A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...
A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less
EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY
The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less
Lee, Chun W; Serre, Shannon D; Zhao, Yongxin; Lee, Sung Jun; Hastings, Thomas W
2008-04-01
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas.
Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo
2017-03-01
The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Chun W; Srivastava, Ravi K; Ghorishi, S Behrooz; Hastings, Thomas W; Stevens, Frank M
2004-12-01
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.
Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.
Yang, Yiming; Li, Jian; He, Hong
2017-08-24
The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.
Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping
2008-01-01
This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusten, B.; McCoy, M.; Proctor, R.
1998-07-01
The innovative moving bed biofilm reactor/solids contact reaeration (MBBR/SCR) process has been chosen for a new wastewater treatment plant serving a population of 200,000 at Moa Point, Wellington, New Zealand. Because the MBBR/SCR combination was new, a pilot-scale demonstration project was made part of the contract. Thorough pilot tests using a wide range of organic loads under both steady and transient-flow conditions demonstrated that the MBBR/SCR process produced the required effluent quality at loads higher than used in the original design. At 3 days mean cell residence time (MCRT) in the SCR stage, a final effluent with a 5-day biochemicalmore » oxygen demand (BOD{sub 5}) of less than 10 mg/L was achieved at an organic load on the MBBR of 15 g BOD{sub 5}/m{sup 2}{center_dot}d (5.0 kg BOD{sub 5}/m{sup 3}{center_dot}d). With the same MCRT, a final effluent of less than 15 mg BOD{sub 5}/L was achieved at an organic load on the MBBR of 20 g BOD{sub 5}/m{sup 2}{center_dot}d (6.7 kg BOD{sub 5}/m{sup 3}{center_dot}d). Dynamic loading tests demonstrated that a good-quality effluent was produced with a diurnal peak-hour load on the MBBR of more than 40 g BOD{sub 5}/m{sup 2}{center_dot}d (13.3 kg BOD{sub 5}/m{sup 3}{center_dot}d). The MBBR/SCR process was more compact and significantly cheaper than a conventional trickling filter/solids contact or activated-sludge process at the Moa Point site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinton, W.S.; Maxwell, J.D.; Healy, E.C.
1997-12-31
This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test programmore » was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.« less
Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC
NASA Astrophysics Data System (ADS)
Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung
2016-11-01
The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.
Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment
NASA Astrophysics Data System (ADS)
Liu, Z. Gerald; Ottinger, Nathan A.; Cremeens, Christopher M.
2015-03-01
Vanadium-based selective catalytic reduction (V-SCR) catalysts are currently used for the reduction of nitrogen oxides (NOx) in worldwide diesel applications including Euro IV, V, and VI as well as U.S. nonroad Tier 4 Final. Although V-SCR catalysts are attractive because of their high NOx conversion, low cost, resistance to sulfur poisoning, and ability to reduce hydrocarbon emissions, there is concern that V-SCR washcoat material (e.g., vanadium and tungsten) and its derivatives may be released into the atmosphere, potentially harming human health and the environment. In this study, vanadium and tungsten release measurements are made with both a reactor- and engine-based approach in order to determine the potential release of these metals from diesel exhaust aftertreatment systems that contain a V-SCR catalyst. Results for a commercially available V-SCR reveal that both V and W release begin at 500 °C, and both reactor- and engine-based methods are capable of measuring qualitatively similar release. Emissions with the engine-based method are higher at all temperatures evaluated, likely due to this method's ability to capture particle-phase and vapor-phase emissions which become particle-bound after their evolution from the catalyst surface. Certification relevant data (NRTC and NRSC) from a nonroad engine is used to understand probable emissions from V-SCR aftertreatment architectures. Finally, results from a V-SCR catalyst formulated for improved thermal durability illustrate that it is possible to increase the maximum temperature for V-SCR catalysts. This comprehensive understanding of the temperature dependence of vanadium and tungsten volatility can be used to further analyze the full impact of diesel aftertreatment on exhaust emissions and their impact on human health and environmental toxicity.
An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kispersky, Vincent F.; Kropf, A. Jeremy; Ribeiro, Fabio H.
2012-01-01
We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO x by NH₃ on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH₃, 5% O₂, 5% H₂O, 5% CO₂ and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states.more » XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situSCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO₂ catalyst, reduced in H₂ at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO₂ catalyst to be in a partially reduced Cu metal–Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.« less
Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping
2010-05-01
The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).
Table 1 summarizes and explanis the Operating Conditions of the SCR Reactor used in the Benzene-Destruction.Table 2 summarizes and explains the Experimental Design and Test Results.Table 3 summarizes and explains the Estimates for Individual Effects and Cross Effects Obtained from the Linear Regression Models for Destruction of C6H6 and Reduction of NO.Fig. 1 shows the Down-flow SCR reactor system in detail.Fig. 2 shows the graphical summary of the Effect of the inlet C6H6 concentration to the SCR reactor on the destruction of C6H6.Fig.3 shows the summary of Carbon mass balance for C6H6 destruction promoted by the V2O5-WO3/TiO2 catalyst.This dataset is associated with the following publication:Lee , C., Y. Zhao, S. Lu, and W.R. Stevens. Catalytic Destruction of a Surrogate Organic Hazardous Air Polutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems. AMERICAN CHEMICAL SOCIETY. American Chemical Society, Washington, DC, USA, 30(3): 2240-2247, (2016).
Rectifier cabinet static breaker
Costantino, Jr, Roger A.; Gliebe, Ronald J.
1992-09-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.
Research progress on catalytic denitrification technology in chemical industry
NASA Astrophysics Data System (ADS)
Jin, Yezhi
2017-12-01
In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.
The application of IR detector with windowing technique in the small and dim target detection
NASA Astrophysics Data System (ADS)
Su, Xiaofeng; Chen, Fansheng; Dong, Yucui; Cui, Kun; Huang, Sijie
2015-04-01
The performance of small and dim IR target detection is mostly affected by the signal to noise ratio(SNR) and signal to clutter ratio(SCR), for the MWIR especially LWIR array detector, because of the background radiation and the optical system radiation, the SCR cannot be unlimited increased by using a longer integral time, so the frame rate of the detector was mainly limited by the data readout time especially in a large-scale infrared detector, in this paper a new MWIR array detector with windowing technique was used to do the experiment, which can get a faster frame rate around the target by using the windowing mode, so the redundant information could be ignore, and the background subtraction was used to remove the fixed pattern noise and adjust the dynamic range of the target, then a local NUC(non uniformity correction) technique was proposed to improve the SCR of the target, the advantage between local NUC and global NUC was analyzed in detail, finally the multi local window frame accumulation was adopted to enhance the target further, and the SNR of the target was improved. The experiment showed the SCR of the target can improved from 1.3 to 36 at 30 frames accumulation, which make the target detection and tracking become very easily by using the new method.
Neon produced by solar cosmic rays in ordinary chondrites
NASA Astrophysics Data System (ADS)
Roth, Antoine S. G.; Trappitsch, Reto; Metzler, Knut; Hofmann, Beda A.; Leya, Ingo
2017-06-01
Solar-cosmic-ray-produced Ne (SCR-Ne), in the form of low cosmogenic 21Ne/22Ne ratios (21Ne/22Necos <0.8), is more likely to be found in rare meteorite classes, like Martian meteorites, than in ordinary chondrites. This may be the result of a sampling bias: SCR-Ne is better preserved in meteorites with small preatmospheric radii and these specimens are often only studied if they belong to unusual or rare classes. We measured He and Ne isotopic concentrations and nuclear tracks in 25 small unpaired ordinary chondrites from Oman. Most chondrites have been intensively heated during atmospheric entry as evidenced by the disturbed track records, the low 3He/21Ne ratios, the low 4He concentrations, and the high peak release temperatures. Concentration depth profiles indicate significant degassing; however, the Ne isotopes are mainly undisturbed. Remarkably, six chondrites have low 21Ne/22Necos in the range 0.711-0.805. Using a new physical model for the calculation of SCR production rates, we show that four of the chondrites contain up to 20% of SCR-Ne; they are analyzed in terms of preatmospheric sizes, cosmic ray exposure ages, mass ablation losses, and orbits. We conclude that SCR-Ne is preserved, regardless of the meteorite class, in specimens with small preatmospheric radii. Sampling bias explains the predominance of SCR-Ne in rare meteorites, although we cannot exclude that SCR-Ne is more common in Martian meteorites than it is in small ordinary chondrites.
NASA Astrophysics Data System (ADS)
Konishi, Hiroo; Takahashi, Choei; Kishibe, Hideto; Sato, Hiromichi
The stable operating power limits of a small scale HVDC system composed of voltage source converters (VSC-HVDC system) are analyzed with a simple model. The VSC-HVDC system could operate where the AC system must be somewhat larger in capacity than the VSC-HVDC system capacity. The stable operating power limits were between one and two times the SCR (short circuit ratio). When the inverter of the VSC-HVDC system was operated with lead reactive (capacitive) power control conditions, the stable operating limits were increased through AC voltage stabilization. When the inverter was a STATCOM operation, it could operate regardless of the SCR but regions within allowable AC voltage variations.
Investigation of the Effects of Biodiesel-based Na on Emissions Control Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookshear, D. William; Nguyen, Ke; Toops, Todd J
2012-01-01
A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented acceleratedmore » Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.« less
STUDY OF SPECIATION OF MERCURY UNDER SIMULATED SCR NOX EMISSION CONTROL CONDITIONS
The paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. It describes the results of bench-scale experiments conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures wit...
SCR-1: Design and Construction of a Small Modular Stellarator for Magnetic Confinement of Plasma
NASA Astrophysics Data System (ADS)
Barillas, L.; Vargas, V. I.; Alpizar, A.; Asenjo, J.; Carranza, J. M.; Cerdas, F.; Gutiérrez, R.; Monge, J. I.; Mora, J.; Morera, J.; Peraza, H.; Queral, V.; Rojas, C.; Rozen, D.; Saenz, F.; Sánchez, G.; Sandoval, M.; Trimiño, H.; Umaña, J.; Villegas, L. F.
2014-05-01
This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST_1, created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m3), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5kW, in the first harmonic at 2.45GHz. The expected electron temperature and density are 15 eV and 1017 m-3 respectively with an estimated confinement time of 7.30 x 10-4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.
Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Jianying; Liu, Chongxuan; Wang, Zheming
2014-02-15
Long-term (> 4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge (IFRC) site at the US Department of Energy (DOE) Hanford 300 Area. The experimental results were used to evaluate alternative multi-rate surface complexation reaction (SCR) approaches to describe the short- and long-term kinetics of U(VI) desorption under flow conditions. The SCR stoichiometry, equilibrium constants, and multi-rate parameters were independently characterized in batch and stirred flow-cell reactors. Multi-rate SCR models that were either additively constructed using the SCRs for individual size fractions (e.g., Shang et al.,more » 2011), or composite in nature could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using a labile U concentration measured by carbonate extraction under-estimated desorbable U(VI) and the long-term rate of U(VI) desorption. An alternative modeling approach using total U as the desorbable U(VI) concentration was proposed to overcome this difficulty. This study also found that the gravel size fraction (2-8 mm), which is typically treated as non-reactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application, and identifies important parameters and uncertainties affecting model predictions.« less
Silicon controlled rectifier polyphase bridge inverter commutated with gate-turn-off thyristor
NASA Technical Reports Server (NTRS)
Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)
1986-01-01
A polyphase SCR inverter (10) having N switching poles, each comprised of two SCR switches (1A, 1B; 2A, 2B . . . NA, NB) and two diodes (D1B; D1B; D2A, D2B . . . DNA, DNB) in series opposition with saturable reactors (L1A, L1B; L2A, L2B . . . LNA, LNB) connecting the junctions between the SCR switches and diodes to an output terminal (1, 2 . . . 3) is commutated with only one GTO thyristor (16) connected between the common negative terminal of a dc source and a tap of a series inductor (14) connected to the positive terminal of the dc source. A clamp winding (22) and diode (24) are provided, as is a snubber (18) which may have its capacitance (c) sized for maximum load current divided into a plurality of capacitors (C.sub.1, C.sub.2 . . . C.sub.N), each in series with an SCR switch S.sub.1, S.sub.2 . . . S.sub.N). The total capacitance may be selected by activating selected switches as a function of load current. A resistor 28 and SCR switch 26 shunt reverse current when the load acts as a generator, such as a motor while braking.
Transformation of mercury speciation through the SCR system in power plants.
Yang, Hong-min; Pan, Wei-ping
2007-01-01
Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can also prompt the oxidation and removal of mercury. In this paper, tests at six full-scale power plants with similar type of the SCR systems are conducted to investigate the effect of the SCR on the transformation of mercury speciation. The results show that the SCR system can achieve more than 70%-80% oxidation of elemental mercury and enhance the mercury removal ability in these units. The oxidation of elemental mercury in the SCR system strongly depends on the coal properties and the operation conditions of the SCR systems. The content of chloride in the coal is the key factor for the oxidization process and the maximum oxidation of elemental mercury is found when chloride content changes from 400 to 600 ppm. The sulfur content is no significant impact on oxidation of elemental mercury.
Impact of sulfation and desulfation on NO x reduction using Cu-chabazite SCR catalysts
Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; ...
2015-06-05
This bench reactor study investigates the impact of gaseous sulfur on the NO x reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO 2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO 2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NO x reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples.more » Interestingly, BET measurements reveal that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NO x/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO 2 exposure also results in an increase in NH 3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NO x reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less
A SCR Model Calibration Approach with Spatially Resolved Measurements and NH 3 Storage Distributions
Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; ...
2014-11-27
The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH 3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH 3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH 3more » storage capacity and the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO 2, and NH 3. The equations and the approach for determining the NH 3 storage capacity of the catalyst and a method of dividing the NH 3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less
Nin, Nicolás; Lombardi, Raúl; Frutos-Vivar, Fernando; Esteban, Andrés; Lorente, José A; Ferguson, Niall D; Hurtado, Javier; Apezteguia, Carlos; Brochard, Laurent; Schortgen, Fréderique; Raymondos, Konstantinos; Tomicic, Vinko; Soto, Luis; González, Marco; Nightingale, Peter; Abroug, Fekri; Pelosi, Paolo; Arabi, Yaseen; Moreno, Rui; Anzueto, Antonio
2010-08-01
Emerging evidence suggests that minor changes in serum creatinine concentrations are associated with increased hospital mortality rates. However, whether serum creatinine concentration (SCr) on admission and its change are associated with an increased mortality rate in mechanically ventilated patients is not known. We have conducted an international, prospective, observational cohort study enrolling adult intensive care unit patients under mechanical ventilation (MV). Recursive partitioning was used to determine the values of SCr at the start of MV (SCr0) and the change in SCr ([DeltaSCr] defined as the maximal difference between the value at start of MV [day 0] and the value on MV day 2 at 8:00 am) that best discriminate mortality. In-hospital mortality, adjusted by a proportional hazards model, was the primary outcome variable. A total of 2,807 patients were included; median age was 59 years and median Simplified Acute Physiology Score II was 44. All-cause in-hospital mortality was 44%. The variable that best discriminated outcome was a SCr0 greater than 1.40 mg/dL (mortality, 57% vs. 36% for patients with SCr0
Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell
2016-01-01
Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.
Kim, Saewon; Cho, Hyekyung; Joo, Hyunku; Her, Namguk; Han, Jonghun; Yi, Kwangbok; Kim, Jong-Oh; Yoon, Jaekyung
2017-08-15
In this study, the performances of photocatalytic reactors of the small and scale-up rotating and flat types were evaluated to investigate the treatment of new emerging contaminants such as bisphenol A (BPA), 17α-ethynyl estradiol (EE2), and 17β-estradiol (E2) that are known as endocrine disrupting compounds (EDCs). In the laboratory tests with the small-scale rotating and flat reactors, the degradation efficiencies of the mixed EDCs were significantly influenced by the change of the hydraulic retention time (HRT). In particular, considering the effective two-dimensional reaction area with light and nanotubular TiO 2 (NTT) on a Ti substrate, the rotating reactors showed the more effective performance than the flat reactor because the degradation efficiencies are similar in the small effective area. In addition, the major parameters affecting the photocatalytic activities of the NTT were evaluated for the rotating reactors according to the effects of single and mixed EDCs, the initial concentrations of the EDCs, the UV intensity, and dissolved oxygen. In the extended outdoor tests with the scale-up photocatalytic reactors and NTT, it was confirmed from the four representative demonstrations that an excellent rotating-reactor performance is consistently shown in terms of the degradation of the target pollutants under solar irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... replenishment of the nitrogen-containing reducing agent for selective catalytic reduction (SCR) technologies... NO X reduction requirements for their diesel engines. SCR systems use a nitrogen-containing reducing... balance between the dictates of operating nonroad equipment (which requires DEF tanks of small enough...
Small-scale nuclear reactors for remote military operations: opportunities and challenges
2015-08-25
study – Report was published in March 2011 CNA study identified challenges to deploy small modular reactors (SMRs) at a base – Identified First-of...forward operating bases. The availability of deployable, cost-effective, regulated, and secure small modular reactors with a modest output electrical...defense committees on the challenges, operational requirements, constraints, cost, and life cycle analysis for a small modular reactor of less than 10
A comparative study on methods of improving SCR for ship detection in SAR image
NASA Astrophysics Data System (ADS)
Lang, Haitao; Shi, Hongji; Tao, Yunhong; Ma, Li
2017-10-01
Knowledge about ship positions plays a critical role in a wide range of maritime applications. To improve the performance of ship detector in SAR image, an effective strategy is improving the signal-to-clutter ratio (SCR) before conducting detection. In this paper, we present a comparative study on methods of improving SCR, including power-law scaling (PLS), max-mean and max-median filter (MMF1 and MMF2), method of wavelet transform (TWT), traditional SPAN detector, reflection symmetric metric (RSM), scattering mechanism metric (SMM). The ability of SCR improvement to SAR image and ship detection performance associated with cell- averaging CFAR (CA-CFAR) of different methods are evaluated on two real SAR data.
The protective effect of SCR(15-18) on cerebral ischemia-reperfusion injury.
Li, Shu; Xian, Jinhong; He, Li; Luo, Xue; Tan, Bing; Yang, Yongtao; Liu, Gaoke; Wang, Zhengqing
2011-10-01
Soluble complement receptor type 1 (sCR1), a potent inhibitor of complement activation, has been shown to protect brain cells against cerebral ischemic/reperfusion (CI/R) injury due to its decay-accelerating activity for C3/C5 convertase and co-factor activity for C3b/C4b degradation. However, the effect of short consensus repeats (SCRs) 15-18, one of active domains of sCR1 with high C3b/C4b degradability, has not been demonstrated. Here, we investigated the protective effect of recombinant SCR(15-18) protein in middle cerebral artery occlusion (MCAO)-induced focal CI/R injury. Recombinant SCR(15-18) protein was successfully expressed in Escherichia coli and refolded to its optimal bioactivity. Seventy-five Sprague-Dawley rats were randomly assigned into three groups: sham-operated group, CI/R group, and SCR(15-18)+CI/R group pretreated with 20 mg/kg SCR(15-18) protein. After 2 hours of MCAO and subsequent 24 hours of reperfusion, rats were evaluated for neurological deficits and cerebral infarction. Polymorphonuclear leukocyte accumulation, C3b deposition, and morphological changes in cerebral tissue were also estimated. SCR(15-18) pretreatment induced a 20% reduction of infarct size and an improvement of neurological function with 22·2% decrease of neurological deficit scores. Inhibition of cerebral neutrophils infiltration by SCR(15-18) was indicated from the reduction of myeloperoxidase activity in SCR(15-18)+CI/R rats. Decreased C3b deposition and improved morphological changes were also found in cerebral tissue of SCR(15-18)-treated rats. Our studies suggest a definitive moderately protective effect of SCR(15-18) against CI/R damage and provide preclinical experimental evidence supporting the possibility of using it as a small anti-complement therapeutic agent for CI/R injury therapy.
Liu, Ke; Zhang, Jian; Bao, Jie
2015-11-01
A two stage hydrolysis of corn stover was designed to solve the difficulties between sufficient mixing at high solids content and high power input encountered in large scale bioreactors. The process starts with the quick liquefaction to convert solid cellulose to liquid slurry with strong mixing in small reactors, then followed the comprehensive hydrolysis to complete saccharification into fermentable sugars in large reactors without agitation apparatus. 60% of the mixing energy consumption was saved by removing the mixing apparatus in large scale vessels. Scale-up ratio was small for the first step hydrolysis reactors because of the reduced reactor volume. For large saccharification reactors in the second step, the scale-up was easy because of no mixing mechanism was involved. This two stage hydrolysis is applicable for either simple hydrolysis or combined fermentation processes. The method provided a practical process option for industrial scale biorefinery processing of lignocellulose biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Kangfeng; Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai; Yang, Shichun
2018-01-01
As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small.
Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai
2018-01-01
As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small. PMID:29408924
Applications of selective catalytic reduction (SCR) systems and wet flue gas desulfurization (FGD) scrubbers on coal-fired boilers have led to substantial reductions in emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2). However, observations of pilot- and full-scale tes...
Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler.
Liu, Xing; Tan, Houzhang; Wang, Yibin; Yang, Fuxin; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven
2018-08-15
Low NO x burner redesign and deep air staging have been carried out to optimize the poor ignition and reduce the NO x emissions in a low volatile coal fired 330 MW e boiler. Residual swirling flow in the tangentially-fired furnace caused flue gas velocity deviations at furnace exit, leading to flow field unevenness in the SCR (selective catalytic reduction) system and poor denitrification efficiency. Numerical simulations on the velocity field in the SCR system were carried out to determine the optimal flow deflector arrangement to improve flow field uniformity of SCR system. Full-scale experiment was performed to investigate the effect of low NO x combustion and SCR flow field optimization. Compared with the results before the optimization, the NO x emissions at furnace exit decreased from 550 to 650 mg/Nm³ to 330-430 mg/Nm³. The sample standard deviation of the NO x emissions at the outlet section of SCR decreased from 34.8 mg/Nm³ to 7.8 mg/Nm³. The consumption of liquid ammonia reduced from 150 to 200 kg/h to 100-150 kg/h after optimization. Copyright © 2018. Published by Elsevier Ltd.
Young, Dmitri A; Neylan, Thomas C; O'Donovan, Aoife; Metzler, Thomas; Richards, Anne; Ross, Jessica A; Inslicht, Sabra S
2018-08-01
While the BDNF Val66Met polymorphism has been linked to various psychological disorders, limited focus has been on its relationship to posttraumatic stress disorder (PTSD) and early traumas such as child abuse. Therefore, we assessed whether Val66Met was associated with fear potentiated psychophysiological response and HPA axis dysfunction and whether PTSD status or child abuse history moderated these outcomes in a sample of Veterans. 226 and 173 participants engaged in a fear potentiated acoustic startle paradigm and a dexamethasone suppression test (DST) respectively. Fear conditions included no, ambiguous, and high threat conditions. Psychophysiological response measures included electromyogram (EMG), skin conductance response (SCR), and heart rate. The Clinician Administered PTSD Scale (CAPS) and the Trauma History Questionnaire (THQ) were used to assess PTSD status and child abuse history respectively. Met allele carriers exhibited greater SCR magnitudes in the no and ambiguous threat conditions (p < 0.01 and p < 0.05 respectively). Met carriers with PTSD exhibited greater physiological response magnitudes in the ambiguous (SCR, p < 0.001) and high threat conditions (SCR and heart rate, both p ≤ 0.005). Met carrier survivors of child abuse exhibited blunted heart rate magnitudes in the high threat condition (p < 0.01). Met allele carries with PTSD also exhibited greater percent cortisol suppression (p < 0.005). Limitations included small sample size and the cross-sectional nature of the data. The Val66met may impact PTSD susceptibility differentially via enhanced threat sensitivity and HPA axis dysregulation. Child abuse may moderate Val66Met's impact on threat reactivity. Future research should explore how neuronal mechanisms might mediate this risk. Published by Elsevier B.V.
Acute kidney injury associated with endurance events—is it a cause for concern? A systematic review
Hodgson, LE; Walter, E; Venn, RM; Galloway, R; Pitsiladis, Y; Sardat, F; Forni, LG
2017-01-01
Introduction A growing body of evidence suggests even small rises in serum creatinine (SCr) are of considerable clinical relevance. Given that participants in endurance events are exposed to potential (repeated) renal insults, a systematic review was undertaken to collate current evidence for acute kidney injury (AKI), complicating such events. Methods A systematic review of studies and case reports meeting inclusion criteria on Medline and EMBASE (inception to October 2015). Included: studies with markers of renal function before and after endurance or ultraendurance events; case reports of severe AKI. Two reviewers assessed risk of bias using the Newcastle-Ottawa scale. Results Eleven case report publications (n=27 individuals) of severe AKI, were retrieved, with risk factors including systemic illness or nephrotoxic medications usually identified. From 30 studies of endurance and ultraendurance events, mean rise in SCr was 29 (±12.3) µmol/L after marathon or ultramarathon (17 studies, n=568 participants) events. Where follow-up tests were conducted, SCr returned to baseline within 48 hours. Rises in biomarkers suggest potential parenchymal insult, rather than simply muscle breakdown. However, evidence of long-term deleterious effects is lacking. Conclusions Raised levels of SCr are reported immediately after endurance events. It is not clear whether this is either clinically significant, or if repeated participation predisposes to long-term sequelae. The aetiology of severe exercise-associated AKI is usually multifactorial, with risk factors generally identified in the rare cases reported. On-site biochemistry, urine analysis and biomarkers of AKI may help identify collapsed runners who are at significant short-term risk and allow suitable follow-up. PMID:29259804
Royle, J. Andrew; Sutherland, Christopher S.; Fuller, Angela K.; Sun, Catherine C.
2015-01-01
We develop a likelihood analysis framework for fitting spatial capture-recapture (SCR) models to data collected on class structured or stratified populations. Our interest is motivated by the necessity of accommodating the problem of missing observations of individual class membership. This is particularly problematic in SCR data arising from DNA analysis of scat, hair or other material, which frequently yields individual identity but fails to identify the sex. Moreover, this can represent a large fraction of the data and, given the typically small sample sizes of many capture-recapture studies based on DNA information, utilization of the data with missing sex information is necessary. We develop the class structured likelihood for the case of missing covariate values, and then we address the scaling of the likelihood so that models with and without class structured parameters can be formally compared regardless of missing values. We apply our class structured model to black bear data collected in New York in which sex could be determined for only 62 of 169 uniquely identified individuals. The models containing sex-specificity of both the intercept of the SCR encounter probability model and the distance coefficient, and including a behavioral response are strongly favored by log-likelihood. Estimated population sex ratio is strongly influenced by sex structure in model parameters illustrating the importance of rigorous modeling of sex differences in capture-recapture models.
Spatial capture-recapture models allowing Markovian transience or dispersal
Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris
2016-01-01
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.
Lakshmikanthan, P; Sivakumar Babu, G L
2017-03-01
The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.
Rapid computational identification of the targets of protein kinase inhibitors.
Rockey, William M; Elcock, Adrian H
2005-06-16
We describe a method for rapidly computing the relative affinities of an inhibitor for all individual members of a family of homologous receptors. The approach, implemented in a new program, SCR, models inhibitor-receptor interactions in full atomic detail with an empirical energy function and includes an explicit account of flexibility in homology-modeled receptors through sampling of libraries of side chain rotamers. SCR's general utility was demonstrated by application to seven different protein kinase inhibitors: for each inhibitor, relative binding affinities with panels of approximately 20 protein kinases were computed and compared with experimental data. For five of the inhibitors (SB203580, purvalanol B, imatinib, H89, and hymenialdisine), SCR provided excellent reproduction of the experimental trends and, importantly, was capable of identifying the targets of inhibitors even when they belonged to different kinase families. The method's performance in a predictive setting was demonstrated by performing separate training and testing applications, and its key assumptions were tested by comparison with a number of alternative approaches employing the ligand-docking program AutoDock (Morris et al. J. Comput. Chem. 1998, 19, 1639-1662). These comparison tests included using AutoDock in nondocking and docking modes and performing energy minimizations of inhibitor-kinase complexes with the molecular mechanics code GROMACS (Berendsen et al. Comput. Phys. Commun. 1995, 91, 43-56). It was found that a surprisingly important aspect of SCR's approach is its assumption that the inhibitor be modeled in the same orientation for each kinase: although this assumption is in some respects unrealistic, calculations that used apparently more realistic approaches produced clearly inferior results. Finally, as a large-scale application of the method, SB203580, purvalanol B, and imatinib were screened against an almost full complement of 493 human protein kinases using SCR in order to identify potential new targets; the predicted targets of SB203580 were compared with those identified in recent proteomics-based experiments. These kinome-wide screens, performed within a day on a small cluster of PCs, indicate that explicit computation of inhibitor-receptor binding affinities has the potential to promote rapid discovery of new therapeutic targets for existing inhibitors.
Sepúlveda, Nuno; Paulino, Carlos Daniel; Drakeley, Chris
2015-12-30
Several studies have highlighted the use of serological data in detecting a reduction in malaria transmission intensity. These studies have typically used serology as an adjunct measure and no formal examination of sample size calculations for this approach has been conducted. A sample size calculator is proposed for cross-sectional surveys using data simulation from a reverse catalytic model assuming a reduction in seroconversion rate (SCR) at a given change point before sampling. This calculator is based on logistic approximations for the underlying power curves to detect a reduction in SCR in relation to the hypothesis of a stable SCR for the same data. Sample sizes are illustrated for a hypothetical cross-sectional survey from an African population assuming a known or unknown change point. Overall, data simulation demonstrates that power is strongly affected by assuming a known or unknown change point. Small sample sizes are sufficient to detect strong reductions in SCR, but invariantly lead to poor precision of estimates for current SCR. In this situation, sample size is better determined by controlling the precision of SCR estimates. Conversely larger sample sizes are required for detecting more subtle reductions in malaria transmission but those invariantly increase precision whilst reducing putative estimation bias. The proposed sample size calculator, although based on data simulation, shows promise of being easily applicable to a range of populations and survey types. Since the change point is a major source of uncertainty, obtaining or assuming prior information about this parameter might reduce both the sample size and the chance of generating biased SCR estimates.
Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.
2016-01-01
Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.
NASA Astrophysics Data System (ADS)
Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei
2015-11-01
Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.
Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.; Burton, J.; McCormick, R. L.
2013-04-01
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Proceduremore » emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.« less
Liu, Zhi-Qiang; Hu, Zhong-Liang; Zhang, Xiao-Jian; Tang, Xiao-Ling; Cheng, Feng; Xue, Ya-Ping; Wang, Ya-Jun; Wu, Lin; Yao, Dan-Kai; Zhou, Yi-Teng; Zheng, Yu-Guo
2017-05-01
To biosynthesize the (3R,5S)-CDHH in an industrial scale, a newly synthesized stereoselective short chain carbonyl reductase (SCR) was successfully cloned and expressed in Escherichia coli. The fermentation of recombinant E. coli harboring SCR was carried out in 500 L and 5000 L fermenters, with biomass and specific activity of 9.7 g DCW/L, 15749.95 U/g DCW, and 10.97 g DCW/L, 19210.12 U/g DCW, respectively. The recombinant SCR was successfully applied for efficient production of (3R,5S)-CDHH. The scale-up synthesis of (3R,5S)-CDHH was performed in 5000 L bioreactor with 400 g/L of (S)-CHOH at 30°C, resulting in a space-time yield of 13.7 mM/h/g DCW, which was the highest ever reported. After isolation and purification, the yield and d.e. of (3R,5S)-CDHH reached 97.5% and 99.5%, respectively. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:612-620, 2017. © 2017 American Institute of Chemical Engineers.
Numerical analysis of ammonia homogenization for selective catalytic reduction application.
Baleta, Jakov; Martinjak, Matija; Vujanović, Milan; Pachler, Klaus; Wang, Jin; Duić, Neven
2017-12-01
Selective catalytic reduction based on urea water solution as ammonia precursor is a promising method for the NO x abatement form exhaust gasses of mobile diesel engine units. It consists of injecting the urea-water solution in the hot flue gas stream and reaction of its products with the NO x over the catalyst surface. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO x reductant, and isocyanic acid are generated. The uniformity of the ammonia before the catalyst as well as ammonia slip to the environment are important counteracting design requirements, optimization of which is crucial for development of efficient deNO x systems. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE ® , to simulate physical processes of all relevant phenomena occurring during the SCR process including chemical reactions taking part in the catalyst. First, mathematical models for description of SCR process are presented and afterwards, models are used on the 3D geometry of a real SCR reactor in order to predict ammonia generation, NO x reduction and resulting ammonia slip. Influence of the injection direction and droplet sizes was also investigated on the same geometry. The performed study indicates importance of droplet sizes on the SCR process and shows that counterflow injection is beneficial, especially in terms of minimizing harmful ammonia slip to environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Composting in small laboratory pilots: Performance and reproducibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.
2012-02-15
Highlights: Black-Right-Pointing-Pointer We design an innovative small-scale composting device including six 4-l reactors. Black-Right-Pointing-Pointer We investigate the performance and reproducibility of composting on a small scale. Black-Right-Pointing-Pointer Thermophilic conditions are established by self-heating in all replicates. Black-Right-Pointing-Pointer Biochemical transformations, organic matter losses and stabilisation are realistic. Black-Right-Pointing-Pointer The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creatingmore » artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O{sub 2} consumption and CO{sub 2} emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures.« less
Paiva, Bruno; López-Anglada, Lucía; Mateos, María-Victoria; Cedena, Teresa; Vidríales, María-Belén; Sáez-Gómez, María Auxiliadora; Contreras, Teresa; Oriol, Albert; Rapado, Inmaculada; Teruel, Ana-Isabel; Cordón, Lourdes; Blanchard, María Jesús; Bengoechea, Enrique; Palomera, Luis; de Arriba, Felipe; Cueto-Felgueroso, Cecilia; Orfao, Alberto; Bladé, Joan; San Miguel, Jesús F.; Lahuerta, Juan José
2015-01-01
Stringent complete response (sCR) criteria are used in multiple myeloma as a deeper response category compared with CR, but prospective validation is lacking, it is not always clear how evaluation of clonality is performed, and is it not known what the relative clinical influence is of the serum free light chain ratio (sFLCr) and bone marrow (BM) clonality to define more sCR. To clarify this controversy, we focused on 94 patients that reached CR, of which 69 (73%) also fulfilled the sCR criteria. Patients with sCR displayed slightly longer time to progression (median, 62 vs 53 months, respectively; P = .31). On analyzing this contribution to the prognosis of sFLCr or clonality, it was found that the sFLCr does not identify patients in CR at distinct risk; by contrast, low-sensitive multiparametric flow cytometry (MFC) immunophenotyping (2 colors), which is equivalent to immunohistochemistry, identifies a small number of patients (5 cases) with high residual tumor burden and dismal outcome; nevertheless, using traditional 4-color MFC, persistent clonal BM disease was detectable in 36% of patients, who, compared with minimal residual disease-negative cases, had a significantly inferior outcome. These results show that the current definition of sCR should be revised. PMID:26089396
Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing.
Vartak, Supriya V; Raghavan, Sathees C
2015-11-01
DNA repair, one of the fundamental processes occurring in a cell, safeguards the genome and maintains its integrity. Among various DNA lesions, double-strand breaks are considered to be the most deleterious, as they can lead to potential loss of genetic information, if not repaired. Nonhomologous end joining (NHEJ) and homologous recombination are two major double-strand break repair pathways. SCR7, a DNA ligase IV inhibitor, was recently identified and characterized as a potential anticancer compound. Interestingly, SCR7 was shown to have several applications, owing to its unique property as an NHEJ inhibitor. Here, we focus on three main areas of research in which SCR7 is actively being used, and discuss one of the applications, i.e. genome editing via CRISPR/Cas, in detail. In the past year, different studies have shown that SCR7 significantly increases the efficiency of precise genome editing by inhibiting NHEJ, and favouring the error-free homologous recombination pathway, both in vitro and in vivo. Overall, we discuss the current applications of SCR7 to shed light on the unique property of the small molecule of having distinct applications in normal and cancer cells, when used at different cellular concentrations. © 2015 FEBS.
SMR Re-Scaling and Modeling for Load Following Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, K.; Wu, Q.; Bragg-Sitton, S.
2016-11-01
This study investigates the creation of a new set of scaling parameters for the Oregon State University Multi-Application Small Light Water Reactor (MASLWR) scaled thermal hydraulic test facility. As part of a study being undertaken by Idaho National Lab involving nuclear reactor load following characteristics, full power operations need to be simulated, and therefore properly scaled. Presented here is the scaling analysis and plans for RELAP5-3D simulation.
Catalog of experimental projects for a fissioning plasma reactor
NASA Technical Reports Server (NTRS)
Lanzo, C. D.
1973-01-01
Experimental and theoretical investigations were carried out to determine the feasibility of using a small scale fissioning uranium plasma as the power source in a driver reactor. The driver system is a light water cooled and moderated reactor of the MTR type. The eight experiments and proposed configurations for the reactor are outlined.
Effects of copper loading on NH3-SCR and NO oxidation over Cu impregnated CHA zeolite
Akter, Nusnin; Chen, Xianyin; Parise, John; ...
2017-11-25
Cu/CHA catalysts with various Cu loadings (0.5 wt%–6.0 wt%) were synthesized via incipient wetness impregnation. The catalysts were then applied to the selective catalytic reduction (SCR) of NO with NH 3 and NO oxidation reaction. XRD and N 2 adsorption-desorption data showed that CHA structure was maintained with the incorporation of Cu, while specific surface areas decreased with increasing Cu loading. At intermediate Cu loading, 4 wt%, the highest NH 3-SCR activity was observed with ~98% N2 selectivity from 150°C to 300°C. Small amounts of water, 2%, slightly increased NO conversion in addition to the remarkable N 2O and NOmore » 2 reduction at high temperature. Water effects are attributed to the improved Cu ion reducibility and mobility. NO oxidation results provided no relation between NO 2 formation and SCR activity. Physicochemical properties, NO conversion, N 2 selectivity, and activation energy data showed that impregnated samples’ molecular structure and catalytic activity are comparable to the conventional ion-exchanged (IE) samples’ ones.« less
Composting in small laboratory pilots: performance and reproducibility.
Lashermes, G; Barriuso, E; Le Villio-Poitrenaud, M; Houot, S
2012-02-01
Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creating artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O(2) consumption and CO(2) emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Martínez-López, Joaquín; Paiva, Bruno; López-Anglada, Lucía; Mateos, María-Victoria; Cedena, Teresa; Vidríales, María-Belén; Sáez-Gómez, María Auxiliadora; Contreras, Teresa; Oriol, Albert; Rapado, Inmaculada; Teruel, Ana-Isabel; Cordón, Lourdes; Blanchard, María Jesús; Bengoechea, Enrique; Palomera, Luis; de Arriba, Felipe; Cueto-Felgueroso, Cecilia; Orfao, Alberto; Bladé, Joan; San Miguel, Jesús F; Lahuerta, Juan José
2015-08-13
Stringent complete response (sCR) criteria are used in multiple myeloma as a deeper response category compared with CR, but prospective validation is lacking, it is not always clear how evaluation of clonality is performed, and is it not known what the relative clinical influence is of the serum free light chain ratio (sFLCr) and bone marrow (BM) clonality to define more sCR. To clarify this controversy, we focused on 94 patients that reached CR, of which 69 (73%) also fulfilled the sCR criteria. Patients with sCR displayed slightly longer time to progression (median, 62 vs 53 months, respectively; P = .31). On analyzing this contribution to the prognosis of sFLCr or clonality, it was found that the sFLCr does not identify patients in CR at distinct risk; by contrast, low-sensitive multiparametric flow cytometry (MFC) immunophenotyping (2 colors), which is equivalent to immunohistochemistry, identifies a small number of patients (5 cases) with high residual tumor burden and dismal outcome; nevertheless, using traditional 4-color MFC, persistent clonal BM disease was detectable in 36% of patients, who, compared with minimal residual disease-negative cases, had a significantly inferior outcome. These results show that the current definition of sCR should be revised. © 2015 by The American Society of Hematology.
Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...
2017-03-01
The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less
Stevens, Lesley A; Coresh, Josef; Schmid, Christopher H; Feldman, Harold I.; Froissart, Marc; Kusek, John; Rossert, Jerome; Van Lente, Frederick; Bruce, Robert D.; Zhang, Yaping (Lucy); Greene, Tom; Levey, Andrew S
2008-01-01
Background Serum cystatin C (Scys) has been proposed as a potential replacement for serum creatinine (Scr) in glomerular filtration rate (GFR) estimation. We report development and evaluation of GFR estimating equations using Scys alone and Scys, Scr or both with demographic variables. Study Design Test of diagnostic accuracy. Setting and Participants Participants screened for three chronic kidney disease (CKD) studies in the US (n=2980) and a clinical population in Paris, France (n=438) Reference Test Measured GFR (mGFR). Index Test Estimated GFR using the four new equations based on Scys alone, Scys, Scr or both with age, sex and race. New equations were developed using regression with log GFR as the outcome in 2/3 data from US studies. Internal validation was performed in remaining 1/3 of data from US CKD studies; external validation was performed in the Paris study. Measurements GFR was measured using urinary clearance of 125I-iothalamate in the US studies and chromium-ethylenediaminetetraacetate (51Cr-EDTA) in the Paris study. Scys was measured by Dade Behring assay, standardized Scr. Results Mean mGFR, Scr and Scys were 48 (5th–95th percentile 15–95) ml/min/1.73m2 2.1 mg/dL and 1.8 mg/L respectively. For the new equations, the coefficients for age, sex and race were significant in the equation with Scys but 2 to 4 fold smaller than in the equation with Scr. Measures of performance among new equations were consistent across development, internal and external validation datasets. Percent of eGFR within 30% of mGFR for equations based on Scys alone, Scys, Scr or both with age, sex and race were 81, 83, 85, and 89%, respectively. The equation using Scys alone yields estimates with small biases in age, sex and race subgroups, which are improved in equations including these variables. Limitations Study population composed mainly of patients with CKD. Conclusions Scys alone provides GFR estimates that are nearly as accurate as Scr adjusted for age, sex and race thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including Scys in combination with Scr, age, sex and race provide most accurate estimates. PMID:18295055
Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials
NASA Astrophysics Data System (ADS)
Krumwiede, D. L.; Yamamoto, T.; Saleh, T. A.; Maloy, S. A.; Odette, G. R.; Hosemann, P.
2018-06-01
Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. This study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior on radiation-damaged samples.
NASA Technical Reports Server (NTRS)
Roman, W. C.; Jaminet, J. F.
1972-01-01
Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.
NASA Technical Reports Server (NTRS)
Latham, T. S.; Rodgers, R. J.
1972-01-01
Analytical studies were continued to identify the design and performance characteristics of a small-scale model of a nuclear light bulb unit cell suitable for testing in a nuclear furnace reactor. Emphasis was placed on calculating performance characteristics based on detailed radiant heat transfer analyses, on designing the test assembly for ease of insertion, connection, and withdrawal at the reactor test cell, and on determining instrumentation and test effluent handling requirements. In addition, a review of candidate test reactors for future nuclear light bulb in-reactor tests was conducted.
Applications of independent component analysis in SAR images
NASA Astrophysics Data System (ADS)
Huang, Shiqi; Cai, Xinhua; Hui, Weihua; Xu, Ping
2009-07-01
The detection of faint, small and hidden targets in synthetic aperture radar (SAR) image is still an issue for automatic target recognition (ATR) system. How to effectively separate these targets from the complex background is the aim of this paper. Independent component analysis (ICA) theory can enhance SAR image targets and improve signal clutter ratio (SCR), which benefits to detect and recognize faint targets. Therefore, this paper proposes a new SAR image target detection algorithm based on ICA. In experimental process, the fast ICA (FICA) algorithm is utilized. Finally, some real SAR image data is used to test the method. The experimental results verify that the algorithm is feasible, and it can improve the SCR of SAR image and increase the detection rate for the faint small targets.
Santori, G; Fontana, I; Bertocchi, M; Gasloli, G; Magoni Rossi, A; Tagliamacco, A; Barocci, S; Nocera, A; Valente, U
2010-05-01
A useful approach to reduce the number of discarded marginal kidneys and to increase the nephron mass is double kidney transplantation (DKT). In this study, we retrospectively evaluated the potential predictors for patient and graft survival in a single-center series of 59 DKT procedures performed between April 21, 1999, and September 21, 2008. The kidney recipients of mean age 63.27 +/- 5.17 years included 16 women (27%) and 43 men (73%). The donors of mean age 69.54 +/- 7.48 years included 32 women (54%) and 27 men (46%). The mean posttransplant dialysis time was 2.37 +/- 3.61 days. The mean hospitalization was 20.12 +/- 13.65 days. Average serum creatinine (SCr) at discharge was 1.5 +/- 0.59 mg/dL. In view of the limited numbers of recipient deaths (n = 4) and graft losses (n = 8) that occurred in our series, the proportional hazards assumption for each Cox regression model with P < .05 was tested by using correlation coefficients between transformed survival times and scaled Schoenfeld residuals, and checked with smoothed plots of Schoenfeld residuals. For patient survival, the variables that reached statistical significance were donor SCr (P = .007), donor creatinine cleararance (P = .023), and recipient age (P = .047). Each significant model passed the Schoenfeld test. By entering these variables into a multivariate Cox model for patient survival, no further significance was observed. In the univariate Cox models performed for graft survival, statistical significance was noted for donor SCr (P = .027), SCr 3 months post-DKT (P = .043), and SCr 6 months post-DKT (P = .017). All significant univariate models for graft survival passed the Schoenfeld test. A final multivariate model retained SCr at 6 months (beta = 1.746, P = .042) and donor SCr (beta = .767, P = .090). In our analysis, SCr at 6 months seemed to emerge from both univariate and multivariate Cox models as a potential predictor of graft survival among DKT. Multicenter studies with larger recipient populations and more graft losses should be performed to confirm our findings. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...
2016-04-27
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less
Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E
2016-09-01
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.
Operation of an aquatic worm reactor suitable for sludge reduction at large scale.
Hendrickx, Tim L G; Elissen, Hellen H J; Temmink, Hardy; Buisman, Cees J N
2011-10-15
Treatment of domestic waste water results in the production of waste sludge, which requires costly further processing. A biological method to reduce the amount of waste sludge and its volume is treatment in an aquatic worm reactor. The potential of such a worm reactor with the oligochaete Lumbriculus variegatus has been shown at small scale. For scaling up purposes, a new configuration of the reactor was designed, in which the worms were positioned horizontally in the carrier material. This was tested in a continuous experiment of 8 weeks where it treated all the waste sludge from a lab-scale activated sludge process. The results showed a higher worm growth rate compared to previous experiments with the old configuration, whilst nutrient release was similar. The new configuration has a low footprint and allows for easy aeration and faeces collection, thereby making it suitable for full scale application. Copyright © 2011 Elsevier Ltd. All rights reserved.
Go, Hayato; Momoi, Nobuo; Kashiwabara, Nozomi; Haneda, Kentaro; Chishiki, Mina; Imamura, Takashi; Sato, Maki; Goto, Aya; Kawasaki, Yukihiko; Hosoya, Mitsuaki
2018-01-01
We investigated the relationship of neonatal and maternal serum creatinine (nSCr and mSCr, respectively) with various maternal/infant characteristics at different gestational ages (GA). We reviewed medical records of neonates admitted to NICU. We collected data on birth weight, GA, Apgar scores, medications, etc. Spearman's test was used to analyze the correlation between serum creatinine and continuous variables, and the Mann-Whitney U and Kruskal-Wallis tests for continuous variables between groups. The changes in nSCr, mSCr, and nSCr/mSCr ratio because of gestational age and the points in gestational changes in trends were estimated using joinpoint trend analysis. From 614 neonate and mother pairs, we found that nSCr was significantly correlated with GA. However, mSCr at >28 wks decreased with GA. The nSCr/mSCr ratio was correlated with GA. In infants born <29 weeks, pregnancy-induced hypertension (PIH) (p = 0.000, β = 0.20) and mSCr (p = 0.000, β = 0.73) were significantly associated with nSCr. In term infants, maternal magnesium administration (p = 0.000, β = 0.25), respiratory distress syndrome (p = 0.013, β = 0.16), PIH (p = 0.005, β = 0.19), and mSCr (p = 0.000, β = 0.33) were significantly associated with nSCr. nSCr reflected mSCr at all gestational ages. The correlation between nSCr and mSCr in preterm infants (p = 0.000, β = 0.74) was stronger than in term infants (p = 0.000, β = 0.34).
Lang, Xia-Bing; Yang, Yi; Yang, Ju-Rong; Wan, Jian-Xin; Yu, Sheng-Qiang; Cui, Jiong; Tang, Xiao-Jing; Chen, Jianghua
2018-01-01
A lack of baseline serum creatinine (SCr) data leads to underestimation of the burden caused by acute kidney injury (AKI) in developing countries. The goal of this study was to investigate the effects of various baseline SCr analysis methods on the current diagnosis of AKI in hospitalized patients. Patients with at least one SCr value during their hospital stay between January 1, 2011 and December 31, 2012 were retrospectively included in the study. The baseline SCr was determined either by the minimum SCr (SCrMIN) or the estimated SCr using the MDRD formula (SCrGFR-75). We also used the dynamic baseline SCr (SCrdynamic) in accordance with the 7 day/48 hour time window. AKI was defined based on the KDIGO SCr criteria. Of 562,733 hospitalized patients, 350,458 (62.3%) had at least one SCr determination, and 146,185 (26.0%) had repeat SCr tests. AKI was diagnosed in 13,883 (2.5%) patients using the SCrMIN, 21,281 (3.8%) using the SCrGFR-75 and 9,288 (1.7%) using the SCrdynamic. Compared with the non-AKI patients, AKI patients had a higher in-hospital mortality rate regardless of the baseline SCr analysis method. Because of the scarcity of SCr data, imputation of the baseline SCr is necessary to remedy the missing data. The detection rate of AKI varies depending on the different imputation methods. SCrGFR-75 can identify more AKI cases than the other two methods. © 2018 The Author(s). Published by S. Karger AG, Basel.
Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials
Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.; ...
2018-03-13
Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less
Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.
Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less
Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...
The Scalable Checkpoint/Restart Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, A.
The Scalable Checkpoint/Restart (SCR) library provides an interface that codes may use to worite our and read in application-level checkpoints in a scalable fashion. In the current implementation, checkpoint files are cached in local storage (hard disk or RAM disk) on the compute nodes. This technique provides scalable aggregate bandwidth and uses storage resources that are fully dedicated to the job. This approach addresses the two common drawbacks of checkpointing a large-scale application to a shared parallel file system, namely, limited bandwidth and file system contention. In fact, on current platforms, SCR scales linearly with the number of compute nodes.more » It has been benchmarked as high as 720GB/s on 1094 nodes of Atlas, which is nearly two orders of magnitude faster thanthe parallel file system.« less
Low-cost electron-gun pulser for table-top maser experiments
NASA Astrophysics Data System (ADS)
Grinberg, V.; Jerby, E.; Shahadi, A.
1995-04-01
A simple 10 kV electron-gun pulser for small-scale maser experiments is presented. This low-cost pulser has operated successfully in various table-top cyclotron-resonance maser (CRM) and free-electron maser (FEM) experiments. It consists of a low-voltage capacitor bank, an SCR control circuit and a transformer bank (car ignition coils) connected directly to the e-gun. The pulser produces a current of 3 A at 10 kV voltage in a Gaussian like shape of 1 ms pulse width. The voltage sweep during the pulse provides a useful tool to locate resonances of CRM and FEM interactions. Analytical expressions for the pulser design and experimental measurements are presented.
Emissions of sulfur trioxide from coal-fired power plants.
Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R
2004-06-01
Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.
NASA Astrophysics Data System (ADS)
Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.
2017-08-01
Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.
Wakeel, Fathima; Wisk, Lauren E.; Gee, Rebekah; Chao, Shin M.; Witt, Whitney P.
2013-01-01
Purpose Stress during pregnancy is a salient risk factor for adverse obstetric outcomes. Personal capital during pregnancy, defined as internal and social resources that help women cope with or decrease their exposure to stress, may reduce the risk of poor obstetric outcomes. Methods Using data from the 2007 Los Angeles Mommy and Baby (LAMB) survey (N=3,353), we examined the relationships between the balance of stress and personal capital during pregnancy, or the Stress-to-Capital Ratio (SCR), and adverse obstetric outcomes ((i.e., pregnancy complications, preterm birth (PTB), low birthweight (LBW), and small-for-gestational-age (SGA)). Results Women with a higher SCR (i.e. greater stress relative to personal capital during pregnancy) were significantly more likely to experience at least one pregnancy complication, PTB, and lower gestational age, but not LBW or SGA. Accounting for pregnancy complications completely mediated the association between the SCR and PTB. Conclusions Our findings indicate that experiencing greater stress relative to personal capital during pregnancy is associated with an increased risk for pregnancy complications, PTB, and lower gestational age and that pregnancy complications may be a mechanism by which the SCR is related to adverse obstetric outcomes. PMID:23812738
The unusual S locus of Leavenworthia is composed of two sets of paralogous loci.
Chantha, Sier-Ching; Herman, Adam C; Castric, Vincent; Vekemans, Xavier; Marande, William; Schoen, Daniel J
2017-12-01
The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
IAEA international studies on irradiation embrittlement of reactor pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumovsky, M.; Steele, L.E.
1997-02-01
In last 25 years, three phases a Co-operative Research Programme on Irradiation Embrittlement of Reactor Pressure Vessel Steels has been organized by the International Atomic Energy Agency. This programme started with eight countries in 1971 and finally 16 countries took part in phase III of the Programme in 1983. Several main efforts were put into preparation of the programme, but the principal task was concentrated on an international comparison of radiation damage characterization by different laboratories for steels of {open_quotes}old{close_quotes} (with high impurity contents) and {open_quotes}advanced{close_quotes} (with low impurity contents) types as well as on development of small scale fracturemore » mechanics procedures applicable to reactor pressure vessel surveillance programmes. This year, a new programme has been opened, concentrated mostly on small scale fracture mechanics testing.« less
Lo, Yin; Shen, Li-Jiuan; Chen, Wen-Hwei; Dong, Yaa-Hui; Wu, Fe-Lin Lin
2016-09-01
Ifosfamide, a widely used chemotherapeutic agent, has been frequently associated with encephalopathy. A larger-scale study was conducted to identify risk factors of ifosfamide-related encephalopathy, including hepatic function. Adult patients who had completed at least one cycle of ifosfamide between January 2008 and December 2010 were included. Those with renal failure or liver failure were excluded. Data were collected through chart review. Patients with encephalopathy and patients without encephalopathy were compared on age, Eastern Cooperative Oncology Group (ECOG) performance status (PS), baseline serum creatinine (SCr) level, albumin level, white blood cell count, liver function, brain metastasis, and dosage of ifosfamide. Chi-square test or Fisher's exact test, Student t test, and univariate and multivariate logistic regressions were used for analysis. This study enrolled 337 patients. Thirty-eight patients (11%) had ifosfamide-related encephalopathy. They had poorer ECOG PS; higher SCr level, white blood cell count, and aspartate aminotransferase level; and lower serum albumin level compared with patients without encephalopathy. Ifosfamide dosage, brain metastasis, and age were not significant risk factors. Multivariate analysis indicated that only ECOG PS, SCr level, and albumin level contributed significantly to the risk. To date, this is the largest-scale study to have analyzed the risk factors of ifosfamide-related encephalopathy. This study confirms that an ECOG PS of 2-4 and increased SCr level are significant risk factors of ifosfamide-related encephalopathy, whereas increased albumin level decreases the risk, consistent with previous reports. Higher aspartate aminotransferase levels have no significant impact. In contrast to previous studies, ifosfamide dosage and brain metastasis are not significant contributing factors. Copyright © 2015. Published by Elsevier B.V.
Infrared small target detection based on directional zero-crossing measure
NASA Astrophysics Data System (ADS)
Zhang, Xiangyue; Ding, Qinghai; Luo, Haibo; Hui, Bin; Chang, Zheng; Zhang, Junchao
2017-12-01
Infrared small target detection under complex background and low signal-to-clutter ratio (SCR) condition is of great significance to the development on precision guidance and infrared surveillance. In order to detect targets precisely and extract targets from intricate clutters effectively, a detection method based on zero-crossing saliency (ZCS) map is proposed. The original map is first decomposed into different first-order directional derivative (FODD) maps by using FODD filters. Then the ZCS map is obtained by fusing all directional zero-crossing points. At last, an adaptive threshold is adopted to segment targets from the ZCS map. Experimental results on a series of images show that our method is effective and robust for detection under complex backgrounds. Moreover, compared with other five state-of-the-art methods, our method achieves better performance in terms of detection rate, SCR gain and background suppression factor.
Molecular analysis of SCARECROW genes expressed in white lupin cluster roots
Sbabou, Laila; Bucciarelli, Bruna; Miller, Susan; Liu, Junqi; Berhada, Fatiha; Filali-Maltouf, Abdelkarim; Allan, Deborah; Vance, Carroll
2010-01-01
The Scarecrow (SCR) transcription factor plays a crucial role in root cell radial patterning and is required for maintenance of the quiescent centre and differentiation of the endodermis. In response to phosphorus (P) deficiency, white lupin (Lupinus albus L.) root surface area increases some 50-fold to 70-fold due to the development of cluster (proteoid) roots. Previously it was reported that SCR-like expressed sequence tags (ESTs) were expressed during early cluster root development. Here the cloning of two white lupin SCR genes, LaSCR1 and LaSCR2, is reported. The predicted amino acid sequences of both LaSCR gene products are highly similar to AtSCR and contain C-terminal conserved GRAS family domains. LaSCR1 and LaSCR2 transcript accumulation localized to the endodermis of both normal and cluster roots as shown by in situ hybridization and gene promoter::reporter staining. Transcript analysis as evaluated by quantitative real-time-PCR (qRT-PCR) and RNA gel hybridization indicated that the two LaSCR genes are expressed predominantly in roots. Expression of LaSCR genes was not directly responsive to the P status of the plant but was a function of cluster root development. Suppression of LaSCR1 in transformed roots of lupin and Medicago via RNAi (RNA interference) delivered through Agrobacterium rhizogenes resulted in decreased root numbers, reflecting the potential role of LaSCR1 in maintaining root growth in these species. The results suggest that the functional orthologues of AtSCR have been characterized. PMID:20167612
Dynamics of the metal-insulator transition of donor-doped SrTi O3
NASA Astrophysics Data System (ADS)
Meyer, René; Zurhelle, Alexander F.; De Souza, Roger A.; Waser, Rainer; Gunkel, Felix
2016-09-01
The electrical properties of donor-doped SrTi O3 (n -STO) are profoundly affected by an oxidation-induced metal-insulator transition (MIT). Here we employ dynamical numerical simulations to examine the high-temperature MIT of n -STO over a large range of time and length scales. The simulations are based on the Nernst-Planck equations, the continuity equations, and the Poisson equation, in combination with surface lattice disorder equilibria serving as time-dependent boundary conditions. The simulations reveal that n -STO, upon oxidation, develops a kinetic space charge region (SCR) in the near-surface region. The surface concentrations of the variously mobile defects (electrons, Sr vacancies, and O vacancies) are found to vary over time and to differ considerably from the values of the new equilibrium. The formation of the SCR in which electrons are strongly depleted occurs within nanoseconds, i.e., it yields a fast MIT in the near-surface region during the oxidation process. As a result of charge (over-)compensation by Sr vacancies incorporated at the surface of n -STO, this SCR is much more pronounced than conventionally expected. In addition, we find an anomalous increase of O vacancy concentration at the surface upon oxidation caused by the SCR. Our simulations show that the SCR fades in the long term as a result of the slow in-diffusion of Sr vacancies. We discuss implications for the electrical conductivity of n -STO crystals used as substrates for epitaxial oxide thin films, of n -STO thin films and interfaces, and of polycrystalline n -STO with various functionalities.
Systems and methods to reduce reductant consumption in exhaust aftertreament systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Aniket; Cunningham, Michael J.
Systems, apparatus and methods are provided for reducing reductant consumption in an exhaust aftertreatment system that includes a first SCR device and a downstream second SCR device, a first reductant injector upstream of the first SCR device, and a second reductant injector between the first and second SCR devices. NOx conversion occurs with reductant injection by the first reductant injector to the first SCR device in a first temperature range and with reductant injection by the second reductant injector to the second SCR device when the temperature of the first SCR device is above a reductant oxidation conversion threshold.
Research gaps and technology needs in development of PHM for passive AdvSMR components
NASA Astrophysics Data System (ADS)
Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.
2014-02-01
Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.
Hydrogen Peroxide Enhances Removal of NOx from Flue Gases
NASA Technical Reports Server (NTRS)
Collins, Michelle M.
2005-01-01
Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.
SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, W; Huethwohl, G; Maurer, B
2003-08-24
Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used wasmore » anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for AdBlue is under evaluation in Europe by Urea Producers and Mineral Oil companies to be readily available in time. Urea is one of the most common chemical products in the world and the production and the distribution very much experienced. However, a pure grade is needed for automotive application and requires special attention.« less
Askenazi, David J; Moore, John F; Fineberg, Naomi; Koralkar, Rajesh; Clevenger, Stephanie; Sharer, Jon Daniel
2014-09-01
Measurement of serum creatinine (SCr) and urine creatinine (UCr) is regularly used in clinical and research settings. For small animal experiments and for studies in which sample collection is spare (i.e. neonatal cohorts), measuring SCr and UCr using tiny amounts of sample (as low as 10 mcl) would maximize exploration and minimize iatrogenic blood loss. We performed an evaluation in six healthy adults to determine differences between SCr and UCr values in different methodologies and storage environments and time. Study was conducted using 20 mcl of sample. Analyses were done using two-way repeated measures of ANOVA. Scr values showed no significant differences between LC/MS vs. Jaffe. However, the SCr using LC/MS method was lowest when measured immediately compared to other time points (F = 7.2; P< 0.001). Similarly, Jaffe measurements showed changes in the mean differences over time; however, these were not significant. UCr values were consistently higher using LC/MS than Jaffe (F = 19; P< 0.01), and UCr changed over time (F = 8.7; P < 0.02). In addition, the interaction term for method and time was also significant (F = 5.8; P < 0.04) which reflects the stability of the Jaffe measurements over time whereas the LC/MS measurements declined; especially after being frozen for 1 year (P < 0.001). UCr measured by Jaffe is lower than samples measured by LC/MS. UCr measurements by LC/MS vary more over time, mostly due to the sample measured after 1 year; therefore, storage of urine for more than 90 days measured by LC/MS may provide altered results. © 2014 Wiley Periodicals, Inc.
Dennewald, Danielle; Hortsch, Ralf; Weuster-Botz, Dirk
2012-01-01
As clear structure-activity relationships are still rare for ionic liquids, preliminary experiments are necessary for the process development of biphasic whole-cell processes involving these solvents. To reduce the time investment and the material costs, the process development of such biphasic reaction systems would profit from a small-scale high-throughput platform. Exemplarily, the reduction of 2-octanone to (R)-2-octanol by a recombinant Escherichia coli in a biphasic ionic liquid/water system was studied in a miniaturized stirred-tank bioreactor system allowing the parallel operation of up to 48 reactors at the mL-scale. The results were compared to those obtained in a 20-fold larger stirred-tank reactor. The maximum local energy dissipation was evaluated at the larger scale and compared to the data available for the small-scale reactors, to verify if similar mass transfer could be obtained at both scales. Thereafter, the reaction kinetics and final conversions reached in different reactions setups were analysed. The results were in good agreement between both scales for varying ionic liquids and for ionic liquid volume fractions up to 40%. The parallel bioreactor system can thus be used for the process development of the majority of biphasic reaction systems involving ionic liquids, reducing the time and resource investment during the process development of this type of applications. Copyright © 2011. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... Thermal Oxidizer SBA Small Business Administration SCR Selective Catalytic Reduction SNCR Selective Non...). Finally, on June 4, 2010, EPA proposed a definition of non- hazardous solid waste (75 FR 31844) under the...
Evaluation of the accuracy of estimated baseline serum creatinine for acute kidney injury diagnosis.
Hatakeyama, Yutaka; Horino, Taro; Nagata, Keitaro; Kataoka, Hiromi; Matsumoto, Tatsuki; Terada, Yoshio; Okuhara, Yoshiyasu
2018-04-01
Modern epidemiologic studies of acute kidney injury (AKI) have been facilitated by the increasing availability of electronic medical records. However, pre-morbid reference serum creatinine (SCr) data are often unavailable in such records. Investigators substitute estimated baseline SCr with the eGFR 75 approach, instead of using actually measured baseline SCr. Here, we evaluated the accuracy of estimated baseline SCr for AKI diagnosis in the Japanese population. Inpatients and outpatients aged 18-80 years were retrospectively enrolled. AKI was diagnosed according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria, using SCr levels. The non-AKI and AKI groups were selected using the following criteria: increase 1.5 times greater than baseline SCr ("baseline SCr") or increase 0.3 mg/dL greater than baseline SCr in 48 h ("increase in 48 h"). AKI accuracy defined by the estimated reference SCr, the average SCr value of the non-AKI population (eb-GFR-A approach), or the back-calculated SCr from fixed eGFR = 75 mL/min/1.73 m 2 (eGFR 75 approach, or, eb-GFR-B approach in this study), was evaluated. We analyzed data from 131,358 Japanese patients. The number of patients with reference baseline SCr in the non-AKI and AKI patients were 29,834 and 8952, respectively. For AKI patients diagnosed using "baseline SCr", the AKI diagnostic accuracy rates as defined by eb-GFR-A and eb-GFR-B were 63.5 and 57.7%, respectively, while in AKI diagnosed using "increase in 48 h", the AKI diagnostic accuracy rates as defined by eb-GFR-A and eb-GFR-B were 78.7 and 75.1%, respectively. In non-AKI patients, false-positive rates of AKI misdiagnosed via eb-GFR-A and eb-GFR-B were 7.4 and 6.8%, respectively. AKI diagnosis using the average SCr value of the general population may yield more accurate results than diagnosis using the eGFR 75 approach when the reference SCr is unavailable.
Nguyen, An Vu; Thanh, Le Van; Kamel, Mohamed Gomaa; Abdelrahman, Sara Attia Mahmoud; El-Mekawy, Mohamed; Mokhtar, Mohamed Ashraf; Ali, Aya Ashraf; Hoang, Nam Nguyen Nho; Vuong, Nguyen Lam; Abd-Elhay, Fatma Abd-Elshahed; Omer, Omer Abdelbagi; Mohamed, Ahmed Abdou; Hirayama, Kenji; Huy, Nguyen Tien
2017-10-01
Our study aimed to compare three different percutaneous coronary intervention (PCI) approaches: culprit-only (COR) and complete (CR) revascularization - categorizing into immediate (ICR) or staged (SCR). We searched 13 databases for randomized controlled trials. Articles were included if they compared at least two strategies. To have more studies in each analysis, an adjusted analysis was performed using person-years to incorporate follow-up durations and obtain pooled rate ratios (RR), with their corresponding 95% confidence interval. Thirteen trials were included with a population of 2830 patients. COR significantly increased major adverse cardiac event (MACE) (adjusted RR 1.67, 95% CI: 1.27-2.19) and repeat revascularization (2.12, 1.67-2.69), which was driven by repeat PCI, without any difference in all-cause mortality and myocardial infarction (MI) compared to CR. When categorizing CR into SCR and ICR, the trend repeated with COR increased MACE (1.99, 1.53-2.6 for ICR), cardiovascular mortality (2.06, 1.07-3.96 for ICR), MI for ICR (1.72, 1.04-2.86), repeat revascularization and repeat PCI for both ICR and SCR. Non-cardiovascular mortality, stroke, nephropathy, re-hospitalization, stent thrombosis and bleeding were similar among all approaches. In MVD-STEMI patients, CR is better than COR in terms of MACE, cardiovascular mortality, repeat revascularization with no difference in safety outcomes. There was a trend towards to a reduction of cardiovascular mortality and MI in ICR compared to SCR when each matched with COR; even though there is no statistically significant difference between ICR and SCR when compared together. Copyright © 2017 Elsevier B.V. All rights reserved.
Sparse representation of electrodermal activity with knowledge-driven dictionaries.
Chaspari, Theodora; Tsiartas, Andreas; Stein, Leah I; Cermak, Sharon A; Narayanan, Shrikanth S
2015-03-01
Biometric sensors and portable devices are being increasingly embedded into our everyday life, creating the need for robust physiological models that efficiently represent, analyze, and interpret the acquired signals. We propose a knowledge-driven method to represent electrodermal activity (EDA), a psychophysiological signal linked to stress, affect, and cognitive processing. We build EDA-specific dictionaries that accurately model both the slow varying tonic part and the signal fluctuations, called skin conductance responses (SCR), and use greedy sparse representation techniques to decompose the signal into a small number of atoms from the dictionary. Quantitative evaluation of our method considers signal reconstruction, compression rate, and information retrieval measures, that capture the ability of the model to incorporate the main signal characteristics, such as SCR occurrences. Compared to previous studies fitting a predetermined structure to the signal, results indicate that our approach provides benefits across all aforementioned criteria. This paper demonstrates the ability of appropriate dictionaries along with sparse decomposition methods to reliably represent EDA signals and provides a foundation for automatic measurement of SCR characteristics and the extraction of meaningful EDA features.
Non-invasive evaluation of stable renal allograft function using point shear-wave elastography.
Kim, Bom Jun; Kim, Chan Kyo; Park, Jung Jae
2018-01-01
To investigate the feasibility of point shear-wave elastography (SWE) in evaluating patients with stable renal allograft function who underwent protocol biopsies. 95 patients with stable renal allograft function that underwent ultrasound-guided biopsies at predefined time points (10 days or 1 year after transplantation) were enrolled. Ultrasound and point SWE examinations were performed immediately before protocol biopsies. Patients were categorized into two groups: subclinical rejection (SCR) and non-SCR. Tissue elasticity (kPa) on SWE was measured in the cortex of all renal allografts. SCR was pathologically confirmed in 34 patients. Tissue elasticity of the SCR group (31.0 kPa) was significantly greater than that of the non-SCR group (24.5 kPa) (=0.016), while resistive index value did not show a significant difference between the two groups (p = 0.112). Tissue elasticity in renal allografts demonstrated significantly moderate negative correlation with estimated glomerular filtration rate (correlation coefficient = -0.604, p < 0.001). Tissue elasticity was not independent factor for SCR prediction on multivariate analysis. As a non-invasive tool, point SWE appears feasible in distinguishing between patients with SCR and without SCR in stable functioning renal allografts. Moreover, it may demonstrate the functional state of renal allografts. Advances in knowledge: On point SWE, SCR has greater tissue elasticity than non-SCR.
Zhao, C; Doucet, D; Mittapalli, O
2014-12-01
The emerald ash borer (Agrilus planipennis) is an important invasive insect pest of Fraxinus spp. that feeds on host tissues containing high levels of sucrose. However, little is known about how it digests sucrose. Here, using larval midgut transcriptome data and preliminary genome sequence efforts, two β-fructofuranosidase-encoding ScrB genes, AplaScrB-1 and AplaScrB-2, were identified, and proved to reside within the A. planipennis genome. Homology and phylogenetic analysis revealed that they were acquired by A. planipennis via horizontal gene transfer (HGT) from bacteria, possibly an event independent from that reported in bark beetles (eg ScrB genes). Microsynteny between A. planipennis DNA scaffold #2042940, which hosts AplaScrB-1, and a region in the Tribolium castaneum chromosome LG4 suggested that A. planipennis gained this gene after the separation of Buprestidae and Tenebrionidae. Although both of the putative AplaScrB proteins have conserved β-fructofuranosidase motifs, only AplaScrB-2 was predicted to be a secretory protein. Expression of AplaScrB-1 seemed constitutive during development and in all tissues examined, whereas AplaScrB-2 showed a peak expression in adults and in the midgut. We propose that acquisition of these genes by A. planipennis from bacteria is adaptive, and specifically AplaScrB-2 is involved in breaking down dietary sucrose to obtain energy for development. © 2014 The Royal Entomological Society.
Numerical Simulations of SCR DeNOx System for a 660MW coal-fired power station
NASA Astrophysics Data System (ADS)
Yongqiang, Deng; Zhongming, Mei; Yijun, Mao; Nianping, Liu; Guoming, Yin
2018-06-01
Aimed at the selective catalytic reduction (SCR) DeNOx system of a 660 MW coal-fired power station, which is limited by low denitrification efficiency, large ammonia consumption and over-high ammonia escape rate, numerical simulations were conducted by employing STAR-CCM+ (CFD tool). The simulations results revealed the problems existed in the SCR DeNOx system. Aimed at limitations of the target SCR DeNOx system, factors affecting the denitrification performance of SCR, including the structural parameters and ammonia injected by the ammonia nozzles, were optimized. Under the optimized operational conditions, the denitrification efficiency of the SCR system was enhanced, while the ammonia escape rate was reduced below 3ppm. This study serves as references for optimization and modification of SCR systems.
Mechanisms of cell damage in agitated microcarrier tissue culture reactors
NASA Technical Reports Server (NTRS)
Cherry, Robert S.; Papoutsakis, E. Terry
1986-01-01
Cells growing on microcarriers may be damaged by collisions of the microcarrier against another microcarrier or the reactor agitator. Bead-bead collisions are caused by small-scale turbulence, which can also cause high local shear stress on the cells. The cells are also exposed to 10-20 Hz cyclic shear stress by bead rotation.
Modeling residence-time distribution in horizontal screw hydrolysis reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Stickel, Jonathan J.
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Modeling residence-time distribution in horizontal screw hydrolysis reactors
Sievers, David A.; Stickel, Jonathan J.
2017-10-12
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Technology innovations and experience curves for nitrogen oxides control technologies.
Yeh, Sonia; Rubin, Edward S; Taylor, Margaret R; Hounshell, David A
2005-12-01
This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. We use patent data to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus "forcing" innovation. We also demonstrate that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to approximately 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale.
Setup for potential bias experiments on the Saha Institute of Nuclear Physics tokamak
NASA Astrophysics Data System (ADS)
Ghosh, J.; Pal, R.; Chattopadhyay, P. K.
1999-12-01
An experimental setup for studying the influence of the radial electric field on very low qa plasma on the Saha Institute of Nuclear Physics tokamak is presented. A high current, high voltage pulsed power supply, using a semiconductor controlled rectifier (SCR) as a dc switch is developed and used to bias a tungsten electrode inserted inside the plasma. The electrode's exposed length and its position inside the plasma are controlled by a double bellows assembly to optimize the electrode-exposed length. We show that using the force commutation method to turn the SCR off to get the power pulse desired has good potential for carrying out similar kinds of studies, especially in a low budget small tokamak.
NASA Astrophysics Data System (ADS)
Yussof, H. W.; Bahri, S. S.; Mazlan, N. A.
2018-03-01
A recent development in oscillatory baffled reactor technology is down-scaling the reactor, so that it can be used for production of small-scale bioproduct. In the present study, a mesoscale oscillatory baffled reactor (MOBR) with central baffle system was developed. The reactor performance of the MOBR was compared with conventional stirred tank reactor (STR) to evaluate the performance of bioethanol fermentation using Saccharomyces cerevisiae. Evaluation was made at similar power density of 24.21, 57.38, 112.35 and 193.67 Wm-3 by varying frequency (f), amplitude (xo) and agitation speed (rpm). It was found that the MOBR improved the mixing intensity resulted in lower glucose concentration (0.988 gL-1) and higher bioethanol concentration (38.98 gL-1) after 12 hours fermentation at power density of 193.67 Wm-3. Based on the results, the bioethanol yield obtained using MOBR was 39% higher than the maximum achieved in STR. Bioethanol production using MOBR proved to be feasible as it is not only able to compete with conventional STR but also offers advantages of straight-forward scale-up, whereas it is complicated and difficult in STR. Overall, MOBR offers great prospective over the conventional STR.
Proposal for a novel type of small scale aneutronic fusion reactor
NASA Astrophysics Data System (ADS)
Gruenwald, J.
2017-02-01
The aim of this work is to propose a novel scheme for a small scale aneutronic fusion reactor. This new reactor type makes use of the advantages of combining laser driven plasma acceleration and electrostatic confinement fusion. An intense laser beam is used to create a lithium-proton plasma with high density, which is then collimated and focused into the centre of the fusion reaction chamber. The basic concept presented here is based on the 7Li-proton fusion reaction. However, the physical and technological fundamentals may generally as well be applied to 11B-proton fusion. The former fusion reaction path offers higher energy yields while the latter has larger fusion cross sections. Within this paper a technological realisation of such a fusion device, which allows a steady state operation with highly energetic, well collimated ion beam, is presented. It will be demonstrated that the energetic break even can be reached with this device by using a combination of already existing technologies.
Vakalis, S; Malamis, D; Moustakas, K
2018-06-15
Small scale biomass gasifiers have the advantage of having higher electrical efficiency in comparison to other conventional small scale energy systems. Nonetheless, a major drawback of small scale biomass gasifiers is the relatively poor quality of the producer gas. In addition, several EU Member States are seeking ways to store the excess energy that is produced from renewables like wind power and hydropower. A recent development is the storage of energy by electrolysis of water and the production of hydrogen in a process that is commonly known as "power-to-gas". The present manuscript proposes an onsite secondary reactor for upgrading producer gas by mixing it with hydrogen in order to initiate methanation reactions. A thermodynamic model has been developed for assessing the potential of the proposed methanation process. The model utilized input parameters from a representative small scale biomass gasifier and molar ratios of hydrogen from 1:0 to 1:4.1. The Villar-Cruise-Smith algorithm was used for minimizing the Gibbs free energy. The model returned the molar fractions of the permanent gases, the heating values and the Wobbe Index. For mixtures of hydrogen and producer gas on a 1:0.9 ratio the increase of the heating value is maximized with an increase of 78%. For ratios higher than 1:3, the Wobbe index increases significantly and surpasses the value of 30 MJ/Nm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Influences of sire conception rate on pregnancy establishment in dairy cattle.
Ortega, M Sofia; Moraes, João G N; Patterson, David J; Smith, Michael F; Behura, Susanta K; Poock, Scott; Spencer, Thomas E
2018-06-19
Establishment of pregnancy in cattle is complex and encompasses ovulation, fertilization, blastocyst formation and growth into an elongated conceptus, pregnancy recognition signaling, and development of the embryo and placenta. The objective here was to investigate sire influences on pregnancy establishment in cattle. First, 10 Holstein bulls were classified as high or low fertility based on their sire conception rate (SCR) value. In a field trial, pregnancy at first timed insemination was not different between high and low SCR bulls. Next, 5 of the 10 sires were phenotyped using In Vitro and In Vivo embryo production. There was no effect of SCR classification on in vitro embryo cleavage rate, but low SCR sires produced fewer day 8 blastocysts. In superovulated heifers, high SCR bulls produced a lower percentage of unfertilized oocytes and fewer degenerated embryos compared to low SCR bulls. Recipient heifers the received 3-5 In Vivo produced embryos from either high or low SCR sires on day 7 post-estrus. Day 16 conceptus recovery and length were not different between SCR groups, and the conceptus transcriptome was not appreciably different between high and low SCR sires. The reduced ability of embryos from low SCR bulls to establish pregnancy is multifactorial and encompasses sperm fertilizing ability, pre-implantation embryonic development, and development of the embryo and placenta after conceptus elongation and pregnancy recognition. These studies highlight the importance of understanding genetic contributions of the sire to pregnancy establishment that is crucial to increase reproductive efficiency in dairy cattle.
Matsui, Katsuomi; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Ikeda, Hiroki; Okuse, Chiaki; Shibagaki, Yugo; Yasuda, Takashi; Kimura, Kenjiro
2015-11-01
Treatment with telaprevir (TVR) entails adverse side-effects including anaemia and elevation of serum creatinine (SCr) level. Our purpose was to evaluate the effects of treatment with TVR on renal function in adults with chronic hepatitis C. Thirteen adult patients with HCV genotype 1b who were scheduled to be treated with TVR, pegylated interferon (PEG IFN), and ribavirin (RBV) were prospectively followed. Patients were divided into two groups: (i) patients with an increase in SCr during the treatment (n = 8), and (ii) patients without an increase in SCr (n = 5). Urine and serum parameters were evaluated. Although there was no difference in SCr level between the two groups before HCV therapy, the SCr level was persistently high in the patients in the increase-in-SCr group during the triple therapy. The SCr level returned to the pre-treatment level after cessation of TVR. There were no differences in urinary L-FABP, NAG, serum cystatin C level and eGFRcys throughout the study between the two groups. The serum cystatin C level at pre-treatment tended to be higher in the increase-in-SCr group. Urinary L-FABP and NAG levels in these groups remained within normal limits during treatment. We found that the increase in SCr was not associated with the degree of renal impairment. The increase in SCr may have been induced as a result of a decrease in creatinine secretion from proximal tubules via inhibition of transporters of creatinine induced by TVR. Elevation of SCr levels with TVR therapy may not suggest renal impairment. © 2015 Asian Pacific Society of Nephrology.
Oh, C K; Lee, B M; Kim, H; Kim, S I; Kim, Y S
2008-09-01
Serum creatinine (Scr) is the most frequently used test to estimate graft function after kidney transplantation. Our previous study demonstrated that the independent predictors of recipient posttransplantation Scr included the ratio of graft weight to recipient body weight, the ratio of graft weight to recipient body surface area (BSA), and the ratio of graft weight to recipient body mass index (BMI). A prospective analysis about the impact of the balance between metabolic demands and renal supply on posttransplantation Scr of recipients was previously reported. We plotted the scatter graph using the X-axis as the independent predictors of Scr by linear regression and the Y-axis as the recipient Scr. To generate the predictive formula of Scr, we calculated a fit of the line of plotted cases using a linear regression method with 2 regression lines for prediction of the upper and lower 95% confidence intervals. Each line was converted into a predictive formula: Scr = -0.0033* (Graft weight(g)/Recipient BSA(m2))+1.75. Under 95% confidence, the Scr ranges from -0.0033* (Graft weight(g)/Recipient BSA(m2))+1.07 to -0.0033* (Graft weight(g)/Recipient BSA (m2))+2.44. Scr = -0.1049* (Graft weight(g)/Recipient body weight(kg))+1.72, which ranges from -0.1049* (Graft weight(g)/Recipient body weight(kg))+1.06 to -0.1049* (Graft weight(g)/Recipient body weight(kg))+2.37. Scr = -0.0158* (Graft weight(g)/Recipient BMI(kg/m2))+1.56, which ranges from -0.0158* (Graft weight(g)/Recipient BMI(kg/m2))+0.75 to -0.0158* (Graft weight(g)/Recipient BMI(kg/m2))+2.26. Prediction of posttransplantation Scr may be achieved by measuring graft weight as well as recipient weight and height. When recipient Scr is significantly higher than that predicted by the formula, a clinician should suspect an underlying graft injury.
Ogawa, Koki; Fuchigami, Yuki; Hagimori, Masayori; Fumoto, Shintaro; Miura, Yusuke; Kawakami, Shigeru
2018-01-01
We previously developed anionic ternary bubble lipopolyplexes, an ultrasound-responsive carrier, expecting safe and efficient gene transfection. However, bubble lipopolyplexes have a low capacity for echo gas (C 3 F 8 ) encapsulation (EGE) in nonionic solution such as 5% glucose. On the other hand, we were able to prepare bubble lipopolyplexes by inserting phosphate-buffered saline before C 3 F 8 encapsulation. Surface charge regulation (SCR) by electrolytes stabilizes liposome/plasmid DNA (pDNA) complexes by accelerated membrane fusion. Considering these facts, we hypothesized that SCR by electrolytes such as NaCl would promote C 3 F 8 encapsulation in bubble lipopolyplexes mediated by accelerated membrane fusion. We defined this hypothesis as SCR-based EGE (SCR-EGE). Bubble lipopolyplexes prepared by the SCR-EGE method (SCR-EGE bubble lipopolyplexes) are expected to facilitate the gene transfection because of the high amount of C 3 F 8 . Therefore, we applied these methods for gene delivery to the brain and evaluated the characteristics of transgene expression in the brain. First, we measured the encapsulation efficiency of C 3 F 8 in SCR-EGE bubble lipopolyplexes. Next, we applied these bubble lipopolyplexes to the mouse brain; then, we evaluated the transfection efficiency. Furthermore, three-dimensional transgene distribution was observed using multicolor deep imaging. SCR-EGE bubble lipopolyplexes had a higher C 3 F 8 content than conventional bubble lipopolyplexes. In terms of safety, SCR-EGE bubble lipopolyplexes possessed an anionic potential and showed no aggregation with erythrocytes. After applying SCR-EGE bubble lipopolyplexes to the brain, high transgene expression was observed by combining with ultrasound irradiation. As a result, transgene expression mediated by SCR-EGE bubble lipopolyplexes was observed mainly on blood vessels and partially outside of blood vessels. The SCR-EGE method may promote C 3 F 8 encapsulation in bubble lipopolyplexes, and SCR-EGE bubble lipopolyplexes may be potent carriers for efficient and safe gene transfection in the brain, especially to the blood vessels.
Quan, Samuel; Pannu, Neesh; Wilson, Todd; Ball, Chad; Tan, Zhi; Tonelli, Marcello; Hemmelgarn, Brenda R; Dixon, Elijah; James, Matthew T
2016-12-01
Current guidelines recommend staging acute kidney injury (AKI) according to the serum creatinine (SCr) or urine output (UO) criteria that achieve the highest stage. There is little information about the implications of adding UO to SCr measurements for staging AKI outside intensive care units and after cardiac surgery. We performed a cohort study of all adults without end-stage renal disease who underwent major noncardiac surgery between January 2005 and March 2011 in Calgary, AB, Canada. Participants required at least two SCr and UO measurements to be included. We examined the implications of adding UO to SCr to stage AKI based on Kidney Disease: Improving Global Outcomes criteria. Logistic and linear regression models were used to examine the associations between AKI stage and 30-day mortality or hospital length of stay (LOS), respectively. A total of 4229 (17%) surgical patients had sufficient SCr and UO measurements for inclusion in the cohort. The apparent incidence of postoperative AKI substantially increased with the addition of UO to SCr criteria (8.1% with SCr alone versus 64.0% with SCr and UO). Mortality for a given stage of AKI was lower when UO was added to SCr criteria (0.3, 3.2, 1.9 and 3.0% for no AKI and Stages 1, 2 and 3, respectively) versus with SCr alone (1.2, 4.2, 15.4 and 12.8%). However, among participants without AKI based on the SCr criterion, the odds of mortality and mean LOS both significantly increased with lower UO. Models that reclassified AKI stage based on UO in addition SCr criteria had the best discrimination for mortality and LOS. Adding UO to SCr criteria substantially increases the apparent incidence of AKI on hospital wards and significantly changes the prognostic implications of AKI identification and staging. These measures should not be considered equivalent criteria in AKI staging. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
NASA Astrophysics Data System (ADS)
Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil
2009-12-01
Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.
Using SCR methods to analyze requirements documentation
NASA Technical Reports Server (NTRS)
Callahan, John; Morrison, Jeffery
1995-01-01
Software Cost Reduction (SCR) methods are being utilized to analyze and verify selected parts of NASA's EOS-DIS Core System (ECS) requirements documentation. SCR is being used as a spot-inspection tool. Through this formal and systematic approach of the SCR requirements methods, insights as to whether the requirements are internally inconsistent or incomplete as the scenarios of intended usage evolve in the OC (Operations Concept) documentation. Thus, by modelling the scenarios and requirements as mode charts using the SCR methods, we have been able to identify problems within and between the documents.
CONTROL TECHNOLOGIES: PILOT- & FULL-SCALE TESTS
Two different project are to be supported in FY03. The first project is being conducted by the North Dakota Energy and Environmental Research Center (ND-EERC). This project consists of tests on coal-fired utility boilers to determine the effects of SCR catalysts and ammonia in...
Pirozzi, D; Halling, P J
2001-01-20
A very small-scale continuous flow reactor has been designed for use with enzymes in organic media, particularly for operational stability studies. It is constructed from fairly inexpensive components, and typically uses 5 mg of catalyst and flow rates of 1 to 5 mL/h, so only small quantities of feedstock need to be handled. The design allows control of the thermodynamic water activity of the feed, and works with temperatures up to at least 80 degrees C. The reactor has been operated with both nonpolar (octane) and polar (4-methyl-pentan-2-one) solvents, and with the more viscous solvent-free reactant mixture. It has been applied to studies of the operational stability of lipases from Chromobacterium viscosum (lyophilized powder or polypropylene-adsorbed) and Rhizomucor miehei (Lipozyme) in different experimental conditions. Transesterification of geraniol and ethylcaproate has been adopted as a model transformation.
Modeling fear‐conditioned bradycardia in humans
Tzovara, Athina; Staib, Matthias; Paulus, Philipp C.; Hofer, Nicolas; Bach, Dominik R.
2016-01-01
Abstract Across species, cued fear conditioning is a common experimental paradigm to investigate aversive Pavlovian learning. While fear‐conditioned stimuli (CS+) elicit overt behavior in many mammals, this is not the case in humans. Typically, autonomic nervous system activity is used to quantify fear memory in humans, measured by skin conductance responses (SCR). Here, we investigate whether heart period responses (HPR) evoked by the CS, often observed in humans and small mammals, are suitable to complement SCR as an index of fear memory in humans. We analyze four datasets involving delay and trace conditioning, in which heart beats are identified via electrocardiogram or pulse oximetry, to show that fear‐conditioned heart rate deceleration (bradycardia) is elicited and robustly distinguishes CS+ from CS−. We then develop a psychophysiological model (PsPM) of fear‐conditioned HPR. This PsPM is inverted to yield estimates of autonomic input into the heart. We show that the sensitivity to distinguish CS+ and CS− (predictive validity) is higher for model‐based estimates than peak‐scoring analysis, and compare this with SCR. Our work provides a novel tool to investigate fear memory in humans that allows direct comparison between species. PMID:26950648
Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater
NASA Astrophysics Data System (ADS)
Rahayu, Suparni Setyowati; Purwanto, Budiyono
2015-12-01
The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.
Lombardi, Raúl; Nin, Nicolás; Lorente, José A; Frutos-Vivar, Fernando; Ferguson, Niall D; Hurtado, Javier; Apezteguia, Carlos; Desmery, Pablo; Raymondos, Konstantinos; Tomicic, Vinko; Cakar, Nahit; González, Marco; Elizalde, José; Nightingale, Peter; Abroug, Fekri; Jibaja, Manuel; Arabi, Yaseen; Moreno, Rui; Matamis, Dimitros; Anzueto, Antonio; Esteban, Andrés
2011-07-01
The aim of our study was to assess the new diagnostic criteria of acute kidney injury (AKI) proposed by the Acute Kidney Injury Network (AKIN) in a large cohort of mechanically ventilated patients. This is a prospective observational cohort study enrolling 2783 adult intensive care unit patients under mechanical ventilation (MV) with data on serum creatinine concentration (SCr) in the first 48 hours. The absolute and the relative AKIN diagnostic criteria (changes in SCr ≥ 0.3 mg/dl or ≥ 50% over the first 48 hours of MV, respectively) were analyzed separately. In addition, patients were classified into three groups according to their change in SCr (ΔSCr) over the first day on MV (ΔSCr): group 1, ΔSCr ≤ -0.3 mg/dl; group 2, ΔSCr between -0.3 and +0.29 mg/dl; and group 3, ΔSCr ≥ +0.3 mg/dl). The primary end point was in-hospital mortality, and secondary end points were intensive care unit and hospital length of stay, and duration of MV. Of 2783 patients, 803 (28.8%) had AKI according to both criteria: 431 only absolute (AKI(A)), 362 both relative and absolute (AKI(R+A)), and 10 only relative. The relative criterion identified more patients when baseline SCr (SCr₀) was <0.9 mg/dl and the absolute when SCr₀ was >1.5 mg/dl. The diagnosis of AKI was associated with mortality. Our study confirms the validity of the AKIN criteria in a population of mechanically patients and the criteria's relationship with the baseline SCr.
Gerster, Samuel; Namer, Barbara; Elam, Mikael
2017-01-01
Abstract Skin conductance responses (SCR) are increasingly analyzed with model‐based approaches that assume a linear and time‐invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non‐SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non‐SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question. PMID:28862764
[Geographical distribution of the Serum creatinine reference values of healthy adults].
Wei, De-Zhi; Ge, Miao; Wang, Cong-Xia; Lin, Qian-Yi; Li, Meng-Jiao; Li, Peng
2016-11-20
To explore the relationship between serum creatinine (Scr) reference values in healthy adults and geographic factors and provide evidence for establishing Scr reference values in different regions. We collected 29 697 Scr reference values from healthy adults measured by 347 medical facilities from 23 provinces, 4 municipalities and 5 autonomous regions. We chose 23 geographical factors and analyzed their correlation with Scr reference values to identify the factors correlated significantly with Scr reference values. According to the Principal component analysis and Ridge regression analysis, two predictive models were constructed and the optimal model was chosen after comparison of the two model's fitting degree of predicted results and measured results. The distribution map of Scr reference values was drawn using the Kriging interpolation method. Seven geographic factors, including latitude, annual sunshine duration, annual average temperature, annual average relative humidity, annual precipitation, annual temperature range and topsoil (silt) cation exchange capacity were found to correlate significantly with Scr reference values. The overall distribution of Scr reference values featured a pattern that the values were high in the south and low in the north, varying consistently with the latitude change. The data of the geographic factors in a given region allows the prediction of the Scr values in healthy adults. Analysis of these geographical factors can facilitate the determination of the reference values specific to a region to improve the accuracy for clinical diagnoses.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
NASA Astrophysics Data System (ADS)
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Low energy secondary cosmic ray flux (gamma rays) monitoring and its constrains
NASA Astrophysics Data System (ADS)
Raghav, Anil; Bhaskar, Ankush; Yadav, Virendra; Bijewar, Nitinkumar
2015-02-01
Temporal variation of secondary cosmic rays (SCR) flux was measured during the full and new moon and days close to them at Department of Physics, University of Mumbai, Mumbai (Geomagnetic latitude: 10.6 °N), India. The measurements were done by using NaI (Tl) scintillation detector with energy threshold of 200 keV. The SCR flux showed sudden enhancement for approximately about 2 hour during few days out of all observations. The maximum enhancement in SCR flux is about 200 % as compared to the diurnal trend of SCR temporal variations. Weather parameters (temperature and relative humidity) were continuously monitored during all observations. The influences of geomagnetic field, interplanetary parameters and tidal effect on SCR flux have been considered. Summed spectra corresponding to enhancement duration indicates appearance of atmospheric radioactivity which shows single gamma ray line. Detail investigation revealed the presence of radioactive Ar41. Present study indicates origin of Ar41 could be due to anthropogenic source or due to gravitational tidal forces. This measurements point out limitations on low energy SCR flux monitoring. This study will help many researchers in measurements of SCR flux during eclipses and to find unknown mechanism behind decrease/increase in SCR flux during solar/lunar eclipse.
Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor
Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong
2015-01-01
Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485
Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela
2016-01-01
To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. DOI: http://dx.doi.org/10.7554/eLife.14770.001 PMID:27288545
NASA Astrophysics Data System (ADS)
Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Zhang, Huihua; Chen, Bingqiu
2015-02-01
In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u - g, 3 mmag in g - r, and 2 mmag in r - i and i - z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys.
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less
Parikh, Amay; Rizzo, John A; Canetta, Pietro; Forster, Catherine; Sise, Meghan; Maarouf, Omar; Singer, Eugenia; Elger, Antje; Elitok, Saban; Schmidt-Ott, Kai; Barasch, Jonathon; Nickolas, Thomas L
2017-01-01
Urine neutrophil gelatinase-associated lipocalin (uNGAL) is a sensitive and specific diagnostic test for acute kidney injury (AKI) in the Emergency Department (ED), but its economic impact has not been investigated. We hypothesized that uNGAL used in combination with serum creatinine (sCr) would reduce costs in the management of AKI in patients presenting to the ED in comparison to using sCr alone. A cost simulation model was developed for clinical algorithms to diagnose AKI based on sCr alone vs. uNGAL plus sCr (uNGAL+sCr). A cost minimization analysis was performed to determine total expected costs for patients with AKI. uNGAL test characteristics were validated with eight-hundred forty-nine patients with sCr ≥1.5 from a completed study of 1635 patients recruited from EDs at two U.S. hospitals from 2007-8. Biomarker test, AKI work-up, and diagnostic imaging costs were incorporated. For a hypothetical cohort of 10,000 patients, the model predicted that the expected costs were $900 per patient (pp) in the sCr arm and $950 in the uNGAL+sCr arm. uNGAL+sCr resulted in 1,578 fewer patients with delayed diagnosis and treatment than sCr alone (2,013 vs. 436 pts) at center 1 and 1,973 fewer patients with delayed diagnosis and treatment than sCr alone at center 2 (2,227 vs. 254 patients). Although initial evaluation costs at each center were $50 pp higher in with uNGAL+sCr, total costs declined by $408 pp at Center 1 and by $522 pp at Center 2 due to expected reduced delays in diagnosis and treatment. Sensitivity analyses confirmed savings with uNGAL + sCr for a range of cost inputs. Using uNGAL with sCr as a clinical diagnostic test for AKI may improve patient management and reduce expected costs. Any cost savings would likely result from avoiding delays in diagnosis and treatment and from avoidance of unnecessary testing in patients given a false positive AKI diagnosis by use of sCr alone.
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; ...
2016-04-05
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less
Forward-bias tunneling - A limitation to bipolar device scaling
NASA Technical Reports Server (NTRS)
Del Alamo, Jesus A.; Swanson, Richard M.
1986-01-01
Forward-bias tunneling is observed in heavily doped p-n junctions of bipolar transistors. A simple phenomenological model suitable to incorporation in device codes is developed. The model identifies as key parameters the space-charge-region (SCR) thickness at zero bias and the reduced doping level at its edges which can both be obtained from CV characteristics. This tunneling mechanism may limit the maximum gain achievable from scaled bipolar devices.
Hussein, Hayder K.; Prabhu, Mahesh; Kanagasundaram, N. Suren
2012-01-01
Summary Background and objectives This study measured the association between the Acute Kidney Injury Network (AKIN) diagnostic and staging criteria and surrogates for baseline serum creatinine (SCr) and body weight, compared urine output (UO) with SCr criteria, and assessed the relationships between use of diuretics and calibration between criteria and prediction of outcomes. Design, setting, participants, & measurements This was a retrospective cohort study using prospective measurements of SCr, hourly UO, body weight, and drug administration records from 5701 patients admitted, after cardiac surgery, to a cardiac intensive care unit between 1995 and 2006. Results More patients (n=2424, 42.5%) met SCr diagnostic criteria with calculated SCr assuming a baseline estimated GFR of 75 ml/min per 1.73 m2 than with known baseline SCr (n=1043, 18.3%). Fewer patients (n=484, 8.5%) met UO diagnostic criteria with assumed body weight (70 kg) than with known weight (n=624, 10.9%). Agreement between SCr and UO criteria was fair (κ=0.28; 95% confidence interval 0.25–0.31). UO diagnostic criteria were specific (0.95; 0.94–0.95) but insensitive (0.36; 0.33–0.39) compared with SCr. Intravenous diuretics were associated with higher probability of falling below the UO diagnostic threshold compared with SCr, higher 30-day mortality (relative risk, 2.27; 1.08–4.76), and the need for renal support (4.35; 1.82–10.4) compared with no diuretics. Conclusions Common surrogates for baseline estimated GFR and body weight were associated with misclassification of AKIN stage. UO criteria were insensitive compared with SCr. Intravenous diuretic use further reduced agreement and confounded association between AKIN stage and 30-day mortality or need for renal support. PMID:22246280
Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio
2005-08-01
The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.
Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F.; Hemmi, Silvio
2005-01-01
The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90°; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface. PMID:16014961
Chang, Moo Been; Chi, Kai Hsien; Chang, Shu Hao; Yeh, Jhy Wei
2007-01-01
Partitioning of PCDD/F congeners between vapor/solid phases and removal and destruction efficiencies achieved with selective catalytic reduction (SCR) system for PCDD/Fs at an existing municipal waste incinerator (MWI) and metal smelting plant (MSP) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP, operating temperature: 230 degrees C), wet scrubbers (WS, operating temperature: 70 degrees C) and SCR (operating temperature: 220 degrees C) as major air pollution control devices (APCDs). PCDD/F concentration measured at stack gas of the MWI investigated is 0.728 ng-TEQ/Nm(3). The removal efficiency of WS+SCR system for PCDD/Fs reaches 93% in the MWI investigated. The MSP investigated is equipped with EP (operating temperature: 240 degrees C) and SCR (operating temperature: 290 degrees C) as APCDs. The flue gas sampling results also indicate that PCDD/F concentration treated with SCR is 1.35 ng-TEQ/Nm(3). The SCR system adopted in MSP can remove 52.3% PCDD/Fs from flue gases (SCR operating temperature: 290 degrees C, Gas flow rate: 660 kN m(3)/h). In addition, the distributions of PCDD/F congeners observed in the flue gases of the MWI and MSP investigated are significantly different. This study also indicates that the PCDD/F congeners measured in the flue gases of those two facilities are mostly distributed in vapor phase prior to the SCR system and shift to solid phase (vapor-phase PCDD/Fs are effectively decomposed) after being treated with catalyst. Besides, the results also indicate that with SCR highly chlorinated PCDD/F congeners can be transformed to lowly chlorinated PCDD/F congeners probably by dechlorination, while the removal efficiencies of vapor-phase PCDD/Fs increase with increasing chlorination.
Treviño-Quintanilla, Luis Gerardo; Escalante, Adelfo; Caro, Alma Delia; Martínez, Alfredo; González, Ricardo; Puente, José Luis; Bolívar, Francisco; Gosset, Guillermo
2007-01-01
The capacity to utilize sucrose as a carbon and energy source (Scr(+) phenotype) is a highly variable trait among Escherichia coli strains. In this study, seven enteropathogenic E. coli (EPEC) strains from different sources were studied for their capacity to grow using sucrose. Liquid media cultures showed that all analyzed strains have the Scr(+) phenotype and two distinct groups were defined: one of five and another of two strains displaying doubling times of 67 and 125 min, respectively. The genes conferring the Scr(+) phenotype in one of the fast-growing strains (T19) were cloned and sequenced. Comparative sequence analysis revealed that this strain possesses the scr regulon genes scrKYABR, encoding phosphoenolpyruvate:phosphotransferase system-dependent sucrose transport and utilization activities. Transcript level quantification revealed sucrose-dependent induction of scrK and scrR genes in fast-growing strains, whereas no transcripts were detected in slow-growing strains. Sequence comparison analysis revealed that the scr genes in strain T19 are almost identical to those present in the scr regulon of prototype EPEC E2348/69 and in both strains, the scr genes are inserted in the chromosomal intergenic region of hypothetical genes ygcE and ygcF. Comparison of the ygcE-ygcF intergenic region sequence of strains MG1655, enterohemorrhagic EDL933, uropathogenic ECFT073 and EPEC T19-E2348/69 revealed that the number of extragenic highly repeated iap sequences corresponded to nine, four, two and none, respectively. These results show that the iap sequence-containing chromosomal ygcE-ygcF intergenic region is highly variable in E. coli. Copyright (c) 2007 S. Karger AG, Basel.
Measurement, time-stamping, and analysis of electrodermal activity in fMRI
NASA Astrophysics Data System (ADS)
Smyser, Christopher; Grabowski, Thomas J.; Rainville, Pierre; Bechara, Antione; Razavi, Mehrdad; Mehta, Sonya; Eaton, Brent L.; Bolinger, Lizann
2002-04-01
A low cost fMRI-compatible system was developed for detecting electrodermal activity without inducing image artifact. Subject electrodermal activity was measured on the plantar surface of the foot using a standard recording circuit. Filtered analog skin conductance responses (SCR) were recorded with a general purpose, time-stamping data acquisition system. A conditioning paradigm involving painful thermal stimulation was used to demonstrate SCR detection and investigate neural correlates of conditioned autonomic activity. 128x128 pixel EPI-BOLD images were acquired with a GE 1.5T Signa scanner. Image analysis was performed using voxel-wise multiple linear regression. The covariate of interest was generated by convolving stimulus event onset with a standard hemodynamic response function. The function was time-shifted to determine optimal activation. Significance was tested using the t-statistic. Image quality was unaffected by the device, and conditioned and unconditioned SCRs were successfully detected. Conditioned SCRs correlated significantly with activity in the right anterior insular cortex. The effect was more robust when responses were scaled by SCR amplitude. The ability to measure and time register SCRs during fMRI acquisition enables studies of cognitive processes marked by autonomic activity, including those involving decision-making, pain, emotion, and addiction.
Space moving target detection and tracking method in complex background
NASA Astrophysics Data System (ADS)
Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui
2018-06-01
The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.
Ultimate Spectrum of Solar/Stellar Cosmic Rays
NASA Astrophysics Data System (ADS)
Struminsky, Alexei
2015-08-01
We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).
The J3 SCR model applied to resonant converter simulation
NASA Technical Reports Server (NTRS)
Avant, R. L.; Lee, F. C. Y.
1985-01-01
The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.
A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps
2016-03-26
Gault, S.P. Ringer, J.M. Cairney, Atom probe crystallography : characterization of grain boundary orientation relationships in nanocrystalline...J.M. Cairney, Atom probe crystallography : atomic- scale 3-D orientation mapping, Scr. Mater. 66 (11) (2012) 907. L. Yao /MethodsX 3 (2016) 268–273 273
New mechanistic insights in the NH 3-SCR reactions at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggeri, Maria Pia; Selleri, Tomasso; Nova, Isabella
2016-05-06
The present study is focused on the investigation of the low temperature Standard SCR reaction mechanism over Fe- and Cu-promoted zeolites. Different techniques are employed, including in situ DRIFTS, transient reaction analysis and chemical trapping techniques. The results present strong evidence of nitrite formation in the oxidative activation of NO and of their role in SCR reactions. These elements lead to a deeper understanding of the standard SCR chemistry at low temperature and can potentially improve the consistency of mechanistic mathematical models. Furthermore, comprehension of the mechanism on a fundamental level can contribute to the development of improved SCR catalysts.
Operational Characteristics of an SCR-Based Pulse Generating Circuit
2014-12-01
of OUTC can further be explained by the RC time constants involved in the charging and discharging of OUTC during each pulse . When the SCR is...CHARACTERISTICS OF AN SCR-BASED PULSE GENERATING CIRCUIT by Wing Chien Christopher Chang December 2014 Thesis Advisor: Gamani Karunasiri Co...COVERED December 20 14 Master ’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS OPERATIONAL CHARACTERISTICS OF AN SCR-BASED PULSE GENERATING CIRCUIT 6
Understanding of self-terminating pulse generation using silicon controlled rectifier and RC load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chris, E-mail: chrischang81@gmail.com; Karunasiri, Gamani, E-mail: karunasiri@nps.edu; Alves, Fabio, E-mail: falves@alionscience.com
2016-01-15
Recently a silicon controlled rectifier (SCR)-based circuit that generates self-terminating voltage pulses was employed for the detection of light and ionizing radiation in pulse mode. The circuit consisted of a SCR connected in series with a RC load and DC bias. In this paper, we report the investigation of the physics underlying the pulsing mechanism of the SCR-based. It was found that during the switching of SCR, the voltage across the capacitor increased beyond that of the DC bias, thus generating a reverse current in the circuit, which helped to turn the SCR off. The pulsing was found to bemore » sustainable only for a specific range of RC values depending on the SCR’s intrinsic turn-on/off times. The findings of this work will help to design optimum SCR based circuits for pulse mode detection of light and ionizing radiation without external amplification circuitry.« less
Analysis of skin conductance response during evaluation of preferences for cosmetic products
Ohira, Hideki; Hirao, Naoyasu
2015-01-01
We analyzed skin conductance response (SCR) as a psychophysiological index to evaluate affective aspects of consumer preferences for cosmetic products. To examine the test-retest reliability of association between preferences and SCR, we asked 33 female volunteers to complete two experimental sessions approximately 1 year apart. The participants indicated their preferences in a typical paired comparison task by choosing the better option from a combination of two products among four products. We measured anticipatory SCR prior to expressions of the preferences. We found that the mean amplitude of the SCR elicited by the preferred products was significantly larger than that elicited by the non-preferred products. The participants' preferences and corresponding SCR patterns were well preserved at the second session 1 year later. Our results supported cumulating findings that SCR is a useful index of consumer preferences that has future potential, both in laboratory and marketing settings. PMID:25709593
NASA Astrophysics Data System (ADS)
Winnerl, Andrea; Pereira, Rui N.; Stutzmann, Martin
2017-05-01
In this work, we use conductance and contact potential difference photo-transient data to study the influence of the growth technique, doping, and crystal polarity on the kinetics of photo-generated charges in GaN. We found that the processes, and corresponding time scales, involved in the decay of charge carriers generated at and close to the GaN surface via photo-excitation are notably independent of the growth technique, doping (n- and p-types), and also crystal polarity. Hence, the transfer of photo-generated charges from band states back to surface states proceeds always by hopping via shallow defect states in the space-charge region (SCR) close to the surface. Concerning the charge carrier photo-generation kinetics, we observe considerable differences between samples grown with different techniques. While for GaN grown by metal-organic chemical vapor deposition, the accumulation of photo-conduction electrons results mainly from a combined trapping-hopping process (slow), where photo-generated electrons hop via shallow defect states to the conduction band (CB), in hydride vapor phase epitaxy and molecular beam epitaxy materials, a faster direct process involving electron transfer via CB states is also present. The time scales of both processes are quite insensitive to the doping level and crystal polarity. However, these processes become irrelevant for very high doping levels (both n- and p-types), where the width of the SCR is much smaller than the photon penetration depth, and therefore, most charge carriers are generated outside the SCR.
Shift climate profiles and correlates in acute psychiatric inpatient units.
Lewin, Terry J; Carr, Vaughan J; Conrad, Agatha M; Sly, Ketrina A; Tirupati, Srinivasan; Cohen, Martin; Ward, Philip B; Coombs, Tim
2012-09-01
Inpatient psychiatric units are dynamic in nature, potentially creating a different treatment experience for each person, which may be difficult to quantify. Among the goals of this multi-centre service evaluation project was an assessment of shift-to-shift changes in unit-level events and their impact on the social-emotional environment. Over 1 year, various nurse-completed logs were used within the 11 participating Australian psychiatric units (n = 5,546 admissions) to record patient- and unit-level events per shift, including ratings of the overall social-emotional climate using a novel shift climate ratings (SCR) scale (n = 8,176 shifts). These were combined with admission-level patient characteristics to investigate shift climate profiles and correlates. Occupancy rates averaged 88% and two-thirds of admissions were involuntary. The psychometric performance of the SCR scale was considered to be satisfactory (e.g., high internal consistency, unidimensional factor structure, and evidence of discriminant and predictive validity). A series of hierarchical regressions revealed considerable variation in SCR total scores, with poorer climates being significantly associated with: day/afternoon shifts; higher occupancy levels; higher proportions of experienced staff, and male, older, or involuntary patients; higher rates of less serious aggressive incidents; reporting of additional staffing demands; and unit location in a stand-alone psychiatric hospital. The day-to-day social-emotional climate can have important consequences for patient engagement and recovery. Improved understanding of the role played by unit, staff and patient characteristics, together with routine monitoring, should facilitate the development and evaluation of targeted interventions to reduce adverse incidents and improve the overall social-emotional climate.
Mihata, Teruhisa; Bui, Christopher N H; Akeda, Masaki; Cavagnaro, Matthew A; Kuenzler, Michael; Peterson, Alexander B; McGarry, Michelle H; Itami, Yasuo; Limpisvasti, Orr; Neo, Masashi; Lee, Thay Q
2017-12-01
Biomechanical and clinical success of the superior capsule reconstruction (SCR) using fascia lata (FL) grafts has been reported. In the United States, human dermal (HD) allograft has been used successfully for SCRs; however, the biomechanical characteristics have not been reported. Eight cadaveric shoulders were tested in 5 conditions: (1) intact; (2) irreparable supraspinatus tear; (3) SCR using FL allograft with anterior and posterior suturing; (4) SCR using HD allograft with anterior and posterior suturing; and (5) SCR using HD allograft with posterior suturing. Rotational range of motion, superior translation, glenohumeral joint force, and subacromial contact were measured at 0°, 30°, and 60° of glenohumeral abduction in the scapular plane. Graft dimensions before and after testing were also recorded. Biomechanical parameters were compared using a repeated-measures analysis of variance with Tukey post hoc test, and graft dimensions were compared using a Student t-test (P < .05). Irreparable supraspinatus tear significantly increased superior translation, superior glenohumeral joint force, and subacromial contact pressure, which were completely restored with the SCR FL allografts. Both SCR HD allograft repairs partially restored superior translation and completely restored subacromial contact and superior glenohumeral joint force. The HD allografts significantly elongated by 15% during testing, whereas the FL allograft lengths were unchanged. Single-layered HD SCR allografts partially restored superior glenohumeral stability, whereas FL allograft SCR completely restored the superior glenohumeral stability. This may be due to the greater flexibility of the HD allograft, and the SCR procedure used was developed on the basis of FL grafts. Published by Elsevier Inc.
Using a PFET To Commutate an SCR
NASA Technical Reports Server (NTRS)
Edwards, D. B.; Ripple, W. E.
1984-01-01
Accidental turn-on prevented. PFET diverts load current around SCR to prevent false SCR triggering from current and voltage switching transients. New circuit used in all types of single phase and polyphase inverters and in buck-boost-, and flyback regulators.
Canetta, Pietro; Forster, Catherine; Sise, Meghan; Maarouf, Omar; Singer, Eugenia; Elger, Antje; Elitok, Saban; Schmidt-Ott, Kai; Barasch, Jonathon
2017-01-01
Introduction Urine neutrophil gelatinase-associated lipocalin (uNGAL) is a sensitive and specific diagnostic test for acute kidney injury (AKI) in the Emergency Department (ED), but its economic impact has not been investigated. We hypothesized that uNGAL used in combination with serum creatinine (sCr) would reduce costs in the management of AKI in patients presenting to the ED in comparison to using sCr alone. Materials and methods A cost simulation model was developed for clinical algorithms to diagnose AKI based on sCr alone vs. uNGAL plus sCr (uNGAL+sCr). A cost minimization analysis was performed to determine total expected costs for patients with AKI. uNGAL test characteristics were validated with eight-hundred forty-nine patients with sCr ≥1.5 from a completed study of 1635 patients recruited from EDs at two U.S. hospitals from 2007–8. Biomarker test, AKI work-up, and diagnostic imaging costs were incorporated. Results For a hypothetical cohort of 10,000 patients, the model predicted that the expected costs were $900 per patient (pp) in the sCr arm and $950 in the uNGAL+sCr arm. uNGAL+sCr resulted in 1,578 fewer patients with delayed diagnosis and treatment than sCr alone (2,013 vs. 436 pts) at center 1 and 1,973 fewer patients with delayed diagnosis and treatment than sCr alone at center 2 (2,227 vs. 254 patients). Although initial evaluation costs at each center were $50 pp higher in with uNGAL+sCr, total costs declined by $408 pp at Center 1 and by $522 pp at Center 2 due to expected reduced delays in diagnosis and treatment. Sensitivity analyses confirmed savings with uNGAL + sCr for a range of cost inputs. Discussion Using uNGAL with sCr as a clinical diagnostic test for AKI may improve patient management and reduce expected costs. Any cost savings would likely result from avoiding delays in diagnosis and treatment and from avoidance of unnecessary testing in patients given a false positive AKI diagnosis by use of sCr alone. PMID:28542336
Analysis of self-citation and impact factor in dermatology journals.
Reiter, Ofer; Mimouni, Michael; Mimouni, Daniel
2016-09-01
Concerns have been raised regarding the impact factor's (IF) accuracy and credibility, which may be affected by different factors, including self-citations. To investigate the self-citation rate (SCR) of dermatology journals and its relationship to the IF. Data on all dermatology journals listed in the Journal Citation Reports (JCR) were retrieved, and the following parameters were analyzed: IF, total publications used to calculate the IF, total citations used to calculate the IF, self-citations used to calculate the IF, SCR, and IF without self-citations (corrected IF). The median SCR was 10.53% (0-50%), and the median IF and corrected IF, 1.54 (0.05-6.37) and 1.35 (0.03-5.84), respectively. There was an inverse correlation between the IF and the SCR. A statistically significant difference was noted in the SCR between general and subspecialty journals and between journals that offered a full English text and those that did not. In general, the IF of dermatology journals is not influenced by the SCR. However, journals with a lower IF tend to have a higher SCR. Subspecialty journals and foreign language journals have a higher SCR than general dermatology and English language journals, respectively, probably owing to their limited distribution and the difficulty experienced by international authors in accessing references in specific languages. © 2015 The International Society of Dermatology.
Moreso, F; Ibernon, M; Gomà, M; Carrera, M; Fulladosa, X; Hueso, M; Gil-Vernet, S; Cruzado, J M; Torras, J; Grinyó, J M; Serón, D
2006-04-01
Chronic allograft nephropathy (CAN) in protocol biopsies is associated with graft loss while the association between subclinical rejection (SCR) and outcome has yielded contradictory results. We analyze the predictive value of SCR and/or CAN in protocol biopsies on death-censored graft survival. Since 1988, a protocol biopsy was done during the first 6 months in stable grafts with serum creatinine <300 micromol/L and proteinuria <1 g/day. Biopsies were evaluated according to Banff criteria. Borderline changes and acute rejection were grouped as SCR. CAN was defined as presence of interstitial fibrosis and tubular atrophy. Mean follow-up was 91 +/- 46 months. Sufficient tissue was obtained in 435 transplants. Biopsies were classified as normal (n = 186), SCR (n = 74), CAN (n = 110) and SCR with CAN (n = 65). Presence of SCR with CAN was associated with old donors, percentage of panel reactive antibodies and presence of acute rejection before protocol biopsy. Cox regression analysis showed that SCR with CAN (relative risk [RR]: 1.86, 95% confidence interval [CI]: 1.11-3.12; p = 0.02) and hepatitis C virus (RR: 2.27, 95% CI: 1.38-3.75; p = 0.01) were independent predictors of graft survival. In protocol biopsies, the detrimental effect of interstitial fibrosis/tubular atrophy on long-term graft survival is modulated by SCR.
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest.more » In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11% compared with stoichiometric operation.« less
Development of an electrostatic dust detector for tungsten dust
NASA Astrophysics Data System (ADS)
Starkey, D.; Hammond, K.; Roquemore, L.; Skinner, C. H.
2012-10-01
Next-step fusion reactors, such as ITER, are expected to have large quantities of dust that will present hazards that have yet to be encountered in current fusion devices. To manage the amount of dust within the reactors a real-time dust detector must be implemented to ensure that dust does not reach hazardous levels. An electrostatic device that accomplishes this has already been tested on NSTX and Tore Supra [1,2]. We will present modifications of this device to improve its ruggedness to withstand the conditions that will be present in ITER. The detector consists of two tungsten wires wrapped around a macor cylinder that are biased at 100-300 V. Incident dust causes a measurable transient short circuit. Initial results have demonstrated the detection of tungsten particles. We will also present a potential method of electrostatic cleaning of residual dust from the detector.[4pt] [1] C. H. Skinner et al., Rev. Sci. Instrum., 81, 10E102 (2010)[0pt] [2] H. Roche et al., Phys. Scr., T145, (2011).
Nuclear Thermal Rocket Simulation in NPSS
NASA Technical Reports Server (NTRS)
Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.
2013-01-01
Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.
Nuclear Thermal Rocket Simulation in NPSS
NASA Technical Reports Server (NTRS)
Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.
2013-01-01
Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.
Armbruster, Diana; Kirschbaum, Clemens; Strobel, Alexander
2017-08-01
Combined oral contraceptives (COC) are used by millions of women worldwide. Although findings are not entirely consistent, COC have been found to impact on brain function and, thus, to modulate affective processes. Here, we investigated electro-physiological responses to emotional stimuli in free cycling women in both the early follicular and late luteal phase as well as in COC users. Skin conductance response (SCR), startle reflex, corrugator and zygomaticus activity were assessed. COC users showed reduced overall startle magnitude and SCR amplitude, but heightened overall zygomaticus activity, although effect sizes were small. Thus, COC users displayed reduced physiological reactions indicating negative affect and enhanced physiological responses signifying positive affect. In free cycling women, endogenous 17β-estradiol levels were associated with fear potentiated startle in both cycle phases as well as with SCR and zygomaticus activity during the follicular phase. Testosterone was associated with corrugator and zygomaticus activity during the luteal phase, while progesterone levels correlated with corrugator activity in the follicular phase. To the contrary, in COC users, endogenous hormones were not associated with electro-physiological measures. The results further underscore the importance of considering COC use in psychophysiological studies on emotional processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Correa-Gillieron, E M; Cavalcante, L A
1999-08-01
The maturation of the neuropil and synapse formation were examined in the retino-receptive layers of the superior colliculus (SCr-r) in the opossum from a period prior to the onset of arborization of retinocollicular fibers (postnatal day 22 - P22), at 44% of the coecal period (CP), to the end of the fast phase of optic fiber myelination and weaning time (P81 - 118% CP). Development of the SCr-r neuropil follows a protracted time course and can be divided into three broad stages, which are characterized by (I) Large extracellular spaces, numerous growth cones that participate rarely in synaptic junctions, vesicles-poor immature synapses (P22-P30), (II) Synapses of varied morphology with abundant synaptic vesicles, and small terminals with dark mitochondria and round synaptic vesicles (RSD terminals) synapsing mostly onto dendritic shafts, flat-vesicles (F) terminals (P40-P56), (III) Sequential appearance of retinal (R) and pleomorphic-vesicles (P) terminals and of RSD terminals synapsing onto spine or spine-like processes, appearance of glomerulus-like synaptic arrays (synaptic islets) (P61-P81). The advancement of synaptogenesis in SCr-r from stage I to II and from stage II to III correlates closely with the differentiation of astrocytes and oligodendrocytes, respectively.
Function and specificity of synthetic Hox transcription factors in vivo
Papadopoulos, Dimitrios K.; Vukojević, Vladana; Adachi, Yoshitsugu; Terenius, Lars; Rigler, Rudolf; Gehring, Walter J.
2010-01-01
Homeotic (Hox) genes encode transcription factors that confer segmental identity along the anteroposterior axis of the embryo. However the molecular mechanisms underlying Hox-mediated transcription and the differential requirements for specificity in the regulation of the vast number of Hox-target genes remain ill-defined. Here we show that synthetic Sex combs reduced (Scr) genes that encode the Scr C terminus containing the homedomain (HD) and YPWM motif (Scr-HD) are functional in vivo. Synthetic Scr-HD peptides can induce ectopic salivary glands in the embryo and homeotic transformations in the adult fly, act as transcriptional activators and repressors during development, and participate in protein-protein interactions. Their transformation capacity was found to be enhanced over their full-length counterpart and mutations known to transform the full-length protein into constitutively active or inactive variants behaved accordingly in the synthetic peptides. Our results show that synthetic Scr-HD genes are sufficient for homeotic function in Drosophila and suggest that the N terminus of Scr has a role in transcriptional potency, rather than specificity. We also demonstrate that synthetic peptides behave largely in a predictable way, by exhibiting Scr-specific phenotypes throughout development, which makes them an important tool for synthetic biology. PMID:20147626
Hybrid high direct current circuit interrupter
Rockot, Joseph H.; Mikesell, Harvey E.; Jha, Kamal N.
1998-01-01
A device and a method for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens.
JPRS Report, Science & Technology, China: Energy
1988-06-29
capacity. There are currently two types of HTGR reactor designs: the particle-bed core , which uses spherical fuel elements, and the rod type core , in...and trial operating experience with the HTGR reactor. Its main design features are as follows. 1. A particle-bed core , continuous fueling and...Favorable for Development of Small-Scale HTGR (Xu Jiming; HE DONGLI GONGCHENG, Feb 88) 47 ERRATUM: In JPRS-CEN-88-003 of 25 April 1988 in article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y.; Pihl, Josh A.; Toops, Todd J.
A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst.more » Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.« less
Relationship between lean body mass and serum renal biomarkers in healthy dogs.
Hall, Jean A; Yerramilli, Maha; Obare, Edward; Yerramilli, Murthy; Melendez, Lynda D; Jewell, Dennis E
2015-01-01
Symmetric dimethylarginine (SDMA) is an accurate and precise biomarker for estimating glomerular filtration rate (GFR) in humans and cats. Serum creatinine (sCr) also correlates with GFR, but has limitations as a biomarker of renal function because nonrenal factors can influence its concentration. Differences in lean body mass (LBM) influence sCr, but not serum SDMA concentrations. Forty-one healthy Beagles, mean age 9.9 years (range: 3.1-14.8 years), were studied over a 6 month period. Serum biomarkers of renal function were measured prospectively at baseline, and 1, 3, and 6 months. SDMA concentrations were measured by liquid chromatography-mass spectroscopy and sCr concentrations by enzymatic colorimetry. Body composition was determined by dual energy x-ray absorptiometry. LBM (P < .001) and age (P = .006) were significant explanatory variables for sCr concentration (R(2) = 0.38), but not SDMA concentration. Time on food was the only significant explanatory variable for SDMA concentration (R(2) = 0.49). SDMA concentrations decreased across time (P < .001). LBM was affected by sex (males > females; P = .02). Mature adult dogs (<8 years) had greater LBM compared with geriatric dogs (≥8 years; P < .001). sCr concentrations, but not SDMA concentrations, are influenced by LBM, which limits sCr utility as a biomarker for monitoring renal function in dogs with decreased LBM. Reductions in LBM can lower sCr concentration and overestimate GFR. SDMA concentrations, but not sCr concentrations were influenced by time on food. SDMA could have clinical advantages over sCr in monitoring response to nutritional interventions. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Who watches the watchers?: preventing fault in a fault tolerance library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanavige, C. D.
The Scalable Checkpoint/Restart library (SCR) was developed and is used by researchers at Lawrence Livermore National Laboratory to provide a fast and efficient method of saving and recovering large applications during runtime on high-performance computing (HPC) systems. Though SCR protects other programs, up until June 2017, nothing was actively protecting SCR. The goal of this project was to automate the building and testing of this library on the varying HPC architectures on which it is used. Our methods centered around the use of a continuous integration tool called Bamboo that allowed for automation agents to be installed on the HPCmore » systems themselves. These agents provided a way for us to establish a new and unique way to automate and customize the allocation of resources and running of tests with CMake’s unit testing framework, CTest, as well as integration testing scripts though an HPC package manager called Spack. These methods provided a parallel environment in which to test the more complex features of SCR. As a result, SCR is now automatically built and tested on several HPC architectures any time changes are made by developers to the library’s source code. The results of these tests are then communicated back to the developers for immediate feedback, allowing them to fix functionality of SCR that may have broken. Hours of developers’ time are now being saved from the tedious process of manually testing and debugging, which saves money and allows the SCR project team to focus their efforts towards development. Thus, HPC system users can use SCR in conjunction with their own applications to efficiently and effectively checkpoint and restart as needed with the assurance that SCR itself is functioning properly.« less
Parsh, Jessica; Seth, Milan; Briguori, Carlo; Grossman, Paul; Solomon, Richard; Gurm, Hitinder S
2016-05-01
It is unknown which definition of contrast-induced acute kidney injury (CI-AKI) in the setting of percutaneous coronary interventions is best associated with inpatient mortality and whether this association is stable across patients with various preprocedural serum creatinine (SCr) values. We applied logistic regression models to multiple CI-AKI definitions used by the Kidney Disease Improving Global Outcomes guidelines and previously published studies to examine the impact of preprocedural SCr on a candidate definition's correlation with the adverse outcome of inpatient mortality. We used likelihood ratio tests to examine candidate definitions and identify those where association with inpatient mortality remained constant regardless of preprocedural SCr. These definitions were assessed for specificity, sensitivity, and positive and negative predictive values to identify an optimal definition. Our study cohort included 119,554 patients who underwent percutaneous coronary intervention in Michigan between 2010 and 2014. Most commonly used definitions were not associated with inpatient mortality in a constant fashion across various preprocedural SCr values. Of the 266 candidate definitions examined, 16 definition's association with inpatient mortality was not significantly altered by preprocedural SCr. Contrast-induced acute kidney injury defined as an absolute increase of SCr ≥0.3 mg/dL and a relative SCr increase ≥50% was selected as the optimal candidate using Perkins and Shisterman decision theoretic optimality criteria and was highly predictive of and specific for inpatient mortality. We identified the optimal definition for CI-AKI to be an absolute increase in SCr ≥0.3 mg/dL and a relative SCr increase ≥50%. Further work is needed to validate this definition in independent studies and to establish its utility for clinical trials and quality improvement efforts. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zwahlen, Daniel R.; Department of Radiation Oncology, University Hospital Zurich, Zurich; Ruben, Jeremy D.
2009-06-01
Purpose: To estimate and compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3DCRT) in terms of second cancer risk (SCR) for postoperative treatment of endometrial and cervical cancer. Methods and Materials: To estimate SCR, the organ equivalent dose concept with a linear-exponential, a plateau, and a linear dose-response model was applied to dose distributions, calculated in a planning computed tomography scan of a 68-year-old woman. Three plans were computed: four-field 18-MV 3DCRT and nine-field IMRT with 6- and 18-MV photons. SCR was estimated as a function of target dose (50.4 Gy/28 fractions) in organs of interest according to the Internationalmore » Commission on Radiological Protection Results: Cumulative SCR relative to 3DCRT was +6% (3% for a plateau model, -4% for a linear model) for 6-MV IMRT and +26% (25%, 4%) for the 18-MV IMRT plan. For an organ within the primary beam, SCR was +12% (0%, -12%) for 6-MV and +5% (-2%, -7%) for 18-MV IMRT. 18-MV IMRT increased SCR 6-7 times for organs away from the primary beam relative to 3DCRT and 6-MV IMRT. Skin SCR increased by 22-37% for 6-MV and 50-69% for 18-MV IMRT inasmuch as a larger volume of skin was exposed. Conclusion: Cancer risk after IMRT for cervical and endometrial cancer is dependent on treatment energy. 6-MV pelvic IMRT represents a safe alternative with respect to SCR relative to 3DCRT, independently of the dose-response model. 18-MV IMRT produces second neutrons that modestly increase the SCR.« less
The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory
Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...
2018-02-21
Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less
The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.
Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less
COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS
The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...
Bis-(3'-5')-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus.
Trimble, Michael J; McCarter, Linda L
2011-11-01
Movement over and colonization of surfaces are important survival strategies for bacteria, and many find it advantageous to perform these activities as a group, using quorum sensing to sample population size and synchronize behavior. It is puzzling however, that swarming-proficient and virulent strains of Vibrio parahaemolyticus are silenced for the vibrio archetypal pathway of quorum sensing. Here we describe the S-signal, a pheromone that can be communicated between cells in coculture to regulate surface colonization. This signal was harvested in cell-free supernatants and demonstrated to stimulate swarming gene expression at low cell density. The S-signal was generated by the pyridoxal phosphate-dependent aminotransferase ScrA; signal reception required the periplasmic binding protein ScrB and the membrane-bound GGDEF-EAL domain-containing protein ScrC. ScrC is a bifunctional enzyme that has the ability to form and degrade the second messenger bis-(3'-5') cyclic dimeric GMP (c-di-GMP). ScrA in neighboring cells was able to alter the activity of ScrC in a ScrB-dependent manner, transforming ScrC's repressing ability to inducing activity with respect to swarming. Conversely, cell-cell signaling repressed capsule gene expression. In summary, we report that quorum sensing can stimulate swarming in V. parahaemolyticus; it does so via an alternative pathway capable of generating an autoinducing signal that influences c-di-GMP, thereby expanding the lexicon and language of cell-cell communication.
EVALUATION OF THE EFFECT OF SCR ON MERCURY SPECIATION AND EMISSIONS
The paper presents the results of an investigation on the impact that selective catalytic reduction (SCR) has on both the total emissions and the speciation of mercury (Hg). SCR systems can be used as multipollutant technologies if they enhance Hg conversion/capture. Previous pil...
EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR NOX CONTROL TECHNOLOGIES
The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...
EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR CONTROL TECHNOLOGIES
The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...
COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS
The report provides a methodology for estimating budgetary costs associ-ated with retrofit applications of selec-tive catalytic reduction (SCR) technology on coal-fired boilers. SCR is a post-combustion nitrogen oxides (NOX) con-trol technology capable of providing NOX reductions...
A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Spielman, Zach; Hill, Rachael
Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to addressmore » the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.« less
Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin
2015-03-18
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
Effects of freezer storage time on levels of complement biomarkers.
Morgan, Angharad R; O'Hagan, Caroline; Touchard, Samuel; Lovestone, Simon; Morgan, B Paul
2017-11-06
There is uncertainty regarding how stable complement analytes are during long-term storage at - 80 °C. As part of our work program we have measured 17 complement biomarkers (C1q, C1 inhibitor, C3, C3a, iC3b, C4, C5, C9, FB, FD, FH, FI, TCC, Bb, sCR1, sCR2, Clusterin) and the benchmark inflammatory marker C-reactive protein (CRP) in a large set of plasma samples (n = 720) that had been collected, processed and subsequently stored at - 80 °C over a period of 6.6-10.6 years, prior to laboratory analysis. The biomarkers were measured using solid-phase enzyme immunoassays with a combination of multiplex assays using the MesoScale Discovery Platform and single-plex enzyme-linked immunosorbent assays (ELISAs). As part of a post hoc analysis of extrinsic factors (co-variables) affecting the analyses we investigated the impact of freezer storage time on the values obtained for each complement analyte. With the exception of five analytes (C4, C9, sCR2, clusterin and CRP), storage time was significantly correlated with measured plasma concentrations. For ten analytes: C3, FI, FB, FD, C5, sCR1, C3a, iC3b, Bb and TCC, storage time was positively correlated with concentration and for three analytes: FH, C1q, and C1 inhibitor, storage time was negatively correlated with concentration. The results suggest that information on storage time should be regarded as an important co-variable and taken into consideration when analysing data to look for associations of complement biomarker levels and disease or other outcomes.
POWER PLANT EVALUATION OF THE EFFECT OF SCR TECHNOLOGY ON MERCURY
The paper presents results of research on the impact that selective catalytic reduction (SCR) systems have on speciation and total emissions of mercury. Although SCR systems are designed to reduce nitrogen oxides (NOx), they may oxidize elemental mercury (Hg0) to Hg2+, which is m...
Hybrid high direct current circuit interrupter
Rockot, J.H.; Mikesell, H.E.; Jha, K.N.
1998-08-11
A device and a method are disclosed for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens. 7 figs.
He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...
2016-04-14
We compared the molecular structures, surface acidity and catalytic activity for NO/NH 3/O 2 SCR of V 2O 5-WO 3/TiO 2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) 2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO 2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO 2(anatase) particles and that VO x and WO x do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Lowmore » Energy Ion Scattering (HS-LEIS) confirms that the VO x and WO x are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO 3 and O = WO 4 sites on the TiO 2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO 4 and WO 4 sites that appear to be anchored at surface defects of the TiO 2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH 3 * on Lewis acid sites and surface NH 4 +* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO 4 species and that the surface kinetics was independent of TiO 2 synthesis method or presence of surface WO 5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO 4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of the new surface WO x sites associated surface defects on the TiO 2 support that increase the ammonia adsorption capacity.« less
Juvrud, Joshua; Gredebäck, Gustaf; Åhs, Fredrik; Lerin, Nils; Nyström, Pär; Kastrati, Granit; Rosén, Jörgen
2018-01-01
There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing.
Juvrud, Joshua; Gredebäck, Gustaf; Åhs, Fredrik; Lerin, Nils; Nyström, Pär; Kastrati, Granit; Rosén, Jörgen
2018-01-01
There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing. PMID:29867318
A Compact Nuclear Fusion Reactor for Space Flights
NASA Astrophysics Data System (ADS)
Nastoyashchiy, Anatoly F.
2006-05-01
A small-scale nuclear fusion reactor is suggested based on the concepts of plasma confinement (with a high pressure gas) which have been patented by the author. The reactor considered can be used as a power setup in space flights. Among the advantages of this reactor is the use of a D3He fuel mixture which at burning gives main reactor products — charged particles. The energy balance considerably improves, as synchrotron radiation turn out "captured" in the plasma volume, and dangerous, in the case of classical magnetic confinement, instabilities in the direct current magnetic field configuration proposed do not exist. As a result, the reactor sizes are quite suitable (of the order of several meters). A possibility of making reactive thrust due to employment of ejection of multiply charged ions formed at injection of pellets from some adequate substance into the hot plasma center is considered.
NASA Astrophysics Data System (ADS)
Kadam, Vaibhav
The heavy-duty diesel (HDD) engines use the diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and urea injection based selective catalytic reduction (SCR) systems in sequential combination, to meet the US EPA 2010 PM and NOx emission standards. The SCR along with a NH 3 slip control catalyst (AMOX) offer NOx reduction >90 % with NH3 slip <20 ppm. However, there is a strong desire to further improve the NOx reduction performance of such systems, to meet the California Optional Low NOx Standard implemented since 2015. Integrating SCR functionality into a diesel particulate filter (DPF), by coating the SCR catalyst on the DPF, offers potential to reduce the system cost and packaging weight/ volume. It also provides opportunity to increases the SCR volume without affecting the overall packaging, to achieve NO x reduction efficiencies >95 %. In this research, the NOx reduction and NH3 storage performance of a Cu-zeolite SCR and Cu-zeolite SCR catalyst on DPF (SCRFRTM) were experimentally investigated based on the engine experimental data at steady state conditions. The experimental data for the production-2013-SCR and the SCRFRTM were collected (with and without PM loading in the SCRFRTM) on a Cummins ISB 2013 engine, at varying inlet temperatures, space velocities, inlet NOx concentrations and NO2/NOx ratios, to evaluate the NOx reduction, NH3 storage and NH 3 slip characteristics of the SCR catalyst. The SCRFRTM was loaded with 2 and 4 g/L of PM prior to the NOx reduction tests to study the effect of PM loading on the NOx reduction and NH3 storage performance of the SCRFRTM. The experimental setup and test procedures for evaluation of NOx reduction performance of the SCRFRTM, with and without PM loading in the SCRFRTM are described. The 1-D SCR model developed at MTU was calibrated to the engine experimental data obtained from the seven NOx reduction tests conducted with the production-2013-SCR. The performance of the 1-D SCR model was validated by comparing the simulation and experimental data for NO, NO2 and NH3 concentrations at the outlet of the SCR. The NO and NO 2 concentrations were calibrated to +/-20 ppm and NH3 was calibrated to +/-20 ppm. The experimental results for the production-2013-SCR indicate that the NOx reduction of 80 - 85% can be achieved for the inlet temperatures below 250°C and above 450°C and NO x reduction of 90 - 95% can be achieved for the inlet temperatures between 300 - 350°C, at ammonia to NO2 ratio (ANR) 1.0, while the NH3 slip out of the SCR was <75 ppm. Conversely, the SCRFRTM showed 90 - 95 % NOx reduction at ANR of 1.0, while the NH3 slip out of the SCRFRTM was >50 ppm, with and without PM loading in the SCRFRTM, for the inlet temperature range of 200 - 450 °C, space velocity in the range of 13 to 48 k/hr and inlet NO 2/NOx in the range of 0.2 to 0.5. The NOx reduction in the SCRFRTM increases to >98 % at ANR 1.2. However, the NH3 slip out of the SCRFRTM increases significantly at ANR 1.2. The effect of PM loading at 2 and 4 g/L on the NOx reduction performance of the SCRFRTM was negligible below 300 °C. However, with PM loading in the SCRFRTM, the NO2 reduction decreased by 3 - 5% when compared to the clean SCRFRTM, for inlet temperature >350 °C. Experimental data were also collected by reference [1] to investigate the NO2 assisted PM oxidation in the SCRFRTM for the inlet temperature range of 260 - 370 °C, with and without urea injection and thermal oxidation of PM in the SCRFRTM for the inlet temperature range of 500 - 600 °C, without urea injection by reference [1]. The experimental data obtained from this study and [1] will be used to develop and calibrate the SCR-F model at Michigan Tech. The NH3 storage for the production-2013-SCR and the SCRFRTM (with and without PM loading) were determined from the steady state engine experimental data. The NH3 storage for the production-2013-SCR and the SCRFRTM (without PM loading) were within +/-5 gmol/m 3 of the substrate, with maximum NH3 storage of 75 - 80 gmol/m3 of the substrate, at the SCR/SCRFRTM inlet temperature of 200°C. The NH3 storage in the SCRFRTM, with 2 g/L PM loading, decreased by 30%, when compared to the NH3 storage in the SCRFRTM, without PM loading. The further increase in the PM loading in the SCRFRTM, from 2 to 4 g/L, had negligible effect on NH 3 storage.
Peddie, V.L.; Porter, M.; Counsell, C.; Caie, L.; Pearson, D.; Bhattacharya, S.
2009-01-01
BACKGROUND Views of embryo donors, scientists and members of the general public on embryonic stem cell research (eSCR) have been widely reported. Less is known about views of potential beneficiaries of stem cell therapy and the influence of media ‘hype’ on perceptions of eSCR among different groups of stakeholders. This study aimed to examine the perceptions of members of the general public as well as two patient groups likely to benefit from eSCR and to explore the role of the media in shaping these views. METHODS A qualitative study carried out in Aberdeen, Scotland included 15 people living with Parkinson’s disease (PD), 15 people living with diabetes mellitus (DM), 15 couples with infertility and 21 members of the general public who volunteered for the study. Interview transcripts were analysed thematically using grounded theory. RESULTS The two patient groups likely to benefit from eSCR in the future differed in their knowledge (mainly gained from the media) and understanding of eSCR. Those living with PD were older, more debilitated and better informed than those with DM who showed limited interest in potential future benefits of eSCR. Infertile couples learnt about eSCR from health professionals who explained the process of embryo donation to them, and had sought no further information. Most of the general public had accessed information on eSCR and believed themselves to be more discerning than others because of their objectivity, intelligence and ‘scientific awareness’. Although, the media and internet were primary sources of information for all except couples with infertility, members of all four groups claimed not to be taken in by the media ‘hype’ surrounding eSCR. CONCLUSIONS Those who expected to benefit from eSCR in the future as well as members of the general public differ in their susceptibility to media ‘hype’, while believing that they are not taken in by exaggerated claims of benefits. As respondents were a selected group who were not drawn from a representative sample, the findings cannot be generalized to a wider population. PMID:19168873
Fournier, Marie-Cécile; Foucher, Yohann; Blanche, Paul; Buron, Fanny; Giral, Magali; Dantan, Etienne
2016-05-01
In renal transplantation, serum creatinine (SCr) is the main biomarker routinely measured to assess patient's health, with chronic increases being strongly associated with long-term graft failure risk (death with a functioning graft or return to dialysis). Joint modeling may be useful to identify the specific role of risk factors on chronic evolution of kidney transplant recipients: some can be related to the SCr evolution, finally leading to graft failure, whereas others can be associated with graft failure without any modification of SCr. Sample data for 2749 patients transplanted between 2000 and 2013 with a functioning kidney at 1-year post-transplantation were obtained from the DIVAT cohort. A shared random effect joint model for longitudinal SCr values and time to graft failure was performed. We show that graft failure risk depended on both the current value and slope of the SCr. Deceased donor graft patient seemed to have a higher SCr increase, similar to patient with diabetes history, while no significant association of these two features with graft failure risk was found. Patient with a second graft was at higher risk of graft failure, independent of changes in SCr values. Anti-HLA immunization was associated with both processes simultaneously. Joint models for repeated and time-to-event data bring new opportunities to improve the epidemiological knowledge of chronic diseases. For instance in renal transplantation, several features should receive additional attention as we demonstrated their correlation with graft failure risk was independent of the SCr evolution.
Gofrit, Ofer N; Orvieto, Marcelo A; Zorn, Kevin C; Steinberg, Gary D; Zagaja, Gregory P; Shalhav, Arieh L
2009-02-01
Single renal unit models are invaluable for studies in renal physiology, transplantation and response to ischemic injury. Glomerular filtration rate (GFR) is commonly used for evaluation of renal function. Measuring the GFR involves relatively complicated and expensive systems. In this study we determined whether serum creatinine (Scr) can predict the GFR in this model. Right laparoscopic nephrectomy was performed in 46 female pigs weighing 25 kg-30 kg. Twelve days later the left kidney was exposed to various periods of warm ischemia (30, 60, 90, and 120 minutes). Scr and GFR (using the iohexol clearance method) were determined preoperatively and at postoperative days 1, 3, 8, 15, 22 and 29. A total of 244 pairs of Scr and GFR values were analyzed to determine a formula for predicting GFR (pGFR) from Scr. Scr range was 1.2 mg/dl -29 mg/dl and GFR range was 1.8 ml/min -180.5 ml/min. The empiric formula deduced from the database for calculating pGFR from Scr was: pGFR = (217 divided by Scr) minus 0.2. pGFR correlated well with the actual GFR (R(2) = 0.85). The graphs for pGFR were almost indistinguishable from the graphs for actual GFR in every single animal. The results and conclusions of the experiments using either actual or predicted GFR were identical. We conclude that in a single renal unit porcine model using ischemia as the insult to the kidney, expensive actual measurements of GFR can be reliably replaced by Scr based calculated GFR.
A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...
Onodera, Takashi; Takayama, Daisuke; Ohashi, Akiyoshi; Yamaguchi, Takashi; Uemura, Shigeki; Harada, Hideki
2016-10-01
Resilience to process outages is an essential requirement for sustainable wastewater treatment systems in developing countries. In this study, we evaluated the ability of a full-scale down-flow hanging sponge (DHS) reactor to recover after a 10-day outage. The DHS tested in this study uses polyurethane sponge as packing material. This full-scale DHS reactor has been tested over a period of about 4 years in India with a flow rate of 500 m(3)/day. Water was not supplied to the DHS reactor that was subjected to the 10-day outage; however, the biomass did not dry out because the sponge was able to retain enough water. Soon after the reactor was restarted, a small quantity of biomass, amounting to only 0.1% of the total retained biomass, was eluted. The DHS effluent achieved satisfactory removal of suspended solids, chemical oxygen demand, and ammonium nitrogen within 90, 45, and 90 min, respectively. Conversely, fecal coliforms in the DHS effluent did not reach satisfactory levels within 540 min; instead, the normal levels of fecal coliforms were achieved within 3 days. Overall, the tests demonstrated that the DHS reactor was sufficiently robust to withstand long-term outages and achieved steady state soon after restart. This reinforces the suitability of this technology for developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gate-Level Commercial Microelectronics Verification with Standard Cell Recognition
2015-03-26
21 2.2.1.4 Algorithm Insufficiencies as Applied to DARPA’s Cir- cuit Verification Efforts . . . . . . . . . . . . . . . . . . 22 vi Page...58 4.2 Discussion of SCR Algorithm and Code . . . . . . . . . . . . . . . . . . . 91 4.2.1 Explication of SCR Algorithm ...93 4.2.2 Algorithm Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3 Advantages of Transistor-level Verification with SCR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pihl, Josh A.; Toops, Todd J.; Fisher, Galen B.
Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NO x conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH 3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%.more » NO 2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH 3 SCR of NO x does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. In conclusion, the gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.« less
Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts.
Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Wu, Zhenwei
2015-05-01
A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction (SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that the MnOx-NbOx-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300°C. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O. Copyright © 2015. Published by Elsevier B.V.
Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janša, Jan, E-mail: jan.jansa@vsb.cz; Peer, Vaclav, E-mail: vaclav.peer@vsb.cz; Pavloková, Petra, E-mail: petra.pavlokova@vsb.cz
The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the lifemore » of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gindhart, J.G. Jr.; Kaufman, T.C.
1995-02-01
The Drosophilia homeotic gene Sex combs reduced (Scr) is necessary for the establishment and maintenance of the morphological identity of the labial and prothoracic segments. In the early embryo, its expression pattern is established through the activity of several gap and segmentation gene products, as well as other transcription factors. Once established, the Polycomb group (Pc-G) and trithorax group (trx-G) gene products maintain the spatial pattern of Scr expression for the remainder of development. We report the identification of DNA fragments in the Scr regulatory region that may be important for its regulation by Polycomb and trithorax group gene products.more » When DNA fragments containing these regulatory sequences are subcloned into P-element vectors containing a white minigene, transformants containing these constructs exhibit mosaic patterns of pigmentation in the adult eye, indicating that white minigene expression is repressed in a clonally heritable manner. The size of pigmented and nonpigmented clones in the adult eye suggests that the event determining whether a cell in the eye anlagen will express white occurs at least as early as the first larval instar. The amount of white minigene repression is reduced in some Polycomb group mutants, whereas repression is enhanced in flies mutant for a subset of trithorax group loci. The repressor activity of one fragment, normally located in Scr Intron 2, is increased when it is able to homologously pair, a property consistent with genetic data suggesting that Scr exhibits transvection. Another Scr regulatory fragment, normally located 40 kb upstream of the Scr promoter, silences ectopic expression of an Scr-lacZ fusion gene in the embryo and does so in a Polycomb-dependent manner. We propose that the regulatory sequences located within these DNA fragments may normally mediate the regulation of Scr by proteins encoded by members of Polycomb and trithorax group loci. 98 refs., 6 figs., 4 tabs.« less
Hu, Michael Z.; Zhu, Ting
2015-12-04
This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.
Sickle cell retinopathy: improving care with a multidisciplinary approach.
Menaa, Farid; Khan, Barkat Ali; Uzair, Bushra; Menaa, Abder
2017-01-01
Sickle cell retinopathy (SCR) is the most representative ophthalmologic complication of sickle cell disease (SCD), a hemoglobinopathy affecting both adults and children. SCR presents a wide spectrum of manifestations and may even lead to irreversible vision loss if not properly diagnosed and treated at the earliest. Over the past decade, multidisciplinary research developments have focused upon systemic, genetic, and ocular risk factors of SCR, enabling the clinician to better diagnose and manage these patients. In addition, newer imaging and testing modalities, such as spectral domain-optical coherence tomography angiography, have resulted in the detection of subclinical retinopathy related to SCD. Innovative therapy includes intravitreal injection of an anti-vascular endothelial growth factor (eg, Lucentis ® [ranibizumab] or Eylea ® [aflibercept]) which appears comparatively safe and efficient, and may be combined with laser photocoagulation (LPC) for proliferative SCR. The effect of LPC alone does not significantly lead to the regression of advanced SCR, although it helps in avoiding hemorrhage and sight loss. This comprehensive article is based on 10-years retrospective (2007-2017) studies. It aims to present advances and recommendations in SCR theranostics while pointing out the requirement of combinatorial approaches for better management of SCR patients. To reach this goal, we identified and analyzed randomized original and review articles, clinical trials, non-randomized intervention studies, and observational studies using specified keywords in various databases (eg, Medline, Embase, Cochrane, ClinicalTrials.gov).
Li, Jian; Shi, Raoqiao; Xu, Chuanlong; Wang, Shimin
2018-05-08
The selective catalytic reduction (SCR) system, as one principal flue gas treatment method employed for the NO x emission control of the coal-fired power plant, is nonlinear and time-varying with great inertia and large time delay. It is difficult for the present SCR control system to achieve satisfactory performance with the traditional feedback and feedforward control strategies. Although some improved control strategies, such as the Smith predictor control and the model predictive control, have been proposed for this issue, a well-matched identification model is essentially required to realize a superior control of the SCR system. Industrial field experiment is an alternative way to identify the SCR system model in the coal-fired power plant. But it undesirably disturbs the operation system and is costly in time and manpower. In this paper, a process identification model of the SCR system is proposed and developed by applying the asymptotic method to the sufficiently excited data, selected from the original historical operation database of a 350 MW coal-fired power plant according to the condition number of the Fisher information matrix. Numerical simulations are carried out based on the practical historical operation data to evaluate the performance of the proposed model. Results show that the proposed model can efficiently achieve the process identification of the SCR system.
Hueso, Miguel; Navarro, Estanis; Moreso, Francesc; O'Valle, Francisco; Pérez-Riba, Mercè; Del Moral, Raimundo García; Grinyó, Josep M; Serón, Daniel
2010-04-01
Grafts with subclinical rejection associated with interstitial fibrosis and tubular atrophy (SCR+IF/TA) show poorer survival than grafts with subclinical rejection without IF/TA (SCR). Aiming to detect differences among SCR+IF/TA and SCR, we immunophenotyped the inflammatory infiltrate (CD45, CD3, CD20, CD68) and used a low-density array to determine levels of T(H)1 (interleukin IL-2, IL-3, gamma-interferon, tumor necrosis factor-alpha, lymphotoxin-alpha, lymphotoxin-beta, granulocyte-macrophage colony-stimulating factor) and T(H)2 (IL-4, IL-5, IL-6, IL-10, and IL-13) transcripts as well as of IL-2R (as marker for T-cell activation) in 31 protocol biopsies of renal allografts. Here we show that grafts with early IF/TA and SCR can be distinguished from grafts with SCR on the basis of the activation of IL-10 gene expression and of an increased infiltration by B-lymphocytes in a cellular context in which the degree of T-cell activation is similar in both groups of biopsies, as demonstrated by equivalent levels of IL-2R mRNA. These results suggest that the up-regulation of the IL-10 gene expression, as well as an increased proportion of B-lymphocytes in the inflammatory infiltrates, might be useful as markers of early chronic lesions in grafts with SCR.
Hueso, Miguel; Navarro, Estanis; Moreso, Francesc; O'Valle, Francisco; Pérez-Riba, Mercè; del Moral, Raimundo García; Grinyó, Josep M.; Serón, Daniel
2010-01-01
Grafts with subclinical rejection associated with interstitial fibrosis and tubular atrophy (SCR+IF/TA) show poorer survival than grafts with subclinical rejection without IF/TA (SCR). Aiming to detect differences among SCR+IF/TA and SCR, we immunophenotyped the inflammatory infiltrate (CD45, CD3, CD20, CD68) and used a low-density array to determine levels of TH1 (interleukin IL-2, IL-3, γ-interferon, tumor necrosis factor-α, lymphotoxin-α, lymphotoxin-β, granulocyte-macrophage colony-stimulating factor) and TH2 (IL-4, IL-5, IL-6, IL-10, and IL-13) transcripts as well as of IL-2R (as marker for T-cell activation) in 31 protocol biopsies of renal allografts. Here we show that grafts with early IF/TA and SCR can be distinguished from grafts with SCR on the basis of the activation of IL-10 gene expression and of an increased infiltration by B-lymphocytes in a cellular context in which the degree of T-cell activation is similar in both groups of biopsies, as demonstrated by equivalent levels of IL-2R mRNA. These results suggest that the up-regulation of the IL-10 gene expression, as well as an increased proportion of B-lymphocytes in the inflammatory infiltrates, might be useful as markers of early chronic lesions in grafts with SCR. PMID:20150436
Multi-phase CFD modeling of solid sorbent carbon capture system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, E. M.; DeCroix, D.; Breault, R.
2013-07-01
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Emily M.; DeCroix, David; Breault, Ronald W.
2013-07-30
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...
Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
Nilsson, Martin; Tavelin, Björn; Axelsson, Bertil
2014-03-01
The Swedish Cancer Register (SCR), an old and reputable health data register, contributes a large amount of data used in research. The quality of the research using SCR data depends on the completeness and validity of the register. In Sweden, every healthcare provider is obligated to report newly detected cases of cancer to the SCR regardless of the diagnostic basis. This study aimed to clarify whether there is an under-reporting of patients with cancer to the SCR or an over-reporting of cancer as cause of death to the SRPC as all patients do not appear in both registers. In addition, this study looked at the distribution of under-reporting or over-reporting related to age, sex, type of cancer, diagnostic basis, and department responsible for cancer diagnosis. Of the 10 559 patients whose cause of death was cancer as reported to the SRPC (2009), 1394 patients (13.2%) were not registered in the SCR (1958-2009). Medical records from a representative sample of 203 patients were collected and reviewed. The medical records for 193 patients were obtained; of those, 183 (95%) patients should have been reported to the SCR. Among these, radiologic investigation was the most common basis for diagnosis and there was a significant over-representation of cancer of the pancreas, lung, liver, and bile ducts. This study cannot quantify the completeness of the SCR. The findings indicate that 12.5% of patients dying of cancer in palliative care are not reported, that specialized hospital departments diagnose the vast majority of the unreported patients, and that routines for how to report patients to the SCR based on radiological findings should be revised.
Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang
2010-05-01
Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.
Wheeler, Russell L.
2016-01-01
Probabilistic seismic‐hazard assessment (PSHA) requires an estimate of Mmax, the moment magnitude M of the largest earthquake that could occur within a specified area. Sparse seismicity hinders Mmax estimation in the central and eastern United States (CEUS) and tectonically similar regions worldwide (stable continental regions [SCRs]). A new global catalog of moderate‐to‐large SCR earthquakes is analyzed with minimal assumptions about enigmatic geologic controls on SCR Mmax. An earlier observation that SCR earthquakes of M 7.0 and larger occur in young (250–23 Ma) passive continental margins and associated rifts but not in cratons is not strongly supported by the new catalog. SCR earthquakes of M 7.5 and larger are slightly more numerous and reach slightly higher M in young passive margins and rifts than in cratons. However, overall histograms of M from young margins and rifts and from cratons are statistically indistinguishable. This conclusion is robust under uncertainties inM, the locations of SCR boundaries, and which of two available global SCR catalogs is used. The conclusion stems largely from recent findings that (1) large southeast Asian earthquakes once thought to be SCR were in actively deforming crust and (2) long escarpments in cratonic Australia were formed by prehistoric faulting. The 2014 seismic‐hazard model of the U.S. Geological Survey represents CEUS Mmax as four‐point probability distributions. The distributions have weighted averages of M 7.0 in cratons and M 7.4 in passive margins and rifts. These weighted averages are consistent with Mmax estimates of other SCR PSHAs of the CEUS, southeastern Canada, Australia, and India.
Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping
NASA Astrophysics Data System (ADS)
Fang, De; He, Feng; Liu, Xiaoqing; Qi, Kai; Xie, Junlin; Li, Fengxiang; Yu, Chongqinq
2018-01-01
MnOx/TiO2 catalysts doped with Mg have been prepared with the impregnation method. Surprisingly, 7% Mg-MnOx/TiO2 catalyst containing more Mn3+ ions showed superior low-temperature SCR activity and stability. Mg doping resulted in some adverse effects on the phases, BET surface areas, reducibility, NH3 adsorption, and morphology structures. However, according to the SCR performance, these effects were thought to be rather limited in comparison with the catalytic properties of MgMn2O4 which might stem from the enhancement of NH3-SCR activity and stability. Meanwhile, based on the in situ DRIFTS tests, the NH3-SCR reaction route of MnOx/TiO2 and Mg doped MnOx/TiO2 catalysts depended on the kind of gas (NH3 or NO) pre-adsorbed on the catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-11-28
Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.
Moledina, Dennis G; Hall, Isaac E; Thiessen-Philbrook, Heather; Reese, Peter P; Weng, Francis L; Schröppel, Bernd; Doshi, Mona D; Wilson, F Perry; Coca, Steven G; Parikh, Chirag R
2017-12-01
The diagnosis of acute kidney injury (AKI), which is currently defined as an increase in serum creatinine (Scr) concentration, provides little information on the condition's actual cause. To improve phenotyping of AKI, many urinary biomarkers of tubular injury are being investigated. Because AKI cases are not frequently biopsied, the diagnostic accuracy of concentrations of Scr and urinary biomarkers for histologic acute tubular injury is unknown. Cross-sectional analysis from multicenter prospective cohort. Hospitalized deceased kidney donors on whom kidney biopsies were performed at the time of organ procurement for histologic evaluation. (1) AKI diagnosed by change in Scr concentration during donor hospitalization and (2) concentrations of urinary biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], liver-type fatty acid-binding protein [L-FABP], interleukin 18 [IL-18], and kidney injury molecule 1 [KIM-1]) measured at organ procurement. Histologic acute tubular injury. Of 581 donors, 98 (17%) had mild acute tubular injury and 57 (10%) had severe acute tubular injury. Overall, Scr-based AKI had poor diagnostic performance for identifying histologic acute tubular injury and 49% of donors with severe acute tubular injury did not have AKI. The area under the receiver operating characteristic curve (AUROC) of change in Scr concentration for diagnosing severe acute tubular injury was 0.58 (95% CI, 0.49-0.67) and for any acute tubular injury was 0.52 (95% CI, 0.45-0.58). Compared with Scr concentration, NGAL concentration demonstrated higher AUROC for diagnosing both severe acute tubular injury (0.67; 95% CI, 0.60-0.74; P=0.03) and any acute tubular injury (0.60; 95% CI, 0.55-0.66; P=0.005). In donors who did not have Scr-based AKI, NGAL concentrations were higher with increasing severities of acute tubular injury (subclinical AKI). However, compared with Scr concentration, AUROCs for acute tubular injury diagnosis were not significantly higher for urinary L-FABP, IL-18, or KIM-1. The spectrum of AKI cause in deceased donors may be different from that of a general hospitalized population. Concentrations of Scr and kidney injury biomarkers (L-FABP, IL-18, and KIM-1) lack accuracy for diagnosing acute tubular injury in hospitalized deceased donors. Although urinary NGAL concentration had slightly higher discrimination for acute tubular injury than did Scr concentration, its overall AUROC was still modest. Published by Elsevier Inc.
Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug
2018-09-01
On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.
Moreso, F; Seron, D; O'Valle, F; Ibernon, M; Gomà, M; Hueso, M; Cruzado, J M; Bestard, O; Duarte, V; del Moral, R García; Grinyó, J M
2007-12-01
Patients with a protocol renal allograft biopsy simultaneously displaying interstitial fibrosis/tubular atrophy (IF/TA) and subclinical rejection (SCR) have a shortened graft survival than patients with a normal biopsy, or with a biopsy only displaying IF/TA or SCR. The poor outcome of these patients could be related with a more severe inflammation. We evaluate the immunophenotype of infiltrating cells in these diagnostic categories. Nonexhausted paraffin blocks from protocol biopsies done during the first year were stained with anti-CD45, CD3, CD20, CD68 and CD15 monoclonal antibodies. Glomerular and interstitial positive cells were counted. C4d deposition in peritubular capillaries was evaluated. Histological diagnoses were: normal (n = 80), SCR (n = 17), IF/TA (n = 42) and IF/TA + SCR (n = 17). Only interstitial CD20 positive cells were significantly increased in patients displaying IF/TA + SCR; normal (137 +/- 117), SCR (202 +/- 145), IF/TA (208 +/- 151) and IF/TA + SCR (307 +/- 180 cells/mm(2)), p < 0.01. The proportion of biopsies displaying C4d deposition was not different among groups. The upper tertile of CD20 positive interstitial cells was associated with a decreased death-censored graft survival (relative risk: 3.01, 95% confidence interval: 1.23-7.35; p = 0.015). These data suggest that B-cell interstitial infiltrates are associated with histological damage and outcome, but do not distinguish whether these infiltrates were the cause or the consequence of chronic tubulo-interstitial damage.
A systematic reactor design approach for the synthesis of active pharmaceutical ingredients.
Emenike, Victor N; Schenkendorf, René; Krewer, Ulrike
2018-05-01
Today's highly competitive pharmaceutical industry is in dire need of an accelerated transition from the drug development phase to the drug production phase. At the heart of this transition are chemical reactors that facilitate the synthesis of active pharmaceutical ingredients (APIs) and whose design can affect subsequent processing steps. Inspired by this challenge, we present a model-based approach for systematic reactor design. The proposed concept is based on the elementary process functions (EPF) methodology to select an optimal reactor configuration from existing state-of-the-art reactor types or can possibly lead to the design of novel reactors. As a conceptual study, this work summarizes the essential steps in adapting the EPF approach to optimal reactor design problems in the field of API syntheses. Practically, the nucleophilic aromatic substitution of 2,4-difluoronitrobenzene was analyzed as a case study of pharmaceutical relevance. Here, a small-scale tubular coil reactor with controlled heating was identified as the optimal set-up reducing the residence time by 33% in comparison to literature values. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
...A public workshop is being held to discuss the operation of heavy-duty engines equipped with selective catalyst reduction (SCR). EPA will be reviewing its policies regarding the operation of SCR- equipped heavy-duty diesel engines without diesel exhaust fluid (DEF), with improper DEF, or when tampering (or some other defect in the SCR system) is detected.
Wang, Henry E.; Jain, Gaurav; Glassock, Richard J.; Warnock, David G.
2013-01-01
Background The Kidney Disease: Improving Global Outcomes (KDIGO) system for classification of acute kidney injury (AKI) severity utilizes a staging schema based on relative changes in serum creatinine (sCr) concentration and urine output. This study compares the in-hospital mortality associated with KDIGO-defined AKI stages and AKI stages defined by absolute sCr increases (‘Delta-Creatinine’). Methods The study included an analysis of hospital discharge and laboratory data from an urban academic medical center over a 1-year period. Including adult in-patients undergoing two or more sCr measurements, the study classified AKI stages using the KDIGO consensus standards as well as absolute increases in sCr (‘Delta-Creatinine’); Stage 0, sCr increase <0.3 mg/dL, Stage 1, sCr increase 0.3–0.69 mg/dL, Stage 2, sCr increase 0.7–1.19 mg/dL and Stage 3, sCr increase ≥1.2 mg/dL or initiation of renal replacement therapy. The Delta-Creatinine cut-points were defined to optimize discrimination of in-patient mortality between AKI stages. The associations between KDIGO and Delta-Creatinine AKI stages and in-hospital mortality were compared using the time-dependent hazard ratios (HRs) and the net reclassification improvement (NRI). Results Of the 19 878 hospitalizations included in the analysis, the prevalence of AKI was 23.4% as defined by the KDIGO criteria. The Delta-Creatinine system discriminated the differences between adjacent AKI stages (i.e. 1 versus 0, 2 versus 1, 3 versus 3) earlier than the KDIGO system. The NRI between Delta-Creatinine and KDIGO for the prediction of mortality was 9.7% [95% confidence interval (CI) 6.2–13.2%]. Stratification by age, sex, race and history of chronic kidney disease (CKD) resulted in similar NRI values. Conclusion The Delta-Creatinine system, based on the absolute increases in sCr, provides a promising alternative to the KDIGO system for characterizing the severity of AKI and its associations with in-patient mortality. PMID:23355628
Conversion of Small Algal Oil Sample to JP-8
2012-01-01
cracking of Algal Oil to SPK Hydroprocessing Lab Plant uop Nitrogen Hydrogen Product ., __ Small Scale Lab Hydprocessing plant - Down flow trickle ... bed configuration - Capable of retaining 25 cc of catalyst bed Meter UOP ·CONFIDENTIAL File Number The catalytic deoxygenation stage of the...content which combined with the samples acidity, is a challenge to reactor metallurgy. None the less, an attempt was made to convert this sample to
Spatially explicit models for inference about density in unmarked or partially marked populations
Chandler, Richard B.; Royle, J. Andrew
2013-01-01
Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna
In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposedmore » an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD measurements. FG and CHFP gratefully acknowledge supports from the United States Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Part of the research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases
Sobolevskiy, Anatoly; Rossin, Joseph A
2014-04-08
A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.
Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft
NASA Technical Reports Server (NTRS)
Mount, Robert E.; Bartel, John; Hady, William F.
1987-01-01
Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.
Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...
Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-01-01
Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip. PMID:29182589
von Sperling, M
2015-01-01
This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.
Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.
2003-01-01
Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.
Hydrothermal Aging Effects on Fe/SSZ-13 and Fe/Beta NH3–SCR Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Feng; Szanyi, János; Wang, Yilin
Cu/SSZ-13 has been successfully commercialized as a diesel engine exhaust aftertreatment SCR catalyst in the past few years. This catalyst, however, displays undesirable NH3-SCR selectivity at elevated reaction temperature (≥ 350 C) after hydrothermal aging. Fe/zeolites, despite the fact that most of them degrade beyond tolerance after hydrothermal aging at temperatures ≥ 650 C, typically maintain good SCR selectivities. In recent years, Fe/beta has been identified as one of the more robust Fe/zeolites for use in NH3-SCR, where activity maintains even after hydrothermal aging at 750 C. Very recently, we, for the first time, synthesized and tested NH3-SCR performance formore » fresh and hydrothermally aged Fe/SSZ-13 catalysts. This study demonstrated that Fe/SSZ-13 is also a promising robust SCR catalyst, especially for high-temperature applications. In the present study, we compare catalytic performance between Fe/SSZ-13 and Fe/beta with similar Fe loadings and Si/Al ratios. Special attention is paid to effects from hydrothermal aging, aiming to understanding similarities and differences between these two catalysts. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
Chesebro, John; Hrycaj, Steven; Mahfooz, Najmus; Popadić, Aleksandar
2009-05-01
Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.
Chesebro, John; Hrycaj, Steven; Mahfooz, Najmus; Popadić, Aleksandar
2009-01-01
Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development. PMID:19382295
Terai, Naim; Schlötzer-Schrehardt, Ursula; Spoerl, Eberhard; Hornykewycz, Karin; Haentzschel, Janek; Haustein, Michael; Pillunat, Lutz E
2012-01-01
To investigate a possible association between the biomechanical load and unload behaviour and the elastin content of the sclera canal ring (SCR) and a superiorly localized sclera ring (SPS) in the porcine eye. Two sclera rings were trephined from each of 40 porcine eyes, one containing the SCR and the other an SPS. The load and the unload curves were measured in the extension range of 0-2.0 mm by a biomaterial tester. Hysteresis was determined from the area enclosed by the loading and unloading curve. Histochemical staining with resorcin-fuchsin and morphometric analysis of paraffin-embedded sections of both rings were performed to detect the area occupied by elastin fibres. At 1 mm extension, the mean load of the SCR was 0.89 ± 0.22 N and that of the SPS 1.13 ± 0.19 N, which was not significantly different between both rings (p > 0.05). Mean hysteresis in the SCR was 1.55 ± 0.30 N × mm and 1.90 ± 0.18 N × mm in the SPS, which was significantly different between both rings (p = 0.01). Mean sclera thickness was 986 μm in the SCR (range: 900-1,060 μm) and 971 μm in the SPS (range: 800-1,200 μm) without a statistically significant difference between both sclera rings (p = 0.78). The area occupied by elastin fibres was 15.5 ± 3.4% in the SCR and 4.5 ± 1.5% in the SPS, which was significantly different between both rings (p = 0.0001). Hysteresis in the SCR was significantly lower than in the SPS, indicating a higher elasticity of the SCR in the porcine eye. This effect could be explained by a higher content of elastin in the surrounding ring of the peripapillary optic nerve head providing reversible contraction in cases of intra-ocular pressure variations. Copyright © 2011 S. Karger AG, Basel.
Basu, Rajit K; Wong, Hector R; Krawczeski, Catherine D; Wheeler, Derek S; Manning, Peter B; Chawla, Lakhmir S; Devarajan, Prasad; Goldstein, Stuart L
2014-12-30
Increases in serum creatinine (ΔSCr) from baseline signify acute kidney injury (AKI) but offer little granular information regarding its characteristics. The 10th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) suggested that combining AKI biomarkers would provide better precision for AKI course prognostication. This study investigated the value of combining a functional damage biomarker (plasma cystatin C [pCysC]) with a tubular damage biomarker (urine neutrophil gelatinase-associated lipocalin [uNGAL]), forming a composite biomarker for prediction of discrete characteristics of AKI. Data from 345 children after cardiopulmonary bypass (CPB) were analyzed. Severe AKI was defined as Kidney Disease Global Outcomes Initiative stages 2 to 3 (≥100% ΔSCr) within 7 days of CPB. Persistent AKI lasted >2 days. SCr in reversible AKI returned to baseline ≤48 h after CPB. The composite of uNGAL (>200 ng/mg urine Cr = positive [+]) and pCysC (>0.8 mg/l = positive [+]), uNGAL+/pCysC+, measured 2 h after CPB initiation, was compared to ΔSCr increases of ≥50% for correlation with AKI characteristics by using predictive probabilities, likelihood ratios (LR), and area under the curve receiver operating curve (AUC-ROC) values [Corrected]. Severe AKI occurred in 18% of patients. The composite uNGAL+/pCysC+ demonstrated a greater likelihood than ΔSCr for severe AKI (+LR: 34.2 [13.0:94.0] vs. 3.8 [1.9:7.2]) and persistent AKI (+LR: 15.6 [8.8:27.5] versus 4.5 [2.3:8.8]). In AKI patients, the uNGAL-/pCysC+ composite was superior to ΔSCr for prediction of transient AKI. Biomarker composites carried greater probability for specific outcomes than ΔSCr strata. Composites of functional and tubular damage biomarkers are superior to ΔSCr for predicting discrete characteristics of AKI. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Basu, Rajit K.; Wong, Hector R.; Krawczeski, Catherine D.; Wheeler, Derek S.; Manning, Peter B.; Chawla, Lakhmir S.; Devarajan, Prasad; Goldstein, Stuart L.
2015-01-01
BACKGROUND Increases in serum creatinine (ΔSCr) from baseline signify acute kidney injury (AKI) but offer little granular information regarding its characteristics. The 10th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) suggested that combining AKI biomarkers would provide better precision for AKI course prognostication. OBJECTIVES This study investigated the value of combining a functional damage biomarker (plasma cystatin C [pCysC]) with a tubular damage biomarker (urine neutrophil gelatinase-associated lipocalin [uNGAL]), forming a composite biomarker for prediction of discrete characteristics of AKI. METHODS Data from 345 children after cardiopulmonary bypass (CPB) were analyzed. Severe AKI was defined as Kidney Disease Global Outcomes Initiative stages 2 to 3 (>100% ΔSCr) within 7 days of CPB. Persistent AKI lasted >2 days. SCr in reversible AKI returned to baseline ≤48 h after CPB. The composite of uNGAL (>200 ng/mg urine Cr = positive [+]) and pCysC (>0.8 mg/l = positive [+]), uNGAL+/pCysC+, measured 2 h after CPB initiation, was compared to ΔSCr increases of ≤50% for correlation with AKI characteristics by using predictive probabilities, likelihood ratios (LR), and area under the curve receiver operating curve (AUC-ROC) values. RESULTS Severe AKI occurred in 18% of patients. The composite uNGAL+/pCysC+ demonstrated a greater likelihood than ΔSCr for severe AKI (+LR: 34.2 [13.0:94.0] vs. 3.8 [1.9:7.2]) and persistent AKI (+LR: 15.6 [8.8:27.5] versus 4.5 [2.3:8.8]). In AKI patients, the uNGAL−/pCysC+ composite was superior to ΔSCr for prediction of transient AKI. Biomarker composites carried greater probability for specific outcomes than ΔSCr strata. CONCLUSIONS Composites of functional and tubular damage biomarkers are superior to ΔSCr for predicting discrete characteristics of AKI. PMID:25541128
Tadano, Yara S; Borillo, Guilherme C; Godoi, Ana Flávia L; Cichon, Amanda; Silva, Thiago O B; Valebona, Fábio B; Errera, Marcelo R; Penteado Neto, Renato A; Rempel, Dennis; Martin, Lucas; Yamamoto, Carlos I; Godoi, Ricardo H M
2014-12-01
The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NOx, NO, NO2, NH3 and N2O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NOx and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH3 and N2O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH3, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NOx and NO emissions were the lowest when SCR was used; however, it yielded the highest NH3 concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. Copyright © 2014. Published by Elsevier B.V.
Greenhalgh, Trisha; Stramer, Katja; Bratan, Tanja; Byrne, Emma; Mohammad, Yara; Russell, Jill
2008-10-23
To explore the introduction of a centrally stored, shared electronic patient record (the summary care record (SCR)) in England and draw wider lessons about the implementation of large scale information technology projects in health care. Multi-site, mixed method case study applying utilisation focused evaluation. Four early adopter sites for the SCR in England-three in urban areas of relative socioeconomic deprivation and the fourth in a relatively affluent rural area. Data sources and analysis Data included 250 staff interviews, 1500 hours of ethnographic observation, interviews and focus groups with 170 patients and carers, 2500 pages of correspondence and documentary evidence, and incorporation of relevant surveys and statistics produced by others. These were analysed by using a thematic approach drawing on (and extending) a theoretical model of complex change developed in a previous systematic review. Main findings The mixed fortunes of the SCR programme in its first year were largely explained by eight interacting influences. The first was the SCR's material properties (especially technical immaturity and lack of interoperability) and attributes (especially the extent to which potential adopters believed the benefits outweighed the risks). The second was adopters' concerns (especially about workload and the ethicality of sharing "confidential" information on an implied consent model). The third influence was interpersonal influence (for example, opinion leaders, champions, facilitators), and the fourth was organisational antecedents for innovation (for example past experience with information technology projects, leadership and management capacity, effective data capture systems, slack resources). The fifth was organisational readiness for the SCR (for example, innovation-system fit, tension for change, power balances between supporters and opponents, baseline data quality). The sixth was the implementation process (including the nature of the change model and the extent to which new routines associated with the SCR aligned with existing organisational routines). The seventh influence was the nature and quality of links between different parts of the system, and the final one was the wider environment (especially the political context of the programme). Shared electronic records are not plug-in technologies. They are complex innovations that must be accepted by individual patients and staff and also embedded in organisational and inter-organisational routines. This process is heavily influenced at the micro-level by the material properties of the technology, individuals' attitudes and concerns, and interpersonal influence; at the meso-level by organisational antecedents, readiness, and operational aspects of implementation; and at the macro-level by institutional and socio-political forces. A case study approach and multi-level theoretical analysis can illuminate how contextual factors shape, enable, and constrain new, technology supported models of patient care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, M.R., E-mail: mrislam1985@yahoo.com; Joardder, M.U.H.; Hasan, S.M.
2011-09-15
In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants formore » the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.« less
Optimisation of confinement in a fusion reactor using a nonlinear turbulence model
NASA Astrophysics Data System (ADS)
Highcock, E. G.; Mandell, N. R.; Barnes, M.
2018-04-01
The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A twofold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.
Overview of Accelerator Applications in Energy
NASA Astrophysics Data System (ADS)
Garnett, Robert W.; Sheffield, Richard L.
An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.
Sleep clinical record: what differences in school and preschool children?
Shafiek, Hanaa; Evangelisti, Melania; Rabasco, Jole; Cecili, Manuela; Montesano, Marilisa; Barreto, Mario
2016-01-01
The sleep clinical record (SCR) may be a valid method for detecting children with obstructive sleep apnoea (OSA). This study aimed to evaluate whether there were differences in SCR depending on age and to identify the possible risk factors for OSA development. We enrolled children with sleep disordered breathing between 2013 and 2015, and divided them according to age into preschool- and school-age groups. All patients underwent SCR and polysomnography. OSA was detected in 81.1% and 83.6% of preschool- and school-age groups, respectively. Obesity, malocclusions, nasal septal deviation and inferior turbinate hypertrophy were significantly more prevalent in school-age children (p<0.05); however, only tonsillar hypertrophy had significant hazard ratio (2.3) for OSA development. Saddle nose, nasal hypotonia, oral breathing and tonsillar hypertrophy were significantly more prevalent for development of OSA in preschoolers (p<0.03). The SCR score was significantly higher among preschool children than in school-age children (8.4±2.22 versus 7.9±2.6; p=0.044). Further, SCR score >6.5 had a sensitivity of 74% in predicting OSA in preschool children with positive predictive value of 86% (p=0.0001). Our study confirms the validity of the SCR as a screening tool for patient candidates for a PSG study for suspected OSA, in both school and preschool children. PMID:27730168
Shara, Nawar M; Resnick, Helaine E; Lu, Li; Xu, Jiaqiong; Vupputuri, Suma; Howard, Barbara V; Umans, Jason G
2009-01-01
Kidney function, expressed as glomerular filtration rate (GFR), is commonly estimated from serum creatinine (Scr) and, when decreased, may serve as a nonclassical risk factor for incident cardiovascular disease (CVD). The ability of estimated GFR (eGFR) to predict CVD events during 5-10 years of follow-up is assessed using data from the Strong Heart Study (SHS), a large cohort with a high prevalence of diabetes. eGFRs were calculated with the abbreviated Modification of Diet in Renal Disease study (MDRD) and the Cockcroft-Gault (CG) equations. These estimates were compared in participants with normal and abnormal Scr. The association between eGFR and incident CVD was assessed. More subjects were labeled as having low eGFR (<60 ml/min per 1.73 m2) by the MDRD or CG equation, than by Scr alone. When Scr was in the normal range, both equations labeled similar numbers of participants as having low eGFRs, although concordance between the equations was poor. However, when Scr was elevated, the MDRD equation labeled more subjects as having low eGFR. Persons with low eGFR had increased risk of CVD. The MDRD and CG equations labeled more participants as having decreased GFR than did Scr alone. Decreased eGFR was predictive of CVD in this American Indian population with a high prevalence of obesity and type 2 diabetes mellitus.
[Decision Making and Electrodermal Activity].
Kobayakawa, Mutsutaka
2016-08-01
Decision making is aided by emotions. Bodily responses, such as sweating, heartbeat, and visceral sensation, are used to monitor the emotional state during decision making. Because decision making in dairy life is complicated and cognitively demanding, these bodily signals are thought to facilitate the decision making process by assigning positive or negative values for each of the behavioral options. The sweat response in a decision making task is measured by skin conductance response (SCR). SCR in decision making is divided into two categories: anticipatory SCR is observed before making decisions, and reward/punishment SCR is observed after the outcome of the decision is perceived. Brain lesion studies in human revealed that the amygdala and ventromedial prefrontal cortex are important in decision making. Patients with lesinon in the amygdala exhibit neither the anticipatory nor reward/punishment SCRs, while patients with the ventromedial prefrontal lesions have deficits only in the anticipatory SCRs. Decision making tasks and SCR analysis have contributed to reveal the implicit aspects of decision making. Further research is necessary for clarifying the role of explicit process of decision making and its relationship with the implicit process.
Zygner, Wojciech; Gójska-Zygner, Olga; Wesołowska, Agnieszka; Wędrychowicz, Halina
2013-09-01
Urinary creatinine to serum creatinine (UCr/SCr) ratio and renal failure index (RFI) are useful indices of renal damage. Both UCr/SCr ratio and RFI are used in differentiation between prerenal azotaemia and acute tubular necrosis. In this work the authors calculated the UCr/SCr ratio and RFI in dogs infected with Babesia canis and the values of these indices in azotaemic dogs infected with the parasite. The results of this study showed significantly lower UCr/SCr ratio in dogs infected with B. canis than in healthy dogs. Moreover, in azotaemic dogs infected with B. canis the UCr/SCr ratio was significantly lower and the RFI was significantly higher than in non-azotaemic dogs infected with B. canis. The calculated correlation between RFI and duration of the disease before diagnosis and treatment was high, positive and statistically significant (r = 0.89, p < 0.001). The results of this study showed that during the course of canine babesiosis caused by B. canis in Poland acute tubular necrosis may develop.
Muñoz, David J.; Miller, David A.W.; Sutherland, Chris; Grant, Evan H. Campbell
2016-01-01
The cryptic behavior and ecology of herpetofauna make estimating the impacts of environmental change on demography difficult; yet, the ability to measure demographic relationships is essential for elucidating mechanisms leading to the population declines reported for herpetofauna worldwide. Recently developed spatial capture–recapture (SCR) methods are well suited to standard herpetofauna monitoring approaches. Individually identifying animals and their locations allows accurate estimates of population densities and survival. Spatial capture–recapture methods also allow estimation of parameters describing space-use and movement, which generally are expensive or difficult to obtain using other methods. In this paper, we discuss the basic components of SCR models, the available software for conducting analyses, and the experimental designs based on common herpetological survey methods. We then apply SCR models to Red-backed Salamander (Plethodon cinereus), to determine differences in density, survival, dispersal, and space-use between adult male and female salamanders. By highlighting the capabilities of SCR, and its advantages compared to traditional methods, we hope to give herpetologists the resource they need to apply SCR in their own systems.
Salience Network Connectivity Modulates Skin Conductance Responses in Predicting Arousal Experience
Xia, Chenjie; Touroutoglou, Alexandra; Quigley, Karen S.; Barrett, Lisa Feldman; Dickerson, Bradford C.
2017-01-01
Individual differences in arousal experience have been linked to differences in resting-state salience network connectivity strength. In this study, we investigated how adding task-related skin conductance responses (SCR), a measure of sympathetic autonomic nervous system activity, can predict additional variance in arousal experience. Thirty-nine young adults rated their subjective experience of arousal to emotionally evocative images while SCRs were measured. They also underwent a separate resting-state fMRI scan. Greater SCR reactivity (an increased number of task-related SCRs) to emotional images and stronger intrinsic salience network connectivity independently predicted more intense experiences of arousal. Salience network connectivity further moderated the effect of SCR reactivity: In individuals with weak salience network connectivity, SCR reactivity more significantly predicted arousal experience, whereas in those with strong salience network connectivity, SCR reactivity played little role in predicting arousal experience. This interaction illustrates the degeneracy in neural mechanisms driving individual differences in arousal experience and highlights the intricate interplay between connectivity in central visceromotor neural circuitry and peripherally expressed autonomic responses in shaping arousal experience. PMID:27991182
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, Darius D.; Kraus, Adam R.; Bucknor, Matthew D.
A 1/2 scale test facility has been constructed at Argonne National Laboratory to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Technologies (ART), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary ofmore » some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state and transient conditions for varying heat flux levels and exhaust chimney configuration states. (C) 2016 Elsevier B.V. All rights reserved.« less
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...
2016-10-07
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
NASA Astrophysics Data System (ADS)
Mertes, J. R.; Zant, C. N.; Gulley, J. D.; Thomsen, T. L.
2017-08-01
Monitoring, managing and preserving submerged cultural resources (SCR) such as shipwrecks can involve time consuming detailed physical surveys, expensive side-scan sonar surveys, the study of photomosaics and even photogrammetric analysis. In some cases, surveys of SCR have produced 3D models, though these models have not typically been used to document patterns of site degradation over time. In this study, we report a novel approach for quantifying degradation and changes to SCR that relies on diver-acquired video surveys, generation of 3D models from data acquired at different points in time using structure from motion, and differencing of these models. We focus our study on the shipwreck S.S. Wisconsin, which is located roughly 10.2 km southeast of Kenosha, Wisconsin, in Lake Michigan. We created two digital elevation models of the shipwreck using surveys performed during the summers of 2006 and 2015 and differenced these models to map spatial changes within the wreck. Using orthomosaics and difference map data, we identified a change in degradation patterns. Degradation was anecdotally believed to be caused by inward collapse, but maps indicated a pattern of outward collapse of the hull structure, which has resulted in large scale shifting of material in the central upper deck. In addition, comparison of the orthomosaics with the difference map clearly shows movement of objects, degradation of smaller pieces and in some locations, an increase in colonization of mussels.
A brief history of design studies on innovative nuclear reactors
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2014-09-01
In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.
The social computing room: a multi-purpose collaborative visualization environment
NASA Astrophysics Data System (ADS)
Borland, David; Conway, Michael; Coposky, Jason; Ginn, Warren; Idaszak, Ray
2010-01-01
The Social Computing Room (SCR) is a novel collaborative visualization environment for viewing and interacting with large amounts of visual data. The SCR consists of a square room with 12 projectors (3 per wall) used to display a single 360-degree desktop environment that provides a large physical real estate for arranging visual information. The SCR was designed to be cost-effective, collaborative, configurable, widely applicable, and approachable for naive users. Because the SCR displays a single desktop, a wide range of applications is easily supported, making it possible for a variety of disciplines to take advantage of the room. We provide a technical overview of the room and highlight its application to scientific visualization, arts and humanities projects, research group meetings, and virtual worlds, among other uses.
van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M
2007-10-01
The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.
Upgrading of a small overloaded activated sludge plant using a MBBR system.
Andreottola, G; Foladori, P; Gatti, G; Nardelli, P; Pettena, M; Ragazzi, M
2003-01-01
The aim of this research was the application of a biofilm system for the upgrading of a full-scale overloaded activated sludge MWWTP using the MBBR (Moving Bed Biofilm Reactor) technology. The choice of this fixed biomass system appeared appropriate because it offers several advantages including good potential in nitrification process, easiness of management and above all, the possibility to use the existing tank with very few modifications. MBBR system counts only few full-scale plants in Italy at the moment, thus a pilot-scale experimentation was preliminarily carried out. The acquired parameters were used for the fullscale MWWTP upgrading. The upgrading of the activated sludge reactor in the MBBR system has given (1) a relevant increase in the flowrate treated up to 60%; (2) a good efficiency in organic carbon removal and nitrification, equal to 88% and 90% respectively, with HRTs of 5.5-7 h; (3) the overcoming of the hydraulic overload of the secondary settler, applying a lamellar settler. It was observed a good correlation between the results obtained at pilot-scale and those observed in the full-scale plant.
Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrall, Andrew; Todosow, Michael
2016-01-01
Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less
Kasimanickam, R K; Kasimanickam, V R; Arangasamy, A; Kastelic, J P
2017-02-01
Mammalian sperm are exposed to a natural hypoosmotic environment during male-to-female reproductive tract transition; although this activates sperm motility in vivo, excessive swelling can harm sperm structure and function. Aquaporins (AQPs) is a family of membrane-channel proteins implicated in sperm osmoregulation. The objective was to determine associations among relative sperm volume shift, hypoosmotic swelling test (HOST), sperm aquaporin (AQP) 7 mRNA abundances, and sire conception rate (SCR; fertility estimate) in Holstein bulls at a commercial artificial insemination center. Three or four sires for each full point SCR score from -4 to +4 were included. Each SCR estimate for study bulls (N = 30) was based on > 500 services (mean ± SEM) of 725 ± 13 services/sire). Sperm from a single collection day (two ejaculates) from these commercial Holstein bulls were used. Relative mRNA expression of AQP7 in sperm was determined by polymerase chain reaction. Mean relative sperm volume shift and percentage of sperm reacted in a HOST (% HOST) were determined (400 sperm per bull) after incubating in isoosmotic (300 mOsm/kg) and hypoosmotic (100 mOsm/kg) solutions for 30 min. There was no correlation between %HOST and SCR (r = 0.28 P > 0.1). However, there was a positive correlation between relative sperm volume shift and SCR (r = 0.65, P < 0.05). Furthermore, AQP7 mRNA abundance was positively correlated to both relative volume shift (r = 0.73; P < 0.05) and to SCR (r = 0.67; P < 0.05). The mRNA expressions of AQP7 and relative sperm volume shift differed (P < 0.05) among low- (<2 SCR), average- (-2 to +2) and high- (>2) fertility sire groups. In conclusion, bulls with higher SCR had significantly greater AQP7 mRNA abundance in frozen-thawed sperm. This plausibly contributed to greater regulation of sperm volume shift, which apparently conferred protection from detrimental swelling and impaired functions. Copyright © 2016 Elsevier Inc. All rights reserved.
Pei, Xiaohua; Liu, Qiao; He, Juan; Bao, Lihua; Yan, Chengjing; Wu, Jianqing; Zhao, Weihong
2012-12-01
Cystatin C has been proposed as a surrogate marker of kidney function. The elderly population accounts for the largest proportion of chronic kidney disease (CKD) patients. The aim of this study was to assess the diagnostic value of serum cystatin C and compare the applicability of cystatin C-based equations with serum creatinine (Scr)-based equations for estimating glomerular filtration rate (GFR). The estimated GFR (eGFR) values from six cystatin C-based equations (Tan, MacIsaac, Ma, Stevens1-3) and three Scr-based equations (CG, MDRD, CKD-EPI) were compared with the reference GFR (rGFR) values from 99mTc-DTPA renal dynamic imaging method. A total of 110 elderly Chinese (60-92 year, 71.05±7.62 year) were enrolled. Cystatin C had better diagnostic value than Scr (relationship coefficient with rGFR: cystatin C -0.847 vs. Scr -0.729, P<0.01; sensitivity: cystatin C 0.90 vs. Scr 0.55, P<0.01; AUCROC: cystatin C 0.857 vs. Scr 0.757, P<0.01). All the equations predicted GFR more accurately for rGFR≥60 ml/min/1.73 m2 than for rGFR<60 ml/min/1.73 m2. Most equations had acceptable accuracy. The cystatin C-based equations deviated from rGFR by -12.78 ml/min/1.73 m2 to -2.12 ml/min/1.73 m2, with accuracy varying from 64.6 to 82.7%. The Scr-based equations deviated from rGFR by -5.37 ml/min/1.73 m2 to -0.68 ml/min/1.73 m2, with accuracy varying from 77.3 to 79.1%. The CKD-EPI, MacIsaac and Ma equations predicted no bias with rGFR (P>0.05), with higher accuracy and lower deviation in the total group. The MacIsaac, CKD-EPI and Stevens3 equations could be optimal for those with normal and mildly impaired kidney function, whereas the Ma equation for those with CKD. Cystatin C is a promising kidney function marker. However, not all cystatin C-based equations could be superior to the Scr-equations.
Utilisation of biomass gasification by-products for onsite energy production.
Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M
2016-06-01
Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. © The Author(s) 2016.
Aragón, Aurora; González, Marvin; Weiss, Ilana; Glaser, Jason; Rivard, Christopher J; Roncal-Jiménez, Carlos; Correa-Rotter, Ricardo; Johnson, Richard J
2016-01-01
Objectives To study Mesoamerican nephropathy (MeN) and its risk factors in three hot occupations. Design Cross-sectional. Setting Chinandega and León municipalities, a MeN hotspot on the Nicaraguan Pacific coast, January–February 2013. Participants 194 male workers aged 17–39 years: 86 sugarcane cutters, 56 construction workers, 52 small-scale farmers. Outcome measures (1) Differences between the three occupational groups in prevalences/levels of socioeconomic, occupational, lifestyle and health risk factors for chronic kidney disease (CKD) and in biomarkers of kidney function and hydration; (2) differences in prevalences/levels of CKD risk factors between workers with reduced estimated glomerular filtration rate (eGFRCKD-EPI <80 mL/min/1.73 m2) and workers with normal kidney function (eGFRCKD-EPI ≥80 mL/min/1.73 m2). Results Sugarcane cutters were more exposed to heat and consumed more fluid on workdays and had less obesity, lower blood sugar, lower blood pressure and a better lipid profile. Reduced eGFR occurred in 16%, 9% and 2% of sugarcane cutters, construction workers and farmers, respectively (trend cane > construction > farming, p=0.003). Significant trends (cane > construction > farming) were also observed for high serum urea nitrogen (blood urea nitrogen (BUN) >20 mg/dL), high serum creatinine (SCr >1.2 mg/dL), low urinary pH (≤5.5) and high BUN/SCr ratio (>20) but not for high urinary specific gravity (≥1.030). Sugarcane cutters also more often had proteinuria and blood and leucocytes in the urine. Workers with eGFR <80 mL/min/1.73 m2 reported a higher intake of water and lower intake of sugary beverages. Serum uric acid levels related strongly and inversely to eGFR levels (adj β −10.4 mL/min/1.73 m2, 95% CI −12.2 to −8.5, p<0.001). No associations were observed for other metabolic risk factors, pesticides, non-steroidal anti-inflammatory drugs or alcohol. Among cane cutters, consumption of electrolyte hydration solution appeared preventive (adj β 8.1 mL/min/1.73 m2, p=0.09). Conclusions Heat stress, dehydration and kidney dysfunction were most common among sugarcane cutters. Kidney dysfunction also occurred to a lesser extent among construction workers, but hardly at all among small-scale farmers. High serum uric acid was associated with reduced kidney function. PMID:27932336
Le, Chi Chip; Wismer, Michael K; Shi, Zhi-Cai; Zhang, Rui; Conway, Donald V; Li, Guoqing; Vachal, Petr; Davies, Ian W; MacMillan, David W C
2017-06-28
Photocatalysis for organic synthesis has experienced an exponential growth in the past 10 years. However, the variety of experimental procedures that have been reported to perform photon-based catalyst excitation has hampered the establishment of general protocols to convert visible light into chemical energy. To address this issue, we have designed an integrated photoreactor for enhanced photon capture and catalyst excitation. Moreover, the evaluation of this new reactor in eight photocatalytic transformations that are widely employed in medicinal chemistry settings has confirmed significant performance advantages of this optimized design while enabling a standardized protocol.
A brief history of design studies on innovative nuclear reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com
2014-09-30
In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USAmore » and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.« less
Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise
2016-02-28
A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is interacting with the ammonium nitrate species on the CuxOy or other copper species on the surface of the zeolite particles, which reduces the ammonium nitrate blocking of the catalyst and thereby results in higher NO2 SCR activity. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T. J.
2014-02-01
The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well knownmore » based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigm—manufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.« less
40 CFR 1033.112 - Emission diagnostics for SCR systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... This section does not apply for SCR systems using the engine's fuel as the reductant. (a) The... computer memory all incidents of engine operation with inadequate reductant injection or reductant quality...
NASA Astrophysics Data System (ADS)
Elhayboubi, Samira Nawal
We examine how teachers approach stem cell research (SCR) as a controversial religio-scientific issue, and how theologians derive rulings in SCR. We also examine the contradictions teachers have regarding religio-scientific aspect of SCR. Two observations were the igniters of this study, increasing public involvement in political decision-making and changing demographics among voters. Two samples were gathered, a teachers' group and a theologians' group. The teachers' group consisted of 43 graduate-level Science education teachers and teachers-in-training from the University of Texas at Dallas and Stanford University. The theologian's group consisted of theologians from 3 denominations, Buddhism, Christianity and Islam. Data was obtained using Likert-surveys, open-ended questions and interviews. Results show that majority of the teachers' group are open to discussing SCR but fear retaliation.
In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst
NASA Astrophysics Data System (ADS)
Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian
2018-03-01
A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.
Pianta, Timothy J; Pickering, John W; Succar, Lena; Chin, Melvin; Davidson, Trent; Buckley, Nicholas A; Mohamed, Fahim; Endre, Zoltan H
2017-01-01
Plasma cystatin C (pCysC) may be superior to serum creatinine (sCr) as a surrogate of GFR. However, the performance of pCysC for diagnosing acute kidney injury (AKI) after cisplatin-based chemotherapy is potentially affected by accompanying corticosteroid anti-emetic therapy and hydration. In a prospective observational study pCysC, sCr, urinary kidney injury molecule-1 (KIM-1), and urinary clusterin were measured over 2 weeks in 27 patients given first-cycle chemotherapy. The same variables were measured over 2 weeks in Sprague-Dawley rats given a single intraperitoneal injection of dexamethasone, cisplatin, or both, and in controls. In patients, pCysC increases were greater than sCr 41% vs. 16%, mean paired difference 25% (95% CI: 16-34%)], relative increases were ≥ 50% in 9 patients (35%) for pCysC compared with 2 (8%) for sCr (p = 0.04) and increases in sCr were accompanied by increased KIM-1 and clusterin excretion, but increases in pCysC alone were not. In rats, dexamethasone administration produced dose-dependent increases in pCysC (and augmented cisplatin-induced increases in pCysC), but did not augment histological injury, increases in sCr, or KIM-1 and clusterin excretion. In the presence of dexamethasone, elevation of pCysC does not reliably diagnose AKI after cisplatin-based chemotherapy. © 2017 The Author(s)Published by S. Karger AG, Basel.
A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy
Gupta, Charu; Massaro, An N.
2016-01-01
Background Current definitions of acute kidney injury (AKI) are not sufficiently sensitive to identify all newborns with AKI during the first week of life. Methods To determine whether the rate of decline of serum creatinine (SCr) during the first week of life can be used to identify newborns with AKI, we reviewed the medical records of 106 term neonates at risk of AKI who were treated with hypothermia for hypoxic ischemic encephalopathy (HIE). Results Of the newborns enrolled in the study, 69 % showed a normal rate of decline of SCr to ≥50 % and/or reached SCr levels of ≤0.6 mg/dl before the 7th day of life, and therefore had an excellent clinical outcome (control group). Thirteen newborns with HIE (12 %) developed AKI according to an established neonatal definition (AKI–KIDGO group), and an additional 20 newborns (19 %) showed a rate of decline of SCr of <33, <40, and <46 % from birth to days 3, 5, or 7 of life, respectively (delayed rise in estimated SCr clearance group). Compared to the control group, newborns in the other two groups required more days of mechanical ventilation and vasopressor drugs and had higher gentamicin levels, more fluid overload, lower urinary epidermal growth factor levels, and a prolonged length of stay. Conclusions The rate of decline of SCr provides a sensitive approach to identify term newborns with AKI during the first week of life. PMID:26857710
A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy.
Gupta, Charu; Massaro, An N; Ray, Patricio E
2016-07-01
Current definitions of acute kidney injury (AKI) are not sufficiently sensitive to identify all newborns with AKI during the first week of life. To determine whether the rate of decline of serum creatinine (SCr) during the first week of life can be used to identify newborns with AKI, we reviewed the medical records of 106 term neonates at risk of AKI who were treated with hypothermia for hypoxic ischemic encephalopathy (HIE). Of the newborns enrolled in the study, 69 % showed a normal rate of decline of SCr to ≥50 % and/or reached SCr levels of ≤0.6 mg/dl before the 7th day of life, and therefore had an excellent clinical outcome (control group). Thirteen newborns with HIE (12 %) developed AKI according to an established neonatal definition (AKI-KIDGO group), and an additional 20 newborns (19 %) showed a rate of decline of SCr of <33, <40, and <46 % from birth to days 3, 5, or 7 of life, respectively (delayed rise in estimated SCr clearance group). Compared to the control group, newborns in the other two groups required more days of mechanical ventilation and vasopressor drugs and had higher gentamicin levels, more fluid overload, lower urinary epidermal growth factor levels, and a prolonged length of stay. The rate of decline of SCr provides a sensitive approach to identify term newborns with AKI during the first week of life.
Event-related potential components as measures of aversive conditioning in humans.
Bacigalupo, Felix; Luck, Steven J
2018-04-01
For more than 60 years, the gold standard for assessing aversive conditioning in humans has been the skin conductance response (SCR), which arises from the activation of the peripheral nervous system. Although the SCR has been proven useful, it has some properties that impact the kinds of questions it can be used to answer. In particular, the SCR is slow, reaching a peak 4-5 s after stimulus onset, and it decreases in amplitude after a few trials (habituation). The present study asked whether the late positive potential (LPP) of the ERP waveform could be a useful complementary method for assessing aversive conditioning in humans. The SCR and LPP were measured in an aversive conditioning paradigm consisting of three blocks in which one color was paired with a loud noise (CS+) and other colors were not paired with the noise (CS-). Participants also reported the perceived likelihood of being exposed to the noise for each color. Both SCR and LPP were significantly larger on CS+ trials than on CS- trials. However, SCR decreased steeply after the first conditioning block, whereas LPP and self-reports were stable over blocks. These results indicate that the LPP can be used to assess aversive conditioning and has several useful properties: (a) it is a direct response of the central nervous system, (b) it is fast, with an onset latency of 300 ms, (c) it does not habituate over time. © 2017 Society for Psychophysiological Research.
Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.
Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu
2015-12-15
The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.
Practical small-scale explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, L. J.
1983-01-01
A small-scale explosive seam welding process has been developed that can significantly contribute to remote metal joining operations under hazardous or inaccessible conditions, such as nuclear reactor repair and assembly of structure in space. This paper describes this explosive seam welding process in terms of joining principles, variables, types of joints created, capabilities, and applications. Very small quantities of explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long-length, uniform, hermetically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The practicality of this process has been demonstrated by its current acceptance, as well as its capabilities that are superior in many applications to the universally accepted joining processes, such as mechanical fasteners, fusion and resistance welding, and adhesives.
Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M
2015-03-01
Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR, SCR and AUX1. Pericycle activity is central for the equilibrium between xylary development and AR formation in the hypocotyl, with a role for AUX1 in switching between, and balancing of, the two developmental programmes. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael; Wereszczak, Andrew; Toops, Todd J.
2016-04-05
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1,001 hr using B20 doped with 14 ppm Na. During the study, oxides of nitrogen (NOx) emissions exceeded the engine certification limit of 0.33 g/bhp-hr beforemore » the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals contamination that increased ammonia oxidation, and lowered NOx reduction. Therefore, it was determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.« less
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez-Madrigal, M.; Rivero, F.; Miroshnichenko, L. I.
1985-01-01
The data on source energy spectra of solar cosmic rays (SCR), i.e. the data on the spectrum form and on the absolute SCR are of interest for three reasons: (1) the SCR contain the energy comparable to the total energy of electromagnetic flare radiation (less than or equal to 10 to the 32nd power ergs); (2) the source spectrum form indicates a possible acceleration mechanism (or mechanism); and (3) the accelerated particles are efficiently involved in nuclear electromagnetic and plasma processes in the solar atmosphere. Therefore, the data on SCR source spectra are necessary for a theoretical description of the processes mentioned and for the formulation of the consistent flare model. Below it is attempted to sound solar particle sources by means of SCR energy spectrum obtained near the Sun, at the level of the roots of the interplanetary field lines in the upper solar corona. Data from approx. 60 solar proton events (SPE) between 1956-1981. These data were obtained mainly by the interplanetary demodulation of observed fluxes near the Earth. Further, a model of coronal azimuthal transport is used to demodulate those spectra, and to obtain the source energy spectra.
Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt
2015-04-21
Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.
Snodgrass, Melinda R; Chung, Moon Y; Meadan, Hedda; Halle, James W
2018-03-01
Single-case research (SCR) has been a valuable methodology in special education research. Montrose Wolf (1978), an early pioneer in single-case methodology, coined the term "social validity" to refer to the social importance of the goals selected, the acceptability of procedures employed, and the effectiveness of the outcomes produced in applied investigations. Since 1978, many contributors to SCR have included social validity as a feature of their articles and several authors have examined the prevalence and role of social validity in SCR. We systematically reviewed all SCR published in six highly-ranked special education journals from 2005 to 2016 to establish the prevalence of social validity assessments and to evaluate their scientific rigor. We found relatively low, but stable prevalence with only 28 publications addressing all three factors of the social validity construct (i.e., goals, procedures, outcomes). We conducted an in-depth analysis of the scientific rigor of these 28 publications. Social validity remains an understudied construct in SCR, and the scientific rigor of social validity assessments is often lacking. Implications and future directions are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guerrero Orriach, Jose L; Galán Ortega, M; Ramírez Fernandez, A; Ariza Villanueva, D; Florez Vela, A; Moreno Cortés, I; Rubio Navarro, M; Cruz Mañas, J
2017-02-01
The Acute Kidney Injury Network (AKIN) classification considers SCr values, urea and urine output in order to improve timely diagnose ARF and improve patient prognosis by early treatment. Preoperative levosimendan is a new way for cardiac and kidney protection, we try to evaluate this drug in fifteen patients comparing values of AKIN scale parameters pre and post cardiac surgery in patients with right ventricle dysfunction.
Direct measurement of exciton dissociation energy in polymers
NASA Astrophysics Data System (ADS)
Toušek, J.; Toušková, J.; Chomutová, R.; Paruzel, B.; Pfleger, J.
2017-01-01
Exciton dissociation energy was obtained based on the comparison of thickness of the space charge region estimated from the measurement of capacitance of prepared Schottky diode and from the measurement of photovoltage spectra. While the capacitance measurements provide information about the total width of the space charge region (SCR) the surface photovoltaic effect brings information only about the part of the SCR where electric field is sufficiently high to cause dissociation. For determination of the dissociation energy it is sufficient to find the electric potential in the SCR where the process starts.
Smart command recognizer (SCR) - For development, test, and implementation of speech commands
NASA Technical Reports Server (NTRS)
Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.
1988-01-01
The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.
NaK Plugging Meter Design for the Feasibility Test Loops
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.
2008-01-01
The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.
MELCOR Analysis of OSU Multi-Application Small Light Water Reactor (MASLWR) Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Dhongik S.; Jo, HangJin; Fu, Wen
A multi-application small light water reactor (MASLWR) conceptual design was developed by Oregon State University (OSU) with emphasis on passive safety systems. The passive containment safety system employs condensation and natural circulation to achieve the necessary heat removal from the containment in case of postulated accidents. Containment condensation experiments at the MASLWR test facility at OSU are modeled and analyzed with MELCOR, a system-level reactor accident analysis computer code. The analysis assesses its ability to predict condensation heat transfer in the presence of noncondensable gas for accidents where high-energy steam is released into the containment. This work demonstrates MELCOR’s abilitymore » to predict the pressure-temperature response of the scaled containment. Our analysis indicates that the heat removal rates are underestimated in the experiment due to the limited locations of the thermocouples and applies corrections to these measurements by conducting integral energy analyses along with CFD simulation for confirmation. Furthermore, the corrected heat removal rate measurements and the MELCOR predictions on the heat removal rate from the containment show good agreement with the experimental data.« less
MELCOR Analysis of OSU Multi-Application Small Light Water Reactor (MASLWR) Experiment
Yoon, Dhongik S.; Jo, HangJin; Fu, Wen; ...
2017-05-23
A multi-application small light water reactor (MASLWR) conceptual design was developed by Oregon State University (OSU) with emphasis on passive safety systems. The passive containment safety system employs condensation and natural circulation to achieve the necessary heat removal from the containment in case of postulated accidents. Containment condensation experiments at the MASLWR test facility at OSU are modeled and analyzed with MELCOR, a system-level reactor accident analysis computer code. The analysis assesses its ability to predict condensation heat transfer in the presence of noncondensable gas for accidents where high-energy steam is released into the containment. This work demonstrates MELCOR’s abilitymore » to predict the pressure-temperature response of the scaled containment. Our analysis indicates that the heat removal rates are underestimated in the experiment due to the limited locations of the thermocouples and applies corrections to these measurements by conducting integral energy analyses along with CFD simulation for confirmation. Furthermore, the corrected heat removal rate measurements and the MELCOR predictions on the heat removal rate from the containment show good agreement with the experimental data.« less
Staniloae, Cezar S; Doucet, Serge; Sharma, Samin K; Katholi, Richard E; Mody, Kanika R; Coppola, John T; Solomon, Richard
2009-06-01
We reviewed data from the multicenter CARE (Cardiac Angiography in Renally Impaired Patients) study to see if benefit could be shown for N-acetylcysteine (NAC) in patients undergoing cardiac angiography who all received intravenous bicarbonate fluid expansion. Four hundred fourteen patients with moderate-to-severe chronic kidney disease were randomized to receive intra-arterial administration of iopamidol-370 or iodixanol-320. All patients were prehydrated with isotonic sodium bicarbonate solution. Each site chose whether or not to administer NAC 1,200 mg twice daily to all patients. Serum creatinine (SCr) levels and estimated glomerular filtration rate were assessed at baseline and 2-5 days after receiving contrast. The primary outcome was a postdose SCr increase 0.5 mg/dL (44.2 mumol/L) over baseline. Secondary outcomes were a postdose SCr increase 25% and the mean peak change in SCr. The NAC group received significantly less hydration (892 +/- 236 mL vs. 1016 +/- 328 mL; P < 0.001) and more contrast volume (146 +/- 74 mL vs. 127 +/- 71 mL; P = 0.009) compared with no-NAC group. SCr increases 0.5 mg/dL occurred in 4.2% (7 of 168 patients) in NAC group and 6.5% (16 of 246 patients) in no-NAC group (P = 0.38); rates of SCr increases 25% were 11.9% and 10.6%, respectively (P = 0.75); mean post-SCr increases were 0.07 mg/dL in NAC group versus 0.11 mg/dL in no-NAC group (P = 0.14). In conclusion, addition of NAC to fluid expansion with sodium bicarbonate failed to reduce the rate of contrast-induced nephropathy (CIN) after the intra-arterial administration of iopamidol or iodixanol to high-risk patients with chronic kidney disease.
Raebel, Marsha A; Xu, Stanley; Goodrich, Glenn K; Schroeder, Emily B; Schmittdiel, Julie A; Segal, Jodi B; O'Connor, Patrick J; Nichols, Gregory A; Lawrence, Jean M; Kirchner, H Lester; Elston Lafata, Jennifer; Butler, Melissa; Newton, Katherine M; Steiner, John F
2013-10-01
Among adults with incident diabetes, data are lacking about first antihyperglycemic initiation and whether medication choice aligns with recommendations. To identify predictors of initiating any antihyperglycemic, and specifically sulfonylurea versus metformin. This retrospective cohort study included 241 327 patients from 11 US health systems, 2005 through 2010. Assessments included antihyperglycemic initiation within 6 months of diabetes identification, first medication initiated, and initiation predictors. Only 40.3% (n = 97 350) started any antihyperglycemic; 75.2% (n = 73 221) started metformin. Glycosylated hemoglobin (HbA1c) predicted initiating any antihyperglycemic (HbA1c >9%, relative risk [RR] = 3.94, 95% CI = 3.82, 4.07, vs HbA1c >6.5%-7%). Age modified the HbA1c effect: at higher HbA1c, likelihood of starting antihyperglycemics differed little across ages; at lower HbA1c, older patients were less likely to start antihyperglycemics (P < .001). Individuals with elevated serum creatinine (SCr) were more likely to started on sulfonylurea (SCr = 1.4-2, RR = 2.21 [2.05, 2.39]; SCr >2, RR = 2.75 [2.30, 3.29] vs normal SCr), particularly as HbA1c increased: patients with HbA1c 8%-9% and SCr >2 were 5.59 times (2.94, 10.65) more likely to start sulfonylurea versus those with HbA1c >6.5%-7% and normal SCr. Age predicted sulfonylurea initiation (20-39 years, RR = 0.87 [0.79, 0.95]; ≥ 80 years, RR = 2.41 [2.20, 2.65] vs 50-59 years). Among adults with incident diabetes, metformin was generally the first antihyperglycemic initiated. However, 59.7% did not start any antihyperglycemic at diabetes identification. HbA1c and age predict antihyperglycemic initiation; SCr and age predict sulfonylurea initiation.
Prevalence of Estimated GFR Reporting Among US Clinical Laboratories
Accetta, Nancy A.; Gladstone, Elisa H.; DiSogra, Charles; Wright, Elizabeth C.; Briggs, Michael; Narva, Andrew S.
2008-01-01
Background Routine laboratory reporting of estimated glomerular filtration rate (eGFR) may help clinicians detect kidney disease. The current national prevalence of eGFR reporting among clinical laboratories is unknown, thus the extent of the situation of laboratories not routinely reporting eGFR with serum creatinine (SCr) results is not quantified. Design Observational analysis. Setting National Kidney Disease Education Program survey of clinical laboratory conducted in 2006-7 by mail, Web, and telephone follow up. Participants A national random sample, 6,350 clinical laboratories, drawn from the Federal Clinical Laboratory Improvement Amendments database and stratified by six major laboratory types/groupings. Predictors Laboratory reports SCr results. Outcomes Reporting eGFR values along with SCr results. Measurements Percent of laboratories reporting eGFR along with reporting SCr, reporting protocol, eGFR formula used, and style of reporting cutoff values. Results Among laboratories reporting SCr, 38.4% report eGFR (physician offices, 25.8%; hospitals, 43.6%; independents, 38.9%; community clinics, 47.2%; health fair/insurance/public health, 45.5%; others, 43.2%). Physician office laboratories have a reporting prevalence lower than other laboratory types (p < 0.001). Among laboratories reporting eGFR, 66.7% do so routinely with all adult SCr determinations; 71.6% use the 4-variable Modification of Diet in Renal Disease Study equation; and 45.3% use the “>60 mL/min/1.73 m2” reporting convention. Independent laboratories are least likely to routinely report eGFR, (50.6%, p < .05) and most likely to report only when specifically requested (45.4%, p < 0.05). High-volume laboratories across all strata are more likely to report eGFR (p < 0.001). Limitations Self-reporting by laboratories, Federal database did not have names of laboratory directors/managers (intended respondents), assumed accuracy of Federal database for sample purposes. Conclusions Routine eGFR reporting with SCr is not yet universal and laboratories vary in their reporting practices. PMID:18676076
The development and application of SCR denitrification technology in power plant
NASA Astrophysics Data System (ADS)
Wu, Junnan
2017-12-01
In recent decades, the emission of the nitrogen oxides (NOX) has been increasing with the years of the thermal power plant. The environment pollution caused by the emission of quantities of nitrogen oxides became more and more serious, so people now put more emphasis on the control of the emission of the nitrogen oxides. Especially, our country and the society are paying much more attention to the environment protection and the environment problems cannot be neglected. In this paper, we introduced the related research background of the technology of SCR denitrification which was as the symbol of the technology of the catalytic denitrification and discussed the reaction principles of the SCR denitrification and frequently used catalysts, the process of the technology, and the configuration. In the end, we pointed the way of the future research of the technology of the SCR denitrification.
DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry J. Mazanec
2008-09-30
The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less
Large-scale breeder reactor prototype mechanical pump conceptual design study, hot leg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Due to the extensive nature of this study, the report is presented as a series of small reports. The complete design analysis is placed in a separate section. The drawings and tabulations are in the back portion of the report. Other topics are enumerated and located as shown in the table of contents.
Reactor Monitoring with Antineutrinos - A Progress Report
NASA Astrophysics Data System (ADS)
Bernstein, Adam
2012-08-01
The Reactor Safeguards regime is the name given to a set of protocols and technologies used to monitor the consumption and production of fissile materials in nuclear reactors. The Safeguards regime is administered by the International Atomic Energy Agency (IAEA), and is an essential component of the global Treaty on Nuclear Nonproliferation, recently renewed by its 189 remaining signators. (The 190th, North Korea, withdrew from the Treaty in 2003). Beginning in Russia in the 1980s, a number of researchers worldwide have experimentally demonstrated the potential of cubic meter scale antineutrino detectors for non-intrusive real-time monitoring of fissile inventories and power output of reactors. The detectors built so far have operated tens of meters from a reactor core, outside of the containment dome, largely unattended and with remote data acquisition for an entire 1.5 year reactor cycle, and have achieved levels of sensitivity to fissile content of potential interest for the IAEA safeguards regime. In this article, I will describe the unique advantages of antineutrino detectors for cooperative monitoring, consider the prospects and benefits of increasing the range of detectability for small reactors, and provide a partial survey of ongoing global research aimed at improving near-field and far field monitoring and discovery of nuclear reactors.
Pyrolysis of waste tyres: a review.
Williams, Paul T
2013-08-01
Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H(2), C(1)-C(4) hydrocarbons, CO(2), CO and H(2)S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
Walker, Tobias; Nolte, Andrea; Steger, Volker; Makowiecki, Christina; Mustafi, Migdat; Friedel, Godehard; Schlensak, Christian; Wendel, Hans-Peter
2013-03-01
Serum response factor (SRF), E2F1 and survivin are well-known factors involved in a multitude of cancer-related regulation processes. However, to date, no suitable means has been found to apply their potential in the therapy of non-small cell lung cancer (NSCLC). This study deals with questions of small interfering ribonucleic acid (siRNA) transfection efficiency by a non-viral transfection of NSCLC cell-lines and the power of siRNA to transiently influence cell division by specific silencing. Different NSCLC cell lines were cultured under standard conditions and transfected, with specific siRNA targeting SRF, E2F1 and survivin in a non-viral manner. Cells treated with non-specific siRNA (SCR-siRNA) served as controls. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for messenger RNA (mRNA) expression levels. Additionally, transfection efficiency was evaluated by flow cytometry. The analysis of cell proliferation was determined with a CASY cell counter 3 days after transfection with SRF or SCR-siRNA. Transfection of the NSCLC cell lines with specific siRNAs against SRF, E2F1 and survivin resulted in a very considerable reduction of the intracellular mRNA concentration. CASY confirmation of cell viability demonstrated an excellent survival of the cell lines treated with non-specific siRNA, in contrast to with application of specific siRNA. This study reports a reliable transfectability of NSCLC-cell lines by siRNA, initially in a non-viral manner, and a reproducible knockdown of the focussed targets, consequently leading to the death of the tumour cells. This constitutes a strong candidate for a new assessment strategy in the therapy of non-small cell lung cancer.
Verma, Mascha; Khadapkar, Rashmi; Sahu, Priyadarshi Soumyaranjan; Das, Bibhu Ranjan
2006-09-01
An increase in the communication within the healthcare services, both nationally and internationally, has strengthened the need for harmonization of measurements and reference intervals in laboratory medicine. In the present report, the calculated reference interval for serum creatinine (sCr) levels of healthy normal individuals (n=1121) in different sex and age groups are compared with the established interval. The calculated reference interval for sCr level was 0.4-1.3 mg/dL and 0.6 to 1.3 mg/dL in the age groups of 21-40 and 41-60 years respectively. The difference between the mean sCr values in total males and total females (age range 21-60 years) was statistically significant (p<0.0001); When male and female subjects were analyzed age-group wise, the data showed a significant difference in mean sCr values (p<0.0001) in three age groups (21-30, 31-40 and 41-50 years) however, in older age group (51-60 years), the difference was non-significant (p=0.07). The reference ranges were 0.7-1.3 and 0.4-1.0 mg/dL for males and females respectively where the lower limit was 0.1-0.2 units less than that of standard limits. An increase in the mean value of sCr was observed particularly in females with an increase in age. Hence it is of interest to validate an age specific reference ranges for sCr in our population.
Cockcroft-Gault revisited: New de-liver-ance on recommendations for use in cirrhosis.
Scappaticci, Gianni B; Regal, Randolph E
2017-01-28
The Cockcroft-Gault (CG) equation has become perhaps the most popular practical approach for estimating renal function among health care professionals. Despite its widespread use, clinicians often overlook not only the limitations of the original serum creatinine (SCr) based equation, but also may not appreciate the validity of the many variations used to compensate for these limitations. For cirrhotic patients in particular, the underlying pathophysiology of the disease contributes to a falsely low SCr, thereby overestimating renal function with use of the CG equation in this population. We reviewed the original CG trial from 1976 along with data surrounding clinician specific alterations to the CG equation that followed through time. These alterations included different formulas for body weight in obese patients and the "rounding up" approach in patients with low SCr. Additionally, we described the pathophysiology and hemodynamic changes that occur in cirrhosis; and reviewed several studies that attempted to estimate renal function in this population. The evidence we reviewed regarding the most accurate manipulation of the original CG equation to estimate creatinine clearance (CrCl) was inconclusive. Unfortunately, the homogeneity of the patient population in the original CG trial limited its external validity. Elimination of body weight in the CG equation actually produced the estimate closest to the measure CrCl. Furthermore, "rounding up" of SCr values often underestimated CrCl. This approach could lead to suboptimal dosing of drug therapies in patients with low SCr. In cirrhotic patients, utilization of SCr based methods overestimated true renal function by about 50% in the literature we reviewed.
Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, ...
Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, October 8, 1943 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
Mendonça, N M; Siman, R R; Niciura, C L; Campos, J R
2006-01-01
This paper presents the behaviour of a full-scale expanded bed reactor (160 m3) with overlaid anaerobic and aerobic zones used for municipal wastewater treatment. The research was carried out in two experimental steps: anaerobic and anaerobic-aerobic conditions, and the experimental results presented in this paper refer to four months of reactor operation. In the anaerobic condition, after inoculation and 60 days of operation, the reactor treating 3.40 kg CODm(-3)d(-1) for thetaH of 2.69 h, reached mean removal efficiencies of 76% for BOD, 72% for COD, and 80% for TSS, when the effluent presented mean values of 225 mg.L(-1) of COD, 98 mg.L(-1) of BOD and 35 mg.L(-1) of TSS. Under these conditions, for nitrogen loading of 0.27 kgN.m(-3)d(-1), the reactor generated an effluent with mean N-org. of 8 mg.L(-1) and N-ammon. of 37 mg.L(-1), demonstrating high potential of ammonification. For the anaerobic-aerobic condition (118th day) the system was operated with thetaH of 5.38 h presented mean removal efficiencies of 84% for BOD, 79% for COD, 76% for TSS, and 30% for TKN. The reactor's operation time was less than two months, which was not long enough to reach nitrification. Regarding the obtained results, this research confirmed that this reactor is configured as a flexible and adequate alternative for the treatment of sewage, requiring relatively small area and only thetaH of 10 h that can be adjusted to the local circumstances.
Noyes, Aaron; Huffman, Ben; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Sunasara, Khurram; Mukhopadhyay, Tarit
2015-08-01
The biotech industry is under increasing pressure to decrease both time to market and development costs. Simultaneously, regulators are expecting increased process understanding. High throughput process development (HTPD) employs small volumes, parallel processing, and high throughput analytics to reduce development costs and speed the development of novel therapeutics. As such, HTPD is increasingly viewed as integral to improving developmental productivity and deepening process understanding. Particle conditioning steps such as precipitation and flocculation may be used to aid the recovery and purification of biological products. In this first part of two articles, we describe an ultra scale-down system (USD) for high throughput particle conditioning (HTPC) composed of off-the-shelf components. The apparatus is comprised of a temperature-controlled microplate with magnetically driven stirrers and integrated with a Tecan liquid handling robot. With this system, 96 individual reaction conditions can be evaluated in parallel, including downstream centrifugal clarification. A comprehensive suite of high throughput analytics enables measurement of product titer, product quality, impurity clearance, clarification efficiency, and particle characterization. HTPC at the 1 mL scale was evaluated with fermentation broth containing a vaccine polysaccharide. The response profile was compared with the Pilot-scale performance of a non-geometrically similar, 3 L reactor. An engineering characterization of the reactors and scale-up context examines theoretical considerations for comparing this USD system with larger scale stirred reactors. In the second paper, we will explore application of this system to industrially relevant vaccines and test different scale-up heuristics. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Pratt, Lawrence M.; Strothers, Joel; Pinnock, Travis; Hilaire, Dickens Saint; Bacolod, Beatrice; Cai, Zhuo Biao; Sim, Yoke-Leng
2017-04-01
Brown grease is a generic term for the oily solids and semi-solids that accumulate in the sewer system and in sewage treatment plants. It has previously been shown that brown grease undergoes pyrolysis to form a homologous series of alkanes and 1-alkenes between 7 and 17 carbon atoms, with smaller amounts of higher hydrocarbons and ketones up to about 30 carbon atoms. The initial study was performed in batch mode on a scale of up to 50 grams of starting material. However, continuous processes are usually more efficient for large scale production of fuels and commodity chemicals. This work describes the research and development of a continuous process. The first step was to determine the required reactor temperature. Brown grease consists largely of saturated and unsaturated fatty acids, and they react at different rates, and produce different products and intermediates. Intermediates include ketones, alcohols, and aldehydes, and Fe(III) ion catalyzes at least some of the reactions. By monitoring the pyrolysis of brown grease, its individual components, and intermediates, it was determined that a reactor temperature of at least 340 °C is required. A small scale (1 L) continuous stirred tank reactor was built and its performance is described.
SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT
The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...
Sun, MIn; Perry, Kevin L.
2015-11-20
A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.
Advanced supersonic technology and its implications for the future
NASA Technical Reports Server (NTRS)
Driver, C.
1979-01-01
A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.
Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin
2015-02-01
L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.
Zhang, Wenrui; Yan, Danhua; Appavoo, Kannatassen; ...
2017-04-18
Semiconductor photoelectrodes for photoelectrochemical (PEC) water splitting require efficient carrier generation, separation, and transport at and beyond the space charge region (SCR) formed at the aqueous interface. The trade-off between photon collection and minority carrier delivery governs the photoelectrode design and implies maximum water splitting efficiency at an electrode thickness equivalent to the light absorption depth. Here, using planar ZnO thin films as a model system, we identify the photocarriers beyond the SCR as another significant source to substantially enhance the PEC performance. The high-quality ZnO films synthesized by pulsed laser deposition feature very few deep trap states and supportmore » a long photocarrier lifetime. Combined with photoelectrochemical characterization, ultrafast spectroscopy, and numerical calculations, it is revealed that engineering the exciton concentration gradient by film thickness facilitates the inward diffusion of photocarriers from the neighboring illuminated region to the SCR and, therefore, achieves a record high quantum efficiency over 80% at a thickness far beyond its light absorption depth and the SCR width. Furthermore, these results elucidate the important role of the photocarriers beyond SCR for the PEC process and provide new insight into exploring the full potential for efficient photoelectrode materials with large exciton diffusivity.« less
Zappitelli, Michael; Greenberg, Jason H; Coca, Steven G; Krawczeski, Catherine D; Li, Simon; Thiessen-Philbrook, Heather R; Bennett, Michael R; Devarajan, Prasad; Parikh, Chirag R
2015-06-01
Research has identified improved biomarkers of acute kidney injury (AKI). Cystatin C (CysC) is a better glomerular filtration rate marker than serum creatinine (SCr) and may improve AKI definition. To determine if defining clinical AKI by increases in CysC vs SCr alters associations with biomarkers and clinical outcomes. Three-center prospective cohort study of intensive care units in New Haven, Connecticut, Cincinnati, Ohio, and Montreal, Quebec, Canada. Participants were 287 patients 18 years or younger without preoperative AKI or end-stage renal disease who were undergoing cardiac surgery. The study dates were July 1, 2007, through December 31, 2009. For biomarker vs clinical AKI associations, the exposures were first postoperative (0-6 hours after surgery) urine interleukin 18, neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, and liver fatty acid-binding protein. For clinical AKI outcome associations, the exposure was Kidney Disease: Improving Global Outcomes AKI definition (based on SCr or CysC). Clinical AKI, length of stay, and length of mechanical ventilation. We determined areas under the receiver operating characteristic curve and odds ratios for first postoperative biomarkers to predict AKI. The SCr-defined vs CysC-defined AKI incidence differed substantially (43.6% vs 20.6%). Percentage agreement was 71% (κ = 0.38); stage 2 or worse AKI percentage agreement was 95%. Interleukin 18 and kidney injury molecule 1 discriminated for CysC-defined AKI better than for SCr-defined AKI. For interleukin 18 and kidney injury molecule 1, the areas under the receiver operating characteristic curve were 0.74 and 0.65, respectively, for CysC-defined AKI, and 0.66 and 0.58, respectively, for SCr-defined AKI. Fifth (vs first) quintile concentrations of both biomarkers were more strongly associated with CysC-defined AKI. For interleukin 18 and kidney injury molecule 1, the odds ratios were 16.19 (95% CI, 3.55-73.93) and 6.93 (95% CI, 1.88-25.59), respectively, for CysC-defined AKI vs 6.60 (95% CI, 2.76-15.76) and 2.04 (95% CI, 0.94-4.38), respectively, for SCr-defined AKI. Neutrophil gelatinase-associated lipocalin and liver fatty acid-binding protein associations with both definitions were similar. The CysC definitions and SCr definitions were similarly associated with clinical outcomes of resource use. Compared with the SCr-based definition, the CysC-based definition is more strongly associated with urine interleukin 18 and kidney injury molecule 1 in children undergoing cardiac surgery. Consideration should be made for defining AKI based on CysC in clinical care and future studies.
Polimeni, Alberto; Weissner, Melissa; Schochlow, Katharina; Ullrich, Helen; Indolfi, Ciro; Dijkstra, Jouke; Anadol, Remzi; Münzel, Thomas; Gori, Tommaso
2017-09-25
The aim of this study was to describe the incidence and clinical characteristics, including intracoronary imaging features, of clinical restenosis in bioresorbable coronary scaffolds (BRS). Further, the authors searched for clinical and procedural predictors of scaffold restenosis (ScR) and report on the clinical outcomes after treatment of ScR in a cohort of consecutive all-comer patients. Data from randomized controlled trials demonstrate a higher rate of target lesion failure in patients treated with BRS as compared with those treated with metal drug-eluting stents. Although in-scaffold thrombosis has been thoroughly investigated, there are little data available on the incidence and characteristics of ScR. A total of 657 consecutive patients (age 63 ± 12 years, 79% men, 21% diabetics, 67% acute coronary syndrome) who received a total of 883 BRS for the treatment of coronary artery stenoses between May 2012 and January 2015 were enrolled in a retrospective registry. During the median follow-up of 1,076 days (interquartile range: 762 to 1,206 days), a total of 49 cases of ScR were found in 41 patients (Kaplan-Meier incidence: 2.4%, 6.0%, and 9.0% at 12-, 24-, and 36-month follow-up, respectively). ScR presented as stable angina or as incidental finding in 73% of the cases. The angiographic pattern was complex (type II to IV) in 55% of the ScR lesions. The neointima was homogeneous with high signal intensity in all but 3 cases at optical coherence tomography. Prior revascularization (hazard ratio [HR]: 2.7; 95% confidence interval [CI]: 1.5 to 5.1; p = 0.002), diabetes (HR: 2.9; 95%CI: 1.5 to 5.4; p = 0.001), lesion types B2 or C (HR: 2.8; 95% CI: 1.5 to 5.4; p = 0.002), and implantation technique (HR: 0.3; 95% CI: 0.1 to 0.6; p = 0.001) emerged as independent predictors of ScR. Oversizing (HR: 6.29; 95% CI: 2.4 to 16.4), undersizing (HR: 5.15; 95% CI: 1.99 to 13.30), and a residual stenosis >27% (HR: 8.9; 95% CI: 3.6 to 21.8) were associated with an increased ScR risk. The 3-year incidence of ScR was similar to that observed in similar settings with newer-generation drug-eluting stents. It is often associated with a benign presentation and a complex angiographic pattern. Predictors of ScR match those of metallic stent restenosis, and the implantation technique used at index appears to play an important role. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Zappitelli, Michael; Greenberg, Jason H.; Coca, Steven G.; Krawczeski, Catherine D.; Li, Simon; Thiessen-Philbrook, Heather R.; Bennett, Michael R.; Devarajan, Prasad; Parikh, Chirag R.
2015-01-01
IMPORTANCE Research has identified improved biomarkers of acute kidney injury (AKI). Cystatin C (CysC) is a better glomerular filtration rate marker than serum creatinine (SCr) and may improve AKI definition. OBJECTIVE To determine if defining clinical AKI by increases in CysC vs SCr alters associations with biomarkers and clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Three-center prospective cohort study of intensive care units in New Haven, Connecticut, Cincinnati, Ohio, and Montreal, Quebec, Canada. Participants were 287 patients 18 years or younger without preoperative AKI or end-stage renal disease who were undergoing cardiac surgery. The study dates were July 1, 2007, through December 31, 2009. EXPOSURES For biomarker vs clinical AKI associations, the exposures were first postoperative (0–6 hours after surgery) urine interleukin 18, neutrophil gelatinase – associated lipocalin, kidney injury molecule 1, and liver fatty acid–binding protein. For clinical AKI outcome associations, the exposure was Kidney Disease: Improving Global Outcomes AKI definition (based on SCr or CysC). MAIN OUTCOMES AND MEASURES Clinical AKI, length of stay, and length of mechanical ventilation. We determined areas under the receiver operating characteristic curve and odds ratios for first postoperative biomarkers to predict AKI. RESULTS The SCr-defined vs CysC-defined AKI incidence differed substantially (43.6% vs 20.6%). Percentage agreement was 71% (κ = 0.38); stage 2 or worse AKI percentage agreement was 95%. Interleukin 18 and kidney injury molecule 1 discriminated for CysC-defined AKI better than for SCr-defined AKI. For interleukin 18 and kidney injury molecule 1, the areas under the receiver operating characteristic curve were 0.74 and 0.65, respectively, for CysC-defined AKI, and 0.66 and 0.58, respectively, for SCr-defined AKI. Fifth (vs first) quintile concentrations of both biomarkers were more strongly associated with CysC-defined AKI. For interleukin 18 and kidney injury molecule 1, the odds ratios were 16.19 (95% CI, 3.55–73.93) and 6.93 (95% CI, 1.88–25.59), respectively, for CysC-defined AKI vs 6.60 (95% CI, 2.76–15.76) and 2.04 (95% CI, 0.94–4.38), respectively, for SCr-defined AKI. Neutrophil gelatinase–associated lipocalin and liver fatty acid–binding protein associations with both definitions were similar. The CysC definitions and SCr definitions were similarly associated with clinical outcomes of resource use. CONCLUSIONS AND RELEVANCE Compared with the SCr-based definition, the CysC-based definition is more strongly associated with urine interleukin 18 and kidney injury molecule 1 in children undergoing cardiac surgery. Consideration should be made for defining AKI based on CysC in clinical care and future studies. PMID:25844892
Small space reactor power systems for unmanned solar system exploration missions
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.
Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types
NASA Astrophysics Data System (ADS)
Permana, Sidik
2017-07-01
A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id; Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia; Purwanto,, E-mail: p.purwanto@che.undip.ac.id
The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogasmore » as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.« less
D-He-3 spherical torus fusion reactor system study
NASA Astrophysics Data System (ADS)
Macon, William A., Jr.
1992-04-01
This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsatsulnikov, A. F., E-mail: andrew@beam.ioffe.ru; Lundin, W. V.; Sakharov, A. V.
2016-09-15
The epitaxial growth of InAlN layers and GaN/AlN/InAlN heterostructures for HEMTs in growth systems with horizontal reactors of the sizes 1 × 2', 3 × 2', and 6 × 2' is investigated. Studies of the structural properties of the grown InAlN layers and electrophysical parameters of the GaN/AlN/InAlN heterostructures show that the optimal quality of epitaxial growth is attained upon a compromise between the growth conditions for InGaN and AlGaN. A comparison of the epitaxial growth in different reactors shows that optimal conditions are realized in small-scale reactors which make possible the suppression of parasitic reactions in the gas phase.more » In addition, the size of the reactor should be sufficient to provide highly homogeneous heterostructure parameters over area for the subsequent fabrication of devices. The optimal compositions and thicknesses of the InAlN layer for attaining the highest conductance in GaN/AlN/InAlN transistor heterostructures.« less
Development of advanced strain diagnostic techniques for reactor environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.
2013-02-01
The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less
Pyrolysis of waste tyres: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk
2013-08-15
Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest inmore » pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.« less
Regenerative Snubber For GTO-Commutated SCR Inverter
NASA Technical Reports Server (NTRS)
Rippel, Wally E.; Edwards, Dean B.
1992-01-01
Proposed regenerative snubbing circuit substituted for dissipative snubbing circuit in inverter based on silicon controlled rectifiers (SCR's) commutated by gate-turn-off thyristor (GTO). Intended to reduce loss of power that occurs in dissipative snubber. Principal criteria in design: low cost, simplicity, and reliability.
Moving bed reactor setup to study complex gas-solid reactions.
Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih
2007-08-01
A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.
Shacham, Yacov; Rofe, Maytal; Leshem-Rubinow, Eran; Gal-Oz, Amir; Arbel, Yaron; Keren, Gad; Roth, Arie; Ben-Assa, Eyal; Halkin, Amir; Finkelstein, Ariel; Banai, Shmuel; Steinvil, Arie
2014-01-01
Background Previous studies demonstrated that acute kidney injury (AKI) following transcatheter aortic valve implantation (TAVI) is frequent and associated with adverse outcomes. However, these studies only applied the serum creatinine (sCr) criteria while ignoring the urine output criteria. We hypothesized that adding the urine output criteria might contribute to an earlier diagnosis of AKI. Methods We included 143 patients with severe aortic stenosis who underwent transfemoral TAVI between December 2012 and April 2014. Urine output was assessed hourly for at least 24 h following TAVI, and sCr was assessed at least daily until discharge. Based on the Valve Academic Research Consortium-2 (VARC-2), AKI was determined using both sCr and urine output criteria. We compared the incidence of AKI and time to AKI diagnosis based on these two methods. Results The mean age was 81 ± 6 years (range 61-94) and 56% were male. AKI occurred in 27 (19%) patients, 13 (9%) of whom had AKI defined by sCr criteria. Twenty (14%) patients had AKI defined by urine output criteria, only 6 of whom had AKI also defined by sCr criteria. The use of urine output criteria resulted in earlier identification of AKI (18 ± 4 vs. 64 ± 57 h, p = 0.02) and was associated with lower sCr elevation in patients having AKI defined by only urine output criteria (0.03 ± 0.12 vs. 0.37 ± 0.06 mg/dl, p < 0.001). Conclusion The use of the VARC-2 urine output criteria significantly increased the incidence of AKI and shortened the time to AKI diagnosis. PMID:25737679
LPV gain-scheduled control of SCR aftertreatment systems
NASA Astrophysics Data System (ADS)
Meisami-Azad, Mona; Mohammadpour, Javad; Grigoriadis, Karolos M.; Harold, Michael P.; Franchek, Matthew A.
2012-01-01
Hydrocarbons, carbon monoxide and some of other polluting emissions produced by diesel engines are usually lower than those produced by gasoline engines. While great strides have been made in the exhaust aftertreatment of vehicular pollutants, the elimination of nitrogen oxide (NO x ) from diesel vehicles is still a challenge. The primary reason is that diesel combustion is a fuel-lean process, and hence there is significant unreacted oxygen in the exhaust. Selective catalytic reduction (SCR) is a well-developed technology for power plants and has been recently employed for reducing NO x emissions from automotive sources and in particular, heavy-duty diesel engines. In this article, we develop a linear parameter-varying (LPV) feedforward/feedback control design method for the SCR aftertreatment system to decrease NO x emissions while keeping ammonia slippage to a desired low level downstream the catalyst. The performance of the closed-loop system obtained from the interconnection of the SCR system and the output feedback LPV control strategy is then compared with other control design methods including sliding mode, and observer-based static state-feedback parameter-varying control. To reduce the computational complexity involved in the control design process, the number of LPV parameters in the developed quasi-LPV (qLPV) model is reduced by applying the principal component analysis technique. An LPV feedback/feedforward controller is then designed for the qLPV model with reduced number of scheduling parameters. The designed full-order controller is further simplified to a first-order transfer function with a parameter-varying gain and pole. Finally, simulation results using both a low-order model and a high-fidelity and high-order model of SCR reactions in GT-POWER interfaced with MATLAB/SIMULINK illustrate the high NO x conversion efficiency of the closed-loop SCR system using the proposed parameter-varying control law.
Viswanathan, Karthickeyan
2018-05-01
In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.
The selective catalytic reduction of NO x over Ag/Al 2O 3 with isobutanol as the reductant
Brookshear, Daniel William; Pihl, Josh A.; Toops, Todd J.; ...
2016-02-13
Here, this study investigates the potential of isobutanol (iBuOH) as a reductant for the selective catalytic reduction (SCR) of NO x over 2 wt% Ag/Al 2O 3 between 150 and 550 °C and gas hourly space velocities (GHSV) between 10,000 and 35,000 h -1. The feed gas consists of 500 ppm NO, 5% H 2O, 10% O 2, and 375-1500 ppm iBuOH (C 1:N ratios of 3-12); additionally, blends of 24 and 48% iBuOH in gasoline are evaluated. Over 90% NO x conversion is achieved between 300 and 400 C using pure iBuOH, including a 40% peak selectivity towards NHmore » 3 that could be utilized in a dual HC/NH 3 SCR configuration. The iBuOH/gasoline blends are only able to achieve greater than 90% NOx conversion when operated at a GHSV of 10,000 h -1 and employing a C 1:N ratio of 12. Iso-butyraldehyde and NO 2 appear to function as intermediates in the iBuOH-SCR mechanism, which mirrors the mechanism observed for EtOH-SCR. In general, the performance of iBuOH in the SCR of NO x over a Ag/Al 2O 3 catalyst is comparable with that of EtOH, although EtOH/gasoline blends display higher NO x reduction than iBuOH/gasoline blends. The key parameter in employing alcohols in SCR appears to be the C-OH:N ratio rather than the C 1:N ratio.« less
Retinal Oxygen Delivery and Metabolism in Healthy and Sickle Cell Retinopathy Subjects
Felder, Anthony E.; Tan, Ou; Blair, Norman P.; Huang, David
2018-01-01
Purpose Reduction in inner retinal oxygen delivery (DO2) can cause retinal hypoxia and impair inner retinal oxygen metabolism (MO2), leading to vision loss. The purpose of the current study was to establish measurements of DO2 and MO2 in healthy subjects and test the hypothesis that DO2 and MO2 are reduced in sickle cell retinopathy (SCR) subjects. Methods Dual wavelength retinal oximetry and Doppler optical coherence tomography were performed in 12 healthy control and 12 SCR subjects. Images were analyzed to measure retinal arterial and venous oxygen content (O2A and O2V), venous diameter (DV), and total retinal blood flow (TRBF). Retinal arteriovenous oxygen content difference (O2AV), DO2, MO2, and oxygen extraction fraction (OEF) were calculated according to the following equations: O2AV = O2A − O2V; DO2 = TRBF * O2A; MO2 = TRBF * O2AV; OEF = MO2/DO2. Results Retinal DV and TRBF were higher in the SCR group as compared to the control group, whereas, O2A, O2V, and O2AV were lower in SCR group as compared to the control group. DO2, MO2, and OEF were not significantly different between control and SCR groups. MO2 and DO2 were linearly related, such that higher MO2 was associated with higher DO2. There was an inverse relationship between TRBF and OEF, such that lower TRBF was associated with higher OEF. Conclusions Increased blood flow compensated for decreased oxygen content, thereby maintaining DO2, MO2, and OEF at predominately lower stages of SCR. Quantitative assessment of these parameters has the potential to advance knowledge and improve diagnostic evaluation of retinal ischemic conditions. PMID:29677351
Fu, Mingliang; Ge, Yunshan; Wang, Xin; Tan, Jianwei; Yu, Linxiao; Liang, Bin
2013-05-01
NOx and particulate matter (PM) emissions from heavy-duty diesel vehicles (HDVs) have become the most important sources of pollutants affecting urban air quality in China. In recent years, a series of emission control strategies and diesel engine polices have been introduced that require advanced emission control technology. China and Europe mostly have used Selective Catalytic Reduction (SCR) with urea to meet the Euro IV diesel engine emission standard. In this study, two Euro IV busses with SCR were tested by using potable emission measurement system (PEMS) to assess NOx emissions associated with urban, suburban and freeway driving patterns. The results indicated that with the SCR system, the urea injection time for the entire driving period increased with higher vehicle speed. For freeway driving, the urea injection time covered 71%-83% of the driving period; the NOx emission factors from freeway driving were lower than those associated with urban and suburban driving. Unfortunately, the NOx emission factors were 2.6-2.8-, 2.3-2.7- and 2.2-2.3-fold higher than the Euro IV standard limits for urban, suburban and freeway driving, respectively; NOx emission factors (in g/km and g/(kW·h)) from the original vehicles (without SCR) were higher than their corresponding vehicles with SCR for suburban and freeway driving. Compared with the IVE model results, the measured NOx emission factors were 1.60-1.16-, 1.77-1.27-, 2.49-2.44-fold higher than the NOx predicted by the IVE model for urban and suburban driving, respectively. Thus, an adjustment of emission factors is needed to improve the estimation of Euro IV vehicle emissions in China. Copyright © 2013 Elsevier B.V. All rights reserved.
Expert systems for fault diagnosis in nuclear reactor control
NASA Astrophysics Data System (ADS)
Jalel, N. A.; Nicholson, H.
1990-11-01
An expert system for accident analysis and fault diagnosis for the Loss Of Fluid Test (LOFT) reactor, a small scale pressurized water reactor, was developed for a personal computer. The knowledge of the system is presented using a production rule approach with a backward chaining inference engine. The data base of the system includes simulated dependent state variables of the LOFT reactor model. Another system is designed to assist the operator in choosing the appropriate cooling mode and to diagnose the fault in the selected cooling system. The response tree, which is used to provide the link between a list of very specific accident sequences and a set of generic emergency procedures which help the operator in monitoring system status, and to differentiate between different accident sequences and select the correct procedures, is used to build the system knowledge base. Both systems are written in TURBO PROLOG language and can be run on an IBM PC compatible with 640k RAM, 40 Mbyte hard disk and color graphics.
Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R.S.; Bellan, J.
1998-08-01
A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects frommore » thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.« less
Lance, Michael J.; Wereszczak, Andrew A; Toops, Todd J.; ...
2016-10-17
Here we report that for renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent tomore » exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals (PGM) contamination that increased NH3 oxidation, and lowered NOx reduction. Therefore, we determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael J.; Wereszczak, Andrew A; Toops, Todd J.
Here we report that for renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent tomore » exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals (PGM) contamination that increased NH3 oxidation, and lowered NOx reduction. Therefore, we determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.« less
Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.
1998-01-01
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng
In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the smallmore » but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u – g, 3 mmag in g – r, and 2 mmag in r – i and i – z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys.« less
77 FR 28861 - Secretary of Energy Advisory Board, Small Modular Reactor Subcommittee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board, Small Modular Reactor Subcommittee AGENCY: Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces an open meeting of the Secretary of Energy Advisory Board (SEAB), Small Modular Reactor Subcommittee (SMR). The Federal Advisory...
Yan, Y.; Qian, S.; Littrell, K.; ...
2015-02-13
A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less
40 CFR 1033.112 - Emission diagnostics for SCR systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant quality...
May 23, 2012, Notice of Proposed Rulemaking with revisions related to emissions controls on diesel-powered emergency vehicles and revisions related to scheduled maintenance intervals for diesel engines and vehicles using Selective Catalytic Reduction (SCR)
SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT
A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...
HYBRID SNCR-SCR TECHNOLOGIES FOR NOX CONTROL: MODELING AND EXPERIMENT
The hybrid process of homogeneous gas-phase selective non-catalytic reduction (SNCR) followed by selective catalytic reduction (SCR) of nitric oxide (NO) was investigated through experimentation and modeling. Measurements, using NO-doped flue gas from a gas-fired 29 kW test combu...
Modeling, simulation, and estimation of optical turbulence
NASA Astrophysics Data System (ADS)
Formwalt, Byron Paul
This dissertation documents three new contributions to simulation and modeling of optical turbulence. The first contribution is the formalization, optimization, and validation of a modeling technique called successively conditioned rendering (SCR). The SCR technique is empirically validated by comparing the statistical error of random phase screens generated with the technique. The second contribution is the derivation of the covariance delineation theorem, which provides theoretical bounds on the error associated with SCR. It is shown empirically that the theoretical bound may be used to predict relative algorithm performance. Therefore, the covariance delineation theorem is a powerful tool for optimizing SCR algorithms. For the third contribution, we introduce a new method for passively estimating optical turbulence parameters, and demonstrate the method using experimental data. The technique was demonstrated experimentally, using a 100 m horizontal path at 1.25 m above sun-heated tarmac on a clear afternoon. For this experiment, we estimated C2n ≈ 6.01 · 10-9 m-23 , l0 ≈ 17.9 mm, and L0 ≈ 15.5 m.
Precipitation Characteristics in West and East Africa from Satellite and in Situ Observations
NASA Technical Reports Server (NTRS)
Dezfuli, Amin K.; Ichoku, Charles M.; Mohr, Karen I.; Huffman, George J.
2017-01-01
Using in situ data, three precipitation classes are identified for rainy seasons of West and East Africa: weak convective rainfall (WCR), strong convective rainfall (SCR), and mesoscale convective systems (MCSs).Nearly 75% of the total seasonal precipitation is produced by the SCR and MCSs, even though they represent only 8% of the rain events. Rain events in East Africa tend to have a longer duration and lower intensity than in West Africa, reflecting different characteristics of the SCR and MCS events in these two regions. Surface heating seems to be the primary convection trigger for the SCR, particularly in East Africa, whereas the WCR requires a dynamical trigger such as low-level convergence. The data are used to evaluate the performance of the recently launched Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG)project. The IMERG-based precipitation shows significant improvement over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), particularly in capturing the MCSs, due to its improved temporal resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.
2008-06-23
This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been mademore » at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics computer codes and methodologies applied to SSTAR. Another section of the report details the SSTAR safety design approach which is based upon defense-in-depth providing multiple levels of protection against the release of radioactive materials and how the inherent safety features of the lead coolant, nitride fuel, fast neutron spectrum core, pool vessel configuration, natural circulation, and containment meet or exceed the requirements for each level of protection. The report also includes recent results of a systematic analysis by LANL of data on corrosion of candidate cladding and structural material alloys of interest to SSTAR by LBE and Pb coolants; the data were taken from a new database on corrosion by liquid metal coolants created at LANL. The analysis methodology that considers penetration of an oxidation front into the alloy and dissolution of the trailing edge of the oxide into the coolant enables the long-term corrosion rate to be extracted from shorter-term corrosion data thereby enabling an evaluation of alloy performance over long core lifetimes (e.g., 30 years) that has heretofore not been possible. A number of candidate alloy specimens with special treatments or coatings which might enhance corrosion resistance at the temperatures at which SSTAR would operate were analyzed following testing in the DELTA loop at LANL including steels that were treated by laser peening at LLNL; laser peening is an approach that alters the oxide-metal bonds which could potentially improve corrosion resistance. LLNL is also carrying out Multi-Scale Modeling of the Fe-Cr system with the goal of assisting in the development of cladding and structural materials having greater resistance to irradiation.« less
Seismic isolation of small modular reactors using metamaterials
NASA Astrophysics Data System (ADS)
Witarto, Witarto; Wang, S. J.; Yang, C. Y.; Nie, Xin; Mo, Y. L.; Chang, K. C.; Tang, Yu; Kassawara, Robert
2018-04-01
Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR). For this purpose, a large-scale shake table test on a one-dimensional (1D) periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane) materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility) of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.
Practical small-scale explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, L. J.
1983-01-01
Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.
Chao, Wan-Tien; Lin, Yuan-Yao; Peng, Jin-Long; Huang, Chen-Bin
2014-02-15
Adiabatic soliton spectral compression in a dispersion-increasing fiber (DIF) with a linear dispersion ramp is studied both numerically and experimentally. The anticipated maximum spectral compression ratio (SCR) would be limited by the ratio of the DIF output to the input dispersion values. However, our numerical analyses indicate that SCR greater than the DIF dispersion ratio is feasible, provided the input pulse duration is shorter than a threshold value along with adequate pulse energy control. Experimentally, a SCR of 28.6 is achieved in a 1 km DIF with a dispersion ratio of 22.5.
Sivakumar, Ganapathy; Liu, Chunzhao; Towler, Melissa J.
2014-01-01
Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was μ = 0.173 day−1 with biomass yield of 12.75 g DWL−1. This exceeded that in shake flasks at μ = 0.166 day−1 and 11.10 g DWL−1. Best growth rate and biomass yield at 20 L was μ = 0.147 and 7.77 g DWL−1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. PMID:20687140
Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Moses, David Lewis
2009-11-01
The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) amore » rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of safeguards recommendations are made based on the assumption that the reactor is successfully commercialized and is widely deployed.« less
Commutating Permanent-Magnet Motors At Low Speed
NASA Technical Reports Server (NTRS)
Dolland, C.
1985-01-01
Circuit provides forced commutation during starting. Forced commutation circuit diverts current from inverter SCR's and turns SCR's off during commutation intervals. Silicon controlled rectifier in circuit unnecessary when switch S10 replaced by high-current, high-voltage transistor. At present, high-current, low-voltage device must suffice.
Juliano, Pablo; Temmel, Sandra; Rout, Manoj; Swiergon, Piotr; Mawson, Raymond; Knoerzer, Kai
2013-01-01
Recent research has shown that high frequency ultrasound (0.4-3 MHz), can enhance milkfat separation in small scale systems able to treat only a few milliliters of sample. In this work, the effect of ultrasonic standing waves on milkfat creaming was studied in a 6L reactor and the influence of different frequencies and transducer configurations in direct contact with the fluid was investigated. A recombined coarse milk emulsion with fat globules stained with oil-red-O dye was selected for the separation trials. Runs were performed with one or two transducers placed in vertical (parallel or perpendicular) and horizontal positions (at the reactor base) at 0.4, 1 and/or 2 MHz (specific energy 8.5 ± 0.6 kJ/kg per transducer). Creaming behavior was assessed by measuring the thickness of the separated cream layer. Other methods supporting this assessment included the measurement of fat content, backscattering, particle size distribution, and microscopy of samples taken at the bottom and top of the reactor. Most efficient creaming was found after treatment at 0.4 MHz in single and double vertical transducer configurations. Among these configurations, a higher separation rate was obtained when sonicating at 0.4 MHz in a vertical perpendicular double transducer setup. The horizontal transducer configuration promoted creaming at 2 MHz only. Fat globule size increase was observed when creaming occurred. This research highlights the potential for enhanced separation of milkfat in larger scale systems from selected transducer configurations in contact with a dairy emulsion, or emulsion splitting in general. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boravelli, Sai Chandra Teja
This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.
Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong
2008-01-01
In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).
Zhou, Dong Chi; Yang, Xiu Hong; Zhan, Xiao Li; Gu, Yan Hong; Guo, Li Li; Jin, Hui Min
2018-06-01
This study aimed to evaluate the correlation between lean body mass (LBM) and nutritional status in hemodialysis (HD) patients to better predict their long-term prognosis. Anthropometric body measurements and biochemical parameters were recorded from 222 patients on maintenance hemodialysis (MHD) at the Shanghai Pudong Hospital Hemodialysis Center. LBM was calculated using the serum creatinine index (LBM-SCR), mid-arm muscle circumference (LBM-MAMC), and dominant-arm hand-grip strength (LBM-HGS). Patient mortality and hospitalization were observed after 24 months. LBMs measured from LBM-SCR and LBM-MAMC were associated with sex, body mass index (BMI), serum albumin, and serum creatinine (SCR) ( p < 0.05). Through three methods of LBM evaluation, low LBM was shown to be associated with a higher mortality in patients undergoing HD ( p < 0.05). In addition, the rate of hospitalization among these patients was significantly increased ( p < 0.05). Performing multivariate regression analysis using mortality and hospitalization as the dependent variable, we found LBM-SCR and LBM-HGS are strongly associated with hospitalization and mortality in HD patients, indicating LBM is an important factor in prediction of outcomes in those patients. LBM is associated with nutritional parameters in HD patients, and LBM-SCR, HGS, and MAMC are simple approaches for accurately predicting the patient's risk of hospitalization and/or death.
NASA Astrophysics Data System (ADS)
Li, Ming-yuan; Guo, Rui-tang; Hu, Chang-xing; Sun, Peng; Pan, Wei-guo; Liu, Shu-ming; Sun, Xiao; Liu, Shuai-wei; Liu, Jian
2018-04-01
The deactivation of SCR catalyst caused by K species contained in the fly ash would suppress its DeNOx performance. In this study, it was manifested that the modification of Ce/TiO2 catalyst with P could enhance its K tolerance. To understand the promotion mechanism, the fresh and poisoned catalyst samples were subjected to the characterization techniques including BET, XRD, XPS, H2-TPR, NH3-TPD and in situ DRIFT. The results elucidated that the introduction of P species could increase the reducibility of Ce species and generate more surface chemisorbed oxygen, along with the strengthened surface acidity for NH3 adsorption. It seemed that the NH3-SCR reaction mechanism over Ce/TiO2 catalyst was a combination of L-H mechanism (<200 °C) and E-R mechanism (≥200 °C). After the addition of P species, the NO oxidation over Ce/TiO2 catalyst was also accelerated, accompanied by the broadened temperature window for the NH3-SCR reaction under the control of L-H mechanism. The promoted NH3 species adsorption and the generated more NO2 over P-Ce/TiO2 catalyst were conducive to the NH3-SCR reaction through L-H pathway, which might be the primary reason for its good K resistance.
Øvlisen, Andreas K.; Oest, Anders; Bendtsen, Mette D.; Bæch, John; Johansen, Preben; Lynggaard, Line S.; Mølle, Ingolf; Mortensen, Thomas B.; Weber, Duruta; Ertner, Gideon; Schöllkopf, Claudia; Thomassen, Jesper Q.; Nielsen, Ove Juul; Østgård, Lene Sofie Granfeldt; Bøgsted, Martin; Dybkær, Karen; Johnsen, Hans E.
2018-01-01
Stringent complete remission (sCR) of acute myeloid leukemia is defined as normal hematopoiesis after therapy. Less sCR, including non-sCR, was introduced as insufficient blood platelet, neutrophil, or erythrocyte recovery. These latter characteristics were defined retrospectively as postremission transfusion dependency and were suggested to be of prognostic value. In the present report, we evaluated the prognostic impact of achieving sCR and non-sCR in the Danish National Acute Leukaemia Registry, including 769 patients registered with classical CR (ie, <5% blasts in the postinduction bone marrow analysis). Individual patients were classified as having sCR (n = 360; 46.8%) or non-sCR (n = 409; 53.2%) based on data from our national laboratory and transfusion databases. Survival analysis revealed that patients achieving sCR had superior overall survival (hazard ratio [HR], 1.34; 95% confidence interval [CI], 1.10-1.64) as well as relapse-free survival (HR, 1.25; 95% CI, 1.03-1.51) compared with those with non-sCR after adjusting for covariates. Cox regression analysis regarding the impact of the stringent criteria for blood cell recovery identified these as significant and independent variables. In conclusion, this real-life register study supports the international criteria for response evaluation on prognosis and, most importantly, documents each of the 3 lineage recovery criteria as contributing independently. PMID:29523528
Meso and Micro Scale Propulsion Concepts for Small Spacecraft
2005-06-14
the inner diameter of the fuel jet tube was 500 gm, while the inner diameter of the air jet tube was 760 pim. Figure 2. Meso-scale whirl combustion of...decomposition. This mechanism was developed by comparison of model predictions with experimental data obtained from shock tube and static reactor...relative to the true gas phase temperature. Air on for exhaust tube cooling•" 2500 0L- CH3 NO 2 off Air off CH3NO 2 on H2 off T Ŕ 1000 S500 Air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Hirt, Evelyn H.; Coles, Garill A.
Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. The economics of small reactors (including AdvSMRs) will be impacted by the reduced economy-of-scale savings when compared to traditional light water reactors. The most significant controllable element of the day-to-day costs involves operations and maintenance (O&M). Enhancing affordability of AdvSMRs through technologies that help control O&M costs will be critical to ensuring their practicality for wider deployment.A significant component of O&M costs is the management and mitigation of degradation of components due to their impact on planning maintenance activities and staffing levels. Technologies that help characterizemore » real-time risk of failure of key components are important in this context. Given the possibility of frequently changing AdvSMR plant configurations, approaches are needed to integrate three elements – advanced plant configuration information, equipment condition information, and risk monitors – to provide a measure of risk that is customized for each AdvSMR unit and support real-time decisions on O&M. This article describes an overview of ongoing research into diagnostics/prognostics and enhanced predictive risk monitors (ERM) for this purpose.« less
Gaut, Joseph P.; Crimmins, Dan L.; Ohlendorf, Matt F.; Lockwood, Christina M.; Griest, Terry A.; Brada, Nancy A.; Hoshi, Masato; Sato, Bryan; Hotchkiss, Richard S.; Jain, Sanjay; Ladenson, Jack H.
2014-01-01
Background Acute kidney injury (AKI) affects 45% of critically ill patients resulting in increased morbidity and mortality. The diagnostic standard, serum creatinine (SCr), is non-specific and may not increase until days after injury. There is significant need for a renal specific AKI biomarker detectable early enough that there would be a potential window for therapeutic intervention. In this study, we sought to identify a renal specific biomarker of AKI. Methods Gene expression data was analyzed from normal mouse tissues to identify kidney specific genes, one of which was Miox. Monoclonal antibodies were generated to recombinant myo-inositol oxygenase (MIOX), and an immunoassay was developed to quantify MIOX in plasma. The immunoassay was tested in animals and retrospectively in patients with and without AKI. Results Kidney tissue specificity of MIOX was supported by Western blot. Immunohistochemistry localized MIOX to the proximal renal tubule. Plasma MIOX, undetectable at baseline, increased 24 hours following AKI in mice. Plasma MIOX was increased in critically ill patients with AKI (12.4 ± 4.3 ng/mL, n=42) compared with patients without AKI (0.5 ± 0.3 ng/mL, n=17) and was highest in patients with oliguric AKI (20.2 ± 7.5 ng/mL, n=23). Plasma MIOX increased 54.3 ± 3.8 hours before the increase in SCr. Conclusions MIOX is a renal specific, proximal tubule protein that is increased in plasma of animals and critically ill patients with AKI. MIOX preceded the elevation in SCr by approximately two days in human patients. Large-scale studies are warranted to further investigate MIOX as an AKI biomarker. PMID:24486646
Hydrogen generation from biogenic and fossil fuels by autothermal reforming
NASA Astrophysics Data System (ADS)
Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard
Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.
Stramer, Katja; Bratan, Tanja; Byrne, Emma; Mohammad, Yara; Russell, Jill
2008-01-01
Objective To explore the introduction of a centrally stored, shared electronic patient record (the summary care record (SCR)) in England and draw wider lessons about the implementation of large scale information technology projects in health care. Design Multi-site, mixed method case study applying utilisation focused evaluation. Setting Four early adopter sites for the SCR in England—three in urban areas of relative socioeconomic deprivation and the fourth in a relatively affluent rural area. Data sources and analysis Data included 250 staff interviews, 1500 hours of ethnographic observation, interviews and focus groups with 170 patients and carers, 2500 pages of correspondence and documentary evidence, and incorporation of relevant surveys and statistics produced by others. These were analysed by using a thematic approach drawing on (and extending) a theoretical model of complex change developed in a previous systematic review. Main findings The mixed fortunes of the SCR programme in its first year were largely explained by eight interacting influences. The first was the SCR’s material properties (especially technical immaturity and lack of interoperability) and attributes (especially the extent to which potential adopters believed the benefits outweighed the risks). The second was adopters’ concerns (especially about workload and the ethicality of sharing “confidential” information on an implied consent model). The third influence was interpersonal influence (for example, opinion leaders, champions, facilitators), and the fourth was organisational antecedents for innovation (for example past experience with information technology projects, leadership and management capacity, effective data capture systems, slack resources). The fifth was organisational readiness for the SCR (for example, innovation-system fit, tension for change, power balances between supporters and opponents, baseline data quality). The sixth was the implementation process (including the nature of the change model and the extent to which new routines associated with the SCR aligned with existing organisational routines). The seventh influence was the nature and quality of links between different parts of the system, and the final one was the wider environment (especially the political context of the programme). Conclusion Shared electronic records are not plug-in technologies. They are complex innovations that must be accepted by individual patients and staff and also embedded in organisational and inter-organisational routines. This process is heavily influenced at the micro-level by the material properties of the technology, individuals’ attitudes and concerns, and interpersonal influence; at the meso-level by organisational antecedents, readiness, and operational aspects of implementation; and at the macro-level by institutional and socio-political forces. A case study approach and multi-level theoretical analysis can illuminate how contextual factors shape, enable, and constrain new, technology supported models of patient care. PMID:18948344
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... and engine manufacturers began planning to meet those requirements by optimizing engine designs for low emissions and adding high-efficiency aftertreatment systems. Manufacturers examined the use of... recirculation, and selective catalytic reduction (SCR). SCR systems use a nitrogen-containing reducing agent...
Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...
USDA-ARS?s Scientific Manuscript database
Service-sire conception rate (SCR), a phenotypic fertility evaluation based on conventional (nonsexed) inseminations from parities 1 through 5, was implemented by USDA in August 2008. Using insemination data from 2005 through 2009, the SCR procedure was applied separately for nulliparous heifer inse...
He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri
2012-06-01
The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.
Small-Scale Waste-to-Energy Technology for Contingency Bases
2012-05-24
Expedient, No Waste Sorting Technology Readiness Level High Fuel Demand Water Required Steam Infrastructure Required Air Emissions Gasification ...Full gasification system • Costs $26K • GM Industrial Engine (GM 4 Cylinder, 3.00 L) • MeccAlte Generator Head • Imbert type downdraft reactor...Solid waste volume reduction − Response to waste streams biomass , refuse-derived fuel, shredded waste − Operation and maintenance requirements
Wesseling, Catharina; Aragón, Aurora; González, Marvin; Weiss, Ilana; Glaser, Jason; Rivard, Christopher J; Roncal-Jiménez, Carlos; Correa-Rotter, Ricardo; Johnson, Richard J
2016-12-08
To study Mesoamerican nephropathy (MeN) and its risk factors in three hot occupations. Cross-sectional. Chinandega and León municipalities, a MeN hotspot on the Nicaraguan Pacific coast, January-February 2013. 194 male workers aged 17-39 years: 86 sugarcane cutters, 56 construction workers, 52 small-scale farmers. (1) Differences between the three occupational groups in prevalences/levels of socioeconomic, occupational, lifestyle and health risk factors for chronic kidney disease (CKD) and in biomarkers of kidney function and hydration; (2) differences in prevalences/levels of CKD risk factors between workers with reduced estimated glomerular filtration rate (eGFR CKD-EPI <80 mL/min/1.73 m 2 ) and workers with normal kidney function (eGFR CKD-EPI ≥80 mL/min/1.73 m 2 ). Sugarcane cutters were more exposed to heat and consumed more fluid on workdays and had less obesity, lower blood sugar, lower blood pressure and a better lipid profile. Reduced eGFR occurred in 16%, 9% and 2% of sugarcane cutters, construction workers and farmers, respectively (trend cane > construction > farming, p=0.003). Significant trends (cane > construction > farming) were also observed for high serum urea nitrogen (blood urea nitrogen (BUN) >20 mg/dL), high serum creatinine (SCr >1.2 mg/dL), low urinary pH (≤5.5) and high BUN/SCr ratio (>20) but not for high urinary specific gravity (≥1.030). Sugarcane cutters also more often had proteinuria and blood and leucocytes in the urine. Workers with eGFR <80 mL/min/1.73 m 2 reported a higher intake of water and lower intake of sugary beverages. Serum uric acid levels related strongly and inversely to eGFR levels (adj β -10.4 mL/min/1.73 m 2 , 95% CI -12.2 to -8.5, p<0.001). No associations were observed for other metabolic risk factors, pesticides, non-steroidal anti-inflammatory drugs or alcohol. Among cane cutters, consumption of electrolyte hydration solution appeared preventive (adj β 8.1 mL/min/1.73 m 2 , p=0.09). Heat stress, dehydration and kidney dysfunction were most common among sugarcane cutters. Kidney dysfunction also occurred to a lesser extent among construction workers, but hardly at all among small-scale farmers. High serum uric acid was associated with reduced kidney function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senor, David J.; Painter, Chad L.; Geelhood, Ken J.
2007-12-01
Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less
The moving-ring field-reversed mirror prototype reactor
NASA Astrophysics Data System (ADS)
Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.
1981-03-01
A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.
Heterogeneous decomposition of silane in a fixed bed reactor
NASA Technical Reports Server (NTRS)
Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.
1982-01-01
Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.
Mallaney, Mary; Wang, Szu-Han; Sreedhara, Alavattam
2014-01-01
During a small-scale cell culture process producing a monoclonal antibody, a larger than expected difference was observed in the charge variants profile of the harvested cell culture fluid (HCCF) between the 2 L and larger scales (e.g., 400 L and 12 kL). Small-scale studies performed at the 2 L scale consistently showed an increase in acidic species when compared with the material made at larger scale. Since the 2 L bioreactors were made of clear transparent glass while the larger scale reactors are made of stainless steel, the effect of ambient laboratory light on cell culture process in 2 L bioreactors as well as handling the HCCF was carefully evaluated. Photoreactions in the 2 L glass bioreactors including light mediated increase in acidic variants in HCCF and formulation buffers were identified and carefully analyzed. While the acidic variants comprised of a mixture of sialylated, reduced disulfide, crosslinked (nonreducible), glycated, and deamidated forms, an increase in the nonreducible forms, deamidation and Met oxidation was predominantly observed under light stress. The monoclonal antibody produced in glass bioreactors that were protected from light behaved similar to the one produced in the larger scale. Our data clearly indicate that care should be taken when glass bioreactors are used in cell culture studies during monoclonal antibody production. © 2014 American Institute of Chemical Engineers.
Small and medium power reactors 1987
NASA Astrophysics Data System (ADS)
1987-12-01
This TECDOC follows the publication of TECDOC-347: Small and Medium Power Reactors (SMPR) Project Initiation Study, Phase 1, published in 1985 and TECDOC-376: Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power program. It consists of two parts: (1) guidelines for the introduction of small and medium power reactors in developing countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of small and medium power reactors in developing countries; (2) up-dated information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex 1 of the above mentioned TECDOC-347.
Membrane Transport Phenomena (MTP)
NASA Technical Reports Server (NTRS)
Mason, Larry W.
1997-01-01
The activities during the fourth semi-annual period of the MTP project have involved the completion of the Science Concept Review (SCR) presentation and peer review, continuation of analyses for the mass transfer coefficients measured from MTA experiment data, and development of the second generation (MTP-II) instrument. The SCR panel members were generated several recommendations for the MTP project recommendations are : Table 1 Summary of Primary SCR Panel Recommendations (1) Continue and refine development of mass transfer coefficient analyses (2) Refine and upgrade analytical modeling associated with the MTP experiment. (3) Increase resolution of measurements in proximity of the membrane interface. (4) Shift emphasis to measurement of coupled transport effects (i.e., development of MTP phase II experiment concept).
Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.
Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S
In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.
Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...
Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems
ERIC Educational Resources Information Center
McKinley, Thomas L.
2009-01-01
Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…
The Interface of Opinion, Understanding and Evaluation While Learning about a Socioscientific Issue
ERIC Educational Resources Information Center
Witzig, Stephen B.; Halverson, Kristy L.; Siegel, Marcelle A.; Freyermuth, Sharyn K.
2013-01-01
Scientific literacy is an important goal for science education, especially within controversial socioscientific issues. In this study, we analysed 143 students' research reports about stem cell research (SCR) for how they addressed specific source evaluation criteria provided within the assignment. We investigated students' opinions about SCR, how…
Detail view of northwest side of Signal Corps Radar (S.C.R.) ...
Detail view of northwest side of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing portion of concrete gutter drainage system and asphalt floor tiles, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
NASA Technical Reports Server (NTRS)
Hoffman, S.
1979-01-01
Approximately 512 bibliographies are presented for the time period from FY 77 to FY 79. Several non-SCR publications and a few papers not included in the last publication are included. Topics include propulsion, stratospheric emissions impact, materials and structure, aerodynamic performance, and stability and control.
View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter ...
View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Fire Control Stations (Buildings 621 and 622) and concrete stairway (top left) camera facing southwest - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
Using the SCR Specification Technique in a High School Programming Course.
ERIC Educational Resources Information Center
Rosen, Edward; McKim, James C., Jr.
1992-01-01
Presents the underlying ideas of the Software Cost Reduction (SCR) approach to requirements specifications. Results of applying this approach to the teaching of programing to high school students indicate that students perform better in writing programs. An appendix provides two examples of how the method is applied to problem solving. (MDH)
Borillo, Guilherme C; Tadano, Yara S; Godoi, Ana F L; Santana, Simone S M; Weronka, Fernando M; Penteado Neto, Renato A; Rempel, Dennis; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Potgieter, Johannes H; Godoi, Ricardo H M
2015-03-03
The aim of this investigation was to quantify organic and inorganic gas emissions from a four-cylinder diesel engine equipped with a urea selective catalytic reduction (SCR) system. Using a bench dynamometer, the emissions from the following mixtures were evaluated using a Fourier transform infrared (FTIR) spectrometer: low-sulfur diesel (LSD), ultralow-sulfur diesel (ULSD), and a blend of 20% soybean biodiesel and 80% ULSD (B20). For all studied fuels, the use of the SCR system yielded statistically significant (p < 0.05) lower NOx emissions. In the case of the LSD and ULSD fuels, the SCR system also significantly reduced emissions of compounds with high photochemical ozone creation potential, such as formaldehyde. However, for all tested fuels, the SCR system produced significantly (p < 0.05) higher emissions of N2O. In the case of LSD, the NH3 emissions were elevated, and in the case of ULSD and B20 fuels, the non-methane hydrocarbon (NMHC) and total hydrocarbon of diesel (HCD) emissions were significantly higher.
Presence of FoxP3+ regulatory T Cells predicts outcome of subclinical rejection of renal allografts.
Bestard, Oriol; Cruzado, Josep M; Rama, Inés; Torras, Joan; Gomà, Montse; Serón, Daniel; Moreso, Francesc; Gil-Vernet, Salvador; Grinyó, Josep M
2008-10-01
Subclinical rejection (SCR) of renal allografts refers to histologic patterns of acute rejection despite stable renal function. The clinical approach to SCR is controversial; it would be helpful to identify biomarkers that could determine whether the identified cellular infiltrates were detrimental. For investigation of whether the presence of FoxP3+ regulatory T cells (Treg) could help determine the functional importance of tubulointerstitial infiltrates observed in 6-mo protocol biopsies, 37 cases of SCR were evaluated. The presence of FoxP3+ Treg discriminated harmless from injurious infiltrates, evidenced by independently predicting better graft function 2 and 3 yr after transplantation. Furthermore, the FoxP3+ Treg/CD3+ T cell ratio positively correlated with graft function at 2 yr after transplantation, suggesting that an increasing proportion of Treg within the global T cell infiltrate may facilitate renal engraftment; therefore, immunostaining for FoxP3+ Treg in patients with SCR on protocol biopsies may ultimately be useful to identify patients who may require alterations in their immunosuppressive regimens.
Presence of FoxP3+ Regulatory T Cells Predicts Outcome of Subclinical Rejection of Renal Allografts
Bestard, Oriol; Cruzado, Josep M.; Rama, Inés; Torras, Joan; Gomà, Montse; Serón, Daniel; Moreso, Francesc; Gil-Vernet, Salvador; Grinyó, Josep M.
2008-01-01
Subclinical rejection (SCR) of renal allografts refers to histologic patterns of acute rejection despite stable renal function. The clinical approach to SCR is controversial; it would be helpful to identify biomarkers that could determine whether the identified cellular infiltrates were detrimental. For investigation of whether the presence of FoxP3+ regulatory T cells (Treg) could help determine the functional importance of tubulointerstitial infiltrates observed in 6-mo protocol biopsies, 37 cases of SCR were evaluated. The presence of FoxP3+ Treg discriminated harmless from injurious infiltrates, evidenced by independently predicting better graft function 2 and 3 yr after transplantation. Furthermore, the FoxP3+ Treg/CD3+ T cell ratio positively correlated with graft function at 2 yr after transplantation, suggesting that an increasing proportion of Treg within the global T cell infiltrate may facilitate renal engraftment; therefore, immunostaining for FoxP3+ Treg in patients with SCR on protocol biopsies may ultimately be useful to identify patients who may require alterations in their immunosuppressive regimens. PMID:18495961
Fuel processing in integrated micro-structured heat-exchanger reactors
NASA Astrophysics Data System (ADS)
Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.
Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.
Silicon production in a fluidized bed reactor
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1986-01-01
Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.
Instrumentation, control and automation for full-scale manure-based biogas systems.
Wiese, J; Haeck, M
2006-01-01
In recent years manure-based biogas plants (MBBP) have won more and more importance, because of the numerous ecological advantages. The processes are similar to processes, which have been well known for many decades in anaerobic wastewater/sludge treatment. As a result of technical progress and permanently rising prices for non-renewable energy, MBBPs have become more and more economically reasonable. Because of the economies of scale law more and more larger MBBPs are being built (250-2000 kW(el)). With regard to investment costs, reactor volumes and complexity etc., these (centralized) plants are comparable with small wastewater treatment plants (WWTP). Consequently, as actually in the case of the small WWTPs a rising use of instrumentation, control and automation (ICA) for larger MBBPs can be observed.
Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation.
Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J
2017-06-07
An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.
Yuan, Jiajin; Liu, Yingying; Ding, Nanxiang; Yang, Jiemin
2014-01-01
Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies.
White, Emily C; Graham, Bronwyn M
2016-10-01
Anxiety disorders are more prevalent in women than men. One contributing factor may be the sex hormone estradiol, which is known to impact the long term recall of conditioned fear extinction, a laboratory procedure that forms the basis of exposure therapy for anxiety disorders. To date, the literature examining estradiol and fear extinction in humans has focused primarily on physiological measures of fear, such as skin conductance response (SCR) and fear potentiated startle. This is surprising, given that models of anxiety identify at least three important components: physiological symptoms, cognitive beliefs, and avoidance behavior. To help address this gap, we exposed women with naturally high (n=20) or low estradiol (n=19), women using hormonal contraceptives (n=16), and a male control group (n=18) to a fear extinction task, and measured SCR, US expectancy and CS valence ratings. During extinction recall, low estradiol was associated with greater recovery of SCR, but was not related to US expectancy or CS evaluation. Importantly, women using hormonal contraceptives showed a dissociation between SCR and cognitive beliefs: they exhibited a greater recovery of SCR during extinction recall, yet reported similar US expectancy and CS valence ratings to the other female groups. This divergence underscores the importance of assessing multiple measures of fear when examining the role of estradiol in human fear extinction, especially when considering the potential of estradiol as an enhancement for psychological treatments for anxiety disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Heliospheric current sheet and effects of its interaction with solar cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malova, H. V., E-mail: hmalova@yandex.ru; Popov, V. Yu.; Grigorenko, E. E.
2016-08-15
The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in themore » given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.« less
NASA Astrophysics Data System (ADS)
Ishii, Masahiro; Kouno, Hiroaki; Yahiro, Masanobu
2017-06-01
We propose a practical effective model by introducing temperature (T ) dependence to the coupling strengths of four-quark and six-quark Kobayashi-Maskawa-'t Hooft interactions in the 2 +1 flavor Polyakov-loop extended Nambu-Jona-Lasinio model. The T dependence is determined from lattice QCD (LQCD) data on the renormalized chiral condensate around the pseudocritical temperature Tcχ of chiral crossover and the screening-mass difference between π and a0 mesons in T >1.1 Tcχ where only the U (1 )A-symmetry breaking survives. The model well reproduces LQCD data on screening masses Mξscr(T ) for both pseudoscalar mesons (ξ =π ,K ,η ,η' ) and scalar ones (ξ =a0,κ ,σ ,f0 ), particularly in T ≳Tcχ . Using this effective model, we predict meson pole masses Mξpole(T ) for scalar and pseudoscalar mesons. For η' meson, the prediction is consistent with the experimental value at finite T measured in heavy-ion collisions. We point out that the relation Mξscr(T )-Mξpole(T )≈Mξ' scr(T )-Mξ' pole(T ) is pretty good when ξ and ξ' are the scalar mesons, and show that the relation Mξscr(T )/Mξ' scr(T )≈Mξpole(T )/Mξ' pole(T ) is well satisfied within 20% error when ξ and ξ' are the pseudoscalar mesons and also when ξ and ξ' are the scalar mesons.
Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Feng; Mei, Donghai; Wang, Yilin
Active centers in Cu/SSZ-13 selective catalytic reduction (SCR) catalysts have been recently identified as isolated Cu2+ and [CuII(OH)]+ ions. A redox reaction mechanism has also been established, where Cu-ions cycle between CuI and CuII oxidation states during SCR reaction. While the mechanism for the reduction half-cycle (CuII CuI) is reasonably well understood, that for the oxidation half-cycle (CuI CuII) remains an unsettled debate. Herein we report detailed reaction kinetics on low-temperature standard NH3-SCR, supplemented by DFT calculations, as strong evidence that the low-temperature oxidation half-cycle occurs with the participation of two isolated CuI ions, via formation of a transient [CuI(NH3)2]+-O2-[CuI(NH3)2]+more » intermediate. The feasibility of this reaction mechanism is confirmed from DFT calculations, and the simulated energy barrier and rate constants are consistent with experimental findings. Significantly, the low-temperature standard SCR mechanism proposed here provides full consistency with low-temperature SCR kinetics. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
Boyd, Mark R.; Henry, Todd J.; Jao, Wei-Chun; Subasavage, John P.; Hambly, Nigel C.
2011-09-01
Here we present 1584 new southern proper motion systems with μ >= 0farcs18 yr-1 and 16.5 > R 59F >= 18.0. This search complements the six previous SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky for stars within the same proper motion range, but with R 59F <= 16.5. As in previous papers, we present distance estimates for these systems and find that three systems are estimated to be within 25 pc, including one, SCR 1546-5534, possibly within the RECONS 10 pc horizon at 6.7 pc, making it the second nearest discovery of the searches. We find 97 white dwarf candidates with distance estimates between 10 and 120 pc, as well as 557 cool subdwarf candidates. The subdwarfs found in this paper make up nearly half of the subdwarf systems reported from our SCR searches and are significantly redder than those discovered thus far. The SCR searches have now found 155 red dwarfs estimated to be within 25 pc, including 10 within 10 pc. In addition, 143 white dwarf candidates and 1155 cool subdwarf candidates have been discovered. The 1584 systems reported here augment the sample of 4724 systems previously discovered in our SCR searches and imply that additional systems fainter than R 59F = 18.0 are yet to be discovered.
Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao
2017-01-01
In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.
Craig, J.M.; Thomas, M.V.; Nichols, S.J.
2005-01-01
Several USA state, federal, and Canadian agencies study lake sturgeon (Acipenser fulvescens) within the St Clair River and Lake St Clair, collectively referred to hereafter as the St Clair River (SCR) system. Previously, there has been no set standard for determining condition for SCR system lake sturgeon. Condition measures the variation from the expected weight for length as an indicator of fatness, general well-being, gonad development, etc. The aim of this project was to determine the length weight relationship of lake sturgeon caught from the SCR system, from which a relative condition factor (Kn) equation could be derived. Total length (TL, mm) and weight (W, kg) were measured for 1074 lake sturgeon (101 males and 16 females were identifiable) collected by setline and bottom trawl from the SCR system in May-September, 1997-2002. Analysis of covariance found no difference in the length-weight relationship between sampling gear or sex. Least-squares regression of log10W ?? log10TL produced the overall equation logW = 3.365logTL - 9.320. Using the exponential form of the slope and y-intercept, relative condition factor for lake sturgeon from the SCR system can be calculated as Kn - W/[(4.786 ?? 10-10)(TL3.365)]. Equations for males and females were also developed. Overall, body condition was significantly correlated with both age and girth; no significant difference in Kn by sex was found. In general, the SCR lake sturgeon population was near the upper ends of growth and condition ranges listed in the literature, comparable with those populations that are at similar latitudes. Although condition factors should be interpreted with caution, proper use of a standard equation provides a non-lethal measure of overall fish health that can be used by biologists and managers in ongoing efforts to restore lake sturgeon throughout the Great Lakes. ?? 2005 Blackwell Verlag, Berlin.
Craig, Jaquelyn M.; Thomas, Michael V.; Nichols, S. Jerrine
2005-01-01
Several USA state, federal, and Canadian agencies study lake sturgeon (Acipenser fulvescens) within the St Clair River and Lake St Clair, collectively referred to hereafter as the St Clair River (SCR) system. Previously, there has been no set standard for determining condition for SCR system lake sturgeon. Condition measures the variation from the expected weight for length as an indicator of fatness, general well-being, gonad development, etc. The aim of this project was to determine the length-weight relationship of lake sturgeon caught from the SCR system, from which a relative condition factor (Kn) equation could be derived. Total length (TL, mm) and weight (W, kg) were measured for 1074 lake sturgeon (101 males and 16 females were identifiable) collected by setline and bottom trawl from the SCR system in May-September, 1997-2002. Analysis of covariance found no difference in the length-weight relationship between sampling gear or sex. Least-squares regression of log10W x log10TL produced the overall equation logW = 3.365logTL - 9.320. Using the exponential form of the slope and y-intercept, relative condition factor for lake sturgeon from the SCR system can be calculated as Kn = W/ [(4.786 x 10-10)(TL3.365)]. Equations for males and females were also developed. Overall, body condition was significantly correlated with both age and girth; no significant difference in Kn by sex was found. In general, the SCR lake sturgeon population was near the upper ends of growth and condition ranges listed in the literature, comparable with those populations that are at similar latitudes. Although condition factors should be interpreted with caution, proper use of a standard equation provides a non-lethal measure of overall fish health that can be used by biologists and managers in ongoing efforts to restore lake sturgeon throughout the Great Lakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Kenichi; Kawabata, Hisaya; Satsuma, Atsushi
1999-06-24
It is widely accepted that selective catalytic reduction (SCR) of NO by hydrocarbons is a potential method to remove NO{sub x} practically in excess O{sub 2}. Although many studies on SCR are related to zeolitic catalysts, metal oxides are also of importance as promising SCR catalysts due to their high durability. Among oxide catalysts, {gamma}-Al{sub 2}O{sub 3} is one of the most active single oxides for SCR. The mechanism of the selective catalytic reduction (SCR) of NO by C{sub 3}H{sub 6} on Al{sub 2}O{sub 3} was investigated using in situ IR spectroscopy. Attention was focused on the reactivity of themore » adsorbed acetate and nitrates on the Al{sub 2}O{sub 3} surface. IR spectra showed that the reaction starts with the nitrates formation from NO + O{sub 2} followed by its reaction with C{sub 3}H{sub 6} to form acetate, which becomes the predominant surface species in the steady-state condition. The acetate band, which was stable in He or NO, significantly decreased when the flowing gas was switched to NO + O{sub 2}. A complementary set of experiments monitoring gas composition showed that N{sub 2} and CO{sub x} were produced by the reaction of acetate with NO + O{sub 2}. The rate of acetate consumption in NO + O{sub 2} exhibited the same order of magnitude as the NO reduction rate, indicating that the acetate is active as a reductant and takes part in the N{sub 2} formation. Nitrates can oxidize both C{sub 3}H{sub 6} and acetate, and are mostly reduced to N{sub 2}. A proposed reaction scheme explains the role of O{sub 2} in facilitating SCR of NO.« less
Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward?
Bechara, Antoine; Dolan, Sara; Hindes, Andrea
2002-01-01
On a decision-making instrument known as the "gambling task" (GT), a subgroup of substance dependent individuals (SDI) opted for choices that yield high immediate gains in spite of higher future losses. This resembles the behavior of patients with ventromedial (VM) prefrontal cortex lesions. In this study, we addressed the possibility that hypersensitivity to reward may account for the "myopia" for the future in this subgroup of SDI. We used a variant version of the GT, in which the good decks yielded high immediate punishment but higher delayed reward. The bad decks yielded low immediate punishment and lower delayed reward. We measured the skin conductance response (SCR) of subjects after receiving reward (reward SCR) and during their pondering from which deck to choose (anticipatory SCR). A subgroup of SDI who was not impaired on the original GT performed normally on the variant GT. The subgroup of SDI who was impaired on the original GT showed two levels of performance on the variant GT. One subgroup (36% of the sample) performed poorly on the variant GT, and showed similar behavioral and physiological impairments to VM patients. The other subgroup of SDI (64% of the sample) performed normally on the variant task, but had abnormally large physiological responses to reward, i.e. large SCR after receiving reward (reward SCR) and large SCR in anticipation of outcomes that yield large reward. Thus, the combined cognitive and physiological approach of assessing decision-making characterizes three sub-populations of SDI. One sub-population is without impairments that can be detected by any measure of the GT paradigm. Another sub-population is similar to VM patients in that they are insensitive to the future, both positive and negative. A third sub-population is hypersensitive to reward, so that the presence or the prospect of receiving, reward dominates their behavior.
Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan
2005-01-01
In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.
Establishment and assessment of code scaling capability
NASA Astrophysics Data System (ADS)
Lim, Jaehyok
In this thesis, a method for using RELAP5/MOD3.3 (Patch03) code models is described to establish and assess the code scaling capability and to corroborate the scaling methodology that has been used in the design of the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility. It was sponsored by the United States Nuclear Regulatory Commission (USNRC) under the program "PUMA ESBWR Tests". PUMA-E facility was built for the USNRC to obtain data on the performance of the passive safety systems of the General Electric (GE) Nuclear Energy Economic Simplified Boiling Water Reactor (ESBWR). Similarities between the prototype plant and the scaled-down test facility were investigated for a Gravity-Driven Cooling System (GDCS) Drain Line Break (GDLB). This thesis presents the results of the GDLB test, i.e., the GDLB test with one Isolation Condenser System (ICS) unit disabled. The test is a hypothetical multi-failure small break loss of coolant (SB LOCA) accident scenario in the ESBWR. The test results indicated that the blow-down phase, Automatic Depressurization System (ADS) actuation, and GDCS injection processes occurred as expected. The GDCS as an emergency core cooling system provided adequate supply of water to keep the Reactor Pressure Vessel (RPV) coolant level well above the Top of Active Fuel (TAF) during the entire GDLB transient. The long-term cooling phase, which is governed by the Passive Containment Cooling System (PCCS) condensation, kept the reactor containment system that is composed of Drywell (DW) and Wetwell (WW) below the design pressure of 414 kPa (60 psia). In addition, the ICS continued participating in heat removal during the long-term cooling phase. A general Code Scaling, Applicability, and Uncertainty (CSAU) evaluation approach was discussed in detail relative to safety analyses of Light Water Reactor (LWR). The major components of the CSAU methodology that were highlighted particularly focused on the scaling issues of experiments and models and their applicability to the nuclear power plant transient and accidents. The major thermal-hydraulic phenomena to be analyzed were identified and the predictive models adopted in RELAP5/MOD3.3 (Patch03) code were briefly reviewed.
Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
NASA Astrophysics Data System (ADS)
Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei
2016-04-01
Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.
Inoue, Yusuke; Ikka, Tsunakuni; Kishimoto, Atsuo
2018-01-01
Abstract Owing to the rapid progress in stem cell research (SCR) and regenerative medicine (RM), society's expectation and interest in these fields are increasing. For effective communication on issues concerning SCR and RM, surveys for understanding the interests of stakeholders is essential. For this purpose, we conducted a large‐scale survey with 2,160 public responses and 1,115 responses from the member of the Japanese Society for Regenerative Medicine. Results showed that the public is more interested in the post‐realization aspects of RM, such as cost of care, countermeasures for risks and accidents, and clarification of responsibility and liability, than in the scientific aspects; the latter is of greater interest only to scientists. Our data indicate that an increased awareness about RM‐associated social responsibility and regulatory framework is required among scientists, such as those regarding its benefits, potential accidents, abuse, and other social consequences. Awareness regarding the importance of communication and education for scientists are critical to bridge the gaps in the interests of the public and scientists. Stem Cells Translational Medicine 2018;7:251–257 PMID:29372590
Therapeutic inhibition of the complement system. Y2K update.
Asghar, S S; Pasch, M C
2000-09-01
Activation of complement is an essential part of the mechanism of pathogenesis of a large number of human diseases; its inhibition by pharmacological means is likely to suppress disease processes in complement mediated diseases. From this point of view low molecular weight synthetic inhibitors of complement are being developed and high molecular weight natural inhibitors of human origin present in plasma or embedded in cell membrane are being purified or produced in their recombinant forms. This review is concerned with high molecular weight inhibitors, some of which are already in clinical use but may be efficacious in many other diseases in which they have not yet been tried. C1-esterase inhibitor (C1-INH) concentrate prepared from human plasma is being successfully used for the treatment of hereditary angioneurotic edema. Recently, C1-INH has been found to be consumed in severe inflammation and has been shown to exert beneficial effects in several inflammatory conditions such as human sepsis, post-operative myocardial dysfunction due to reperfusion injury, severe capillary leakage syndrome after bone marrow transplantation, reperfusion injury after lung transplantation, burn, and cytotoxicity caused by IL-2 therapy in cancer. Factor I has been used for the treatment of factor I deficiency. Recombinant soluble forms of membrane cofactor protein (MCP), and decay accelerating factor (DAF) have not yet been tried in humans but have been shown to be effective in immune complex mediate inflammation in animals. Organs of pigs transgenic for one or more of human membrane regulators of complement namely membrane cofactor protein (MCP), decay accelerating factor (DAF) or CD59, are being produced for transplantation into humans. They have been shown to be resistant to hyperacute rejection in non-human primates; acute vascular rejection is still a problem in their clinical use. It is hoped that these observations together with future developments will make xeno-transplantation in clinical practice a reality. Several recombinant variants of complement receptor 1 (CR1) have been produced. The most effective of these appears to be sCR1-SLe x, sCR1 part of which inhibits complement and carbohydrate Sle x moiety inhibits selectin mediated interactions of neutrophils and lymphocytes with endothelium. Although clinical trials of sCR1 in humans is eagerly awaited, several of the recombinant versions of sCR1 have been shown to suppress ischemia/reperfusion injury, thermal trauma, and immune complex mediated inflammation. They have also been shown to be effective in experimental models of systemic sclerosis, arthritis, myasthenia gravis, Guillain Barré syndrome and glomerulonephritis. Intravenous immunoglobulin, three of the most prominent properties of which are neutralization of autoantibody activity, suppression of autoantibody production and inhibition of complement activity, is being used in several diseases. These include autoimmune thrombocyopenic purpura, Kawasaki disease and several neurological diseases such as myasthenia gravis and Guillain Barre syndrome. In many uncontrolled small scale studies intravenous immunoglobulin has been shown to be effective in many immunological including dermatological diseases; controlled clinical trials in a large number of patients with these diseases is needed to establish the efficacy. It is hoped that in future therapeutic inhibition of complement will be one of the major approaches to combat many human diseases.
Experimental study on the instability of Pressure Balance Injection System (PBIS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Koji; Teshima, Hideyuki; Madarame, Haruki
1996-06-01
The Passive Safety Reactor has been developed to reduce the construction cost and to improve the safety. Japan Atomic Energy Research institute (JAERI) proposed the System-Integrated Pressurized Water Reactor (SPWR) as a Passive Safety Reactor. In the SPWR design, the Pressure Balanced Injection System (PBIS) was introduced for the passive safety concept. The water with boron in a containment vessel were passively injected into the core by the pressure difference between the containment vessel and reactor vessel at a severe accidental condition. However there are few studies on the thermo-hydraulic characteristics of the PBIS. In this study, the thermal hydraulicsmore » of the PBIS are experimentally investigated using the small scale model. The instability of the injected flow was observed in the adiabatic experiment. The instability was caused by the pressure balance between the two vessels. The mechanism of the instability are discussed, resulting in the good agreement with the experimental results. In the steam experiment, another instability was observed, which was caused by the heat balance in the main tank.« less
Numerical Investigation of a Novel Microscale Swirling Jet Reactor for Medical Sensor Applications
NASA Astrophysics Data System (ADS)
Ogus, G.; Baelmans, M.; Lammertyn, J.; Vanierschot, M.
2018-03-01
A microscale swirler and corresponding reactor for a recent detection and analysis tool for healthcare applications, Fiber optic-surface plasmon resonance (FO-SPR), is presented in this study. The sensor is a 400 μm diameter needle that works as a detector for certain particles. Currently, the detection process relies on diffusion of particles towards the sensor and hence diagnostic time is rather long. The aim of this study is to decrease that diagnostic time by introducing convective mixing in the reactor by means of a swirling inlet flow. This will increase the particle deposition on the FO-SPR sensor and hence an increase in detection rate, as this rate strongly depends on the aimed particle concentration near the sensor. As the flow rates are rather low and the length scales are small, the flow in such reactors is laminar. In this study, robustly controllable mixing features of a swirling jet flow is used to increase the particle concentration near the sensor. A numerical analysis (CFD) is performed to characterize the flow and a detailed analysis of flow structures depending on the flow rate are reported.
Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batheja, P.; Meier, W.J.; Rau, P.J.
A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 90/sup 0/C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as wellmore » as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system.« less
Assessment of nuclear reactor concepts for low power space applications
NASA Technical Reports Server (NTRS)
Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.
1988-01-01
The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.
Increased Reliability for Single-Case Research Results: Is the Bootstrap the Answer?
ERIC Educational Resources Information Center
Parker, Richard I.
2006-01-01
There is need for objective and reliable single-case research (SCR) results in the movement toward evidence-based interventions (EBI), for inclusion in meta-analyses, and for funding accountability in clinical contexts. Yet SCR deals with data that often do not conform to parametric data assumptions and that yield results of low reliability. A…
USDA-ARS?s Scientific Manuscript database
Sire conception rate (SCR), a service-sire fertility evaluation implemented in August 2008, is based on up to 7 conventional-semen breedings for parities 1 through 5 (Ccow). The same procedure was used to derive SCR for other types of breedings: sexed semen for cows (Scow) and conventional semen and...
Test SCRs and Triacs with a Lab-Built Checker
ERIC Educational Resources Information Center
Harman, Charles
2010-01-01
Students enrolled in advanced electronics courses and/or industrial electronics classes at the high school level and at technical colleges ultimately learn about solid-state switches such as the SCR (silicon controlled rectifier) and the triac. Both the SCR and the triac are in a family of four-layer devices called thyristors. They are both…
Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3
NASA Astrophysics Data System (ADS)
Liu, Zhiming; Feng, Xu; Zhou, Zizheng; Feng, Yongjun; Li, Junhua
2018-01-01
Ce-Sn binary oxide catalysts prepared by the hydrothermal method have been investigated for the selective catalytic reduction (SCR) of NOx with NH3. Compared with pure CeO2 and SnO2, Ce-Sn binary oxide catalyst showed significantly higher NH3-SCR activity. Moreover, Ce-Sn catalyst showed high resistance against H2O and SO2. The high catalytic performance of Ce-Sn binary oxide is attributed to the synergetic effect between Ce and Sn species, which not only enhances the redox property of the catalyst but also increases the Lewis acidity, thus promoting the adsorption and activation of NH3 species, which contributes to improving the NH3-SCR performance.
Bibliography of Supersonic Cruise Research (SCR) program from 1977 to mid-1980
NASA Technical Reports Server (NTRS)
Hoffman, S.
1980-01-01
The supersonic cruise research (SCR) program, initiated in July 1972, includes system studies and the following disciplines: propulsion, stratospheric emission impact, structures and materials, aerodynamic performance, and stability and control. In a coordinated effort to provide a sound basis for any future consideration that may be given by the United States to the development of an acceptable commercial supersonic transport, integration of the technical disciplines was undertaken, analytical tools were developed, and wind tunnel, flight, and laboratory investigations were conducted. The present bibliography covers the time period from 1977 to mid-1980. It is arranged according to system studies and the above five SCR disciplines. There are 306 NASA reports and 135 articles, meeting papers, and company reports cited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biryukov, A.S.; Ivanova, T.A.; Kovrygina, L.M.
1984-05-01
Data is used from the satellites Interkosmos-17 and Kosmos-900 to determine penetration boundaries at high latitudes in the earth's magnetosphere. Considered are the results of observations of the penetration boundary of solar cosmic ray (SCR) protons and electrons during an SCR increase on November 22-25, 1977. The position of the SCR penetration boundary during a single increase at practically all values of MLT in quiet conditions is examined. Magnetospheric structure is determined in the region of closed drift shells where the magnetic field is asymmetric. The authors can estimate how the solar wind pressure affects the magnetosphere by using datamore » on the penetration boundaries of solar protons obtained during quiet geomagnetic conditions.« less
Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs
NASA Astrophysics Data System (ADS)
Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna
2018-02-01
The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.
Overview of the Westinghouse Small Modular Reactor building layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of themore » plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)« less
Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Jaradat, Safwan Qasim Mohammad
Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.
NASA Technical Reports Server (NTRS)
Boyd, Mark R.; Winters, Jennifer G.; Henry, Todd J.; Jao, Wei-Chun; Finch, Charlie T.; Subasavage, John P.; Hambly, Nigel C.
2011-01-01
We present 2817 new southern proper motion systems with 0.40 sec/yr > mu > or = 0.18 sec/yr and declination between 47 deg and 00 deg. This is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky. We use the same photometric relations as previous searches to provide distance estimates based on the assumption that the objects are single main-sequence stars. We find 79 new red dwarf systems predicted to be within 25 pc, including a few new components of previously known systems. Two systems--SCR 1731-2452 at 9.5 pc and SCR 1746-3214 at 9.9 pc--are anticipated to be within 10 pc. We also find 23 new white dwarf (WD) candidates with distance estimates of 15-66 pc, as well as 360 new red subdwarf candidates. With this search, we complete the SCR sweep of the southern sky for stars with mu > or = 0.18 sec/yr and R(sub 59F) < or = 16.5, resulting in a total of 5042 objects in 4724 previously unreported proper motion systems. Here we provide selected comprehensive lists from our SCR proper motion search to date, including 152 red dwarf systems estimated to be within 25 pc (9 within 10 pc), 46 WDs (10 within 25 pc), and 598 subdwarf candidates. The results of this search suggest that there are more nearby systems to be found at fainter magnitudes and lower proper motion limits than those probed so far.
Fleischli, Christoph; Sirena, Dominique; Lesage, Guillaume; Havenga, Menzo J E; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio
2007-11-01
We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46-CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11-SCR I-II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.
Ding, Nanxiang; Yang, Jiemin
2014-01-01
Background Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Method Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Results Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Conclusions Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies. PMID:24827934
Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents.
McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S
2016-07-01
Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6-18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS-) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS-, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS- during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat-safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children.
Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents
McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S
2016-01-01
Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6–18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS−) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS−, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS− during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat–safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children. PMID:26677946
Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping
2010-01-01
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
Napadow, Vitaly; Lee, Jeungchan; Kim, Jieun; Cina, Stephen; Maeda, Yumi; Barbieri, Riccardo; Harris, Richard E.; Kettner, Norman; Park, Kyungmo
2013-01-01
Autonomic nervous system (ANS) response to acupuncture has been investigated by multiple studies; however, the brain circuitry underlying this response is not well understood. We applied event-related fMRI (er-fMRI) in conjunction with ANS recording (heart rate, HR; skin conductance response, SCR). Brief manual acupuncture stimuli were delivered at acupoints ST36 and SP9, while sham stimuli were delivered at control location, SH1. Acupuncture produced activation in S2, insula, and mid-cingulate cortex, and deactivation in default mode network (DMN) areas. On average, HR deceleration (HR–) and SCR were noted following both real and sham acupuncture, though magnitude of response was greater following real acupuncture and inter-subject magnitude of response correlated with evoked sensation intensity. Acupuncture events with strong SCR also produced greater anterior insula activation than without SCR. Moreover, acupuncture at SP9, which produced greater SCR, also produced stronger sharp pain sensation, and greater anterior insula activation. Conversely, acupuncture-induced HR– was associated with greater DMN deactivation. Between-event correlation demonstrated that this association was strongest for ST36, which also produced more robust HR–. In fact, DMN deactivation was significantly more pronounced across acupuncture stimuli producing HR–, versus those events characterized by acceleration (HR+). Thus, differential brain response underlying acupuncture stimuli may be related to differential autonomic outflows and may result from heterogeneity in evoked sensations. Our er-fMRI approach suggests that ANS response to acupuncture, consistent with previously characterized orienting and startle/defense responses, arises from activity within distinct subregions of the more general brain circuitry responding to acupuncture stimuli. PMID:22504841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovarik, Libor; Washton, Nancy M.; Kukkadapu, Ravi
Fe/SSZ-13 catalysts (Si/Al = 12, Fe loadings 0.37% and 1.20%) were prepared via solution ion-exchange, and hydrothermally aged at 600, 700 and 800 C. The fresh and aged catalysts were characterized with surface area/pore volume analysis, Mössbauer, solid-state MAS NMR, NO titration FTIR spectroscopies, and TEM and APT imaging. Hydrothermal aging causes dealumination of the catalysts, and transformation of various Fe sites. The latter include conversion of free Fe2+ ions to dimeric Fe(III) species, the agglomeration of isolated Fe-ions to Fe-oxide clusters, and incorporation of Al into the Fe-oxide species. These changes result in complex influences on standard SCR andmore » NO/NH3 oxidation reactions. In brief, mild aging causes catalyst performance enhancement for SCR, while harsh aging at 800 C deteriorates SCR performance. In comparison to Fe/zeolites more prone to hydrothermal degradation, this study demonstrates that via the utilization of highly hydrothermally stable Fe/SSZ-13 catalysts, more accurate correlations between various Fe species and their roles in SCR related chemistries can be made. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
Biomarkers for acute kidney injury in decompensated cirrhosis: A Prospective Study.
Jaques, David A; Spahr, Laurent; Berra, Gregory; Poffet, Vincent; Lescuyer, Pierre; Gerstel, Eric; Garin, Nicolas; Martin, Pierre-Yves; Ponte, Belen
2018-01-25
Acute kidney injury (AKI) is a frequent complication in cirrhotic patients. As serum creatinine is a poor marker of renal function in this population, we aimed to study the utility of several biomarkers in this context. A prospective study was conducted in hospitalized patients with decompensated cirrhosis. Serum creatinine (SCr), Cystatin C (CystC), NGAL and urinary NGAL, KIM-1, protein, albumin and sodium were measured on three separate occasions. Renal resistive index (RRI) was obtained. We analyzed the value of these biomarkers to determine the presence of AKI, its etiology [prerenal, acute tubular necrosis (ATN), or hepatorenal (HRS)], its severity and a composite clinical outcome at 30 days (death, dialysis and intensive care admission). We included 105 patients, of which 55 had AKI. SCr, CystC, NGAL (plasma and urinary), urinary sodium and RRI at inclusion were independently associated with the presence of AKI. SCr, CystC and plasma NGAL were able to predict the subsequent development of AKI. Pre-renal state showed lower levels of SCr, NGAL (plasma and urinary) and RRI. ATN patients had high levels of NGAL (plasma and urinary) as well as urinary protein and sodium. HRS patients presented an intermediate pattern. All biomarkers paralleled the severity of AKI. SCr, CystC and plasma NGAL predicted the development of the composite clinical outcome with the same performance as the MELD score. In patients with decompensated cirrhosis, early measurement of renal biomarkers provides valuable information on AKI etiology. It could also improve AKI diagnosis and prognosis. This article is protected by copyright. All rights reserved.
A small, 1400 deg Kelvin, reactor for Brayton space power systems
NASA Technical Reports Server (NTRS)
Lantz, E.; Mayo, W.
1972-01-01
A preliminary cost estimate for a small reactor in Brayton space power systems with (u-233)n or (pu-239)n as the fuel in the T-111 fuel elements totaled to about four million dollars; considered is a 22.8 in. diameter reactor with 247 fuel elements.
Small Reactor for Deep Space Exploration
none,
2018-06-06
This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.
Small reactor power system for space application
NASA Technical Reports Server (NTRS)
Shirbacheh, M.
1987-01-01
A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.
Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983
NASA Technical Reports Server (NTRS)
Hoffman, S.
1984-01-01
A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.
What Undergraduates Misunderstand about Stem Cell Research
NASA Astrophysics Data System (ADS)
Halverson, Kristy Lynn; Freyermuth, Sharyn K.; Siegel, Marcelle A.; Clark, Catharine G.
2010-11-01
As biotechnology-related scientific advances, such as stem cell research (SCR), are increasingly permeating the popular media, it has become ever more important to understand students' ideas about this issue. Very few studies have investigated learners' ideas about biotechnology. Our study was designed to understand the types of alternative conceptions students hold concerning SCR. The qualitative research design allowed us to examine college students' understandings about stem cells and SCR. More specifically, we addressed the following questions: How can alternative conceptions about stem cell topics be categorized? What types of alternative conceptions are most common? Participants included 132 students enrolled in a biotechnology course that focused on the scientific background of biotechnology applications relevant to citizens. In this study, we used an inductive approach to develop a taxonomy of alternative ideas about SCR by analyzing student responses to multiple open-ended data sources. We identified five categories of conceptions: alternative conceptions about what, alternative conceptions about how, alternative conceptions about medical potential, terminology confusion, and political and legal alternative conceptions. In order to improve instruction, it is important to understand students' ideas when entering the classroom. Our findings highlight a need to teach how science can be applied to societal issues and improve science literacy and citizenship.
Design of a laboratory scale fluidized bed reactor
NASA Astrophysics Data System (ADS)
Wikström, E.; Andersson, P.; Marklund, S.
1998-04-01
The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion and postcombustion zones can be studied. Other advantages are memory effect minimization and the reduction of experimental costs compared to full scale combustors. Comparison of the combustion parameters and emission data from this 5 kW laboratory scale reactor with full scale combustors shows good agreement regarding emission levels and PCDD/PCDF congener patterns. This indicates that the important formation and degradation reactions of OMP in the reactor are the same formation mechanisms as in full scale combustors.
Huang, Pei; Li, Liang; Kotay, Shireen Meher; Goel, Ramesh
2014-04-15
Solids reduction in activated sludge processes (ASP) at source using process manipulation has been researched widely over the last two-decades. However, the absence of nutrient removal component, lack of understanding on the organic carbon, and limited information on key microbial community in solids minimizing ASP preclude the widespread acceptance of sludge minimizing processes. In this manuscript, we report simultaneous solids reduction through anaerobiosis along with nitrogen and phosphorus removals. The manuscript also reports carbon mass balance using stable isotope of carbon, microbial ecology of nitrifiers and polyphosphate accumulating organisms (PAOs). Two laboratory scale reactors were operated in anaerobic-aerobic-anoxic (A(2)O) mode. One reactor was run in the standard mode (hereafter called the control-SBR) simulating conventional A(2)O type of activated sludge process and the second reactor was run in the sludge minimizing mode (called the modified-SBR). Unlike other research efforts where the sludge minimizing reactor was maintained at nearly infinite solids retention time (SRT). To sustain the efficient nutrient removal, the modified-SBR in this research was operated at a very small solids yield rather than at infinite SRT. Both reactors showed consistent NH3-N, phosphorus and COD removals over a period of 263 days. Both reactors also showed active denitrification during the anoxic phase even if there was no organic carbon source available during this phase, suggesting the presence of denitrifying PAOs (DNPAOs). The observed solids yield in the modified-SBR was 60% less than the observed solids yield in the control-SBR. Specific oxygen uptake rate (SOUR) for the modified-SBR was almost 44% more than the control-SBR under identical feeding conditions, but was nearly the same for both reactors under fasting conditions. The modified-SBR showed greater diversity of ammonia oxidizing bacteria and PAOs compared to the control-SBR. The diversity of PAOs in the modified-SBR was even more interesting in which case novel clades of Candidatus Accumulibacter phosphatis (CAP), an uncultured but widely found PAOs, were found. Copyright © 2014 Elsevier Ltd. All rights reserved.
Removal of dissolved and colloidal silica
Midkiff, William S.
2002-01-01
Small amorphous silica particles are used to provide a relatively large surface area upon which silica will preferentially adsorb, thereby preventing or substantially reducing scaling caused by deposition of silica on evaporative cooling tower components, especially heat exchange surfaces. The silica spheres are contacted by the cooling tower water in a sidestream reactor, then separated using gravity separation, microfiltration, vacuum filtration, or other suitable separation technology. Cooling tower modifications for implementing the invention process have been designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart Zweben; Samuel Cohen; Hantao Ji
Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teymouri, Farzaneh
MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densificationmore » at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were demonstrated; >94% ammonia recovery, >75% sugar yields at high solid loading, and complete utilization of the sugars for ethanol production at the 2500 liter scale. Fermentation tests were performed using Zymomonas mobilis 8b and densified AFEX-treated corn stover at >20% solid loading. The obtained titer (~60g/l), productivity (2.5 g/L-h), and yield (330 L/tonne of biomass) exceeded the performance targets set out by NREL. The key findings from these efforts are: no contamination was observed, no cleanup of the sugar stream was required, and no major nutrient addition was required. Our economic model shows that using a packed bed design for the AFEX process and pelleted AFEX-treated biomass reduces the ethanol production cost by 24% when compared to using the traditional AFEX design.« less
Lau, L Louis; Hakaim, Albert G; Oldenburg, W Andrew; Neuhauser, Beate; McKinney, J Mark; Paz-Fumagalli, Ricardo; Stockland, Andrew
2003-06-01
Suprarenal fixation of aortic endografts appears to be a safe option in patients with a short or conical proximal aortic neck. However, concern persists regarding the long-term effect on renal function when renal artery ostia are crossed by the uncovered stent. We investigated the effect of suprarenal versus infrarenal endograft fixation on renal function and renal artery patency after endovascular aortic aneurysm repair. Records of 91 patients who underwent endovascular aortic aneurysm repair with a modular bifurcated stent graft between November 1999 and January 2002 were reviewed retrospectively. Two patients receiving dialysis because of chronic renal failure were excluded. Infrarenal fixation was used in 57 patients (group 1), and suprarenal fixation was used in 32 patients (group 2). In two patients in group 1 a Gianturco Z stent was inserted transrenally because of intraoperative proximal type I endoleak, and data for these patients were excluded from analysis. Follow-up evaluation was performed at 1, 6, and 12 months, and yearly thereafter, and included clinical assessment, measurement of serum creatinine concentration (SCr), and computed tomography angiography, per standard protocol. Median follow-up was 12 months (range, 1-36 months). There was no statistically significant difference in patient demographic data, aneurysm size, or preoperative risk factors. Median SCr was significantly higher in group 2 (suprarenal fixation) than in group 1 (infrarenal fixation) preoperatively (1.2 mg/dL [range, 0.6-2.3 mg/dL] vs 0.9 mg/dL [range, 0.6-1.9 mg/dL], P =.008) and at 1 month postoperatively (1.1 mg/dL [range, 0.8-5.6 mg/dL] vs 1.0 mg/dL [range, 0.6-2.1 mg/dL], P =.045). There was a significant increase in median SCr in both groups at 1 month postoperatively (group 1, 1.0 mg/dL [range, 0.6-2.1 mg/dL], P =.05; group 2, 1.1 mg/dL [range, 0.8-5.6 mg/dL] [mean SCr, 1.35 mg/dL vs 1.15 mg/dL, respectively], P <.05). In group 1 SCr was increased significantly at 6 and 12 months (P <.001), whereas in group 2 SCr also increased at 6 and 12 months, but not significantly. The change in SCr over time was not significantly different between the two groups. In two of 32 patients in group 2, renal artery occlusion developed, associated with perfusion defects in renal parenchyma and persistently elevated SCr. Analysis of renal artery patency did not demonstrate any association between patency and treatment. No patient developed hypertension during follow-up. Suprarenal endograft fixation does not lead to significant renal dysfunction, and renal artery occlusion is uncommon within 12 months. A larger study with longer follow-up is essential to determine overall effects on renal function and renal artery patency.
Assessing pretreatment reactor scaling through empirical analysis
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; ...
2016-10-10
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
Assessing pretreatment reactor scaling through empirical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less
The Entrance and Exit Effects in Small Electrochemical Filter-Press Reactors Used in the Laboratory
ERIC Educational Resources Information Center
Frias-Ferrer, Angel; Gonzalez-Garcia, Jose; Saez, Veronica; Exposito, Eduardo; Sanchez-Sanchez, Carlos M.; Mantiel, Vicente; Walsh, Frank C.; Aldaz, Antonio; Walsh, Frank C.
2005-01-01
A laboratory experiment designed to examine the entrance and exit effects in small electrochemical filter-press reactors used in the laboratory is presented. The single compartment of the filter-press reactor is filled with different turbulence promoters to study their influence as compared to the empty configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Mamoru
The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less
Advances in cell culture: anchorage dependence
Merten, Otto-Wilhelm
2015-01-01
Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097
Development concept for a small, split-core, heat-pipe-cooled nuclear reactor
NASA Technical Reports Server (NTRS)
Lantz, E.; Breitwieser, R.; Niederauer, G. F.
1974-01-01
There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.
Fe/SSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIR/Mössbauer Spectroscopic Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Feng; Kollar, Marton; Kukkadapu, Ravi K.
2015-03-01
Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, an Fe/SSZ-13 catalyst active in NH3-SCR was synthesized. Mössbauer and FTIR spectroscopies were used to probe the nature of the Fe sites. In the fresh sample, the majority of Fe species are extra-framework cations. The likely monomeric and dimeric ferric ions in hydrated form are [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+, based on Mössbauer measurements. During the severe hydrothermal aging (HTA) applied in this study, a majority of cationic Fe species convert to FeAlOx and clustered FeOx species, accompanied by severe dealumination of the SSZ-13 framework. The clustered FeOx speciesmore » do not give a sextet Mössbauer spectrum, indicating that these are highly disordered. However, some Fe species in cationic positions remain after aging as determined from Mössbauer measurements and CO/NO FTIR titrations. NO/NH3 oxidation reaction tests reveal that dehydrated cationic Fe are substantially more active in catalyzing oxidation reactions than the hydrated ones. For NH3-SCR, enhancement of NO oxidation under ‘dry’ conditions promotes SCR rates below ~300 • C. This is due mainly to contribution from the “fast” SCR channel. Above ~300 • C, enhancement of NH3 oxidation under ‘dry’ conditions, however, becomes detrimental to NOx conversions. The HTA sample loses much of the SCR activity below ~300 • C; however, above ~400 • C much of the activity remains. This may suggest that the FeAlOx and FeOx species become active at such elevated temperatures. Alternatively, the high-temperature activity may be maintained by the remaining extra-framework cationic species. For potential practical applications, Fe/SSZ-13 may be used as a co-catalyst for Cu/CHA as integral aftertreatment SCR catalysts on the basis of the stable high temperature activity after hydrothermal aging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
Dorazio, Robert; Karanth, K. Ullas
2017-01-01
MotivationSeveral spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.Model and data analysisWe developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.BenefitsOur approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where spatial covariates of abundance are unknown or unavailable. We illustrated these benefits in the analysis of our data, which allowed us to quantify differences between nocturnal and diurnal activities of tigers and to estimate their spatial distribution and abundance across the study area. Our continuous-time SCR model allows an analyst to specify many of the ecological processes thought to be involved in the distribution, movement, and behavior of animals detected in a spatial trapping array of continuous-time recorders. We plan to extend this model to estimate the population dynamics of animals detected during multiple years of SCR surveys.
Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki
2017-08-24
This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.
Nitrification at different salinities: Biofilm community composition and physiological plasticity.
Gonzalez-Silva, Blanca M; Jonassen, Kjell Rune; Bakke, Ingrid; Østgaard, Kjetill; Vadstein, Olav
2016-05-15
This paper describes an experimental study of microbial communities of three moving bed biofilm reactors (MBBR) inoculated with nitrifying cultures originated from environments with different salinity; freshwater, brackish (20‰) and seawater. All reactors were run until they operated at a conversion efficiency of >96%. The microbial communities were profiled using 454-pyrosequencing of 16S rRNA gene amplicons. Statistical analysis was used to investigate the differences in microbial community structure and distribution of the nitrifying populations with different salinity environments. Nonmetric multidimensional scaling analysis (NMDS) and the PERMANOVA test based on Bray-Curtis similarities revealed significantly different community structure in the three reactors. The brackish reactor showed lower diversity index than fresh and seawater reactors. Venn diagram showed that 60 and 78% of the total operational taxonomic units (OTUs) in the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) guild, respectively, were unique OTUs for a given reactor. Similarity Percentages (SIMPER) analysis showed that two-thirds of the total difference in community structure between the reactors was explained by 10 OTUs, indicating that only a small number of OTUs play a numerically dominant role in the nitrification process. Acute toxicity of salt stress on ammonium and nitrite oxidizing activities showed distinctly different patterns, reaching 97% inhibition of the freshwater reactor for ammonium oxidation rate. In the brackish culture, inhibition was only observed at maximal level of salinity, 32‰. In the fully adapted seawater culture, higher activities were observed at 32‰ than at any of the lower salinities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Royle, J. Andrew; Converse, Sarah J.
2014-01-01
Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.
Silicon Controlled Switch for Detection of Ionizing Radiation
2015-12-01
sensitivity of previous NPS silicon controlled rectifier (SCR) based circuits. Additionally, the circuit in this thesis was able to detect AM-241 and...sensitivity of previous NPS silicon controlled rectifier (SCR) based circuits. Additionally, the circuit in this thesis was able to detect AM-241 and...Controlled Rectifier SCS Silicon-Controlled Switch SONAR SOund Navigation and Ranging VBIAS Applied Bias Voltage VH Holding Voltage VS Standalone SCS
Papamichael, Konstantinos; Vande Casteele, Niels; Gils, Ann; Tops, Sophie; Hauenstein, Scott; Singh, Sharat; Princen, Fred; Van Assche, Gert; Rutgeerts, Paul; Vermeire, Severine; Ferrante, Marc
2015-06-01
There are limited data on the effects of discontinuing infliximab therapy for Crohn's disease (CD). We investigated the long-term outcome of patients with CD who discontinued infliximab while in clinical remission, and searched for prognostic markers of continued remission after infliximab cessation. We performed a retrospective, single-center study of 100 patients with CD who discontinued infliximab upon achieving clinical remission; 84 patients continued immunomodulator therapy. Clinical and endoscopic data were retrieved from a medical database in Belgium, and patients were followed up through April 2013 (median, 9.7 y; interquartile range, 8-11.5 y). Sustained clinical remission (SCR) was defined as maintenance of disease remission, without escalation in medical therapy or CD-related surgeries, until the end of the follow-up period. We measured trough concentrations of infliximab, antibodies to microbial antigens, and circulating inflammatory markers in serum samples collected before treatment and at the time of infliximab discontinuation. At the end of the follow-up period, 52 patients had SCR. Univariate (log-rank) analysis associated SCR with patient age at diagnosis (≥25 y; P = .012) and disease duration (<1 y; P = .017). Among factors evaluated at the time of infliximab discontinuation, infliximab trough concentrations (<6 μg/mL; P = .031), complete mucosal healing (P = .046), and serum positivity for vascular cell adhesion molecule-1 (>0.67 μg/mL; P = .024) were associated with SCR. In multiple Cox proportional hazards regression analysis, only age at diagnosis of 25 years and older was associated independently with SCR (hazard ratio, 1.83; 95% confidence interval, 1.03-3.25; P = .04). In a large, real-life study, 52% of patients with CD who discontinued infliximab upon achieving clinical remission remained in SCR after a median period of approximately 10 years; Most patients remained on immunomodulator therapy. Although patients with CD have variable responses to infliximab, a subgroup achieved long-term remission after infliximab discontinuation. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Craig, Jaquelyn M.; Thomas, Michael V.; Nichols, Susan Jerrine
2005-01-01
Several USA state, federal, and Canadian agencies study lake sturgeon (Acipenser fulvescens) within the St Clair River and Lake St Clair, collectively referred to hereafter as the St Clair River (SCR) system. Previously, there has been no set standard for determining condition for SCR system lake sturgeon. Condition measures the variation from the expected weight for length as an indicator of fatness, general well-being, gonad development, etc. The aim of this project was to determine the length–weight relationship of lake sturgeon caught from the SCR system, from which a relative condition factor (Kn) equation could be derived. Total length (TL, mm) and weight (W, kg) were measured for 1074 lake sturgeon (101 males and 16 females were identifiable) collected by setline and bottom trawl from the SCR system in May–September, 1997–2002. Analysis of covariance found no difference in the length–weight relationship between sampling gear or sex. Least-squares regression of log10W × log10TL produced the overall equation logW = 3.365logTL − 9.320. Using the exponential form of the slope and y-intercept, relative condition factor for lake sturgeon from the SCR system can be calculated as Kn = W/[(4.786 × 10−10)(TL3.365)]. Equations for males and females were also developed. Overall, body condition was significantly correlated with both age and girth; no significant difference in Kn by sex was found. In general, the SCR lake sturgeon population was near the upper ends of growth and condition ranges listed in the literature, comparable with those populations that are at similar latitudes. Although condition factors should be interpreted with caution, proper use of a standard equation provides a non-lethal measure of overall fish health that can be used by biologists and managers in ongoing efforts to restore lake sturgeon throughout the Great Lakes.
Balosso, Jacques
2017-01-01
Background During the past decades, in radiotherapy, the dose distributions were calculated using density correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons transport. Methods Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as (EAR = OED type ‘b’ / OED type ‘a’). Results The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, ranged from 1.08 to 1.13 depending on SCR models. Conclusions The shift of dose calculation in radiotherapy, according to the algorithm, can significantly influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific treatment. The agreement between dose distribution and SCR prediction depends on dose response models and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is still very imprecise, only the EAR ratio could be used to rank radiotherapy plans. PMID:28811995
Bhatraju, Pavan K; Mukherjee, Paramita; Robinson-Cohen, Cassianne; O'Keefe, Grant E; Frank, Angela J; Christie, Jason D; Meyer, Nuala J; Liu, Kathleen D; Matthay, Michael A; Calfee, Carolyn S; Christiani, David C; Himmelfarb, Jonathan; Wurfel, Mark M
2016-11-17
Acute kidney injury (AKI) is common among intensive care unit (ICU) patients. AKI is highly heterogeneous, with variable links to poor outcomes. Current approaches to classify AKI severity and identify patients at highest risk for poor outcomes focus on the maximum change in serum creatinine (SCr) values. However, these scores are hampered by the need for a reliable baseline SCr value and the absence of a component differentiating transient from persistent rises in SCr. We hypothesized that identification of resolving or nonresolving AKI subphenotypes based on the early trajectory of SCr values in the ICU would better differentiate patients at risk of hospital mortality. We performed a secondary analysis of two prospective studies of ICU patients admitted to a trauma ICU (group 1; n = 1914) or general medical-surgical ICUs (group 2; n = 1867). In group 1, we tested definitions for resolving and nonresolving AKI subphenotypes and selected the definitions resulting in subphenotypes with the greatest separation in risk of death relative to non-AKI controls. We applied this definition to group 2 and tested whether the subphenotypes were independently associated with hospital mortality after adjustment for AKI severity. AKI occurred in 46% and 69% of patients in groups 1 and 2, respectively. In group 1, a resolving AKI subphenotype (defined as a decrease in SCr of 0.3 mg/dl or 25% from maximum in the first 72 h of study enrollment) was associated with a low risk of death. A nonresolving AKI subphenotype (defined as all AKI cases not meeting the "resolving" definition) was associated with a high risk of death. In group 2, the resolving AKI subphenotype was not associated with increased mortality (relative risk [RR] 0.86, 95% CI 0.63-1.17), whereas the nonresolving AKI subphenotype was associated with higher mortality (RR 1.68, 95% CI 1.15-2.44) even after adjustment for AKI severity stage. The trajectory of SCr levels identifies AKI subphenotypes with different risks for death, even among AKI cases of similar severity. These AKI subphenotypes might better define the patients at risk for poor outcomes who might benefit from novel interventions.
Qin, Huai; Wu, Haibo; Chen, Yi; Zhang, Nan; Fan, Zhanming
2017-10-01
This study aimed to evaluate the early efficiency of Doppler renal resistive index (DRRI) in prediction of acute kidney injury (AKI) after surgery in acute Stanford Type A aortic dissection (AAAD) patients. Sixty-one AAAD patients who planned to receive Sun's surgical management were prospectively enrolled. The DRRI was measured by ultrasonography Doppler on the day before surgery (DRRI pre ), on admission to the intensive care unit (DRRI T0 ), 6 hours after surgery (DRRI T6 ), 24 hours after surgery (DRRI T24 ), and 48 hours after surgery (DRRI T48 ). The maximum DRRI value (DRRI max ) was recorded. The AKI was evaluated according to the classifications of the Acute Kidney Injury Network. The DRRI and serum creatinine (sCr) were compared between the pre- and postoperative time stations, as well as between the AKI and no-AKI groups. Thirty-nine (63.9%) patients suffered from AKI, and 12 (19.6%) patients received dialysis. No significant difference was found in DRRI pre (0.63 ± 0.04 versus 0.65 ± 0.06, P = .059) and sCr pre (84.13 ± 23.77 versus 94.29 ± 51.11, P = .383) between the two groups with and without AKI. Both the DRRI and sCr increased significantly after surgery in the AKI groups (P < .001). However, the DRRI reached its maximum 6 hours after surgery, whereas the sCr reached its maximum after 24 hours. Both the DRRI and sCr improved 48 hours after surgery. The area under the receiver operating characteristic curve for DRRI max (0.864, 95% confidence interval: 0.770-0.957) and DRRI T6 (0.861, 95% confidence interval: 0.766-0.957) was larger than the other three DRRIs measured at different time points. The cutoff value of DRRI max was 0.71, a sensitivity of 76.9% and specificity of 95.5%. Postoperative DRRI predicts the AKI earlier than sCr after AAAD surgery. The best time to detect DRRI was 6 hours after surgery. © 2017 by the American Institute of Ultrasound in Medicine.
Online Oxide Contamination Measurement and Purification Demonstration
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Godfroy, T. J.; Webster, K. L.; Garber, A. E.; Polzin, K. A.; Childers, D. J.
2011-01-01
Liquid metal sodium-potassium (NaK) has advantageous thermodynamic properties indicating its use as a fission reactor coolant for a surface (lunar, martian) power system. A major area of concern for fission reactor cooling systems is system corrosion due to oxygen contaminants at the high operating temperatures experienced. A small-scale, approximately 4-L capacity, simulated fission reactor cooling system employing NaK as a coolant was fabricated and tested with the goal of demonstrating a noninvasive oxygen detection and purification system. In order to generate prototypical conditions in the simulated cooling system, several system components were designed, fabricated, and tested. These major components were a fully-sealed, magnetically-coupled mechanical NaK pump, a graphite element heated reservoir, a plugging indicator system, and a cold trap. All system components were successfully demonstrated at a maximum system flow rate of approximately 150 cc/s at temperatures up to 550 C. Coolant purification was accomplished using a cold trap before and after plugging operations which showed a relative reduction in oxygen content.
Singh, Rajesh; Bishnoi, Narsi R; Kirrolia, Anita; Kumar, Rajender
2013-01-01
In this study Pseudomonas aeruginosa a metal tolerant strain was not only applied for heavy metal removal but also to the solublization performance of the precipitated metal ions during effluent treatment. The synergistic effect of the isolate and Fe(0) enhanced the metal removal potential to 72.97% and 87.63% for Cr(VI) and cadmium, respectively. The decrease in cadmium ion removal to 43.65% (aeration+stirring reactors), 21.33% (aerated reactors), and 18.95% (without aerated+without stirring) with an increase in incubation period not only indicate the presence of soluble less toxic complexes, but also help in exploration of the balancing potential for valuable metal recovery. A relatively best fit and significant values of the correlation coefficient 0.912, 0.959, and 0.9314 for mixed effluent (Paint Industry effluent+CETP Wazirpur, effluent), CETP, Wazirpur, and control effluents, respectively, indicating first-order formulation and provide a reasonable description of COD kinetic data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Experimental, theoretical, and numerical studies of small scale combustion
NASA Astrophysics Data System (ADS)
Xu, Bo
Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number to describe the competition between the mass transport in gas phase and the heat conduction in gas and solid phases was defined. Experimental observation and theoretical analysis suggested that the flame-wall coupling significantly increased the effective Lewis number and led to a new mechanism to promote the thermal diffusion instability. Due to the short flow residence time in small scale combustion, reactants, and oxidizers may not be able to be fully premixed before combustion. As such, non-premixed combustion plays an important role. Non-premixed mixing layer combustion within a constrained mesoscale channel was studied. Depending on the flow rate, it was found that there were two different flame regimes, an unsteady bimodal flame regime and a flame street regime with multiple stable triple flamelets. This multiple triple flame structure was identified experimentally for the first time. A scaling analytical model was developed to qualitatively explain the mechanism of flame streets. The effects of flow velocity, wall temperature, and Lewis number on the distance between flamelets and the diffusion flame length were also investigated. The results showed that the occurrence of flame street regimes was a combined effect of heat loss, curvature, diffusion, and dilution. To complete this thesis, experiments were conducted to measure the OH concentration using Planar Laser Induced Fluorescence (PLIF) in a confined mesoscale combustor. Some preliminary results have been obtained for the OH concentration of flamelets in a flame street. When the scale of the micro reactor is further reduced, the rarefied gas effect may become significant. In this thesis, a new concentration slip model to describe the rarefied gas effect on the species transport in microscale chemical reactors was obtained. The present model is general and recovers the existing models in the limiting cases. The analytical results showed the concentration slip was dominated by two different mechanisms, the surface reaction induced concentration slip (RIC) and the temperature slip induced concentration slip (TIC). It is found that the magnitude of RIC slip was proportional to the product of the Damkohler number and Knudsen number. The results showed the impact of reaction induced concentration slip (RIC slip) effects on catalytic reactions strongly depended on the Damkohler number, the Knudsen number, and the surface accommodation coefficient.
Chang, Huazhen; Ma, Lei; Yang, Shijian; Li, Junhua; Chen, Liang; Wang, Wei; Hao, Jiming
2013-11-15
A series of CeO2 catalysts prepared with sulfate (S) and nitrate (N) precursors by hydrothermal (H) and precipitation (P) methods were investigated in selective catalytic reduction of NOx by NH3 (NH3-SCR). The catalytic activity of CeO2 was significantly affected by the preparation methods and the precursor type. CeO2-SH, which was prepared by hydrothermal method with cerium (IV) sulfate as a precursor, showed excellent SCR activity and high N2 selectivity in the temperature range of 230-450 °C. Based on the results obtained by temperature-programmed reduction (H2-TPR), transmission infrared spectra (IR) and thermal gravimetric analysis (TGA), the excellent performance of CeO2-SH was correlated with the surface sulfate species formed in the hydrothermal reaction. These results indicated that sulfate species bind with Ce(4+) on the CeO2-SH catalyst, and the specific sulfate species, such as Ce(SO4)2 or CeOSO4, were formed. The adsorption of NH3 was promoted by these sulfate species, and the probability of immediate oxidation of NH3 to N2O on Ce(4+) was reduced. Accordingly, the selective oxidation of NH3 was enhanced, which contributed to the high N2 selectivity in the SCR reaction. However, the location of sulfate on the CeO2-SP catalyst was different. Plenty of sulfate species were likely deposited on CeO2-SP surface, covering the active sites for NO oxidation, which resulted in poor SCR activity in the test temperature range. Moreover, the resistance to alkali metals, such as Na and K, was improved over the CeO2-SH catalyst. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Mark R.; Winters, Jennifer G.; Henry, Todd J.
2011-07-15
We present 2817 new southern proper motion systems with 0.''40 yr{sup -1} > {mu} {>=} 0.''18 yr{sup -1} and declination between -47{sup 0} and 00{sup 0}. This is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky. We use the same photometric relations as previous searches to provide distance estimates based on the assumption that the objects are single main-sequence stars. We find 79 new red dwarf systems predicted to be within 25 pc, including a few new components of previously known systems. Two systems-SCR 1731-2452 at 9.5 pc and SCR 1746-3214 at 9.9 pc-are anticipatedmore » to be within 10 pc. We also find 23 new white dwarf (WD) candidates with distance estimates of 15-66 pc, as well as 360 new red subdwarf candidates. With this search, we complete the SCR sweep of the southern sky for stars with {mu} {>=} 0.''18 yr{sup -1} and R{sub 59F} {<=} 16.5, resulting in a total of 5042 objects in 4724 previously unreported proper motion systems. Here we provide selected comprehensive lists from our SCR proper motion search to date, including 152 red dwarf systems estimated to be within 25 pc (9 within 10 pc), 46 WDs (10 within 25 pc), and 598 subdwarf candidates. The results of this search suggest that there are more nearby systems to be found at fainter magnitudes and lower proper motion limits than those probed so far.« less
SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.
Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin
2015-06-16
CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.
Silencing Intersectin 1 Slows Orthotopic Neuroblastoma Growth in Mice.
Harris, Jamie; Herrero-Garcia, Erika; Russo, Angela; Kajdacsy-Balla, Andre; O'Bryan, John P; Chiu, Bill
2017-11-01
Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.
Sun, Wei; Qiao, Kai; Liu, Ji-Yuan; Cao, Li-Mei; Gong, Xue-Qing; Yang, Ji
2016-04-11
H2 selective catalytic reduction (H2-SCR) has been proposed as a promising technology for controlling NOx emission because hydrogen is clean and does not emit greenhouse gases. We demonstrate that Pt doped into a nickel ferrite spinel structure can afford a high catalytic activity of H2-SCR. A superior NO conversion of 96% can be achieved by employing a novel NiFe1.95Pt0.05O4 spinel-type catalyst at 60 °C. This novel catalyst is different from traditional H2-SCR catalysts, which focus on the role of metallic Pt species and neglect the effect of oxidized Pt states in the reduction of NO. The obtained Raman and XPS spectra indicate that Pt in the spinel lattice has different valence states with Pt(2+) occupying the tetrahedral sites and Pt(4+) residing in the octahedral ones. These oxidation states of Pt enhance the back-donation process, and the lack of filling electrons of the 5d band causes Pt to more readily hybridize with the 5σ orbital of the NO molecule, especially for octahedral Pt(4+), which enhances the NO chemisorption on the Pt sites. We also performed DFT calculations to confirm the enhancement of adsorption of NO onto Pt sites when doped into the Ni-Fe spinel structure. The prepared Pt/Ni-Fe catalysts indicate that increasing the dispersity of Pt on the surfaces of the individual Ni-Fe spinel-type catalysts can efficiently promote the H2-SCR activity. Our demonstration provides new insight into designing advanced catalysts for H2-SCR.
Donadio, Carlo
2017-05-28
The aim of this study was to predict urinary creatinine excretion (UCr), creatinine clearance (CCr) and the glomerular filtration rate (GFR) from body composition analysis. Body cell mass (BCM) is the compartment which contains muscle mass, which is where creatinine is generated. BCM was measured with body impedance analysis in 165 chronic kidney disease (CKD) adult patients (72 women) with serum creatinine (SCr) 0.6-14.4 mg/dL. The GFR was measured ( 99m Tc-DTPA) and was predicted using the Modification of Diet in Renal Disease (MDRD) formula. The other examined parameters were SCr, 24-h UCr and measured 24-h CCr (mCCr). A strict linear correlation was found between 24-h UCr and BCM ( r = 0.772). Multiple linear regression (MR) indicated that UCr was positively correlated with BCM, body weight and male gender, and negatively correlated with age and SCr. UCr predicted using the MR equation (MR-UCr) was quite similar to 24-h UCr. CCr predicted from MR-UCr and SCr (MR-BCM-CCr) was very similar to mCCr with a high correlation ( r = 0.950), concordance and a low prediction error (8.9 mL/min/1.73 m²). From the relationship between the GFR and the BCM/SCr ratio, we predicted the GFR (BCM GFR). The BCM GFR was very similar to the GFR with a high correlation ( r = 0.906), concordance and a low prediction error (12.4 mL/min/1.73 m²). In CKD patients, UCr, CCr and the GFR can be predicted from body composition analysis.
Donadio, Carlo
2017-01-01
The aim of this study was to predict urinary creatinine excretion (UCr), creatinine clearance (CCr) and the glomerular filtration rate (GFR) from body composition analysis. Body cell mass (BCM) is the compartment which contains muscle mass, which is where creatinine is generated. BCM was measured with body impedance analysis in 165 chronic kidney disease (CKD) adult patients (72 women) with serum creatinine (SCr) 0.6–14.4 mg/dL. The GFR was measured (99mTc-DTPA) and was predicted using the Modification of Diet in Renal Disease (MDRD) formula. The other examined parameters were SCr, 24-h UCr and measured 24-h CCr (mCCr). A strict linear correlation was found between 24-h UCr and BCM (r = 0.772). Multiple linear regression (MR) indicated that UCr was positively correlated with BCM, body weight and male gender, and negatively correlated with age and SCr. UCr predicted using the MR equation (MR-UCr) was quite similar to 24-h UCr. CCr predicted from MR-UCr and SCr (MR-BCM-CCr) was very similar to mCCr with a high correlation (r = 0.950), concordance and a low prediction error (8.9 mL/min/1.73 m2). From the relationship between the GFR and the BCM/SCr ratio, we predicted the GFR (BCM GFR). The BCM GFR was very similar to the GFR with a high correlation (r = 0.906), concordance and a low prediction error (12.4 mL/min/1.73 m2). In CKD patients, UCr, CCr and the GFR can be predicted from body composition analysis. PMID:28555040
Lüders, Florian; Meyborg, Matthias; Malyar, Nasser; Reinecke, Holger
2015-01-01
Contrast medium-induced acute kidney injury (CI-AKI) is an important iatrogenic complication following the injection of iodinated contrast media. The level of serum creatinine (SCr) is the currently accepted 'gold standard' to diagnose CI-AKI. Cystatin C (CyC) has been detected as a more sensitive marker for renal dysfunction. Both have their limitations. The role of the preinterventional CyC-SCr ratio for evaluating the risk for CI-AKI and long-term all-cause mortality was retrospectively analyzed in the prospective single-center 'Dialysis-versus-Diuresis trial'. CI-AKI was defined and staged according to the Acute Kidney Injury Network classification. Three hundred and seventy-three patients were included (average age 67.4 ± 10.2 years, 16.4% women, 29.2% with diabetes mellitus, mean baseline glomerular filtration rate 56.3 ± 20.2 ml/min/1.73 m(2) [as estimated by Chronic Kidney Disease Epidemiology Collaboration Serum Creatinine Cystatin C equation], 5.1% ejection fraction <35%). A total of 79 patients (21.2%) developed CI-AKI after elective heart catheterization, and 65 patients (17.4%) died during follow-up. Multivariate analyses by logistic regression confirmed that the preinterventional CyC-SCr ratio is independently associated with CI-AKI (OR 9.423, 95% CI 1.494-59.436, p = 0.017). Also, the Cox regression model found a high significant association between preinterventional CyC-SCr ratio and long-term all-cause mortality (mean follow-up 649 days, hazards ratio 4.096, 95% CI 1.625-10.329, p = 0.003). The preinterventional CyC-SCr ratio is independently associated with CI-AKI and highly significant associated with long-term mortality after heart catheterization. © 2015 S. Karger AG, Basel.
Wijerathna, Thilini Madushanka; Gawarammana, Indika Bandara; Dissanayaka, Dhammika Menike; Palanagasinghe, Chathura; Shihana, Fathima; Dassanayaka, Gihani; Shahmy, Seyed; Endre, Zoltan Huba; Mohamed, Fahim; Buckley, Nicholas Alan
2017-11-01
Acute kidney injury (AKI) is common following deliberate self-poisoning with a combination washing powder containing oxalic acid (H 2 C 2 O 4 ) and potassium permanganate (KMnO 4 ). Early and rapid increases in serum creatinine (sCr) follow severe poisoning. We investigated the relationship of these increases with direct nephrotoxicity in an ongoing multicenter prospective cohort study in Sri Lanka exploring AKI following poisoning. Multiple measures of change in kidney function were evaluated in 48 consenting patients who had serial sCr and serum cystatin C (sCysC) data available. Thirty-eight (38/48, 79%) patients developed AKI (AKIN criteria). Twenty-eight (58%) had AKIN stage 2 or 3. Initial increases in urine creatinine (uCr) excretion were followed by a substantial loss of renal function. The AKIN stage 2 and 3 (AKIN2/3) group had very rapid rises in sCr (a median of 118% at 24 h and by 400% at 72 h post ingestion). We excluded the possibility that the rapid rise resulted from the assay used or muscle damage. In contrast, the average sCysC increase was 65% by 72 h. In most AKI, sCysC increases to the same extent but more rapidly than sCr, as sCysC has a shorter half-life. This suggests either a reduction in Cystatin C production or, conversely, that the rapid early rise of sCr results from increased production of creatine and creatinine to meet energy demands following severe oxidative stress mediated by H 2 C 2 O 4 and KMnO 4 . Increased early creatinine excretion supports the latter explanation, since creatinine excretion usually decreases transiently in AKIN2/3 from other causes.
Pottel, Hans; Hoste, Liesbeth; Delanaye, Pierre
2015-05-01
The chronic kidney disease (CKD) classification system for children is similar to that for adults, with both mainly based on estimated glomerular filtration rate (eGFR) combined with fixed cut-off values. The main cut-off eGFR value used to define CKD is 60 mL/min/1.73 m(2), a value that is also applied for children older than 2 years of age, adolescents and young adults. Based on a literature search, we evaluated inclusion criteria for eGFR in clinical trials or research studies on CKD for children. We also collected information on direct measurements of GFR (mGFR) in children and adolescents, with the aim to estimate the normal reference range for GFR. Using serum creatinine (Scr) normal reference values and Scr-based eGFR-equations, we also evaluated the correspondence between Scr normal reference values and (e)GFR normal reference values. Based on our literature search, the inclusion of children in published CKD studies has been based on cut-off values for eGFR of >60 mL/min/1.73 m(2). The lower reference limits for mGFR far exceed this adult threshold. Using eGFR values calculated using Scr-based formulas, we found that abnormal Scr levels in children already correspond to eGFR values that are below a cut-off of 75 mL/min/1.73 m(2). Abnormal GFR in children, adolescents and young adults starts below 75 mL/min/1.73 m(2), and as abnormality is a sign of disease, we recommend referring children, adolescents and young adults with an (e)GFR of <75 mL/min/1.73 m(2) for further clinical assessment.
Xu, Liwen; Wang, Chizhong; Chang, Huazhen; Wu, Qingru; Zhang, Tao; Li, Junhua
2018-06-19
In this study, the poisoning effects of SO 2 on the V 2 O 5 -WO 3 /TiO 2 (1%VWTi) and CeO 2 -WO 3 /TiO 2 (5%CeWTi) selective catalytic reduction (SCR) catalysts were investigated in the presence of steam, and also the regeneration of deactivated catalysts was studied. After pretreating the catalysts in a flow of NH 3 + SO 2 + H 2 O + O 2 at 200 °C for 24 h, it was observed that the low-temperature SCR (LT-SCR) activity decreased significantly over the 1%VWTi and 5%CeWTi catalysts. For 1%VWTi, NH 4 HSO 4 (ABS) was the main product detected after the poisoning process. Both of NH 4 HSO 4 and cerium sulfate species were formed on the poisoned 5%CeWTi catalyst, indicating that SO 2 reacted with Ce 3+ /Ce 4+ , even in the presence of high concentration of NH 3 . The decrease of BET specific surface area, NO x adsorption capacity, the ratio of chemisorbed oxygen, and reducibility were responsible for the irreversible deactivation of the poisoned 5%CeWTi catalyst. Meanwhile, the LT-SCR activity could be recovered over the poisoned 1%VWTi after regeneration at 400 °C, but not for the 5%CeWTi catalyst. For industrial application, it is suggested that the regeneration process can be utilized for 1%VWTi catalysts after a period of time after NH 4 HSO 4 accumulated on the catalysts.
You, Zhong-Yu; Liu, Zhi-Qiang; Zheng, Yu-Guo
2014-02-01
A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg(-1). The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min(-1) mg(-1), respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous-organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3% and e.e. of 99% was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP(+) to (S)-CHBE were 26.5 mmol L(-1) h(-1) g(-1) DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.
Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation
NASA Astrophysics Data System (ADS)
Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu
2018-03-01
This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.
[Medium-term forecast of solar cosmic rays radiation risk during a manned Mars mission].
Petrov, V M; Vlasov, A G
2006-01-01
Medium-term forecasting radiation hazard from solar cosmic rays will be vital in a manned Mars mission. Modern methods of space physics lack acceptable reliability in medium-term forecasting the SCR onset and parameters. The proposed estimation of average radiation risk from SCR during the manned Mars mission is made with the use of existing SCR fluence and spectrum models and correlation of solar particle event frequency with predicted Wolf number. Radiation risk is considered an additional death probability from acute radiation reactions (ergonomic component) or acute radial disease in flight. The algorithm for radiation risk calculation is described and resulted risk levels for various periods of the 23-th solar cycle are presented. Applicability of this method to advance forecasting and possible improvements are being investigated. Recommendations to the crew based on risk estimation are exemplified.
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; ...
2017-06-27
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less
NASA Astrophysics Data System (ADS)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.
2017-09-01
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less
Goldberg, Joshua F; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L Scott; Wangchuk, Tshewang R; Lukacs, Paul
2015-01-01
Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010-2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the "true" explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25-15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest.
Goldberg, Joshua F.; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L. Scott; Wangchuk, Tshewang R.; Lukacs, Paul
2015-01-01
Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010–2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the “true” explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25–15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest. PMID:26536231
Richland five-year O2 R and D Program. Integrated site operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1966-07-11
The technical feasibility of using an electrolytic reduction process to reduce metal scrap and oxide to usable uranium metal is being studied. The incentives for using electrolytic reduction at Richland may be summarized as follows: (1) reduce the unit and total costs of producing plutonium; (2) increase the flexibility of the Richland reactors for producing isotopes, particularly U-236; and (3) simplify the present fuel cycle complex. The scope of the mission is limited to the evaluation of hollow extruded I and E cores, the evaluation of electro-reduced uranium, an investigation of the solution rate of UO{sub 2} in the electrolyte,more » and small-scale irradiations of UO{sub 2} fuels in the N and K Reactors. Progress during FY 1966 is summarized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. L.; Brown, Nicholas R.; Betzler, Benjamin R.
The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF 2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologiesmore » include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR concept, and it will demonstrate key operational features of that design. The FHR DR will be closely scaled to the SmAHTR concept in power and flows, so any technologies demonstrated will be directly applicable to a reactor concept of that size. The FHR DR is not a commercial prototype design, but rather a DR that serves a cost and risk mitigation function for a later commercial prototype. It is expected to have a limited operational lifetime compared to a commercial plant. It is designed to be a low-cost reactor compared to more mature advanced prototype DRs. A primary reason to build the FHR DR is to learn about salt reactor technologies and demonstrate solutions to remaining technical gaps.« less
Physical particularities of nuclear reactors using heavy moderators of neutrons
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Shmelev, A. N.
2016-12-01
In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.
Neuroticism modifies psychophysiological responses to fearful films.
Reynaud, Emmanuelle; El Khoury-Malhame, Myriam; Rossier, Jérôme; Blin, Olivier; Khalfa, Stéphanie
2012-01-01
Neuroticism is a personality component frequently found in anxious and depressive psychiatric disorders. The influence of neuroticism on negative emotions could be due to its action on stimuli related to fear and sadness, but this remains debated. Our goal was thus to better understand the impact of neuroticism through verbal and physiological assessment in response to stimuli inducing fear and sadness as compared to another negative emotion (disgust). Fifteen low neurotic and 18 high neurotic subjects were assessed on an emotional attending task by using film excerpts inducing fear, disgust, and sadness. We recorded skin conductance response (SCR) and corrugator muscle activity (frowning) as indices of emotional expression. SCR was larger in high neurotic subjects than in low neurotics for fear relative to sadness and disgust. Moreover, corrugator activity and SCR were larger in high than in low neurotic subjects when fear was induced. After decades of evidence that individuals higher in neuroticism experience more intense emotional reactions to even minor stressors, our results indicate that they show greater SCR and expressive reactivity specifically to stimuli evoking fear rather than to those inducing sadness or disgust. Fear processing seems mainly under the influence of neuroticism. This modulation of autonomic activity by neurotics in response to threat/fear may explain their increased vulnerability to anxious psychopathologies such as PTSD (post traumatic stress disorder).
Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.
Yu, Yunbo; Li, Yi; Zhang, Xiuli; Deng, Hua; He, Hong; Li, Yuyang
2015-01-06
The catalytic partial oxidation of ethanol and selective catalytic reduction of NOx with ethanol (ethanol-SCR) over Ag/Al2O3 were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H2 promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al2O3, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H2 addition favors the formation of ammonia during ethanol-SCR over Ag/Al2O3, the occurrence of which creates an effective pathway for NOx reduction by direct reaction with NH3. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al2O3 by H2. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NOx reduction by ethanol for the first time, particularly in the presence of H2. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al2O3.
Mollet, Pierre; Kery, Marc; Gardner, Beth; Pasinelli, Gilberto; Royle, Andy
2015-01-01
We conducted a survey of an endangered and cryptic forest grouse, the capercaillie Tetrao urogallus, based on droppings collected on two sampling occasions in eight forest fragments in central Switzerland in early spring 2009. We used genetic analyses to sex and individually identify birds. We estimated sex-dependent detection probabilities and population size using a modern spatial capture-recapture (SCR) model for the data from pooled surveys. A total of 127 capercaillie genotypes were identified (77 males, 46 females, and 4 of unknown sex). The SCR model yielded atotal population size estimate (posterior mean) of 137.3 capercaillies (posterior sd 4.2, 95% CRI 130–147). The observed sex ratio was skewed towards males (0.63). The posterior mean of the sex ratio under the SCR model was 0.58 (posterior sd 0.02, 95% CRI 0.54–0.61), suggesting a male-biased sex ratio in our study area. A subsampling simulation study indicated that a reduced sampling effort representing 75% of the actual detections would still yield practically acceptable estimates of total size and sex ratio in our population. Hence, field work and financial effort could be reduced without compromising accuracy when the SCR model is used to estimate key population parameters of cryptic species.
NASA Technical Reports Server (NTRS)
Hoffman, S.; Varholic, M. C.
1983-01-01
NASA-SCAR (AST) program was initiated in 1972 at the direct request of the Executive Office of the White House and Congress following termination of the U.S. SST program. The purpose of SCR was to conduct a focused research and technology program on those technology programs which contributed to the SST termination and, also, to provide an expanded data base for future civil and military supersonic transport aircraft. Funding for the Supersonic Cruise Research (SCR) Program was initiated in fiscal year 1973 and terminated in fiscal year 1981. The program was implemented through contracts and grants with industry, universities, and by in-house investigations at the NASA/OAST centers. The studies included system studies and five disciplines: propulsion, stratospheric emissions impact, materials and structures, aerodynamic performance, and stability and control. The NASA/Lewis Variable-Cycle Engine (VCE) Component Program was initiated in 1976 to augment the SCR program in the area of propulsion. After about 2 years, the title was changed to VCE Technology program. The total number of contractors and grantees on record at the AST office in 1982 was 101 for SCR and 4 for VCE. This paper presents a compilation of all the contracts and grants as well as the funding summaries for both programs.
Hong, Wandong; Lin, Suhan; Zippi, Maddalena; Geng, Wujun; Stock, Simon; Zimmer, Vincent; Xu, Chunfang; Zhou, Mengtao
2017-01-01
Early prediction of disease severity of acute pancreatitis (AP) would be helpful for triaging patients to the appropriate level of care and intervention. The aim of the study was to develop a model able to predict Severe Acute Pancreatitis (SAP). A total of 647 patients with AP were enrolled. The demographic data, hematocrit, High-Density Lipoprotein Cholesterol (HDL-C) determinant at time of admission, Blood Urea Nitrogen (BUN), and serum creatinine (Scr) determinant at time of admission and 24 hrs after hospitalization were collected and analyzed statistically. Multivariate logistic regression indicated that HDL-C at admission and BUN and Scr at 24 hours (hrs) were independently associated with SAP. A logistic regression function (LR model) was developed to predict SAP as follows: -2.25-0.06 HDL-C (mg/dl) at admission + 0.06 BUN (mg/dl) at 24 hours + 0.66 Scr (mg/dl) at 24 hours. The optimism-corrected c-index for LR model was 0.832 after bootstrap validation. The area under the receiver operating characteristic curve for LR model for the prediction of SAP was 0.84. The LR model consists of HDL-C at admission and BUN and Scr at 24 hours, representing an additional tool to stratify patients at risk of SAP.
Bhongsatiern, Jiraganya; Stockmann, Chris; Yu, Tian; Constance, Jonathan E; Moorthy, Ganesh; Spigarelli, Michael G; Desai, Pankaj B; Sherwin, Catherine M T
2016-05-01
Growth and maturational changes have been identified as significant covariates in describing variability in clearance of renally excreted drugs such as vancomycin. Because of immaturity of clearance mechanisms, quantification of renal function in neonates is of importance. Several serum creatinine (SCr)-based renal function descriptors have been developed in adults and children, but none are selectively derived for neonates. This review summarizes development of the neonatal kidney and discusses assessment of the renal function regarding estimation of glomerular filtration rate using renal function descriptors. Furthermore, identification of the renal function descriptors that best describe the variability of vancomycin clearance was performed in a sample study of a septic neonatal cohort. Population pharmacokinetic models were developed applying a combination of age-weight, renal function descriptors, or SCr alone. In addition to age and weight, SCr or renal function descriptors significantly reduced variability of vancomycin clearance. The population pharmacokinetic models with Léger and modified Schwartz formulas were selected as the optimal final models, although the other renal function descriptors and SCr provided reasonably good fit to the data, suggesting further evaluation of the final models using external data sets and cross validation. The present study supports incorporation of renal function descriptors in the estimation of vancomycin clearance in neonates. © 2015, The American College of Clinical Pharmacology.
Nath, Sarmi; Somyajit, Kumar; Mishra, Anup; Scully, Ralph
2017-01-01
Abstract The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression. PMID:28911102
Rudén, Jonas; Frenning, Göran; Bramer, Tobias; Thalberg, Kyrre; Alderborn, Göran
2018-04-25
The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosemann, Peter; Kaoumi, Djamel
Nuclear materials are an essential aspect of nuclear engineering. While great effort is spent on designing more advanced reactors or enhancing a reactor’s safety, materials have been the bottleneck of most new developments. The designs of new reactor concepts are driven by neutronic and thermodynamic aspects, leading to unusual coolants (liquid metal, liquid salt, gases), higher temperatures, and higher radiation doses than conventional light water reactors have. However, any (nuclear) engineering design must consider the materials used in the anticipated application in order to ever be realized. Designs which may look easy, simple and efficient considering thermodynamics or neutronic aspectsmore » can show their true difficulty in the materials area, which then prevents them from being deployed. In turn, the materials available are influencing the neutronic and thermodynamic designs and therefore must be considered from the beginning, requiring close collaborations between different aspects of nuclear engineering. If a particular design requires new materials, the licensing of the reactor must be considered, but licensing can be a costly and time consuming process that results in long lead times to realize true materials innovation.« less
The continuous large-scale preparation of several 1-methylimidazole based ionic liquids was carried out using a Spinning Tube-in-Tube (STT) reactor (manufactured by Kreido Laboratories). This reactor, which embodies and facilitates the use of Green Chemistry principles and Proce...
Chang, Shu Hao; Yeh, Jhy Wei; Chein, Hung Min; Hsu, Li Yeh; Chi, Kai Hsien; Chang, Moo Been
2008-08-01
Catalytic destruction has been applied to control polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) emissions from different facilities. The cost of carbon-based catalysts is considerably lower than that of the metal oxide or zeolite-based catalysts used in the selective catalytic reduction (SCR) system. In this study, destruction and adsorption efficiencies of PCDD/Fs achieved with Cu/C and Fe/C catalysts from flue gas streams of a metal smelting plant (MSP) and a large-scale municipal waste incinerator (MWI), respectively, are evaluated via the pilot-scale catalytic reactor system (PCRS). The results indicate that Cu and Fe catalysts supported on carbon surface are capable of decomposing and adsorbing PCDD/ Fs from gas streams. In the testing sources of MSP and MWI, the PCDD/F removal efficiencies achieved with Cu/C catalyst at 250 degrees C reach 96%, however, the destruction efficiencies are negative (-1,390% and -112%, respectively) due to significant PCDD/F formation on catalyst promoted by copper. In addition, Fe/C catalyst is of higher removal and destruction efficiencies compared with Cu/C catalyst in both testing sources. The removal efficiencies of PCDD/Fs achieved with Fe/C catalyst are 97 and 94% for MSP and MWI, respectively, whereas the destruction efficiencies are both higher than 70%. Decrease of PCDD/F destruction efficiency and increase of adsorption efficiency with increasing chlorination of dioxin congeners is also observed in the test via three-layer Fe/C catalyst. Furthermore, the mass of 2,3,7,8-PCDD/Fs retained on catalyst decreases on the order of first to third layer of catalyst. Each gram Fe/C catalyst in first layer adsorbs 10.9, 6.91, and 3.04 ng 2,3,7,8-PCDD/Fs in 100 min testing duration as the operating temperature is controlled at 150, 200, and 250 degrees C, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sridharan, Kumar; Morgan, Dane
2015-01-22
The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsinmore » had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re-evaluate thermophysical properties of flibe and flinak. Pacific Northwest National Laboratories has focused on evaluating the fluorinating gas nitrogen trifluoride as a potential salt purification agent. Work there was performed on removing hydroxides and oxides from flinak salt under controlled conditions. Lastly, the University of California Berkeley has spent considerable time designing and simulating reactor components with fluoride salts at high temperatures. Despite the hurdles presented by the innate chemical hazards, considerable progress has been made. The stage has been set to perform new research on salt chemical control which could advance the fluoride salt cooled reactor concept towards commercialization. What were previously thought of as chemical undesirable, but nuclear certified, alloys have been shown to be theoretically compatible with fluoride salts at high temperatures. This preliminary report has been prepared to communicate the construction of the basic infrastructure required for flibe, as well as suggest original research to performed at the University of Wisconsin. Simultaneously, the contents of this report can serve as a detailed, but introductory guide to allow anyone to learn the fundamentals of chemistry, engineering, and safety required to work with flibe salt.« less
Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D
2008-02-01
Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton
A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysismore » using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.« less
Shineha, Ryuma; Inoue, Yusuke; Ikka, Tsunakuni; Kishimoto, Atsuo; Yashiro, Yoshimi
2018-02-01
Owing to the rapid progress in stem cell research (SCR) and regenerative medicine (RM), society's expectation and interest in these fields are increasing. For effective communication on issues concerning SCR and RM, surveys for understanding the interests of stakeholders is essential. For this purpose, we conducted a large-scale survey with 2,160 public responses and 1,115 responses from the member of the Japanese Society for Regenerative Medicine. Results showed that the public is more interested in the post-realization aspects of RM, such as cost of care, countermeasures for risks and accidents, and clarification of responsibility and liability, than in the scientific aspects; the latter is of greater interest only to scientists. Our data indicate that an increased awareness about RM-associated social responsibility and regulatory framework is required among scientists, such as those regarding its benefits, potential accidents, abuse, and other social consequences. Awareness regarding the importance of communication and education for scientists are critical to bridge the gaps in the interests of the public and scientists. Stem Cells Translational Medicine 2018;7:251-257. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trianti, Nuri, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Su'ud, Zaki, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Arif, Idam, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id
2014-09-30
Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tightmore » concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.« less
Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment▿
Hammes, Frederik; Boon, Nico; Vital, Marius; Ross, Petra; Magic-Knezev, Aleksandra; Dignum, Marco
2011-01-01
Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase the pH and facilitate the process of precipitation on an added seeding material. Here we describe for the first time the opportunistic bacterial colonization of the calcite pellets in a full-scale pellet softening reactor and the functional contribution of these colonizing bacteria to the overall drinking water treatment process. ATP analysis, advanced microscopy, and community fingerprinting with denaturing gradient gel electrophoretic (DGGE) analysis were used to characterize the biomass on the pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow cytometric analysis were used to characterize the impact of the biological processes on drinking water quality. The data revealed pellet colonization at concentrations in excess of 500 ng of ATP/g of pellet and reactor biomass concentrations as high as 220 mg of ATP/m3 of reactor, comprising a wide variety of different microorganisms. These organisms removed as much as 60% of AOC from the water during treatment, thus contributing toward the biological stabilization of the drinking water. Notably, only a small fraction (about 60,000 cells/ml) of the bacteria in the reactors was released into the effluent under normal conditions, while the majority of the bacteria colonizing the pellets were captured in the calcite structures of the pellets and were removed as a reusable product. PMID:21148700
Core Design Characteristics of the Fluoride Salt-Cooled High Temperature Demonstration Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R; Qualls, A L; Betzler, Benjamin R
2016-01-01
Fluoride salt-cooled high temperature reactors (FHRs) are a promising reactor technology option with significant knowledge gaps to implementation. One potential approach to address those technology gaps is via a small-scale demonstration reactor with the goal of increasing the technology readiness level (TRL) of the overall system for the longer term. The objective of this paper is to outline a notional concept for such a system, and to address how the proposed concept would advance the TRL of FHR concepts. Development of the proposed FHR Demonstration Reactor (DR) will enable commercial FHR deployment through disruptive and rapid technology development and demonstration.more » The FHR DR will close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. Important capabilities that will be demonstrated by building and operating the FHR DR include core design methodologies; fabrication and operation of high temperature reactors; salt procurement, handling, maintenance, and ultimate disposal; salt chemistry control to maximize vessel life; tritium management; heat exchanger performance; pump performance; and reactivity control. The FHR DR is considered part of a broader set of FHR technology development and demonstration efforts, some of which are already underway. Nonreactor test efforts (e.g., heated salt loops or loops using simulant fluids) can demonstrate many technologies necessary for commercial deployment of FHRs. The FHR DR, however, fulfills a crucial role in FHR technology development by advancing the technical maturity and readiness level of the system as a whole.« less
Bacterial colonization of pellet softening reactors used during drinking water treatment.
Hammes, Frederik; Boon, Nico; Vital, Marius; Ross, Petra; Magic-Knezev, Aleksandra; Dignum, Marco
2011-02-01
Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase the pH and facilitate the process of precipitation on an added seeding material. Here we describe for the first time the opportunistic bacterial colonization of the calcite pellets in a full-scale pellet softening reactor and the functional contribution of these colonizing bacteria to the overall drinking water treatment process. ATP analysis, advanced microscopy, and community fingerprinting with denaturing gradient gel electrophoretic (DGGE) analysis were used to characterize the biomass on the pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow cytometric analysis were used to characterize the impact of the biological processes on drinking water quality. The data revealed pellet colonization at concentrations in excess of 500 ng of ATP/g of pellet and reactor biomass concentrations as high as 220 mg of ATP/m(3) of reactor, comprising a wide variety of different microorganisms. These organisms removed as much as 60% of AOC from the water during treatment, thus contributing toward the biological stabilization of the drinking water. Notably, only a small fraction (about 60,000 cells/ml) of the bacteria in the reactors was released into the effluent under normal conditions, while the majority of the bacteria colonizing the pellets were captured in the calcite structures of the pellets and were removed as a reusable product.
Analysis of selective chopper radiometer data
NASA Technical Reports Server (NTRS)
Roe, J.; Hovland, D.; Wilcox, R.
1983-01-01
Data from SCR-B on Nimbus 5 have been processed to yield global, orbital temperatures at 10, 5, 2, 1, and 0.4 mb for the period January 1977 through April 1978 under the current task. In addition gridded values at 10 deg latitude by 20 deg longitude were prepared by space-time interpolation for the period January 1975 through April 1978. Temperature retrieval was based on regression of radiances against Meteorological Rocket Network data, with regressions recomputed at approximately six-month intervals. This data now completes a consistent time series from April 1970 to April 1978 for all available radiance data from SCR A and SCR B on Nimbus 4 and 5. The processing details for the current period are discussed, but is also applicable to the previous data periods. The accuracy of the temperature retrievals for each 6-month period for the entire eight years is given in the Appendices.
Manufacture, distribution, and handling of nitrate salts for solar-thermal applications
NASA Astrophysics Data System (ADS)
Fiorucci, L. C.; Goldstein, S. L.
1982-11-01
The low cost and attractive physical properties of molten sodium/potassium nitrate salts were shown to be one of the most cost effective fluids for heat absorption and thermal energy storage in Solar Central Receiver (SCR) systems. Information related to the availability, transport, handling, and utilization of these salts for commercial size SCR applications is provided. The following items are reviewed: existing manufacturing processes for natural and synthetic nitrates; the upstream availability of raw materials; downstream existing and projected demand for these products in other sectors of the economy; and relevant handling and distribution technologies. Safety considerations and issues more directly related to the SCR facility, such as initial system charging, salt maintenance and regeneration, and disposal are also reviewed. Options for supply, surge storage, and initial charging are discussed for the 1 MWt to 300 MWe range of solar plant sizes.
Wu, Wanrong; Zeng, Zheng; Lu, Pei; Xing, Yi; Wei, Jianjun; Yue, Huifang; Li, Rui
2018-03-10
Simultaneous oxidation of Hg 0 and NH 3 -SCR of NO by catalyst is one of the key methods for co-purification of coal-fired flue gas. Till now, the interaction between the oxidation of Hg 0 and NH 3 -SCR of NO and its mechanism have not clarified. In this study, a series of nanophase Ce x Zr y Mn z O 2 was prepared for the simultaneous oxidation of Hg 0 and NH 3 -SCR of NO at low temperature. The catalysts were characterized using surface area analysis, X-ray diffraction, temperature-programmed techniques, and several types of microscopy and spectroscopy. The experimental results indicated that the Ce 0.47 Zr 0.22 Mn 0.31 O 2 exhibited superior Hg 0 removal efficiency (> 99%) and NO conversion efficiency (> 90%) even at 150 °C, and it also exhibited a good durability in the presence of SO 2 and H 2 O. The excellent performance of Ce 0.47 Zr 0.22 Mn 0.31 O 2 on co-purifying Hg 0 and NO was due to the stronger synergistic effects of Ce-Zr-Mn in Ce 0.47 Zr 0.22 Mn 0.31 O 2 than that of the others, which was illustrated by the characterization results of XPS, XRD, and FT-IR. Moreover, it was found that the NO conversion of Ce 0.47 Zr 0.22 Mn 0.31 O 2 could be slightly influenced by Hg 0 and was decreased about 4% to the max, while that of Hg 0 could rarely be affected by the selected catalytic reduction process of NO. It might be due to the co-purification mechanism of NO and Hg 0 . The mechanism of the simultaneous oxidation of Hg 0 and NH 3 -SCR of NO was mainly due to the synergetic effect on the mobility of surface oxygen and the activation of lattice oxygen of Ce 0.47 Zr 0.22 Mn 0.31 O 2 . The effect of the oxidation of Hg 0 on the NH 3 -SCR of NO was mainly due to the absorbed Hg 0 /Hg 2+ on the surface of Ce 0.47 Zr 0.22 Mn 0.31 O 2 , which attenuated the formation of NH 3(ad) , -NH 2(ad) , and NH 4 + on its acid sites. Similarly, the NH 3 -SCR of NO process could hardly influence the oxidation of Hg 0 when NO and Hg 0 were co-purified.
ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...
ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shum, D.K.M.
This paper examines various issues that would impact the incorporation of warm prestress (WPS) effects in the fracture-margin assessment of reactor pressure vessels (RPVs). By way of an example problem, possible beneficial effects of including type-I WPS in the assessment of an RPV subjected to a small break loss of coolant accident are described. In addition, the need to consider possible loss of constraint effects when interpreting available small specimen WPS-enhanced fracture toughness data is demonstrated through two- and three-dimensional local crack-lip field analyses of a compact tension specimen. Finally, a hybrid correlative-predictive model of WPS base on J-Q theorymore » and the Ritchie-Knott-Rice model is applied to a small scale yielding boundary layer formulation to investigate near crack-tip fields under varying degrees of loading and unloading.« less
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S.
2009-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hedge, uday; Balasubramaniam, R.; Gokoglu, S.
2007-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Integrated Tokamak modeling: When physics informs engineering and research planning
NASA Astrophysics Data System (ADS)
Poli, Francesca Maria
2018-05-01
Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. It discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.
Integrated Tokamak modeling: When physics informs engineering and research planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, Francesca Maria
Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. Itmore » discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.« less
Integrated Tokamak modeling: When physics informs engineering and research planning
Poli, Francesca Maria
2018-05-01
Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. Itmore » discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.« less
Numerical Study of Pyrolysis of Biomass in Fluidized Beds
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.
Small modular reactors are 'crucial technology'
NASA Astrophysics Data System (ADS)
Johnston, Hamish
2018-03-01
Small modular nuclear reactors (SMRs) offer a way for the UK to reduce carbon dioxide emissions from electricity generation, while allowing the country to meet the expected increase in demand for electricity from electric vehicles and other uses.