

    Wave turbulence is a common feature of nonlinear wave motions observed when external forcing acts during a long period of time, resulting in developed spectral cascades of energy, momentum, and other conserved integrals. In the ocean, wave turbulence occurs on various scales from capillary ripples, and those of baroclinic inertia-gravity, to Rossby waves. Oceanic wave motions are discussed.

  6. Mesoscale disturbances in the tropical stratosphere excited by convection - Observations and effects on the stratospheric momentum budget

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Scott, Stanley; Loewenstein, Max; Bowen, Stuart; Legg, Marion

    1993-01-01

    Aircraft temperature and pressure measurements as well as satellite imagery are used to establish the amplitudes and the space and time scale of potential temperature disturbances over convective systems. A conceptual model is proposed for the generation of mesoscale gravity waves by convection. The momentum forcing that a reasonable distribution of convection might exert on the tropical stratosphere through convectively excited mesoscale gravity waves of the observed amplitudes is estimated. Aircraft measurements show that presence of mesoscale disturbances in the lower stratospheric temperature, disturbances that appear to be associated with underlying convection. If the disturbances are convectively excited mesoscale gravity waves, their amplitude is sufficient that their breakdown in the upper stratosphere will exert a zonal force comparable to but probably smaller than the planetary-scale Kelvin waves.

  7. The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2017-09-01

    Observational evidence for the presence of axisymmetric periodic micro-structure on length scales of 100m - 200m in Saturn's A and B rings was revealed by several instruments onboard the Cassini mission to Saturn. The structure was seen in radio occultations performed by the Radio Science Subsystem (RSS) (Thomson et al. (2007)) and stellar occultations carried out with the Ultraviolet Imaging Spectrograph (UVIS) (Colwell et al. (2007)), and the Visual and Infrared Mapping Spectrometer (VIMS) (Hedman et al. (2014)). Up to date, this micro-structure is best explained by the viscous overstability, which arises as a spontaneous oscillatory instability in a dense ring, if certain conditions are met, leading to the formation of axisymmetric density waves with wavelengths on the order of 100m. We investigate the influence of collective self-gravity forces on the nonlinear, large scale evolution of the viscous overstability in Saturn's rings. To this end we numerically solve the nonlinear hydrodynamic model equations for a dense ring, including radial self-gravity and employing values for the transport coefficients (such as the ring's viscosity and heat conductivity) derived by salo et al. (2001). We concentrate on ring optical depths of order unity, which are appropriate to model Saturn's dense rings. Furthermore, local N-body simulations, incorporating vertical and radial collective self-gravity forces are performed. Direct particle-particle forces are omitted, which prevents small scale gravitational instabilities (self-gravity wakes) from forming, an approximation that allows us to study long radial scales of some 10 kilometers and to compare directly the hydrodynamic model and the N-body simulations. Our hydrodynamic model results, in the limit of vanishing self-gravity, compare very well with the studies of Latter & Ogilvie (2010) and Rein & Latter (2013). In contrast, for rings with non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains tend to settle close to the frequency minimum of the nonlinear dispersion relation, i.e. the saturation wavelengths decrease with increasing surface mass density of the ring. Good agreement between hydrodynamics and N-body simulations is found for disks with strong radial self-gravity, while the largest deviations occur in the limit of weak self-gravity. The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (100m-300m) agree reasonably well with the length scale of the axisymmetric periodic micro structure in Saturn's inner A ring and the B ring, as found by Cassini.

  8. Background Lamb waves in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Kobayashi, N.; Fukao, Y.

    2013-12-01

    Lamb waves of the Earth's atmosphere in the millihertz band have been considered as transient phenomena excited only by large events [e.g. the major volcanic eruption of Krakatoa in 1833, the impact of Siberian meteorite in 1908, the testing of large nuclear tests and the huge earthquakes, Garrett1969]. In a case of the solid Earth, observation of background free oscillations in the millihertz band-now known as Earth's background free oscillations or seismic hum, has been firmly established. Above 5 mHz, their dominant excitation sources are oceanic infragravity waves. At 3.7 and 4.4 mHz an elasto-acoustic resonance between the solid Earth and the atmosphere was observed [Nishida et al., 2000]. These seismic observations show that the contribution of atmospheric disturbances to the seismic hum is dominant below 5 mHz. Such contribution implies background excitations of acoustic-gravity waves in this frequency range. For direct detection of the background acoustic-gravity waves, our group conducted observations using an array of barometers [Nishida et al. 2005]. However, the spatial scale of the array of about 10 km was too small to detect acoustic modes below 10 mHz. Since then, no direct observations of these waves have been reported. In 2011, 337 high-resolution microbarometers were installed on a continental scale at USArray Transportable Array. The large and dense array enables us to detect the background atmospheric waves. Here, we show the first evidence of background Lamb waves in the Earth's atmosphere from 0.2 to 10 mHz, based on the array analysis of microbarometer data from the USArray in 2012. The observations suggest that the excitation sources are atmospheric disturbances in the troposphere. Theoretically, their energy in the troposphere tunnels into the thermosphere at a resonant frequency via thermospheric gravity wave, where the observed amplitudes indeed take a local minimum. The energy leak through the frequency window could partly contribute to thermospheric wave activity. Tropospheric disturbances exciting background Lamb waves may also be responsible for seismic hum at frequencies below 5 mHz.

  9. Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.

    PubMed

    Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil

    2017-06-02

    We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.

  10. The Impacts of Numerical Schemes on Asymmetric Hurricane Intensification

    NASA Astrophysics Data System (ADS)

    Guimond, S.; Reisner, J. M.; Marras, S.; Giraldo, F.

    2015-12-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different numerical models. Attempts at reproducing the results of previous work, which used the community atmospheric model WRF (Nolan and Grasso 2003; NG03), revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification whereas NG03 and other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other numerical models. Spectral kinetic energy budgets show that this anomalous damping is due to the increased removal of kinetic energy from the convergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time. For very large thermal amplitudes (~ 50 K and above), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller resulting in little differences between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy are responsible for these differences, with potentially important impacts for the understanding and prediction of TC intensification.

  11. Gauge assisted quadratic gravity: A framework for UV complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Menezes, Gabriel

    2018-06-01

    We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.

  12. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    NASA Astrophysics Data System (ADS)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  13. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  14. A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons, 1. Planetary scales

    NASA Astrophysics Data System (ADS)

    Vial, F.; Hertzog, A.; Mechoso, C. R.; Basdevant, C.; Cocquerez, P.; Dubourg, V.; Nouel, F.

    2001-10-01

    In the late southern winter of 1998, Center National d'Études Spatiales (CNES), the French Space Agency, released six 10-m-diameter, superpressure balloons from a location near Quito, Ecuador. Three balloons collapsed soon after launching, but the remaining three drifted westward for a few weeks at altitudes between 19 and 20 km. Two of those balloons crossed the Pacific Ocean before falling above the ``maritime continent,'' while the other completed a revolution around the Earth and crossed the Pacific for a second time before its final fall. Despite the small number and the relatively short duration of the flights, the balloons provided a unique in situ data set for the lower equatorial stratosphere. This part 1 of a two-part paper describes this data set and analyzes outstanding features in the planetary scales. Part 2 focuses on gravity-wave scale. It is argued that balloon trajectories over the Pacific are primarily determined by the westward drift during the easterly phase of the equatorial quasi-biennial oscillation (QBO) and the meridional velocity field of a mixed Rossby-gravity (Yanai) wave with an apparent period of 4 days and zonal wave number 4. This wave appears to have two episodes of amplification during the balloon flights. It is also argued that the balloons show evidence of oscillations with periods between 2 and 4 days and of a Kelvin wave with an apparent period close to 10 days and zonal wave number 1. In this way, the balloon behavior provided a pictorial view of air parcel trajectory in the equatorial lower stratosphere. It is stated that larger balloon campaigns can provide excellent in situ data sets for studies on the dynamics and composition of the middle atmosphere.

  15. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field

  16. An Asymptotic and Stochastic Theory for the Effects of Surface Gravity Waves on Currents and Infragravity Waves

    NASA Astrophysics Data System (ADS)

    McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.

    2004-12-01

    Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some preliminary solutions using it. McWilliams, J.C., J.M. Restrepo, & E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135-178. Sullivan, P.P., J.C. McWilliams, & W.K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. J. Fluid Mech. 507, 143-174.

  17. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part I: Gravity Wave Forcing.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.

  18. On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse

    PubMed Central

    2016-01-01

    Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763

  19. On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.

    PubMed

    Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  20. Small-scale convection beneath the transverse ranges, California: Implications for interpretation of gravity anomalies

    NASA Technical Reports Server (NTRS)

    Humphreys, E. D.; Hager, B. H.

    1985-01-01

    Tomographic inversion of upper mantle P wave velocity heterogeneities beneath southern California shows two prominent features: an east-west trending curtain of high velocity material (up to 3% fast) in the upper 250 km beneath the Transverse Ranges and a region of low velocity material (up to 4% slow) in the 100 km beneath the Salton Trough. These seismic velocity anomalies were interpreted as due to small scale convection in the mantle. Using this hypothesis and assuming that temperature and density anomalies are linearly related to seismic velocity anomalies through standard coefficients of proportionality, leads to inferred variations of approx. + or - 300 C and approx. + or - 0.03 g/cc.

  1. Scalar-tensor theories and modified gravity in the wake of GW170817

    NASA Astrophysics Data System (ADS)

    Langlois, David; Saito, Ryo; Yamauchi, Daisuke; Noui, Karim

    2018-03-01

    Theories of dark energy and modified gravity can be strongly constrained by astrophysical or cosmological observations, as illustrated by the recent observation of the gravitational wave event GW170817 and of its electromagnetic counterpart GRB 170817A, which showed that the speed of gravitational waves, cg , is the same as the speed of light, within deviations of order 10-15 . This observation implies severe restrictions on scalar-tensor theories, in particular theories whose action depends on second derivatives of a scalar field. Working in the very general framework of degenerate higher-order scalar-tensor (DHOST) theories, which encompass Horndeski and beyond Horndeski theories, we present the DHOST theories that satisfy cg=c . We then examine, for these theories, the screening mechanism that suppresses scalar interactions on small scales, namely the Vainshtein mechanism, and compute the corresponding gravitational laws for a nonrelativistic spherical body. We show that it can lead to a deviation from standard gravity inside matter, parametrized by three coefficients which satisfy a consistency relation and can be constrained by present and future astrophysical observations.

  2. Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.

    PubMed

    Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C

    2017-02-01

    Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components, while at small scales (V_{A}k/N≫1), the ratio S_{p}(k,t)/S_{κ}(k,t) behaves like k^{-1} and S_{κ}(k,t)/S_{m}(k,t)=1. Also, for MAC weak wave turbulence, it is shown that, at small scales (V_{A}k/sqrt[N^{2}+f^{2}]≫1), the ratio S_{p}(k,t)/S_{κ}(t) behaves like k^{-1} and S_{κ}(k,t)/S_{m}(k,t)=1.

  3. Gravity waves in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1994-01-01

    Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.

  4. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  5. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization ofmore » further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.« less

  6. Quantum spreading of a self-gravitating wave-packet in singularity free gravity

    NASA Astrophysics Data System (ADS)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    2018-01-01

    In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.

  7. Dynamics of the middle atmosphere as observed by the ARISE project

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth

    2015-04-01

    The atmosphere is a complex system submitted to disturbances in a wide range of scales, including high frequency sources as volcanoes, thunderstorms, tornadoes and at larger scales, gravity waves from deep convection or wind over mountains, atmospheric tides and planetary waves. These waves affect the different atmospheric layers submitted to different temperature and wind systems which strongly control the general atmospheric circulation. The full description of gravity and planetary waves constitutes a challenge for the development of future models of atmosphere and climate. The objective of this paper is to present a review of recent advances obtained in this topic, especially in the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project

  8. A revised method of presenting wavenumber-frequency power spectrum diagrams that reveals the asymmetric nature of tropical large-scale waves

    NASA Astrophysics Data System (ADS)

    Chao, Winston C.; Yang, Bo; Fu, Xiouhua

    2009-11-01

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called “convectively coupled Kelvin (mixed Rossby-gravity) waves” are presented as existing only in the symmetric (anti-symmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of “convectively coupled Kelvin waves,” which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, “convectively coupled Kelvin waves” do show anti-symmetric components, and “convectively coupled mixed Rossby-gravity waves (also known as Yanai waves)” do show a hint of symmetric components. These results bolster a published proposal that these waves should be called “chimeric Kelvin waves,” “chimeric mixed Rossby-gravity waves,” etc. This revised method of presenting power spectrum diagrams offers an additional means of comparing the GCM output with observations by calling attention to the capability of GCMs to correctly simulate the asymmetric characteristics of equatorial waves.

  9. Radiating Instabilities of Internal Inertio-gravity Waves

    NASA Astrophysics Data System (ADS)

    Kwasniok, F.; Schmitz, G.

    The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.

  10. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  11. Spectral decomposition of internal gravity wave sea surface height in global models

    NASA Astrophysics Data System (ADS)

    Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-10-01

    Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.

  12. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing.

    PubMed

    Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B; Monserrat, Sebastian

    2015-06-29

    A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems.

  13. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing

    PubMed Central

    Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B.; Monserrat, Sebastian

    2015-01-01

    A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems. PMID:26119833

  14. Lutetia: an example of prediction of polyhedra in shapes of small cosmic bodies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    The following prediction based on rules of the wave planetology [1-12] was published before the Rosetta spacecraft imaged asteroid Lutetia [13]. "A 100 km long flattened asteroid 21-Lutetia will be imaged by the "Ros etta' s pacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia -gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies 'accelerations imply inertia -gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four direct ions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising s trongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) ma kes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the ess entially dichotomous s imp les t Plato's figure. In this polyhedron always there is an oppos ition of extension (a face) to contraction (a vertex). The firs t overtone wave2 (long πR) ma kes tectonic s ectors , als o ris en and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes a nd is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the ma in s equence and the individual wave (a ls o long 2π R) a re in the s tron gest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - "orbits make s tructures ." [13]. Below are some examples of cosmic polyhedra belonging to small bodies of various classes (asteroids, satellites, comets), s izes and compos itions . Thus , the prediction of Lutetia' s hape (s trengthened by the later Tempel's images ) was bas ed on rathe r representative observations.

  15. Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Turunen, Tauno; Ulich, Thomas

    2013-08-01

    2007, the Sodankylä Geophysical Observatory routinely performs vertical ionosphere soundings once per minute, using a frequency-modulated continuous-wave chirp at the rate of 500 kHz/s from 500 kHz to 16 MHz. We used these data to study traveling ionospheric disturbances (TIDs) during 10-16 local time. The observations were made between April 2007 and June 2012, mostly during low solar activity. The TIDs were studied in five bands of periods corresponding to the following: infrasonic (acoustic) waves and the buoyancy cutoff (periods from 5 to 10 min); small-scale gravity waves (GWs; 10-15 min); medium-scale (MS; 15-30 min) GWs; medium-large scale (MS-LS; 30-60 min) GWs; and large-scale (LS; 60-120 min) GWs. Relative contribution (with respect to LS TIDs) of the short-period (5-15 min) and MS (15-30 min) TIDs shows minima in winter and maxima in summer. These annual variations anticorrelate with variations of true height, namely, the largest relative amplitudes occur in summer, when TIDs were observed at minimal heights. We suggest that the summer increase of shorter-period TIDs is due to lowering reflection to the height where the Brunt-Väisälä period is smaller and, hence, shorter-period gravity waves exist. The summer maxima were most prominent during the 3 years of minimal solar activity (2008-2010). In 2011, when solar activity increased, the annual variation seems less prominent. Annual variations of the longer-period (30-120 min) TIDs are essentially less significant. For all TIDs, no obvious dependences on the AE and Ap indices of magnetic activity were found.

  16. The ANGWIN Antarctic Research Program: First Results on Coordinated Trans-Antarctic Gravity Wave Measurements

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, P. D.; Zhao, Y.; Nakamura, T.; Ejiri, M. K.; Murphy, D. J.; Moffat-Griffin, T.; Kavanagh, A. J.; Takahashi, H.; Wrasse, C. M.

    2014-12-01

    ANGWIN (ANrctic Gravity Wave Instrument Network) is a new "scientist driven" research program designed to develop and utilize a network of Antarctic atmospheric gravity wave observatories, operated by different nations working together in a spirit of close scientific collaboration. Our research plan has brought together colleagues from several international institutions, all with a common goal to better understand the large "continental-scale" characteristics and impacts of gravity waves on the Mesosphere and Lower Thermosphere (MLT) environment over Antarctica. ANGWIN combines complementary measurements obtained using new and existing aeronomy instrumentation with new modeling capabilities. To date, our activities have focused on developing coordinated airglow image data of gravity waves in the MLT region at the following sites: McMurdo (US), Syowa (Japan), Davis (Australia), Halley (UK), Rothera (UK), and Comandante Ferraz (Brazil). These are all well-established international research stations that are uniformly distributed around the continental perimeter, and together with ongoing measurements at South Pole Station they provide unprecedented coverage of the Antarctic gravity wave field and its variability during the extended polar winter season. This presentation introduces the ANGWIN program and research goals, and presents first results on trans-Antarctic wave propagation using coordinated measurements during the winter season 2011. We also discuss future plans for the development of this exciting program for Antarctic research.

  17. Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Mitchell, N. J.; Stockwell, R. G.; Fuller, B.; Vandepeer, B.; Hormaechea, J.; Brunini, C.; Levato, H.

    2010-09-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ˜24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ˜20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ˜30 days.

  18. Mesospheric Non-Migrating Tides Generated With Planetary Waves: II Influence of Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We demonstrated that, in our model, non-linear interactions between planetary waves (PW) and migrating tides could generate in the upper mesosphere non-migrating tides with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and zonal circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating tides. The GWs thus affect significantly the migrating tides and PWs, the building blocks of non-migrating tides. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and tides. Two computer experiments are presented to make this point. In one, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating tides.

  19. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  20. The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.

    2016-01-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.

  1. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  2. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  3. Global ERS 1 and 2 and NSCAT observations: Upwind/crosswind and upwind/downwind measurements

    NASA Astrophysics Data System (ADS)

    Quilfen, Y.; Chapron, B.; Bentamy, A.; Gourrion, J.; El Fouhaily, T.; Vandemark, D.

    1999-05-01

    This paper presents an analysis of the wind speed dependence of upwind/downwind asymmetry (UDA) and upwind-crosswind anisotropy (UCA) as derived from global C band VV-polarized ERS 1 and 2 and Ku band VV- and HH-polarized NASA scatterometer (NSCAT) data. Interpretation of the results relies on identifying relationships between the differing frequencies and incidence angles that are consistent with Bragg scattering theory from gravity-capillary waves. It is shown that globally derived parameters characterizing UDA and UCA hold information on the wind dependence of short gravity and gravity-capillary wave growth and dissipation. In particular, the UCA behavior is found quadratic for both the C and Ku band, peaking at moderate wind speeds. In addition, the dual-frequency results appear to map out the expected, more rapid adjustment of centimeter-scale (Ku band) waves to the wind direction at light winds. However, as wind increases, the directionality associated with these shorter waves saturates at a lower speed than for the slightly longer waves inferred at C band. It is suggested that this observed phenomenon may be related to increasing wave-drift interactions that can potentially inhibit short-scale surface wave growth along the wind direction. Concerning UDA properties, our present analysis reveals that the NSCAT and ERS 1 and 2 scatterometers give quite different results. Our preliminary interpretation is that C band measurements may be easier to interpret using composite Bragg scattering theory and that upwind/downwind contrasts are mainly supported by short gravity waves.

  4. f (T ) gravity after GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Li, Chunlong; Saridakis, Emmanuel N.; Xue, Ling-Qin

    2018-05-01

    The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the standard analysis of cosmological perturbations, as well as the effective field theory approach, to investigate the experimental consequences for the theory of f (T ) gravity. Our analysis verifies for the first time that the speed of gravitational waves within f (T ) gravity is equal to the light speed, and hence, the constraints from GW170817 and GRB170817A are trivially satisfied. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of general relativity, quantified by a new parameter. Although its value is relatively small in viable f (T ) models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.

  5. Magnetic Ripples Observed by Low-altitude Satellites and their Relation to Micro-barometric and Ground Magnetic Variations

    NASA Astrophysics Data System (ADS)

    Iyemori, T.; Aoyama, T.; Nakanishi, K.; Odagi, Y.; Sanoo, Y.; Yokoyama, Y.; Yamada, A.

    2017-12-01

    The `magnetic ripples' are small scale magnetic fluctuations observed in upper ionosphere by low altitude satellites such as CHAMP or Swarm, and they are spatial structure of field-aligned currents along satellite orbit. They are observed almost always in mid- and low-latitudes. From their geographical and seasonal characteristics, they are supposed to be caused by the atmospheric waves which propagates from lower atmosphere to the ionosphere. Although the global distribution and its local time or seasonal variation of the amplitude of magnetic ripples, or the correlation with meteorological phenomena such as typhoons strongly suggest the cumulus convection as the main origin, we need to clarify which mode of atmospheric waves, i.e., acoustic wave or internal gravity wave, mainly contributes to the magnetic ripples and what meteorological condition correspond them. For those purposes, we analyze ground based magnetic and micro-barometric variations. We try to make quantitative estimation of the contribution from both acoustic and internal mode of gravity waves, acoustic resonance, etc. by calculating PSD (power spectral density) of pressure and ground magnetic variations. In this paper, we present their basic characteristics and discuss the relation with magnetic ripples. [Acknowledgments]: The ground observations have been supported by many people including students at our graduate school and by the collaboration with other institutions.

  6. Further SEASAT SAR coastal ocean wave analysis

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.

    1981-01-01

    Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.

  7. Seasonal gravity wave drags on the upper stratosphere due to the northwestern pacific typhoons

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu; Lu, Daren

    In a recent study of the first author and his co-authors (Zeyu Chen, Peter Preusse, Michael Jarisch, Manfred Ern, and Dirk Offermann, 2003), it has been revealed that a northwestern Pacific typhoon can generate stratospheric gravity waves with the horizontal scales ranging from 500 km ˜ 1000 km, and carrying a magnitude of ˜ 0.001 Pascal of momentum flux into the upper stratosphere Statistics indicates that the annual mean number of typhoon in the northwestern Pacific is about 32, most of them happen in summer. In this presentation, we show that a parameterization scheme is developed to derive the magnitude of the momentum flux of the waves from operational satellite observations that can scale the intensity of a typhoon (e.g. the brightness temperature observations from the GMS-5 satellite), and operational meteorological data analysis. The seasonal effect of the Gravity Wave Drags due to the typhoons in the area is derived.

  8. Observation of gravity waves during the extreme tornado outbreak of 3 April 1974

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1978-01-01

    A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.

  9. Seasonal Variation of Wave Activities near the Mesopause Region Observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.; Won, Y.; Wu, D. L.

    2012-12-01

    We have analyzed neutral wind data obtained from a VHF meteor radar at King Sejong Station (KSS), Antarctica to investigate wave activities in the altitude region of 80 - 100 km over the Antarctic vortex boundary. The seasonal behavior of semidiurnal tides is generally consistent with the prediction of GSWM (Global Scale Wave Model) except for the altitude region above ~96 km. The gravity wave activities inferred from variances of neutral winds show very similar seasonal characteristics to the semidiurnal tides, implying that there is a close interaction between the gravity wave and tide. Although the seasonal behaviors of the wind variance as an indicator of the gravity wave activity are consistent with those observed at the adjacent Rothera station, the magnitude of the variances at KSS is much larger above the mesopause, especially from May through September, than those at Rothera. The Aura Microwave Limb Sounder (MLS) satellite observations also confirmed the enhancement of gravity wave activity during the same period near the tip of Antarctic Peninsula, where KSS is located. The observed large wind variances at KSS may imply that the atmospheric conditions near the Antarctic vortex are very effective for generation of the gravity waves that propagate to the upper atmosphere.

  10. The Kadomtsev-Petviashvili equation under rapid forcing

    NASA Astrophysics Data System (ADS)

    Moroz, Irene M.

    1997-06-01

    We consider the initial value problem for the forced Kadomtsev-Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data.

  11. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  12. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  13. Lee waves: Benign and malignant

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Datta, A.; Sharman, R. D.

    1993-01-01

    The flow of an incompressible fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as dynamically incompressible, even though there exists a mean static upward density gradient. Even in the linear approximation - i.e., for small disturbances - this model explains a great many of the flow phenomena observed in the lee of mountains. However, nonlinearities do arise importantly, in three ways: (1) through amplification due to the decrease of mean density with height; (2) through the large (scaled) size of the obstacle, such as a mountain range; and (3) from dynamically singular levels in the fluid field. These effects produce a complicated array of phenomena - large departure of the streamlines from their equilibrium levels, high winds, generation of small scales, turbulence, etc. - that present hazards to aircraft and to lee surface areas. The nonlinear disturbances also interact with the larger-scale flow in such a manner as to impact global weather forecasts and the climatological momentum balance. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km), where recent observations show them to be of a length scale that must involve the coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the phenomena associated with these wave dynamics are being studied with a view to their potential impact on high performance aircraft, including the projected National Aerospace Plane (NASP). The presentation shows the results of analysis and of state-of-the-art numerical simulations, validated where possible by observational data, and illustrated with photographs from nature.

  14. Gravitational wave production by Hawking radiation from rotating primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu

    In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the totalmore » energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.« less

  15. Wave Driven Non-Linear Flow Oscillator for the 22-Year Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Wolff, C. L.; Hartle, R. E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We propose that waves generate an oscillation in the Sun to account for the 22-year magnetic cycle. The mechanism we envision is analogous to that driving the Quasi Biennial Oscillation (QBO) observed in the terrestrial atmosphere, which is well understood in principal. Planetary waves and gravity waves deposit momentum in the background atmosphere and accelerate the flow under viscous dissipation. Analysis shows that such a momentum source represents a non-linearity of third or generally odd order, which generates also the fundamental frequency/period so that an oscillation is maintained without external time dependent forcing. For the Sun, we propose that the wave driven oscillation would occur just below the convection region, where the buoyancy frequency or convective stability becomes small to favor wave breaking and wave mean flow interaction. Using scale analysis to extrapolate from terrestrial to solar conditions, we present results from a simplified analytical model, applied to the equator, that incorporates Hines'Doppler Spread Parameterization for gravity waves (GW). Based on a parametric study, we conclude: (1) Depending on the adopted horizontal wavelengths of GW's, wave amplitudes < 10 m/s can be made to produce oscillating zonal winds of about 25 m/s that should be large enough to generate a corresponding oscillation in the main poloidal magnetic field; (2) The oscillation period can be made to be 22 years provided the buoyancy frequency (stability) is sufficiently small, which would place the oscillating wind field near the base of the convection region; (3) In this region, the turbulence associated with wave processes would be enhanced by low stability, and this also helps to produce the desired oscillation period and generate the dynamo currents that would produce the reversing magnetic field. We suggest that the above mechanism may also drive other long-period metronomes in planetary and stellar interiors.

  16. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass and momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1994-01-01

    An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 11-12 July 1981 CCOPE case study indicated two episodes of coherent waves. While geostrophic adjustment, shearing instability, and terrain were all implicated separately or in combination as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to define the genesis processes from observations alone. The first part of this paper, 3D Numerical Modeling Studies of Terrain-Induced Mass/Momentum Perturbations, employs a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed gravity wave episode. The meso-beta scale numerical model is used to study various simulations of the role of multiple geostrophic adjustment processes in focusing a region for gravity wave genesis. The second part of this paper, Linear Theory and Theoretical Modeling, investigates the response of non-resting rotating homogeneous and continuously stratified Boussinesq models of the terrestrial atmosphere to temporally impulsive and uniformly propagating three-dimensional localized zonal momentum sources representative of midlatitude jet streaks. The methods of linear perturbation theory applied to the potential vorticity (PV) and wave field equations are used to study the geostrophic adjustment dynamics. The total zonal and meridional wind perturbations are separated into geostrophic and ageostrophic components in order to define and follow the evolution of both the primary and secondary mesocirculations accompanying midlatitude jetogenesis forced by geostrophic adjustment processes. This problem is addressed to help fill the gap in understanding the dynamics and structure of mesoscale inertia-gravity waves forced by geostrophic adjustment processes in simple two-dimensional quiescent current systems and those produced by mesoscale numerical models simulating the orographic and diabatic perturbation of three-dimensional quasi-geostrophically balanced synoptic scale jet streaks associated with complex baroclinic severe storm producing environments.

  17. Self-similar gravity wave spectra resulting from the modulation of bound waves

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric

    2018-05-01

    We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.

  18. Wave Structures in Thermospheric Density from Satellite Electrostatic Triaxial Accelerometer Measurements.

    DTIC Science & Technology

    1987-06-04

    Testud , J. (1970) Gravity waves generated diring magnetic substorms, .1. Atmos. Terr. Phys., 32:1793. .6 t9, "-€ according to their horizontal...auroral oval during polar substorms, J. Geophys. Res., 74:5721. 7. Testud , J. P., Amayenc, P., and Blanc, M. (1975) Middle and low latitude effects of...1730. 13. Bertin, F.J., Testud , J., Kersley, L., and Rees, P. R. (1978) The meteorological jet stream as a source of medium scale gravity waves in

  19. Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.

  20. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  1. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.

  2. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  3. Small-scale open ocean currents have large effects on wind wave heights

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......250C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......250C"><span>Balance models for equatorial planetary-scale dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chan, Ian Hiu-Fung</p> <p></p> <p>This thesis aims at advancing our understanding of large-scale dynamics in the tropics, specifically the characterization of slow planetary-scale motions through a balance theory; current balance theories in the tropics are unsatisfactory as they filter out Kelvin waves, which are an important component of variability, along with fast inertia-gravity (IG) waves. (Abstract shortened by UMI.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP51A3713A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP51A3713A"><span>Small-scale field-aligned currents caused by tropical cyclones as observed by the SWARM satellites above the ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aoyama, T.; Iyemori, T.; Nakanishi, K.</p> <p>2014-12-01</p> <p>We present case studies of small-scale magnetic fluctuations above typhoons, hurricanes and cyclones as observed by the swarm constellation. It is reported lately that AGWs(atmospheric gravity waves) generated by meteorological phenomena in the troposphere such as typhoons and tornadoes, large earthquakes and volcanic eruptions propagate to the mesosphere and thermosphere. We observe them in various forms(e.g. airglows, ionospheric disturbances and TEC variations). We are proposing the following model. AGWs caused by atmospheric disturbances in the troposphere propagate to the ionospheric E-layer, drive dynamo action and generate field-aligned currents. The satellites observe magnetic fluctuations above the ionosphere. In this presentation, we focus on cases of tropical cyclone(hurricanes in North America, typhoons in North-West Pacific).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870012899','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870012899"><span>Electrodynamics of the middle atmosphere: Superpressure balloon program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holzworth, Robert H.</p> <p>1987-01-01</p> <p>In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CMT...tmp...35R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CMT...tmp...35R"><span>Seismic waves and earthquakes in a global monolithic model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roubíček, Tomáš</p> <p>2018-03-01</p> <p>The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413510O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413510O"><span>Interfacial waves generated by gravity currents in two-layer fluid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Leary, A.; Parker, D.; Peakall, J.; Ross, A.; Knippertz, P.; Marsham, J.</p> <p>2012-04-01</p> <p>The mesoscale convective systems of the West African Monsoon have a huge energetic impact on the surrounding environment. Energy is radiated away from these systems by internal waves formed by the vigorous movements of air mass at their core, propagating over long range in the existence of a suitable waveguide. Gravity currents formed by convective downdrafts are an exceedlingly common phenomenon around the monsoon, covering significant distances on the continental scale. The initiation of solitary waves and bores by gravity currents incident on a marine or nocturnal inversion is well documented, the Morning Glory of Northern Australia being a well known and spectacular example. The interior of the African continent exhibits a further mechanism for the propagation of wave energy, with the environment of the Sahara often characterised by a deep convective boundary layer topped by a well mixed residual layer. This suggests a simple laboratory analogy for the idealised study of deep moist convection at the edge of the monsoon; that of a gravity current generated by lock release into a two layer fluid. This work looks specifically at the waves generated on the interface, especially with regard to their amplitude and propagation speed relative to the current. A series of simple experiments have been performed in the laboratory and combined with data from previous work. In addition to improving the basic dynamical understanding of the idealised problem the aim of these experiments is to examine whether there exist regions in the bulk parameter space in which waves are generated that are fast and of large amplitude. That is, were this an appropriate analog for the atmosphere, under which conditions are waves produced that would favour the initiation of subsequent convection? Ultimately this work aims to bring together research from fluid dynamics, field observations and numerical modelling to explore the phenomena of the convective environment of the Sahel. This fundamental work is a small part of efforts initiated in the AMMA* project to further understand the West African Monsoon. * African Monsoon and Multidisciplinary Analyses</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980Tell...32..470H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980Tell...32..470H"><span>Gas exchange across the air-sea interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasse, L.; Liss, P. S.</p> <p>1980-10-01</p> <p>The physics of gas exchange at the air-sea interface are reviewed. In order to describe the transfer of gases in the liquid near the boundary, a molecular plus eddy diffusivity concept is used, which has been found useful for smooth flow over solid surfaces. From consideration of the boundary conditions, a similar dependence of eddy diffusivity on distance from the interface can be derived for the flow beneath a gas/liquid interface, at least in the absence of waves. The influence of waves is then discussed. It is evident from scale considerations that the effect of gravity waves is small. It is known from wind tunnel work that capillary waves enhance gas transfer considerably. The existing hypotheses are apparently not sufficient to explain the observations. Examination of field data is even more frustrating since the data do not show the expected increase of gas exchange with wind speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024189','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024189"><span>Gravity-wave spectra in the atmosphere observed by MST radar, part 4.2B</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scheffler, A. O.; Liu, C. H.</p> <p>1984-01-01</p> <p>A universal spectrum of atmospheric buoyancy waves is proposed based on data from radiosonde, Doppler navigation, not-wire anemometer and Jimsphere balloon. The possible existence of such a universal spectrum clearly will have significant impact on several areas in the study of the middle atmosphere dynamics such as the parameterization of sub-grid scale gravity waves in global circulation models; the transport of trace constituents and heat in the middle atmosphere, etc. Therefore, it is important to examine more global wind data with temporal and spatial resolutions suitable for the investigation of the wave spectra. Mesosphere-stratosphere-troposphere (MST) radar observations offer an excellent opportunity for such studies. It is important to realize that radar measures the line-of-sight velocity which, in general, contains the combination of the vertical and horizontal components of the wave-associated particle velocity. Starting from a general oblique radar observation configuration, applying the dispersion relation for the gravity waves, the spectrum for the observed fluctuations in the line-of-sight gravity-wave spectrum is investigated through a filter function. The consequence of the filter function on data analysis is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2135S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2135S"><span>Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlutow, Mark; Klein, Rupert</p> <p>2017-04-01</p> <p>Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18..883R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18..883R"><span>Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.</p> <p>2018-01-01</p> <p>We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA33A2406B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA33A2406B"><span>Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, E.</p> <p>2016-12-01</p> <p>At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.M1236M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.M1236M"><span>Experimentally Modeling Black and White Hole Event Horizons via Fluid Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manheim, Marc E.; Lindner, John F.; Manz, Niklas</p> <p></p> <p>We will present a scaled down experiment that hydrodynamically models the interaction between electromagnetic waves and black/white holes. It has been mathematically proven that gravity waves in water can behave analogously to electromagnetic waves traveling through spacetime. In this experiment, gravity waves will be generated in a water tank and propagate in a direction opposed to a flow of varying rate. We observe a noticeable change in the wave's spreading behavior as it travels through the simulated horizon with decreased wave speeds up to standing waves, depending on the opposite flow rate. Such an experiment has already been performed in a 97.2 cubic meter tank. We reduced the size significantly to be able to perform the experiment under normal lab conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21H2255L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21H2255L"><span>Investigation of fog structure affected by gravity waves and turbulence in the mountainous region of Pyeongchang, Korea, the place for the 2018 Winter Olympics and Paralympics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.</p> <p>2017-12-01</p> <p>Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110942650&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110942650&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTidal%2Bwaves"><span>Modulation of Gravity Waves by Tides as Seen in CRISTA Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Preusse, P.; Eckermann, S. D.; Oberheide, J.; Hagan, M. E.; Offermann, D.</p> <p>2001-01-01</p> <p>During shuttle missions STS-66 (November, 1994) and STS-85 (August, 1997) the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) acquired temperature data with very high spatial resolution. These are analyzed for gravity waves (GW). The altitude range spans the whole middle atmosphere from the tropopause up to the mesopause. In the upper mesosphere tidal amplitudes exceed values of 10 K. Modulation of GW activity by the tides is observed and analyzed using CRISTA temperatures and tidal predictions of the Global Scale Wave Model (GSWM). The modulation process is identified as a tidally-induced change of the background buoyancy frequency. The findings agree well with the expectations for saturated GW and are the first global scale observations of this process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnRFM..50..275G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnRFM..50..275G"><span>Double-Diffusive Convection at Low Prandtl Number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garaud, Pascale</p> <p>2018-01-01</p> <p>This work reviews present knowledge of double-diffusive convection at low Prandtl number obtained using direct numerical simulations, in both the fingering regime and the oscillatory regime. Particular emphasis is given to modeling the induced turbulent mixing and its impact in various astrophysical applications. The nonlinear saturation of fingering convection at low Prandtl number usually drives small-scale turbulent motions whose transport properties can be predicted reasonably accurately using a simple semi-analytical model. In some instances, large-scale internal gravity waves can be excited by a collective instability and eventually cause layering. The nonlinear saturation of oscillatory double-diffusive convection exhibits much more complex behavior. Weakly stratified systems always spontaneously transition into layered convection associated with very efficient mixing. More strongly stratified systems remain dominated by weak wave turbulence unless they are initialized into a layered state. The effects of rotation, shear, lateral gradients, and magnetic fields are briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA227690','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA227690"><span>A Comparison of Optically Measured and Radar-Derived Horizontal Neutral Winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-01-01</p> <p>observations of large-scale gravity waves or3 traveling ionospheric disturbances by Testud [1970], Iunsucker [1982]. The contributions of the parallel...increase in Kp, in agreement with previous findings of excitation by auroral processes [ Testud , 1970; lHernandez and Roble, 1976b; lunsucker, 19821...and 0+ and H+ ions, J. Geophys. Res., 69, 2349-2355, 1964. Testud , J., Gravity waves generated during magnetic substorms, J. Atmos. Terr. Phys., 32</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920029968&hterms=containers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcontainers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920029968&hterms=containers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcontainers"><span>Gravity Probe-B Spacecraft attitude control based on the dynamics of slosh wave-induced fluid stress distribution on rotating dewar container of cryogenic propellant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hung, R. J.; Lee, C. C.; Leslie, F. W.</p> <p>1991-01-01</p> <p>The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97j4037N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97j4037N"><span>Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishizawa, Atsushi</p> <p>2018-05-01</p> <p>The direct detection of gravitational waves (GWs) from merging binary black holes and neutron stars marks the beginning of a new era in gravitational physics, and it brings forth new opportunities to test theories of gravity. To this end, it is crucial to search for anomalous deviations from general relativity in a model-independent way, irrespective of gravity theories, GW sources, and background spacetimes. In this paper, we propose a new universal framework for testing gravity with GWs, based on the generalized propagation of a GW in an effective field theory that describes modification of gravity at cosmological scales. Then, we perform a parameter estimation study, showing how well the future observation of GWs can constrain the model parameters in the generalized models of GW propagation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930008114','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930008114"><span>Ground testing of bioconvective variables such as morphological characterizations and mechanisms which regulate macroscopic patterns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Adriel D.</p> <p>1992-01-01</p> <p>Conditions simulating low- and high-gravity, reveal changes in macroscopic pattern formation in selected microorganisms, but whether these structures are gravity dependent is not clear. Two theories have been identified in the fluid dynamics community which support macroscopic pattern formation. The first one is gravity dependent (fluid density models) where small concentrated regions of organisms sink unstably, and the second is gravity independent (wave reinforcement theory) where organisms align their movements in concert, such that either their swimming strokes beat in phase or their vortices entrain neighbors to follow parallel paths. Studies have shown that macroscopic pattern formation is consistent with the fluid density models for protozoa and algae and wave reinforcement hypothesis for caprine spermatozoa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA11B3938O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA11B3938O"><span>GPS Observations of Medium-Scale Traveling Ionospheric Disturbances over New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otsuka, Y.; Lee, C.; Shiokawa, K.; Tsugawa, T.; Nishioka, M.</p> <p>2014-12-01</p> <p>Using the GPS data obtained from dual-frequency GPS receivers in New Zealand, we have made two-dimensional maps of total electron content (TEC) in 2012 in order to reveal statistical characteristics of MSTIDs at mid-latitudes in southern hemisphere. As of 2012, approximately 40 GPS receivers are in operation in New Zealand. We found that most of the MSITDs over New Zealand propagate northwestward during nighttime in summer and northeastward during daytime in winter. The propagation direction of the nighttime MSTIDs is consistent with the theory that polarization electric fields play an important role in the generating MSTIDs. Because the daytime MSTIDs propagate equatorward, we can speculate that they could be caused by atmospheric gravity waves in the thermosphere. The propagation direction of the daytime MSTIDs also has an eastward component in addition to the equatorward component. This feature is consistent with the daytime MSTIDs observed at mid-latitudes in both northern and southern hemispheres. By carrying out model calculations, we have shown that the eastward component of the MSTID propagation direction during daytime is attributed to an interaction of gravity waves to the background neutral winds. Because most of the daytime MSTIDs appear before 14 LT, the background neutral winds could blow westward. According to the dispersion relation for atmospheric gravity waves, vertical wavelength of the gravity waves becomes larger when the gravity wave propagates in the direction opposite to the background winds. Consequently, the gravity waves having an eastward component of the propagation direction could cause larger amplitude of TEC variations compared to the gravity waves propagating westward. This could be a reason why the propagation direction of the dime MSTIDs has an eastward component.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6555S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6555S"><span>Convectively-generated gravity waves and clear-air turbulence (CAT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharman, Robert; Lane, Todd; Trier, Stanley</p> <p>2013-04-01</p> <p>Upper-level turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and results in millions of dollars of operational costs to airlines each year. It has been widely accepted that aviation-scale turbulence that occurs in clear air (CAT) at upper levels (upper troposphere and lower stratosphere) has its origins in Kelvin-Helmholtz instabilities induced by enhanced shears and reduced Richardson numbers associated with the jet stream and upper level fronts. However, it is becoming increasingly apparent that gravity waves and gravity wave "breaking" also play a major role in instigating turbulence that affects aviation. Gravity waves and inertia-gravity waves may be produced by a variety of sources, but one major source that impacts aviation seems to be those produced by convection. The relation of convectively-induced gravity waves to turbulence outside the cloud (either above cloud or laterally away from cloud) is examined based on high resolution cloud-resolving simulations, both with and without cloud microphysics in the simulations. Results for both warm-season and cold-season cloud systems indicate that the turbulence in the clear air away from cloud is often caused by gravity wave production processes in or near the cloud which once initiated, are able to propagate away from the storm, and may eventually "break." Without microphysics of course this effect is absent and turbulence is not produced in the simulations. In some cases the convectively-induced turbulence may be many kilometers away from the active convection and can easily be misinterpreted as "clear-air turbulence" (CAT). This is a significant result, and may be cause for a reassessment of the working definition of CAT ("turbulence encountered outside of convective clouds", FAA Advisory Circular AC 00-30B, 1997).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080729','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080729"><span>Tropical Cumulus Convection and Upward Propagating Waves in Middle Atmospheric GCMs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horinouchi, T.; Pawson, S.; Shibata, K.; Langematz, U.; Manzini, E.; Giorgetta, M. A.; Sassi, F.; Wilson, R. J.; Hamilton, K. P.; deGranpre, J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20020080729'); toggleEditAbsImage('author_20020080729_show'); toggleEditAbsImage('author_20020080729_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20020080729_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20020080729_hide"></p> <p>2002-01-01</p> <p>It is recognized that the resolved tropical wave spectrum can vary considerably between general circulation models (GCMs) and that these differences can have an important impact on the simulated climate. A comprehensive comparison of the waves is presented for the December-January-February period using high-frequency (three-hourly) data archives from eight GCMs and one simple model participating in the GCM Reality Intercomparison Project for SPARC (GRIPS). Quantitative measures of the structure and causes of the wavenumber-frequency structure of resolved waves and their impacts on the climate are given. Space-time spectral analysis reveals that the wave spectrum throughout the middle atmosphere is linked to variability of convective precipitation, which is determined by the parameterized convection. The variability of the precipitation spectrum differs by more than an order of magnitude between the models, with additional changes in the spectral distribution (especially the frequency). These differences can be explained primarily by the choice of different, cumulus par amet erizations: quasi-equilibrium mass-flux schemes tend to produce small variability, while the moist-convective adjustment scheme is most active. Comparison with observational estimates of precipitation variability suggests that the model values are scattered around the truth. This result indicates that a significant portion of the forcing of the equatorial quasi-biennial oscillation (QBO) is provided by waves with scales that are not resolved in present-day GCMs, since only the moist convective adjustment scheme (which has the largest transient variability) can force a QBO in models that have no parameterization of non-stationary gravity waves. Parameterized cumulus convection also impacts the nonmigrating tides in the equatorial region. In most of the models, momentum transport by diurnal nonmigrating tides in the mesosphere is larger than that by Kelvin waves, being more significant than has been thought. It is shown that the equatorial semi-annual oscillation in the models examined is driven mainly by gravity waves with periods shorter than three days, with at least some contribution from parameterized gravity waves; the contribution from the ultra-fast zonal wavenumber-1 Kelvin waves is negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990115473&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990115473&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter"><span>The Role of Gravity Waves in Modulating Atmospheric Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G; Chan, K. L.; Porter, H. S.</p> <p>1999-01-01</p> <p>We discuss results for the diurnal and semidiurnal tides obtained from our 3-D, time dependent numerical spectral model (NMS), extending from the ground up into the thermosphere, which incorporates Hines' Doppler spread parameterization of small scale gravity waves (GW). In the DSP, GW momentum (and energy) are conserved as the waves modulate the background flow and are filtered by the flow.As a consequence, the GW interaction tightly couples the dynamic components of the middle atmosphere with strong non-linear interactions between mean zonal circulation, tides and planetary waves to produce complicated patterns of variability much like those observed. The major conclusions are: (1) Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 80 and 120 km. Wave filtering by the mean zonal circulation (with peak velocities during solstice) causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. (2) Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide, at higher altitudes, tends to peak during solstice. (3) Under the influence of GW, the tides are modulated also significantly by planetary waves, with periods between 2 and 30 days, which are generated preferentially during solstice in part due to baroclinic instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28012143','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28012143"><span>The NEUF-DIX space project - Non-EquilibriUm Fluctuations during DIffusion in compleX liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baaske, Philipp; Bataller, Henri; Braibanti, Marco; Carpineti, Marina; Cerbino, Roberto; Croccolo, Fabrizio; Donev, Aleksandar; Köhler, Werner; Ortiz de Zárate, José M; Vailati, Alberto</p> <p>2016-12-01</p> <p>Diffusion and thermal diffusion processes in a liquid mixture are accompanied by long-range non-equilibrium fluctuations, whose amplitude is orders of magnitude larger than that of equilibrium fluctuations. The mean-square amplitude of the non-equilibrium fluctuations presents a scale-free power law behavior q -4 as a function of the wave vector q, but the divergence of the amplitude of the fluctuations at small wave vectors is prevented by the presence of gravity. In microgravity conditions the non-equilibrium fluctuations are fully developed and span all the available length scales up to the macroscopic size of the systems in the direction parallel to the applied gradient. Available theoretical models are based on linearized hydrodynamics and provide an adequate description of the statics and dynamics of the fluctuations in the presence of small temperature/concentration gradients and under stationary or quasi-stationary conditions. We describe a project aimed at the investigation of Non-EquilibriUm Fluctuations during DIffusion in compleX liquids (NEUF-DIX). The focus of the project is on the investigation in micro-gravity conditions of the non-equilibrium fluctuations in complex liquids, trying to tackle several challenging problems that emerged during the latest years, such as the theoretical predictions of Casimir-like forces induced by non-equilibrium fluctuations; the understanding of the non-equilibrium fluctuations in multi-component mixtures including a polymer, both in relation to the transport coefficients and to their behavior close to a glass transition; the understanding of the non-equilibrium fluctuations in concentrated colloidal suspensions, a problem closely related with the detection of Casimir forces; and the investigation of the development of fluctuations during transient diffusion. We envision to parallel these experiments with state-of-the-art multi-scale simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019067','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019067"><span>VHF radar measurements during MAP/WINE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Czechowsky, P.; Klostermeyer, J.; Ruster, R.; Schmidt, G.; Rottger, J.</p> <p>1983-01-01</p> <p>Sensitive Doppler radars which operate in the very high frequency (VHF) band, usually near 50 MHz can measure profiles of background winds, tides, atmospheric gravity waves and turbulence at tropospheric, stratospheric and mesospheric heights. Their ability to observe simultaneously large and small-scale processes makes them unique instruments for studying not only each process separately but also their nonlinear interactions. The mobile VHF radar to be used during the MAP/WINE campaign on Andoya is a modified version of the SOUSY VHF radar being in operation for six years in the Harz Mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28339227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28339227"><span>Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hagala, R; Llinares, C; Mota, D F</p> <p>2017-03-10</p> <p>Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.118j1301H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.118j1301H"><span>Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagala, R.; Llinares, C.; Mota, D. F.</p> <p>2017-03-01</p> <p>Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA236732','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA236732"><span>Detection and Characterization of Deep Water Wave Breaking Using Moderate Incidence Angle Microwave Backscatter from the Sea Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-06-01</p> <p>interaction and wave breaking. The ocean surface can be modelled as a two-scale or composite surface - 21 - made up of short wind-generated ripples... composite or two-scale rough surface (Barrick and Peake, 1968). For radar wavelengths on the order of a few centimeters, the resonant scatterers are...short wind ripples which ride on top of long gravity waves, and a - 46 - composite model is used to describe the two-scale nature of the sea surface</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24580229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24580229"><span>Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D</p> <p>2014-01-01</p> <p>The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......475S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......475S"><span>Observations and modeling of the effects of waves and rotors on submeso and turbulence variability within the stable boundary layer over central Pennsylvania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suarez Mullins, Astrid</p> <p></p> <p>Terrain-induced gravity waves and rotor circulations have been hypothesized to enhance the generation of submeso motions (i.e., nonstationary shear events with spatial and temporal scales greater than the turbulence scale and smaller than the meso-gamma scale) and to modulate low-level intermittency in the stable boundary layer (SBL). Intermittent turbulence, generated by submeso motions and/or the waves, can affect the atmospheric transport and dispersion of pollutants and hazardous materials. Thus, the study of these motions and the mechanisms through which they impact the weakly to very stable SBL is crucial for improving air quality modeling and hazard predictions. In this thesis, the effects of waves and rotor circulations on submeso and turbulence variability within the SBL is investigated over the moderate terrain of central Pennsylvania using special observations from a network deployed at Rock Springs, PA and high-resolution Weather Research and Forecasting (WRF) model forecasts. The investigation of waves and rotors over central PA is important because 1) the moderate topography of this region is common to most of the eastern US and thus the knowledge acquired from this study can be of significance to a large population, 2) there have been little evidence of complex wave structures and rotors reported for this region, and 3) little is known about the waves and rotors generated by smaller and more moderate topographies. Six case studies exhibiting an array of wave and rotor structures are analyzed. Observational evidence of the presence of complex wave structures, resembling nonstationary trapped gravity waves and downslope windstorms, and complex rotor circulations, resembling trapped and jump-type rotors, is presented. These motions and the mechanisms through which they modulate the SBL are further investigated using high-resolution WRF forecasts. First, the efficacy of the 0.444-km horizontal grid spacing WRF model to reproduce submeso and meso-gamma motions, generated by waves and rotors and hypothesized to impact the SBL, is investigated using a new wavelet-based verification methodology for assessing non-deterministic model skill in the submeso and meso-gamma range to complement standard deterministic measures. This technique allows the verification and/or intercomparison of any two nonstationary stochastic systems without many of the limitations of typical wavelet-based verification approaches (e.g., selection of noise models, testing for significance, etc.). Through this analysis, it is shown that the WRF model largely underestimates the number of small amplitude fluctuations in the small submeso range, as expected; and it overestimates the number of small amplitude fluctuations in the meso-gamma range, generally resulting in forecasts that are too smooth. Investigation of the variability for different initialization strategies shows that deterministic wind speed predictions are less sensitive to the choice of initialization strategy than temperature forecasts. Similarly, investigation of the variability for various planetary boundary layer (PBL) parameterizations reveals that turbulent kinetic energy (TKE)-based schemes have an advantage over the non-local schemes for non-deterministic motions. The larger spread in the verification scores for various PBL parameterizations than initialization strategies indicates that PBL parameterization may play a larger role modulating the variability of non-deterministic motions in the SBL for these cases. These results confirm previous findings that have shown WRF to have limited skill forecasting submeso variability for periods greater than ~20 min. The limited skill of the WRF at these scales in these cases is related to the systematic underestimation of the amplitude of observed fluctuations. These results are implemented in the model design and configuration for the investigation of nonstationary waves and rotor structures modulating submeso and mesogamma motions and the SBL. Observations and WRF forecasts of two wave cases characterized by nonstationary waves and rotors are investigated to show the WRF model to have reasonable accuracy forecasting low-level temperature and wind speed in the SBL and to qualitatively produce rotors, similar to those observed, as well as some of the mechanisms modulating their development and evolution. Finally, observations and high-resolution WRF forecasts under different environmental conditions using various initialization strategies are used to investigate the impact of nonlinear gravity waves and rotor structures on the generation of intermittent turbulence and valley transport in the SBL. Evidence of the presence of elevated regions of TKE generated by the complex waves and rotors is presented and investigated using an additional four case studies, exhibiting two synoptic flow regimes and different wave and rotor structures. Throughout this thesis, terrain-induced gravity waves and rotors in the SBL are shown to synergistically interact with the surface cold pool and to enhance low-level turbulence intermittency through the development of submeso and meso-gamma motions. These motions are shown to be an important source of uncertainty for the atmospheric transport and dispersion of pollutants and hazardous materials under very stable conditions. (Abstract shortened by ProQuest.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820063958&hterms=Electromagnetic+Spectrum&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DElectromagnetic%2BSpectrum','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820063958&hterms=Electromagnetic+Spectrum&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DElectromagnetic%2BSpectrum"><span>Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, J. W.; Jones, W. L.; Weissman, D. E.</p> <p>1981-01-01</p> <p>A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA245650','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA245650"><span>Proceedings of Hawaiian Winter Workshop (6th) on Dynamics of Oceanic Internal Gravity Waves Held in Manoa, Hawaii on 15-18 January 1991</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-11-01</p> <p>Gravity Waves 12. PERSONAL AUTHOR(S) MUller, Peter and Henderson, Diane (eds.) 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15...differ by 27r in defining the buoyancy scale.) Because the largest overturns must be several times larger than Dillon’s rms scale, LB is a good upper...0.6 times GM76 at 0.01 cpm. From there, they slope upward as k+ 0.0 7 and k+0 16. The shallow spectrum makes a sharp transition at the rolloff and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7099L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7099L"><span>Medium-scale gravity wave activity in the bottomside F region in tropical regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Huixin; Pedatella, Nicholas; Hocke, Klemens</p> <p>2017-07-01</p> <p>Thermospheric gravity waves (GWs) in the bottomside F region have been proposed to play a key role in the generation of equatorial plasma bubbles (EPBs). However, direct observations of such waves are scarce. This study provides a systematic survey of medium-scale (<620 km) neutral atmosphere perturbations at this critical altitude in the tropics, using 4 years of in situ Gravity Field and Steady-State Ocean Circulation Explorer satellite measurements of thermospheric density and zonal wind. The analysis reveals pronounced features on their global distribution and seasonal variability: (1) A prominent three-peak longitudinal structure exists in all seasons, with stronger perturbations over continents than over oceans. (2) Their seasonal variation consists of a primary semiannual oscillations (SAO) and a secondary annual oscillation (AO). The SAO component maximizes around solstices and minimizes around equinoxes, while the AO component maximizes around June solstice. These GW features resemble those of EPBs in spatial distribution but show opposite trend in climatological variations. This may imply that stronger medium-scale GW activity does not always lead to more EPBs. Possible origins of the bottomside GWs are discussed, among which tropical deep convection appears to be most plausible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH53D..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH53D..03B"><span>Applications of acoustic-gravity waves numerical modeling to tsunami signals observed by gravimetry satellites in very low orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.</p> <p>2016-12-01</p> <p>Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..11911613F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..11911613F"><span>On the construction of a direct numerical simulation of a breaking inertia-gravity wave in the upper mesosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan</p> <p>2014-10-01</p> <p>A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980019499','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980019499"><span>A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexander, M. J.; Holton, James R.</p> <p>1997-01-01</p> <p>A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5223106-small-scale-plasma-magnetic-neutral-density-fluctuations-nightside-venus-ionosphere','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5223106-small-scale-plasma-magnetic-neutral-density-fluctuations-nightside-venus-ionosphere"><span>Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoegy, W.R.; Brace, L.H.; Kasprazak, W.T.</p> <p>1990-04-01</p> <p>Pioneer Venus orbiter measurements have shown that coherent small-scale waves exist in the electron density, the electron temperature, and the magnetic field in the lower ionosphere of Venus just downstream of the solar terminator (Brace et al., 1983). The waves become less regular and less coherent at larger solar zenith angles, and Brace et al. suggested that these structures may have evolved from the terminator waves as they are convected into the nightside ionosphere, driven by the day-to-night plasma pressure gradient. In this paper the authors describe the changes in wave characteristics with solar zenith angle and show that themore » neutral gas also has related wave characteristics, probably because of atmospheric gravity waves. The plasma pressure exceeds the magnetic pressure in the nightside ionosphere at these altitudes, and thus the magnetic field is carried along and controlled by the turbulent motion of the plasma, but the wavelike nature of the thermosphere may also be coupled to the plasma and magnetic structure. They show that there is a significant coherence between the ionosphere, thermosphere, and magnetic parameters at altitudes below about 185 km, a coherence which weakens in the antisolar region. The electron temperature and density are approximately 180{degree} out of phase and consistently exhibit the highest correlation of any pair of variables. Waves in the electron and neutral densities are moderately correlated on most orbits, but with a phase difference that varies within each orbit. The average electron temperature is higher when the average magnetic field is more horizontal; however, the correlation between temperature and dip angle does not extend to individual wave structures observed within a satellite pass, particularly in the antisolar region.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ExFl...59...53A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ExFl...59...53A"><span>Error analysis of 3D-PTV through unsteady interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akutina, Yulia; Mydlarski, Laurent; Gaskin, Susan; Eiff, Olivier</p> <p>2018-03-01</p> <p>The feasibility of stereoscopic flow measurements through an unsteady optical interface is investigated. Position errors produced by a wavy optical surface are determined analytically, as are the optimal viewing angles of the cameras to minimize such errors. Two methods of measuring the resulting velocity errors are proposed. These methods are applied to 3D particle tracking velocimetry (3D-PTV) data obtained through the free surface of a water flow within a cavity adjacent to a shallow channel. The experiments were performed using two sets of conditions, one having no strong surface perturbations, and the other exhibiting surface gravity waves. In the latter case, the amplitude of the gravity waves was 6% of the water depth, resulting in water surface inclinations of about 0.2°. (The water depth is used herein as a relevant length scale, because the measurements are performed in the entire water column. In a more general case, the relevant scale is the maximum distance from the interface to the measurement plane, H, which here is the same as the water depth.) It was found that the contribution of the waves to the overall measurement error is low. The absolute position errors of the system were moderate (1.2% of H). However, given that the velocity is calculated from the relative displacement of a particle between two frames, the errors in the measured water velocities were reasonably small, because the error in the velocity is the relative position error over the average displacement distance. The relative position error was measured to be 0.04% of H, resulting in small velocity errors of 0.3% of the free-stream velocity (equivalent to 1.1% of the average velocity in the domain). It is concluded that even though the absolute positions to which the velocity vectors are assigned is distorted by the unsteady interface, the magnitude of the velocity vectors themselves remains accurate as long as the waves are slowly varying (have low curvature). The stronger the disturbances on the interface are (high amplitude, short wave length), the smaller is the distance from the interface at which the measurements can be performed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JMP....52d2501F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JMP....52d2501F"><span>A spatially homogeneous and isotropic Einstein-Dirac cosmology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finster, Felix; Hainzl, Christian</p> <p>2011-04-01</p> <p>We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024195','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024195"><span>Momentum flux measurements: Techniques and needs, part 4.5A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fritts, D. C.</p> <p>1984-01-01</p> <p>The vertical flux of horizontal momentum by internal gravity waves is now recognized to play a significant role in the large-scale circulation and thermal structure of the middle atmosphere. This is because a divergence of momentum flux due to wave dissipation results in an acceleration of the local mean flow towards the phase speed of the gravity wave. Such mean flow acceleration are required to offset the large zonal accelerations driven by Coriolis torques acting on the diabatic meridional circulation. Techniques and observations regarding the momentum flux distribution in the middle atmosphere are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7283K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7283K"><span>Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike</p> <p>2014-05-01</p> <p>Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014FrMat...1...12B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014FrMat...1...12B"><span>Transition wave in the collapse of the San Saba bridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brun, Michele; Giaccu, Gian Felice; Movchan, Alexander; Slepyan, Leonid</p> <p>2014-09-01</p> <p>A domino wave is a well-known illustration of a transition wave, which appears to reach a stable regime of propagation. Nature also provides spectacular cases of gravity driven transition waves at large scale, observed in snow avalanches and landslides. On a different scale, the micro-structure level interaction between different constituents of the macro-system may influence critical regimes leading to instabilities in avalanche-like flow systems. Most transition waves observed in systems such as bulletproof vests, racing helmets under impact, shock-wave driven fracture in solids, are transient. For some structured waveguides a transition wave may stabilize to achieve a steady regime. Here we show that the failure of a long bridge is also driven by a transition wave that may allow for steady-state regimes. The recent observation of a failure of the San Saba Bridge in Texas provides experimental evidence supporting an elegant theory based on the notion of transition failure wave. No one would think of an analogy between a snow avalanche and a collapsing bridge. Despite an apparent controversy of such a comparison, these two phenomena can both be described in the framework of a model of the dynamic gravity driven transition fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930016243','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930016243"><span>Rossby-gravity waves in tropical total ozone data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stanford, J. L.; Ziemke, J. R.</p> <p>1993-01-01</p> <p>Evidence for Rossby-gravity waves in tropical data fields produced by the European Center for Medium Range Weather Forecasts (ECMWF) was recently reported. Similar features are observable in fields of total column ozone from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The observed features are episodic, have zonal (east-west) wavelengths of 6,000-10,000 km, and oscillate with periods of 5-10 days. In accord with simple linear theory, the modes exhibit westward phase progression and eastward group velocity. The significance of finding Rossby-gravity waves in total ozone fields is that (1) the report of similar features in ECMWF tropical fields is corroborated with an independent data set and (2) the TOMS data set is demonstrated to possess surprising versatility and sensitivity to relatively smaller scale tropical phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.4046K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.4046K"><span>Evidence for Gravity Wave Seeding of Convective Ionospheric Storms Possibly Initiated by Thunderstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelley, M. C.; Dao, E. V.</p> <p>2018-05-01</p> <p>With the increase in solar activity, the Communication/Outage Forecast System satellite decayed on orbit to below the F peak. As such, we can study the development of convective ionospheric storms and, most importantly, study large-scale seeding of the responsible instability. For decades, gravity has been suggested as being responsible for the long wavelengths in the range of 200 to 1,000 km, as are commonly observed using airglow and satellite data. Here we suggest that convective thunderstorms are a likely source of gravity waves and point out that recent theoretical analysis has shown this connection to be quite possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003APS..DFD.FR007C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003APS..DFD.FR007C"><span>The generation of a zonal-wind oscillation by nonlinear interactions of internal gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, Lucy</p> <p>2003-11-01</p> <p>Nonlinear interactions of internal gravity waves give rise to numerous large-scale phenomena that are observed in the atmosphere, for example the quasi-biennial oscillation (QBO). This is an oscillation in zonal wind direction which is observed in the equatorial stratosphere; it is characterized by alternating regimes of easterly and westerly shear that descend with time. In the past few decades, a number of theories have been developed to explain the mechanism by which the QBO is generated. These theories are all based on ``quasi-linear'' representations of wave-mean-flow interactions. In this presentation, a fully nonlinear numerical simulation of the QBO is described. A spectrum of gravity waves over a range of phase speeds is forced at the lower boundary of the computational domain and propagates upwards in a density-stratified shear flow. As a result of the absorption and reflection of the waves at their critical levels, regions of large shear develop in the background flow and propagate downwards with time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..96a3108L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..96a3108L"><span>Stability of the fluid interface in a Hele-Shaw cell subjected to horizontal vibrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyubimova, T. P.; Lyubimov, D. V.; Sadilov, E. S.; Popov, D. M.</p> <p>2017-07-01</p> <p>The stability of the horizontal interface of two immiscible viscous fluids in a Hele-Shaw cell subject to gravity and horizontal vibrations is studied. The problem is reduced to the generalized Hill equation, which is solved analytically by the multiple scale method and numerically. The long-wave instability, the resonance (parametric resonance) excitation of waves at finite frequencies of vibrations (for the first three resonances), and the limit of high-frequency vibrations are studied analytically under the assumption of small amplitudes of vibrations and small viscosity. For finite amplitudes of vibrations, finite wave numbers, and finite viscosity, the study is performed numerically. The influence of the specific natural control parameters and physical parameters of the system on its instability threshold is discussed. The results provide extension to other results [J. Bouchgl, S. Aniss, and M. Souhar, Phys. Rev. E 88, 023027 (2013), 10.1103/PhysRevE.88.023027], where the authors considered a similar problem but took into account viscosity in the basic state and did not consider it in the equations for perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....1611617P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....1611617P"><span>The tropical tropopause inversion layer: variability and modulation by equatorial waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl</p> <p>2016-09-01</p> <p>The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia-gravity waves and hamper stratosphere-troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ˜ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20-25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics.To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia-gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950009270','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950009270"><span>Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Yuh-Lang; Kaplan, Michael L.</p> <p>1994-01-01</p> <p>An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 1981 CCOPE case study indicates that there were two episodes of coherent internal gravity waves. One of the fundamental unanswered questions from this research, however, concerns the dynamical processes which generated the observed waves, all of which originated from the region encompassing the borders of Montana, Idaho, and Wyoming. While geostrophic adjustment, shearing instability, and terrain where all implicated separately or in concert as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to rigorously define the genesis processes from observations alone. In this report we employ a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed wave episode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3534S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3534S"><span>Measurement study on stratospheric turbulence generation by wave-wave interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Söder, Jens; Gerding, Michael; Schneider, Andreas; Wagner, Johannes; Lübken, Franz-Josef</p> <p>2017-04-01</p> <p>During a joint campaign of the research programmes METROSI and GW-LCYCLE 2 (Northern Scandinavia, January 2016), an extraordinary case of turbulence generation by wave-wave interaction has been observed. To describe this turbulence, we will focus on the energy dissipation rate. The most feasible way to measure dissipation is to resolve the inner scale of turbulence. This is done by our balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) that combines a precise turbulence measurement method with the capability of being launched from every radiosonde station. For the flight in discussion further information on the meteorological background is obtained by a radiosonde. Due to the fact that the balloon drifts horizontally during ascent, measurements of vertical and horizontal wave parameters are ambiguous. Hence further understanding of the wave field is aided by 3d-simulations using WRF and ECMWF. Concentrating on one out of six LITOS launches during that campaign, we see some turbulent activity across the whole flightpath as on most other LITOS measurements. Nevertheless, we find pronounced maxima in the middle stratosphere (24 - 32 km). They coincide with a distinct phase of a mountain wave. As seen from WRF and ECMWF wind fields, this mountain wave interacts with another larger scale gravity wave. That is, the second wave influences the propagation of the smaller scale mountain wave. With LITOS we see the strongest dissipation rates in areas where the phase direction of the smaller wave changes due to wave-wave interaction. Therefore, these measurements provide an opportunity for further investigation into breakdown processes of internal gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH51B0119Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH51B0119Y"><span>Atmospheric gravity wave detection following the 2011 Tohoku earthquakes combining COSMIC occultation and GPS observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.</p> <p>2017-12-01</p> <p>Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a potential support for future earthquake and tsunami warning systems. Acknowledgement: This work is supported by NSFC (41604135), China Postdoctoral Science Foundation funded project (1231703), State Key Laboratory of Earthquake Dynamics (LED2015B04), Key Laboratory of Earth and Planetary Physics, Hubei Subsurface Multi-scale Imaging Key Laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..410C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..410C"><span>Mesoscale Dynamical Regimes in the Midlatitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Craig, G. C.; Selz, T.</p> <p>2018-01-01</p> <p>The atmospheric mesoscales are characterized by a complex variety of meteorological phenomena that defy simple classification. Here a full space-time spectral analysis is carried out, based on a 7 day convection-permitting simulation of springtime midlatitude weather on a large domain. The kinetic energy is largest at synoptic scales, and on the mesoscale it is largely confined to an "advective band" where space and time scales are related by a constant of proportionality which corresponds to a velocity scale of about 10 m s-1. Computing the relative magnitude of different terms in the governing equations allows the identification of five dynamical regimes. These are tentatively identified as quasi-geostrophic flow, propagating gravity waves, stationary gravity waves related to orography, acoustic modes, and a weak temperature gradient regime, where vertical motions are forced by diabatic heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1245C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1245C"><span>Quasi-biennial variation of equatorial waves as seen in satellite remote sensing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Zeyu</p> <p></p> <p>The quasi-biennial oscillation (QBO) in zonal winds in the lower stratosphere at the Equator is the most prominent inter-annual variation signal in the middle atmosphere. Theoretically, it is driven by the drag from the damping of equatorial waves including the equatorially trapped planetary scale waves, such as Kelvin waves propagating eastward and Rossby-gravity waves propagating westward, inertio-gravity waves and gravity waves. In current research, the tem-perature data collected by the SABER/TIMED mission in 2002-2009 are used to investigate the equatorial waves activities. The Fast Fourier Synoptic Mapping (FFSM) method is applied to delineate planetary wave components with the zonal wavenumber spanning over -6 to +6, hereby, positive (negative) wavenumber is assigned to westward (eastward) propagating waves. Limited by the SABER/TIMED sampling scheme, only the waves with periods longer than one day can be resolved. Focusing on the height region 70-10 hPa where the QBO signal is most significant, it is clearly observed that the composite activity of all the eastward waves exhibit QBO like variation. Specifically, for each QBO cycle, the activity at 50 hPa level is characterized by the occurrence of a substantially clear minimum that coincides to the fast downward propagation of the westerly phase, the typical pattern of the QBO phenomenon. Phase speed spectra are derived by using the FFSM analysis results. And vertical shear of the zonal wind is derived by using the rawinsonde data at Singapore. Comparison of the phase speed spectra and the wind shear indicates that the minimum is due to the westerly shear below 30 hPa. Between the minimum, significant wave activities emerge, thus the property for the components are investigated. Results show that in height range 70-10 hPa, both wave 1 to wave 3 are prominent during the inter-minimum period for each QBO cycle. At 50 hPa level, wave 1 component exhibits amplitude spectral peak at three kinds of period, 8, 11 and 20 day. Meanwhile, shifting to shorter period is seen as wave number increases, for example, the 20-day period spectrum is attenuated substantially for wave 2 and wave 3 components. Moreover, results also show that although with small amplitude, wave 4 and wave 5 with shorter periods of 4-7 days are discernable in particular in the inter-minimum period. Further details will be presented in the talk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvD..94h4030S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvD..94h4030S"><span>Graviton creation by small scale factor oscillations in an expanding universe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schiappacasse, Enrico D.; Ford, L. H.</p> <p>2016-10-01</p> <p>We treat quantum creation of gravitons by small scale factor oscillations around the average of an expanding universe. Such oscillations can arise in standard general relativity due to oscillations of a homogeneous, minimally coupled scalar field. They can also arise in modified gravity theories with a term proportional to the square of the Ricci scalar in the gravitational action. The graviton wave equation is different in the two cases, leading to somewhat different creation rates. Both cases are treated using a perturbative method due to Birrell and Davies, involving an expansion in a conformal coupling parameter to calculate the number density and energy density of the created gravitons. Cosmological constraints on the present graviton energy density and the dimensionless amplitude of the oscillations are discussed. We also discuss decoherence of quantum systems produced by the spacetime geometry fluctuations due to such a graviton bath.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.5065G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.5065G"><span>Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.</p> <p></p> <p>The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820004825','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820004825"><span>Synthesis of regional crust and upper-mantle structure from seismic and gravity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexander, S. S.; Lavin, P. M.</p> <p>1979-01-01</p> <p>Available seismic and ground based gravity data are combined to infer the three dimensional crust and upper mantle structure in selected regions. This synthesis and interpretation proceeds from large-scale average models suitable for early comparison with high-altitude satellite potential field data to more detailed delineation of structural boundaries and other variations that may be significant in natural resource assessment. Seismic and ground based gravity data are the primary focal point, but other relevant information (e.g. magnetic field, heat flow, Landsat imagery, geodetic leveling, and natural resources maps) is used to constrain the structure inferred and to assist in defining structural domains and boundaries. The seismic data consists of regional refraction lines, limited reflection coverage, surface wave dispersion, teleseismic P and S wave delay times, anelastic absorption, and regional seismicity patterns. The gravity data base consists of available point gravity determinations for the areas considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960011395','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960011395"><span>Gravity wave momentum flux in the lower stratosphere over convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexander, M. Joan; Pfister, Leonhard</p> <p>1995-01-01</p> <p>This work describes a method for estimating vertical fluxes of horizontal momentum carried by short horizontal scale gravity waves (lambda(sub x) = 10-100 km) using aircraft measured winds in the lower stratosphere. We utilize in situ wind vector and pressure altitude measurements provided by the Meteorological Measurement System (MMS) on board the ER-2 aircraft to compute the momentum flux vectors at the flight level above deep convection during the tropical experiment of the Stratosphere Troposphere Exchange Project (STEP-Tropical). Data from Flight 9 are presented here for illustration. The vertical flux of horizontal momentum these observations points in opposite directions on either side of the location of a strong convective updraft in the cloud shield. This property of internal gravity waves propagating from a central source compares favorably with previously described model results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980JGR....85.3285E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980JGR....85.3285E"><span>Evidence for a continuous spectrum of equatorial waves in the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eriksen, Charles C.</p> <p>1980-06-01</p> <p>Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4679010','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4679010"><span>Upper atmospheric gravity wave details revealed in nightglow satellite imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.</p> <p>2015-01-01</p> <p>Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26630004','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26630004"><span>Upper atmospheric gravity wave details revealed in nightglow satellite imagery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miller, Steven D; Straka, William C; Yue, Jia; Smith, Steven M; Alexander, M Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T</p> <p>2015-12-08</p> <p>Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼ 90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110942661&hterms=Tracer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTracer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110942661&hterms=Tracer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTracer"><span>Stratospheric Horizontal Wavenumber Spectra of Winds, Potential Temperature, and Atmospheric Tracers Observed by High-Altitude Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.</p> <p>1996-01-01</p> <p>Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910039927&hterms=order+mixed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dorder%2Bmixed','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910039927&hterms=order+mixed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dorder%2Bmixed"><span>Observations of planetary mixed Rossby-gravity waves in the upper stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randel, William J.; Boville, Byron A.; Gille, John C.</p> <p>1990-01-01</p> <p>Observational evidence is presented for planetary scale (zonal wave number 1-2) mixed Rossby-gravity (MRG) waves in the equatorial upper stratosphere (35-50 km). These waves are detected in LIMS measurements as coherently propagating temperature maxima of amplitude 0.1-0.3 K, which are antisymmetric (out of phase) about the equator, centered near 10-15 deg north and south latitude. These features have vertical wavelengths of order 10-15 km, periods near 2-3 days, and zonal phase velocities close to 200 m/s. Both eastward and westward propagating waves are found, and the observed vertical wavelengths and meridional structures are in good agreement with the MRG dispersion relation. Theoretical estimates of the zonal accelerations attributable to these waves suggest they do not contribute substantially to the zonal momentum balance in the middle atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS41B1197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS41B1197M"><span>Scattering of Internal Tides by Irregular Bathymetry of Large Extent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mei, C.</p> <p>2014-12-01</p> <p>We present an analytic theory of scattering of tide-generated internal gravity waves in a continuously stratified ocean with a randomly rough seabed. Based on the linearized approximation, the idealized case of constant mean sea depth and Brunt-Vaisala frequency is considered. The depth fluctuation is assumed to be a stationary random function of space characterized by small amplitude and correlation length comparable to the typical wavelength. For both one- and two-dimensional topography the effects of scattering on wave phase over long distances are derived explicitly by the method of multiple scales. For one-dimensional topography, numerical results are compared with Buhler-& Holmes-Cerfon(2011) computed by the method of characteristics. For two-dimensional topography, new results are presented for both statistically isotropic and anisotropic cases. In thi talk we shall apply the perturbation technique of multiple scales to treat analytically the random scattering of internal tides by gently sloped bathymetric irregularities.The basic assumptions are: incompressible fluid, infinitestimal wave amplitudes, constant Brunt-Vaisala frequency, and constant mean depth. In addition, the depth disorder is assumed to be a stationary random function of space with zero mean and small root-mean-square amplitude. The correlation length can be comparable in order of magnitude as the dominant wavelength. Both one- and two-dimensional disorder will be considered. Physical effects of random scattering on the mean wave phase i.e., spatial attenuation and wavenumber shift will be calculated and discussed for one mode of incident wave. For two dimensional topographies, statistically isotropic and anisotropic examples will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......151M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......151M"><span>The dynamics of layered and non-layered oscillatory double-diffusive convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moll, Ryan D.</p> <p></p> <p>Oscillatory double diffusive convection (ODDC) is a double diffusive instability that occurs in fluids that are unstably stratified in temperature and stably stratified in chemical composition. Regions unstable to ODDC are common in the interiors of stars and giant planets, and knowing thermal and compositional transport through these regions is important for stellar and planetary evolution models. Using 3D direct numerical simulations, Rosenblum et al. 2011 first showed that ODDC can either lead to the spontaneous formation of convective layers, or remain in a state dominated by large scale gravity waves. Subsequent studies focused on identifying the conditions for layer formation (Mirouh et al. 2012), and quantifying transport through layered systems (Wood et al. 2013). This document includes 3 works that build on the results of these earlier studies. The subject of the first is transport through non-layered ODDC and shows that in the absence of layered convection, ODDC is dominated by large scale gravity waves that grow to the size of the domain. We find that while these gravity waves induce small amounts of turbulent mixing, turbulent transport through non-layered systems is not significant for the purposes of astrophysical modeling (unlike in layered convection). The second study pertains to ODDC in the presence of Coriolis forces, and shows that rotating systems can be categorized depending on the strength of the rotation. We find that in the slowly rotating regime, the presence of rotation does not significantly affect qualitative behavior, but leads to modest reductions in thermal and compositional transport, while in the fast rotation regime qualitative behaviors are radically different, and systems are dominated by vortices that affect thermal and compositional transport in complex ways. In the final work we study simulations of ODDC at non-layered parameters that are forced into a layered configuration by initial conditions. Our results show that measurements of thermal and compositional transport deviate from values predicted by oft-cited geophysical transport laws.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1188925-smoothed-particle-hydrodynamics-model-landau-lifshitz-navier-stokes-advection-diffusion-equations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1188925-smoothed-particle-hydrodynamics-model-landau-lifshitz-navier-stokes-advection-diffusion-equations"><span>Smoothed particle hydrodynamics model for Landau-Lifshitz Navier-Stokes and advection-diffusion equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.</p> <p>2014-12-14</p> <p>We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation ofmore » the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019853','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019853"><span>Observations of vertical winds and the origin of thermospheric gravity waves launched by auroral substorms and westward travelling surges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rees, D.</p> <p>1986-01-01</p> <p>Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA51B4100C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA51B4100C"><span>Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cullens, C. Y.; England, S.; Immel, T. J.</p> <p>2014-12-01</p> <p>The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667554-constraining-range-yukawa-gravity-interaction-from-s2-star-orbits-ii-bounds-graviton-mass','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667554-constraining-range-yukawa-gravity-interaction-from-s2-star-orbits-ii-bounds-graviton-mass"><span>Constraining the range of Yukawa gravity interaction from S2 star orbits II: bounds on graviton mass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zakharov, A.F.; Jovanović, P.; Borka, D.</p> <p>2016-05-01</p> <p>Recently LIGO collaboration discovered gravitational waves [1] predicted 100 years ago by A. Einstein. Moreover, in the key paper reporting about the discovery, the joint LIGO and VIRGO team presented an upper limit on graviton mass such as m {sub g} < 1.2 × 10{sup −22} eV [2] (see also more details in another LIGO paper [3] dedicated to a data analysis to obtain such a small constraint on a graviton mass). Since the graviton mass limit is so small the authors concluded that their observational data do not show violations of classical general relativity. We consider another opportunity tomore » evaluate a graviton mass from phenomenological consequences of massive gravity and show that an analysis of bright star trajectories could bound graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and expected with forthcoming pulsar timing observations for gravitational wave detection. It gives an opportunity to treat observations of bright stars near the Galactic Center as a wonderful tool not only for an evaluation specific parameters of the black hole but also to obtain constraints on the fundamental gravity law such as a modifications of Newton gravity law in a weak field approximation. In particular, we obtain bounds on a graviton mass based on a potential reconstruction at the Galactic Center.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180258"><span>Wave-driven Equatorial Annual Oscillation Induced and Modulated by the Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Mengel, John G.; Wolff, Charles</p> <p>2005-01-01</p> <p>Our model for the solar cycle (SC) modulation of the Quasi-Biennial Oscillation (QBO) produces a hemispherically symmetric 12-month Annual Oscillation (AO) in the zonal winds, which is confined to low latitudes. This Equatorial Annual Oscillation (EAO) is produced by interaction between the anti-symmetric component of SC forcing and the dominant anti-symmetric AO. The EA0 is amplified by the upward propagating small- scale gravity waves (GW), and the oscillation propagates down through the stratosphere like the QBO. The amplitude of the EA0 is relatively small, but its SC modulation contributes significantly to extend the effect to lower altitudes. Although the energy of the EA0 is concentrated at low latitudes, prominent signatures appear in the Polar Regions where the SC produces measurable temperature variations. At lower altitudes, the SC effects are significantly different in the two hemispheres because of the EAO, and due to its GW driven downward propagation the phase of the annual cycle is delayed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..403K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..403K"><span>Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.</p> <p></p> <p>A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO13B..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO13B..02N"><span>A Comparison Between Internal Waves Observed in the Southern Ocean and Lee Wave Generation Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nikurashin, M.; Benthuysen, J.; Naveira Garabato, A.; Polzin, K. L.</p> <p>2016-02-01</p> <p>Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a few kilometers above rough bottom topography. The enhancement is co-located with the deep-reaching fronts of the Antarctic Circumpolar Current, suggesting that the internal waves and turbulence are sustained by near-bottom flows interacting with rough topography. Recent numerical simulations confirm that oceanic flows impinging on rough small-scale topography are very effective generators of internal gravity waves and predict vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, a linear lee wave generation theory applied to the observed bottom topography and mean flow characteristics has been shown to overestimate the observed rates of the turbulent energy dissipation. In this study, we compare the linear lee wave theory with the internal wave kinetic energy estimated from finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We show that the observed internal wave kinetic energy levels are generally in agreement with the theory. Consistent with the lee wave theory, the observed internal wave kinetic energy scales quadratically with the mean flow speed, stratification, and topographic roughness. The correlation coefficient between the observed internal wave kinetic energy and mean flow and topography parameters reaches 0.6-0.8 for the 100-800 m vertical wavelengths, consistent with the dominant lee wave wavelengths, and drops to 0.2-0.5 for wavelengths outside this range. A better agreement between the lee wave theory and the observed internal wave kinetic energy than the observed turbulent energy dissipation suggests remote breaking of internal waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750021835','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750021835"><span>Future utilization of space: Silverton Conference on material science and phase transformations in zero-gravity, summary of proceeding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eisner, M. (Editor)</p> <p>1975-01-01</p> <p>The importance of zero gravity environment in the development and production of new and improved materials is considered along with the gravitational effects on phase changes or critical behavior in a variety of materials. Specific experiments discussed include: fine scale phase separation in zero gravity; glass formation in zero gravity; effects of gravitational perturbations on determination of critical exponents; and light scattering from long wave fluctuations in liquids in zero gravity. It is concluded that the space shuttle/spacelab system is applicable to various fields of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970011095','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970011095"><span>Effect of Baffle on Gravity-Gradient-Excited Slosh Waves and Spacecraft Moment and Angular-Momentum Fluctuations in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hung, R. J.; Lee, C. C.</p> <p>1995-01-01</p> <p>The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration has been investigated. In particular, the effects of surface tension on partially filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without baffles are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and a torsional moment acting on the spacecraft. The results are clearly seen from one-up one-down and one-down one-up oscillations in the cross-section profiles of two bubbles in the vertical (r, z)-plane of the rotating dewar, and from the eccentric contour of the bubble rotating around the axis of the dewar in a horizontal (r, theta)-plane. As the viscous force, between liquid and solid interface, greatly contributes to the damping of slosh wave excitation, a rotating dewar with baffles provides more areas of liquid-solid interface than that of a rotating dewar without baffles. Results show that the damping effect provided by the baffles reduces the amplitude of slosh wave excitation and lowers the degree of asymmetry in liquid-vapor distribution. Fluctuations of angular momentum and fluid moment caused by the slosh wave excited by gravity gradient acceleration with and without baffle boards are also investigated. It is also shown that the damping effect provided by the baffles greatly reduces the amplitudes of angular momentum and fluid moment fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3569B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3569B"><span>UA-ICON - A non-hydrostatic global model for studying gravity waves from the troposphere to the thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa</p> <p>2017-04-01</p> <p>In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31C..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31C..02H"><span>Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.</p> <p>2016-12-01</p> <p>This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3d4801C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3d4801C"><span>Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas</p> <p>2018-04-01</p> <p>We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ASAJ..112.2240T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ASAJ..112.2240T"><span>Radiation pressure of standing waves on liquid columns and small diffusion flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Marston, Philip L.</p> <p>2002-11-01</p> <p>The radiation pressure of standing ultrasonic waves in air is demonstrated in this investigation to influence the dynamics of liquid columns and small flames. With the appropriate choice of the acoustic amplitude and wavelength, the natural tendency of long columns to break because of surface tension was suppressed in reduced gravity [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293-2296 (2001); 87(20), 9001(E) (2001)]. Evaluation of the radiation force shows that narrow liquid columns are attracted to velocity antinodes. The response of a small vertical diffusion flame to ultrasonic radiation pressure in a horizontal standing wave was observed in normal gravity. In agreement with our predictions of the distribution of ultrasonic radiation stress on the flame, the flame is attracted to a pressure antinode and becomes slightly elliptical with the major axis in the plane of the antinode. The radiation pressure distribution and the direction of the radiation force follow from the dominance of the dipole scattering for small flames. Understanding radiation stress on flames is relevant to the control of hot fluid objects. [Work supported by NASA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.437D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.437D"><span>Evolution of stationary wave patterns in mesospheric water vapor due to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demirhan Barı, Deniz; Gabriel, Axel; Sezginer Ünal, Yurdanur</p> <p>2016-07-01</p> <p>The variability in the observed stationary wave patterns of the mesospheric water vapor (H2O) is investigated using CMIP5 RCP 4.5 and RCP 8.5 projections. The change in the vertical and meridional wave structure at northern mid- and polar latitudes associated to the zonal and meridional eddy heat fluxes is discussed by analyzing the advection of H2O due to residual wind components. The alteration in the characteristics of the stationary wave-1 pattern of the lower mesospheric H2O (up to about 75km) related to change in the projected radiative forcing is observed for the years from 2006 to 2100. Additionally the remarkable effect of the increase in global temperature on the zonal asymmetries in small-scale transient waves and parameterized gravity waves, which largely contribute to the observed stationary wave patterns of H2O in the upper mesosphere, is analyzed. For validation purposes, the derived stratospheric patterns are verified against the eddy heat fluxes and residual advection terms derived from Aura/MLS satellite data between 2004-2010 and the reference period of the CMIP5 MPI dataset (1976-2005) providing confidence in the applied method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDA14003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDA14003S"><span>Experiments on waves under impulsive wind forcing in view of the Phillips (1957) theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shemer, Lev; Zavadsky, Andrey</p> <p>2016-11-01</p> <p>Only limited information is currently available on the initial stages of wind-waves growth from rest under sudden wind forcing; the mechanisms leading to the appearance of waves are still not well understood. In the present work, waves emerging in a small-scale laboratory facility under the action of step-like turbulent wind forcing are studied using capacitance and laser slope gauges. Measurements are performed at a number of fetches and for a range of wind velocities. Taking advantage of the fully automated experimental procedure, at least 100 independent realizations are recorded for each wind velocity at every fetch. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters as a function of time elapsed from the blower activation. The accumulated results on the temporal variation of wind-wave field initially at rest allow quantitative comparison with the theory of Phillips (1957). Following Phillips, appearance of the initial detectable ripples was considered first, while the growth of short gravity waves at later times was analyzed separately. Good qualitative and partial quantitative agreement between the Phillips predictions and the measurements was obtained for both those stages of the initial wind-wave field evolution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0119P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0119P"><span>A scaling law for the mixing efficiency in weakly rotating unforced stratified turbulence in the atmosphere and the oceans based on the slowing down of energy transfer to the small scales because of waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pouquet, A.; Marino, R.; Rosenberg, D. L.; Herbert, C.</p> <p>2017-12-01</p> <p>We present a simple model for the scaling properties of the flux Richardson number R_f (the ratio of buoyancy flux B to total momentum flux B/[B+ɛ_V]) in weakly rotating unforced stratified flows characterized by their Rossby, Froude and Reynolds numbers Ro, Fr and Re. The model is based on: (i) quasi-equipartition between kinetic and potential modes, because of gravity waves and statistical equilibria; (ii) sub-dominant vertical velocity compared to the rms value of the velocity, U, due to the dominance of two-dimensional modes and the incompressibility condition; and (iii) slowing-down and weakening of the energy transfer to small scales due to eddy-wave interactions in a weak-turbulence temporal framework where the transfer time τ_{transf} is lengthened by the inverse Froude number, namely τ_{transf}=τ_{NL}^2/τ_{w}, τ_{NL}=L/U and τ_{w}=1/N being respectively the eddy turn-over time and the wave (Brunt Vaissala) period, with L a charaacteristic scale. Three regimes in Fr, as for stratified flows, are observed using a large data base: dominant waves, eddy-wave interactions and strong turbulence. In terms of the turbulence intensity (or buoyancy Reynolds number) R_I=ɛ_V/[νN^2], with ν the viscosity and ɛ_V the kinetic energy dissipation rate, these regimes are delimited by R_I˜0.1 and R_I˜280. In the intermediate regime, the phenomenology predicts and the numerical data confirms that a linear growth in Fr is obtained for the effective kinetic energy transfer when compared to its dimensional evaluation U^3/L. Defining the mixing efficiency as Γ_f=R_f/[1-R_f], the model allows for the prediction of the scaling Γ_f˜R_I^{-1/2}, observed previously at high Froude number, but which we also find for the intermediate regime. Thus, Γ_f is not constant, contrary to the classical Osborn model, as also found in several studies without rotation. As turbulence strengthens, smaller buoyancy fluxes point to a decoupling of the velocity and temperature fluctuations, the latter becoming passive and independent of U, and one can recover the same R_I^{-1/2} scaling in the strong turbulence regime as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5523029-equatorial-waves-stratospheric-gcm-effects-vertical-resolution-gcm-general-circulation-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5523029-equatorial-waves-stratospheric-gcm-effects-vertical-resolution-gcm-general-circulation-model"><span>Equatorial waves in a stratospheric GCM: Effects of vertical resolution. [GCM (general circulation model)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Boville, B.A.; Randel, W.J.</p> <p>1992-05-01</p> <p>Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013727','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013727"><span>A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914999M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914999M"><span>Temporal variability of gravity wave drag - vertical coupling and possible climate links</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miksovsky, Jiri; Sacha, Petr; Kuchar, Ales; Pisoft, Petr</p> <p>2017-04-01</p> <p>In the atmosphere, the internal gravity waves (IGW) are one of the fastest ways of natural information transfer in the vertical direction. Tropospheric changes that result in modification of sourcing, propagation or breaking conditions for IGWs almost immediately influence the distribution of gravity wave drag in the stratosphere. So far most of the related studies deal with IGW impacts higher in the upper stratospheric/mesospheric region and with the modulation of IGWs by planetary waves. This is most likely due to the fact that IGWs induce highest accelerations in the mesosphere and lower thermosphere region. However, the imposed drag force is much bigger in the stratosphere. In the presented analysis, we have assessed the relationship between the gravity wave activity in the stratosphere and other climatic phenomena through statistical techniques. Multivariable regression has been applied to investigate the IGW-related eastward and northward wind tendencies in the CMAM30-SD data, subject to the explanatory variables involving local circulation characteristics (derived from regional configuration of the thermobaric field) as well as the phases of the large-scale internal climate variability modes (ENSO, NAO, QBO). Our tests have highlighted several geographical areas with statistically significant responses of the orographic gravity waves effect to each of the variability modes under investigation; additional experiments have also indicated distinct signs of nonlinearity in some of the links uncovered. Furthermore, we have also applied composite analysis of displaced and split stratospheric polar vortex events (SPV) from CMAM30-SD to focus on how the strength and occurrence of the IGW hotspots can play a role in SPV occurrence and frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=physics+AND+glass&pg=4&id=EJ887961','ERIC'); return false;" href="https://eric.ed.gov/?q=physics+AND+glass&pg=4&id=EJ887961"><span>Surface Gravity Waves: Resonance in a Fish Tank</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sinick, Scott J.; Lynch, John J.</p> <p>2010-01-01</p> <p>In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916458D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916458D"><span>Development of a Remote Sensing Small Satellite for Temperature Sounding in the Mesosphere/Lower Thermosphere by Measurement of the Oxygen Atmospheric Band Emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deiml, Michael; Kaufmann, Martin</p> <p>2017-04-01</p> <p>Coupling processes initiated by gravity waves in the middle atmosphere have increasing importance for the modeling of the climate system and represent one of the larger uncertainties in this field. To support new modeling efforts spatially resolved measurements of wave fields are very beneficial. This contribution proposes a new small satellite mission based on a three unit CubeSat form factor to observe the Oxygen Atmospheric Band emission around 762 nm for temperature derivation in a limb sounding configuration to characterize gravity waves. The satellite instrument resolves individual rotational lines whose intensities follow a Boltzmann law allowing for the derivation of temperature from the relative structure of these lines. The employed Spatial Heterodyne Spectrometer is characterized by its high throughput at a small form factor, allowing to perform scientific remote sensing measurements within a small satellite during day and night. The spectrometer consists of a thermally stabilized solid block and has no moving parts, which increases its reliability in orbit while allowing high precision measurements within a small volume. The instrument is verified in its precursor mission, the Atmospheric Heterodyne Interferometer Test (AtmoHIT), within the REXUS/BEXUS ballistic rocket flight campaign. The description of the flight campaign and the results thereof conclude this contribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGeo...80...20C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGeo...80...20C"><span>Time stability of spring and superconducting gravimeters through the analysis of very long gravity records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvo, Marta; Hinderer, Jacques; Rosat, Severine; Legros, Hilaire; Boy, Jean-Paul; Ducarme, Bernard; Zürn, Walter</p> <p>2014-10-01</p> <p>Long gravity records are of great interest when performing tidal analyses. Indeed, long series enable to separate contributions of near-frequency waves and also to detect low frequency signals (e.g. long period tides and polar motion). In addition to the length of the series, the quality of the data and the temporal stability of the noise are also very important. We study in detail some of the longest gravity records available in Europe: 3 data sets recorded with spring gravimeters in Black Forest Observatory (Germany, 1980-2012), Walferdange (Luxemburg, 1980-1995) and Potsdam (Germany, 1974-1998) and several superconducting gravimeters (SGs) data sets, with at least 9 years of continuous records, at different European GGP (Global Geodynamics Project) sites (Bad Homburg, Brussels, Medicina, Membach, Moxa, Vienna, Wettzell and Strasbourg). The stability of each instrument is investigated using the temporal variations of tidal parameters (amplitude factor and phase difference) for the main tidal waves (O1, K1, M2 and S2) as well as the M2/O1 factor ratio, the later being insensitive to the instrumental calibration. The long term stability of the tidal observations is also dependent on the stability of the scale factor of the relative gravimeters. Therefore we also check the time stability of the scale factor for the superconducting gravimeter C026 installed at the J9 Gravimetric Observatory of Strasbourg (France), using numerous calibration experiments carried out by co-located absolute gravimeter (AG) measurements during the last 15 years. The reproducibility of the scale factor and the achievable precision are investigated by comparing the results of different calibration campaigns. Finally we present a spectrum of the 25 years of SG records at J9 Observatory, with special attention to small amplitude tides in the semi-diurnal and diurnal bands, as well as to the low frequency part.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110098B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110098B"><span>Dynamical response of the summer MLT to tropospheric global warming: Results from a mechanistic GCM with resolved gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, E.</p> <p>2009-04-01</p> <p>The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E..15A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E..15A"><span>Precursor wave structure, prereversal vertical drift, and their relative roles in the development of post sunset equatorial spread-F</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdu, Mangalathayil; Sobral, José; alam Kherani, Esfhan; Batista, Inez S.; Souza, Jonas</p> <p>2016-07-01</p> <p>The characteristics of large-scale wave structure in the equatorial bottomside F region that are present during daytime as precursor to post sunset development of the spread F/plasma bubble irregularities are investigated in this paper. Digisonde data from three equatorial sites in Brazil (Fortaleza, Sao Luis and Cachimbo) for a period of few months at low to medium/high solar activity phases are analyzed. Small amplitude oscillations in the F layer true heights, representing wave structure in polarization electric field, are identified as upward propagating gravity waves having zonal scale of a few hundred kilometers. Their amplitudes undergo amplification towards sunset, and depending on the amplitude of the prereversal vertical drift (PRE) they may lead to post sunset generation of ESF/plasma bubble irregularities. On days of their larger amplitudes they appear to occur in phase coherence on all days, and correspondingly the PRE vertical drift velocities are larger than on days of the smaller amplitudes of the wave structure that appear at random phase on the different days. The sustenance of these precursor waves structures is supported by the relatively large ratio (approaching unity) of the F region-to- total field line integrated Pedersen conductivities as calculated using the SUPIM simulation of the low latitude ionosphere. This study examines the role of the wave structure relative to that of the prereversal vertical drift in the post sunset spread F irregularity development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22340196-analytical-solution-waves-planets-atmospheric-superrotation-acoustic-inertia-gravity-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22340196-analytical-solution-waves-planets-atmospheric-superrotation-acoustic-inertia-gravity-waves"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Peralta, J.; López-Valverde, M. A.; Imamura, T.</p> <p></p> <p>This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the backgroundmore » wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990042326&hterms=Inertia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DInertia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990042326&hterms=Inertia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DInertia"><span>Spectra of Baroclinic Inertia-Gravity Wave Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glazman, Roman E.</p> <p>1996-01-01</p> <p>Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940030872','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940030872"><span>The fine structure of Langmuir waves observed upstream of the bow shock at Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hospodarsky, G. B.; Gurnett, D. A.; Kurth, W. S.; Kivelson, M. G.; Strangeway, R. J.; Bolton, S. J.</p> <p>1994-01-01</p> <p>Highly structured Langmuir waves, also known as electron plasma oscillations, have been observed in the foreshock of Venus using the plasma wave experiment on the Galileo spacecraft during the gravity assist flyby on February 10, 1990. The Galileo wideband sampling system provides digital electric field waveform measurements at sampling rates up to 201,600 samples per second, much higher than any previous instrument of this type. The main Langmuir wave emission band occurs near the local electron plasma frequency, which was approximately 43 kHz. The Langmuir waves are observed to shift above and below the plasma frequency, sometimes by as much as 20 kHz. The shifts in frequency are closely correlated with the downstream distance from the tangent field line, implying that the shifts are controlled by the electron beam velocity. Considerable fine structure is also evident, with time scales as short as 0.15 milliseconds, corresponding to spatial scales of a few tens of Debye lengths. The frequency spectrum often consists of beat-type waveforms, with beat frequencies ranging from 0.2 to 7 kHz, and in a few cases, isolated wavepackets. The peak electric field strengths are approximately 1 mV/m. These field strengths are too small for strongly nonlinear processes to be important. The beat-type waveforms are suggestive of a parametric decay process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.316C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.316C"><span>Atmospheric Gravity Waves (AGWs) as the driver of seismo-ionospheric coupling: recent major earthquakes of Nepal and Imphal - case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta</p> <p>2016-07-01</p> <p>An important channel of the lithosphere-atmosphere-ionosphere coupling (LAIC) is the acoustic and gravity wave channel where the atmospheric gravity waves (AGW) play the most important part. Atmospheric waves are excited due to seismic gravitational vibrations before earthquakes and their effects on the atmosphere are the sources for seismo-ionospheric coupling which are manifested as perturbations in Very Low Frequency (VLF)/Low Frequency (LF) signal (amplitude/phase). For our study, we chose the recent major earthquakes that took place in Nepal and Imphal. The Nepal earthquake occurred on 12th May, 2015 at 12:50 pm local time (07:05 UTC) with Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. The Imphal earthquake occurred on 4th January, 2016 at 4:35 am local time (23:05 UTC , 3rd January, UTC) with Richter scale magnitude of M = 6.7 and depth 55 km (34.2 miles). The data has been collected from Ionospheric and Earthquake Research Centre (IERC) of Indian Centre for Space Physics (ICSP) transmitted from JJI station of Japan. We performed both Fast Fourier Transform (FFT) and wavelet analysis on the VLF data for a couple of days before and after the major earthquakes. For both earthquakes, we observed wave like structures with periods of almost an hour before and after the earthquake day. The wave like oscillations after the earthquake may be due to the aftershock effects. We also observed that the amplitude of the wave like structures depends on the location of the epicenter between the transmitting and the receiving points and also on the depth of the earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030112972&hterms=Lower+class&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DLower%2Bclass','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030112972&hterms=Lower+class&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DLower%2Bclass"><span>Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.</p> <p>2003-01-01</p> <p>For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude in the summer hemisphere to approach magnitudes as large as 50 m/s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2580B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2580B"><span>Frontal Generation of Waves: A Geostrophic Adjustment Interpretation of The Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blumen, W.; Lundquist, J. K.</p> <p></p> <p>Data were collected during the stable boundary layer observational field program, the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99), carried out in southeastern Kansas USA during the month of October 1999 These data reveal that on at least two different occasions, 16 and 22 October, the passage of surface cold fronts were associated with the initiation of gravity-inertia waves. The periods of these waves ranged from about 4 minutes for gravity waves, relatively unaffected by the Earth's rotation, to about 20 hours for inertial oscillations, characterized by the Coriolis frequency f. Boundary layer radar wind profilers at locations surrounding the main observational site provided wind data through the boundary layer and above. A 60 m tower at the main site contained high frequency temperature, wind, humidity and pressure sensors distributed at various levels along the vertical. These data were used to identify the frontal passages and the wave characteristics. The wind profiler data were used to identify the inertial oscillations. These data indicate that as time progresses, following the frontal passages, the postfrontal energy levels return to pre- frontal levels, and inertial oscillations represent the dominant frequency observed. A linear model is developed and solved to provide evidence that a geostrophic adjust- ment process occurs during the postfrontal period of each frontal passage. the solution obtained shows that the higher frequency waves disperse their energy rapidly leaving the lower frequency inertial oscillation, which is characterized by a zero group ve- locity, at the site of its initiation. The observations reveal that the adjustment to this state occurs within a time span of about 8 hours for each frontal event. This time span is consistent with the model solution using parameter values that are based on ob- servational data. The present model also provides a means to estimate how much of the initial energy is distributed to wave motions and how much is associated with a geostrophically balanced state. It is not possible to separate waves from other types of motion from the observed energy spectrum, but there is evidence of a spectral peak in the range of 7 to 23 minutes in the 16 October energy spectrum. This peak is assumed to be associated with wave excitation by the frontal passage, although other types of motion may also be a contributors. A model calculation reveals that the energy con- tained in this spectral peak represents about 10 to 15 percent of the energy contained in the initial state (time t = 0). This result, although based on crude estimates of the 1 observed wave energy is, nevertheless, in general agreement with the prediction of geostrophic theory:a relatively small amount of energy is expected to be associated with relatively high-frequency, small-scale gravity waves. Additional details regard- ing the geostrophic adjustment interpretation of the observations will be presented in the talk. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.209..406M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.209..406M"><span>A high-order 3-D spectral-element method for the forward modelling and inversion of gravimetric data—Application to the western Pyrenees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean</p> <p>2017-04-01</p> <p>We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21I2284Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21I2284Z"><span>Numerical simulation and analysis of impact of non-orographic gravity waves drag of middle atmosphere in framework of a general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, J.; Wang, S.</p> <p>2017-12-01</p> <p>Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation during SSW event demonstrates that the influence on the temperature of middle stratosphere is mainly positive and there were larger departure both for the wind and temperature fields considering the non-orographic GWD during the warming process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7744A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7744A"><span>Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexander, M. Joan; Stephan, Claudia</p> <p>2015-04-01</p> <p>In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830054156&hterms=scandinavia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dscandinavia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830054156&hterms=scandinavia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dscandinavia"><span>Wind structure and small-scale wind variability in the stratosphere and mesosphere during the November 1980 Energy Budget Campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.</p> <p>1982-01-01</p> <p>Rocket observations made from two sites in northern Scandinavia between November 6 and December 1, 1980, as part of the Energy Budget Campaign are discussed. It was found that significant vertical and temporal changes in the wind structure were present and that they coincided with different geomagnetic conditions, that is, quiet and enhanced. Before November 16, the meridional wind component above 60 km was found to be positive (southerly), whereas the magnitude of the zonal wind component increased with altitude. After November 16 the meridional component became negative (northerly), and the magnitude of the zonal wind component was observed to decrease with altitude. Time sections of the perturbations of the zonal wind reveal the presence of vertically propagating waves, suggesting gravity wave activity. The waves are found to increase in wavelength from 3-4 km near 40 km to more than 12 km near 80 km. The observational techniques made use of chaff foil, chemical trails, inflatable spheres, and parachutes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT........81S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT........81S"><span>Inertia critical layers and their impacts on nongeostrophic baroclinic instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Bo-Wen</p> <p></p> <p>We investigate the effects of critical levels (CLs) on a baroclinic flow over mountains, nongeostrophic (NG) inertia critical layer instability, and NG baroclinic instability (BI) in a three-layer atmosphere with a small Richardson number (Ri) in the middle layer. We develop a numerical wave decomposition method in Chapter 2, which is found to be useful in determining the reflection coefficient (Ref) numerically when the flow system is too complicated to obtain Ref analytically. Effects of CLs on flow over mountains are studied both analytically and numerically in Chapter 3. We define the effective inertia critical level (ICL) as the height above which inertia-gravity waves attenuate significantly. Based on numerical simulations with a broad range of Rossby number (Ro) and Ri, four wave regimes are found: (a) Regime I: inertia- gravity waves. The flow behaves like unsheared inertia- gravity waves and the effective lower ICL plays a similar role as the classical critical level (CCL) does in a nonrotating flow. (b) Regime II: combined inertia-gravity waves and baroclinic lee waves. These waves behave like those in Regime I below the lower effective ICL, and like baroclinic lee waves near the CCL. (c) Regime III: combined evanescent and baroclinic lee waves. These waves still behave like baroclinic lee waves near the CCL, but are trapped near the surface. (d) Regime IV: transient waves. NG baroclinic instability exists, as evidenced by the positive domain-averaged north-south heat flux. Wave regime IV is further investigated in Chapter 5. We identify the NG baroclinic instability in Chapter 3 as an inertia critical layer (ICLY) instability. The role of the upper inertia critical level in this instability has been studied by choosing a periodic mountain. When only the CCL and upper ICL are present in the domain, the mesoscale ICLY instability tends to occur. For a periodic mountain ridge, the ICLY instability selects the mountain's tvavelength as its wavelength of maximum growth. For an isolated mountain ridge, the NG baroclinic lee wave is established in the beginning for flows with small Ri, which then develops its own upper ICL. The stability of Lindzen and Tung's (1976, hereafter LT76) type of three-layer nonrotating/rotating atmosphere is discussed in Chapter 6. We first investigate the transient dynamics of wave ducting by a numerical model. The adjustment time for waves to be ducted depends on the atmospheric structure and horizontal wavelength. Second, we study the effects of Coriolis force on LT76's wave ducting mechanism, and show that a wave with wavelength on the order of 100 km is hardly ducted. (Abstract shortened by UMI.)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.957a2005F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.957a2005F"><span>Gravitational Waves Propagation through the Stochastic Background of Gravitational Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frajuca, C.; Bortoli, F. S.; Nakamoto, F. Y.; Santos, G. A.</p> <p>2018-02-01</p> <p>With the recent claim that gravitational waves were finally detected and with other efforts around the world for GWs detection, its is reasonable to imagine that the relic gravitational wave background could be detected in some time in the future and with such information gather some hints about the origin of the universe. But, it’s also be considered that gravity has self-interaction, with such assumption it’s reasonable to expect that these gravitational wave will interact with the relic or nonrelic GW background by scattering, for example. Such interaction should decrease the distance which such propagating waves could be detected The propagation of gravitational waves (GWs) is analyzed in an asymptotically de Sitter space by the perturbation expansion around Minkowski space using a scalar component. Using the case of de Sitter inflationary phase scenario, the perturbation propagates through a FRW background. The GW, using the actual value for the Hubble scale (Ho), has a damping factor with a very small valor for the size of the observational universe; the stochastic relic GW background is given by a dimensionless function of the frequency. In this work we analyze this same damping including the gravitational wave background due to astrophysical sources such background is 3 orders of magnitude bigger in some frequencies and produces a higher damping factor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28179845','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28179845"><span>Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yunes, Nicolás; Siemens, Xavier</p> <p>2013-01-01</p> <p>This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.4846Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.4846Y"><span>Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yiǧit, Erdal; Medvedev, Alexander S.</p> <p>2017-04-01</p> <p>Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yiğit et al. (<link href="#jgra53482-bib-0076"/>). Simulations with GW effects cut off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular, in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anticorrelation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24492645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24492645"><span>Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsuda, Toshitaka</p> <p>2014-01-01</p> <p>The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3923105','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3923105"><span>Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>TSUDA, Toshitaka</p> <p>2014-01-01</p> <p>The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2748M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2748M"><span>Imaging the density distributions at the regional scale using full waveform and gravity data inversion - Application to the Pyrenees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Roland; Chevrot, Sébastien; Wang, Yi; Spangenberg, Hannah; Goubet, Marie; Monteiller, Vadim; Komatitsch, Dimitri; Seoane, Lucia; Dufréchou, Grégory</p> <p>2017-04-01</p> <p>We present a hybrid inversion method that allows us to image density distributions at the regional scale using both seismic and gravity data. One main goal is to obtain densities and seismic wave velocities (P and S) in the lithosphere with a fine resolution to get important constraints on the mineralogic composition and thermal state of the lithosphere. In the context of the Pyrenees (located between Spain and France), accurate Vp and Vs seismic velocity models are computed first on a 3D spectral element grid at the scale of the Pyrenees by inverting teleseismic full waveforms. In a second step, Vp velocities are mapped to densities using empirical relations to build an a priori density model. BGI and BRGM Bouguer gravity anomaly data sets are then inverted on the same 3D spectral element grid as the Vp model at a resolution of 1-2 km by using high-order numerical integration formulae. Solutions are compared to those obtained using classical semi-analytical techniques. This procedure opens the possibility to invert both teleseismic and gravity data on the same finite-element grid. It can handle topography of the free surface in the same spectral-element distorted mesh that is used to solve the wave equation, without performing extra interpolations between different grids and models. WGS84 curvature, SRTM or ETOPO1 topographies are used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..291..107J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..291..107J"><span>Small-scale density variations in the lunar crust revealed by GRAIL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W.; Milbury, C.; Kiefer, W. S.; Soderblom, J. M.; Zuber, M. T.</p> <p>2017-07-01</p> <p>Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that ∼98% of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2% of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10‧s of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by ± 10% over scales ranging from centimeters to 100‧s of kilometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003155"><span>Small-Scale Density Variations in the Lunar Crust Revealed by GRAIL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W., III; Milbury, C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003155'); toggleEditAbsImage('author_20170003155_show'); toggleEditAbsImage('author_20170003155_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003155_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003155_hide"></p> <p>2017-01-01</p> <p>Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that approximately 98 percent of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2 percent of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10's of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by plus or minus 10 percent over scales ranging from centimeters to 100’s of kilometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMSA24A..01F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMSA24A..01F"><span>Initial Results of the Spread F Experiment (SpreadFEx): Overview and Evidence of Possible Gravity Wave Excitation of Equatorial Plasma Bubbles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fritts, D. C.</p> <p>2007-05-01</p> <p>The Spread F Experiment (SpreadFEx) was performed in Brazil by Brazilian and U.S. researchers during two ~20- day periods extending from September to November 2005. We employed extensive ground-based and space- based observations of gravity waves, plasma structures, electron densities, and mean atmospheric and ionospheric conditions using airglow, digisonde, VHF and meteor radar, balloon, GPS and satellite instrumentation at multiple sites in Brazil and with GUVI aboard the TIMED satellite. These measurements focused on deep convection, gravity waves, and plasma bubble structures. This comprehensive data set has provided the first promising indications of the specific roles of gravity waves arising from deep convection and other sources in contributing to the seeding of equatorial spread F and plasma bubbles extending to high altitudes. This talk will summarize the campaign results related to possible neutral atmosphere seeding of spread F and plasma bubbles during these observations. Specifically, our measurements have revealed significant neutral density (and related wind and temperature) perturbations extending from ~80 km well into the thermosphere and ionosphere. Many of these appear to arise from deep convection over the Amazon basin. Others occurring at larger scales under magnetically-disturbed conditions may have auroral or other higher-latitude sources. Both appear to lead, on occasion, to sufficiently large perturbations of the bottomside F layer to trigger plasma bubbles extending to much higher altitudes thereafter. Upon completion of our analyses, we believe that these observations will yield the first persuasive evidence of the role of neutral atmosphere gravity waves in the seeding of equatorial plasma bubbles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237275','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237275"><span>Long-Term Global Morphology of Gravity Wave Activity Using UARS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.</p> <p>1998-01-01</p> <p>This is the first quarter's report on research to extract global gravity-wave data from satellite data and to model those observations synoptically. Preliminary analysis of global maps of extracted middle atmospheric temperature variance from the CRISTA instrument is presented, which appear to contain gravity-wave information. Corresponding simulations of global gravity-wave and mountain-wave activity during this mission period are described using global ray-tracing and mountain-wave models, and interesting similarities among simulated data and CRISTA data are noted. Climatological simulations of mesospheric gravity-wave activity using the HWM-03 wind-temperature climatology are also reported, for comparison with UARS MLS data. Preparatory work on modeling of gravity wave observations from space-based platforms and subsequent interpretation of the MLS gravity-wave product are also described. Preliminary interpretation and relation to the research objectives are provided, and further action for the next quarter's research is recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...358.1164V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...358.1164V"><span>Observations and modeling of the elastogravity signals preceding direct seismic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vallée, Martin; Ampuero, Jean Paul; Juhel, Kévin; Bernard, Pascal; Montagner, Jean-Paul; Barsuglia, Matteo</p> <p>2017-12-01</p> <p>After an earthquake, the earliest deformation signals are not expected to be carried by the fastest (P) elastic waves but by the speed-of-light changes of the gravitational field. However, these perturbations are weak and, so far, their detection has not been accurate enough to fully understand their origins and to use them for a highly valuable rapid estimate of the earthquake magnitude. We show that gravity perturbations are particularly well observed with broadband seismometers at distances between 1000 and 2000 kilometers from the source of the 2011, moment magnitude 9.1, Tohoku earthquake. We can accurately model them by a new formalism, taking into account both the gravity changes and the gravity-induced motion. These prompt elastogravity signals open the window for minute time-scale magnitude determination for great earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080032488&hterms=K2&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DK2','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080032488&hterms=K2&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DK2"><span>Mesoscale Gravity Wave Variances from AMSU-A Radiances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, Dong L.</p> <p>2004-01-01</p> <p>A variance analysis technique is developed here to extract gravity wave (GW) induced temperature fluctuations from NOAA AMSU-A (Advanced Microwave Sounding Unit-A) radiance measurements. By carefully removing the instrument/measurement noise, the algorithm can produce reliable GW variances with the minimum detectable value as small as 0.1 K2. Preliminary analyses with AMSU-A data show GW variance maps in the stratosphere have very similar distributions to those found with the UARS MLS (Upper Atmosphere Research Satellite Microwave Limb Sounder). However, the AMSU-A offers better horizontal and temporal resolution for observing regional GW variability, such as activity over sub-Antarctic islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97d3101C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97d3101C"><span>Generation of intermittent gravitocapillary waves via parametric forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castillo, Gustavo; Falcón, Claudio</p> <p>2018-04-01</p> <p>We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24580335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24580335"><span>Faraday instability in a near-critical fluid under weightlessness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D</p> <p>2014-01-01</p> <p>Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990098415','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990098415"><span>Properties of QBO and SAO Generated by Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Reddy, C. A.; Chan, K. L.; Porter, H. S.</p> <p>1999-01-01</p> <p>We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are relatively small for the zonal winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060013114&hterms=time+travel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Btravel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060013114&hterms=time+travel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Btravel"><span>Direct Measurement of Wave Kernels in Time-Distance Helioseismology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duvall, T. L., Jr.</p> <p>2006-01-01</p> <p>Solar f-mode waves are surface-gravity waves which propagate horizontally in a thin layer near the photosphere with a dispersion relation approximately that of deep water waves. At the power maximum near 3 mHz, the wavelength of 5 Mm is large enough for various wave scattering properties to be observable. Gizon and Birch (2002,ApJ,571,966)h ave calculated kernels, in the Born approximation, for the sensitivity of wave travel times to local changes in damping rate and source strength. In this work, using isolated small magnetic features as approximate point-sourc'e scatterers, such a kernel has been measured. The observed kernel contains similar features to a theoretical damping kernel but not for a source kernel. A full understanding of the effect of small magnetic features on the waves will require more detailed modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA11B..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA11B..04L"><span>Acoustic Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, C. Y. T.; Deng, Y.</p> <p>2017-12-01</p> <p>During the 2017 solar eclipse, as the sudden cavity of solar radiation created by the lunar shadow moves across the United States on August 21, 2017, decreases in local IT temperature and density are expected. The average velocity of the total solar eclipse across the United States is 700 m/s. The forefront and wake of the lunar shadow are expected to induce acoustic gravity waves according to previous studies of atmosphere waves induced by traveling wave packets moving at different velocities. Meanwhile, moving toward the cross-track direction of the obscuration footprint, weaker transitions will likely create mesoscale to large-scale traveling disturbances. We will use the Global Ionosphere Thermosphere Model, a global circulation model solving for non-hydrostatic equations, with high-resolution settings to investigate the IT responses related to the acoustic-gravity wave perturbations during the 2017 solar eclipse. The simulation will be performed with a sub-degree resolution in longitude and latitude for 3 hours when the atmosphere of the North America sector is mostly obscured. The observable differences between the eclipsed and non-eclipsed scenarios will be examined in detail and be interpreted as consequences from the solar eclipse. We will investigate the evolution of waves during the event and establish a theoretical baseline for further comparisons with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010059874','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010059874"><span>Gravity Effects on Combustion Synthesis of Glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Robinson, L. A.; Manerbino, A. R.; Schowengerdt, F. D.; Gokoglu, S. (Technical Monitor)</p> <p>2000-01-01</p> <p>The Combustion Synthesis technique has been used to produce glasses based on B2O3-Al2O3-MgO and CaO-Al2O3. The combustion characteristics of these combustion synthesis reactions using both small cylindrical pellets (SCP) and large spherical pellets (LSP) are presented. Low density pellets (approx. 35% of their theoretical density) were used, which made synthesis of low exothermic combustion reactions possible. Microstructural analysis of reacted samples was carried out to identify the glass-forming compositions. The effects of gravity on the glass formation were studied aboard the KC-135 using SCP samples. Gravity seemed to have such obvious effects on the combustion characteristics that the wave velocity was lower and the Width of the combustion wave was larger under reduced gravity conditions. Samples produced under low gravity also had more enhanced vitrification than those on ground, while some systems also exhibited lower combustion temperatures. It was also found that the container significantly affects both the combustion characteristics and microstructure. Substantially more divitrification occurred at the area which was in contact with the support (container).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27078461','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27078461"><span>Self-similarity of solitary waves on inertia-dominated falling liquid films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Denner, Fabian; Pradas, Marc; Charogiannis, Alexandros; Markides, Christos N; van Wachem, Berend G M; Kalliadasis, Serafim</p> <p>2016-03-01</p> <p>We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.899c2023T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.899c2023T"><span>Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsvelodub, O. Yu; Bocharov, A. A.</p> <p>2017-09-01</p> <p>The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33B1453C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33B1453C"><span>Spectral Interpretation of Wave-vortex Duality in Northern South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, H.; Jing, Z.; Yan, T.</p> <p>2017-12-01</p> <p>The mesoscale to submesocale oceanic dynamics are characterized by a joint effect of vortex and wave component, which primarily declares the partition between geostrophic balanced and unbalanced flows. The spectral method is a favorable approach that can afford the muti-scale analysis. This study investigates the characteristics of horizontal wavenumber spectra in Nothern South China Sea using orbital altimeter data (SARA/AltiKa), 13-yr shipboard ADCP (Acoustic Doppler Current Profiler) measurements (2014-2016), and a high-resolution numerical simulation (llc4320 Mitgcm). The observed SSH (sea surface height) spectrum presents a conspicuous transition at scales of 50-100 km, which clearly shows the inconsistency with geostrophic balance. The Helmholtz decomposition separating the wave and vortex energy for the spectra of ADCP and numerical model data shows that ageostrophic flows should be responsible for the spectral discrepancy with the QG (qusi-geostrophic) turbulence theory. Generally, it is found that inertia-gravity waves (including internal tides) govern the significant kinetic energy in the submesoscale range in Northern South China Sea. More specific analysis suggests that the wave kinetic energy can extend to a large scale of 500 km or more from the zonal velocity spectra at the left-center of Luzon Strait, which appears to be dominated by inertia-gravity waves likely emitted by the intrusion of the west pacific at Luzon Strait. Instead, the development of eddy kinetic energy at this place is strictly constrained by the width of the strait.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812871B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812871B"><span>Contribution of the infrasound technology to characterize large scale atmospheric disturbances and impact on infrasound monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter</p> <p>2016-04-01</p> <p>The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3c4001W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3c4001W"><span>Long-wave-instability-induced pattern formation in an evaporating sessile or pendent liquid layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Tao; Duan, Fei</p> <p>2018-03-01</p> <p>We investigate the nonlinear dynamics and stability of an evaporating liquid layer subject to vapor recoil, capillarity, thermocapillarity, ambient cooling, viscosity, and negative or positive gravity combined with buoyancy effects in the lubrication approximation. Using linear theory, we identify the mechanisms of finite-time rupture, independent of thermocapillarity and direction of gravity, and predict the effective growth rate of an interfacial perturbation which reveals competition among the mechanisms. A stability diagram is predicted for the onset of long-wave (LW) evaporative convection. In the two-dimensional simulation, we observe well-defined capillary ridges on both sides of the valley under positive gravity and main and secondary droplets under negative gravity, while a ridge can be trapped in a large-scale drained region in both cases. Neglecting the other non-Boussinesq effects, buoyancy does not have a significant influence on interfacial evolution and rupture time but makes contributions to the evaporation-driven convection and heat transfer. The average Nusselt number is found to increase with a stronger buoyancy effect. The flow field and interface profile jointly manifest the LW Marangoni-Rayleigh-Bénard convection under positive gravity and the LW Marangoni convection under negative gravity. In the three-dimensional simulation of moderate evaporation with a random perturbation, the rupture patterns are characterized by irregular ridge networks with distinct height scales for positive and negative gravity. A variety of interfacial and internal dynamics are displayed, depending on evaporation conditions, gravity, Marangoni effect, and ambient cooling. Reasonable agreement is found between the present results and the reported experiments and simulations. The concept of dissipative compacton also sheds light on the properties of interfacial fractalization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA31B..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA31B..01T"><span>The Atmospheric Waves Experiment (AWE): Quantifying the Impact of Gravity Waves on the Edge of Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, M. J.; Forbes, J. M.; Fritts, D. C.; Eckermann, S. D.; Snively, J. B.; Liu, H.; Janches, D.; Syrstad, E. A.; Esplin, R. W.; Pautet, P. D.; Zhao, Y.; Pendleton, W. R.</p> <p>2017-12-01</p> <p>New theory and modeling now indicate that upward-propagating gravity waves (GWs) originating in the lower atmosphere have profound effects on the variability and mean state of the ionosphere-thermosphere-mesosphere (ITM) system. A major unknown is the spectrum of small-scale ( 30-300 km) GWs entering this system from below. Yet, this part of the spectrum contains most of the waves that will produce the greatest ITM effects. To address this knowledge gap, the Atmospheric Waves Experiment (AWE) plans to deploy a high-resolution imager (based on the successful Utah State University Advanced Mesospheric Temperature Mapper) on the International Space Station (ISS) to gain a transformative set of GW-resolving temperature measurements using the OH nightglow emission (altitude 87 km). The ISS provides the ideal combination of altitude, geographic and local time coverage to accomplish our proposed science objectives, which seeks not only near-global measurements of GW characteristics in the mesopause region, but also quantification of GW momentum and energy fluxes driving the IT from below. Combined with state-of-the-art high-resolution models, the AWE mission will also assess the relative importance of sources versus propagation conditions in explaining the observed spatial and temporal variability of the GWs. The AWE mission was recently selected for a "Phase A" study as part of the NASA 2016 Heliophysics Explorers Mission of Opportunity (MO) Program. In this presentation, we describe the primary goals of this program and introduce our proposed research methods using proven IR instrument technology. AWE's exceptional capabilities are illustrated with recent discoveries in observing GWs from the ground and from aircraft during the NSF DEEPWAVE campaign, promising a major step forward in understanding how troposphere weather translates to space weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120010521','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120010521"><span>New Gravity Wave Treatments for GISS Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye</p> <p>2011-01-01</p> <p>Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100032912','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100032912"><span>New Gravity Wave Treatments for GISS Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye</p> <p>2010-01-01</p> <p>Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD34006K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD34006K"><span>Influence of Internal Waves on Transport by a Gravity Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart</p> <p>2017-11-01</p> <p>Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990115883&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990115883&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtemperature%2Bvariability"><span>Temperature Variability Associated with the Middle Atmosphere Electrodynamics (MAE-1) Campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidlin, F. J.</p> <p>1999-01-01</p> <p>Meteorological rockets launched during the Middle Atmosphere Electrodynamics (MAE-1) Campaign in October 1980 from Andoya Rocket Range (ARR), Norway, exhibited large and unexpected temperature variability. Temperatures were found to vary as much as 20 C within a few hours and demonstrated a similar type of variability from one day to the next. Following examination of the reduced rocketsonde profiles the question was raised whether the observed variability was due to natural atmospheric variability or instrument malfunction. Small-scale variability, as observed, may result from one or multiple sources, e.g., intense storms upstream from the observing site, orography such as mountain waves off of the Greenland Plateau, convective activity, gravity waves, etc. Arranging the observations spaced over time showed that the perturbations moved downward. Prior to MAE-1 very few small rocketsonde measurements had been launched from ARR, thus the quality of the initial measurements in early October caused concern when the large variability was noted. We discuss the errors of the rocketsonde measurements, graphically review the nature of the variability observed, compare the data with other measurements, and postulate a possible cause for the variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525670-gravity-non-linear-scales-post-friedmann-expansion-vector-potential','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525670-gravity-non-linear-scales-post-friedmann-expansion-vector-potential"><span>f(R) gravity on non-linear scales: the post-Friedmann expansion and the vector potential</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thomas, D.B.; Bruni, M.; Koyama, K.</p> <p>2015-07-01</p> <p>Many modified gravity theories are under consideration in cosmology as the source of the accelerated expansion of the universe and linear perturbation theory, valid on the largest scales, has been examined in many of these models. However, smaller non-linear scales offer a richer phenomenology with which to constrain modified gravity theories. Here, we consider the Hu-Sawicki form of f(R) gravity and apply the post-Friedmann approach to derive the leading order equations for non-linear scales, i.e. the equations valid in the Newtonian-like regime. We reproduce the standard equations for the scalar field, gravitational slip and the modified Poisson equation in amore » coherent framework. In addition, we derive the equation for the leading order correction to the Newtonian regime, the vector potential. We measure this vector potential from f(R) N-body simulations at redshift zero and one, for two values of the f{sub R{sub 0}} parameter. We find that the vector potential at redshift zero in f(R) gravity can be close to 50% larger than in GR on small scales for |f{sub R{sub 0}}|=1.289 × 10{sup −5}, although this is less for larger scales, earlier times and smaller values of the f{sub R{sub 0}} parameter. Similarly to in GR, the small amplitude of this vector potential suggests that the Newtonian approximation is highly accurate for f(R) gravity, and also that the non-linear cosmological behaviour of f(R) gravity can be completely described by just the scalar potentials and the f(R) field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AMT.....9..877W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AMT.....9..877W"><span>Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage - Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, Corwin J.; Hindley, Neil P.; Moss, Andrew C.; Mitchell, Nicholas J.</p> <p>2016-03-01</p> <p>Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ˜ 100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such data sets in their full context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830014601&hterms=MRI&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DMRI','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830014601&hterms=MRI&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DMRI"><span>Gravity waves in the thermosphere observed by the AE satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gross, S. H.; Reber, C. A.; Huang, F. T.</p> <p>1983-01-01</p> <p>Atmospheric Explorer (AE) satellite data were used to investigate the spectra characteristics of wave-like structure observed in the neutral and ionized components of the thermosphere. Power spectral analysis derived by the maximum entropy method indicate the existence of a broad spectrum of scale sizes for the fluctuations ranging from tens to thousands of kilometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009FlDyR..41c0001K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009FlDyR..41c0001K"><span>EDITORIAL: The FDR Prize The FDR Prize</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kida, Shigeo</p> <p>2009-06-01</p> <p>From the 45 papers published in the year 2008 in Fluid Dynamics Research the following paper has been selected for the second FDR prize: 'Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis' by Adrian Constantin and Robin S Johnson, published in volume 40 (March 2008) pp 175-211. This paper takes, as its main theme, the analysis of the propagation of very long gravity waves in the ocean environment, with the possibility of applying the results to tsunamis. Both variable depth and some pre-existing vorticity are allowed in the model, but under the over-arching assumption of long waves; indeed, it is argued, the waves are so long that it is impossible for classical soliton theory to be the appropriate description of a developing tsunami. This aspect is supported by some simple scaling arguments, together with some observations associated with the tsunami of Boxing Day 2004. The formulation is based on two small scales: the slow scale on which the depth varies and the small amplitude of the wave (as initially generated in deep water). The technique adopted is that of matched asymptotic expansions. The solution, constructed for deep water, is not valid in suitably reduced depth of water; the solution in this shallow region (close inshore) is then matched to the deep-water solution. A novel feature of this work is the inclusion of a general distribution of vorticity in the absence of waves—intended to model the realistic ocean—which is based on the slow evolution scale for the bottom topography. Some general properties of such background flows are proved, and two specific examples have been obtained: constant vorticity everywhere (as far as the shoreline), and regions of isolated vorticity (for appropriate bottom profiles). The way in which the wave properties are modified in the presence of vorticity is described. The significant overall proposal in this theory, specifically applicable to tsunamis, is that it is the profile of the initial disturbance (generated by the seismic activity) that is the single most important ingredient in the formation of tsunami waves (provided, of course, the familiar requirement of a long, gently shelving beach is also present). This contention is described and developed, and supported by some graphical examples of the various types of solution that can be obtained; these include contributions from variable depth and suitable background vorticity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990088419&hterms=Reddy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DReddy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990088419&hterms=Reddy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DReddy"><span>The Role of Gravity Waves in Generating Equatorial Oscillations in Modulating Atmospheric Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Reddy, C. A.</p> <p>1999-01-01</p> <p>We discuss a Numerical Spectral Mode (NSM) that extends from the ground up into the thermosphere and incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations in the mean zonal circulation, the semi-annual and quasi-biennial oscillations (SAO and QBO), as well as the tides and planetary waves in the middle atmosphere. Initial results showed that this model can reproduce the salient features observed, including the QBO extending into the upper mesosphere inferred from UARS measurements. The model has now been extended to simulate also: (a) the zonal circulation of the lower stratosphere and upper troposphere, and (b) the upwelling at equatorial latitudes associated with the Brewer Dobsen circulation that affects the dynamics significantly as pointed out by Dunkerton. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase in the model the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. This development is conducive to extending the QBO and SAO to higher latitudes through global scale momentum redistribution. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. A somewhat larger GW source (well within the DSP range) is then required to generate realistic QBO and SAO amplitudes. Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 70 and 120 km. Wave filtering by the mean zonal circulation causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide tends to peak during solstice. Under the influence of GW, the tides are modulated significantly by planetary waves that are generated preferentially during solstice in part due to baroclinic instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010079652&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010079652&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DQbo"><span>Modeling Wave Driven Non-linear Flow Oscillations: The Terrestrial QBO and a Solar Analog</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)</p> <p>2001-01-01</p> <p>The Quasi Biennial Oscillation (QBO) of the zonal circulation observed in the terrestrial atmosphere at low latitudes is driven by wave mean flow interaction as was demonstrated first by Lindzen and Holton (1968), shown in a laboratory experiment by Plumb and McEwan (1978), and modeled by others (e.g., Plumb, Dunkerton). Although influenced by the seasonal cycle of solar forcing, the QBO, in principle, represents a nonlinear flow oscillation that can be maintained by a steady source of upward propagating waves. The wave driven non-linearity is of third or odd order in the flow velocity, which regenerates the fundamental harmonic itself to keep the oscillation going - the fluid dynamical analog of the displacement mechanism in the mechanical clock. Applying Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we discuss with a global-scale spectral model numerical experiments that elucidate some properties of the QBO and its possible effects on the climatology of the atmosphere. Depending on the period of the QBO, wave filtering can cause interaction with the seasonal variations to produce pronounced oscillations with beat periods around 10 years. Since the seasonal cycle and its variability influence the period of the QBO, it may also be a potent conduit of solar activity variations to lower altitudes. Analogous to the terrestrial QBO, we propose that a flow oscillation may account for the 22-year periodicity of the solar magnetic cycle, potentially answering Dicke (1978) who asked, "Is there a chronometer hidden deep inside the Sun?" The oscillation would occur below the convection region, where gravity waves can propagate. Employing a simplified, analytic model, Hines' DSP is applied to estimate the flow oscillation. Depending on the adopted horizontal wavelengths of GW's, wave amplitudes less than 10 m/s can be made to produce oscillating zonal flows of about 20 m/s that should be large enough to generate a significant oscillation in the magnetic field. For the large length scales of the Sun, the flow cycle period tends to be very long. The period, however, can be made to be 22 years, provided the buoyancy frequency (stability) is sufficiently small, thus placing the proposed flow near the base of the convection zone where a dynamo is now believed to operate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SPIE.4484..286P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SPIE.4484..286P"><span>Rayleigh lidar observations of gravity wave characteristics in the middle atmosphere at Gadanki, India (13.5 degrees N, 79.2 degreesE.)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parameswaran, K.; Rajeev, K.; Sasi, M. N.; Ramkumar, Geetha; Krishna Murthy, B. V.; Satheesan, K.; Jain, A. R.; Bhavanikumar, Y.; Raghunath, Kalavai J.; Krishnaiah, M.</p> <p>2002-01-01</p> <p>Rayleigh lidar observations of temperature in the stratosphere and mesosphere are carried out an Gadanki from February 29 to March 31, 2000, which provided a powerful means of studying the gravity wave characteristics over the tropical atmosphere during winter. The potential energy per unit mass associated with the gravity wave activity in the upper stratosphere and mesosphere is found to undergo periodic fluctuations, which are closely correlated with the zonal wind fluctuations in the stratosphere produced by the equatorial waves. This provides the first observational evidence for the modulation of the gravity wave activity by the long period equatorial waves over the tropical middle atmosphere. The vertical wave number spectra of gravity waves shows that power spectral density decease with increasing wave number with a slope less than that expected for the saturated gravity wave spectrum in the stratosphere and mesosphere. PSD decreases for vertical wavelengths smaller than about 10 km in the stratosphere while the decrease is observed for the complete range of observed gravity wave spectrum in the mesosphere. A monochromatic upward propagating gravity wave with periodicity of 6 hour, amplitude of about 1 K to 3 K and vertical wavelength of 11 km was observed on 22 March, 2000.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000110131&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000110131&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dstatistics"><span>Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)</p> <p>1999-01-01</p> <p>Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASTP.164...89K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASTP.164...89K"><span>Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karpov, I. V.; Kshevetskii, S. P.</p> <p>2017-11-01</p> <p>The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910069807&hterms=gaines&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dk.%2Bgaines','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910069807&hterms=gaines&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dk.%2Bgaines"><span>Irreversible transport in the stratosphere by internal waves of short vertical wavelength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Danielsen, Edwin F.; Hipskind, R. S.; Starr, Walter L.; Vedder, James F.; Gaines, Steven E.; Kley, Dieter; Kelley, Ken K.</p> <p>1991-01-01</p> <p>Measurements performed during stratospheric flights of the U-2 aircraft confirm that cross-jet transport is dominated by waves, not by large-scale circulations. Monotonic gradients of trace constituents normal to the jet axis, with upper stratospheric tracers increasing poleward and tropospheric tracers increasing equatorward, are augmented by large-scale confluence as the jet intensifies during cyclogenesis. These gradients are rotated, intensified, and significantly increased in areas as their mixing ratio surfaces are folded by the differential transport of a very low frequency transverse wave. The quasi-horizontal transport produces a laminar structure with stable layers rich in upper stratospheric tracers alternating vertically with less stable layers rich in tropospheric tracers. The transport proceeds toward irreversibility at higher frequency, shear-gravity waves extend the folding to smaller horizontal scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26463257','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26463257"><span>Mercury Pollution from Small-Scale Gold Mining Can Be Stopped by Implementing the Gravity-Borax Method--A Two-Year Follow-Up Study from Two Mining Communities in the Philippines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Køster-Rasmussen, Rasmus; Westergaard, Maria L; Brasholt, Marie; Gutierrez, Richard; Jørs, Erik; Thomsen, Jane F</p> <p>2016-02-01</p> <p>Mercury is used globally to extract gold in artisanal and small-scale gold mining. The mercury-free gravity-borax method for gold extraction was introduced in two mining communities using mercury in the provinces Kalinga and Camarines Norte. This article describes project activities and quantitative changes in mercury consumption and analyzes the implementation with diffusion of innovations theory. Activities included miner-to-miner training; seminars for health-care workers, school teachers, and children; and involvement of community leaders. Baseline (2011) and follow-up (2013) data were gathered on mining practices and knowledge about mercury toxicology. Most miners in Kalinga converted to the gravity-borax method, whereas only a few did so in Camarines Norte. Differences in the nature of the social systems impacted the success of the implementation, and involvement of the tribal organization facilitated the shift in Kalinga. In conclusion, the gravity-borax method is a doable alternative to mercury use in artisanal and small-scale gold mining, but support from the civil society is needed. © The Author(s) 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122..134L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122..134L"><span>Three-dimensional turbulence-resolving modeling of the Venusian cloud layer and induced gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien</p> <p>2017-01-01</p> <p>The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM); therefore, we developed an unprecedented 3-D turbulence-resolving large-eddy simulations (LES) Venusian model using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates: two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique Venus GCM using two different cloud models. Thus, we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1-D radiative-convective model. The resolved layer, taking place between 1.0 × 105 and 3.8 × 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920030289&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920030289&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DQbo"><span>The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere - Relationship to the QBO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Takahashi, Masaaki; Holton, James R.</p> <p>1991-01-01</p> <p>Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD34007T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD34007T"><span>Dense Gravity Currents with Breaking Internal Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey</p> <p>2017-11-01</p> <p>Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830054922&hterms=calculate+gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcalculate%2Bgravity%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830054922&hterms=calculate+gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcalculate%2Bgravity%2Bmodel"><span>A numerical model of gravity wave breaking and stress in the mesosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.</p> <p>1983-01-01</p> <p>The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019008"><span>Middle Atmosphere Program. Handbook for MAP, volume 9</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bowhill, S. A. (Editor); Edwards, B. (Editor)</p> <p>1983-01-01</p> <p>The term Mesosphere-Stratosphere-Troposphere radar (MST) was invented to describe the use of a high power radar transmitter together with a large vertically, or near vertically, pointing antenna to study the dynamics and structure of the atmosphere from about 10 to 100 km, using the very weak coherently scattered radiation returned from small scale irregularities in refractive index. Nine topics were addressed including: meteorological and dynamic requirements for MST radar networks; interpretation of radar returns for clear air; techniques for the measurement of horizontal and vertical velocities; techniques for studying gravity waves and turbulence; capabilities and limitations of existing MST radar; design considerations for high power VHF radar transceivers; optimum radar antenna configurations; and data analysis techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2040E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2040E"><span>Impact of 3-D orographic gravity wave parameterisation on stratosphere dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eichinger, Roland; Garny, Hella; Cai, Duy; Jöckel, Patrick</p> <p>2017-04-01</p> <p>Stratosphere dynamics are strongly influenced by gravity waves (GWs) propagating upwards from the troposphere. Some of these GWs are generated through flow over small-scale orography and can not be resolved by common general circulation models (GCMs). Due to computational model designs, their parameterisation usually follows a one dimensional columnar approach that, among other simplifications, neglects the horizontal propagation of GWs on their way up into the Middle Atmosphere. This causes contradictions between models and observations in location and strength of GW drag force through their dissipation and as a consequence, also in stratospheric mean flow. In the EMAC (ECHAM MESSy Atmospheric Chemistry) model, we have found this deficiency to cause a too weak Antarctic polar vortex, which directly impacts stratospheric temperatures and thereby the chemical reactions that determine ozone depletion. For this reason, we adapt a three dimensional parameterisation for orographic GWs, that had been implemented and tested in the MIROC GCM, to the MESSy coding standard. This computationally light scheme can then be used in a modular and flexible way in a cascade of model setups from an idealised version for conceptional process analyses to full climate chemistry simulations for quantitative investigations. This model enhancement can help to reconcile models and observations in wave drag forcing itself, but in consequence, also in Brewer-Dobson Circulation trends across the recent decades. Furthermore, uncertainties in weather and climate predictions as well as in future ozone projections can be reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5608M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5608M"><span>Investigating gravity waves evidences in the Venus upper atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide</p> <p>2014-05-01</p> <p>We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ExFl...58...47P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ExFl...58...47P"><span>Faraday wave patterns on a square cell network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peña-Polo, Franklin; Vargas, Carlos A.; Vásquez-González, Benjamín; Medina, Abraham; Trujillo, Leonardo; Klapp, Jaime; Sigalotti, Leonardo Di G.</p> <p>2017-05-01</p> <p>We present the experimental observations of the Faraday instability when the vibrated liquid is contained in a network of small square cells for exciting frequencies in the range 10≤ F≤ 24 Hz. A sweep of the parameter space has been performed to investigate the amplitudes and frequencies of the driving force for which different patterns form over the network. Regular patterns in the form of square lattices are observed for driving frequencies in the range 10≤ F<14 Hz, while ordered matrices of oscillons are formed for 14<F≤ 23 Hz. At F>23 Hz, disordered periodic patterns appear within individual cells for a small range of amplitudes. In this case, the wave field is dominated by oscillating blobs that interact on the capillary-gravity scale. A Pearson correlation analysis of the recorded videos shows that for all ordered patterns, the surface waves are periodic and correspond to Faraday waves of dominant frequency equal to half the excitation frequency (i.e., f=F/2). In contrast, the oscillons formed for 14<F≤ 23 Hz are at the first subharmonic (f=F/2) and first harmonic (f=F) response frequencies, with higher harmonics being negligible or absent as in most cases. The disordered wave fields forming at F>23 Hz are not subharmonic and correspond to periodic harmonic waves with f=nF/2 (for n=2,4,\\ldots ). We find that the experimentally determined minimum forcing necessary to destabilize the rest state and generate surface waves is consistent with a recent stability analysis of stationary solutions as derived from a new dispersion relation for time-periodic waves with nonzero forcing and dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20711556-emergent-gravity-from-mass-deformation-warped-spacetime','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20711556-emergent-gravity-from-mass-deformation-warped-spacetime"><span>Emergent gravity from a mass deformation in warped spacetime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gherghetta, Tony; Peloso, Marco; Poppitz, Erich</p> <p>2005-11-15</p> <p>We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of the Randall-Sundrum graviton wave function and can be localized anywhere in the bulk. There is also a vector zero mode with similar localization properties, which is decoupled from conserved sources at tree level. Interestingly, there are no scalar modes, and the model is ghost-free at the linearized level. When the tensor zero mode is localized near the IRmore » brane, the dual interpretation is a composite graviton describing an emergent (induced) theory of gravity at the IR scale. In this case Newton's law of gravity changes to a new power law below the millimeter scale, with an exponent that can even be irrational.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.2605B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.2605B"><span>Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, Erich; Vadas, Sharon L.</p> <p>2018-03-01</p> <p>This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.3435A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.3435A"><span>Infragravity waves in the deep ocean: An upward revision</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aucan, J.; Ardhuin, F.</p> <p>2013-07-01</p> <p>Ocean infragravity waves are surface gravity waves with periods of several minutes and corresponding wavelengths of up to tens of kilometers. When propagating freely in the deep ocean, these waves are typically small, several centimeters at most, so they have been seldom studied. In the context of future wide-swath altimetry missions, these waves need to be better quantified as they have wavelengths that will be resolved by such instruments. Here, we analyze the global climatology and variability of infragravity waves in the deep ocean using data from over 40 open ocean locations, with depths larger than 2000 m. We show that typical infragravity wave heights are higher than previously estimated, with winter-averaged values up to 11 mm off the U.S. West Coast, and typically less than 6 mm in the tropics. The mid to high latitudes exhibit a strong seasonal cycle consistent with the local variability of the wind-waves, while the tropical Pacific has a higher energy level during the Austral winter that does not correlate well with the local wind-waves, suggesting a remote source for the recorded infragravity waves. These infragravity wave energies are expected to be a significant contribution to the error budget for possible measurements of sea level associated to sub-mesoscale currents at horizontal scales around 10 km. Hence, a global numerical model of infragravity waves will likely be necessary for the analysis of the planned Surface Water Ocean Topography mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1119585','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1119585"><span>Ionospheric effects of thunderstorms and lightning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lay, Erin H.</p> <p>2014-02-03</p> <p>Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm.more » We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDH28009D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDH28009D"><span>Transport of inertial anisotropic particles under surface gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas</p> <p>2016-11-01</p> <p>The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2215F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2215F"><span>Medium-Scale Traveling Ionospheric Disturbances Observed by Detrended Total Electron Content Maps Over Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Figueiredo, C. A. O. B.; Takahashi, H.; Wrasse, C. M.; Otsuka, Y.; Shiokawa, K.; Barros, D.</p> <p>2018-03-01</p> <p>A ground-based network of Global Navigation Satellite Systems receivers has been used to monitor medium-scale traveling ionospheric disturbances (MSTIDs). MSTIDs were studied using total electron content perturbation maps and keograms over south-southeast of Brazil during the period from December 2012 to February 2016. In total, 826 MSTIDs were observed mainly in daytime, thus presenting median values of horizontal wavelength, period, and horizontal phase velocity of 452 ± 107 km, 24 ± 4 min. and 323 ± 81 m/s, respectively. The direction of propagation varies on the season: during the winter (June-August), the waves preferentially propagated to north-northeast, while in the other seasons the waves propagated to other directions. The anisotropy observed in the MSTID propagation direction could be associated with the region of the gravity wave generation that takes place in the troposphere. We also found that the MSTIDs were observed most frequently during the daytime, between 11 and 15 local time in winter and near to dusk solar terminator (17-19 local time) in the other seasons. Furthermore, the occurrence of MSTIDs was higher in winter. We suggest that atmospheric gravity waves in the thermosphere, mesosphere, and troposphere could play an important role in generating the MSTIDs and the propagation direction may depend on location of the wave sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026855','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026855"><span>Gravity Wave Seeding of Equatorial Plasma Bubbles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Singh, Sardul; Johnson, F. S.; Power, R. A.</p> <p>1997-01-01</p> <p>Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870001023','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870001023"><span>Mesospheric gravity-wave climatology at Adelaide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vincent, R. A.</p> <p>1986-01-01</p> <p>The MF Adelaide partial-reflection radar has been operating continuously since November 1983. This has enabled a climatology of gravity-wave activity to be constructed for the mesosphere. The data have been analyzed for a medium-period range of 1 to 8 hr. and a longer period range between 8 and 24 hr. covering the inertio-period waves. The tidal motions have been filtered out prior to analysis. For the data analyses so far (Nov. 1983 to Dec. 1984), a number of interesting features emerged. Firstly, the wave activity at heights above 80 km shows a small seimannual variation with season with the activity being strongest in summer and winter. At heights below 80 km however, there is a similar but more marked variation with the weakest amplitudes occurring at the time of the changeovers in the prevailing circulation. If breaking gravity waves are responsible for much of the turbulence in the mesosphere, then the periods March to April and September to October might also be expected to be periods of weak turbulence. The wave field appears to be partially polarized. The meridional amplitudes are larger than the zonal amplitudes, especially in water. It is found that the degree of polarization is about 15% in summer and 30% in winter. The polarized component is found to propagate in the opposite direction to the background flow in the stratosphere, which suggests that the polarization arises through directional filtering of the waves as they propagate up from below.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCAP...08..006W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCAP...08..006W"><span>COLA with scale-dependent growth: applications to screened modified gravity models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo</p> <p>2017-08-01</p> <p>We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970022427','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970022427"><span>Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexander, M. J.; Rosenlof, K. H.</p> <p>1996-01-01</p> <p>The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031133&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031133&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dvertical%2Bheight"><span>Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Minghua; Geller, Marvin A.</p> <p>1994-01-01</p> <p>The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS11A2006K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS11A2006K"><span>Triad Resonance in the Gravity-Acoustic Family</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadri, U.</p> <p>2015-12-01</p> <p>Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic envelope (middle) travels relatively fast to the right minimising the interaction time. Consequently, the resultant acoustic wave envelope (bottom) might be significantly smaller. As the two acoustic beams concurrently move away from the gravity wave, with disparate group velocities, the resonant interaction gradually vanishes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA522524','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA522524"><span>Transparency of the Atmosphere to Short Horizontal Wavelength Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-12-16</p> <p>oscillation ( QBO ) in the tropical stratosphere. [37] ECMWF and TIME-GCM data are merged after interpolation onto a common grid of 2.5 latitude, 3.75...al., 2002], for example. Both features are less pronounced in April (equinox). In the tropics wind filtering due to the QBO can be discerned in the...other tropical wave modes. Current estimates [Dunkerton, 1997] attribute the forcing of the QBO at about equal parts to large-scale tropical waves and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5416599-mean-zonal-flow-response-rossby-wave-gravity-wave-forcing-equatorial-lower-stratosphere-relationship-qbo-qbo-quasi-biennial-oscillation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5416599-mean-zonal-flow-response-rossby-wave-gravity-wave-forcing-equatorial-lower-stratosphere-relationship-qbo-qbo-quasi-biennial-oscillation"><span>The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere: Relationship to the QBO. [QBO (quasi-biennial oscillation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Takahashi, M.; Holton, J.R.</p> <p>1991-09-15</p> <p>Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.4584J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.4584J"><span>Sediment gravity flows triggered by remotely generated earthquake waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.</p> <p>2017-06-01</p> <p>Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189210','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189210"><span>Sediment gravity flows triggered by remotely generated earthquake waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie</p> <p>2017-01-01</p> <p>Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870000986','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870000986"><span>Middle Atmosphere Program. Handbook for MAP, volume 20</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bowhill, S. A. (Editor); Edwards, B. (Editor)</p> <p>1986-01-01</p> <p>Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118.4503R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118.4503R"><span>Planetary wave-gravity wave interactions during mesospheric inversion layer events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.</p> <p>2013-07-01</p> <p>lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9483V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9483V"><span>Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory</p> <p>2016-04-01</p> <p>The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the heights corresponding to the middle atmosphere and ionosphere. The results of numerical modeling based on the solution of the equation of geophysical hydrodynamics agree with the observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.4419P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.4419P"><span>The <q>ABC model</q>: a non-hydrostatic toy model for use in convective-scale data assimilation investigations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrie, Ruth Elizabeth; Bannister, Ross Noel; Priestley Cullen, Michael John</p> <p>2017-12-01</p> <p>In developing methods for convective-scale data assimilation (DA), it is necessary to consider the full range of motions governed by the compressible Navier-Stokes equations (including non-hydrostatic and ageostrophic flow). These equations describe motion on a wide range of timescales with non-linear coupling. For the purpose of developing new DA techniques that suit the convective-scale problem, it is helpful to use so-called <q>toy models</q> that are easy to run and contain the same types of motion as the full equation set. Such a model needs to permit hydrostatic and geostrophic balance at large scales but allow imbalance at small scales, and in particular, it needs to exhibit intermittent convection-like behaviour. Existing <q>toy models</q> are not always sufficient for investigating these issues. A simplified system of intermediate complexity derived from the Euler equations is presented, which supports dispersive gravity and acoustic modes. In this system, the separation of timescales can be greatly reduced by changing the physical parameters. Unlike in existing toy models, this allows the acoustic modes to be treated explicitly and hence inexpensively. In addition, the non-linear coupling induced by the equation of state is simplified. This means that the gravity and acoustic modes are less coupled than in conventional models. A vertical slice formulation is used which contains only dry dynamics. The model is shown to give physically reasonable results, and convective behaviour is generated by localised compressible effects. This model provides an affordable and flexible framework within which some of the complex issues of convective-scale DA can later be investigated. The model is called the <q>ABC model</q> after the three tunable parameters introduced: A (the pure gravity wave frequency), B (the modulation of the divergent term in the continuity equation), and C (defining the compressibility).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740029285&hterms=falling+meteors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfalling%2Bmeteors','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740029285&hterms=falling+meteors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfalling%2Bmeteors"><span>Upper atmospheric planetary-wave and gravity-wave observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; Woodrum, A.</p> <p>1973-01-01</p> <p>Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24606251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24606251"><span>Shear waves in inhomogeneous, compressible fluids in a gravity field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Godin, Oleg A</p> <p>2014-03-01</p> <p>While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940015952&hterms=Global+Positioning+System&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DThe%2BGlobal%2BPositioning%2BSystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940015952&hterms=Global+Positioning+System&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DThe%2BGlobal%2BPositioning%2BSystem"><span>Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bassiri, Sassan; Hajj, George A.</p> <p>1993-01-01</p> <p>Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950020172','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950020172"><span>Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Yuh-Lang; Kaplan, Michael L.</p> <p>1995-01-01</p> <p>Mesoscale model simulations provide insight into the complex jet streak adjustments on 11-12 July 1981 that preceded the first of two significant gravity wave events to have been generated over the Rocky Mountains in Montana. Simulations employing a variety of terrain treatments indicate that prior to wave formation, geostrophic adjustment processes modified the structure of the mid-upper tropospheric jet streak by creating secondary jetlets to the southeast of the polar jet streak in proximity to the gravity wave generation region. This simulated restructuring of the mid-upper tropospheric jet streak is the result of a four stage process. During stage 1, the wind adjusts to the mass field as the jet streak exit region propagates into the inflection point between the upstream trough and downstream ridge in the height field. Stage 2 is initiated as the mass field is forced to adjust to the new ageostrophic wind field created during stage 1. Stage 3 is defined by a second geostrophic adjustment process occurring in a similar manner but to the south and east of the adjustment which occurs during stage 1. A low-level mesoscale jetlet is formed during stage 4 in response to the low-level pressure falls that are established during stage 3. The perturbation of this jetlet, caused by orographically-induced adiabatic and diabatic physical processes, is the likely mechanism responsible for the generation of the first and second episode of observed gravity waves. The dynamics responsible for this wave episode are discussed as differential surface sensible heating inducing an orographically-forced mountain-plains solenoid, resulting in the formation of additional mesoscale jetlets and internal gravity waves. Also discussed is how convective latent heating modifies the numerically simulated terrain-induced internal gravity waves, especially their amplitude and phase velocities, which provide better agreement with those wave characteristics observed in nature. Finally, the three-dimensional linear response of a zonally uniform barotropic flow in a vertically unbounded, continuously stratified, Boussinesq atmosphere which is perturbed from geostrophic equilibrium is investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120013630&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120013630&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwave%2Boscillation"><span>Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene</p> <p>2012-01-01</p> <p>In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively-coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data and performing simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (I) wave deepening associated with wave shortening and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with bOlll1dary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22130857-source-astrometric-anomalous-refraction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22130857-source-astrometric-anomalous-refraction"><span>ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.</p> <p>2013-03-15</p> <p>More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on themore » order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoJI.184.1379O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoJI.184.1379O"><span>Lithosphere-asthenosphere interaction beneath Ireland from joint inversion of teleseismic P-wave delay times and GRACE gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Donnell, J. P.; Daly, E.; Tiberi, C.; Bastow, I. D.; O'Reilly, B. M.; Readman, P. W.; Hauser, F.</p> <p>2011-03-01</p> <p>The nature and extent of the regional lithosphere-asthenosphere interaction beneath Ireland and Britain remains unclear. Although it has been established that ancient Caledonian signatures pervade the lithosphere, tertiary structure related to the Iceland plume has been inferred to dominate the asthenosphere. To address this apparent contradiction in the literature, we image the 3-D lithospheric and deeper upper-mantle structure beneath Ireland via non-linear, iterative joint teleseismic-gravity inversion using data from the ISLE (Irish Seismic Lithospheric Experiment), ISUME (Irish Seismic Upper Mantle Experiment) and GRACE (Gravity Recovery and Climate Experiment) experiments. The inversion combines teleseismic relative arrival time residuals with the GRACE long wavelength satellite derived gravity anomaly by assuming a depth-dependent quasilinear velocity-density relationship. We argue that anomalies imaged at lithospheric depths probably reflect compositional contrasts, either due to terrane accretion associated with Iapetus Ocean closure, frozen decompressional melt that was generated by plate stretching during the opening of the north Atlantic Ocean, frozen Iceland plume related magmatic intrusions, or a combination thereof. The continuation of the anomalous structure across the lithosphere-asthenosphere boundary is interpreted as possibly reflecting sub-lithospheric small-scale convection initiated by the lithospheric compositional contrasts. Our hypothesis thus reconciles the disparity which exists between lithospheric and asthenospheric structure beneath this region of the north Atlantic rifted margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720011350','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720011350"><span>Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stephens, T.; Adams, R.</p> <p>1972-01-01</p> <p>A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AMT....10.4601S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AMT....10.4601S"><span>Tomographic reconstruction of atmospheric gravity wave parameters from airglow observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Rui; Kaufmann, Martin; Ungermann, Jörn; Ern, Manfred; Liu, Guang; Riese, Martin</p> <p>2017-11-01</p> <p>Gravity waves (GWs) play an important role in the dynamics of the mesosphere and lower thermosphere (MLT). Therefore, global observations of GWs in the MLT region are of particular interest. The small scales of GWs, however, pose a major problem for the observation of GWs from space. We propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from atmospheric soundings. In our study, we simulate satellite observations of the rotational structure of the O2 A-band nightglow. A key element of the new method is the ability of the instrument or the satellite to operate in so-called <q>target mode</q>, i.e. to point at a particular point in the atmosphere and collect radiances at different viewing angles. These multi-angle measurements of a selected region allow for tomographic 2-D reconstruction of the atmospheric state, in particular of GW structures. The feasibility of this tomographic retrieval approach is assessed using simulated measurements. It shows that one major advantage of this observation strategy is that GWs can be observed on a much smaller scale than conventional observations. We derive a GW sensitivity function, and it is shown that <q>target mode</q> observations are able to capture GWs with horizontal wavelengths as short as ˜ 50 km for a large range of vertical wavelengths. This is far better than the horizontal wavelength limit of 100-200 km obtained from conventional limb sounding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880007739','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880007739"><span>Rayleigh lidar observations of gravity wave activity in the stratosphere and lower mesosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, M. S.; Gardner, C. S.; Liu, C. H.</p> <p>1987-01-01</p> <p>Forty-two monochromatic gravity wave events were observed in the 25 to 55 km altitude region during 16 nights of Rayleigh lidar measurements at Poker Flat, Alaska and Urbana, Illinois. The measured wave parameters were compared to previous radar and lidar measurements of gravity wave activity. Vertical wavelengths, lambda(z), between 2 and 11.5 km with vertical phase velocities, c(z), between 0.1 and 1 m/s were observed. Measured values of lambda(z) and c(z) were used to infer observed wave periods, T(ob), between 50 and 1000 minutes and horizontal wavelengths, lambda(x), from 25 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No seasonal variations were evident in the observed wave parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with T(ob), which is consistent with recent sodium lidar studies of monochromatic wave events near the mesopause. Measured power law relationships between the wave parameters were lambda(z) varies as T(ob) sup 0.96, lambda(x) varies as T(ob) sup 1.8, and c(z) varies as T(ob) sup -0.85. The kinetic energy calculated for the monochromatic wave events varied as k(z) sup -2, k(x) sup -1, and f(ob) sup -1.7. The atmospheric scale heights calculated for each observation date range from 6.5 to 7.6 km with a mean value of 7 km. The increase of rms wind perturbations with altitude indicated an amplitude growth length of 20.9 km. The altitude profile of kinetic energy density decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDE23005J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDE23005J"><span>Turbulence and dissipation in a computational model of Luzon Strait</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jalali, Masoud; Sarkar, Sutanu</p> <p>2014-11-01</p> <p>Generation sites for topographic internal gravity waves can also be sites of intense turbulence. Bottom-intensified flow at critical slopes leads to convective instability and turbulent overturns [Gayen & Sarkar (2011)]. A steep ridge with small excursion number, Ex , but large super criticality can lead to nonlinear features according to observations [Klymak et al. (2008)] and numerical simulations [Legg & Klymak (2008)]. The present work uses high resolution 3-D LES to simulate flow over a model with multiscale topography patterned after a cross-section of Luzon Strait, a double-ridge generation site which was the subject of the recent IWISE experiment. A 1:100 scaling of topography was employed and environmental parameters were chosen to match the slope criticality and Fr number in the field. Several turbulent zones were identified including breaking lee waves, critical slope boundary layer, downslope jets, internal wave beams, and vortical valley flows. The multiscale model topography has subridges where a local Ex may be defined. Wave breaking and turbulence at these subridges can be understood if the local value of Ex is employed when using the Ex -based regimes identified by Jalali et al. (2014) in their DNS of oscillating flow over a single triangular obstacle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JFM...492..207B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JFM...492..207B"><span>Remote recoil: a new wave mean interaction effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bühler, Oliver; McIntyre, Michael E.</p> <p>2003-10-01</p> <p>We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the atmosphere and may be important for the development of future gravity-wave parametrization schemes in numerical models of the global atmospheric circulation. At present, all such schemes neglect remote-recoil effects caused by horizontally inhomogeneous mean flows. Taking these effects into account should make the parametrization schemes significantly more accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667409-effects-kinetic-instabilities-small-scale-turbulence-earths-magnetosheath','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667409-effects-kinetic-instabilities-small-scale-turbulence-earths-magnetosheath"><span>THE EFFECTS OF KINETIC INSTABILITIES ON SMALL-SCALE TURBULENCE IN EARTH’S MAGNETOSHEATH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Breuillard, H.; Yordanova, E.; Vaivads, A.</p> <p>2016-09-20</p> <p>The Earth's magnetosheath is the region delimited by the bow shock and the magnetopause. It is characterized by highly turbulent fluctuations covering all scales from MHD down to kinetic scales. Turbulence is thought to play a fundamental role in key processes such as energy transport and dissipation in plasma. In addition to turbulence, different plasma instabilities are generated in the magnetosheath because of the large anisotropies in plasma temperature introduced by its boundaries. In this study we use high-quality magnetic field measurements from Cluster spacecraft to investigate the effects of such instabilities on the small-scale turbulence (from ion down tomore » electron scales). We show that the steepening of the power spectrum of magnetic field fluctuations in the magnetosheath occurs at the largest characteristic ion scale. However, the spectrum can be modified by the presence of waves/structures at ion scales, shifting the onset of the small-scale turbulent cascade toward the smallest ion scale. This cascade is therefore highly dependent on the presence of kinetic instabilities, waves, and local plasma parameters. Here we show that in the absence of strong waves the small-scale turbulence is quasi-isotropic and has a spectral index α ≈ −2.8. When transverse or compressive waves are present, we observe an anisotropy in the magnetic field components and a decrease in the absolute value of α . Slab/2D turbulence also develops in the presence of transverse/compressive waves, resulting in gyrotropy/non-gyrotropy of small-scale fluctuations. The presence of both types of waves reduces the anisotropy in the amplitude of fluctuations in the small-scale range.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2l2601Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2l2601Y"><span>Experimental quantification of nonlinear time scales in inertial wave rotating turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yarom, Ehud; Salhov, Alon; Sharon, Eran</p> <p>2017-12-01</p> <p>We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GReGr..50...73S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GReGr..50...73S"><span>The dark-baryonic matter mass relation for observational verification in Verlinde's emergent gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Jian Qi</p> <p>2018-06-01</p> <p>Recently, a new interesting idea of origin of gravity has been developed by Verlinde. In this scheme of emergent gravity, where horizon entropy, microscopic de Sitter states and relevant contribution to gravity are involved, an entropy displacement resulting from matter behaves as a memory effect and can be exhibited at sub-Hubble scales, namely, the entropy displacement and its "elastic" response would lead to emergent gravity, which gives rise to an extra gravitational force. Then galactic dark matter effects may origin from such extra emergent gravity. We discuss some concepts in Verlinde's theory of emergent gravity and point out some possible problems or issues, e.g., the gravitational potential caused by Verlinde's emergent apparent dark matter may no longer be continuous in spatial distribution at ordinary matter boundary (such as a massive sphere surface). In order to avoid the unnatural discontinuity of the extra emergent gravity of Verlinde's apparent dark matter, we suggest a modified dark-baryonic mass relation (a formula relating Verlinde's apparent dark matter mass to ordinary baryonic matter mass) within this framework of emergent gravity. The modified mass relation is consistent with Verlinde's result at relatively small scales (e.g., R<3h_{70}^{-1} Mpc). However, it seems that, compared with Verlinde's relation, at large scales (e.g., gravitating systems with R>3h_{70}^{-1} Mpc), the modified dark-baryonic mass relation presented here might be in better agreement with the experimental curves of weak lensing analysis in the recent work of Brouwer et al. Galactic rotation curves are compared between Verlinde's emergent gravity and McGaugh's recent model of MOND (Modified Newtonian Dynamics established based on recent galaxy observations). It can be found that Verlinde rotational curves deviate far from those of McGaugh MOND model when the MOND effect (or emergent dark matter) dominates. Some applications of the modified dark-baryonic mass relation inspired by Verlinde's emergent gravity will be addressed for galactic and solar scales. Potential possibilities to test this dark-baryonic mass relation as well as apparent dark matter effects, e.g., planetary perihelion precession at Solar System scale, will be considered. This may enable to place some constraints on the magnitudes of the MOND characteristic acceleration at the small solar scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2062L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2062L"><span>Three-dimensional turbulence-resolving modeling of the Venusian cloud layer and induced gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien</p> <p>2017-04-01</p> <p>The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM), therefore we developed an unprecedented 3D turbulence-resolving Large-Eddy Simulations (LES) Venusian model (Lefèvre et al, 2016 JGR Planets) using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates : two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique (LMD) Venus GCM using two different cloud models. Thus we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1D radiative-convective model. The resolved layer, taking place between 1.0 105 and 3.8 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of Kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.171...94P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.171...94P"><span>Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel</p> <p>2018-06-01</p> <p>Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NPGeo..22..289L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NPGeo..22..289L"><span>Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamb, K. G.; Warn-Varnas, A.</p> <p>2015-05-01</p> <p>The interaction of barotropic tides with Luzon Strait topography generates some of the world's largest internal solitary waves which eventually shoal and dissipate on the western side of the northern South China Sea. Two-dimensional numerical simulations of the shoaling of a single internal solitary wave at the site of the Asian Seas International Acoustic Experiment (ASIAEX) have been undertaken in order to investigate the sensitivity of the shoaling process to the stratification and the underlying bathymetry and to explore the influence of rotation. The bulk of the simulations are inviscid; however, exploratory simulations using a vertical eddy-viscosity confined to a near bottom layer, along with a no-slip boundary condition, suggest that viscous effects may become important in water shallower than about 200 m. A shoaling solitary wave fissions into several waves. At depths of 200-300 m the front of the leading waves become nearly parallel to the bottom and develop a very steep back as has been observed. The leading waves are followed by waves of elevation (pedestals) that are conjugate to the waves of depression ahead and behind them. Horizontal resolutions of at least 50 m are required to simulate these well. Wave breaking was found to occur behind the second or third of the leading solitary waves, never at the back of the leading wave. Comparisons of the shoaling of waves started at depths of 1000 and 3000 m show significant differences and the shoaling waves can be significantly non-adiabatic even at depths greater than 2000 m. When waves reach a depth of 200 m, their amplitudes can be more than 50% larger than the largest possible solitary wave at that depth. The shoaling behaviour is sensitive to the presence of small-scale features in the bathymetry: a 200 m high bump at 700 m depth can result in the generation of many mode-two waves and of higher mode waves. Sensitivity to the stratification is considered by using three stratifications based on summer observations. They primarily differ in the depth of the thermocline. The generation of mode-two waves and the behaviour of the waves in shallow water is sensitive to this depth. Rotation affects the shoaling waves by reducing the amplitude of the leading waves via the radiation of long trailing inertia-gravity waves. The nonlinear-dispersive evolution of these inertia-gravity waves results in the formation of secondary mode-one wave packets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18517931','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18517931"><span>Nearly scale invariant spectrum of gravitational radiation from global phase transitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jones-Smith, Katherine; Krauss, Lawrence M; Mathur, Harsh</p> <p>2008-04-04</p> <p>Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early Universe and we confirm that it is scale invariant, implying an observation of such a spectrum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in cosmic microwave background polarization or other gravity wave signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080032365&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgravity%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080032365&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgravity%2Bmodel"><span>A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, Dong L.; Zhang, Fuqing</p> <p>2004-01-01</p> <p>Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EP%26S...64..451B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EP%26S...64..451B"><span>Possibility of magnetospheric VLF response to atmospheric infrasonic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bespalov, P. A.; Savina, O. N.</p> <p>2012-06-01</p> <p>In this paper, we consider a model of the influence of atmospheric infrasonic waves on VLF magnetospheric whistler wave excitation. This excitation occurs as a result of a succession of processes: a modulation of the plasma density by acoustic-gravity waves in the ionosphere, a reflection of the whistlers by ionosphere modulation, and a modification of whistler wave generation in the magnetospheric resonator. A variation of the magnetospheric resonator Q-factor has an influence on the operation of the plasma magnetospheric maser, where the active substances are radiation belt particles, and the working modes are electromagnetic whistler waves. The magnetospheric maser is an oscillating system which can be responsible for the excitation of self-oscillations. These self-oscillations are frequently characterized by alternating stages of accumulation and precipitation of energetic particles into the ionosphere during a pulse of whistler emissions. Numerical and analytical investigations of the response of self-oscillations to harmonic oscillations of the whistler reflection coefficient shows that even a small modulation rate can significantly change magnetospheric VLF emissions. Our results can explain the causes of the modulation of energetic electron fluxes and whistler wave intensity with a time scale from 10 to 150 s in the day-side magnetosphere. Such quasi-periodic VLF emissions are often observed in the sub-auroral and auroral magnetosphere and have a noticeable effect on the formation of space weather phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1714937K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1714937K"><span>First tomographic observations of gravity waves by the infrared limb imager GLORIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Dörnbrack, Andreas; Eckermann, Stephen D.; Ern, Manfred; Friedl-Vallon, Felix; Kaufmann, Martin; Oelhaf, Hermann; Rapp, Markus; Strube, Cornelia; Riese, Martin</p> <p>2017-12-01</p> <p>Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860018300&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860018300&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWave%2BEnergy"><span>Gravity wave vertical energy flux at 95 km</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacob, P. G.; Jacka, F.</p> <p>1985-01-01</p> <p>A three-field photometer (3FP) located at Mt. Torrens near Adelaide, is capable of monitoring different airglow emissions from three spaced fields in the sky. A wheel containing up to six different narrow bandpass interference filters can be rotated, allowing each of the filters to be sequentially placed into each of the three fields. The airglow emission of interest is the 557.7 nm line which has an intensity maximum at 95 km. Each circular field of view is located at the apexes of an equilateral triangle centered on zenith with diameters of 5 km and field separations of 13 km when projected to the 95-km level. The sampling period was 30 seconds and typical data lengths were between 7 and 8 hours. The analysis and results from the interaction of gravity waves on the 557.7 nm emission layer are derived using an atmospheric model similar to that proposed by Hines (1960) where the atmosphere is assumed isothermal and perturbations caused by gravity waves are small and adiabatic, therefore, resulting in linearized equations of motion. In the absence of waves, the atmosphere is also considered stationary. Thirteen nights of quality data from January 1983 to October 1984, covering all seasons, are used in this analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006eom..book.....M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006eom..book.....M"><span>The Equations of Oceanic Motions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, Peter</p> <p>2006-10-01</p> <p>Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP51E3579M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP51E3579M"><span>A low-order model for long-range infrasound propagation in random atmospheric waveguides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Millet, C.; Lott, F.</p> <p>2014-12-01</p> <p>In numerical modeling of long-range infrasound propagation in the atmosphere, the wind and temperature profiles are usually obtained as a result of matching atmospheric models to empirical data. The atmospheric models are classically obtained from operational numerical weather prediction centers (NOAA Global Forecast System or ECMWF Integrated Forecast system) as well as atmospheric climate reanalysis activities and thus, do not explicitly resolve atmospheric gravity waves (GWs). The GWs are generally too small to be represented in Global Circulation Models, and their effects on the resolved scales need to be parameterized in order to account for fine-scale atmospheric inhomogeneities (for length scales less than 100 km). In the present approach, the sound speed profiles are considered as random functions, obtained by superimposing a stochastic GW field on the ECMWF reanalysis ERA-Interim. The spectral domain is binned by a large number of monochromatic GWs, and the breaking of each GW is treated independently from the others. The wave equation is solved using a reduced-order model, starting from the classical normal mode technique. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime (for which the coupling between the wave and the medium is weak), with a fixed number of propagating modes that can be obtained by rearranging the eigenvalues by decreasing Sobol indices. The most important feature of the stochastic approach lies in the fact that the model order (i.e. the number of relevant eigenvalues) can be computed to satisfy a given statistical accuracy whatever the frequency. As the low-order model preserves the overall structure of waveforms under sufficiently small perturbations of the profile, it can be applied to sensitivity analysis and uncertainty quantification. The gain in CPU cost provided by the low-order model is essential for extracting statistical information from simulations. The statistics of a transmitted broadband pulse are computed by decomposing the original pulse into a sum of modal pulses that propagate with different phase speeds and can be described by a front pulse stabilization theory. The method is illustrated on two large-scale infrasound calibration experiments, that were conducted at the Sayarim Military Range, Israel, in 2009 and 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JDE...264.4136S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JDE...264.4136S"><span>Upper bound on the slope of steady water waves with small adverse vorticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>So, Seung Wook; Strauss, Walter A.</p> <p>2018-03-01</p> <p>We consider the angle of inclination (with respect to the horizontal) of the profile of a steady 2D inviscid symmetric periodic or solitary water wave subject to gravity. There is an upper bound of 31.15° in the irrotational case [1] and an upper bound of 45° in the case of favorable vorticity [13]. On the other hand, if the vorticity is adverse, the profile can become vertical. We prove here that if the adverse vorticity is sufficiently small, then the angle still has an upper bound which is slightly larger than 45°.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19113472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19113472"><span>Universality of quantum gravity corrections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Das, Saurya; Vagenas, Elias C</p> <p>2008-11-28</p> <p>We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1692H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1692H"><span>Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffmann, Lars; Wu, Xue; Alexander, M. Joan</p> <p>2018-02-01</p> <p>Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23D2766H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23D2766H"><span>Thermal infrared sounding observations of lower atmospheric variances at Mars and their implications for gravity wave activity: a preliminary examination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heavens, N. G.</p> <p>2017-12-01</p> <p>It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850028203&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850028203&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTidal%2Bwaves"><span>On the generation and evolution of internal gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lansing, F. S.; Maxworthy, T.</p> <p>1984-01-01</p> <p>The tidal generation and evolution of internal gravity waves is investigated experimentally and theoretically using a two-dimensional two-layer model. Time-dependent flow is created by moving a profile of maximum submerged depth 7.7 cm through a total stroke of 29 cm in water above a freon-kerosene mixture in an 8.6-m-long 30-cm-deep 20-cm-wide transparent channel, and the deformation of the fluid interface is recorded photographically. A theoretical model of the interface as a set of discrete vortices is constructed numerically; the rigid structures are represented by a source distribution; governing equations in Lagrangian form are obtained; and two integrodifferential equations relating baroclinic vorticity generation and source-density generation are derived. The experimental and computed results are shown in photographs and graphs, respectively, and found to be in good agreement at small Froude numbers. The reasons for small discrepancies in the position of the maximum interface displacement at large Froude numbers are examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33A2582R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33A2582R"><span>Universal Power Law of the Gravity Wave Manifestation in the AIM CIPS Polar Mesospheric Cloud Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rong, P. P.; Yue, J.; Russell, J. M., III; Siskind, D. E.; Randall, C. E.</p> <p>2017-12-01</p> <p>A large ensemble of gravity waves (GWs) resides in the PMCs and we aim to extract the universal law that governs the wave display throughout the GW population. More specifically, we examined how wave display morphology and clarity level varies throughout the wave population manifested through the PMC albedo data. Higher clarity refers to more distinct exhibition of the features which often correspond to larger variances and better organized nature. A gravity wave tracking algorithm is designed and applied to the PMC albedo data taken by the AIM Cloud Imaging and Particle Size (CIPS) instrument to obtain the gravity wave detections throughout the two northern summers in 2007 and 2010. The horizontal wavelengths in the range of 20-60km are the focus of the study because they are the most commonly observed and readily captured in the CIPS orbital strips. A 1-dimensional continuous wavelet transform (CWT) is applied to PMC albedo along all radial directions within an elliptical region that has a radius of 400 km and an axial ratio of 0.65. The center of the elliptical region moves around the CIPS orbital strips so that waves at different locations and orientations can be captured. It shows that the CWT albedo power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution via removing the dependence of the albedo power on the background cloud brightness because we tend to examine the wave morphology beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution, and at three brightness levels, to represent the high, medium, and low albedo power categories. For these cases the albedo CWT power spectra follow exponential decay toward smaller scales. The high albedo power has the most rapid decay (i.e., exponent=-3.2) and corresponds to the most distinct wave display. Overall higher albedo power and more rapid decay both contributed to the more distinct display. The wave display becomes increasingly more blurry for the medium and low power categories that hold the exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can be collapsed irrespective of the brightness levels but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18487123','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18487123"><span>On the stability of lumps and wave collapse in water waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akylas, T R; Cho, Yeunwoo</p> <p>2008-08-13</p> <p>In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23112101H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23112101H"><span>The Probe of Inflation and Cosmic Origins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanany, Shaul; Inflation Probe Mission Study Team</p> <p>2018-01-01</p> <p>The Probe of Inflation and Cosmic Origins will map the polarization of the cosmic microwave background over the entire sky with unprecedented sensitivity. It will search for gravity wave signals from the inflationary epoch, thus probing quantum gravity and constraining the energy scale of inflation; it will test the standard model of particle physics by measuring the number of light particles in the Universe and the mass of the neutrino; it will elucidate the nature of dark matter and search for new forms of matter in the early Universe; it will constrain star formation history over cosmic time; and it will determine the mechanisms of structure formation from galaxy cluster to stellar scales. I will review the status of design of this probe-scale mission.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH51C..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH51C..01H"><span>Tsunami-Generated Atmospheric Gravity Waves and Their Atmospheric and Ionospheric Effects: a Review and Some Recent Modeling Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hickey, M. P.</p> <p>2017-12-01</p> <p>Tsunamis propagate on the ocean surface at the shallow water phase speed which coincides with the phase speed of fast atmospheric gravity waves. The forcing frequency also corresponds with those of internal atmospheric gravity waves. Hence, the coupling and effective forcing of gravity waves due to tsunamis is particularly effective. The fast horizontal phase speeds of the resulting gravity waves allows them to propagate well into the thermosphere before viscous dissipation becomes strong, and the waves can achieve nonlinear amplitudes at these heights resulting in large amplitude traveling ionospheric disturbances (TIDs). Additionally, because the tsunami represents a moving source able to traverse large distances across the globe, the gravity waves and associated TIDs can be detected at large distances from the original tsunami (earthquake) source. Although it was during the mid 1970s when the tsunami source of gravity waves was first postulated, only relatively recently (over the last ten to fifteen years) has there has been a surge of interest in this research arena, driven largely by significant improvements in measurement technologies and computational capabilities. For example, the use of GPS measurements to derive total electron content has been a particularly powerful technique used to monitor the propagation and evolution of TIDs. Monitoring airglow variations driven by atmospheric gravity waves has also been a useful technique. The modeling of specific events and comparison with the observed gravity waves and/or TIDs has been quite revealing. In this talk I will review some of the most interesting aspects of this research and also discuss some interesting and outstanding issues that need to be addressed. New modeling results relevant to the Tohoku tsunami event will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010321','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010321"><span>Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene</p> <p>2012-01-01</p> <p>In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030000473&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030000473&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTidal%2Bwaves"><span>Long-term Global Morphology of Gravity Wave Activity Using UARS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eckermann, Stephen D.; Jackman, C. (Technical Monitor)</p> <p>2000-01-01</p> <p>An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4546E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4546E"><span>Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.</p> <p></p> <p>Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1337K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1337K"><span>Acoustic-gravity waves, theory and application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadri, Usama; Farrell, William E.; Munk, Walter</p> <p>2015-04-01</p> <p>Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11017539','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11017539"><span>Two-dimensional evolution equation of finite-amplitude internal gravity waves in a uniformly stratified fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kataoka; Tsutahara; Akuzawa</p> <p>2000-02-14</p> <p>We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/826770','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/826770"><span>Leptogenesis from Gravitational Waves and CP Violation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alexander, S</p> <p>2004-03-05</p> <p>We present a new mechanism for creating the observed cosmic matter-antimatter asymmetry which satisfies all three Sakharov conditions from one common thread, gravitational waves. We generate lepton number through the gravitational anomaly in the lepton number current. The source term comes from elliptically polarizated gravity waves that are produced during inflation if the inflaton field contains a CP-odd component. In simple inflationary scenarios, the generated matter asymmetry is very small. We describe some special conditions in which our mechanism can give a matter asymmetry of realistic size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016eppg.confE..78M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016eppg.confE..78M"><span>Infinite derivative gravity: non-singular cosmology & blackhole solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazumdar, A.</p> <p></p> <p>Both Einstein’s theory of General Relativity and Newton’s theory of gravity possess a short distance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and small distances. I will discuss how one can potentially resolve these fundamental problems at a classical level and quantum level. In particular, I will discuss infinite derivative theories of gravity, where gravitational interactions become weaker in the ultraviolet, and therefore resolving some of the classical singularities, such as Big Bang and Schwarzschild singularity for compact non-singular objects with mass up to 1025 grams. In this lecture, I will discuss quantum aspects of infinite derivative gravity and discuss few aspects which can make the theory asymptotically free in the UV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010068934','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010068934"><span>Cloud Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980218859','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980218859"><span>Long-Term Global Morphology of Gravity Wave Activity Using UARS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.</p> <p>1998-01-01</p> <p>Progress in research into the global morphology of gravity wave activity using UARS data is described for the period March-June, 1998. Highlights this quarter include further progress in the analysis and interpretation of CRISTA temperature variances; model-generated climatologies of mesospheric gravity wave activity using the HWM-93 wind and temperature model; and modeling of gravity wave detection from space-based platforms. Preliminary interpretations and recommended avenues for further analysis are also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800030435&hterms=Storm+Japan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DStorm%2BJapan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800030435&hterms=Storm+Japan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DStorm%2BJapan"><span>Dynamics of severe storms through the study of thermospheric-tropospheric coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hung, R. J.; Smith, R. E.</p> <p>1979-01-01</p> <p>Atmospheric acoustic-gravity waves associated with severe local thunderstorms, tornadoes, and hurricanes can be studied through the coupling between the thermosphere and the troposphere. Reverse group ray tracing computations of acoustic-gravity waves, observed by an ionospheric Doppler sounder array, show that the wave sources are in the neighborhood of storm systems and the waves are excited prior to the storms. It is suggested that the overshooting and ensuing collapse of convective turrets may be responsible for generating the acoustic-gravity waves observed. The results of this study also show that the study of wave-wave resonant interactions may be a potential tool for investigating the dynamical behavior of severe storm systems using ionospheric observations of atmospheric acoustic-gravity waves associated with severe storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA11A..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA11A..01D"><span>Gravity Wave Predictability and Dynamics in Deepwave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.</p> <p>2015-12-01</p> <p>The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity waves that vertically propagate upward through the stratosphere will be addressed further in the presentation. We examine RF23 during DEEPWAVE, which sampled deep propagating gravity waves over Auckland and Macquarie Islands. We provide insight into the gravity wave dynamics through applying the COAMPS and its adjoint at high resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5856071','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5856071"><span>Gravity Wave Dynamics in a Mesospheric Inversion Layer: 1. Reflection, Trapping, and Instability Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.</p> <p>2018-01-01</p> <p>Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..626F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..626F"><span>Gravity Wave Dynamics in a Mesospheric Inversion Layer: 1. Reflection, Trapping, and Instability Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fritts, David C.; Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.</p> <p>2018-01-01</p> <p>An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large-amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller-amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082210','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082210"><span>Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.</p> <p>2004-01-01</p> <p>In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000398','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000398"><span>Dynamics of Granular Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Behringer, Robert P.</p> <p>1996-01-01</p> <p>Granular materials exhibit a rich variety of dynamical behavior, much of which is poorly understood. Fractal-like stress chains, convection, a variety of wave dynamics, including waves which resemble capillary waves, l/f noise, and fractional Brownian motion provide examples. Work beginning at Duke will focus on gravity driven convection, mixing and gravitational collapse. Although granular materials consist of collections of interacting particles, there are important differences between the dynamics of a collections of grains and the dynamics of a collections of molecules. In particular, the ergodic hypothesis is generally invalid for granular materials, so that ordinary statistical physics does not apply. In the absence of a steady energy input, granular materials undergo a rapid collapse which is strongly influenced by the presence of gravity. Fluctuations on laboratory scales in such quantities as the stress can be very large-as much as an order of magnitude greater than the mean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyA..465..725A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyA..465..725A"><span>Intermittent gravity-driven flow of grains through narrow pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alvarez, Carlos A.; de Moraes Franklin, Erick</p> <p>2017-01-01</p> <p>Grain flows through pipes are frequently found in various settings, such as in pharmaceutical, chemical, petroleum, mining and food industries. In the case of size-constrained gravitational flows, density waves consisting of alternating high- and low-compactness regions may appear. This study investigates experimentally the dynamics of density waves that appear in gravitational flows of fine grains through vertical and slightly inclined pipes. The experimental device consisted of a transparent glass pipe through which different populations of glass spheres flowed driven by gravity. Our experiments were performed under controlled ambient temperature and relative humidity, and the granular flow was filmed with a high-speed camera. Experimental results concerning the length scales and celerities of density waves are presented, together with a one-dimensional model and a linear stability analysis. The analysis exhibits the presence of a long-wavelength instability, with the most unstable mode and a cut-off wavenumber whose values are in agreement with the experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31C..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31C..07D"><span>Gravity Waves in the Presence of Shear during DEEPWAVE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.</p> <p>2016-12-01</p> <p>The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999APS..DFD..GE03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999APS..DFD..GE03B"><span>Transport equations for linear surface waves with random underlying flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bal, Guillaume; Chou, Tom</p> <p>1999-11-01</p> <p>We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....10061S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....10061S"><span>Spectral evolution and extreme value analysis of non-linear numerical simulations of narrow band random surface gravity waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Socquet-Juglard, H.; Dysthe, K. B.; Trulsen, K.; Liu, J.; Krogstad, H. E.</p> <p>2003-04-01</p> <p>Numerical simulations of a narrow band gaussian spectrum of random surface gravity waves have been carried out in two and three spatial dimensions [7]. Different types of non-linear Schr&{uml;o}dinger equations, [1] and [4], have been used in these simulations. Simulations have now been carried with a JONSWAP spectrum associated with a spreading function of the type cosine-squared [5]. The evolution of the spectrum, skewness, kurtosis, ... will be presented. In addition, some results about stochastic properties of the surface will be shown. Based on the approach found in [2], [3] and [6], the results are presented in terms of deviations from linear Gaussian theory and the standard second order small slope perturbation theory. begin{thebibliography}{9} bibitem{kk96} Trulsen, K. &Dysthe, K. B. (1996). A modified nonlinear Schr&{uml;o}dinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, pp. 281-289. bibitem{BK2000} Krogstad, H.E. and S.F. Barstow (2000). A uniform approach to extreme value analysis of ocean waves, Proc. ISOPE'2000, Seattle, USA, 3, pp. 103-108. bibitem{PRK} Prevosto, M., H. E. Krogstad and A. Robin (2000). Probability distributions for maximum wave and crest heights, Coast. Eng., 40, 329-360. bibitem{ketal} Trulsen, K., Kliakhandler, I., Dysthe, K. B. &Velarde, M. G. (2000) On weakly nonlinear modulation of waves on deep water, Phys. Fluids, 12, pp. L25-L28. bibitem{onorato} Onorato, M., Osborne, A.R. and Serio, M. (2002) Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, pp. 2432-2437. bibitem{BK2002} Krogstad, H.E. and S.F. Barstow (2002). Analysis and Applications of Second Order Models for the Maximum Crest height, % Proc. 21nd Int. Conf. Offshore Mechanics and Arctic Engineering, Oslo. Paper no. OMAE2002-28479. bibitem{JFMP} Dysthe, K. B., Trulsen, K., Krogstad, H. E. and Socquet-Juglard, H. (2002, in press) Evolution of a narrow band spectrum of random surface gravity waves, J. Fluid Mech.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990007911&hterms=rolando+garcia&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990007911&hterms=rolando+garcia&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drolando%2Bgarcia"><span>Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.</p> <p>1996-01-01</p> <p>An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712880R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712880R"><span>Inertia gravity waves in a rotating, differentially heated annulus with an upper free surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randriamampianina, Anthony; Harlander, Uwe; Vincze, Miklos; von Larcher, Thomas; Viazzo, Stephane</p> <p>2015-04-01</p> <p>Inertia gravity waves (IGWs) are ubiquitous in the atmosphere and oceans, and are known to play a fundamental role in a wide variety of processes, among others the induction and modulation of turbulence. Observations and simulations have revealed their spontaneous occurrence simultaneously with the onset of baroclinic instability, recognized to be one of the dominant energetic processes in the large-scale atmospheric and oceanic circulations. In spite of intensive research activities these last decades, the generation mechanism and the propagation of IGWs, as well as their interaction with large-scale structures triggering locally chaotic motions, remain poorly understood. A better understanding of these phenomena is therefore mandatory for the development of IGW's parameterization schemes actually required for numerical global weather prediction. A combined laboratory experiment and direct numerical simulations study is proposed for the detailed investigations of instabilities arising within a differentially heated rotating annulus, the baroclinic cavity. The configuration corresponds to an experimental setup used at BTU, Cottbus Senftenberg, Germany [1], characterized by an open upper surface and filled with water (Pr = 7). Infrared thermography and simultaneous kalliroscope visualization in horizontal planes, illuminated by a laser sheet, have been applied to detect the surface signatures of IGWs. These findings confirmed the computations carried out by three different numerical approaches, using either spectral methods, high order compact finite difference scheme (M2P2, Marseille), or the EULAG code (Freie Universitaet Berlin). These small-scale features have been observed in addition to those developing along the inner cold cylinder, previously identified by simulations in a closed cavity, filled with a liquid defined by Pr = 16 [2]. These new IGWs show characteristics similar to the ones obtained by [3] at the exit of the meandering jet between the cyclonic and anticyclonic parts of the baroclinic waves. References [1] Harlander, U. et al. Exp. Fluids 52:1077-1087, 2012. [2] Randriamampianina, A. C. R. M'ecanique 341:547-552, 2013. [3] Plougonven, R. & Snyder, C. J. Atmos Sci. 64:2502-2520, 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23715132','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23715132"><span>Experimental observation of negative effective gravity in water waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming</p> <p>2013-01-01</p> <p>The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3665962','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3665962"><span>Experimental Observation of Negative Effective Gravity in Water Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming</p> <p>2013-01-01</p> <p>The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33B..04E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33B..04E"><span>Revisiting the "thermospheric spoon" mechanism of the thermosphere and ionosphere semiannual oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emmert, J. T.; Jones, M., Jr.; Picone, J. M.; Drob, D. P.; Siskind, D. E.</p> <p>2017-12-01</p> <p>The thermosphere-ionosphere (T-I) exhibits a strong ( ±20%) semiannual oscillation (SAO) in globally averaged mass and electron density; the source of the SAO is still unclear. Two prominent proposed mechanisms are: (1) the "thermospheric spoon" mechanism (TSM) [Fuller-Rowell, 1998], which is a resolved-scale, seasonally dependent mixing process that drives an SAO through interhemispheric meridional and vertical transport of constituents and (2) seasonal variations in eddy diffusion (Kzz) associated with breaking gravity waves ("Kzz hypothesis") [Qian et al. 2009]. In this study, we use the National Center for atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to investigate the source of the T-I SAO. We performed numerical experiments over a continuous calendar year assuming constant solar and geomagnetic forcing and several configurations of lower atmospheric tidal forcing, lower atmospheric gravity wave forcing, and the obliquity of Earth's rotational axis with respect to the ecliptic plane. The prominent results are as follows: (1) In the absence of lower atmospheric gravity wave and tidal forcing a 30% SAO in globally averaged mass density (with respect to its global annual average) is simulated in the TIME-GCM, suggesting that seasonally-varying Kzz driven by breaking gravity waves is not the primary driver of the T-I SAO; (2) When the Earth's obliquity is set to zero (i.e., perpetual equinox) the T-I SAO is reduced to 2%; (3) When Earth's obliquity is set to 11.75° (i.e., half its actual value), the mass density SAO is 10%; (4) The meridional and vertical transport patterns in the simulations are consistent with the TSM, except that coupling with the upper mesospheric circulation also contributes to the T-I SAO; and (5) Inclusion of lower atmospheric tidal and gravity wave forcing weakens the TSM and thus damps the T-I SAO. These results suggest that the TSM accurately describes the primary source of the T-I SAO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25167243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25167243"><span>Beyond concordance cosmology with magnification of gravitational-wave standard sirens.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Camera, Stefano; Nishizawa, Atsushi</p> <p>2013-04-12</p> <p>We show how future gravitational-wave detectors would be able to discriminate between the concordance Λ cold dark matter cosmological model and up-to-date competing alternatives, e.g., dynamical dark energy (DE) models or modified gravity (MG) theories. Our method consists of using the weak-lensing magnification effect that affects a standard-siren signal because of its traveling through the Universe's large scale structure. As a demonstration, we present constraints on DE and MG from proposed gravitational-wave detectors, namely Einstein Telescope and DECI-Hertz Interferometer Gravitational-Wave Observatory and Big-Bang Observer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..519V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..519V"><span>Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vals, M.</p> <p>2017-09-01</p> <p>We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..604L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..604L"><span>Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Lu; Ran, Lingkun; Gao, Shouting</p> <p>2018-05-01</p> <p>A numerical experiment was performed using the Weather Research and Forecasting (WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods (Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis) were applied. During the storm, inertia-gravity waves appeared at heights of 10-14 km, with periods of 80-100 min and wavelengths of 40-50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15-20 m s-1. Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFD.A6006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFD.A6006M"><span>Fluid mechanical scaling of impact craters in unconsolidated granular materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miranda, Colin S.; Dowling, David R.</p> <p>2015-11-01</p> <p>A single scaling law is proposed for the diameter of simple low- and high-speed impact craters in unconsolidated granular materials where spall is not apparent. The scaling law is based on the assumption that gravity- and shock-wave effects set crater size, and is formulated in terms of a dimensionless crater diameter, and an empirical combination of Froude and Mach numbers. The scaling law involves the kinetic energy and speed of the impactor, the acceleration of gravity, and the density and speed of sound in the target material. The size of the impactor enters the formulation but divides out of the final empirical result. The scaling law achieves a 98% correlation with available measurements from drop tests, ballistic tests, missile impacts, and centrifugally-enhanced gravity impacts for a variety of target materials (sand, alluvium, granulated sugar, and expanded perlite). The available measurements cover more than 10 orders of magnitude in impact energy. For subsonic and supersonic impacts, the crater diameter is found to scale with the 1/4- and 1/6-power, respectively, of the impactor kinetic energy with the exponent crossover occurring near a Mach number of unity. The final empirical formula provides insight into how impact energy partitioning depends on Mach number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21308623-large-scale-structure-brane-induced-gravity-perturbation-theory','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21308623-large-scale-structure-brane-induced-gravity-perturbation-theory"><span>Large-scale structure in brane-induced gravity. I. Perturbation theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Scoccimarro, Roman</p> <p>2009-11-15</p> <p>We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120m1101A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120m1101A"><span>Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amendola, Luca; Kunz, Martin; Saltas, Ippocratis D.; Sawicki, Ignacy</p> <p>2018-03-01</p> <p>The coincident detection of gravitational waves (GW) and a gamma-ray burst from a merger of neutron stars has placed an extremely stringent bound on the speed of GWs. We showed previously that the presence of gravitational slip (η ) in cosmology is intimately tied to modifications of GW propagation. This new constraint implies that the only remaining viable source of gravitational slip is a conformal coupling to gravity in scalar-tensor theories, while viable vector-tensor theories cannot now generate gravitational slip at all. We discuss structure formation in the remaining viable models, demonstrating that (i) the dark-matter growth rate must now be at least as fast as in general relativity (GR), with the possible exception of that beyond the Horndeski model, and (ii) if there is any scale dependence at all in the slip parameter, it is such that it takes the GR value at large scales. We show a consistency relation that must be violated if gravity is modified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920059645&hterms=hinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dhinson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920059645&hterms=hinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dhinson"><span>Radio science investigations with Mars Observer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tyler, G. L.; Balmino, Georges; Hinson, David P.; Sjogren, William L.; Smith, David E.; Woo, Richard; Asmar, Sami W.; Connally, Michael J.; Hamilton, Carole L.; Simpson, Richard A.</p> <p>1992-01-01</p> <p>Mars Observer radio science investigations focus on two major areas of study: the gravity field and the atmosphere of Mars. Measurement accuracies expressed as an equivalent spacecraft velocity are expected to be of the order of 100 microns/s (for both types of investigations) from use of an improved radio transponder for two-way spacecraft tracking and a highly stable on-board oscillator for atmospheric occultation measurements. Planned gravity investigations include a combination of classical and modern elements. A spherical harmonic (or equivalent) field model of degree and order in the range 30-50 will be obtained, while interpretation will be in terms of internal stress and density models for the planet, using the topography to be obtained from the Mars Observer laser altimeter. Atmospheric investigations will emphasize precision measurement of the thermal structure and dynamics in the polar regions, which are regularly accessible as a result of the highly inclined orbit. Studies based on the measurements will include polar processes, cycling of the atmosphere between the poles, traveling baroclinic disturbances, small-scale waves and turbulence, the planetary boundary layer, and (possibly) the variability and altitude of the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRD..11519123F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRD..11519123F"><span>Southern Argentina Agile Meteor Radar: Initial assessment of gravity wave momentum fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fritts, D. C.; Janches, D.; Hocking, W. K.</p> <p>2010-10-01</p> <p>The Southern Argentina Agile Meteor Radar (SAAMER) was installed on Tierra del Fuego (53.8°S) in May 2008 and has been operational since that time. This paper describes tests of the SAAMER ability to measure gravity wave momentum fluxes and applications of this capability during different seasons. Test results for specified mean, tidal, and gravity wavefields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the distribution of meteors throughout the diurnal cycle and averaged over a month allows characterization of both monthly mean profiles and diurnal variations of the gravity wave momentum fluxes. Applications of the same methods for real data suggest confidence in the monthly mean profiles and the composite day diurnal variations of gravity wave momentum fluxes at altitudes where meteor counts are sufficient to yield good statistical fits to the data. Monthly mean zonal winds and gravity wave momentum fluxes exhibit anticorrelations consistent with those seen at other midlatitude and high-latitude radars during austral spring and summer, when no strong local gravity wave sources are apparent. When stratospheric variances are significantly enhanced over the Drake Passage “hot spot” during austral winter, however, MLT winds and momentum fluxes over SAAMER exhibit very different correlations that suggest that MLT dynamics are strongly influenced by strong local gravity wave sources within this “hot spot.” SAAMER measurements of mean zonal and meridional winds at these times and their differences from measurements at a conjugate site provide further support for the unusual momentum flux measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASTP.159....7J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASTP.159....7J"><span>Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.</p> <p>2017-06-01</p> <p>There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23405086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23405086"><span>Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco</p> <p>2013-01-01</p> <p>Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3566097','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3566097"><span>Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco</p> <p>2013-01-01</p> <p>Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship. PMID:23405086</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97b4035M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97b4035M"><span>Complexity-action duality of the shock wave geometry in a massive gravity theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miao, Yan-Gang; Zhao, Long</p> <p>2018-01-01</p> <p>On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA31B..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA31B..07S"><span>Vertical Coupling and Observable Effects of Evanescent Acoustic-Gravity Waves in the Mesosphere and Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snively, J. B.</p> <p>2017-12-01</p> <p>Our understanding of acoustic-gravity wave (AGW) dynamics at short periods ( minutes to hour) and small scales ( 10s to 100s km) in the mesosphere, thermosphere, and ionosphere (MTI) has benefited considerably from horizontally- and vertically-resolved measurements of layered species. These include, for example, imagery of the mesopause ( 80-100 km) airglow layers and vertical profiles of the sodium layer via lidar [e.g., Taylor and Hapgood, PSS, 36(10), 1988; Miller et al., PNAS, 112(49), 2015; Cao et al., JGR, 121, 2016]. In the thermosphere-ionosphere, AGW perturbations are also revealed in electron density profiles [Livneh et al., JGR, 112, 2007] and maps of total electron content (TEC) from global positioning system (GPS) receivers [Nishioka et al., GRL, 40(21), 2013]. To the extent that AGW signatures in layered species can be quantified, and the ambient atmospheric state measured or estimated, numerical models enable investigations of dynamics at intermediate altitudes that cannot readily be measured (e.g., above and below the 80-100 km mesopause region). Here, new 2D and 3D versions of the Model for Acoustic-Gravity Wave Interactions and Coupling (MAGIC) [e.g., Snively and Pasko, JGR, 113(A6), 2008, and references therein] are introduced and applied to investigate spectra of short-period AGW that can pass through the mesopause region to reach and impact the thermosphere. Simulation case studies are constructed to investigate both their signatures through the hydroxyl airglow layer [e.g., Snively et al., JGR 115(A11), 2010] and their effects above. These waves, with large vertical wavelengths and fast horizontal phase speeds, also include those that may be subject to evanescence at mesopause or in the middle-thermosphere, with potential for ducting or dissipation between where static stability is higher. Despite complicating interpretations of momentum fluxes, evanescence plays an under-appreciated role in vertical coupling by AGW [Walterscheid and Hecht, JGR, 108(D11), 2003]; it enables rapid ascents via tunneling and in some cases may enhance observable signatures. Results provide insight into these complications, and suggest opportunities to better-interpret signatures of waves that may have large effects via vertical coupling into the thermosphere despite limited impacts on mean flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18..371B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18..371B"><span>Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef</p> <p>2018-01-01</p> <p>Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2j3901B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2j3901B"><span>Understanding the destabilizing role for surface tension in planar shear flows in terms of wave interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.</p> <p>2017-10-01</p> <p>Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Ap%26SS.362...28O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Ap%26SS.362...28O"><span>Some classes of gravitational shock waves from higher order theories of gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oikonomou, V. K.</p> <p>2017-02-01</p> <p>We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920018191','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920018191"><span>Ionospheric gravity wave measurements with the USU dynasonde</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berkey, Frank T.; Deng, Jun Yuan</p> <p>1992-01-01</p> <p>A method for the measurement of ionospheric Gravity Wave (GW) using the USU Dynasonde is outlined. This method consists of a series of individual procedures, which includes functions for data acquisition, adaptive scaling, polarization discrimination, interpolation and extrapolation, digital filtering, windowing, spectrum analysis, GW detection, and graphics display. Concepts of system theory are applied to treat the ionosphere as a system. An adaptive ionogram scaling method was developed for automatically extracting ionogram echo traces from noisy raw sounding data. The method uses the well known Least Mean Square (LMS) algorithm to form a stochastic optimal estimate of the echo trace which is then used to control a moving window. The window tracks the echo trace, simultaneously eliminating the noise and interference. Experimental results show that the proposed method functions as designed. Case studies which extract GW from ionosonde measurements were carried out using the techniques described. Geophysically significant events were detected and the resultant processed results are illustrated graphically. This method was also developed for real time implementation in mind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3820M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3820M"><span>Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.</p> <p>2018-05-01</p> <p>The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011epsc.conf..107K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011epsc.conf..107K"><span>Hartley and Itokawa: small comet and asteroid with similar morphologies and structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G. G.</p> <p>2011-10-01</p> <p>" Orbits ma ke s tructures " [1-3]. This three-word sentence means that as all cosmic bodies moves in non-circular keplerian orbits they all are subjected to an action of inertia -gravity warping waves. These waves arise in bodies as a result of periodically changing accelerations causing inertia-gravity forces. These forces are absorbed by bodies masses and make them to warp. This warping is smoothed by gravity making globular shapes of the larger bodies. But smaller bodies with rather weak gravity keep their warped shapes. The wave nature warping happens in four interfering direct ions (ortho - and diagonal) and in various wavelengths. The fundamental wave 1 long 2π R makes ubiquitous tectonic dichotomy: an oppos ition of the uplifted segment-hemisphere and the subsided one. For small bodies a result of this is in their convexo-concave shape [3] (Fig. 1-7). The uplifted bulging segment expands and is breaking by cracks, faults, rifts. The opposed subsided concave segment contracts. As a result in the middle of an oblong body is formed a narrow thoroughly squeezed and degassed portion - a neck or waist (wringed out wet linen). Subsequently here at a weakened place could happen a break - formation of binaries, polycomponental bodies, satellites. Figures 1 to 4 show development stages of small bodies leading to a full separation of two parts. Traces of warping waves of four directions are often seen on surfaces of many celestial bodies as cross -cutting lineations. A recent example of the small core of the Hartley 2 comet (2 km long) is very impressive. At received points of view are clearly seen at least three ortho- and diagonal lineations often marked by small outgassing craters (Fig. 1). Crossing lineations produce square forms (craters ) earlier s een on the Eros ' s urface. Wave comp res s ion lineations make the Hart ley 2 t o appear as a wafer ca ke. A " wa is t" (neck) is formed as a res ult of nearing a concave depression, from one side, and deep cracks at the convex bulge, from the antipodean side (Fig. 5). The smaller rocky asteroid Itokawa (0.5 km long, Fig. 2) is surprisingly similar in shape and structure to the icy core of Hart ley. It is also bent and rich in cross-cutting lineations o 4 direct ions marked by small holes-craters. But here they are ext inct and lack of gas -dust jets. One sees a transition from a volat ile rich comet core to an ext inct mostly rocky mass - asteroid. In both cases (comet core and as teroid) in the middle develops a smooth "wais t". The bulged convex and antipodal concave segments -hemispheres in rotating bodies require somewhat different densities of composing them masses to equilibrate angular momentum of two halves (compare with the Ea rth's hemis pheres : the eas tern continental "granitic" and wes tern Pacific "bas altic"). The near-IR images of two asteroids (Fig.6-7) confirm this. The concave and convex s ides are co mpos itionally d ifferent. In the Eros ' cas e the concave s ide is rich er in pyroxene, thus denser.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663957-internal-gravity-waves-magnetized-solar-atmosphere-magnetic-field-effects','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663957-internal-gravity-waves-magnetized-solar-atmosphere-magnetic-field-effects"><span>Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vigeesh, G.; Steiner, O.; Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de</p> <p></p> <p>Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in themore » Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDL31008M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDL31008M"><span>Time and space analysis of turbulence of gravity surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mordant, Nicolas; Aubourg, Quentin; Viboud, Samuel; Sommeria, Joel</p> <p>2016-11-01</p> <p>Wave turbulence is a statistical state made of a very large number of nonlinearly interacting waves. The Weak Turbulence Theory was developed to describe such a situation in the weakly nonlinear regime. Although, oceanic data tend to be compatible with the theory, laboratory data fail to fulfill the theoretical predictions. A space-time resolved measurement of the waves have proven to be especially fruitful to identify the mechanism at play in turbulence of gravity-capillary waves. We developed an image processing algorithm to measure the motion of the surface of water with both space and time resolution. We first seed the surface with slightly buoyant polystyrene particles and use 3 cameras to reconstruct the surface. Our stereoscopic algorithm is coupled to PIV so that to obtain both the surface deformation and the velocity of the water surface. Such a coupling is shown to improve the sensitivity of the measurement by one order of magnitude. We use this technique to probe the existence of weakly nonlinear turbulence excited by two small wedge wavemakers in a 13-m diameter wave flume. We observe a truly weakly nonlinear regime of isotropic wave turbulence. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 647018-WATU).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860018283&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbalance%2Bgeneral','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860018283&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbalance%2Bgeneral"><span>Equatorial waves in the NCAR stratospheric general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boville, B. A.</p> <p>1985-01-01</p> <p>Equatorially trapped wave modes are very important in the tropical stratospheric momentum balance. Kelvin waves and mixed Rossby-gravity waves are believed to be responsible for the quasi-biennial oscillation of the zonal winds in the equatorial lower stratosphere. Both Kelvin and mixed Rossby-gravity waves have been identified in observations and in numerical models. Kelvin and mixed Rossby-gravity waves are identified in a general circulation model extending from the surface into the mesosphere and looks at the effect on the waves of lowering the top of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6168V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6168V"><span>Properties of internal solitary waves in a symmetric three-layer fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vladykina, E. A.; Polukhina, O. E.; Kurkin, A. A.</p> <p>2009-04-01</p> <p>Though all the natural media have smooth density stratifications (with the exception of special cases such as sea surface, inversion layer in the atmosphere), the scales of density variations can be different, and some of them can be considered as very sharp. Therefore for the description of internal wave propagation and interaction in the ocean and atmosphere the n-layer models are often used. In these models density profile is usually approximated by a piecewise-constant function. The advantage of the layered models is the finite number of parameters and relatively simple solutions of linear and weakly nonlinear problems. Layered models are also very popular in the laboratory experiments with stratified fluid. In this study we consider symmetric, continuously stratified, smoothed three-layer fluid bounded by rigid horizontal surface and bottom. Three-layer stratification is proved to be a proper approximation of sea water density profile in some basins in the World Ocean with specific hydrological conditions. Such a medium is interesting from the point of view of internal gravity wave dynamics, because in the symmetric case it leads to disappearing of quadratic nonlinearity when described in the framework of weakly nonlinear evolutionary models, that are derived through the asymptotic expansion in small parameters of nonlinearity and dispersion. The goal of our study is to determine the properties of localized stationary internal gravity waveforms (solitary waves) in this symmetric three-layer fluid. The investigation is carried out in the framework of improved mathematical model describing the transformation of internal wave fields generated by an initial disturbance. The model is based on the program complex for the numerical simulation of the two-dimensional (vertical plane) fully nonlinear Euler equations for incompressible stratified fluid under the Boussinesq approximation. Initial disturbances of both polarities evolve into stationary, solitary-like waves of corresponding polarity, for which we found the amplitude-width, amplitude-velocity, mass-amplitude, and energy-amplitude relations. Small-amplitude impulses to a good approximation can be described by the modified Korteweg-de Vries equation, but larger waves tend to become wide, and absolute value of their amplitude is bounded by the upper limit. Authors thank prof. K.G. Lamb for the opportunity to use the program code for numerical simulations of Euler equations. The research was supported by RFBR (09-05-00447, 09-05-00204) and by President of RF (MD-3024.2008.5 for young doctors of science).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20981016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20981016"><span>Evidence for infragravity wave-tide resonance in deep oceans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko</p> <p>2010-10-05</p> <p>Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001641','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001641"><span>Laboratory simulation of cratering on small bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, Robert M.</p> <p>1991-01-01</p> <p>A new technique using external pressure was developed to simulate the lithostatic pressure due to self-gravity of small bodies. A 13-in. diameter cylindrical test chamber with L/D of 1 was fabricated to accommodate firing explosive charges with gas overpressures of up to 6000 psi. The chamber was hydrotested to 9000 psi. The method allows much larger scale factors that can be obtained with existing centrifuges and has the correct spherical geometry of self gravity. A simulant for jointed rock to be used in this fixture was developed using weakly cemented basalt. Various strength/pressure scaling theories can now be examined and tested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ACPD....9.3401M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ACPD....9.3401M"><span>Do gravity waves significantly impact PSC occurrence in the Antarctic?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDonald, A. J.; George, S. E.; Woollands, R. M.</p> <p>2009-02-01</p> <p>This study uses a combination of POAM III aerosol extinction measurements and CHAMP GPS/RO temperature measurements to examine the role of atmospheric gravity waves in Polar Stratospheric Cloud (PSC) formation in the Antarctic. POAM III aerosol extinction observations are used to identify Type I Polar Stratospheric Clouds using an unsupervised clustering algorithm. The seasonal and spatial distribution of PSCs observed by POAM III is examined to determine whether there is a bias towards regions of high wave activity early in the Antarctic winter which may enhance PSC formation. Examination of the probability of temperatures below the Type Ia formation temperature threshold based on UKMO analyses displays a good correspondence to the PSC occurrence derived from POAM III extinction data in general. However, in June the POAM III observations of PSC are more abundant than expected from temperature thresholds. In addition the PSC occurrence based on temperature thresholds in September and October is often significantly higher than the PSC occurrence observed by POAM III, this observation probably being due to dehydration and denitrification. Use of high resolution temperatures from CHAMP GPS/RO observations provide a slightly improved relationship to the POAM III derived values. Analysis of the CHAMP temperature observations indicates that temperature perturbations associated with gravity waves may explain the enhanced PSC incidence observed in June compared to the UKMO analyses. Comparison of the UKMO analyses temperatures relative to corresponding CHAMP observations also suggests a small warm bias in the UKMO analyses during June. Examination of the longitudinal structure PSC occurrence in June 2005 also shows that regions of enhancement are associated with data near the Antarctic peninsula a known Mountain wave "hotspot". The impact of temperature perturbations causing enhanced temperature threshold crossings is shown to be particularly important early in the Antarctic winter while later in the season temperature perturbations associated with gravity waves could contribute to about 15% of the PSC observed, a value which corresponds well to several previous studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACP....15.7797H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACP....15.7797H"><span>The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.</p> <p>2015-07-01</p> <p>Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.169....1E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.169....1E"><span>Detecting atmospheric normal modes with periods less than 6 h by barometric observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.</p> <p>2018-04-01</p> <p>The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29191903','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29191903"><span>Observations and modeling of the elastogravity signals preceding direct seismic waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vallée, Martin; Ampuero, Jean Paul; Juhel, Kévin; Bernard, Pascal; Montagner, Jean-Paul; Barsuglia, Matteo</p> <p>2017-12-01</p> <p>After an earthquake, the earliest deformation signals are not expected to be carried by the fastest ( P ) elastic waves but by the speed-of-light changes of the gravitational field. However, these perturbations are weak and, so far, their detection has not been accurate enough to fully understand their origins and to use them for a highly valuable rapid estimate of the earthquake magnitude. We show that gravity perturbations are particularly well observed with broadband seismometers at distances between 1000 and 2000 kilometers from the source of the 2011, moment magnitude 9.1, Tohoku earthquake. We can accurately model them by a new formalism, taking into account both the gravity changes and the gravity-induced motion. These prompt elastogravity signals open the window for minute time-scale magnitude determination for great earthquakes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080044813&hterms=sodium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsodium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080044813&hterms=sodium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsodium"><span>Sodium Lidar-observed Strong Inertia-gravity Wave Activities in the Mesopause Region over Fort Collins, Colorado (41 deg N, 105 deg W)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart</p> <p>2007-01-01</p> <p>In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015amos.confE..57C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015amos.confE..57C"><span>Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.</p> <p></p> <p>A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790012381','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790012381"><span>Internal gravity waves in the upper atmosphere, generated by tropospheric jet streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chunchuzov, Y. P.; Torgashin, Y. M.</p> <p>1979-01-01</p> <p>A mechanism of internal gravity wave generation by jet streams in the troposphere is considered. Evaluations of the energy and pulse of internal gravity waves emitted into the upper atmosphere are given. The obtained values of flows can influence the thermal and dynamic regime of these layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482458-inertia-gravity-wave-radiation-from-merging-two-co-rotating-vortices-plane-shallow-water-system','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482458-inertia-gravity-wave-radiation-from-merging-two-co-rotating-vortices-plane-shallow-water-system"><span>Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp</p> <p></p> <p>Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..96f4028T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..96f4028T"><span>Scalar perturbations of nonsingular nonrotating black holes in conformal gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan</p> <p>2017-09-01</p> <p>We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable under scalar and electromagnetic perturbations. Assuming that the quasinormal mode spectrum for scalar perturbations is not too different from that for gravitational perturbations, we can expect that the calculation of the quasinormal mode spectrum and the observation with gravitational wave detectors of quasinormal modes from astrophysical black holes can constrain the scaling factor and test these solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971235','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971235"><span>A topological study of gravity free-surface waves generated by bluff bodies using the method of steepest descents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2016-01-01</p> <p>The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel. PMID:27493559</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P33D2902F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P33D2902F"><span>Imaging the Chicxulub central crater zone from large scale seismic acoustic wave propagation and gravity modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.</p> <p>2017-12-01</p> <p>Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.469S..73H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.469S..73H"><span>Small-scale impacts as potential trigger for landslides on small Solar system bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofmann, Marc; Sierks, Holger; Blum, Jürgen</p> <p>2017-07-01</p> <p>We conducted a set of experiments to investigate whether millimetre-sized impactors impinging on a granular material at several m s-1 are able to trigger avalanches on small, atmosphereless planetary bodies. These experiments were carried out at the Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) drop tower facility in Bremen, Germany to facilitate a reduced gravity environment. Additional data were gathered at Earth gravity levels in the laboratory. As sample materials we used a ground Howardites, Eucrites and Diogenites (HED) meteorite and the Johnson Space Center (JSC) Mars-1 Martian soil simulant. We found that this type of small-scale impact can trigger avalanches with a moderate probability, if the target material is tilted to an angle close to the angle of repose. We additionally simulated a small-scale impact using the discrete element method code esys-particle. These simulations show that energy transfer from impactor to the target material is most efficient at low- and moderate-impactor inclinations and the transferred energy is retained in particles close to the surface due to a rapid dissipation of energy in lower material layers driven by inelastic collisions. Through Monte Carlo simulations we estimate the time-scale on which small-scale impacts with the observed characteristics will trigger avalanches covering all steep slopes on the surface of a small planetary body to be of the order 105 yr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810015225','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810015225"><span>Ionospsheric observation of enhanced convection-initiated gravity waves during tornadic storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hung, R. J.</p> <p>1981-01-01</p> <p>Atmospheric gravity waves associated with tornadoes, with locally severe storms occuring with tornadoes, and with hurricanes were studied through the coupling between the ionosphere and the troposphere. Reverse group ray tracing computations of gravity waves observed by an ionospheric Doppler sounder array were analyzed. The results of ray tracing computations and comparisons between the computed location of the wave sources and with conventional meteorological data indicate that the computed sources of the waves were near the touchdown of the tornadoes, near the eye of the hurricanes, and directly on the squall line of the severe thunderstorms. The signals excited occurred one hour in advance of the tornadoes and three hours in advance of the hurricanes. Satellite photographs show convective overshooting turrets occurring at the same locations and times the gravity waves were being excited. It is suggested that gravity wave observations, conventional meteorological data, and satellite photographs be combined to develop a remote sensing technique for detecting severe storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30e6601B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30e6601B"><span>Entrainment and mixing in lock-exchange gravity currents using simultaneous velocity-density measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balasubramanian, Sridhar; Zhong, Qiang</p> <p>2018-05-01</p> <p>Gravity currents modify their flow characteristics by entraining ambient fluid, which depends on a variety of governing parameters such as the initial density, Δρ, the total initial height of the fluid, H, and the slope of the terrain, α, from where it is released. It is imperative to study the entrainment dynamics of a gravity current in order to have a clear understanding of mixing transitions that govern the flow physics, the velocity mixing layer thickness, δu, and the density mixing layer thickness, δρ. Experiments were conducted in a lock-exchange facility in which the dense fluid was separated from the ambient lighter fluid using a gate. As the gate is released instantaneously, an energy conserving gravity current is formed, for which the only governing parameter is the Reynolds number defined as R e =U/h ν , where U is the front velocity of the gravity current and h is the height of the current. In our study, the bulk Richardson number (inverse of Froude number, Fr), Rib = g/'H Ub2 = 1, takes a constant value for all the experiments, with Ub being the bulk velocity of the current defined as Ub = √{g'H }. Simultaneous particle image velocimetry and planar laser induced fluorescence measurement techniques are employed to get the velocity and density statistics. Using the buoyancy conservation equation, a new flux-based method was formulated for calculating the entrainment coefficient, EF, near the front and head of the propagating gravity current for a Reynolds number range of Re ≈ 485-12 270 used in our experiments. At the head of the current, the results show a mixing transition at Re ≈ 2700 that is attributed to the flow transitioning from weak Holmboe waves to Kelvin-Helmholtz instabilities, in the form of Kelvin-Helmholtz vortex rolls. Following this mixing transition, the entrainment coefficient continued to increase with increasing Reynolds number owing to the occurrence of three-dimensional Kelvin-Helmholtz billows that promote further small-scale local mixing. Such a mixing transition indicates that a fully turbulent state is not reached even at Re = 12 270 and the amount of entrainment and ensuing mixing depends on the type of flow instability and presence of small-scale secondary structures. The entrainment dynamics were further substantiated using the ratio of δu and δρ. It was observed that δ/u δρ decreases with increasing Re and reaches a constant value of δ/u δρ ≈ 1 at high values of Re. This trend is in contrast to the entrainment coefficient EF, which never reaches a constant value even at high enough Re. This disparity could be explained by the fact that EF accounts for small-scale scalar mixing, which is not captured by the ratio of mixing layer thicknesses. Experimentally, it was also observed that the EF value near the front of gravity current was 2-9 times higher than the head value depending on the value of the Reynolds numbers. At low Reynolds numbers, the entrainment near the front is an order of magnitude higher than the head and the value decreases with increasing Re. This could be attributed to different modes of entrainment near the front (dominated by vortical structures) and the head (dominated by turbulent flux exchange triggered by the nature of the flow instability). The results from this study improve our understanding of entrainment dynamics and would be useful in developing empirical parameterizations for mixing in stratified flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1518D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1518D"><span>Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David</p> <p>2017-04-01</p> <p>This paper describes Shliering and Shadowgraph experiments of the wake induced mixing produced by tranversing a vertical or horizontal fractal grid through the interfase between two miscible fluids at low Atwood and Reynolds numbers. This is a configuration design to models the mixing across isopycnals in stably-stratified flows in many environmental relevant situations (either in the atmosphere or in the ocean. The initial unstable stratification is characterized by a reduced gravity: g' = gΔρ ρ where g is gravity, Δρ being the initial density step and ρ the reference density. Here the Atwood number is A = g' _ 2 g . The topology of the fractal wake within the strong stratification, and the internal wave field produces both a turbulent cascade and a wave cascade, with frecuen parametric resonances, the envelope of the mixing front is found to follow a complex non steady 3rd order polinomial function with a maximum at about 4-5 Brunt-Vaisalla non-dimensional time scales: t/N δ = c1(t/N) + c2g Δρ ρ (t/N)2 -c3(t/N)3. Conductivity probes and Shliering and Shadowgraph visual techniques, including CIV with (Laser induced fluorescence and digitization of the light attenuation across the tank) are used in order to investigate the density gradients and the three-dimensionality of the expanding and contracting wake. Fractal analysis is also used in order to estimate the fastest and slowest growing wavelengths. The large scale structures are observed to increase in wave-length as the mixing progresses, and the processes involved in this increase in scale are also examined.Measurements of the pointwise and horizontally averaged concentrations confirm the picture obtained from past flow visualization studies. They show that the fluid passes through the mixing region with relatively small amounts of molecular mixing,and the molecular effects only dominate on longer time scales when the small scales have penetrated through the large scale structures. The Non-stationary dynamicss and structure of stratified fluid flows around a wedge were also studied based of the fundamental equations set using numerical modeling. Due to breaking of naturally existing background diffusion flux of stratifying agent by an impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. The flow is characterized by a wide range of values of internal scales that are absent in a homogeneous liquid. Numerical solution of the fundamental system with the boundary conditions is constructed using a solver such as stratifiedFoam developed within the frame of the open source computational package OpenFOAM using the finite volume method. The computations were performed in parallel using computing resources of the Scientific Research Supercomputer Complex of MSU (SRCC MSU) and the technological platform UniHUB. The evolution of the flow pattern of the wedge by stratified flow has been demonstrated. The complex structure of the fields of physical quantities and their gradients has been shown. Observed in experiment are multiple flow components, including upstream disturbances, internal waves and the downstream wake with submerged transient vortices well reproduced. Structural elements of flow differ in size and laws of variation in space and time. Rich fine flow structure visualized in vicinity and far from the obstacle. The global efficiency of the mixing process is measured and compared with previous estimates of mixing efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21I2285A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21I2285A"><span>Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.</p> <p>2017-12-01</p> <p>The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8770T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8770T"><span>Sixteen year variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takeo, D.; Shiokawa, K.; Fujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Nakamura, T.; Yamamoto, M.</p> <p>2017-08-01</p> <p>We analyzed the horizontal phase velocity of gravity waves and medium-scale traveling ionospheric disturbances (MSTIDs) by using the three-dimensional fast Fourier transform method developed by Matsuda et al. (2014) for 557.7 nm (altitude: 90-100 km) and 630.0 nm (altitude: 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8°N, 136.1°E, dip angle: 49°) over ˜16 years from 16 March 1999 to 20 February 2015. The analysis of 557.7 nm airglow images shows clear seasonal variation of the propagation direction of gravity waves in the mesopause region. In spring, summer, fall, and winter, the peak directions are northeastward, northeastward, northwestward, and southwestward, respectively. The difference in east-west propagation direction between summer and winter is probably caused by the wind filtering effect due to the zonal mesospheric jet. Comparison with tropospheric reanalysis data shows that the difference in north-south propagation direction between summer and winter is caused by differences in the latitudinal location of wave sources due to convective activity in the troposphere relative to Shigaraki. The analysis of 630.0 nm airglow images shows that the propagation direction of MSTIDs is mainly southwestward with a minor northeastward component throughout the 16 years. A clear negative correlation is seen between the yearly power spectral density of MSTIDs and F10.7 solar flux. This negative correlation with solar activity may be explained by the linear growth rate of the Perkins instability and secondary wave generation of gravity waves in the thermosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SSRv..168..333G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SSRv..168..333G"><span>Gravity Wave Mixing and Effective Diffusivity for Minor Chemical Constituents in the Mesosphere/Lower Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grygalashvyly, M.; Becker, E.; Sonnemann, G. R.</p> <p>2012-06-01</p> <p>The influence of gravity waves (GWs) on the distributions of minor chemical constituents in the mesosphere-lower thermosphere (MLT) is studied on the basis of the effective diffusivity concept. The mixing ratios of chemical species used for calculations of the effective diffusivity are obtained from numerical experiments with an off-line coupled model of the dynamics and chemistry abbreviated as KMCM-MECTM (Kuehlungsborn Mechanistic general Circulation Model—MEsospheric Chemistry-Transport Model). In our control simulation the MECTM is driven with the full dynamical fields from an annual cycle simulation with the KMCM, where mid-frequency GWs down to horizontal wavelengths of 350 km are resolved and their wave-mean flow interaction is self-consistently induced by an advanced turbulence model. A perturbation simulation with the MECTM is defined by eliminating all meso-scale variations with horizontal wavelengths shorter than 1000 km from the dynamical fields by means of spectral filtering before running the MECTM. The response of the MECTM to GWs perturbations reveals strong effects on the minor chemical constituents. We show by theoretical arguments and numerical diagnostics that GWs have direct, down-gradient mixing effects on all long-lived minor chemical species that possess a mean vertical gradient in the MLT. Introducing the term wave diffusion (WD) and showing that wave mixing yields approximately the same WD coefficient for different chemical constituents, we argue that it is a useful tool for diagnostic irreversible transport processes. We also present a detailed discussion of the gravity-wave mixing effects on the photochemistry and highlight the consequences for the general circulation of the MLT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840047124&hterms=function+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfunction%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840047124&hterms=function+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfunction%2Bwave"><span>The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.</p> <p>1984-01-01</p> <p>On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980003967&hterms=la+nasa&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dla%2Bnasa','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980003967&hterms=la+nasa&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dla%2Bnasa"><span>WINDII atmospheric wave airglow imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Armstrong, W. T.; Hoppe, U.-P.; Solheim, B. H.; Shepherd, G. G.</p> <p>1996-01-01</p> <p>Preliminary WINDII nighttime airglow wave-imaging data in the UARS rolldown attitude has been analyzed with the goal to survey gravity waves near the upper boundary of the middle atmosphere. Wave analysis is performed on O[sub 2](0,0) emissions from a selected 1[sup 0] x 1[sup 0] oblique view of the airglow layer at approximately 95 km altitude, which has no direct earth background and only an atmospheric background which is optically thick for the 0[sub 2](0,0) emission. From a small data set, orbital imaging of atmospheric wave structures is demonstrated, with indication of large variations in wave activity across land and sea. Comparison ground-based imagery is discussed with respect to similarity of wave variations across land/sea boundaries and future orbital mosaic image construction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890001045','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890001045"><span>The delineation and interpretation of the earth's gravity field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marsh, Bruce D.</p> <p>1988-01-01</p> <p>A series of fluid dynamical experiments in variable viscosity fluid have been made and are in progress to study: (1) the onset of small scale convection relative to lithosphere growth rate; (2) the influence of paired fracture zones in modulating the horizontal scale of small scale convection; (3) the influence of the mantle vertical viscosity structure on determing the mode of small scale convection; and (4) the 3-D and temporal evolution of flows beneath a high viscosity lid. These experiments extend and amplify the present experimental work that has produced small scale convection beneath a downward-moving solidification front. Rapid growth of a high viscosity lid stifles the early onset of convection such that convection only begins once the lithosphere is older than a certain minimum age. The interplay of this convection with both the structure of the lithosphere and mantle provide a fertile field of investigation into the origin of geoid, gravity, and topographic anomalies in the central Pacific. These highly correlated fields of intermediate wavelength (approximately 200 to 2000 km), but not the larger wavelengths. It is the ultimate, dynamic origin of this class of anomalies that is sought in this investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860003364&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860003364&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTidal%2Bwaves"><span>Planetary and Gravity Waves in the Mesosphere and Lower Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vincent, R. A.</p> <p>1985-01-01</p> <p>Rocket and ground based studies of the mesosphere and lower thermosphere show that waves play an important role in the dynamics of their region. The waves manifest themselves in wind, temperature, density, pressure, ionization and airglow fluctuations in the 80-120 km height range. Rockets have enabled the density and temperature structure to be measured with excellent height resolution, while long term studies of wind motions using MST, partial reflection and meteor radars and, more recently, lidar investigations of temperature and density, have enabled the temporal behaviour of the waves to be better understood. A composite of power spectra is shown of wind motions measured near the mesopause at widely separated locations and illustrates how wave energy is distributed as a function of frequency. The spectra show three distinct parts; (1) a long period section corresponding to periods longer than 24 h; (2) a section between 12 and 24 h priod where the spectra are dominated by narrow; peaks associated with the semidiurnal and diurnal tides and (3) a section at periods less than 12 h where the spectral density decreases montonically (except for the 8 h tidal peak). The long period section is associated with transient planetary scale waves while the short period motions are caused by gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7765041','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7765041"><span>Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Coakley, W T; Whitworth, G; Grundy, M A; Gould, R K; Allman, R</p> <p>1994-04-01</p> <p>Cells or particles suspended in a sonic standing wave field experience forces which concentrate them at positions separated by half a wavelength. The aims of the study were: (1) To optimise conditions and test theoretical predictions for ultrasonic concentration and separation of particles or cells. (2) To investigate the scale-up of experimental systems. (3) To establish the maximum acoustic pressure to which a suspension might be exposed without inducing order-disrupting cavitation. (4) To compare the efficiencies of techniques for harvesting concentrated particles. The primary outcomes were: (1) To design of an acoustic pressure distribution within cylindrical containers which led to uniformly repeating sound pressure patterns throughout the containers in the standing wave mode, concentrated suspended eukaryotic cells or latex beads in clumps on the axis of wide containers, and provided uniform response of all particle clumps to acoustic harvesting regimes. Theory for the behaviour (e.g. movement to different preferred sites) of particles as a function of specific gravity and compressibility in containers of different lateral dimensions was extended and was confirmed experimentally. Convective streaming in the container was identified as a variable requiring control in the manipulation of particles of 1 micron or smaller size. (2) Consideration of scale-up from the model 10 ml volume led to the conclusion that flow systems in intermediate volume containers have more promise than scaled up batch systems. (3) The maximum acoustic pressures applicable to a suspension without inducing order-disrupting cavitation or excessive conductive streaming at 1 MHz and 3 MHz induce a force equivalent to a centrifugal field of about 10(3) g. (4) The most efficient technique for harvesting concentrated particles was the introduction of a frequency increment between two transducers to form a slowly sweeping pseudo-standing wave. The attractive inter-droplet ultrasonic standing wave force was employed to enhance the rate of aqueous biphasic cell separation and harvesting. The results help clarify the particle size, concentration, density and compressibility for which standing wave separation techniques can contribute either on a process engineering scale or on the scale of the manipulation of small particles for industrial and medical diagnostic procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1341848','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1341848"><span>Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lay, Erin Hoffmann</p> <p></p> <p>In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. Themore » coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1702G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1702G"><span>Case study of inclined sporadic E layers in the Earth's ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gubenko, Vladimir N.; Pavelyev, A. G.; Kirillovich, I. A.; Liou, Y.-A.</p> <p>2018-04-01</p> <p>We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA17212.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA17212.html"><span>The Realm of Daphnis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-14</p> <p>Daphnis, one of Saturn's ring-embedded moons, is featured in this view, kicking up waves as it orbits within the Keeler gap. The mosaic combines several images to show more waves in the gap edges. Daphnis is a small moon at 5 miles (8 kilometers) across, but its gravity is powerful enough to disrupt the tiny particles of the A ring that form the Keeler gap's edge. As the moon moves through the Keeler gap, wave-like features are created in both the horizontal and vertical plane. Images like this provide scientists with a close-up view of the complicated interactions between a moon and the rings, as well as the interactions between the ring particles themselves, in the wake of the moon's passage. Three wave crests of diminishing sizes trail Daphnis here. In each subsequent crest, the shape of the wave evolves, as the ring particles within the crests collide with one another. Close examination of Daphnis' immediate vicinity also reveals a faint, thin strand of ring material that almost appears to have been directly ripped out of the A ring by Daphnis. The images in this mosaic were taken in visible light, using the Cassini spacecraft narrow-angle camera at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17212</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/798928','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/798928"><span>Proceedings of the XXVI SLAC Summer Institute on Particle Physics: Gravity from the Hubble Length to the Planck Length</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deporcel, Lilian</p> <p>2001-04-02</p> <p>The XXVI SLAC Summer Institute on Particle Physics was held from August 3 to August 14, 1998. The topic, ''Gravity--from the Hubble Length to the Planck Length,'' brought together 179 physicists from 13 countries. The lectures in this volume cover the seven-day school portion of the Institute, which took us from the largest scales of the cosmos, to the Planck length at which gravity might be unified with the other forces of nature. Lectures by Robert Wagoner, Clifford Will, and Lynn Cominsky explored the embedding of gravity into general relativity and the confrontation of this idea with experiments in themore » laboratory and astrophysical settings. Avishai Deckel discussed observations and implications of the large-scale structure of the universe, and Tony Tyson presented the gravitational lensing effect and its use in the ongoing search for signatures of the unseen matter of the cosmos. The hunt for the wave nature of gravity was presented by Sam Finn and Peter Saulson, and Joe Polchinski showed us what gravity might look like in the quantum limit at the Planck scale. The lectures were followed by afternoon discussion sessions, where students could further pursue questions and topics with the day's lecturers. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment from around the world of elementary particle physics and cosmology; its proceedings are also presented in this volume.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.5076L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.5076L"><span>Tsunami-driven gravity waves in the presence of vertically varying background and tidal wind structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laughman, B.; Fritts, D. C.; Lund, T. S.</p> <p>2017-05-01</p> <p>Many characteristics of tsunami-driven gravity waves (TDGWs) enable them to easily propagate into the thermosphere and ionosphere with appreciable amplitudes capable of producing detectable perturbations in electron densities and total electron content. The impact of vertically varying background and tidal wind structures on TDGW propagation is investigated with a series of idealized background wind profiles to assess the relative importance of wave reflection, critical-level approach, and dissipation. These numerical simulations employ a 2-D nonlinear anelastic finite-volume neutral atmosphere model which accounts for effects accompanying vertical gravity wave (GW) propagation such as amplitude growth with altitude. The GWs are excited by an idealized tsunami forcing with a 50 cm sea surface displacement, a 400 km horizontal wavelength, and a phase speed of 200 ms-1 consistent with previous studies of the tsunami generated by the 26 December 2004 Sumatra earthquake. Results indicate that rather than partial reflection and trapping, the dominant process governing TDGW propagation to thermospheric altitudes is refraction to larger and smaller vertical scales, resulting in respectively larger and smaller vertical group velocities and respectively reduced and increased viscous dissipation. Under all considered background wind profiles, TDGWs were able to attain ionospheric altitudes with appreciable amplitudes. Finally, evidence of nonlinear effects is observed and the conditions leading to their formation is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810033028&hterms=1072&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231072','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810033028&hterms=1072&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231072"><span>Density response of the mesospheric sodium layer to gravity wave perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.</p> <p>1980-01-01</p> <p>Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..96j3508G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..96j3508G"><span>Perturbation theory for cosmologies with nonlinear structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldberg, Sophia R.; Gallagher, Christopher S.; Clifton, Timothy</p> <p>2017-11-01</p> <p>The next generation of cosmological surveys will operate over unprecedented scales, and will therefore provide exciting new opportunities for testing general relativity. The standard method for modelling the structures that these surveys will observe is to use cosmological perturbation theory for linear structures on horizon-sized scales, and Newtonian gravity for nonlinear structures on much smaller scales. We propose a two-parameter formalism that generalizes this approach, thereby allowing interactions between large and small scales to be studied in a self-consistent and well-defined way. This uses both post-Newtonian gravity and cosmological perturbation theory, and can be used to model realistic cosmological scenarios including matter, radiation and a cosmological constant. We find that the resulting field equations can be written as a hierarchical set of perturbation equations. At leading-order, these equations allow us to recover a standard set of Friedmann equations, as well as a Newton-Poisson equation for the inhomogeneous part of the Newtonian energy density in an expanding background. For the perturbations in the large-scale cosmology, however, we find that the field equations are sourced by both nonlinear and mode-mixing terms, due to the existence of small-scale structures. These extra terms should be expected to give rise to new gravitational effects, through the mixing of gravitational modes on small and large scales—effects that are beyond the scope of standard linear cosmological perturbation theory. We expect our formalism to be useful for accurately modeling gravitational physics in universes that contain nonlinear structures, and for investigating the effects of nonlinear gravity in the era of ultra-large-scale surveys.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA548833','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA548833"><span>Large-scale Rossby Normal Modes during Some Recent Northern Hemisphere Winters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-01-01</p> <p>day wave has been observed ubiquitously in the troposphere (Madden, 1978) and in the middle atmosphere during winter (Forbes et al., 1995), as well as...assimilate version 2.2 limb retrievals of temperature, water vapor and ozone from the Microwave Limb Sounder (MLS) on NASA’s Aura satellite and...aspects of the wintertime meteorology have been documented: the tropospheric pre-conditioning of a SSW (Coy et al., 2009); the role of gravity wave</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..395A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..395A"><span>Large and small-scale structures in Saturn's rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albers, N.; Rehnberg, M. E.; Brown, Z. L.; Sremcevic, M.; Esposito, L. W.</p> <p>2017-09-01</p> <p>Observations made by the Cassini spacecraft have revealed both large and small scale structures in Saturn's rings in unprecedented detail. Analysis of high-resolution measurements by the Cassini Ultraviolet Spectrograph (UVIS) High Speed Photometer (HSP) and the Imaging Science Subsystem (ISS) show an abundance of intrinsic small-scale structures (or clumping) seen across the entire ring system. These include self-gravity wakes (50-100m), sub-km structure at the A and B ring edges, and "straw"/"ropy" structures (1-3km).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815523B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815523B"><span>Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele</p> <p>2016-04-01</p> <p>The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA33A2419V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA33A2419V"><span>Investigating middle-atmospheric gravity waves associated with a sprite-producing mesoscale convective event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vollmer, D. R.; McHarg, M. G.; Harley, J.; Haaland, R. K.; Stenbaek-Nielsen, H.</p> <p>2016-12-01</p> <p>On 23 July 2014, a mesoscale convective event over western Nebraska produced a large number of sprites. One frame per second images obtained from a low-noise Andor Scientific CMOS camera showed regularly-spaced horizontal striations in the airglow both before and during several of the sprite events, suggesting the presence of vertically-propagating gravity waves in the middle atmosphere. Previous work hypothesized that the gravity waves were produced by the thunderstorm itself. We compare our observations with previous work, and present numerical simulations conducted to determine source, structure, and propagation of atmospheric gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5786B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5786B"><span>Tsunami and infragravity waves impacting Antarctic ice shelves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.</p> <p>2017-07-01</p> <p>The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMOS32B0248B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMOS32B0248B"><span>Airborne Sea-Surface Topography in an Absolute Reference Frame</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brozena, J. M.; Childers, V. A.; Jacobs, G.; Blaha, J.</p> <p>2003-12-01</p> <p>Highly dynamic coastal ocean processes occur at temporal and spatial scales that cannot be captured by the present generation of satellite altimeters. Space-borne gravity missions such as GRACE also provide time-varying gravity and a geoidal msl reference surface at resolution that is too coarse for many coastal applications. The Naval Research Laboratory and the Naval Oceanographic Office have been testing the application of airborne measurement techniques, gravity and altimetry, to determine sea-surface height and height anomaly at the short scales required for littoral regions. We have developed a precise local gravimetric geoid over a test region in the northern Gulf of Mexico from historical gravity data and recent airborne gravity surveys. The local geoid provides a msl reference surface with a resolution of about 10-15 km and provides a means to connect airborne, satellite and tide-gage observations in an absolute (WGS-84) framework. A series of altimetry reflights over the region with time scales of 1 day to 1 year reveal a highly dynamic environment with coherent and rapidly varying sea-surface height anomalies. AXBT data collected at the same time show apparent correlation with wave-like temperature anomalies propagating up the continental slope of the Desoto Canyon. We present animations of the temporal evolution of the surface topography and water column temperature structure down to the 800 m depth of the AXBT sensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100032924&hterms=missing+middle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmissing%2Bmiddle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100032924&hterms=missing+middle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmissing%2Bmiddle"><span>Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.</p> <p>2004-01-01</p> <p>We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007RaSc...42.6009K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007RaSc...42.6009K"><span>Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.</p> <p>2007-12-01</p> <p>In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASTP.105...30L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASTP.105...30L"><span>Seasonal variation of wave activities near the mesopause region observed at King Sejong Station (62.22°S, 58.78°W), Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Changsup; Kim, Yong Ha; Kim, Jeong-Han; Jee, Geonhwa; Won, Young-In; Wu, Dong L.</p> <p>2013-12-01</p> <p>We analyzed the neutral wind data at altitudes of 80-100 km obtained from a VHF meteor radar at King Sejong Station (KSS, 62.22°S, 58.78°W), a key location to study wave activities above the stratospheric vortex near the Antarctic Peninsula. The seasonal behavior of the semidiurnal tides is generally consistent with the prediction of Global Scale Wave Model (GSWM02) except in the altitude region above ~96 km. Gravity wave (GW) activities inferred from the neutral wind variances show a seasonal variation very similar to the semidiurnal tide amplitudes, suggesting a strong interaction between gravity waves and the tide. Despite the consistent seasonal variations of the GW wind variances observed at the adjacent Rothera station, the magnitudes of the wind variance obtained at KSS are much larger than those at Rothera, especially during May-September. The enhanced GW activity at KSS is also observed by Aura Microwave Limb Sounder (MLS) from space in its temperature variance. The observed large wind variances at KSS imply that the Antarctic vortex in the stratosphere may act as an effective filter and source for the GWs in the upper atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CQGra..34s3002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CQGra..34s3002B"><span>Gravitational decoherence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bassi, Angelo; Großardt, André; Ulbricht, Hendrik</p> <p>2017-10-01</p> <p>We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930066520&hterms=benign+malignant&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbenign%2Band%2Bmalignant','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930066520&hterms=benign+malignant&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbenign%2Band%2Bmalignant"><span>Lee waves, benign and malignant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wurtele, M. G.; Datta, A.</p> <p>1992-01-01</p> <p>The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1200Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1200Y"><span>Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiao-Hong; Bu, De-Fu</p> <p>2018-05-01</p> <p>It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA553304','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA553304"><span>Recent Developments in Gravity-Wave Effects in Climate Models and the Global Distribution of Gravity-Wave Momentum Flux from Observations and Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-07-01</p> <p>by changes in wind and stability to a vertical wavelength lying outside the observable range. Gravity-wave parametrizations also represent intermit ...tropopause variability. J. Atmos. Sci. 65: 1817–1837. Salby ML. 1982. Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApJ...774...59Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApJ...774...59Y"><span>Small-scale Pressure-balanced Structures Driven by Oblique Slow Mode Waves Measured in the Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.</p> <p>2013-09-01</p> <p>Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31C..04E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31C..04E"><span>Deep Orographic Gravity Wave Dynamics over Subantarctic Islands as Observed and Modeled during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.</p> <p>2016-12-01</p> <p>The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high-altitude numerical weather prediction models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170010717&hterms=gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgravity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170010717&hterms=gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgravity"><span>Global Distribution and Parameter Dependences of Gravity Wave Activity in the Martian Upper Thermosphere Derived from MAVEN NGIMS Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Terada, Naoki; Leblanc, Francois; Nakagawa, Hiromu; Medvedev, Alexander S.; Yigit, Erdal; Kuroda, Takeshi; Hara, Takuya; England, Scott L.; Fujiwara, Hitoshi; Terada, Kaori; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170010717'); toggleEditAbsImage('author_20170010717_show'); toggleEditAbsImage('author_20170010717_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170010717_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170010717_hide"></p> <p>2017-01-01</p> <p>Wavelike perturbations in the Martian upper thermosphere observed by the Neutral Gas Ion Mass Spectrometer (NGIMS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft have been analyzed. The amplitudes of small-scale perturbations with apparent wavelengths between approx. 100 and approx. 500 km in the Ar density around the exobase show a clear dependence on temperature (T(sub 0)) of the upper thermosphere. The average amplitude of the perturbations is approx. 10% on the dayside and approx. 20% on the nightside, which is about 2 and 10 times larger than those observed in the Venusian upper thermosphere and in the low-latitude region of Earths upper thermosphere, respectively. The amplitudes are inversely proportional to T(sub 0), suggesting saturation due to convective instability in the Martian upper thermosphere. After removing the dependence on T(sub 0), dependences of the average amplitude on the geographic latitude and longitude and solar wind parameters are found to be not larger than a few percent. These results suggest that the amplitudes of small-scale perturbations are mainly determined by convective breaking saturation in the upper thermosphere on Mars, unlike those on Venus and Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413327S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413327S"><span>Wave-induced boundary-layer separation: A case study comparing airborne observations and results from a mesoscale model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strauss, L.; Serafin, S.; Grubišić, V.</p> <p>2012-04-01</p> <p>Wave-induced boundary-layer separation (BLS) results from the adverse-pressure gradient forces that are exerted on the atmospheric boundary-layer by internal gravity waves in flow over orography. BLS has received significant attention in recent years, particularly so, because it is a key ingredient in the formation of atmospheric rotors. Traditionally depicted as horizontal eddies in the lee of mountain ranges, rotors originate from the interaction between internal gravity waves and the atmospheric boundary-layer. Our study focuses on the first observationally documented case of wave-induced BLS, which occurred on 26 Jan 2006 in the lee of the Medicine Bow Mountains in SE Wyoming (USA). Observations from the University of Wyoming King Air (UWKA) aircraft, in particular, the remote sensing measurements with the Wyoming Cloud Radar (WCR), reveal strong wave activity, downslope winds in excess of 30 m/s, and near-surface flow reversal in the lee of the mountain range. The fine resolution of WCR data (on the order of 40x40 m2 for two-dimensional velocity fields) exhibits fine-scale vortical structures ("subrotors") which are embedded within the main rotor zone. Our case study intends to complete the characterisation of the observed boundary-layer separation event. Modelling of the event with the mesoscale Weather Research and Forecast Model (WRF) provides insight into the mesoscale triggers of wave-induced BLS and turbulence generation. Indeed, the mesoscale model underpins the expected concurrence of the essential processes (gravity waves, wave breaking, downslope windstorms, etc.) leading to BLS. To exploit the recorded in situ and radar data to their full extent, a quantitative evaluation of the structure and intensity of turbulence is conducted by means of a power spectral analysis of the vertical wind component, measured along the flight track. An intercomparison of observational and modelling results serves the purpose of model verification and can shed some more light onto the limits of validity of airborne observations and mesoscale modelling. For example, the exact timing, magnitude, and evolution of the internal gravity waves present in the mesoscale model are carefully analysed. As for the observations, measures of turbulence gained from in situ and radar data, collected over complex topography within a limited period of time, must be interpreted with caution. Approaches to tackling these challenges are a matter of ongoing research and will be discussed in concluding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020034902&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravity%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020034902&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravity%2Bmodel"><span>Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Margolis, Stephen B.</p> <p>1998-01-01</p> <p>The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. It is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the large-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980202211&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravity%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980202211&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravity%2Bmodel"><span>Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Margolis, S. B.</p> <p>1997-01-01</p> <p>The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(p)(k), where A(p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A(p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. it is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the long-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........78T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........78T"><span>Seismic Tomography of the Sacramento -- San Joaquin River Delta: Joint P-wave/Gravity and Ambient Noise Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teel, Alexander C.</p> <p></p> <p>The Sacramento -- San Joaquin River Delta (SSJRD) is an area that has been identified as having high seismic hazard but has resolution gaps in the seismic velocity models of the area due to a scarcity of local seismic stations and earthquakes. I present new three-dimensional (3D) P-wave velocity (Vp) and S-wave velocity (Vs) models for the SSJRD which fill in the sampling gaps of previous studies. I have created a new 3D seismic velocity model for the SSJRD, addressing an identified need for higher resolution velocity models in the region, using a new joint gravity/body-wave tomography algorithm. I am able to fit gravity and arrival-time residuals jointly using an empirical density-velocity relationship to take advantage of existing gravity data in the region to help fill in the resolution gaps of previous velocity models in the area. I find that the method enhances the ability to resolve the relief of basin structure relative to seismic-only tomography at this location. I find the depth to the basement to be the greatest in the northwest portion of the SSJRD and that there is a plateau in the basement structure beneath the southeast portion of the SSJRD. From my findings I infer that the SSJRD may be prone to focusing effects and basin amplification of ground motion. A 3D, Vs model for the SSJRD and surrounding area was created using ambient noise tomography. The empirical Green's functions are in good agreement with published cross-correlations and match earthquake waveforms sharing similar paths. The group velocity and shear velocity maps are in good agreement with published regional scale models. The new model maps velocity values on a local scale and successfully recovers the basin structure beneath the Delta. From this Vs model I find the maximum depth of the basin to reach approximately 15 km with the Great Valley Ophiolite body rising to a depth of 10 km east of the SSJRD. We consider our basement-depth estimates from the Vp model to be more robust than from the Vs model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24483566','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24483566"><span>Instability of subharmonic resonances in magnetogravity shear waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salhi, A; Nasraoui, S</p> <p>2013-12-01</p> <p>We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N(3). For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δ(m)=(3√[3]/16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N(3)/2, the instability of the subharmonic resonance vanishes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25215842','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25215842"><span>Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Merkel, A; Tournat, V; Gusev, V</p> <p>2014-08-01</p> <p>We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhLB..727..194B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhLB..727..194B"><span>No further gravitational wave modes in F(T) gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bamba, Kazuharu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego</p> <p>2013-11-01</p> <p>We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar-tensor representation of F(T) gravity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.1182D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.1182D"><span>Unexpected climatological behavior of MLT gravity wave momentum flux in the lee of the Southern Andes hot spot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Wit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.</p> <p>2017-01-01</p> <p>The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7°S, 67.7°W), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..95h3520S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..95h3520S"><span>Nonstandard gravitational waves imply gravitational slip: On the difficulty of partially hiding new gravitational degrees of freedom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sawicki, Ignacy; Saltas, Ippocratis D.; Motta, Mariele; Amendola, Luca; Kunz, Martin</p> <p>2017-04-01</p> <p>In many generalized models of gravity, perfect fluids in cosmology give rise to gravitational slip. Simultaneously, in very broad classes of such models, the propagation of gravitational waves is altered. We investigate the extent to which there is a one-to-one relationship between these two properties in three classes of models with one extra degree of freedom: scalar (Horndeski and beyond), vector (Einstein-aether), and tensor (bimetric). We prove that in bimetric gravity and Einstein-aether, it is impossible to dynamically hide the gravitational slip on all scales whenever the propagation of gravitational waves is modified. Horndeski models are much more flexible, but it is nonetheless only possible to hide gravitational slip dynamically when the action for perturbations is tuned to evolve in time toward a divergent kinetic term. These results provide an explicit, theoretical argument for the interpretation of future observations if they disfavored the presence of gravitational slip.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7044R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7044R"><span>New AIM/CIPS global observations of gravity waves near 50-55 km</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randall, C. E.; Carstens, J.; France, J. A.; Harvey, V. L.; Hoffmann, L.; Bailey, S. M.; Alexander, M. J.; Lumpe, J. D.; Yue, J.; Thurairajah, B.; Siskind, D. E.; Zhao, Y.; Taylor, M. J.; Russell, J. M.</p> <p>2017-07-01</p> <p>This paper describes a new data set from the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument, from which gravity waves (GWs) at an altitude of 50-55 km can be inferred. CIPS is sensitive to GWs with horizontal wavelengths from 15 to 600 km and vertical wavelengths longer than 15 km. Several examples of GWs in CIPS observations are shown, including waves associated with the Andes Mountains, island topography, convection, the polar night jet, and the tropospheric jet stream. GW signatures in the CIPS data are shown to agree well with near-coincident but lower altitude measurements from the Atmospheric Infrared Sounder (AIRS) in June of 2016. Results suggest the power of combining CIPS measurements with those from other instruments to investigate GW filtering and propagation. The CIPS data set opens new areas of inquiry, enabling comprehensive investigations of GWs in the middle atmosphere on a near-global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170008033&hterms=spot&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dspot','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170008033&hterms=spot&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dspot"><span>Unexpected Climatological Behavior of MLT Gravity Wave Momentum Flux in the Lee of the Southern Andes Hot Spot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.</p> <p>2017-01-01</p> <p>The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..649F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..649F"><span>Gravity Wave Dynamics in a Mesospheric Inversion Layer: 2. Instabilities, Turbulence, Fluxes, and Mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fritts, David C.; Wang, Ling; Laughman, Brian; Lund, Thomas S.; Collins, Richard L.</p> <p>2018-01-01</p> <p>A companion paper by Fritts, Laughman, et al. (2017) employed an anelastic numerical model to explore the dynamics of gravity waves (GWs) encountering a mesospheric inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. That study revealed that MIL responses, including GW transmission, reflection, and instabilities, are sensitive functions of GW parameters. This paper expands on two of the Fritts, Laughman, et al. (2017) simulations to examine GW instability dynamics and turbulence in the MIL; forcing of the mean wind and stability environments by GW, instability, and turbulence fluxes; and associated heat and momentum transports. These direct numerical simulations resolve turbulence inertial-range scales and yield the following results: GW breaking and turbulence in the MIL occur below where they would otherwise, due to enhancements of GW amplitudes and shears in the MIL. 2-D GW and instability heat and momentum fluxes are 20-30 times larger than 3-D instability and turbulence fluxes. Mean fields are driven largely by 2-D GW and instability dynamics rather than 3-D instabilities and turbulence. 2-D and 3-D heat fluxes in regions of strong turbulence yield small departures from initial <fi>T</fi>(<fi>z</fi>) and <fi>N</fi>2(<fi>z</fi>) profiles, hence do not yield nearly adiabatic "mixed" layers. Our MIL results are consistent with the relation between the turbulent vertical velocity variance and energy dissipation rate proposed by Weinstock (1981) for the limited intervals evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4570E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4570E"><span>Wave Tank Studies of Phase Velocities of Short Wind Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.</p> <p></p> <p>Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950021495','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950021495"><span>Studies of planetary scale waves and instabilities in support of the geophysical fluid flow cell experiment on USML-2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hart, J. E.</p> <p>1995-01-01</p> <p>High resolution numerical simulations of thermal convection in a rapidly rotating channel with gravity perpendicular to the rotation vector are described. The convecting columns are subject to a beta-effect resulting from cross-channel topographic vortex stretching. The symmetries of the problem allow many invariant wavenumber sets, and this property is associated with the existence of stable multiple-equilibria at modest supercriticality. The transition to chaotic behavior involves the production of intermittent unstable orbits off a two-torus in energy space. At very high Rayleigh number (of order 10(exp 6) to 10(exp 7)) the motion can be turbulent, depending on the size of beta. However, the turbulence is usually characterized by an almost-periodic formation of patches of small scale convection that cause regular pulsations in the accompanying strong zonal jets. The processes maintaining these flows may be related to those responsible for the zonal currents on Jupiter and for cyclic variability on the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920040330&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dproject%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920040330&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dproject%2Bwaves"><span>Cirrus cloud spectra and layers observed during the FIRE and GASP projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flatau, Piotr J.; Gultepe, I.; Nastrom, G.; Cotton, William R.; Heymsfield, A. J.</p> <p>1990-01-01</p> <p>A general characterization is developed for cirrus clouds in terms of their spectra, shapes, optical thicknesses, and radiative properties for use in numerical models. Data sets from the Global Atmospheric Sampling Project (GASP) of the upper troposphere and the First ISCCP Regional Experiment (FIRE) are combined and analyzed to study general traits of cirrus clouds. A definition is given for 2D turbulence, and the GASP and FIRE data sets are examined with respect to cirrus layers and entrainment and to dominant turbulent scales. The approach employs conditional sampling in cloudy and clear air, power-spectral analysis, and mixing-line-type diagrams. Evidence is given for a well mixed cloud deck and for the tendency of cirrus to be formed in multilayer structures. The results are of use in mesoscale and global circulation models which predict cirrus, in small-scale cirrus modeling, and in studying the role of gravity waves in the horizontal structure of upper tropospheric clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3382T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3382T"><span>Observational filter for limb sounders applied to convective gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trinh, Quang Thai; Preusse, Peter; Riese, Martin; Kalisch, Silvio</p> <p></p> <p>Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610945T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610945T"><span>Observational filter for limb sounders applied to convective gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trinh, Thai; Kalisch, Silvio; Preusse, Peter; Riese, Martin</p> <p>2014-05-01</p> <p>Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvD..91j3509O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvD..91j3509O"><span>How well can we really determine the scale of inflation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Özsoy, Ogan; Sinha, Kuver; Watson, Scott</p> <p>2015-05-01</p> <p>A detection of primordial B modes has been heralded not only as a smoking gun for the existence of inflation, but also as a way to establish the scale at which inflation took place. In this paper we critically reinvestigate the connection between a detection of primordial gravity waves and the scale of inflation. We consider whether the presence of additional fields and nonadiabaticity during inflation may have provided an additional source of primordial B modes competitive with those of the quasi-de Sitter vacuum. In particular, we examine whether the additional sources could provide the dominant signal, which could lead to a misinterpretation of the scale of inflation. In light of constraints on the level of non-Gaussianity coming from Planck we find that only hidden sectors with strictly gravitationally strong couplings provide a feasible mechanism. The required model building is somewhat elaborate, and so we discuss possible UV completions in the context of type IIB orientifold compactifications with Ramond-Ramond axions. We find that an embedding is possible and that dangerous sinusoidal corrections can be suppressed through the compactification geometry. Our main result is that even when additional sources of primordial gravity waves are competitive with the inflaton, a positive B-mode detection would still be a relatively good indicator of the scale of inflation. This conclusion will be strengthened by future constraints on both non-Gaussianity and cosmic microwave background polarization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI34B1815H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI34B1815H"><span>Influence of internal waves on the dispersion and transport of inclined gravity currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.</p> <p>2016-02-01</p> <p>Brine discharge from desalination facilities presents environmental risks, particularly to benthic organisms. High concentrations of salt and chemical additives, which can be toxic to local ecosystems, are typically mitigated by dilution close to the source. Our laboratory experiments investigate how breaking internal tides can help to dilute gravity currents caused by desalination effluents and direct them away from the benthic layer. In laboratory experiments, internal waves at the pycnocline of an ambient stratification were directed towards a sloping shelf, down which ran a gravity current. The breaking internal waves were seen to increase the proportion of the fluid from the gravity current diverted away from the slope into an intrusion along the pycnocline. In a parametric study, increasing the amplitude of the internal wave was seen to increase the amount of dense fluid in the pycnocline intrusion. The amplitude required to divert the gravity current into the intrusion compares well with an analytical theory that equates the incident energy in the internal wave to the potential energy required to dilute the gravity current. These experimental results suggest that sites of breaking internal waves may be good sites for effluent disposal. Effluent diverted into the intrusion avoids the ecologically sensitive benthic layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.4228C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.4228C"><span>A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong</p> <p>2016-06-01</p> <p>According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110004919','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110004919"><span>Gravitational-Wave Astronomy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kelly, Bernard J.</p> <p>2010-01-01</p> <p>Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6971S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6971S"><span>A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schoon, Lena; Zülicke, Christoph</p> <p>2018-05-01</p> <p>For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi). It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia-gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia-gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11323663','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11323663"><span>A phenomenological description of space-time noise in quantum gravity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Amelino-Camelia, G</p> <p>2001-04-26</p> <p>Space-time 'foam' is a geometric picture of the smallest size scales in the Universe, which is characterized mainly by the presence of quantum uncertainties in the measurement of distances. All quantum-gravity theories should predict some kind of foam, but the description of the properties of this foam varies according to the theory, thereby providing a possible means of distinguishing between such theories. I previously showed that foam-induced distance fluctuations would introduce a new source of noise to the measurements of gravity-wave interferometers, but the theories are insufficiently developed to permit detailed predictions that would be of use to experimentalists. Here I propose a phenomenological approach that directly describes space-time foam, and which leads naturally to a picture of distance fluctuations that is independent of the details of the interferometer. The only unknown in the model is the length scale that sets the overall magnitude of the effect, but recent data already rule out the possibility that this length scale could be identified with the 'string length' (10-34 m < Ls < 10-33 m). Length scales even smaller than the 'Planck length' (LP approximately 10-35 m) will soon be probed experimentally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814128H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814128H"><span>On the generation of internal wave modes by surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian</p> <p>2016-04-01</p> <p>Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>